
Arquillian: An integration testing

framework for Containers

Reference Guide
1.0.0-Alpha2

by Dan Allen, Aslak Knutsen, Pete Muir, and Andrew Rubinger

iii

Preface: Test in the container! ... v

1. Introduction ... 1

1.1. Mission statement ... 1

1.2. Architecture overview .. 2

1.3. Integration testing in Java EE .. 3

1.3.1. Testing the real component .. 3

1.3.2. Finding a happy medium .. 4

1.3.3. Controlling the test classpath .. 4

1.4. Usage scenarios ... 4

2. Introductory examples ... 7

2.1. Testing an EJB ... 10

2.2. Testing CDI beans .. 11

2.3. Testing JPA .. 12

2.4. Testing JMS ... 14

3. Getting started ... 17

3.1. Setting up Arquillian in a Maven project ... 17

3.2. Writing your first Arquillian test .. 18

3.3. Setting up and running the test in Maven ... 21

3.4. Setting up and running the test in Eclipse ... 23

3.5. Setting up and running the test in NetBeans ... 25

4. Target containers ... 27

4.1. Container varieties .. 27

4.2. Supported containers .. 27

4.3. Container configuration ... 28

5. Test enrichment ... 31

5.1. Injection into the test case ... 31

5.2. Active scopes ... 32

6. Test execution ... 33

6.1. Anatomy of a test ... 33

6.2. ShrinkWrap packaging .. 33

6.3. Test archive deployment ... 34

6.4. Enriching the test class ... 34

6.5. Negotiating test execution ... 34

6.6. Test run modes .. 35

6.6.1. Mode: in-container .. 35

6.6.2. Mode: as-client .. 37

7. Debugging remote tests .. 39

7.1. Debugging in Eclipse .. 39

7.1.1. Attaching the IDE debugger to the container .. 39

7.1.2. Launching the test in debug mode .. 40

7.1.3. Stepping into external libraries .. 40

7.2. Assertions in remote tests ... 41

7.2.1. Enabling assertions in JBoss AS ... 41

8. Extending Arquillian .. 43

Arquillian: An integration te...

iv

9. Complete Container Reference .. 45

9.1. JBoss AS 5.1 - Remote .. 45

9.1.1. Configuration .. 45

9.2. JBoss AS 5.1 - Remote + Lifecycle .. 46

9.2.1. Configuration .. 46

9.3. JBoss AS 6.0 - Remote .. 47

9.3.1. Configuration .. 48

9.4. JBoss AS 6.0 - Remote + Lifecycle .. 49

9.4.1. Configuration .. 49

9.5. JBoss Embedded AS 6.0 - Embedded ... 50

9.5.1. Configuration .. 50

9.6. JBoss Reloaded - Embedded .. 52

9.7. GlassFish 3.0 - Embedded .. 52

9.7.1. Configuration .. 53

9.8. Weld SE - Embedded ... 53

9.9. Apache OpenWebBeans - Embedded .. 55

9.10. Apache OpenEJB - Embedded .. 56

v

Preface: Test in the container!

Ever since the inception of Java EE, testing enterprise applications has been a major pain

point. Testing business components, in particular, can be very challenging. Often, a vanilla

unit test isn't sufficient for validating such a component's behavior. Why is that? The reason is

that components in an enterprise application rarely perform operations which are strictly self-

contained. Instead, they interact with or provide services for the greater system. They also have

declarative functionality which gets applied at runtime. You could say "no business component

is an island."

The way the component interacts with the system is just as important as the work it performs.

Even with the application separated into more layers than your favorite Mexican dip, to validate

the correctness of a component, you have to observe it carrying out its work—in situ. Unit tests

and mock testing can only take you so far. Business logic aside, how do you test your component's

"enterprise" semantics?

Especially true of business components, you eventually have to ensure that the declarative

services, such as dependency injection and transaction control, actually get applied and work as

expected. It means interacting with databases or remote systems and ensuring that the component

plays well with its collaborators. What happens when your Message Driven Bean can't parse the

XML message? Will the right component be injected? You may just need to write a test to explore

how the declarative services behave, or that your application is configured correctly to use them.

This style of testing needed here is referred to as integration testing, and it's an essential part of

the enterprise development process.

Arquillian, a new testing framework developed at JBoss.org, empowers the developer to write

integration tests for business objects that are executed inside a container or that interact with the

container as a client. The container may be an embedded or remote Servlet container, Java EE

application server, Java SE CDI environment or any other container implementation provided.

Arquillian strives to make integration testing no more complicated than basic unit testing.

The importance of Arquillian in the Java EE space cannot be emphasized enough. If writing

good tests for Java EE projects is some dark art in which knowledge is shared only by the

Java gurus, people are either going to be turned off of Java EE or a lot of fragile applications

are going to be written. Arquillian is set to become the first comprehensive solution for testing

Java EE applications, namely because it leverages the container rather than a contrived runtime

environment.

This guide documents Arquillian's architecture, how to get started using it and how to extend

it. If you have questions, please use the discussion forum in the top-level Arquillian space on

JBoss.org. We also provide a JIRA issue tracking system for bug reports and feature requests. If

you are interested in the development of Arquillian, or want to translate this documentation into

your language, we welcome you to join us in the Arquillian Development subspace on JBoss.org.

vi

Chapter 1.

1

Introduction
We believe that integration testing should be no more complex than writing a basic unit test. We

created Arquillian to realize that goal. One of the major complaints we've heard about Seam 2

testing (i.e., SeamTest) was, not that it isn't possible, but that it isn't flexible and it's difficult to

setup. We wanted to correct those shortcomings with Arquillian.

Testing needs vary greatly, which is why it's so vital that, with Arquillian (and ShrinkWrap), we

have decomposed the problem into its essential elements. The result is a completely flexible and

portable integration testing framework.

1.1. Mission statement

The mission of the Arquillian project is to provide a simple test harness that developers can use

to produce a broad range of integration tests for their Java applications (most likely enterprise

applications). A test case may be executed within the container, deployed alongside the code

under test, or by coordinating with the container, acting as a client to the deployed code.

Arquillian defines two styles of container, remote and embedded. A remote container resides in

a separate JVM from the test runner. Its lifecycle may be managed by Arquillian, or Arquillian

may bind to a container that is already started. An embedded container resides in the same

JVM and is mostly likely managed by Arquillian. Containers can be further classified by their

capabilities. Examples include a fully compliant Java EE application server (e.g., GlassFish, JBoss

AS, Embedded GlassFish), a Servlet container (e.g., Tomcat, Jetty) and a bean container (e.g.,

Weld SE). Arquillian ensures that the container used for testing is pluggable, so the developer is

not locked into a proprietary testing environment.

Arquillian seeks to minimize the burden on the developer to carry out integration testing by

handling all aspects of test execution, including:

• managing the lifecycle of the container (start/stop),

• bundling the test class with dependent classes and resources into a deployable archive,

• enhancing the test class (e.g., resolving @Inject, @EJB and @Resource injections),

• deploying the archive to test (deploy/undeploy) and

• capturing results and failures.

To avoid introducing unnecessary complexity into the developer's build environment, Arquillian

integrates transparently with familiar testing frameworks (e.g., JUnit 4, TestNG 5), allowing tests

to be launched using existing IDE, Ant and Maven test plugins without any add-ons.

Arquillian makes integration testing a breeze.

Chapter 1. Introduction

2

1.2. Architecture overview

Arquillian combines a unit testing framework (JUnit or TestNG), ShrinkWrap, and one or more

supported target containers (Java EE container, servlet container, Java SE CDI environment, etc)

to provide a simple, flexible and pluggable integration testing environment.

The Arquillian test infrastructure

At the core, Arquillian provides a custom test runner for JUnit and TestNG that turns control of

the test execution lifecycle from the unit testing framework to Arquillian. From there, Arquillian

can delegate to service providers to setup the environment to execute the tests inside or against

the container. An Arquillian test case looks just like a regular JUnit or TestNG test case with two

declarative enhancements, which will be covered later.

Since Arquillian works by replacing the test runner, Arquillian tests can be executed using existing

test IDE, Ant and Maven test plugins without any special configuration. Test results are reported

just like you would expect. That's what we mean when we say using Arquillian is no more

complicated than basic unit testing.

At this point, it's appropriate to pause and define the three aspects of an Arquillian test case. This

terminology will help you better understand the explainations of how Arquillian works.

1. container — a runtime environment for a deployment

2. deployment — the process of dispatching an artifact to a container to make it operational

3. archive — a packaged assembly of code, configuration and resources

The test case is dispatched to the container's environment through coordination with ShrinkWrap,

which is used to declaratively define a custom Java EE archive that encapsulates the test class

and its dependent resources. Arquillian packages the ShrinkWrap-defined archive at runtime and

deploys it to the target container. It then negotiates the execution of the test methods and captures

the test results using remote communication with the server. Finally, Arquillian undeploys the test

archive. We'll go into more detail about how Arquillian works in a later chapter.

Integration testing in Java EE

3

So what is the target container? Some proprietary testing container that emulates the behavior

of the technology (Java EE)? Nope, it's pluggable. It can be your actual target runtime, such

as JBoss AS, GlassFish or Tomcat. It can even been an embedded container such as JBoss

Embedded AS, GlassFish Embedded or Weld SE. All of this is made possible by a RPC-style

(or local, if applicable) communication between the test runner and the environment, negotiating

which tests are run, the execution, and communicating back the results. This means two things

for the developer:

• You develop Arquillian tests just like you would a regular unit test and

• the container in which you run the tests can be easily swapped, or you can use each one.

With that in mind, let's consider where we are today with integration testing in Java EE and why

an easy solution is needed.

1.3. Integration testing in Java EE

Integration testing is very important in Java EE. The reason is two-fold:

• Business components often interact with resources or sub-system provided by the container

• Many declarative services get applied to the business component at runtime

The first reason is inherent in enterprise applications. For the application to perform any sort of

meaningful work, it has to pull the strings on other components, resources (e.g., a database) or

systems (e.g., a web service). Having to write any sort of test that requires an enterprise resource

(database connection, entity manager, transaction, injection, etc) is a non-starter because the

developer has no idea what to even use. Clearly there is a need for a simple solution, and Arquillian

fills that void.

Some might argue that, as of Java EE 5, the business logic performed by most Java EE

components can now be tested outside of the container because they are POJOs. But let's not

forget that in order to isolate the business logic in Java EE components from infrastructure services

(transactions, security, etc), many of those services were pushed into declarative programming

constructs. At some point you want to make sure that the infrastructure services are applied

correctly and that the business logic functions properly within that context, justifying the second

reason that integration testing is important in Java EE.

1.3.1. Testing the real component

The reality is that you aren't really testing your component until you test it in situ. It's all to easy to

create a test that puts on a good show but doesn't provide any real guarantee that the code under

test functions properly in a production environment. The show typically involves mock components

and/or bootstrapped environments that cater to the test. Such "unit tests" can't verify that the

declarative services kick in as they should. While unit tests certainly have value in quickly testing

algorithms and business calculations within methods, there still need to be tests that exercise the

component as a complete service.

Chapter 1. Introduction

4

Rather than instantiating component classes in the test using Java's new operator, which is

customary in a unit test, Arquillian allows you to inject the container-managed instance of the

component directly into your test class (or you can look it up in JNDI) so that you are testing the

actual component, just as it runs inside the application.

1.3.2. Finding a happy medium

Do you really need to run the test in a real container when a Java SE CDI environment would do?

It's true, some tests can work without a full container. For instance, you can run certain tests in a

Java SE CDI environment with Arquillian. Let's call these "standalone" tests, whereas tests which

do require a full container are called "integration" tests. Every standalone test can also be run

as an integration test, but not the other way around. While the standalone tests don't need a full

container, it's also important to run them as integration tests as a final check just to make sure

that there is nothing they conflict with (or have side effects) when run in a real container.

It might be a good strategy to make as many tests work in standalone mode as possible to ensure

a quick test run, but ultimately you should consider running all of your tests in the target container.

As a result, you'll likely enjoy a more robust code base.

We've established that integration testing is important, but how can integration testing being

accomplished without involving every class in the application? That's the benefit that ShrinkWrap

brings to Arquillian.

1.3.3. Controlling the test classpath

One huge advantage ShrinkWrap brings to Arquillian is classpath control. The classpath of a test

run has traditionally been a kitchen sink of all production classes and resources with the test

classes and resources layered on top. This can make the test run indeterministic, or it can just be

hard to isolate test resources from the main resources.

Arquillian uses ShrinkWrap to create "micro deployments" for each test, giving you fine-grained

control over what you are testing and what resources are available at the time the test is executed.

An archive can include classes, resources and libraries. This not only frees you from the classpath

hell that typically haunts test runners (Eclipse, Maven), it also gives you the option to focus

on the interaction between an subset of production classes, or to easily swap in alternative

classes. Within that grouping you get the self-assembly of services provided by Java EE—the

very integration which is being tested.

Let's move on and consider some typical usage scenarios for Arquillian.

1.4. Usage scenarios

With the strategy defined above, where the test case is executed in the container, you should

get the sense of the freedom you have to test a broad range of situations that may have seemed

unattainable when you only had the primitive unit testing environment. In fact, anything you can

do in an application you can now do in your test class.

Usage scenarios

5

A fairly common scenario is testing an EJB session bean. As you are inside the container, you can

simply do a JNDI lookup to get the EJB reference and your test becomes a client of the EJB. But

having to use JNDI to get a reference to the EJB is inconvenient (at least to Java EE 5 developers

that have become accustomed to annotation-based dependency injection). Arquillian allows you

to use the @EJB annotation to inject the reference to an EJB session bean into your test class.

EJB session beans are one type of Java EE resource you may want to access. But that's

just the beginning. You can access any resource available in a Java EE container, from a

UserTransaction to a DataSource to a mail session. Any of these resources can be injected

directly into your test class using the Java EE 5 @Resource annotation.

Resource injections are convenient, but they are so Java EE 5. In Java EE 6, when you think

dependency injection, you think JSR-299: CDI. Your test class can access any bean in the

ShrinkWrap-defined archive, provided the archive contains a beans.xml file to make it a bean

archive. And you can inject bean instances directly into your class using the @Inject annotation,

or you can inject an Instance reference to the bean, allowing you to create a bean instance when

needed in the test. Of course, you can do anything else you can do with CDI within your test as well.

Another important scenario in integration testing is performing data access. If the ShrinkWrap-

defined archive contains a persistence.xml descriptor, the persistence unit will be started when

the archive is deployed and you can perform persistence operations. You can obtain a reference

to an EntityManager by injecting it into your class with @PersistenceContext or from a CDI

producer-field. Alternatively, you can execute the persistence operation indirectly through an EJB

session bean or a managed bean.

Those examples should give you an idea of some of the tasks that are possible from within an

Arquillian-enhanced test case. Now that you have plenty of motivation for using Arquillian, let's

look at how to get started using Arquillian.

6

Chapter 2.

7

Introductory examples
The following examples demonstrate the use of Arquillian. Currently Arquillian is distributed

as a Maven only project, so you'll need to grab the examples from SVN. You can choose

between a JUnit example [http://anonsvn.jboss.org/repos/common/arquillian/tags/1.0.0.Alpha1/

examples/junit] and a TestNG example [http://anonsvn.jboss.org/repos/common/arquillian/

tags/1.0.0.Alpha1/examples/testng]. In this tutorial we show you how to use both.

svn co http://anonsvn.jboss.org/repos/common/arquillian/trunk/examples/testng/ arquillian-

example-testng

svn co http://anonsvn.jboss.org/repos/common/arquillian/trunk/examples/junit/ arquillian-

example-junit

Running these tests from the command line is easy. The examples run against all the servers

supported by Arquillian (of course, you must choose a container that is capable of deploying EJBs

for these tests). To run the test, we'll use Maven. For this tutorial, we'll use JBoss AS 6 (currently

at Milestone 3), for which we use the jbossas-remote-60 profile.

First, make sure you have a copy of JBoss AS; you can download it from jboss.org [http://

www.jboss.org/jbossas/downloads]. We strongly recommend you use a clean copy of JBoss AS.

Unzip JBoss AS to a directory of your choice and start it; we'll use $JBOSS_HOME to refer to this

location throughout the tutorial.

$ unzip jboss-6.0.0.20100429-M3.zip && mv jboss-6.0.0.20100429-M3 $JBOSS_HOME &&

 $JBOSS_HOME/bin/run.sh

Now, we tell Maven to run the tests, for both JUnit and TestNG:

$ cd arquillian-example-testng/

$ mvn test -Pjbossas-remote-60

$ cd ../arquillian-example-junit/

$ mvn test -Pjbossas-remote-60

You can also run the tests in an IDE. We'll show you how to run the tests in Eclipse, with m2eclipse

installed, next.

Before running an Arquillian test in Eclipse, you must have the plugin for the unit testing framework

you are using installed. Eclipse ships with the JUnit plugin, so you are already setup if you selected

http://anonsvn.jboss.org/repos/common/arquillian/tags/1.0.0.Alpha1/examples/junit
http://anonsvn.jboss.org/repos/common/arquillian/tags/1.0.0.Alpha1/examples/junit
http://anonsvn.jboss.org/repos/common/arquillian/tags/1.0.0.Alpha1/examples/junit
http://anonsvn.jboss.org/repos/common/arquillian/tags/1.0.0.Alpha1/examples/testng
http://anonsvn.jboss.org/repos/common/arquillian/tags/1.0.0.Alpha1/examples/testng
http://anonsvn.jboss.org/repos/common/arquillian/tags/1.0.0.Alpha1/examples/testng
http://www.jboss.org/jbossas/downloads
http://www.jboss.org/jbossas/downloads
http://www.jboss.org/jbossas/downloads

Chapter 2. Introductory examples

8

JUnit. If you are writing your tests with TestNG, you need the Eclipse TestNG plugin [http://

testng.org].

Note

You must use the 5.11 version of the TestNG Eclipse plugin, which can be

downloaded from testng.org [http://testng.org/testng-eclipse-5.11.0.18.zip]. The

TestNG update site will give you version 5.12 which is not compatible with any

released version of TestNG core.

Since the examples in this guide are based on a Maven 2 project, you will also need the m2eclipse

plugin. Instructions for using the m2eclipse update site to add the m2eclipse plugin to Eclipse

are provided on the m2eclipse home page. For more, read the m2eclipse reference guide [http://

www.sonatype.com/books/m2eclipse-book/reference].

Once the plugins are installed, import your Maven project into the Eclipse workspace. Before

executing the test, you need to enable the profile for the target container, as we did on the

command line. We'll go ahead and activate the profile globally for the project (we also need the

default profile, read the note above for more). Right click on the project and select Properties.

Select the Maven property sheet and in the first form field, enter jbossas-remote-60; you also

need to tell Maven to not resolve dependencies from the workspace (this interferes with resource

loading):

http://testng.org
http://testng.org
http://testng.org
http://testng.org/testng-eclipse-5.11.0.18.zip
http://testng.org/testng-eclipse-5.11.0.18.zip
http://www.sonatype.com/books/m2eclipse-book/reference
http://www.sonatype.com/books/m2eclipse-book/reference
http://www.sonatype.com/books/m2eclipse-book/reference

9

Maven settings for project

Click OK and accept the project changes. Before we execute tests, make sure that Eclipse has

properly processed all the resource files by running a full build on the project by selecting Clean

from Project menu. Now you are ready to execute tests.

Assuming you have JBoss AS started from running the tests on the command line, you can now

execute the tests. Right click on the InjectionTestCase.java file in the Package Explorer and select

Run As... > JUnit Test or Run As... > TestNG Test depending on which unit testing framework

the test is using.

Chapter 2. Introductory examples

10

Running the test from Eclipse using TestNG

You can now execute all the tests from Eclipse!

2.1. Testing an EJB

Here's a JUnit Arquillian test that validates the behavior of the EJB session bean

GreetingManager. Arquillian looks up an instance of the EJB session bean in the test archive and

injects it into the matching field type annotated with @EJB.

import javax.ejb.EJB;

import org.jboss.arquillian.api.Deployment;

import org.jboss.arquillian.junit.Arquillian;

import org.jboss.shrinkwrap.api.ShrinkWrap;

import org.jboss.shrinkwrap.api.spec.JavaArchive;

import org.junit.Assert;

import org.junit.Test;

import org.junit.runner.RunWith;

@RunWith(Arquillian.class)

public class InjectionTestCase {

 @Deployment

 public static JavaArchive createTestArchive() {

 return ShrinkWrap.create("test.jar", JavaArchive.class)

 .addClasses(GreetingManager.class, GreetingManagerBean.class);

 }

 @EJB

 private GreetingManager greetingManager;

 @Test

 public void shouldBeAbleToInjectEJB() throws Exception {

Testing CDI beans

11

 String userName = "Earthlings";

 Assert.assertEquals(Hello " + userName, greetingManager.greet(userName));

 }

}

The TestNG version of this test looks identical, except that it extends the

org.jboss.arquillian.testng.Arquillian class rather than being annotated with @RunWith.

2.2. Testing CDI beans

Here's an example of an JUnit Arquillian test that validates the GreetingManager EJB session

bean again, but this time it's injected into the test class using the @Inject annotation. You could

also make GreenManager a basic managed bean and inject it with the same annotation. The test

also verifies that the CDI BeanManager instance is available and gets injected. Notice that to inject

beans with CDI, you have to add a beans.xml file to the test archive.

import javax.enterprise.inject.spi.BeanManager;

import javax.inject.Inject;

import org.jboss.arquillian.api.Deployment;

import org.jboss.arquillian.junit.Arquillian;

import org.jboss.shrinkwrap.api.ShrinkWrap;

import org.jboss.shrinkwrap.api.ArchivePaths;

import org.jboss.shrinkwrap.api.spec.JavaArchive;

import org.jboss.shrinkwrap.impl.base.asset.ByteArrayAsset;

import org.junit.Assert;

import org.junit.Test;

import org.junit.runner.RunWith;

import com.acme.ejb.GreetingManager;

import com.acme.ejb.GreetingManagerBean;

@RunWith(Arquillian.class)

public class InjectionTestCase

{

 @Deployment

 public static JavaArchive createTestArchive() {

 return ShrinkWrap.create("test.jar", JavaArchive.class)

 .addClasses(GreetingManager.class, GreetingManagerBean.class)

 .addManifestResource(new ByteArrayAsset(new byte[0])),

 ArchivePaths.create("beans.xml"));

 }

 @Inject GreetingManager greetingManager;

Chapter 2. Introductory examples

12

 @Inject BeanManager beanManager;

 @Test

 public void shouldBeAbleToInjectCDI() throws Exception {

 String userName = "Earthlings";

 Assert.assertNotNull("Should have the injected the CDI bean manager", beanManager);

 Assert.assertEquals("Hello " + userName, greetingManager.greet(userName));

 }

}

2.3. Testing JPA

In order to test JPA, you need both a database and a persistence unit. For the sake of example,

let's assume we are going to use the default datasource provided by the container and that the

tables will be created automatically when the persistence unit starts up. Here's a persistence unit

configuration that satisfies that scenario.

<?xml version="1.0" encoding="UTF-8"?>

<persistence version="1.0"

 xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://java.sun.com/xml/ns/persistence

 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd">

 <persistence-unit name="users" transaction-type="JTA">

 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <jta-data-source>java:/DefaultDS</jta-data-source>

 <properties>

 <property name="hibernate.hbm2ddl.auto" value="create-drop" />

 <property name="hibernate.dialect" value="org.hibernate.dialect.HSQLDialect" />

 </properties>

 </persistence-unit>

</persistence>

Now let's assume that we have an EJB session bean that injects a persistence context and is

responsible for storing and retrieving instances of our domain class, User. We've catered it a bit

to the test for purpose of demonstration.

public @Stateless class UserRepositoryBean implements UserRepository {

 @PersistenceContext EntityManager em;

 public void storeAndFlush(User u) {

Testing JPA

13

 em.persist(u);

 em.flush();

 }

 public List<User> findByLastName(String lastName) {

 return em.createQuery("select u from User u where u.lastName = :lastName")

 .setParameter("lastName", lastName)

 .getResultList();

 }

}

Now let's create an Arquillian test to ensure we can persist and subsequently retrieve a user.

Notice that we'll need to add the persistence unit descriptor to the test archive so that the

persistence unit is booted in the test archive.

public class UserRepositoryTest extends Arquillian {

 @Deployment

 public static JavaArchive createTestArchive() {

 return ShrinkWrap.create("test.jar", JavaArchive.class)

 .addClasses(User.class, UserRepository.class, UserRepositoryBean.class)

 .addManifestResource(

 "test-persistence.xml",

 ArchivePaths.create("persistence.xml"));

 }

 private static final String FIRST_NAME = "Agent";

 private static final String LAST_NAME = "Kay";

 @EJB

 private UserRepository userRepository;

 @Test

 public void testCanPersistUserObject() {

 User u = new User(FIRST_NAME, LAST_NAME);

 userRepository.storeAndFlush(u);

 List<User> users = userRepository.findByLastName(LAST_NAME);

 Assert.assertNotNull(users);

 Assert.assertTrue(users.size() == 1);

 Assert.assertEquals(users.get(0).getLastName(), LAST_NAME);

 Assert.assertEquals(users.get(0).getFirstName(), FIRST_NAME);

Chapter 2. Introductory examples

14

 }

}

2.4. Testing JMS

Here's another JUnit Arquillian test that exercises with JMS, something that may have previously

seemed very tricky to test. The test uses a utility class QueueRequestor to encapsulate the low-

level code for sending and receiving a message using a queue.

import javax.annotation.Resource;

import javax.jms.*;

import org.jboss.arquillian.api.Deployment;

import org.jboss.arquillian.junit.Arquillian;

import org.jboss.shrinkwrap.api.ShrinkWrap;

import org.jboss.shrinkwrap.api.spec.JavaArchive;

import org.junit.Assert;

import org.junit.Test;

import org.junit.runner.RunWith;

import com.acme.ejb.MessageEcho;

import com.acme.util.jms.QueueRequestor;

@RunWith(Arquillian.class)

public class InjectionTestCase {

 @Deployment

 public static JavaArchive createTestArchive() {

 return ShrinkWrap.create("test.jar", JavaArchive.class)

 .addClasses(MessageEcho.class, QueueRequestor.class);

 }

 @Resource(mappedName = "/queue/DLQ")

 private Queue dlq;

 @Resource(mappedName = "/ConnectionFactory")

 private ConnectionFactory factory;

 @Test

 public void shouldBeAbleToSendMessage() throws Exception {

 String messageBody = "ping";

 Connection connection = factory.createConnection();

 Session session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

Testing JMS

15

 QueueRequestor requestor = new QueueRequestor((QueueSession) session, dlq);

 connection.start();

 Message request = session.createTextMessage(messageBody);

 Message response = requestor.request(request, 5000);

 Assert.assertEquals("Should have responded with same

 message", messageBody, ((TextMessage) response).getText());

 }

}

That should give you a taste of what Arquillian tests look like. To learn how to setup Arquillian in

your application and start developing tests with it, refer to the Chapter 3, Getting started chapter.

16

Chapter 3.

17

Getting started
We've promised you that integration testing with Arquillian is no more complicated than writing a

unit test. Now it's time to prove it to you. In this chapter, we'll look at what is required to setup

Arquillian in your project, how to write an Arquillian test case, how to execute the test case and

how the test results are displayed. That sounds like a lot, but you'll be writing your own Arquillian

tests in no time. (You'll also learn about Chapter 7, Debugging remote tests in Chapter 7).

3.1. Setting up Arquillian in a Maven project

The quickest way to get started with Arquillian is to add it to an existing Maven 2 project.

Regardless of whether you plan to use Maven as your project build, we recommend that you take

your first steps with Arquillian this way so as to get to your first green bar with the least amount

of distraction.

The first thing you should do is define a Maven property for the version of Arquillian you are going

to use. This way, you only have to maintain the version in one place and can reference it using

the Maven variable syntax everywhere else in your build file.

<properties>

 <arquillian.version>1.0.0.Alpha2</arquillian.version>

</properties>

Make sure you have the correct APIs available for your test. In this test we are going to use CDI:

<dependency>

 <groupId>javax.enterprise</groupId>

 <artifactId>cdi-api</artifactId>

 <version>1.0-SP1</version>

</dependency>

Next, you'll need to decide whether you are going to write tests in JUnit 4.x or TestNG 5.x. Once

you make that decision (use TestNG if you're not sure), you'll need to add either the JUnit or

TestNG library to your test build path as well as the corresponding Arquillian library.

If you plan to use JUnit 4, begin by adding the following two test-scoped dependencies to the

<dependencies> section of your pom.xml.

<dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

Chapter 3. Getting started

18

 <version>4.6</version>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.jboss.arquillian</groupId>

 <artifactId>arquillian-junit</artifactId>

 <version>${arquillian.version}</version>

 <scope>test</scope>

</dependency>

If you plan to use TestNG, then add these two test-scoped dependencies instead:

<dependency>

 <groupId>org.testng</groupId>

 <artifactId>testng</artifactId>

 <version>5.10</version>

 <classifier>jdk15</classifier>

 <scope>test</scope>

</dependency>

<dependency>

 <groupId>org.jboss.arquillian</groupId>

 <artifactId>arquillian-testng</artifactId>

 <version>${arquillian.version}</version>

 <scope>test</scope>

</dependency>

That covers the libraries you need to write your first Arquillian test case. We'll revisit the pom.xml

file in a moment to add the library you need to execute the test.

3.2. Writing your first Arquillian test

You're now going to write your first Arquillian test. But in order to write a test, we need to have

something to test. So let's first create a managed bean that we can invoke.

We'll help out those Americans still trying to convert to the metric system by providing them a

Fahrenheit to Celsius converter.

Here's our TemperatureConverter:

public class TemperatureConverter {

Writing your first Arquillian test

19

 public double convertToCelsius(double f) {

 return ((f - 32) * 5 / 9);

 }

 public double convertToFarenheit(double c) {

 return ((c * 9 / 5) + 32);

 }

}

Now we need to validate that this code runs. We'll be creating a test in the src/test/java

classpath of the project.

Granted, in this trivial case, we could simply instantiate the implementation class in a unit test to

test the calculations. However, let's assume that this bean is more complex, needing to access

enterprise services. We want to test it as a full-blown container-managed bean, not just as a simple

class instance. Therefore, we'll inject the bean into the test class using the @Inject annotation.

You're probably very familiar with writing tests using either JUnit or TestNG. A regular JUnit or

TestNG test class requires two enhancements to make it an Arquillian integration test:

• Define the deployment archive for the test using ShrinkWrap

• Declare for the test to use the Arquillian test runner

The deployment archive for the test is defined using a static method annotated with Arquillian's

@Deployment annotation that has the following signature:

public static Archive<?> methodName();

We'll add the managed bean to the archive so that we have something to test. We'll also add an

empty beans.xml file, so that the deployment is CDI-enabled:

@Deployment

public static JavaArchive createTestArchive() {

 return ShrinkWrap.create("test.jar", JavaArchive.class)

 .addClasses(TemperatureConverter.class)

 .addManifestResource(

 new ByteArrayAsset("<beans/>".getBytes()),

 ArchivePaths.create("beans.xml"));

}

Chapter 3. Getting started

20

The JUnit and TestNG versions of our test class will be nearly identical. They will only differ in

how they hook into the Arquillian test runner.

When creating the JUnit version of the Arquillian test case, you will define at least one test

method annotated with the JUnit @Test annotation and also annotate the class with the @RunWith

annotation to indicate that Arquillian should be used as the test runner for this class.

Here's the JUnit version of our test class:

@RunWith(Arquillian.class)

public class TemperatureConverterTest {

 @Inject

 private TemperatureConverter converter;

 @Deployment

 public static JavaArchive createTestArchive() {

 return ShrinkWrap.create("test.jar", JavaArchive.class)

 .addClasses(TemperatureConverter.class)

 .addManifestResource(

 new ByteArrayAsset("<beans/>".getBytes()),

 ArchivePaths.create("beans.xml"));

 }

 @Test

 public void testConvertToCelsius() {

 Assert.assertEquals(converter.convertToCelsius(32d), 0d);

 Assert.assertEquals(converter.convertToCelsius(212d), 100d);

 }

 @Test

 public void testConvertToFarenheit() {

 Assert.assertEquals(converter.convertToFarenheit(0d), 32d);

 Assert.assertEquals(converter.convertToFarenheit(100d), 212d);

 }

}

TestNG doesn't provide anything like JUnit's @RunWith annotation, so instead the TestNG version

of the Arquillian test case must extend the Arquillian class and define at least one method

annotated with TestNG's @Test annotation.

public class TemperatureConverterTest extends Arquillian {

 @Inject

 private TemperatureConverter converter;

Setting up and running the test in Maven

21

 @Deployment

 public static JavaArchive createTestArchive() {

 return ShrinkWrap.create("test.jar", JavaArchive.class)

 .addClasses(TemperatureConverter.class)

 .addManifestResource(

 new ByteArrayAsset("<beans/>".getBytes()),

 ArchivePaths.create("beans.xml"));

 }

 @Test

 public void testConvertToCelsius() {

 Assert.assertEquals(converter.convertToCelsius(32d), 0d);

 Assert.assertEquals(converter.convertToCelsius(212d), 100d);

 }

 @Test

 public void testConvertToFarenheit() {

 Assert.assertEquals(converter.convertToFarenheit(0d), 32d);

 Assert.assertEquals(converter.convertToFarenheit(100d), 212d);

 }

}

As you can see, we are not instantiating the bean implementation class directly, but rather using

the CDI reference provided by the container at the injection point, just as it would be used in the

application. (If the target container supports EJB, you could replace the @Inject annotation with

@EJB). Now let's see if this baby passes!

3.3. Setting up and running the test in Maven

As we've been emphasizing, this test is going to run inside of a container. That means you have

to have a container running somewhere. While you can execute tests in an embedded container

or a Java SE CDI environment, we're going to start off by testing using the real deal.

If you haven't already, download the latest version of JBoss AS 6.0 from the JBoss AS download

page [http://www.jboss.org/jbossas/downloads/], extract the distribution and start the container.

Since Arquillian needs to perform JNDI lookups to get references to the components under test,

we need to include a jndi.properties file on the test classpath. Create the file src/test/

resources/jndi.properties and populate it with the following contents:

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory

java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

http://www.jboss.org/jbossas/downloads/
http://www.jboss.org/jbossas/downloads/
http://www.jboss.org/jbossas/downloads/

Chapter 3. Getting started

22

java.naming.provider.url=jnp://localhost:1099

Next, we're going to return to pom.xml to add another dependency. Arquillian picks which container

it's going to use to deploy the test archive and negotiate test execution using the service provider

mechanism, meaning which implementation of the DeployableContainer SPI is on the classpath.

We'll control that through the use of Maven profiles. Add the following profiles to pom.xml:

<profiles>

 <profile>

 <id>jbossas-remote-60</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-jbossas-remote-60</artifactId>

 <version>${arquillian.version}</version>

 </dependency>

 </dependencies>

 </profile>

</profiles>

You would setup a similar profile for each Arquillian-supported container in which you want your

tests executed.

All that's left is to execute the tests. In Maven, that's easy. Simply run the Maven test goal with

the jbossas-remote-60 profile activated:

mvn test -Pjbossas-remote-60

You should see that the two tests pass.

 T E S T S

Running TemperatureConverterTest

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 1.964 sec

Results :

Tests run: 2, Failures: 0, Errors: 0, Skipped: 0

[INFO] --

Setting up and running the test in Eclipse

23

[INFO] BUILD SUCCESSFUL

[INFO] --

The tests are passing, but we don't see a green bar. To get that visual, we need to run the tests

in the IDE. Arquillian tests can be executed using existing IDE plugins for JUnit and TestNG,

respectively, or so you've been told. It's once again time to prove it.

3.4. Setting up and running the test in Eclipse

Before running an Arquillian test in Eclipse, you must have the plugin for the unit testing framework

you are using installed. Eclipse ships with the JUnit plugin, so you are already setup if you selected

JUnit. If you are writing your tests with TestNG, you need the Eclipse TestNG plugin [http://

testng.org].

Note

You must use the 5.11 version of the TestNG Eclipse plugin, which can be

downloaded from testng.org [http://testng.org/testng-eclipse-5.11.0.18.zip]. The

TestNG update site will give you version 5.12 which is not compatible with any

released version of TestNG core.

Since the example in this guide is based on a Maven 2 project, you will also need the m2eclipse

plugin. Instructions for using the m2eclipse update site to add the m2eclipse plugin to Eclipse

are provided on the m2eclipse home page. For more, read the m2eclipse reference guide [http://

www.sonatype.com/books/m2eclipse-book/reference].

Once the plugins are installed, import your Maven project into the Eclipse workspace. Before

executing the test, you need to enable the profile for the target container, as you did in the previous

section. We'll go ahead and activate the profile globally for the project. Right click on the project

and select Properties. Select the Maven property sheet and in the first form field, enter jbossas-

remote-60; you also need to tell Maven to not resolve depedencies from the workspace (this

interferes with resource loading):

http://testng.org
http://testng.org
http://testng.org
http://testng.org/testng-eclipse-5.11.0.18.zip
http://testng.org/testng-eclipse-5.11.0.18.zip
http://www.sonatype.com/books/m2eclipse-book/reference
http://www.sonatype.com/books/m2eclipse-book/reference
http://www.sonatype.com/books/m2eclipse-book/reference

Chapter 3. Getting started

24

Maven settings for project

Click OK and accept the project changes. Before we execute tests, make sure that Eclipse has

properly processed all the resource files by running a full build on the project by selecting Clean

from Project menu. Now you are ready to execute tests.

Right click on the TemperatureConverterTest.java file in the Package Explorer and select Run

As... > JUnit Test or Run As... > TestNG Test depending on which unit testing framework the

test is using.

Setting up and running the test in NetBeans

25

Running the the JUnit test in Eclipse

3.5. Setting up and running the test in NetBeans

Things get even simpler when using NetBeans 6.8 or better. NetBeans ships with native Maven

2 support and, rather than including a test plugin for each unit testing framework, it has a generic

test plugin which delegates to the Maven surefire plugin to execute the tests.

Import your Maven project into NetBeans. Then, look for a select menu in the main toolbar, which

you can use to set the active Maven profile. Select the jbossas-remote-60 profile as shown here:

NetBeans project configuration

Now you are ready to test. Simply right click on the TemperatureConverter.java file in the Projects

pane and select Test File. NetBeans will delegate to the Maven surefire plugin to execute the tests

and then display the results in a result windown, showing us a pretty green bar!

Chapter 3. Getting started

26

Successful test report in NetBeans

As you can see, there was no special configuration necessary to execute the tests in either Eclipse

or NetBeans.

Chapter 4.

27

Target containers
Arquillian's forte is not only in its ease of use, but also in its flexibility. Good integration testing

is not just about testing in any container, but rather testing in the container you are targeting. It's

all too easy to kid ourselves by validating components in a specialized testing container, only to

realize that the small variations causes the components fail when it comes time to deploy to the

application for real. To make tests count, you want to execute them in the real container.

Arquillian supports a variety of target containers out of the box, which will be covered in this

chapter. If the container you are using isn't supported, Arquillian makes it very easy to plug in

your own implementation.

4.1. Container varieties

There are two styles of containers that you can target in Arquillian:

1. remote — resides in a separate JVM from the test runner; its lifecycle may be managed by

Arquillian, or Arquillian may bind to a container that is already started

2. embedded — resides in the same JVM as the test runner; its lifecycle is likely managed by

Arquillian

Containers can be further classified by their capabilities. There are three common catagories:

1. A fully compliant Java EE application server (e.g., GlassFish, JBoss AS, Embedded GlassFish)

2. A Servlet container (e.g., Jetty, Tomcat)

3. A standalone bean container (e.g., Weld SE, Spring)

Arquillian provides SPIs that handle each of the tasks involved in controlling the runtime

environment, executing the tests and aggregating the results. So in theory, you can support just

about any environment that can be controlled with the set of hooks you are given.

4.2. Supported containers

The implementations provided so far are shown in the table below. Also listed is the artifactId of the

JAR that provides the implementation. To execute your tests against a container, you must include

the artifactId that corresponds to that container on the classpath. Use the following Maven profile

definition as a template to add support for a container to your Maven build, replacing %artifactId

% with the artifactId from the table. You then activate the profile when executing the tests just as

you did in the Chapter 3, Getting started chapter.

<profile>

 <id>%artifactId%</id>

 <dependencies>

 <dependency>

Chapter 4. Target containers

28

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>%artifactId%</artifactId>

 <version>${arquillian.version}</version>

 </dependency>

 </dependencies>

</profile>

Table 4.1. Target containers supported by Arquillian

Container name Container type Spec compliance artifactId

JBoss AS 5.1 remote Java EE 5 arquillian-jbossas-

remote-51

JBoss AS 5.1 remote + lifecycle Java EE 5 arquillian-jbossas-

local-51

JBoss AS 6.0 M3 remote Java EE 6 arquillian-jbossas-

remote-60

JBoss AS 6.0 M3 remote + lifecycle Java EE 6 arquillian-jbossas-

local-60

JBoss Embedded AS

6.0 M3

embedded Java EE 6 arquillian-jbossas-

embedded-60

JBoss Reloaded embedded JBoss MC arquillian-reloaded

GlassFish Embedded

3.0

embedded Java EE 6 arquillian-glassfish-

embedded-30

Weld SE embedded CDI arquillian-weld-

embedded

Apache

OpenWebBeans

embedded CDI arquillian-

openwebbeans-

embedded

Apache OpenEJB embedded EJB 3.0 arquillian-openejb

Support for other containers is planned, including GlassFish V3(remote), Weblogic(remote),

OSGI, Tomcat, Jetty, Hibernate and JBoss JCA Embedded.

4.3. Container configuration

You can come a long way with default values, but at some point you may need to customize some

of the container settings to fit your environment. We're going to have a look at how this can be done

with Arquillian. Arquillian will look for a file named arquillian.xml in the root of your classpath.

If it exists it will be auto loaded, else default values will be used. So this file is not a requirement.

Lets imagine that we're working for the company example.com and in our environment we have

two servers; test.example.com and hudson.example.com. test.example.com is the JBoss

Container configuration

29

instance we use for our integration tests and hudson.example.com is our continuous integration

server that we want to run our integration suite from. By default, Arquillian will use localhost, so

we need to tell it to use test.example.com to run the tests.

<?xml version="1.0"?>

<arquillian xmlns="http://jboss.com/arquillian"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:jboss="urn:arq:org.jboss.arquillian.jbossas.remote60">

 <engine>

 <deploymentExportPath>/tmp</deploymentExportPath>

 </engine>

 <jboss:container>

 <jboss:remoteServerAddress>test.example.com</jboss:remoteServerAddress>

 <jboss:remoteServerHttpPort>8181</jboss:remoteServerHttpPort>

 <jboss:localDeploymentBindAddress>

 hudson.example.com

 </jboss:localDeploymentBindAddress>

 <jboss:localDeploymentBindPort>7000</jboss:localDeploymentBindPort>

 </jboss:container>

</arquillian>

That should do it! "Each type of container has it's own XML namespace for configuration - here

we use the JBoss AS 6.0 Remote container. Each container has different configuration options.

Next step is to create a container element in that namespace and add the options you want to

configure inside. In this example we're saying that the server we want to test against can be found

on address test.example.com using port 8181, and the remote server can communicate back

to us on address hudson.example.com on port 7000. Some containers expect to be given a URL

from which they can retrieve the application to be deployed. For these containers, Arquillian will

start a local HTTP server.

Tip
For a complete overview of all the containers and their configuration options, see

Chapter 9, Complete Container Reference

Chapter 4. Target containers

30

Warning
Some containers require a jndi.properties file on classpath with the containers

standard JNDI properties for the initial connection.

Chapter 5.

31

Test enrichment
When you use a unit testing framework like JUnit or TestNG, your test case lives in a world on

its own. That makes integration testing pretty difficult because it means the environment in which

the business logic executes must be self-contained within the scope of the test case (whether at

the suite, class or method level). The bonus of setting up this environment in the test falls on the

developer's shoulders.

With Arquillian, you no longer have to worry about setting up the execution environment because

that is all handled for you. The test will either be running in a container or a local CDI environment.

But you still need some way to hook your test into this environment.

A key part of in-container integration testing is getting access the container-managed components

that you plan to test. Using the Java new operator to instantiate the business class is not suitable

in this testing scenario because it leaves out the declaratives services that get applied to the

component at runtime. We want the real deal. Arquillian uses test enrichment to give us access

to the real deal. The visible result of test enrichment is injection of container resources and beans

directly into the test class.

5.1. Injection into the test case

Before Arquillian negotiates the execution of the test, it enriches the test class by satisfying

injection points specified declaratively using annotations. There are three injection-based

enrichers provided by Arquillian out of the box:

• @Resource - Java EE resource injections

• @EJB - EJB session bean reference injections

• @Inject - CDI injections

The first two enrichers use JNDI to lookup the instance to inject. The CDI injections are handled

by treating the test class as a bean capable of receiving standard CDI injections.

The @Resource annotation gives you access to any object which is available via JNDI. It follows

the standard rules for @Resource (as defined in the Section 2.3 of the Common Annotations for

the Java Platform specification).

The @EJB annotation performs a JNDI lookup for the EJB session bean reference using the

following equation in the specified order:

"java:global/test.ear/test/" + fieldType.getSimpleName() + "Bean",

"java:global/test.ear/test/" + fieldType.getSimpleName(),

"java:global/test/" + fieldType.getSimpleName(),

"java:global/test/" + fieldType.getSimpleName() + "Bean",

Chapter 5. Test enrichment

32

"java:global/test/" + fieldType.getSimpleName() + "/no-interface",

"test/" + unqualified interface name + "Bean/local",

"test/" + unqualified interface name + "Bean/remote",

"test/" + unqualified interface name + "/no-interface",

unqualified interface name + "Bean/local",

unqualified interface name + "Bean/remote",

unqualified interface name + "/no-interface"

If no matching beans were found in those locations the injection will fail.

Warning

At the moment, the lookup for an EJB session reference relies on some common

naming convention of EJB beans. In the future the lookup will rely on the standard

JNDI naming conventions established in Java EE 6.

In order for CDI injections to work, the test archive defined with ShrinkWrap must be a bean

archive. That means adding beans.xml to the META-INF directory. Here's a @Deployment method

that shows one way to add a beans.xml to the archive:

@Deployment

public static JavaArchive createTestArchive() {

 return ShrinkWrap.create("test.jar", JavaArchive.class)

 .addClass(NameOfClassUnderTest.class)

 .addManifestResource(new ByteArrayAsset(new byte[0]), Paths.create("beans.xml"))

In an application that takes full advantage of CDI, you can likely get by only using injections defined

with the @Inject annotation. Regardless, the other two types of injection come in handy from

time-to-time.

5.2. Active scopes

When running your tests the embedded Weld SE container, Arquillian activates scopes as follows:

• Application scope - Active for all methods in a test class

• Session scope - Active for all methods in a test class

• Request scope - Active for a single test method

Scope control is experimental at this point and may be altered in a future release of Arquillian.

Chapter 6.

33

Test execution
This chapter walks through the details of test execution, covering both the remote and local

container cases.

Note

Whilst it's not necessary to understand the details of how Arquillian works, it is often

useful to have some insight. This chapter gives you an overview of how Arquillian

executes your test for you in your chosen container.

6.1. Anatomy of a test

In both JUnit 4 and TestNG 5, a test case is a class which contains at least one test method. The

test method is designated using the @Test annotation from the respective framework. An Arquillian

test case looks just like a regular JUnit or TestNG test case with two declarative enhancements:

• The class contains a static method annotated with @Deployment that returns a JavaArchive

• The class is annotated with @RunWith(Arquillian.class) (JUnit) or extends Arquillian

(TestNG)

With those two modifications in place, the test is recognized by the Arquillian test runner and will

be executed in the target container. It can also use the extra functionality that Arquillian provides

—namely container resource injections and the injection of beans.

6.2. ShrinkWrap packaging

When the Arquillian test runner processes a test class, the first thing it does is retrieve the definition

of the Java archive from the @Deployment method, appends the test class to the archive and

packages the archive using ShrinkWrap.

The name of the archive is irrelevant, so the base name "test" is typically choosen (e.g., test.jar,

test.war). Once you have created the shell of the archive, the sky is really the limit of how you can

assemble it. You are customizing the layout and contents of the archive to suit the needs of the

test. Essentially, you creating a micro application in which to execute the code under test.

You can add the following artifacts to the test archive:

• Java classes

• A Java package (which adds all the Java classes in the package)

• Classpath resources

• File system resources

Chapter 6. Test execution

34

• A programmatically-defined file

• Java libraries (JAR files)

• Other Java archives defined by ShrinkWrap

Consult the ShrinkWrap API [http://docs.jboss.org/shrinkwrap/1.0.0-alpha-9/] to discover all the

options you have available for constructing the test archive.

6.3. Test archive deployment

After the Arquillian test runner packages the test archive, it deploys it to the container. For a remote

container, this means copying the archive the hot deployment directory or deploying the archive

using the container's remote deployment service. In the case of a local container, such as Weld

SE, deploying the archive simply means registering the contents of the archive with the runtime

environment.

How does Arquillian support multiple containers? And how are both remote and local cases

supported? The answer to this question gets into the extensibility of Arquillian.

Arquillian delegates to an SPI (service provider interface) to handle starting and stopping

the server and deploying and undeploying archives. In this case, the SPI is the interface

org.jboss.arquillian.spi.DeployableContainer. If you recall from the getting started

section, we included an Arquillian library according to the target container we wanted to use.

That library contains an implementation of this interface, thus controlling how Arquillian handles

deployment. If you wanted to introduce support for another container in Arquillian, you would

simply provide an implementation of this interface.

With the archive deployed, all is left is negotiating execution of the test and capturing the results.

As you would expect, once all the methods in the test class have be run, the archive is undeployed.

6.4. Enriching the test class

The last operation that Arquillian performs before executing the individual test methods is

"enriching" the test class instance. This means hooking the test class to the container environment

by satisfying its injection points. The enrichment is provided by any implementation of the

org.jboss.arquillian.spi.TestEnricher SPI on the classpath. Chapter 5, Test enrichment

details the injection points that Arquillian supports.

6.5. Negotiating test execution

The question at this point is, how does Arquillian negotiate with the container to execute

the test when the test framework is being invoked locally? Technially the mechanism

is pluggable using another SPI, org.jboss.arquillian.spi.ContainerMethodExecutor.

Arquillian provides a default implementation for remote servers which uses HTTP communication

and an implementation for local tests, which works through direct execution of the test in the same

JVM. Let's have a look at how the remote execution works.

http://docs.jboss.org/shrinkwrap/1.0.0-alpha-9/
http://docs.jboss.org/shrinkwrap/1.0.0-alpha-9/

Test run modes

35

The archive generator bundles and registers (in the web.xml descriptor) an

HttpServlet, org.jboss.arquillian.protocol.servlet.ServletTestRunner, that responds to test

execution GET requests. The test runner on the client side delegates to the

org.jboss.arquillian.spi.ContainerMethodExecutor SPI implementation, which originates

these test execution requests to transfer control to the container JVM. The name of the test class

and the method to be executed are specified in the request query parameters named className

and methodName, respectively.

When the test execution request is received, the servlet delegates to an implementation of the

org.jboss.arquillian.spi.TestRunner SPI, passing it the name of the test class and the test

method. TestRunner generates a test suite dynamically from the test class and method name and

runs the suite (now within the context of the container).

The ServletTestRunner translates the native test result object of JUnit or TestNG into a

org.jboss.arquillian.spi.TestResult and passes it back to the test executor on the client

side by serializing the translated object into the response. The object gets encoded as either html

or a serialized object, depending on the value of the outputMode request parameter that was

passed to the servlet. Once the result has been transfered to the client-side test runner, the testing

framework (JUnit or TestNG) wraps up the run of the test as though it had been executed in the

same JVM.

Now you should have an understanding for how tests can be executed inside the container, but

still be executed using existing IDE, Ant and Maven test plugins without any modification. Perhaps

you have even started thinking about ways in which you can enhance or extend Arquillian. But

there's still one challenge that remains for developing tests with Arquillian. How do you debug

test? We'll look at how to hook a debugger into the test execution process in the next chapter.

6.6. Test run modes

So far, we've focused on testing your application internals, but we also want to test how others

(people, or other programs) interact with the application. Typically, you want to make sure that

every use case and execution path is fully tested. Third parties can interact with your application

in a number of ways, for example web services, remote EJBs or via http. You need to check that

you object serialization or networking work for instance.

This is why Arquillian comes with two run modes, IN_CONTAINER and AS_CLIENT. IN_CONTAINER

is to test your application internals and AS_CLIENT is to test how your application is used by clients.

Lets dive a bit deeper into the differences between the run modes and see how they effect your

test execution and packaging.

6.6.1. Mode: in-container

@RunWith(Arquillian.class)

@Run(IN_CONTAINER)

public class MyTestCase

Chapter 6. Test execution

36

As we mentioned above, we need to repackage your @Deployment, adding some Arquillian

support classes, to run in-container. This gives us the ability to communicate with the test, enrich

the test and run the test remotely. In this mode, the test executes in the remote container; Arqullian

uses this mode by default.

Here is an overview of the expected output of the packaging process when you provide a

@Deployment.

Table 6.1. EEDeploymentPackager rules

@Deployment Servlet

EE v.

Output Action

JavaArchive EE 5 EnterpriseArchive Create a new EnterpriseArchive, add

@Deployment and ServletProtocol as

module, the other Auxiliary Archives as

libraries.

WebArchive EE 5 Exception Can not merge two WebArchives and both

packaged in a EnterpriseArchive will result

in isolation issues. a

EnterpriseArchive EE 5 EnterpriseArchive Same as JavaArchive, but using the

@Deployment defined EnterpriseArchive

instead of creating a new.

JavaArchive EE 6 WebArchive Creates a new WebArchive, adds

@Deployment and Auxiliary Archives as

libraries.

WebArchive EE 6 WebArchive Adds @Deployment and Auxiliary Archives

as libraries.

EnterpriseArchive EE 6 EnterpriseArchive Finds the protocol JavaArchive based

on name(arquillian-protocol.jar), wraps

this jar in a WebArchive and adds it as a

module. The other Auxiliary Archives are

added as libraries.
aIn the current release Arquillian does not try to merge descriptor files, like web.xml, nor can you avoid it trying to package

the @Deployment. This will change in future releases.

Note

In Alpha-2 Arquillian only has one protocol implementation for communicating

with remote servers, the servlet protocol. So the reason for the big difference in

packaging between EE 5 and EE 6 containers is mainly due to the support of Web

Fragments in the EE 6 specification. Web Fragments lets Arquillian add it self to

the @Deployment without drastically changing it, but it also means it has to be a

WebArchive in the deployment.

Mode: as-client

37

In the next release you will be able to control the packaging your self and we will

also look into other protocol implementations like jmx and remote ejb.

6.6.2. Mode: as-client

@RunWith(Arquillian.class)

@Run(AS_CLIENT)

public class MyTestCase

Now this mode is the easy part. As apposed to in-container mode which repackages and overrides

the test execution, the as-client mode does as little as possible. It does not repackage your

@Deployment nor does it forward the test execution to a remote server. Your test case is running

in your JVM as expected and you're free to test the container from the outside, as your clients see

it. The only thing Arquillian does is to control the lifecycle of your @Deployment.

Here is an example calling a Servlet using the AS_CLIENT mode.

@RunWith(Arquillian.class)

@Run(AS_CLIENT)

public class LocalRunServletTestCase

{

 @Deployment

 public static WebArchive createDeployment()

 {

 return ShrinkWrap.create("test.war", WebArchive.class)

 .addClass(TestServlet.class);

 }

 @Test

 public void shouldBeAbleToCallServlet() throws Exception

 {

 String body = readAllAndClose(new URL("http://localhost:8080/test/Test").openStream());

 Assert.assertEquals(

 "Verify that the servlet was deployed and returns the expected result",

 "hello",

 body);

 }

}

Chapter 6. Test execution

38

Tip

The effect of the different run modes depend on the DeployableContainer used.

Both modes might seem to behave the same in some Embedded containers, but

you should avoid mixing your internal and external tests. One thing is that they

should test different aspects of your application and different usecases, another

is that you will miss the benefits of switching DeployableContainers and run the

same tests suite against a remote server if you do.

Chapter 7.

39

Debugging remote tests
While Arquillian tests can be easily executing using existing IDE, Ant and Maven test plugins,

debugging tests are not as straightforward (but by no means difficult). The extra steps documented

in this chapter are only relevant for tests which are not executed in the same JVM as the test

runner. These steps to not apply to tests that are run in a local bean container (e.g., Weld SE),

which can be debugged just like any other unit test.

We'll assume in this chapter that you are already using Eclipse and you already have the test

plugin installed for the testing framework you are using (JUnit or TestNG).

7.1. Debugging in Eclipse

If you set a break point and execute the test in debug mode using a remote container, your break

point won't be hit. That's because when you debug an in-container test, you're actually debugging

the container. The test runner and the test are executing in different JVMs. Therefore, to setup

debugging, you must first attach the IDE debugger to the container, then execute the test in debug

mode (i.e., debug as test). That puts the debugger on both sides of the fence, so to speak, and

allows the break point to be discovered.

Let's begin by looking at how to attach the IDE debugger to the container. This isn't specific to

Arquillian. It's the same setup you would use to debug a deployed application.

7.1.1. Attaching the IDE debugger to the container

There are two ways to attach the IDE debugger to the container. You can either start the container

in debug mode from within the IDE, or you can attach the debugger over a socket connection to

a standalone container running with JPDA enabled.

The Eclipse Server Tools, a subproject of the Eclipse Web Tools Project (WTP), has support

for launching most major application servers, including JBoss AS 5. However, if you are using

JBoss AS, you should consider using JBoss Tools instead, which offers tighter integration with

JBoss technologies. See either the Server Tools documentation [http://www.eclipse.org/webtools/

server/server.php] or the JBoss Tools documentation [http://docs.jboss.org/tools/3.0.1.GA/en/as/

html/index.html] for instructions on how to setup a container and start it in debug mode.

See this blog entry [http://maverikpro.wordpress.com/2007/11/26/remote-debug-a-web-

application-using-eclipse] to learn how to start JBoss AS with JPDA enabled and how to get the

Eclipse debugger to connect to the remote process.

7.1.1.1. Starting JBoss AS in debug mode

If you are using JBoss AS, the quickest way to setup debug mode is to add the following line to

the end of $JBOSS_AS_HOME/bin/run.conf (Unix/Linux):

JAVA_OPTS="$JAVA_OPTS

http://www.eclipse.org/webtools/server/server.php
http://www.eclipse.org/webtools/server/server.php
http://www.eclipse.org/webtools/server/server.php
http://docs.jboss.org/tools/3.0.1.GA/en/as/html/index.html
http://docs.jboss.org/tools/3.0.1.GA/en/as/html/index.html
http://docs.jboss.org/tools/3.0.1.GA/en/as/html/index.html
http://maverikpro.wordpress.com/2007/11/26/remote-debug-a-web-application-using-eclipse
http://maverikpro.wordpress.com/2007/11/26/remote-debug-a-web-application-using-eclipse
http://maverikpro.wordpress.com/2007/11/26/remote-debug-a-web-application-using-eclipse

Chapter 7. Debugging remote tests

40

 -Xrunjdwp:transport=dt_socket,address=8787,server=y,suspend=n"

or before the line :JAVA_OPTS_SET in $JBOSS_AS_HOME/bin/run.conf.bat (Windows)

set JAVA_OPTS="%JAVA_OPTS% -

Xrunjdwp:transport=dt_socket,address=8787,server=y,suspend=n"

Keep in mind your container will always run with debug mode enabled after making this change.

You might want to consider putting some logic in the run.conf* file.

7.1.2. Launching the test in debug mode

Once Eclipse is debugging the container, you can set a breakpoint in the test and debug it just

like a unit test. Let's give it a try.

Open an Arquillian test in the Java editor, right click in the editor view, and select Debug As >

TestNG (or JUnit) Test. When the IDE hits the breakpoint, it halts the JVM thread of the container

rather than the thread that launched the test. You are now debugging remotely.

7.1.3. Stepping into external libraries

If you plan to step into a class in an external library (code outside of your application), you must

ensure that the source is properly associated with the library. Below are the steps to follow to

associate the source of a library with the debug configuration:

1. Select the Run > Debug Configurations... menu from the main menubar

2. Select the name of the test class in the TestNG (or JUnit) category

3. Select the Source tab

4. Click the Add... button on the right

5. Select Java Project

6. Check the project the contains the class you want to debug

7. Click OK on the Project Selection window

8. Click Close on the Debug Configurations window

You'll have to complete those steps for any test class you are debugging, though you only have

to do it once (the debug configuration hangs around indefinitely).

Assertions in remote tests

41

Tip

These steps may not be necessary if you have a Maven project and the sources

for the library are available in the Maven repository.

7.2. Assertions in remote tests

The first time you try Arquillian, you may find that assertions that use the Java assert keyword are

not working. Keep in mind that the test is not executing the same JVM as the test runner.

In order for the Java keyword "assert" to work you have to enable assertions (using the -ea flag)

in the JVM that is running the container. You may want to consider specifying the package names

of your test classes to avoid assertions to be enabled throughout the container's source code.

7.2.1. Enabling assertions in JBoss AS

If you are using JBoss AS, the quickest way to setup debug mode is to add the following line to

the end of $JBOSS_AS_HOME/bin/run.conf (Unix/Linux):

JAVA_OPTS="$JAVA_OPTS -ea"

or before the line :JAVA_OPTS_SET in $JBOSS_AS_HOME/bin/run.conf.bat (Windows)

set "JAVA_OPTS=%JAVA_OPTS% -ea"

Keep in mind your container will always run with assertions enabled after making this change.

You might want to consider putting some logic in the run.conf* file.

As an alternative, we recommend using the 'Assert' object that comes with your test framework

instead to avoid the whole issue. Also keep in mind that if you use System.out.println statements,

the output is going to show up in the log file of the container rather than in the test output.

42

Chapter 8.

43

Extending Arquillian
Arquillian is designed to be very extensible. This is accomplished through the use of Service

Provider Interfaces (SPIs). The following diagram shows how the various SPIs in Arquillian tie

into the test execution.

Arquillian test execution and SPI overview

44

Chapter 9.

45

Complete Container Reference

9.1. JBoss AS 5.1 - Remote

A DeployableContainer implementation that can connect and run against a remote(different JVM,

different machine) running JBoss AS 5.1 instance. This implementation has no lifecycle support,

so it can not be started or stopped.

Warning
This container needs a jndi.properties file on classpath to be able to connect to the

remote running instance.

Table 9.1. Container Injection Support Matrix

@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

9.1.1. Configuration

Namespace: urn:arq:org.jboss.arquillian.jbossas.remote51

Table 9.2. Container Configuration Options

Name Type Default Description

profileName String default ProfileService profileKey. Used to

load the correct profile into the

DeploymentManager.

remoteServerAddress String localhost Used by Servlet Protocol to connect

to the remote server.

remoteServerHttpPort int 8080 Used by Servlet Protocol to connect

to the remote server.

localDeploymentBindAddress String localhost Bind Address for the HTTP server

serving deployments to the remote

server. Address must be reachable

from remote server.

localDeploymentBindPort int 9999 Bind Port for the HTTP server serving

deployments to the remote server.

Port must be reachable from remote

server.

Chapter 9. Complete Container...

46

Example of Maven profile setup

<profile>

 <id>jbossas-remote-51</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-jbossas-remote-51</artifactId>

 <version>1.0.0.Alpha2</version>

 </dependency>

 <dependency>

 <groupId>org.jboss.jbossas</groupId>

 <artifactId>jboss-as-client</artifactId>

 <version>5.1.0.GA</version>

 <type>pom</type>

 </dependency>

 </dependencies>

</profile>

9.2. JBoss AS 5.1 - Remote + Lifecycle

A DeployableContainer implementation that can run and connect to a remote(different JVM, same

machine) JBoss AS 5.1 instance. This implementation has lifecycle support, so the container will

be started and stopped as part of the test run.

Table 9.3. Container Injection Support Matrix

@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

9.2.1. Configuration

Namespace: urn:arq:org.jboss.arquillian.jbossas.local51

Table 9.4. Container Configuration Options

Name Type Default Description

profileName String default ProfileService profileKey. Used to

load the correct profile into the

DeploymentManager.

bindAddress String localhost The Address the server should bind

to.

JBoss AS 6.0 - Remote

47

Name Type Default Description

httpPort int 8080 Used by Servlet Protocol to connect

to the server.

jbossHome String $JBOSS_HOME The JBoss configuration to start.

javaHome String $JAVA_HOME The Java runtime to use to start the

server.

Example of Maven profile setup

<profile>

 <id>jbossas-local-60</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-jbossas-remote-60</artifactId>

 <version>1.0.0.Alpha2</version>

 </dependency>

 <dependency>

 <groupId>org.jboss.jbossas</groupId>

 <artifactId>jboss-server-manager</artifactId>

 <version>1.0.3.GA</version>

 </dependency>

 <dependency>

 <groupId>org.jboss.jbossas</groupId>

 <artifactId>jboss-as-client</artifactId>

 <version>5.1.0.GA</version>

 <type>pom</type>

 </dependency>

 </dependencies>

</profile>

9.3. JBoss AS 6.0 - Remote

A DeployableContainer implementation that can connect and run against a remote(different JVM,

different machine) running JBoss AS 6.0 instance. This implementation has no lifecycle support,

so it can not be started or stopped.

Warning
This container needs a jndi.properties file on classpath to be able to connect to the

remote running instance.

Chapter 9. Complete Container...

48

Table 9.5. Container Injection Support Matrix

@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

9.3.1. Configuration

Namespace: urn:arq:org.jboss.arquillian.jbossas.remote60

Table 9.6. Container Configuration Options

Name Type Default Description

profileName String default ProfileService profileKey. Used to

load the correct profile into the

DeploymentManager.

remoteServerAddress String localhost Used by Servlet Protocol to connect

to the remote server.

remoteServerHttpPort int 8080 Used by Servlet Protocol to connect

to the remote server.

localDeploymentBindAddress String localhost Bind Address for the HTTP server

serving deployments to the remote

server. Address must be reachable

from remote server.

localDeploymentBindPort int 9999 Bind Port for the HTTP server serving

deployments to the remote server.

Port must be reachable from remote

server.

Example of Maven profile setup

<profile>

 <id>jbossas-remote-60</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-jbossas-remote-60</artifactId>

 <version>1.0.0.Alpha2</version>

 </dependency>

 <dependency>

 <groupId>org.jboss.jbossas</groupId>

 <artifactId>jboss-as-client</artifactId>

JBoss AS 6.0 - Remote + Lifecycle

49

 <version>6.0.0.20100429-M3</version>

 <type>pom</type>

 </dependency>

 </dependencies>

</profile>

9.4. JBoss AS 6.0 - Remote + Lifecycle

A DeployableContainer implementation that can run and connect to a remote(different JVM, same

machine) JBoss AS 6.0 instance. This implementation has lifecycle support, so the container will

be started and stopped as part of the test run.

Table 9.7. Container Injection Support Matrix

@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

9.4.1. Configuration

Namespace: urn:arq:org.jboss.arquillian.jbossas.local60

Table 9.8. Container Configuration Options

Name Type Default Description

profileName String default ProfileService profileKey. Used to

load the correct profile into the

DeploymentManager.

bindAddress String localhost The Address the server should bind

to.

httpPort int 8080 Used by Servlet Protocol to connect

to the server.

jbossHome String $JBOSS_HOME The JBoss configuration to start.

javaHome String $JAVA_HOME The Java runtime to use to start the

server.

Example of Maven profile setup

<profile>

 <id>jbossas-local-60</id>

 <dependencies>

Chapter 9. Complete Container...

50

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-jbossas-remote-60</artifactId>

 <version>1.0.0.Alpha2</version>

 </dependency>

 <dependency>

 <groupId>org.jboss.jbossas</groupId>

 <artifactId>jboss-server-manager</artifactId>

 <version>1.0.3.GA</version>

 </dependency>

 <dependency>

 <groupId>org.jboss.jbossas</groupId>

 <artifactId>jboss-as-client</artifactId>

 <version>6.0.0.20100429-M3</version>

 <type>pom</type>

 </dependency>

 </dependencies>

</profile>

9.5. JBoss Embedded AS 6.0 - Embedded

A DeployableContainer implementation that can run and connect to a embedded(same JVM)

JBoss AS 6.0 instance. This implementation has lifecycle support, so the container will be started

and stopped as part of the test run.

Table 9.9. Container Injection Support Matrix

@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

9.5.1. Configuration

Namespace: urn:arq:org.jboss.arquillian.jbossas.embedded60

Table 9.10. Container Configuration Options

Name Type Default Description

profileName String default ProfileService profileKey. Used to

load the correct profile into the

DeploymentManager.

bindAddress String localhost The Address the server should bind

to.

Configuration

51

Name Type Default Description

httpPort int 8080 Used by Servlet Protocol to connect

to the server.

Example of Maven profile setup

<profile>

 <id>jbossas-embedded-60</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-jbossas-embedded-60</artifactId>

 <version>${project.version}</version>

 </dependency>

 <dependency>

 <groupId>org.jboss.jbossas</groupId>

 <artifactId>jboss-as-depchain</artifactId>

 <version>6.0.0.20100429-M3</version>

 <type>pom</type>

 </dependency>

 </dependencies>

 <dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.jboss.jbossas</groupId>

 <artifactId>jboss-as-depchain</artifactId>

 <version>6.0.0.20100429-M3</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

 </dependencyManagement>

 <build>

 <plugins>

 <plugin>

 <artifactId>maven-surefire-plugin</artifactId>

 <configuration>

 <additionalClasspathElements>

 <additionalClasspathElement>${env.JBOSS_HOME}/client/jbossws-native-

client.jar</additionalClasspathElement>

 <!--

 Because jbossweb.sar contains shared web.xml, which must be

 visible from same CL as TomcatDeployer.class.getClassLoader

 -->

Chapter 9. Complete Container...

52

 <additionalClasspathElement>${env.JBOSS_HOME}/server/default/deploy/

jbossweb.sar</additionalClasspathElement>

 </additionalClasspathElements>

 <redirectTestOutputToFile>true</redirectTestOutputToFile>

 <trimStackTrace>false</trimStackTrace>

 <printSummary>true</printSummary>

 <forkMode>once</forkMode>

 <!--

 MaxPermSize Required to bump the space for relective data like

 classes, methods, etc. EMB-41. Endorsed required for things like

 WS support (EMB-61)

 -->

 <argLine>-Xmx512m -XX:MaxPermSize=256m -Djava.net.preferIPv4Stack=true -

Djava.util.logging.manager=org.jboss.logmanager.LogManager -

Djava.endorsed.dirs=${env.JBOSS_HOME}/lib/endorsed -

Djboss.home=${env.JBOSS_HOME} -Djboss.boot.server.log.dir=${env.JBOSS_HOME}</

argLine>

 </configuration>

 </plugin>

 </plugins>

 </build>

</profile>

9.6. JBoss Reloaded - Embedded

A DeployableContainer implementation that can run and connect to a embedded(same JVM)

JBoss Reloaded(MicroContainer + VirtualDeploymentFramework) instance. This implementation

has lifecycle support, so the container will be started and stopped as part of the test run.

Table 9.11. Container Injection Support Matrix

@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

9.7. GlassFish 3.0 - Embedded

A DeployableContainer implementation that can run and connect to a embedded(same JVM)

GlassFish 3.0 instance. This implementation has lifecycle support, so the container will be started

and stopped as part of the test run.

Configuration

53

Table 9.12. Container Injection Support Matrix

@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

9.7.1. Configuration

Namespace: urn:arq:org.jboss.arquillian.glassfish.embedded60

Table 9.13. Container Configuration Options

Name Type Default Description

bindPort int 8181 The port the server should bind to.

instanceRoot String target/

glassfish_(RANDOM)

The instanceRoot to use for booting

the server. If it does not exist, a

default structure will be created.

autoDelete boolean true Should the deployments be deleted

on shutdown.

Example of Maven profile setup

<profile>

 <id>glassfish-embedded-30</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-glassfish-embedded-30</artifactId>

 <version>1.0.0.Alpha2</version>

 </dependency>

 <dependency>

 <groupId>org.glassfish.extras</groupId>

 <artifactId>glassfish-embedded-all</artifactId>

 <version>3.0.1-b02</version>

 </dependency>

 </dependencies>

</profile>

9.8. Weld SE - Embedded

A DeployableContainer implementation that can run and connect to a embedded(same JVM)

Weld(CDI reference implementation) SE edition. No EE APIs are available. This implementation

has lifecycle support, so the container will be started and stopped as part of the test run.

Chapter 9. Complete Container...

54

Table 9.14. Container Injection Support Matrix

@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

Warning
Local EJBs only, which get treated as managed beans. Transactions, security and

EJB context injection are not applied.

<profile>

 <id>weld-embedded</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-weld-embedded</artifactId>

 <version>1.0.0.Alpha2</version>

 </dependency>

 <dependency>

 <groupId>org.jboss.weld</groupId>

 <artifactId>weld-core</artifactId>

 </dependency>

 <dependency>

 <groupId>org.jboss.weld</groupId>

 <artifactId>weld-api</artifactId>

 </dependency>

 <dependency>

 <groupId>org.slf4j</groupId>

 <artifactId>slf4j-simple</artifactId>

 </dependency>

 </dependencies>

 <dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.jboss.weld</groupId>

 <artifactId>weld-core-bom</artifactId>

 <version>1.0.1-SP1</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

 </dependencyManagement>

Apache OpenWebBeans - Embedded

55

</profile>

9.9. Apache OpenWebBeans - Embedded

A DeployableContainer implementation that can run and connect to a embedded(same JVM)

WeldApache OpenWebBeans(CDI) instance. No EE APIs are available. This implementation has

lifecycle support, so the container will be started and stopped as part of the test run.

Table 9.15. Container Injection Support Matrix

@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

Warning
Local EJBs only, which get treated as managed beans. Transactions, security and

EJB context injection are not applied.

Example of Maven profile setup

<profile>

 <id>openwebbeans-embedded</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-openwebbeans-embedded</artifactId>

 <version>1.0.0.Alpha2</version>

 </dependency>

 <dependency>

 <groupId>org.apache.openwebbeans</groupId>

 <artifactId>openwebbeans-spi</artifactId>

 </dependency>

 <dependency>

 <groupId>org.apache.openwebbeans</groupId>

 <artifactId>openwebbeans-impl</artifactId>

 </dependency>

 <dependency>

 <groupId>org.apache.geronimo.specs</groupId>

 <artifactId>geronimo-el_2.2_spec</artifactId>

 </dependency>

 <dependency>

Chapter 9. Complete Container...

56

 <groupId>org.apache.geronimo.specs</groupId>

 <artifactId>geronimo-jta_1.1_spec</artifactId>

 </dependency>

 <dependency>

 <groupId>org.apache.geronimo.specs</groupId>

 <artifactId>geronimo-validation_1.0_spec</artifactId>

 </dependency>

 <dependency>

 <groupId>org.apache.geronimo.specs</groupId>

 <artifactId>geronimo-interceptor_1.1_spec</artifactId>

 </dependency>

 <dependency>

 <groupId>org.apache.geronimo.specs</groupId>

 <artifactId>geronimo-jcdi_1.0_spec</artifactId>

 </dependency>

 <dependency>

 <groupId>org.apache.geronimo.specs</groupId>

 <artifactId>geronimo-atinject_1.0_spec</artifactId>

 </dependency>

 <dependency>

 <groupId>org.apache.geronimo.specs</groupId>

 <artifactId>geronimo-servlet_2.5_spec</artifactId>

 </dependency>

 </dependencies>

 <dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.apache.openwebbeans</groupId>

 <artifactId>openwebbeans</artifactId>

 <version>1.0.0-M4</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

 </dependencyManagement>

</profile>

9.10. Apache OpenEJB - Embedded

A DeployableContainer implementation that can run and connect to a embedded(same JVM)

Apache OpenEJB instance. EJB 3.0 APIs are available, but no JMS. This implementation has

lifecycle support, so the container will be started and stopped as part of the test run.

Apache OpenEJB - Embedded

57

Table 9.16. Container Injection Support Matrix

@EJB @EJB (no-

interface)

@Inject (CDI) @Inject (MC) @PersistenceContext

@PersistenceUnit

Example of Maven profile setup

<profile>

 <id>openejb</id>

 <dependencies>

 <dependency>

 <groupId>org.jboss.arquillian.container</groupId>

 <artifactId>arquillian-openejb</artifactId>

 <version>1.0.0.Alpha2</version>

 </dependency>

 <dependency>

 <groupId>org.apache.openejb</groupId>

 <artifactId>openejb-core</artifactId>

 <version>3.1.2</version>

 </dependency>

 </dependencies>

</profile>

58

	Arquillian: An integration testing framework for Containers
	Table of Contents
	Preface: Test in the container!
	Chapter 1. Introduction
	1.1. Mission statement
	1.2. Architecture overview
	1.3. Integration testing in Java EE
	1.3.1. Testing the real component
	1.3.2. Finding a happy medium
	1.3.3. Controlling the test classpath

	1.4. Usage scenarios

	Chapter 2. Introductory examples
	2.1. Testing an EJB
	2.2. Testing CDI beans
	2.3. Testing JPA
	2.4. Testing JMS

	Chapter 3. Getting started
	3.1. Setting up Arquillian in a Maven project
	3.2. Writing your first Arquillian test
	3.3. Setting up and running the test in Maven
	3.4. Setting up and running the test in Eclipse
	3.5. Setting up and running the test in NetBeans

	Chapter 4. Target containers
	4.1. Container varieties
	4.2. Supported containers
	4.3. Container configuration

	Chapter 5. Test enrichment
	5.1. Injection into the test case
	5.2. Active scopes

	Chapter 6. Test execution
	6.1. Anatomy of a test
	6.2. ShrinkWrap packaging
	6.3. Test archive deployment
	6.4. Enriching the test class
	6.5. Negotiating test execution
	6.6. Test run modes
	6.6.1. Mode: in-container
	6.6.2. Mode: as-client

	Chapter 7. Debugging remote tests
	7.1. Debugging in Eclipse
	7.1.1. Attaching the IDE debugger to the container
	7.1.1.1. Starting JBoss AS in debug mode

	7.1.2. Launching the test in debug mode
	7.1.3. Stepping into external libraries

	7.2. Assertions in remote tests
	7.2.1. Enabling assertions in JBoss AS

	Chapter 8. Extending Arquillian
	Chapter 9. Complete Container Reference
	9.1. JBoss AS 5.1 - Remote
	9.1.1. Configuration

	9.2. JBoss AS 5.1 - Remote + Lifecycle
	9.2.1. Configuration

	9.3. JBoss AS 6.0 - Remote
	9.3.1. Configuration

	9.4. JBoss AS 6.0 - Remote + Lifecycle
	9.4.1. Configuration

	9.5. JBoss Embedded AS 6.0 - Embedded
	9.5.1. Configuration

	9.6. JBoss Reloaded - Embedded
	9.7. GlassFish 3.0 - Embedded
	9.7.1. Configuration

	9.8. Weld SE - Embedded
	9.9. Apache OpenWebBeans - Embedded
	9.10. Apache OpenEJB - Embedded

