Contexts and Dependency
Injection for the Java EE platform

[l (=] = Vo7 < T iX

1. EVAIUGLION ICENSE ...iiiiiii et e et e e et s e e et e e e eaa e aaes iX
A o =10 o P ¢
G T 1V - o) g o] =Yg o - (¢
I N o] o T (T AU 1
I o |1 =T od £ TP 2
1.2. Relationship to other SpPecificationscccoiiiiiiiiiiiii e 2
1.2.1. Relationship to the Java EE platform specificationccoooeviieiinennnnn. 3
1.2.2. Relationship t0 EJBccooiiiiiiii e 3
1.2.3. Relationship to managed beansccccciviiiiiiiii i 3
1.2.4. Relationship to Dependency Injection for Javacceeveveeiiiiiiiiinnenennnnn. 4
1.2.5. Relationship to Java INterceptorsccociviiiiiiiiiii i 4
1.2.6. Relationship t0 JSFcouuiiiii e 4
1.2.7. Relationship to Bean Validationcccoooeiiiiiiiiiiiiicinecee e, 4

1.3, INtroduCtOry @XAMPIES ...t 4
1.3.1. JSF @XAMPIE ..oeeiii e 4
1.3.2. EJB @XAMPIE .oeiiiiiiiii et 8
1.3.3. Java EE component environment eXampleccooeeeiiiiiiiieiiineciiiec e 9
1.3.4. EVENE @XAMPIE ..o 9
1.3.5. Injection point metadata examplecccoooiiiiiiiii 11
1.3.6. INterceptor @XamPIeoiiiiiiii e 12
1.3.7. DeCorator @Xampleoiiiiieiii e 13

A o] s [o] =T o) £ TP PP UPPI 17
2.1. Functionality provided by the container to the beanccooviiii i, 17
2.2, BRAN Y PBS ittt 18
2.2.1. Legal BeAN tYPES ...ovin i 19
2.2.2. Restricting the bean types of a beanc.oooviiiiiiiii 19
2.2.3. Typecasting between bean tyPesccccvviiiiiiiii i 20

A T © 11 =11 £ 20
2.3.1. Built-in qualifier tYPEScvvuiiii e 22
2.3.2. Defining new qualifier tyPeScooouiiiiiiii e 23
2.3.3. Declaring the qualifiers of abeancccooeiiiiiiii 23
2.3.4. Specifying qualifiers of an injected field ..o 24
2.3.5. Specifying qualifiers of a method or constructor parameter 24

2., SCOPES ittt ettt e e e 25
2.4.1. BUIlt-iN SCOPE LYPES ..cevneiiiieiii e e aaas 26
2.4.2. Defining NEW SCOPE TYPES ...cieeruieiiiii et e et e et e e et e e et e e eain e e 26
2.4.3. Declaring the bean SCOPEccvviiiiiii e 27
2.4.4. DEFAUIL SCOPE . .iiiiiiiiiii et 27

2.5. Default bean diSCOVEIY MOUEcouuiiiiii e 28
2.5.1. Bean defining annotationsccoouuieiiiiiiniiiiiie e 28

2.6. BEAN NAIMES ..o e 29
2.6.1. Declaring the bean Namecoooiiiiiiiiii e 30
2.6.2. Default bean Namesooooiiiiiii 30

Contexts and Dependency Injec...

2.6.3. Beans wWith N0 NAME ... 30

2.7 AEINALIVES ..oevii ettt e e e e et e e et e et e eea e eaaan 30
2.7.1. Declaring an alterNativecouuiiiiiiiiieii e 30

2. 8. S BB O Y PSS ..iuiiiiit ittt e 31
2.8.1. Defining NEW StErEOLYPESciiiiii ettt ettt 31
2.8.2. Declaring the stereotypes for a beancccoccoviiiiiiiiiin e, 33
2.8.3. BUIlt-iN SEIEOLYPES ...ttt 34

2.9. Problems detected automatically by the containercccooveviiiiii i, 34
3. Programming MOAEIiiiiiiii e e 37
G T 1V - T g P To [=To [o T= = T =P 37
3.1.1. Which Java classes are managed beans?cccooveveiniiiiiiinneiiiineecie, 37
3.1.2. Bean types of a managed beancoiviiiiiii i, 38
3.1.3. Declaring @ managed DEaANcciiiiiiiiiiiiii e 38
3.1.4. Specializing a managed beancccoeiiiii i, 39
3.1.5. Default bean name for a managed beancocciiiiiiiiiiiiiin 39

3.2, SESSION DEANS ...oiiiiiiiiii e 39
3.2.1. EJB remove methods of session beansccoooveviiiiiiiiicine 40
3.2.2. Bean types of a SEeSSION DANcc.viiiiiiiiii i 40
3.2.3. Declaring @ SeSSIioN DEANccoeuuiiiiiiiii e 41
3.2.4. Specializing a SesSsioN DeaNccociviiiiiiiiii 41
3.2.5. Default bean name for a Session beanccooevveieiiiiiiiiiii e, 42

3.3, Producer MEtNOASuuiiiiiiieii e 42
3.3.1. Bean types of a producer methodccoiviiiiiiniiiiiini e, 43
3.3.2. Declaring a producer methodcooviiiiiiiieiin e 43
3.3.3. Specializing a producer Methodoooeuiiiiiiiii e 44
3.3.4. Default bean name for a producer methodcc.ccoiiiiiiiiii i, 45

3.4, ProduCer fIEldSoieeiiiiiei e 45
3.4.1. Bean types of a producer fieldccoooeiiiiii i, 46
3.4.2. Declaring a producer field ..o 46
3.4.3. Default bean name for a producer fieldcccoooiiiiiinin i 47

3.5. DiISPOSEr MELNOUSiiiiiiiieii e et eeaens 47
3.5.1. Disposed parameter of a disposer methodcccccoiiiiiiiiiin i, 47
3.5.2. Declaring a disposer Methodcoooiiiiiiieiiii e 47
3.5.3. Disposer method resOlUtioNooiviiiiiiiic e 49

3.6. Java EE COMPONENTScoouiiiiiiiiiiii ettt e 49
3.7 RESOUICES ..ttt ettt e et et e e et e e e e e e e anaees 49
3.7.1. DeClaring @ MBSOUITEcccuuuieiiiiiieeeeeii ettt e s 50
3.7.2. Bean types Of @ rESOUICEccuuiiiiiiiei et ea s 51

3.8. Additional built-in DEANSiiiii e 51
3.9. BEAN CONSITUCTOISieiieiiteit et e et e e e e e e e e e eneenas 52
3.9.1. Declaring @ bean CONSIIUCTONcouuuuiiiiiiiie e 52
0O T [T =Tox (=0 B 111 o £ PN 53
3.10.1. Declaring an injected fieldccooiiiiiiii 53
3.11. Initializer MEethOASiiiiiii e 53

3.11.1. Declaring an initializer methodcccooiiiiiiiii e 54

3.12. The default qualifier at injection POINESccoeviiiiiiiiiiir e 54
3.13. The qualifier @aned at iNjection POINEScovuuiiieiiii e 56
3.14. @lew qUAlIfIEd DEANSciviiiii i 56
3.15. Unproxyable Dean tYPESiiiiiiii i 57
4. Inheritance and SPeCIaliZatiONccccuiiiiii i 59
4.1. Inheritance of type-level metadatacoooeiiiiiiiiiiiiini 59
4.2. Inheritance of member-level metadatacccoeiiiiiiiiiiii 60
4.3, SPECIAIIZALIONvtneiiiii e 61
4.3.1. Direct and indirect specializationcccocviiiiiiiiiii e 63

5. Dependency injection, I00KUP and ELccoiiiiiiiiiiiii e 65
LN 1 o T 01 =T Y/ 65
5.1.1. Declaring selected alternativescoouuiiiiiiiiiiieiiiieeee e 66
5.1.2. Enabled and disabled beansc.ooooviiiiiiiiiie 67
5.1.3. Inconsistent SPeCialiZationcc.uiiiiiiiiiiiiii e 67
5.1.4. Inter-module INJECHIONciiiiii e 67

5.2. Typesafe re@SOIULIONcoouuiiiiiiiii e 68
5.2.1. Performing typesafe resolutionccoveiiiiiiiiiiiiii e 68
5.2.2. Unsatisfied and ambiguous dependenciescccoooeviiiiiiiiiinieiiiiineeeen, 68
5.2.3. Legal injection POINt tYPESccvvuiiiiiiiiie e 69
5.2.4. Assignability of raw and parameterized typescccooeiviiiiiiiiiiiiineeieinn, 69
5.2.5. Primitive types and Null valuescoooiiiiiiiciii e 70
5.2.6. Qualifier annotations with MembEerscccooviiiiiiiiiiii e 71
5.2.7. Multiple qQUAIITIEISuuiee e 71

5.3, EL NAME FESOIULION ...euiiiieieii e e e e e e e e e e e e eees 72
5.3.1. AMbIQUOUS EL NAMESccvuiiiiiieiiiciie et e e e e e 72

5.4, ClIENE PIOXIES ..iiiiiiieiiiii ettt ettt e e b e e b e e e b 73
5.4.1. Client proxy iNVOCALIONcceuuiiiiiieiiieeeii e e e e e e e e s e et e e ean e eeenes 74

5.5. Dependency INJECLIONioiiiuiieiiiii e e et e e e e e eees 74
5.5.1. Injection using the bean CONSIrUCIOrcccoveviiiiiii e, 75
5.5.2. Injection of fields and initializer methodsccccoooviiiiiiiii 75
5.5.3. Destruction of dependent ODJECESccuviiiiiiiiiiiii e 75
5.5.4. Invocation of producer or disposer methodsccccoveiiiiiiiiiiiiinnenciinnnn. 75
5.5.5. Access to producer field ValuEScoviiiiiiiiiiciie e 76
5.5.6. Invocation of observer methodsccooeiiiiiiiiinii e, 76
5.5.7. Injection point metadatacc.oviiiiiiiiiii e 77
5.5.8. BEAN MELAUALAovvniiiiiieii e 78

5.6. ProgrammatiC I00KUPiiiiiiiiii i e e e e e e e e e e e e aaaas 80
5.6.1. The Instance iNterfaceccooeuiiiiiiiiiiii e 81
5.6.2. The BUIlt-iN 1 NSTANCE iivviiiiiiiii e e e s 83
5.6.3. Using Annot ati onLiteral and TypeLiteralcccoovveiiiiiineiiinniinneninnnns 83

(SIS YoToT ot Rr-T o Yo B o0] 1] 1=t £ S 85
6.1. The Context ual INTEIACEco.viiiiiiie e 85
6.1.1. The Creational Context INEIfACEcoovveiiiiiiiiii e 86

Contexts and Dependency Injec...

6.2. The Cont ext INLEIACEiiie e 86
6.3. Normal scopes and PSEUdO-SCOPESccuuuiiriniiiiiieiiieeeiieee e e e e e et e e e eeens 88
6.4. Dependent PSEUAO-SCOPEcciiruuieeiit ettt et e et e et e e 89
6.4.1. Dependent ODJECEScc.uiiiiiiiiiii e 89
6.4.2. Destruction of objects with scope @ependentccooeeviveeiiiiiiiiiriineeiinnns 90
6.4.3. Dependent pseudo-scope and Unified ELccoooiiiiiiiiiiiiniiin e 90

6.5. Contextual instances and contextual referenCescccoovviiiiiniiiiiiin e, 90
6.5.1. The active context object for @ SCOPEccuvvviiiiiiiiiiiiie e 91
6.5.2. Contextual instance of a bean ... 91
6.5.3. Contextual reference for a beanccoooviiiiiiiiiiiiii 91
6.5.4. Contextual reference validitycoouiiiiiiiiiiii e 92
6.5.5. Injectable referenCescooovviiiii i 92
6.5.6. Injectable reference validitycooooiiiiiiiiiiiii 93

6.6. Passivation and passivating SCOPESccvvuiiiiinieiiieiiiieeiiee e e e e et e e eaaeeaanns 93
6.6.1. Passivation capable Deansccovviiiiiiiiiiiiii e 93
6.6.2. Passivation capable injection PoiNtScc.cceviiiiieiiiiiiiiieeee e, 94
6.6.3. Passivation capable dependenciesccoovviiiiiiiiiiiin i 94
6.6.4. PaSSIVALING SCOPES . .ivvuiiiiiiiiieeii e et e e e e e e e e e e e e e et e e e eaans 95
6.6.5. Validation of passivation capable beans and dependencies 95

6.7. Context management for built-in SCOPEScoiviiiiiiiii e, 96
6.7.1. Request context fECYCIEoiiiiiiiiii e 97
6.7.2. Session context lIfECYCIEcvvviiiiii i 98
6.7.3. Application context IfeCYCIeooiiiiiiiiiii e 98
6.7.4. Conversation context lifeCyClecoooeviiiiiii i 99
6.7.5. The Conversati on iNtErfaceccoouiiiiiiiii i, 101

7. Lifecycle of contextual INSTANCESccuiiiiiiiiiii e 103
7.1. Restriction upon bean instantiationccooviiiiiiii 103
7.2. Container invocations and iNterceptionccceuiiiiiiieiiii e e 104
7.3. Lifecycle of contextual iNStANCEScoooiiiiiiiiiiiiiei e 105
7.3.1. Lifecycle of managed beanscoooviiiiiiii i 105
7.3.2. Lifecycle of stateful SESSION DeANSccoovviiiiiiiiiiiiii e, 106
7.3.3. Lifecycle of stateless and singleton session beansc.c.cccoevvveeennnnn. 106
7.3.4. Lifecycle of producer methodscoooviiiiiiiiiiiii e 106
7.3.5. Lifecycle of producer fieldscoooiiiiiiiiiiii e 107
7.3.6. LifeCYCle Of FESOUICESciiiiiii et 107

S T BT oo] = 1 0] T PPN 109
8.1. DECOratOr DEANS .. ceeeieiiiei e 109
8.1.1. Declaring @ deCOIatOrcvevuuiiiiii et e e e e e e e e 109
8.1.2. Decorator delegate injection POINTSoveeiiiiiieeiiiiiee e 109
8.1.3. Decorated types of @ deCOratorc.ccuveiiiiiiii e e 111

8.2. Decorator enablement and Orderingcoooeeiiiiiiiiiiiiei e 111
8.2.1. Decorator enablement and ordering for an application 111
8.2.2. Decorator enablement and ordering for a bean archivec........ 112

8.3. DECOrator reSOIULIONiiiiiiiieiiiie ettt e e e e e e e e et eaeaenns 112

Vi

8.3.1. Assignability of raw and parameterized types for delegate injection points.. 113

8.4. DEeCOrator INVOCALIONuuieiiiitiieeeeii s e ettt e e et s e e et s e e e eat s e e e eat s e e eeatneeeeaenaaaees 113
9. INtercepPtor DINAINGS .uuiiiii e 115
9.1. Interceptor biNAING LYPES ...vuiiiiiii i 115
9.1.1. Interceptor bindings for StEreOtYPEScovvviiiiiiiiieii e 115

9.2. Declaring the interceptor bindings of an interceptorccoovevieeiiniiiiieiieeens 115
9.3. Binding an interceptor t0 @ DeaNcvviiiiiiiiii 115
9.4. Interceptor enablement and Orderingcoovviiiiiiiicii e 116
9.5, INterceptor re@SOIULIONciiuiiiiiiii e eaens 117
B0, BV NS oot 119
10.1. Event types and qualifier tyPeScoouuuiiiiiiiiee e 119
O 1o == | €= 119
10.2.1. The Event INtEIfaCecooeveiiiiiiii e 120
10.2.2. The DUIIE-IN BVENT oiiiiiiii i e e e e eare e e 121
10.3. ODBSErver reSOIULIONiiiiiiii e e e e e 122
10.3.1. Assignability of type variables, raw and parameterized types 122
10.3.2. Event qualifier types with membersccccooiiiiiiiii e, 123
10.3.3. Multiple event qUAlIfIEISoiiiiiiii e 124
10.4. ODbServer MEthOAScc.uiiiiiiii e e e e e e eeen 124
10.4.1. Event parameter of an observer methodcccoveiii i 125
10.4.2. Declaring an observer methodcooiiiiiiiiii e 125
10.4.3. The Event Met adat @ iNTErfACEccuuiiiiiiiiieiiii e 126
10.4.4. Conditional observer methodscoooeiiiiiiiii 126
10.4.5. Transactional observer methodsccoovvviiiiiiiiiiiic e, 127
10.5. Observer NOLIfICAtIONc..iiii i 128
10.5.1. Observer method iNvOCatioN CONEXEcccvvuiviiiiiieeeiii e 128

11, POrtable XTENSIONS ..iouiiiiie e 131
11.1. The Bean INtEITACEuuiiiiiii i e e e e 131
11.1.1. The Decorat or INtEIfACEiiiiiiiii e 132
11.1.2. The Intercept or INEIfACEcooviiiiiiiiiii e, 132
11.1.3. The Observer Met hod INtErfacecccovieiiiiiiiiii e, 133
11.2. The Producer and | nj ecti onTar get interfacesccooeviiviviiiiiiiieiin e, 134
11.3. The BeanManager ODJECLuiiiiiiiiiiiiii e e 135
11.3.1. Obtaining a reference to the CDI containerccccoceeeeviiiiiiineeinneennnn. 136
11.3.2. Obtaining a contextual reference for a beanccccoeiviiiiiiiiiiiinnees 137
11.3.3. Obtaining an injectable referencecccoovviiiiiiiiiiie 137
11.3.4. Obtaining non-contextual INSTANCEocoviviiiiiiiiiiiie e, 138
11.3.5. Obtaining a Creati onal CoNt @XTcvcvuieiiiieeiiieeii e e e e e e e e eaneens 138
11.3.6. Obtaining @ Bean DY tYPeoceeiiiiiiiiii e 138
11.3.7. Obtaining a Bean by NAMEcoooiiiiiiiii e 139
11.3.8. Obtaining a passivation capable bean by identifiercccccoevivennnnn. 139
11.3.9. Resolving an ambiguous dependencyccceevviieiiiiiiiiieeciieeciie e 139
11.3.10. Validating an injection POINTccoouuiiiiiiiiieee e 139
11.3.11. FiriNG AN EVENT ...iiiiiiii e e e e e e e e e e e e e e e e e eees 140

Vii

Contexts and Dependency Injec...

11.3.12. Observer method reSOIULIONcc.uiiiiiiiiiiiee e 140
11.3.13. DeCorator reSOIULIONcooveeuiuieiiiiii e e e eeaens 140
11.3.14. Interceptor reSOIULIONoociiiiiiiiiiii e 141
11.3.15. Determining if an annotation is a qualifier type, scope type, stereotype
or interceptor biNAING LYPE i 141
11.3.16. Determining the hash code and equivalence of qualifiers and interceptor
DINAINGS ..o 142
11.3.17. Obtaining the active Cont ext fOr @ SCOPEcvevvvieviiieiiiieiiiieeieeeen, 142
11.3.18. ODbtaining the ELRESOI VEI ...uiiiiiiiiieiiiiiie ettt 142
11.3.19. Wrapping a Unified EL Expressi onFact 0ryccccuvveviineeiinieiiiierinnennnnn. 142
11.3.20. Obtaining an Annot at edType for a Classccocevvviiiiiiiniiiiiiiee 143
11.3.21. Obtaining an I nj ectionTarget for a classcccoovevieiiiiieiiinecinneennn, 143
11.3.22. Obtaining a Pr oducer for a field or methodc.ccooovviiiiiiiiiinninennnn, 143
11.3.23. Obtaining an I nj €t i 0NPOI Nt ...vuuueiiiieiiiie e e e e e 144
11.3.24. Obtaining & BeanAt t 1i DUt €Suiiiiiiiiieiiiii e 144
R 2 T @ o) = U a1 Vo = T ==Y U [144
11.3.26. Obtaining the instance of an Ext ensi 0Ncccoiiiiiiiinieiiiiiieecieees 145
11.4. Alternative metadata SOUICESceeeuuuiieiiiiieeeiii et e e et eea e eaaenns 145
11.5. Container [fEeCYCle BVENTSooiiiiiiiiiii e 148
11.5.1. Bef or eBeanDi SCOVEIY EVENLcuuiiuiiiiiiiiiiiee e a e 150
11.5.2. Aft er TYpeDi SCOVENY EVENT ..ovuitiiiiiii e e e eens 150
11.5.3. Aft er BeanDi SCOVEIY EVENLiuuiiuiiiiiiiei e 151
11.5.4. Aft er Depl oynment Val i dati on @VENTovviiiiiiiiiiiine e 152
11.5.5. Bef or eShut dOWN EVENT ...vviiiiiiiiee e 153
11.5.6. ProcessAnnot at edTYPE EVENT ...c..iiuiiiiiiii e 153
11.5.7. Processl nj ecti onPOi Nt BVENEvuiieiiiiiicrcer e 155
11.5.8. ProcessinjectionTar get VENTccuiiiiiiiiiiii e 155
11.5.9. ProcessBeanAttri but @S BVENLivviiiiiiiici e 156
11.5.10. ProcesSBean EVENTcuuiiiiiiii e 157
11.5.11. ProcesSSProduCEr EVENTiuiiiiiiiiieie e ae e 159
11.5.12. ProcessCbserver Met hod @VENTc.ovniiiiiiiiii e 160
12. Packaging and deploymMeENt ... 163
12.1. BEAN @IrCRIVES ..ouiiiiiiii et e et e e 163
12.2. Application initialization fECYCIEcccovniiiii e 165
12.3. Application shutdown lIfECYCIEviiiiiiiiiiii e, 165
12.4. Type and Bean diSCOVEIYcccuuiiiiiiiii it e e 166
12.4.1. TYPE AISCOVEIY .ottt ettt ettt eeeaa e eeeaas 166
12.4.2. EXCIUAE fIEIS ...uiiiiiiiiee e 166
12.4.3. BEAN ISCOVEIY ...iiiiiiiiiiii ettt e 168
12.5. Integration with Unified ELcccoouiiiiiiiiiiii e e e e 169

viii

Preface

1. Evaluation license

Speci fication: JSR- 346 Contexts and Dependency |njection for the Java EE
platform (CDI) ("Specification")

Version: 1.2

St at us: Mai nt enance Rel ease

Specification Lead: Red Hat, Inc. ("Specification Lead")
Rel ease: April 8, 2014

Copyright 2014 Red Hat, Inc.
100 East Davie Street, Raleigh, NC 27601, U S. A

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/ | i censes/ LI CENSE- 2. 0

Unl ess required by applicable |aw or agreed to in witing, software

di stributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or inplied.
See the License for the specific |anguage governi ng perm ssions and
limtations under the License.

2. Foreword

Contexts and Dependency Injection 1.2 is a maintenance release of Contexts and Dependency
Injection 1.1 (JSR-346 [https://jcp.org/en/jsr/detail?id=346]).

A full changelog can be found here [https://issues.jboss.org/secure/ReleaseNote.jspa?
version=12323655&styleName=Html&projectld=12311062].

3. Major changes

These major changes have been introduced for CDI 1.2:

« Improvement regarding the annot at ed bean discovery mode to ensure compatibility with other
JSR-330 in Section 2.5, “Default bean discovery mode”.

« Clarification about conversation resolution in Section 6.7.4, “Conversation context lifecycle”.

https://jcp.org/en/jsr/detail?id=346
https://jcp.org/en/jsr/detail?id=346
https://issues.jboss.org/secure/ReleaseNote.jspa?version=12323655&styleName=Html&projectId=12311062
https://issues.jboss.org/secure/ReleaseNote.jspa?version=12323655&styleName=Html&projectId=12311062
https://issues.jboss.org/secure/ReleaseNote.jspa?version=12323655&styleName=Html&projectId=12311062

Preface

» Multiple clarifications about events and observers resolution in Chapter 10, Events.

« Clarification and restriction loosening on some BeanManager method calls in Section 11.3, “The
BeanManager object”.

 Clarification on the limitation of container lifecycle events use in Section 11.5, “Container
lifecycle events”.

« Multiple clarification on the whole initialization phase ordering in Section 11.5, “Container
lifecycle events” and Section 12.2, “Application initialization lifecycle”.

More minor changes have been introduced as well :
 Clarification about legal bean type and array in Section 2.2.1, “Legal bean types” and
Section 3.4, “Producer fields”.

« Clarification on the fact that CDI built-in scope can be extended by third-party extensions in
Section 2.4.1, “Built-in scope types” and Section 6.2, “The Cont ext interface”.

« Clarification on It er at or returned by | nstance. i terator() in Section 5.6.1, “The I nst ance
interface”.

« Clarification on interceptor binding on producer method in Section 9.3, “Binding an interceptor
to a bean”.

« Clarification on Pr ocessAnnot at edType in Section 11.5.6, “Pr ocessAnnot at edType event”.
+ Clarification on EJB related terms or example to conform to EJB specification.
« Correction of differences between specification and Javadoc.

 Correction of wrong examples.

Chapter 1.

Architecture

This specification defines a powerful set of complementary services that help improve the structure
of application code.

A well-defined lifecycle for stateful objects bound to lifecycle contexts, where the set of contexts
is extensible

« A sophisticated, typesafe dependency injection mechanism, including the ability to select
dependencies at either development or deployment time, without verbose configuration

» Support for Java EE modularity and the Java EE component architecture - the modular structure
of a Java EE application is taken into account when resolving dependencies between Java EE
components

* Integration with the Unified Expression Language (EL), allowing any contextual object to be
used directly within a JSF or JSP page

« The ability to decorate injected objects
« The ability to associate interceptors to objects via typesafe interceptor bindings
* An event notification model

« A web conversation context in addition to the three standard web contexts defined by the Java
Servlets specification

« An SPI allowing portable extensions to integrate cleanly with the container

The services defined by this specification allow objects to be bound to lifecycle contexts, to be
injected, to be associated with interceptors and decorators, and to interact in a loosely coupled
fashion by firing and observing events. Various kinds of objects are injectable, including EJB 3
session beans, managed beans and Java EE resources. We refer to these objects in general terms
as beans and to instances of beans that belong to contexts as contextual instances. Contextual
instances may be injected into other objects by the dependency injection service.

To take advantage of these facilities, the developer provides additional bean-level metadata in
the form of Java annotations and application-level metadata in the form of an XML descriptor.

The use of these services significantly simplifies the task of creating Java EE applications by
integrating the Java EE web tier with Java EE enterprise services. In particular, EJB components
may be used as JSF managed beans, thus integrating the programming models of EJB and JSF.

It's even possible to integrate with third-party frameworks. A portable extension may provide
objects to be injected or obtain contextual instances using the dependency injection service. The
framework may even raise and observe events using the event notification service.

Chapter 1. Architecture

An application that takes advantage of these services may be designed to execute in either the
Java EE environment or the Java SE environment. If the application uses Java EE services such
as transaction management and persistence in the Java SE environment, the services are usually
restricted to, at most, the subset defined for embedded usage by the EJB specification.

1.1. Contracts

This specification defines the responsibilities of:

« the application developer who uses these services, and

« the vendor who implements the functionality defined by this specification and provides a runtime
environment in which the application executes.

This runtime environment is called the container. For example, the container might be a Java EE
container or an embeddable EJB container.

Chapter 2, Concepts, Chapter 3, Programming model, Chapter 4, Inheritance and specialization,
Chapter 9, Interceptor bindings, Section 8.1, “Decorator beans” and Section 10.4, “Observer
methods” define the programming model for Java EE components that take advantage of the
services defined by this specification, the responsibilities of the component developer, and the
annotations used by the component developer to specify metadata.

Chapter 5, Dependency injection, lookup and EL, Chapter 6, Scopes and contexts, Chapter 7,
Lifecycle of contextual instances, Chapter 8, Decorators, Chapter 10, Events and Section 9.5,
“Interceptor resolution” define the semantics and behavior of the services, the responsibilities of
the container implementation and the APIs used by the application to interact directly with the
container.

Chapter 12, Packaging and deployment defines how Java EE applications that use the services
defined by this specification must be packaged into bean archives, and the responsibilities of the
container implementation at application initialization time.

Chapter 11, Portable extensions, Section 6.1, “The Cont ext ual interface” and Section 6.2, “The
Cont ext interface” define an SPI that allows portable extensions to integrate with the container.

1.2. Relationship to other specifications

An application developer creates container-managed components such as JavaBeans, EJBs
or servlets and then provides additional metadata that declares additional behavior defined
by this specification. These components may take advantage of the services defined by this
specification, together with the enterprise and presentational aspects defined by other Java EE
platform technologies.

In addition, this specification defines an SPI that allows alternative, non-platform technologies
to integrate with the container and the Java EE environment, for example, alternative web
presentation technologies.

Relationship to the Java EE platform specification

1.2.1. Relationship to the Java EE platform specification

In the Java EE 6 environment, all component classes supporting injection, as defined by the Java
EE 6 platform specification, may inject beans via the dependency injection service.

The Java EE platform specification defines a facility for injecting resources that exist in the Java
EE component environment. Resources are identified by string-based names. This specification
bolsters that functionality, adding the ability to inject an open-ended set of object types, including,
but not limited to, component environment resources, based upon typesafe qualifiers.

1.2.2. Relationship to EJB

EJB defines a programming model for application components that access transactional resources
in a multi-user environment. EJB allows concerns such as role-based security, transaction
demarcation, concurrency and scalability to be specified declaratively using annotations and XML
deployment descriptors and enforced by the EJB container at runtime.

EJB components may be stateful, but are not by nature contextual. References to stateful
component instances must be explicitly passed between clients and stateful instances must be
explicitly destroyed by the application.

This specification enhances the EJB component model with contextual lifecycle management.

Any session bean instance obtained via the dependency injection service is a contextual instance.
It is bound to a lifecycle context and is available to other objects that execute in that context. The
container automatically creates the instance when it is needed by a client. When the context ends,
the container automatically destroys the instance.

Message-driven and entity beans are by nature non-contextual objects and may not be injected
into other objects.

The container performs dependency injection on all session and message-driven bean instances,
even those which are not contextual instances.

1.2.3. Relationship to managed beans

The Managed Beans specification defines the basic programming model for application
components managed by the Java EE container.

As defined by this specification, most Java classes, including all JavaBeans, are managed beans.

This specification defines contextual lifecycle management and dependency injection as generic
services applicable to all managed beans.

Any managed bean instance obtained via the dependency injection service is a contextual
instance. It is bound to a lifecycle context and is available to other objects that execute in that
context. The container automatically creates the instance when it is needed by a client. When the
context ends, the container automatically destroys the instance.

Chapter 1. Architecture

The container performs dependency injection on all managed bean instances, even those which
are not contextual instances.

1.2.4. Relationship to Dependency Injection for Java

The Dependency Injection for Java specification defines a set of annotations for the declaring
injected fields, methods and constructors of a bean. The dependency injection service makes use
of these annotations.

1.2.5. Relationship to Java Interceptors

The Java Interceptors specification defines the basic programming model and semantics for
interceptors. This specification enhances that model by providing the ability to associate
interceptors with beans using typesafe interceptor bindings.

1.2.6. Relationship to JSF

JavaServer Faces is a web-tier presentation framework that provides a component model for
graphical user interface components and an event-driven interaction model that binds user
interface components to objects accessible via Unified EL.

This specification allows any bean to be assigned a name. Thus, a JSF application may
take advantage of the sophisticated context and dependency injection model defined by this
specification.

1.2.7. Relationship to Bean Validation

Bean Validation provides a unified way of declaring and defining constraints on an object model,
defines a runtime engine to validate objects and provides method validation.

The Bean Validation specification defines beans for Bean Validation managed objects including
Val i dat or and Val i dat or Fact ory. A number of Bean Validation managed instances, including
Constraint Val i dator s can take advantage of dependency injection. Bean Validation also
provides support for method parameter validation on any bean.

1.3. Introductory examples
The following examples demonstrate the use of lifecycle contexts and dependency injection.

1.3.1. JSF example

The following JSF page defines a login prompt for a web application:

<f:view>
<h: f or n>
<h: panel G'id col ums="2" rendered="#{!Ilogin. | oggedl n}">
<h: out put Label for="user nane">User nane: </ h: out put Label >

JSF example

<h:input Text id="usernane" val ue="#{credential s.usernane}"/>
<h: out put Label for="password">Password: </ h: out put Label >
<h:input Text id="password" val ue="#{credentials. password}"/>
</ h: panel Gri d>
<h: commandBut t on val ue="Logi n" action="#{login.login}" rendered="#{!
| ogi n. | oggedln}"/>

<h: commandBut t oval ue="Logoutdct i on="#{I| ogi n. | ogout }r'ender ed="#{ | ogi n. | oggedl n}"/
>
</ h:fornm
</f:view>
The Unified EL expressions in this page refer to beans named cr edenti al s and | ogi n.
The Credenti al s bean has a lifecycle that is bound to the JSF request:
@bdel

public class Credentials {

private String usernane;
private String password;

public String getUsername() { return usernane; }
public void setUsernane(String usernane) { this.usernanme

user nane; }

public String getPassword() { return password; }
public void setPassword(String password) { this.password = password; }

The @bdel annotation defined in Section 2.8.3, “Built-in stereotypes” is a stereotype that identifies
the Credenti al s bean as a model object in an MVC architecture.

The Logi n bean has a lifecycle that is bound to the HTTP session:

@essi onScoped @wbdel
public class Login inplenents Serializable {

@nject Credentials credentials;
@nject @sers EntityManager userDat abase;

private CriteriaQuery<User> query;
private Paraneter<String> usernanmePar am

private Paramneter<String> passwordParam

private User user;

Chapter 1. Architecture

@ nj ect
void initQuery(@sers EntityManagerFactory enf) {
CriteriaBuilder cb = enf.getCriteriaBuilder();
user nanePar am = cb. paraneter(String. cl ass);
passwor dPar am = cb. paraneter(String. cl ass);
query = cb. createQuery(User.cl ass);
Root <User> u = query. fron(User. cl ass);
query. sel ect (u);
query. where(ch. equal (u.get(User_.usernane), usernaneParan),
cb. equal (u. get (User _. password), passwordParan));

public void login() {

Li st <User> results = user Dat abase. creat eQuery(query)
. set Par anet er (user nanmeParam credenti al s. get User nane())
. set Par anet er (passwor dParam credenti al s. get Password())
.getResul tList();

if (!results.isEmpty()) {
user = results.get(0);

public void | ogout() {
user = null;

publ i c bool ean isLoggedl n() ({
return user!=null;

@r oduces @oggedln User getCurrentUser() {
if (user==null) {
t hrow new Not Logged| nExcepti on();

}
el se {

return user;
}

The @Bessi onScoped annotation defined in Section 2.4.1, “Built-in scope types” is a scope
type that specifies the lifecycle of instances of Logi n. Managed beans with this scope must be
serializable.

JSF example

The @ nj ect annotation defined by the Dependency Injection for Java specification identifies an
injected field which is initialized by the container when the bean is instantiated, or an initializer
method which is called by the container after the bean is instantiated, with injected parameters.

The @ser s annotation is a qualifier type defined by the application:

@ualifier

@Ret ent i on(RUNTI MVE)

@rar get ({ METHOD, FI ELD, PARAMETER, TYPE})
public @nterface Users {}

The @oggedI n annotation is another qualifier type defined by the application:

@ualifier

@Ret ent i on(RUNTI MVE)

@rar get ({ METHOD, FI ELD, PARAMETER, TYPE})
public @nterface Loggedln {}

The @°r oduces annotation defined in Section 3.3.2, “Declaring a producer method” identifies the
method get Cur r ent User () as a producer method, which will be called whenever another bean
in the system needs the currently logged-in user, for example, whenever the user attribute of the
Docunent Edi t or class is injected by the container:

@nbdel

public class Docunent Edi tor {

@nj ect Document docunent;
@nject @oggedln User currentUser;
@ nj ect @ocunents EntityManager docDat abase;

public void save() {
docunent . set Cr eat edBy(current User) ;
em per si st (docunent) ;

The @ocunents annotation is another application-defined qualifier type. The use of distinct
qualifier types enables the container to distinguish which JPA persistence unit is required.

When the login form is submitted, JSF assigns the entered username and password to an instance
of the Credent i al s bean that is automatically instantiated by the container. Next, JSF calls the
I ogi n() method of an instance of Logi n that is automatically instantiated by the container. This

Chapter 1. Architecture

instance continues to exist for and be available to other requests in the same HTTP session,
and provides the User object representing the current user to any other bean that requires it (for
example, Docunent Edi t or). If the producer method is called before the | ogi n() method initializes
the user object, it throws a Not Logged! nExcept i on.

1.3.2. EJB example

Alternatively, we could write our Logi n bean to take advantage of the functionality defined by EJB:
@5t at ef ul @bessi onScoped @vbdel
public class Login {

@nject Credentials credentials;
@nject @sers EntityManager userDat abase;

private User user;

@ nj ect
void initQuery(@sers EntityManagerFactory enf) {

@ransacti onAttri but e(REQUI RES_NEW
@Rol esAl | owed(" guest™)
public void login() {

public void | ogout() {
user = null;

public bool ean isLoggedln() {
return user!=null;

@Rol esAl | owed("user")
@roduces @oggedln User getCurrentUser() {

Java EE component environment example

The EJB @5t at ef ul annotation specifies that this bean is an EJB stateful session bean. The
EJB @ransactionAttribute and @Rol esAl | owed annotations declare the EJB transaction
demarcation and security attributes of the annotated methods.

1.3.3. Java EE component environment example

In the previous examples, we injected container-managed persistence contexts using qualifier
types. We need to tell the container what persistence context is being referred to by which qualifier
type. We can declare references to persistence contexts and other resources in the Java EE
component environment in Java code.

public class Databases {

@r oduces @ersi stenceCont ext (uni t Nane="User Dat a")
@Jsers EntityManager user DatabaseEntityManager;

@r oduces @Persi stenceUnit (unitName="User Data")
@Jsers EntityManager Factory user Dat abaseEntityManager Fact ory;

@r oduces @persi st enceCont ext (uni t Nane="Docunent Dat a")
@ocunents EntityManager docDat abaseEntityManager;

The JPA @er si st enceCont ext and @er si st enceUni t annotations identify the JPA persistence
unit.

1.3.4. Event example
Beans may raise events. For example, our Logi n class could raise events when a user logs in

or out.

@bessi onScoped @wbdel
public class Login inplenments Serializable {

@nject Credentials credentials;
@nject @sers EntityManager userDat abase;

@nj ect @Qoggedl n Event <User > user Loggedl nEvent ;
@ nj ect @oggedQut Event <User> user LoggedCut Event ;

private User user;

@ nj ect

Chapter 1. Architecture

voi d initQuery(@sers EntityManagerFactory enf) {

public void login() {
Li st<User> results = ...

if (!'results.isEmpty()) {
user = results.get(0);
user Loggedl nEvent . fire(user);

public void | ogout() {
user LoggedQut Event . fire(user);
user = null;

publ i ¢ bool ean isLoggedl n() {
return user!=null;

@roduces @oggedln User getCurrentUser() {

The method fire() of the built-in bean of type Event defined in Section 10.2.1, “The Event
interface” allows the application to fire events. Events consist of an event object - in this case the
User - and event qualifiers. Event qualifier - such as @oggedl n and @oggedQut - allow event
consumers to specify which events of a certain type they are interested in.

Other beans may observe these events and use them to synchronize their internal state, with no
coupling to the bean producing the events:

@Bessi onScoped
public class Perm ssions inplenments Serializable {

@r oduces
private Set<Perm ssi on> perm ssions = new HashSet <Per mi ssi on>();

@nject @sers EntityManager userDat abase;
Par anet er <St ri ng> user nanePar am
CriteriaQuery<Pern ssion> query;

10

Injection point metadata example

@ nj ect
void initQuery(@sers EntityManagerFactory enf) {
CriteriaBuilder cb = enf.getCriteriaBuilder();
user nanePar am = cb. paraneter(String. cl ass);
query = cb. createQuery(Perm ssion.cl ass);
Root <Per m ssion> p = query. from Perm ssion.cl ass);
query. sel ect (p);
query. where(ch. equal (p.get(Perm ssion_.user).get(User_.usernane),
user nanePar am);

voi d onLogi n(@bserves @uoggedl n User user) {
perm ssi ons = new HashSet <Per m ssi on>(user Dat abase. creat eQuery(query)
. set Par anet er (user namePar am user. get User nane())
.getResultList());

voi d onLogout (@bserves @oggedQut User user {
perm ssions. cl ear();

The @°r oduces annotation applied to a field identifies the field as a producer field, as defined
in Section 3.4, “Producer fields”, a kind of shortcut version of a producer method. This producer
field allows the permissions of the current user to be injected to an injection point of type
Set <Per mi ssi on>.

The @bser ves annotation defined in Section 10.4.2, “Declaring an observer method” identifies
the method with the annotated parameter as an observer method that is called by the container
whenever an event matching the type and qualifiers of the annotated parameter is fired.

1.3.5. Injection point metadata example

It is possible to implement generic beans that introspect the injection point to which they belong.
This makes it possible to implement injection for Logger s, for example.
cl ass Loggers {

@r oduces Logger getLogger (I njectionPoint injectionPoint) {
return Logger.getLogger(injectionPoint.getMenber().getDeclaringd ass().getSinmpleNane()

11

Chapter 1. Architecture

The 1 nj ectionPoi nt interface defined in Section 5.5.7, “Injection point metadata”, provides
metadata about the injection point to the object being injected into it.

Then this class will have a Logger named " Per ni ssi ons" injected:
@bessi onScoped
public class Perm ssions inplenments Serializable {

@ nj ect Logger |og;

1.3.6. Interceptor example

Interceptors allow common, cross-cutting concerns to be applied to beans via custom annotations.
Interceptor types may be individually enabled or disabled at deployment time.

The Aut hori zat i onl nt er cept or class defines a custom authorization check:
@ecure @nterceptor
public class Authorizationlnterceptor {

@ nj ect @uoggedl n User user;
@ nj ect Logger | og;

@\r oundl nvoke
public Object authorize(lnvocationContext ic) throws Exception {

try {
if ('user.isBanned()) {
| og. fine("Authorized");
return ic.proceed();
}
el se {
| og. fine("Not authorized");
t hr ow new Not Aut hori zedException();
}
}

cat ch (Not Aut henti cat edExcepti on nae) ({
| og. fine("Not authenticated");
t hrow nae;

12

Decorator example

The @ nt er cept or annotation, defined in Section 9.2, “Declaring the interceptor bindings of an
interceptor”, identifies the Aut hori zati onl nterceptor class as an interceptor. The @ecure
annotation is a custom interceptor binding type, as defined in Section 9.1, “Interceptor binding
types”.

@nherited

@ nt er cept or Bi ndi ng

@rar get ({ TYPE, METHOD})
@Ret ent i on(RUNTI ME)

public @nterface Secure {}

The @ecur e annotation is used to apply the interceptor to a bean:

@nbdel

public class Docunent Edi tor {

@nj ect Docurment docunent;
@nj ect @Qoggedln User user;
@ nj ect @ocunents EntityManager em

@ecur e

public void save() {
docurnent . set Cr eat edBy(current User) ;
em per si st (docunent) ;

When the save() method is invoked, the aut hori ze() method of the interceptor will be called.
The invocation will proceed to the Docunent Edi tor class only if the authorization check is
successful.

1.3.7. Decorator example

Decorators are similar to interceptors, but apply only to beans of a particular Java interface.
Like interceptors, decorators may be easily enabled or disabled at deployment time. Unlike
interceptors, decorators are aware of the semantics of the intercepted method.

For example, the Dat aAccess interface might be implemented by many beans:

public interface DataAccess<T, V> {

public V getld(T object);
public T load(V id);

13

Chapter 1. Architecture

public void save(T object);
public void delete(T object);

public O ass<T> get Dat aType();

The Dat aAccessAut hori zat i onDecor at or class defines the authorization checks:

@ecor at or
public abstract class DataAccessAut horizati onDecorator<T, V> inplenents DataAccess<T, V> {

@ nj ect @el egate Dat aAccess<T, V> del egate;

@ nj ect Logger |og;
@ nj ect Set <Per m ssi on> perm ssi ons;

public void save(T object) {
aut hori ze(Secur eActi on. SAVE, object);
del egat e. save(obj ect);

public void delete(T object) {
aut hori ze(Secur eActi on. DELETE, obj ect);
del egat e. del et e(obj ect) ;

private void authorize(SecureAction action, T object) {
V id = del egate. getld(object);
Cl ass<T> type = del egate. get Dat aType();
if (perm ssions.contains(new Perm ssion(action, type, id))) {
| og. fine("Authorized for " + action);

}
el se {
| og. fine("Not authorized for " + action);
t hr ow new Not Aut hori zedExcepti on(acti on);
}

The @ecorat or annotation defined in Section 8.1.1, “Declaring a decorator” identifies the
Dat aAccessAut hori zat i onDecor at or class as a decorator. The @el egat e annotation defined
in Section 8.1.2, “Decorator delegate injection points” identifies the delegate, which the decorator
uses to delegate method calls to the container. The decorator applies to any bean that implements
Dat aAccess.

14

Decorator example

The decorator intercepts invocations just like an interceptor. However, unlike an interceptor, the
decorator contains functionality that is specific to the semantics of the method being called.

Decorators may be declared abstract, relieving the developer of the responsibility of implementing
all methods of the decorated interface. If a decorator does not implement a method of a decorated
interface, the decorator will simply not be called when that method is invoked upon the decorated
bean.

15

16

Chapter 2.

Concepts

A Java EE component is a bean if the lifecycle of its instances may be managed by the container
according to the lifecycle context model defined in Chapter 6, Scopes and contexts. A bean may
bear metadata defining its lifecycle and interactions with other components.

Speaking more abstractly, a bean is a source of contextual objects which define application state
and/or logic. These objects are called contextual instances of the bean. The container creates and
destroys these instances and associates them with the appropriate context. Contextual instances
of a bean may be injected into other objects (including other bean instances) that execute in the
same context, and may be used in EL expressions that are evaluated in the same context.

A bean comprises the following attributes:

A (nonempty) set of bean types
* A (nonempty) set of qualifiers

» Ascope

Optionally, a bean name

A set of interceptor bindings
* A bean implementation
Furthermore, a bean may or may not be an alternative.

In most cases, a bean developer provides the bean implementation by writing business logic
in Java code. The developer then defines the remaining attributes by explicitly annotating the
bean class, or by allowing them to be defaulted by the container, as specified in Chapter 3,
Programming model. In certain other cases - for example, Java EE component environment
resources, defined in Section 3.7, “Resources” - the developer provides only the annotations and
the bean implementation is provided by the container.

The bean types and qualifiers of a bean determine where its instances will be injected by the
container, as defined in Chapter 5, Dependency injection, lookup and EL.

The bean developer may also create interceptors and/or decorators or reuse existing interceptors
and/or decorators. The interceptor bindings of a bean determine which interceptors will be applied
at runtime. The bean types and qualifiers of a bean determine which decorators will be applied at
runtime. Interceptors are defined by Java interceptors specification, and interceptor bindings are
specified in Chapter 9, Interceptor bindings. Decorators are defined in Chapter 8, Decorators.

2.1. Functionality provided by the container to the bean

A bean is provided by the container with the following capabilities:

17

Chapter 2. Concepts

* transparent creation and destruction and scoping to a particular context, specified in Chapter 6,
Scopes and contexts and Chapter 7, Lifecycle of contextual instances,

 scoped resolution by bean type and qualifier annotation type when injected into a Java-based
client, as defined by Section 5.2, “Typesafe resolution”,

» scoped resolution by bean name when used in a Unified EL expression, as defined by
Section 5.3, “EL name resolution”,

« lifecycle callbacks and automatic injection of other bean instances, specified in Chapter 3,
Programming model and Chapter 5, Dependency injection, lookup and EL,

« method interception, callback interception, and decoration, as defined in Chapter 9, Interceptor
bindings and Chapter 8, Decorators, and

< event notification, as defined in Chapter 10, Events.

2.2. Bean types

A bean type defines a client-visible type of the bean. A bean may have multiple bean types. For
example, the following bean has four bean types:

public class BookShop
ext ends Busi ness
i mpl ement s Shop<Book> {

The bean types are BookShop, Busi ness, Shop<Book> and Obj ect .

Meanwhile, this session bean has only the local interfaces BookShop and Audi t abl e, along with
bj ect, as bean types, since the bean class is not a client-visible type.

@t at ef ul
public cl ass BookShopBean
ext ends Busi ness
i npl ements BookShop, Auditable {

The rules for determining the (unrestricted) set of bean types for a bean are defined in
Section 3.1.2, “Bean types of a managed bean”, Section 3.2.2, “Bean types of a session bean”,
Section 3.3.1, “Bean types of a producer method”, Section 3.4.1, “Bean types of a producer field”
and Section 3.7.2, “Bean types of a resource”.

All beans have the bean type j ava. | ang. Obj ect .

18

Legal bean types

The bean types of a bean are used by the rules of typesafe resolution defined in Section 5.2,
“Typesafe resolution”.

2.2.1. Legal bean types

Almost any Java type may be a bean type of a bean:

« A bean type may be an interface, a concrete class or an abstract class, and may be declared
final or have final methods.

A bean type may be a parameterized type with actual type parameters and type variables.

« A bean type may be an array type. Two array types are considered identical only if the element
type is identical.

A bean type may be a primitive type. Primitive types are considered to be identical to their
corresponding wrapper types in j ava. | ang.

« A bean type may be a raw type.

However, some Java types are not legal bean types :

» Atype variable is not a legal bean type.
« A parameterized type that contains a wildcard type parameter is not a legal bean type.
< An array type whose component type is not a legal bean type.

Note that certain additional restrictions are specified in Section 3.15, “Unproxyable bean types”
for beans with a normal scope, as defined in Section 6.3, “Normal scopes and pseudo-scopes”.

2.2.2. Restricting the bean types of a bean

The bean types of a bean may be restricted by annotating the bean class or producer method or
field with the annotation @ avax. ent erpri se. i nj ect. Typed.

@yped(Shop. cl ass)
public class BookShop
ext ends Busi ness
i mpl ement s Shop<Book> {

When a @yped annotation is explicitly specified, only the types whose classes are explicitly listed
using the val ue member, together with j ava. | ang. Obj ect , are bean types of the bean.

In the example, the bean has a two bean types: Shop<Book> and Obj ect .

19

Chapter 2. Concepts

If a bean class or producer method or field specifies a @yped annotation, and the val ue member
specifies a class which does not correspond to a type in the unrestricted set of bean types of a
bean, the container automatically detects the problem and treats it as a definition error.

2.2.3. Typecasting between bean types

A client of a bean may typecast its contextual reference to a bean to any bean type of the bean
which is a Java interface. However, the client may not in general typecast its contextual reference
to an arbitrary concrete bean type of the bean. For example, if our managed bean was injected
to the following field:

@ nj ect Busi ness bi z;

Then the following typecast is legal:

Shop<Book> bookShop = (Shop<Book>) biz

However, the following typecast is not legal and might result in an exception at runtime:

BookShop bookShop = (BookShop) bi z;

2.3. Qualifiers

For a given bean type, there may be multiple beans which implement the type. For example, an
application may have two implementations of the interface Paynment Pr ocessor :

cl ass Synchr onousPaynent Processor
i npl ements Paynent Processor {

cl ass AsynchronousPaynent Processor
i mpl enent's Paynent Processor {

A client that needs a Paynent Processor that processes payments synchronously needs some
way to distinguish between the two different implementations. One approach would be for the
client to explicitly specify the class that implements the Paynent Processor interface. However,

20

Qualifiers

this approach creates a hard dependence between client and implementation - exactly what use
of the interface was designed to avoid!

A qualifier type represents some client-visible semantic associated with a type that is satisfied by
some implementations of the type (and not by others). For example, we could introduce qualifier
types representing synchronicity and asynchronicity. In Java code, qualifier types are represented
by annotations.

@ynchr onous
cl ass SynchronousPaynent Processor
i mpl ements Paynent Processor {

@\synchronous
cl ass AsynchronousPaynent Processor
i mpl ement s Paynent Processor {

Finally, qualifier types are applied to injection points to distinguish which implementation is
required by the client. For example, when the container encounters the following injected field, an
instance of Synchr onousPayment Processor will be injected:

@ nj ect @ynchronous Paynent Processor payment Processor;

But in this case, an instance of Asynchr onousPaynent Pr ocessor will be injected:

@ nj ect @\synchronous Paymnent Processor paynent Processor;

The container inspects the qualifier annotations and type of the injected attribute to determine the
bean instance to be injected, according to the rules of typesafe resolution defined in Section 5.2,
“Typesafe resolution”.

An injection point may even specify multiple qualifiers.

Qualifier types are also used as event selectors by event consumers, as defined in Chapter 10,
Events, and to bind decorators to beans, as specified in Chapter 8, Decorators.

21

Chapter 2. Concepts

2.3.1. Built-in qualifier types

Three standard qualifier types are defined in the package j avax. ent er pri se. i nj ect . In addition,
the built-in qualifier type @aned is defined by the package j avax. i nj ect .

Every bean has the built-in qualifier @ny, even if it does not explicitly declare this qualifier, except
for the special @ew qualified beans defined in Section 3.14, “@lew qualified beans”.

If a bean does not explicitly declare a qualifier other than @aned, the bean has exactly one
additional qualifier, of type @ef aul t . This is called the default qualifier.

The following declarations are equivalent:

@ef aul t
public class Order { ... }
public class Order { ... }

Both declarations result in a bean with two qualifiers: @\ny and @ef aul t .

The following declaration results in a bean with three qualifiers: @ny, @efault and
@Naned("ord").

@Naned("ord")
public class Order { ... }

The default qualifier is also assumed for any injection point that does not explicitly declare a
qualifier, as defined in Section 3.12, “The default qualifier at injection points”. The following
declarations, in which the use of the @ nj ect annotation identifies the constructor parameter as
an injection point, are equivalent:

public class Oder {
@ nj ect
public Oder(@efault OrderProcessor processor) { ... }

public class Oder {
@ nj ect
public O der(OrderProcessor processor) { ... }

22

Defining new qualifier types

2.3.2. Defining new qualifier types

A qualifier type is a Java annotation defined as @ret ent i on(RUNTI ME) . Typically a qualifier type
is defined as @ar get ({ METHOD, FI ELD, PARAMETER, TYPE}).

A qualifier type may be declared by specifying the @ avax. i nj ect. Qual i fi er meta-annotation.

@ualifier

@Ret ent i on(RUNTI ME)

@rar get ({ METHOD, FI ELD, PARAMETER, TYPE})
public @nterface Synchronous {}

@ualifier

@Ret ent i on(RUNTI ME)

@rar get ({ METHOD, FI ELD, PARAMETER, TYPE})
public @nterface Asynchronous {}

A qualifier type may define annotation members.

@ualifier
@Ret ent i on(RUNTI MVE)
@rar get ({ METHOD, FIELD, PARAMETER, TYPE})
public @nterface PayBy {
Paynent Met hod val ue();

2.3.3. Declaring the qualifiers of a bean
The qualifiers of a bean are declared by annotating the bean class or producer method or field

with the qualifier types.

@.DAP
cl ass LdapAut henti cat or
i mpl enents Aut henti cator {

public class Shop {

@°r oduces @A |
public List<Product> getAllProducts() { ... }

23

Chapter 2. Concepts

@r oduces @N shLi st
public List<Product> getWshList() { ... }

Any bean may declare multiple qualifier types.

@ynchronous @rel i abl e
cl ass SynchronousRel i abl ePaynent Processor
i npl ements Paynent Processor {

2.3.4. Specifying qualifiers of an injected field

Qualifier types may be applied to injected fields (see Section 3.10, “Injected fields”) to determine
the bean that is injected, according to the rules of typesafe resolution defined in Section 5.2,
“Typesafe resolution”.

@ nject @QDAP Aut henticator authenticator;

A bean may only be injected to an injection point if it has all the qualifiers of the injection point.

@ nj ect @ynchronous @el i abl e Paynment Processor paynment Processor;

@nject @I List<Product> catal og;

@ nject @VshList List<Product> w shLi st;

2.3.5. Specifying qualifiers of a method or constructor
parameter

Qualifier types may be applied to parameters of producer methods, initializer methods, disposer
methods, observer methods or bean constructors (see Chapter 3, Programming model) to
determine the bean instance that is passed when the method is called by the container. The
container uses the rules of typesafe resolution defined in Section 5.2, “Typesafe resolution” to
determine values for these parameters.

24

Scopes

For example, when the container encounters the following producer method, an instance
of SynchronousPaynent Processor will be passed to the first parameter and an instance of
Asynchr onousPaynent Processor will be passed to the second parameter:

@°r oduces
Paynment Processor get Paynent Processor (@ynchronous Paynent Processor sync,
@\synchronous Paynent Processor async) {
return i sSynchronous() ? sync : async;

2.4. Scopes

Java EE components such as servlets, EJBs and JavaBeans do not have a well-defined scope.
These components are either:
* singletons, such as EJB singleton session beans, whose state is shared between all clients,

« stateless objects, such as servlets and stateless session beans, which do not contain client-
visible state, or

« objects that must be explicitly created and destroyed by their client, such as JavaBeans and
stateful session beans, whose state is shared by explicit reference passing between clients.

Scoped objects, by contrast, exist in a well-defined lifecycle context:

« they may be automatically created when needed and then automatically destroyed when the
context in which they were created ends, and

« their state is automatically shared by clients that execute in the same context.

All beans have a scope. The scope of a bean determines the lifecycle of its instances, and which
instances of the bean are visible to instances of other beans, as defined in Chapter 6, Scopes and
contexts. A scope type is represented by an annotation type.

For example, an object that represents the current user is represented by a session scoped object:
@r oduces @pessi onScoped User getCurrentUser() { ... }
An object that represents an order is represented by a conversation scoped object:

@Conver sat i onScoped
public class Order { ... }

25

Chapter 2. Concepts

A list that contains the results of a search screen might be represented by a request scoped object:

@r oduces @Request Scoped @Naned("orders")
Li st<Order> get Order SearchResults() { ... }

The set of scope types is extensible.

2.4.1. Built-in scope types

There are five standard scope types defined by this specification, all defined in the package

javax. enterprise. context.

« The container must provide an implementation of the @RequestScoped, @ApplicationScoped
and @SessionScoped annotations defined in Section 6.7, “Context management for built-in
scopes” representing the standard scopes defined by the Java Servlets specification. Note that
these standard scopes can be extended by third-party extensions as defined in Section 6.2,
“The Cont ext interface”

e« The @ConversationScoped annotation represents the conversation scope defined in
Section 6.7.4, “Conversation context lifecycle”.

« Finally, there is a @ependent pseudo-scope for dependent objects, as defined in Section 6.4,
“Dependent pseudo-scope”.

If an interceptor or decorator has any scope other than @ependent , non-portable behavior results.

2.4.2. Defining new scope types

A scope type is a Java annotation defined as @ret enti on(RUNTI ME) . Typically a scope type
is defined as @rarget ({TYPE, METHOD, FIELD}). All scope types must also specify the
@ avax. i nj ect. Scope or @ avax. ent er pri se. cont ext. Nor mal Scope meta-annotation.

A scope type must not have any attributes. If a scope type has attributes non-portable behavior
results.

For example, the following annotation declares a "business process scope™:

@nherited

@Nor mal Scope

@arget ({ TYPE, METHOD, FI ELD})

@Ret ent i on(RUNTI ME)

public @nterface BusinessProcessScoped {}

Custom scopes are normally defined by portable extensions, which must also provide a context
object, as defined in Section 6.2, “The Cont ext interface”, that implements the custom scope.

26

Declaring the bean scope

2.4.3. Declaring the bean scope

The scope of a bean is defined by annotating the bean class or producer method or field with a
scope type.

A bean class or producer method or field may specify at most one scope type annotation. If a
bean class or producer method or field specifies multiple scope type annotations, the container
automatically detects the problem and treats it as a definition error.

public class Shop {

@°r oduces @\pplicati onScoped @A |
public List<Product> getAllProducts() { ... }

@Produces @Bessi onScoped @V shLi st
public List<Product> getWshList() { }

Likewise, a bean with the custom business process scope may be declared by annotating it with
the @usi nessProcessScoped annotation:

@usi nessProcessScoped
public class Order { ... }

Alternatively, a scope type may be specified using a stereotype annotation, as defined in
Section 2.8.2, “Declaring the stereotypes for a bean”.

2.4.4. Default scope

When no scope is explicitly declared by annotating the bean class or producer method or field
the scope of a bean is defaulted.

The default scope for a bean which does not explicitly declare a scope depends upon its declared
stereotypes:

« If the bean does not declare any stereotype with a declared default scope, the default scope
for the bean is @ependent .

« If all stereotypes declared by the bean that have some declared default scope have the same
default scope, then that scope is the default scope for the bean.

« If there are two different stereotypes declared by the bean that declare different default scopes,
then there is no default scope and the bean must explicitly declare a scope. If it does not explicitly

27

Chapter 2. Concepts

declare a scope, the container automatically detects the problem and treats it as a definition
error.

If a bean explicitly declares a scope, any default scopes declared by stereotypes are ignored.

2.5. Default bean discovery mode

The default bean discovery mode for a bean archive is annot at ed, and such a bean archive is
said to be an implicit bean archive as defined in Section 12.1, “Bean archives”.

If the bean discovery mode is annot at ed then:
« bean classes that don't have bean defining annotation (as defined in Section 2.5.1, “Bean
defining annotations”) and are not bean classes of sessions beans, are not discovered, and

« producer methods (as defined in Section 3.3, “Producer methods”) that are not on a session
bean and whose bean class does not have a bean defining annotation are not discovered, and

» producer fields (as defined in Section 3.4, “Producer fields”) that are not on a session bean and
whose bean class does not have a bean defining annotation are not discovered, and

« disposer methods (as defined in Section 3.5, “Disposer methods”) that are not on a session
bean and whose bean class does not have a bean defining annotation are not discovered, and

» observer methods (as defined in Section 10.4.2, “Declaring an observer method”) that are not
on a session bean and whose bean class does not have a bean defining annotation are not
discovered.

2.5.1. Bean defining annotations

A bean class may have a bean defining annotation, allowing it to be placed anywhere in an
application, as defined in Section 12.1, “Bean archives”. A bean class with a bean defining
annotation is said to be an implicit bean.

The set of bean defining annotations contains:

e @\pplicationScoped, @essionScoped, @onversationScoped and @Request Scoped
annotations,

« all other normal scope types,

e @nterceptor and @ecor at or annotations,

« all stereotype annotations (i.e. annotations annotated with @t er eot ype),

« and the @ependent scope annotation.

If one of these annotations is declared on a bean class, then the bean class is said to have a bean
defining annotation. For example, this dependent scoped bean has a bean defining annotation:

28

Bean names

@ependent
public class BookShop
ext ends Busi ness
i mpl enent's Shop<Book> {

whilst this dependent scoped bean does not have a bean defining annotation:

public class CoffeeShop
ext ends Busi ness
i mpl ements Shop<Cof f ee> {

Note that to ensure compatibility with other JSR-330 implementations, all pseudo-scope
annotations except @ependent are not bean defining annotations. However, a stereotype
annotation including a pseudo-scope annotation is a bean defining annotation.

2.6. Bean names

A bean may have a bean name. A bean with a name may be referred to by its name in Unified EL
expressions. A valid bean name is a period-separated list of valid EL identifiers.

The following strings are valid bean names:

com acne. settings

or der Manager

There is no relationship between the bean name of a session bean and the EJB name of the bean.

Subject to the restrictions defined in Section 5.3.1, “Ambiguous EL names”, multiple beans may
share the same bean name.

Bean names allow the direct use of beans in JSP or JSF pages, as defined in Section 12.5,
“Integration with Unified EL". For example, a bean with the name pr oduct s could be used like this:

<h: out put Text val ue="#{products.total}"/>

Bean names are used by the rules of EL name resolution defined in Section 5.3, “EL name
resolution”.

29

Chapter 2. Concepts

2.6.1. Declaring the bean name

To specify the name of a bean, the qualifier @ avax. i nj ect. Naned is applied to the bean class
or producer method or field. This bean is named current O der:

@Naned("current Order")
public class Order { ... }

2.6.2. Default bean names

In the following circumstances, a default name must be assigned by the container:
« A bean class or producer method or field of a bean declares a @aned annotation and no bean
name is explicitly specified by the val ue member.

« A bean declares a stereotype that declares an empty @\aned annotation, and the bean does
not explicitly specify a bean name.

If a bean class or producer method or field of a bean declares a @amed annotation and no bean
name is explicitly specified the value of the val ue member is defaulted.

The default name for a bean depends upon the kind of the bean. The rules for determining the
default name for a bean are defined in Section 3.1.5, “Default bean name for a managed bean”,
Section 3.2.5, “Default bean name for a session bean”, Section 3.3.4, “Default bean name for a
producer method” and Section 3.4.3, “Default bean name for a producer field”.

2.6.3. Beans with no name
If @darred is not declared by the bean, nor by its stereotypes, a bean has no name.
If an interceptor or decorator has a name, non-portable behavior results.

2.7. Alternatives

An alternative is a bean that must be explicitly selected if it should be available for lookup, injection
or EL resolution.

2.7.1. Declaring an alternative

An alternative may be declared by annotating the bean class or producer method or field with the
@\ t er nat i ve annotation.

@\ ternative
public class MckOrder extends Order { ... }

30

Stereotypes

Alternatively, an alternative may be declared by annotating a bean, producer method or producer
field with a stereotype that declares an @\ t er nat i ve annotation.

If an interceptor or decorator is an alternative, non-portable behavior results.

2.8. Stereotypes

In many systems, use of architectural patterns produces a set of recurring bean roles. A stereotype
allows a framework developer to identify such a role and declare some common metadata for
beans with that role in a central place.

A stereotype encapsulates any combination of:

 adefault scope, and
* a set of interceptor bindings.

A stereotype may also specify that:

- all beans with the stereotype have defaulted bean names, or that
« all beans with the stereotype are alternatives.

A bean may declare zero, one or multiple stereotypes.

2.8.1. Defining new stereotypes

A bean stereotype is a Java annotation defined as @Retention(RUNTIME). Typically a
bean stereotype is defined as @rarget ({TYPE, METHOD, FIELD}), @rarget(TYPE),
@rar get (METHOD) , @ar get (FI ELD) or @rar get ({ METHOD, FIELD}).

A stereotype may be declared by specifying the @ avax. ent er pri se. i nj ect. St er eot ype meta-
annotation.

@5t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI ME)

public @nterface Action {}

2.8.1.1. Declaring the default scope for a stereotype

The default scope of a stereotype is defined by annotating the stereotype with a scope type. A
stereotype may declare at most one scope. If a stereotype declares more than one scope, the
container automatically detects the problem and treats it as a definition error.

31

Chapter 2. Concepts

For example, the following stereotype might be used to identify action classes in a web application:

@Request Scoped

@3t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI MVE)

public @nterface Action {}

Then actions would have scope @Request Scoped unless the scope is explicitly specified by the
bean.

2.8.1.2. Specifying interceptor bindings for a stereotype

The interceptor bindings of a stereotype are defined by annotating the stereotype with the
interceptor binding types. A stereotype may declare zero, one or multiple interceptor bindings, as
defined in Section 9.1.1, “Interceptor bindings for stereotypes”.

We may specify interceptor bindings that apply to all actions:

@request Scoped

@decur e

@ransacti onal

@3t er eot ype

@rar get (TYPE)

@ret ent i on(RUNTI ME)

public @nterface Action {}

2.8.1.3. Declaring a @waned Stereotype

A stereotype may declare an empty @anmed annotation, which specifies that every bean with the
stereotype has a defaulted name when a name is not explicitly specified by the bean. A @aned
qualifier declared by a stereotype is not added to the qualifiers of a bean with the stereotype.

If a stereotype declares a non-empty @aned annotation, the container automatically detects the
problem and treats it as a definition error.

We may specify that all actions have bean names:

@request Scoped
@bdecur e

@ransacti onal
@\aned

@5t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI ME)

32

Declaring the stereotypes for a bean

public @nterface Action {}

A stereotype should not declare any qualifier annotation other than @aned. If a stereotype
declares any other qualifier annotation, non-portable behavior results.

A stereotype should not be annotated @yped. If a stereotype is annotated @yped, non-portable
behavior results.

2.8.1.4. Declaring an @ ternative Stereotype

A stereotype may declare an @\ t er nat i ve annotation, which specifies that every bean with the
stereotype is an alternative.

We may specify that all mock objects are alternatives:

@\ ternative

@3t er eot ype

@rar get (TYPE)

@ret ent i on(RUNTI ME)
public @nterface Mck {}

2.8.1.5. Stereotypes with additional stereotypes

A stereotype may declare other stereotypes.

@\udi t abl e

@\ction

@5t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI ME)

public @nterface Auditabl eAction {}

Stereotype declarations are transitive - a stereotype declared by a second stereotype is inherited
by all beans and other stereotypes that declare the second stereotype.

Stereotypes declared @rarget(TYPE) may not be applied to stereotypes declared
@ar get ({ TYPE, METHCD, FI ELD}), @ar get (METHOD) , @ ar get (FI ELD) or @ ar get ({ METHOD,
FIELD}) .

2.8.2. Declaring the stereotypes for a bean

Stereotype annotations may be applied to a bean class or producer method or field.

@\ction

33

Chapter 2. Concepts

public class LoginAction { ... }
The default scope declared by the stereotype may be overridden by the bean:

@bck @\pplicationScoped @\ction
public class MyckLogi nActi on extends Logi nAction { ... }

Multiple stereotypes may be applied to the same bean:

@ao @\ction
public class LoginAction { ... }

2.8.3. Built-in stereotypes

The built-in stereotype @ avax. enterpri se.inject. Mdel is intended for use with beans that
define the model layer of an MVC web application architecture such as JSF:

@\aned
@Request Scoped

@5t er eot ype

@rar get ({ TYPE, METHOD, FIELD})
@Ret ent i on(RUNTI ME)

public @nterface Mdel {}

In addition, the special-purpose @ nterceptor and @ecorat or stereotypes are defined in
Section 9.2, “Declaring the interceptor bindings of an interceptor” and Section 8.1.1, “Declaring
a decorator”.

2.9. Problems detected automatically by the container

When the application violates a rule defined by this specification, the container automatically
detects the problem. There are three kinds of problem:

» Definition errors - occur when a single bean definition violates the rules of this
specification. If a definition error exists, the container must throw a subclass of
javax.enterprise.inject.spi.DefinitionException.

« Deployment problems - occur when there are problems resolving dependencies, or inconsistent
specialization, in a particular deployment. If a deployment problem occurs, the container must
throw a subclass of j avax. ent er pri se. i nj ect . spi . Depl oyrment Except i on.

» Exceptions - occur at runtime

34

Problems detected automatically by the container

Definition errors are developer errors. They may be detected by tooling at development time, and
are also detected by the container at initialization time. If a definition error exists in a deployment,
initialization will be aborted by the container.

Deployment problems are detected by the container at initialization time. If a deployment problem
exists in a deployment, initialization will be aborted by the container.

The container is permitted to define a non-portable mode, for use at development time, in which
some definition errors and deployment problems do not cause application initialization to abort.

Exceptions represent problems that may not be detected until they actually occur at runtime. All
exceptions defined by this specification are unchecked exceptions. All exceptions defined by this
specification may be safely caught and handled by the application.

35

36

Chapter 3.

Programming model

The container provides built-in support for injection and contextual lifecycle management of the
following kinds of bean:

* Managed beans
* Session beans
* Producer methods and fields

* Resources (Java EE resources, persistence contexts, persistence units, remote EJBs and web
services)

All containers must support managed beans, producer methods and producer fields. Java EE and
embeddable EJB containers are required by the Java EE and EJB specifications to support EJB
session beans and the Java EE component environment. Other containers are not required to
provide support for injection or lifecycle management of session beans or resources.

A portable extension may provide other kinds of beans by implementing the interface Bean defined
in Section 11.1, “The Bean interface”.

3.1. Managed beans

A managed bean is a bean that is implemented by a Java class. This class is called the bean
class of the managed bean. The basic lifecycle and semantics of managed beans are defined by
the Managed Beans specification.

If the bean class of a managed bean is annotated with both @ nt er cept or and @ecor at or, the
container automatically detects the problem and treats it as a definition error.

If a managed bean has a non-static public field, it must have scope @ependent . If a managed
bean with a non-static public field declares any scope other than @ependent, the container
automatically detects the problem and treats it as a definition error.

If the managed bean class is a generic type, it must have scope @ependent. If a managed
bean with a parameterized bean class declares any scope other than @ependent , the container
automatically detects the problem and treats it as a definition error.

3.1.1. Which Java classes are managed beans?

A top-level Java class is a managed bean if it is defined to be a managed bean by any other Java
EE specification, or if it meets all of the following conditions:

 [tis not a non-static inner class.
 |tis a concrete class, or is annotated @ecor at or .

« It is not annotated with an EJB component-defining annotation or declared as an EJB bean
classinejb-jar.xnl.

37

Chapter 3. Programming model

It does not implement j avax. ent er pri se. i nj ect . spi . Ext ensi on.
« Itis not annotated @/et oed or in a package annotated @/et oed.
« It has an appropriate constructor - either:

« the class has a constructor with no parameters, or

« the class declares a constructor annotated @ nj ect .

All Java classes that meet these conditions are managed beans and thus no special declaration
is required to define a managed bean.

If packages annotated @/et oed are split across classpath entries, non-portable behavior results.
An application can prevent packages being split across jars by sealing the package as defined
by the Extension Mechanism Architecture [:http://download.java.net/jdk8/docs/technotes/guides/
extensions/spec.html#sealing].

3.1.2. Bean types of a managed bean

The unrestricted set of bean types for a managed bean contains the bean class, every superclass
and all interfaces it implements directly or indirectly.

Note the additional restrictions upon bean types of beans with normal scopes defined in
Section 3.15, “Unproxyable bean types”.

3.1.3. Declaring a managed bean

A managed bean with a constructor that takes no parameters does not require any special
annotations. The following classes are beans:

public class Shop { .. }

cl ass Paynent Processor | npl inplenments Paynent Processor { ... }

If the managed bean does not have a constructor that takes no parameters, it must have a
constructor annotated @ nj ect . No additional special annotations are required.

A bean class may specify a scope, bean name, stereotypes and/or qualifiers:

@onver sati onScoped @ef aul t
public class ShoppingCart { ... }

A managed bean may extend another managed bean:

38

:http://download.java.net/jdk8/docs/technotes/guides/extensions/spec.html#sealing
:http://download.java.net/jdk8/docs/technotes/guides/extensions/spec.html#sealing
:http://download.java.net/jdk8/docs/technotes/guides/extensions/spec.html#sealing

Specializing a managed bean

@\anmed("1 ogi nAction")

public class LoginAction { ... }

@bck

@Nanmed("| ogi nAction")

public class MyckLogi nAction extends Logi nAction { ... }

The second bean is a "mock object" that overrides the implementation of Logi nActi on when
running in an embedded EJB Lite based integration testing environment.

3.1.4. Specializing a managed bean

If a bean class of a managed bean X is annotated @speci al i zes, then the bean class of X must
directly extend the bean class of another managed bean Y. Then X directly specializes Y, as
defined in Section 4.3, “Specialization”.

If the bean class of X does not directly extend the bean class of another managed bean, the
container automatically detects the problem and treats it as a definition error.

For example, MockLogi nAct i on directly specializes Logi nAct i on:

public class LoginAction { ... }

@bck @peci alizes
public class MckLogi nActi on extends Logi nAction { ... }

3.1.5. Default bean name for a managed bean

The default name for a managed bean is the unqualified class name of the bean class, after
converting the first character to lower case.

For example, if the bean class is named Pr oduct Li st , the default bean name is pr oduct Li st .

3.2. Session beans

A session bean is a bean that is implemented by a session bean with an EJB 3.x client view
that is not annotated with @/et oed or in a package annotated @/et oed. The basic lifecycle and
semantics of EJB session beans are defined by the EJB specification.

A stateless session bean must belong to the @ependent pseudo-scope. A singleton session bean
must belong to either the @ppl i cati onScoped scope or to the @ependent pseudo-scope. If

39

Chapter 3. Programming model

a session bean specifies an illegal scope, the container automatically detects the problem and
treats it as a definition error. A stateful session bean may have any scope.

When a contextual instance of a session bean is obtained via the dependency injection service,
the behavior of Sessi onCont ext . get | nvokedBusi nessl nterface() is specific to the container
implementation. Portable applications should not rely upon the value returned by this method.

If the bean class of a session bean is annotated @ nt er cept or or @ecor at or, the container
automatically detects the problem and treats it as a definition error.

If the session bean class is a generic type, it must have scope @ependent . If a session bean with a
parameterized bean class declares any scope other than @ependent , the container automatically
detects the problem and treats it as a definition error.

If packages annotated @/et oed are split across classpath entries, non-portable behavior results.
An application can prevent packages being split across jars by sealing the package as defined
by the Extension Mechanism Architecture [:http://download.java.net/jdk8/docs/technotes/guides/
extensions/spec.html#sealing].

3.2.1. EJB remove methods of session beans

If a session bean is a stateful session bean:

* If the scope is @ependent , the application may call any EJB remove method of a contextual
instance of the session bean.

« Otherwise, the application may not directly call any EJB remove method of any contextual
instance of the session bean.

The session bean is not required to have an EJB remove method in order for the container to
destroy it.

If the application directly calls an EJB remove method of a contextual instance of a session
bean that is a stateful session bean and declares any scope other than @ependent, an
Unsuppor t edOper at i onExcept i on is thrown.

If the application directly calls an EJB remove method of a contextual instance of a session bean
that is a stateful session bean and has scope @ependent then no parameters are passed to the
method by the container. Furthermore, the container ignores the instance instead of destroying it
when Cont ext ual . dest roy() is called, as defined in Section 7.3.2, “Lifecycle of stateful session
beans”.

3.2.2. Bean types of a session bean

The unrestricted set of bean types for a session bean contains all local interfaces of the bean and
their superinterfaces. If the session bean has a no-interface view, the unrestricted set of bean

40

:http://download.java.net/jdk8/docs/technotes/guides/extensions/spec.html#sealing
:http://download.java.net/jdk8/docs/technotes/guides/extensions/spec.html#sealing
:http://download.java.net/jdk8/docs/technotes/guides/extensions/spec.html#sealing

Declaring a session bean

types contains the bean class and all superclasses. In addition, j ava. | ang. Obj ect is a bean type
of every session bean.

Remote interfaces are not included in the set of bean types.

3.2.3. Declaring a session bean

A session bean does not require any special annotations apart from the component-defining
annotation (or XML declaration) required by the EJB specification. The following EJBs are beans:

@i ngl et on
class Shop { .. }

@t at el ess
cl ass Payment Processor | npl inplenments Paynent Processor { ... }

A bean class may also specify a scope, bean name, stereotypes and/or qualifiers:

@onver sati onScoped @bt ateful @efault @bdel
public class ShoppingCart { ... }

A session bean class may extend another bean class:

@t at el ess

@Named("l ogi nAction")

public class Logi nActionlnpl inplenents LoginAction { ... }

@t at el ess

@mbck

@Nanmed("| ogi nAction")

public class MckLogi nActionl npl extends Logi nActionlmpl { ... }

3.2.4. Specializing a session bean

If a bean class of a session bean X is annotated @peci al i zes, then the bean class of X must
directly extend the bean class of another session bean Y. Then X directly specializes Y, as defined
in Section 4.3, “Specialization”.

If the bean class of X does not directly extend the bean class of another session bean, the
container automatically detects the problem and treats it as a definition error.

41

Chapter 3. Programming model

For example, MbckLogi nAct i onBean directly specializes Logi nAct i onBean:

@t at el ess
public class Logi nActionBean inplenents LoginAction { ... }

@5t at el ess @wbck @peci al i zes
public class MckLogi nActi onBean extends Logi nActi onBean inplenments Logi nAction {

3.2.5. Default bean name for a session bean

The default name for a session bean is the unqualified class name of the session bean class, after
converting the first character to lower case.

For example, if the bean class is named Pr oduct Li st , the default bean name is pr oduct Li st .

3.3. Producer methods

A producer method acts as a source of objects to be injected, where:

« the objects to be injected are not required to be instances of beans, or
« the concrete type of the objects to be injected may vary at runtime, or
« the objects require some custom initialization that is not performed by the bean constructor.

A producer method must be a default-access, public, protected or private, non-abstract method
of a managed bean class or session bean class. A producer method may be either static or non-
static. If the bean is a session bean, the producer method must be either a business method of
the EJB or a static method of the bean class.

If a producer method sometimes returns a null value, then the producer method must have
scope @ependent. If a producer method returns a null value at runtime, and the producer
method declares any other scope, an 1| | egal Product Except i on is thrown by the container. This
restriction allows the container to use a client proxy, as defined in Section 5.4, “Client proxies”.

If the producer method return type is a parameterized type, it must specify an actual type
parameter or type variable for each type parameter.

If a producer method return type contains a wildcard type parameter or is an array type whose
component type contains a wildcard type parameter, the container automatically detects the
problem and treats it as a definition error.

If the producer method return type is a parameterized type with a type variable, it must have scope
@ependent . If a producer method with a parameterized return type with a type variable declares
any scope other than @ependent, the container automatically detects the problem and treats it
as a definition error.

42

Bean types of a producer method

If a producer method return type is a type variable or an array type whose component type is a
type variable the container automatically detects the problem and treats it as a definition error.

The application may call producer methods directly. However, if the application calls a producer
method directly, no parameters will be passed to the producer method by the container; the
returned object is not bound to any context; and its lifecycle is not managed by the container.

A bean may declare multiple producer methods.

3.3.1. Bean types of a producer method

The bean types of a producer method depend upon the method return type:

« If the return type is an interface, the unrestricted set of bean types contains the return type, all
interfaces it extends directly or indirectly and j ava. | ang. Obj ect .

« If a return type is primitive or is a Java array type, the unrestricted set of bean types contains
exactly two types: the method return type and j ava. | ang. Qbj ect.

« If the return type is a class, the unrestricted set of bean types contains the return type, every
superclass and all interfaces it implements directly or indirectly.

Note the additional restrictions upon bean types of beans with normal scopes defined in
Section 3.15, “Unproxyable bean types”.

3.3.2. Declaring a producer method

A producer method may be declared by annotating a method with the
@ avax. enter pri se. i nj ect. Produces annotation.

public class Shop {
@r oduces Paynent Processor get Paynment Processor() { ... }
@roduces List<Product> getProducts() { ... }

A producer method may also specify scope, bean name, stereotypes and/or qualifiers.

public class Shop {
@r oduces @\pplicationScoped @atal og @amed("catal og")
Li st <Product > get Products() { ... }

If a producer method is annotated @ nj ect, has a parameter annotated @i sposes, or has a
parameter annotated @bser ves, the container automatically detects the problem and treats it as
a definition error.

43

Chapter 3. Programming model

If a non-static method of a session bean class is annotated @r oduces, and the method is not a
business method of the session bean, the container automatically detects the problem and treats
it as a definition error.

Interceptors and decorators may not declare producer methods. If an interceptor or decorator has
a method annotated @r oduces, the container automatically detects the problem and treats it as
a definition error.

A producer method may have any number of parameters. All producer method parameters are
injection points.

public class OrderFactory {

@°r oduces @Conversati onScoped

public Order createCurrentOrder(Shop shop, @bel ected Product product) {
Order order = new Order(product, shop);
return order;

3.3.3. Specializing a producer method

If a producer method X is annotated @peci al i zes, then it must be non-static and directly
override another producer method Y. Then X directly specializes Y, as defined in Section 4.3,
“Specialization”.

If the method is static or does not directly override another producer method, the container
automatically detects the problem and treats it as a definition error.

@mbck
public class MbckShop extends Shop {

@verride @pecializes

@r oduces

Paynent Processor get Paynment Processor () {
return new MockPaynent Processor () ;

@verride @pecializes

@°r oduces

Li st <Product > get Products() {
return PRODUCTS;

44

Default bean name for a producer method

3.3.4. Default bean name for a producer method

The default name for a producer method is the method name, unless the method follows the
JavaBeans property getter naming convention, in which case the default name is the JavaBeans
property name.

For example, this producer method is named pr oduct s:

@°r oduces @Naned
public List<Product> getProducts() { ... }

This producer method is named paynent Processor :

@°r oduces @Naned
publ i c Paynment Processor payment Processor() { ... }

3.4. Producer fields

A producer field is a slightly simpler alternative to a producer method.

A producer field must be a default-access, public, protected or private, field of a managed bean
class or session bean class. A producer field may be either static or non-static. If the bean is a
session bean, the producer field must be a static field of the bean class.

If a producer field sometimes contains a null value when accessed, then the producer field must
have scope @ependent . If a producer field contains a null value at runtime, and the producer
field declares any other scope, an | | | egal Product Except i on is thrown by the container. This
restriction allows the container to use a client proxy, as defined in Section 5.4, “Client proxies”.

If the producer field type is a parameterized type, it must specify an actual type parameter or type
variable for each type parameter.

If a producer field type contains a wildcard type parameter or is an array type whose component
type contains a wildcard parameter, the container automatically detects the problem and treats
it as a definition error.

If the producer field type is a parameterized type with a type variable, it must have scope
@ependent . If a producer field with a parameterized type with a type variable declares any scope
other than @ependent , the container automatically detects the problem and treats it as a definition
error.

45

Chapter 3. Programming model

If a producer field type is a type variable or is an array type whose component type is a type
variable the container automatically detects the problem and treats it as a definition error.

The application may access producer fields directly. However, if the application accesses a
producer field directly, the returned object is not bound to any context; and its lifecycle is not
managed by the container.

A bean may declare multiple producer fields.

3.4.1. Bean types of a producer field

The bean types of a producer field depend upon the field type:

« If the field type is an interface, the unrestricted set of bean types contains the field type, all
interfaces it extends directly or indirectly and j ava. | ang. Obj ect .

« If a field type is primitive or is a Java array type, the unrestricted set of bean types contains
exactly two types: the field type and j ava. | ang. Obj ect .

« If the field type is a class, the unrestricted set of bean types contains the field type, every
superclass and all interfaces it implements directly or indirectly.

Note the additional restrictions upon bean types of beans with normal scopes defined in
Section 3.15, “Unproxyable bean types”.

3.4.2. Declaring a producer field

A producer field may be declared by annotating a field with the
@ avax. enterprise.inject.Produces annotation.

public class Shop {
@°r oduces Paynent Processor paynent Processor =;
@°r oduces Li st<Product> products =;

A producer field may also specify scope, bean name, stereotypes and/or qualifiers.

public class Shop {
@Produces @\pplicati onScoped @ratal og @Naned("cat al og")
Li st <Product > products =;

If a producer field is annotated @ nj ect, the container automatically detects the problem and
treats it as a definition error.

46

Default bean name for a producer field

If a non-static field of a session bean class is annotated @r oduces, the container automatically
detects the problem and treats it as a definition error.

Interceptors and decorators may not declare producer fields. If an interceptor or decorator has
a field annotated @r oduces, the container automatically detects the problem and treats it as a
definition error.

3.4.3. Default bean name for a producer field

The default name for a producer field is the field name.

For example, this producer field is named pr oduct s:

@°r oduces @Naned
public List<Product> products = ...;

3.5. Disposer methods

A disposer method allows the application to perform customized cleanup of an object returned by
a producer method or producer field.

A disposer method must be a default-access, public, protected or private, non-abstract method
of a managed bean class or session bean class. A disposer method may be either static or non-
static. If the bean is a session bean, the disposer method must be a business method of the EJB
or a static method of the bean class.

A bean may declare multiple disposer methods.

3.5.1. Disposed parameter of a disposer method

Each disposer method must have exactly one disposed parameter, of the same type as the
corresponding producer method return type or producer field type. When searching for disposer
methods for a producer method or producer field the container considers the type and qualifiers of
the disposed parameter. If a producer method or producer field declared by the same bean class
is assignable to the disposed parameter, according to the rules of typesafe resolution defined
in Section 5.2, “Typesafe resolution”, the container must call this method when destroying any
instance returned by that producer method or producer field.

A disposer method may resolve to multiple producer methods or producer fields declared by the
bean class, in which case the container must call it when destroying any instance returned by any
of these producer methods or producer fields.

3.5.2. Declaring a disposer method

A disposer method may be declared by annotating a parameter
@avax. enterprise.inject.D sposes. That parameter is the disposed parameter. Qualifiers
may be declared by annotating the disposed parameter:

47

Chapter 3. Programming model

public class User Dat abaseEntityManager {

@r oduces @Conversati onScoped @Jser Dat abase
public EntityManager create(EntityManagerFactory enf) {
return enf.createEntityManager();

public void cl ose(@i sposes @Jser Dat abase EntityManager enm) {
em cl ose();

public class Resources {

@er si st enceCont ext
@r oduces @Jser Dat abase
private EntityManager em

public void cl ose(@i sposes @Jser Dat abase EntityManager en) {
em cl ose();

If a method has more than one parameter annotated @i sposes, the container automatically
detects the problem and treats it as a definition error.

If a disposer method is annotated @roduces or @nject or has a parameter annotated
@ser ves, the container automatically detects the problem and treats it as a definition error.

If a non-static method of a session bean class has a parameter annotated @i sposes, and the
method is not a business method of the session bean, the container automatically detects the
problem and treats it as a definition error.

Interceptors and decorators may not declare disposer methods. If an interceptor or decorator has
a method annotated @i sposes, the container automatically detects the problem and treats it as
a definition error.

In addition to the disposed parameter, a disposer method may declare additional parameters,
which may also specify qualifiers. These additional parameters are injection points.

public void cl ose(@i sposes @IJser Dat abase EntityManager em Logger log) { ... }

48

Disposer method resolution

3.5.3. Disposer method resolution

A disposer method is bound to a producer method or producer field if:

 the producer method or producer field is declared by the same bean class as the disposer
method, and

« the producer method or producer field is assignable to the disposed parameter, according to the
rules of typesafe resolution defined in Section 5.2, “Typesafe resolution” (using Section 5.2.4,
“Assignability of raw and parameterized types”).

If there are multiple disposer methods for a single producer method or producer field, the container
automatically detects the problem and treats it as a definition error.

If there is no producer method or producer field declared by the bean class that is assignable to
the disposed parameter of a disposer method, the container automatically detects the problem
and treats it as a definition error.

3.6. Java EE components

Most Java EE components support injection and interception, as defined in the Java Platform,
Enterprise Edition Specification 7, table EE.5-1, but are not considered beans (as defined by this
specification). EJBs, as defined in Section 3.2, “Session beans” are an exception.

The instance used by the container to service an invocation of a Java EE component will not
be the same instance obtained when using @ nj ect, instantiated by the container to invoke a
producer method, observer method or disposer method, or instantiated by the container to access
the value of a producer field. It is recommended that Java EE components should not define
observer methods, producer methods, producer fields or disposer methods. It is safe to annotate
Java EE components with @/et oed to prevent them being considered beans.

3.7. Resources

A resource is a bean that represents a reference to a resource, persistence context, persistence
unit, remote EJB or web service in the Java EE component environment.

By declaring a resource, we enable an object from the Java EE component environment to
be injected by specifying only its type and qualifiers at the injection point. For example, if
@ust oner Dat abase is a qualifier:

@ nj ect @cust oner Dat abase Dat asour ce custoner Dat a;

@ nj ect @ust oner Dat abase EntityManager custonerDat abaseEntityManager;

49

Chapter 3. Programming model

@ nj ect @ust oner Dat abase EntityManager Fact ory cust omer Dat abaseEnt it yManager Fact ory;

@nj ect Payment Servi ce renot ePaynent Servi ce;

The container is not required to support resources with scope other than @ependent . Portable
applications should not define resources with any scope other than @ependent .

A resource may not have a bean name.

3.7.1. Declaring a resource

A resource may be declared by specifying a Java EE component environment injection annotation
as part of a producer field declaration. The producer field may be static.

« For a Java EE resource, @esour ce must be specified.

» For a persistence context, @&er si st enceCont ext must be specified.
» For a persistence unit, @er si st enceUni t must be specified.

» For aremote EJB, @JB must be specified.

» For a web service, @ebSer vi ceRef must be specified.

The injection annotation specifies the metadata needed to obtain the resource, entity manager,
entity manager factory, remote EJB instance or web service reference from the component
environment.

@r oduces @\ébServi ceRef (I ookup="j ava: app/ servi ce/ Paynent Ser vi ce")
Paynent Servi ce paymnent Servi ce;

@roduces @JB(ej bLink="../their.jar#Paynment Service")
Paynent Servi ce paynent Servi ce;

@r oduces @Resour ce(l ookup="j ava: gl obal / env/j dbc/ Cust oner Dat asour ce")
@cust oner Dat abase Dat asour ce cust oner Dat abase;

@r oduces @rersi st enceCont ext (uni t Name=" Cust oner Dat abase")
@Cust oner Dat abase EntityManager customner Dat abasePer si st enceCont ext ;

50

Bean types of a resource

@r oduces @rersi stenceUnit (unitName="Cust oner Dat abase")
@cust oner Dat abase EntityManager Fact ory cust onmer Dat abasePer si st enceUni t;

The bean type and qualifiers of the resource are determined by the producer field declaration.

If the producer field declaration specifies a bean name, the container automatically detects the
problem and treats it as a definition error.

If the matching object in the Java EE component environment is not of the same type as the
producer field declaration, the container automatically detects the problem and treats it as a
definition error.

3.7.2. Bean types of aresource

The unrestricted set of bean types of a resource is determined by the declared type of the producer
field, as specified by Section 3.4.1, “Bean types of a producer field”.

3.8. Additional built-in beans

A Java EE or embeddable EJB container must provide the following built-in beans, all of which
have qualifier @ef aul t :

« abeanwith beantypej avax. transacti on. User Tr ansact i on, allowing injection of a reference
to the JTA User Tr ansact i on, and

e a bean with bean type javax.security. Principal, allowing injection of a Princi pal
representing the current caller identity.

A servlet container must provide the following built-in beans, all of which have qualifier @ef aul t :

e a bean with bean type j avax.servlet.http. H t pServl et Request, allowing injection of a
reference to the Ht t pSer vl et Request

« a bean with bean type j avax. servl et. http. Ht t pSessi on, allowing injection of a reference
to the Ht t pSessi on,

« a bean with bean type j avax. servl et . Ser vl et Cont ext , allowing injection of a reference to
the Ser vl et Cont ext

These beans are passivation capable dependencies, as defined in Section 6.6.3, “Passivation
capable dependencies”.

If a Java EE component class has an injection point of type User Transacti on and qualifier
@ef aul t, and may not validly make use of the JTA User Tr ansact i on according to the Java EE
platform specification, the container automatically detects the problem and treats it as a definition
error.

51

Chapter 3. Programming model

3.9. Bean constructors

When the container instantiates a bean class, it calls the bean constructor. The bean constructor
is a default-access, public, protected or private constructor of the bean class.

The application may call bean constructors directly. However, if the application directly instantiates
the bean, no parameters are passed to the constructor by the container; the returned object is not
bound to any context; no dependencies are injected by the container; and the lifecycle of the new
instance is not managed by the container.

3.9.1. Declaring a bean constructor
The bean constructor may be identified by annotating the constructor @ nj ect .
@essi onScoped
public class ShoppingCart inplenents Serializable {
private User custoner;
@ nj ect

publ i ¢ Shoppi ngCart (User customner) ({
this.custonmer = custoner;

publ i ¢ Shoppi ngCart (Shoppi ngCart original) {
this.customer = original.custoner;

Shoppi ngCart () {}

@Conver sat i onScoped
public class Oder {

private Product product;
private User custoner;

@ nj ect

public Order(@el ected Product product, User custoner) {
this. product = product;
this.custonmer = custoner;

52

Injected fields

public Order(Order original) {
this.product = original.product;
this.customer = original.custonmner;

Order () {}

If a bean class does not explicitly declare a constructor using @ nj ect , the constructor that accepts
no parameters is the bean constructor.

If a bean class has more than one constructor annotated @ nj ect, the container automatically
detects the problem and treats it as a definition error.

If a bean constructor has a parameter annotated @i sposes, or @bserves, the container
automatically detects the problem and treats it as a definition error.

A bean constructor may have any number of parameters. All parameters of a bean constructor
are injection points.

3.10. Injected fields

An injected field is a non-static, non-final field of a bean class or of any Java EE component class
supporting injection.

3.10.1. Declaring an injected field

An injected field may be declared by annotating the field @ avax. i nj ect . I nj ect .
@onver sat i onScoped

public class Oder {

@nj ect @bel ected Product product;
@ nj ect User custoner;

If an injected field is annotated @ oduces, the container automatically detects the problem and
treats it as a definition error.

3.11. Initializer methods

An initializer method is a default-access, public, protected or private, non-abstract, non-static,
non-generic method of a bean class or of any Java EE component class supporting injection. If

53

Chapter 3. Programming model

the bean is a session bean, the initializer method is not required to be a business method of the
session bean.

A bean class may declare multiple (or zero) initializer methods.
Method interceptors are never called when the container calls an initializer method.

The application may call initializer methods directly, but then no parameters will be passed to the
method by the container.

3.11.1. Declaring an initializer method

An initializer method may be declared by annotating the method @ avax. i nj ect. I nj ect.

@onver sat i onScoped
public class Oder {

private Product product;
private User custoner;

@ nj ect
voi d set Product (@el ect ed Product product) {
this. product = product;

@ nj ect
public void setCustoner(User customer) ({
this.custoner = custoner;

If a generic method of a bean is annotated @ nj ect, the container automatically detects the
problem and treats it as a definition error.

If an initializer method is annotated @r oduces, has a parameter annotated @i sposes, or has
a parameter annotated @bser ves, the container automatically detects the problem and treats it
as a definition error.

An initializer method may have any number of parameters. All initializer method parameters are
injection points.

3.12. The default qualifier at injection points

If an injection point declares no qualifier, the injection point has exactly one qualifier, the default
qualifier @ef aul t .

The following are equivalent:

54

The default qualifier at injection points

@onver sat i onScoped
public class Oder {

private Product product;
private User custoner;

@ nj ect
public void init(@el ected Product product,

thi s. product = product;
this.custoner = custoner;

@conver sat i onScoped
public class Oder {

private Product product;
private User custoner;

@ nj ect
public void init(@el ected Product product,

this. product = product;
this.custonmer = custoner;

The following definitions are equivalent:

public class Payment {
publ i ¢ Paynent (Bi gDeci mal anount) { ... }

@ nj ect Paynent (Order order) {
t hi s(order. get Anount () ;

public class Paynment {

publ i ¢ Payment (Bi gDeci mal anount) { ... }

User custoner) {

@ef ault User customer) {

55

Chapter 3. Programming model

@nj ect Paynent (@efault O der order) {
t hi s(order. get Anount () ;

Finally, the following are equivalent:

@nject Order order;

@nject @efault O der order;

3.13. The qualifier eured at injection points

The use of @anmed as an injection point qualifier is not recommended, except in the case of
integration with legacy code that uses string-based names to identify beans.

If an injected field declares a @anmed annotation that does not specify the val ue member,
the name of the field is assumed. For example, the following field has the qualifier
@\aned(" paynment Servi ce"):

@nj ect @amed Paynent Servi ce payment Servi ce;

If any other injection point declares a @aned annotation that does not specify the val ue member,
the container automatically detects the problem and treats it as a definition error.

3.14. eewqualified beans

The @New qualifier was deprecated in CDI 1.1. CDI applications are encouraged to inject
@Dependent scoped beans instead.

For each managed bean, and for each session bean, a second bean exists which:

* has the same bean class,

 has the same bean types,

 has the same bean constructor, initializer methods and injected fields, and
 has the same interceptor bindings.

However, this second bean:

56

Unproxyable bean types

* has scope @ependent,

* has exactly one qualifier: @ avax. enterprise.inject.New X class) where X is the bean
class,

* has no bean name,

* has no stereotypes,

» has no observer methods, producer methods or fields or disposer methods, and
* is not an alternative, and

 isenabled, in the sense of Section 5.1.2, “Enabled and disabled beans”, if and only if some other
enabled bean has an injection point with the qualifier @ew(X. cl ass) where Xis the bean class.

This bean is called the @New qualified bean for the class X.

Note that this second bean exists - and may be enabled and available for injection - even if the
first bean is disabled, as defined by Section 5.1.2, “Enabled and disabled beans”, or if the bean
class is deployed outside of a bean archive, as defined in Section 12.1, “Bean archives”, and is
therefore not discovered during the bean discovery process defined in Chapter 12, Packaging
and deployment. The container discovers @ew qualified beans by inspecting injection points of
other enabled beans.

This allows the application to obtain a new instance of a bean which is not bound to the declared
scope, but has had dependency injection performed.
@r oduces @onversati onScoped

@peci al Order getSpeci al Order (@ew Order.class) Order order) {

return order;

When the qualifier @ew is specified at an injection point and no val ue member is explicitly
specified, the container defaults the val ue to the declared type of the injection point. So the
following injection point has qualifier @New(Or der . cl ass) :

@r oduces @onversati onScoped
@peci al Order get Speci al Order (@New Order order) { ... }

3.15. Unproxyable bean types

The container uses proxies to provide certain functionality. Certain legal bean types cannot be
proxied by the container:

57

Chapter 3. Programming model

* classes which don’t have a non-private constructor with no parameters,

* classes which are declared final,

« classes which have non-static, final methods with public, protected or default visibility,
e primitive types,

e and array types.

A bean type must be proxyable if an injection point resolves to a bean:

« that requires a client proxy, or
* that has an associated decorator, or
« that has a bound interceptor.

Otherwise, the container automatically detects the problem, and treats it as a deployment problem.

58

Chapter 4.

Inheritance and specialization

A bean may inherit type-level metadata and members from its superclasses.

Inheritance of type-level metadata by beans from their superclasses is controlled via use of
the Java @ nherit ed meta-annotation. Type-level metadata is never inherited from interfaces
implemented by a bean.

Member-level metadata is not inherited. However, injected fields, initializer methods, lifecycle
callback methods and non-static observer methods are inherited by beans from their superclasses.

The implementation of a bean may be extended by the implementation of a second bean. This
specification recognizes two distinct scenarios in which this situation occurs:

e The second bean specializes the first bean in certain deployment scenarios. In these
deployments, the second bean completely replaces the first, fulfilling the same role in the
system.

» The second bean is simply reusing the Java implementation, and otherwise bears no relation to
the first bean. The first bean may not even have been designed for use as a contextual object.

The two cases are quite dissimilar.

By default, Java implementation reuse is assumed. In this case, the two beans have different roles
in the system, and may both be available in a particular deployment.

The bean developer may explicitly specify that the second bean specializes the first. Then the
second bean inherits, and may not override, the qualifiers and bean name of the first bean. The
second bean is able to serve the same role in the system as the first. In a particular deployment,
only one of the two beans may fulfill that role.

4.1. Inheritance of type-level metadata

Suppose a class X is extended directly or indirectly by the bean class of a managed bean or
session bean Y.

 If X is annotated with a qualifier type, stereotype or interceptor binding type Z then Y inherits
the annotation if and only if Z declares the @ nher i t ed meta-annotation and neither Y nor any
intermediate class that is a subclass of X and a superclass of Y declares an annotation of type
Z. (This behavior is defined by the Java Language Specification.)

« If X 'is annotated with a scope type Z then Y inherits the annotation if and only if Z declares the
@ nheri t ed meta-annotation and neither Y nor any intermediate class that is a subclass of X
and a superclass of Y declares a scope type. (This behavior is different to what is defined in
the Java Language Specification.)

59

Chapter 4. Inheritance and sp...

A scope type explicitly declared by X and inherited by Y from X takes precedence over default
scopes of stereotypes declared or inherited by Y.

For annotations defined by the application or third-party extensions, it is recommended that:

 scope types should be declared @ nheri t ed,

qualifier types should not be declared @ nheri t ed,

interceptor binding types should be declared @ nheri t ed, and
 stereotypes may be declared @ nheri t ed, depending upon the semantics of the stereotype.

All scope types, qualifier types, and interceptor binding types defined by this specification adhere
to these recommendations.

The stereotypes defined by this specification are not declared @ nheri t ed.
However, in special circumstances, these recommendations may be ignored.

Note that the @Naned annotation is not declared @ nheri t ed and bean names are not inherited
unless specialization is used.

4.2. Inheritance of member-level metadata

Suppose a class X is extended directly or indirectly by the bean class of a managed bean or
session bean Y.

 If X declares an injected field x then Y inherits x. (This behavior is defined by the Common
Annotations for the Java Platform specification.)

« If X declares an initializer, non-static observer, @ost Const ruct or @r eDest r oy method x()
then Y inherits x() if and only if neither Y nor any intermediate class that is a subclass of X
and a superclass of Y overrides the method x() . (This behavior is defined by the Common
Annotations for the Java Platform specification.)

« If X declares a non-static method x() annotated with an interceptor binding type Z then Y inherits
the binding if and only if neither Y nor any intermediate class that is a subclass of X and a
superclass of Y overrides the method x() . (This behavior is defined by the Common Annotations
for the Java Platform specification.)

« If X declares a non-static producer or disposer method x() then Y does not inherit this method.
(This behavior is different to what is defined in the Common Annotations for the Java Platform
specification.)

 If X declares a non-static producer field x then Y does not inherit this field. (This behavior is
different to what is defined in the Common Annotations for the Java Platform specification.)

If X is a generic type, and an injection point or observer method declared by X is inherited by Y,
and the declared type of the injection point or event parameter contains type variables declared

60

Specialization

by X, the type of the injection point or event parameter inherited in Y is the declared type, after
substitution of actual type arguments declared by Y or any intermediate class that is a subclass
of X and a superclass of Y.

For example, the bean Daod i ent has an injection point of type Dao<T>.

public class Daodient<T> {

@ nj ect Dao<T> dao;

This injection point is inherited by User Daod i ent, but the type of the inherited injection point is
Dao<User >.

public class UserDaod i ent
extends DaoCient<User> { ... }

4.3. Specialization

If two beans both support a certain bean type, and share at least one qualifier, then they are both
eligible for injection to any injection point with that declared type and qualifier.

Consider the following beans:

@ef aul t @Asynchr onous
public class AsynchronousService inplenments Service {

@\ ternative
public class MdckAsynchronousServi ce extends AsynchronousService {

Suppose that the MockAsynchr onousSer vi ce alternative is selected, as defined in Section 5.1,
“Modularity”:

@\ ternative @riority(APPLI CATI ON+100)
public class MbckAsynchronousServi ce extends AsynchronousService {

61

Chapter 4. Inheritance and sp...

Then, according to the rules of Section 5.2.2, “Unsatisfied and ambiguous dependencies”, the
following ambiguous dependency is resolvable, and so the attribute will receive an instance of
MockAsynchr onousSer vi ce:

@nj ect Service service;

However, the following attribute will receive an instance of Asynchr onousSer vi ce, even though
MbckAsynchr onousSer vi ce is a selected alternative, because MockAsynchr onousSer vi ce does
not have the qualifier @synchr onous:

@nj ect @synchronous Service service;

This is a useful behavior in some circumstances, however, it is not always what is intended by

the developer.

The only way one bean can completely override a second bean at all injection points is if it
implements all the bean types and declares all the qualifiers of the second bean. However, if the
second bean declares a producer method or observer method, then even this is not enough to
ensure that the second bean is never called!

To help prevent developer error, the first bean may:

« directly extend the bean class of the second bean, or

« directly override the producer method, in the case that the second bean is a producer method,
and then

explicitly declare that it specializes the second bean.

@\ ternative @pecializes
public class MbckAsynchronousServi ce extends AsynchronousService {

When an enabled bean, as defined in Section 5.1.2, “Enabled and disabled beans”, specializes
a second bean, we can be certain that the second bean is never instantiated or called by the
container. Even if the second bean defines a producer or observer method, the method will never
be called.

62

Direct and indirect specialization

4.3.1. Direct and indirect specialization

The annotation @ avax. enterpri se.inject. Speci alizes is used to indicate that one bean
directly specializes another bean, as defined in Section 3.1.4, “Specializing a managed bean”,
Section 3.2.4, “Specializing a session bean” and Section 3.3.3, “Specializing a producer method”.

Formally, a bean X is said to specialize another bean Y if either:

« X directly specializes Y, or

« abean Z exists, such that X directly specializes Z and Z specializes Y.

Then X will inherit the qualifiers and bean name of Y:

« the qualifiers of X include all qualifiers of Y, together with all qualifiers declared explicitly by
X, and

« if Y has a bean name, the bean name of X is the same as the bean name of Y.

Furthermore, X must have all the bean types of Y. If X does not have some bean type of Y, the
container automatically detects the problem and treats it as a definition error.

If Y has a bean name and X declares a bean name explicitly the container automatically detects
the problem and treats it as a definition error.

For example, the following bean would have the inherited qualifiers @efault and
@\synchronous:

@bck @peci alizes
public class MbckAsynchronousServi ce extends AsynchronousService {

If Asynchr onousSer vi ce declared a bean name:

@ef ault @\synchronous @\amed("asyncService")
public class AsynchronousService inplenments Service{

Then the bean name would also automatically be inherited by MockAsynchr onousSer vi ce.

If an interceptor or decorator is annotated @peci al i zes, non-portable behavior results.

63

64

Chapter 5.

Dependency injection, lookup and
EL

The container injects references to contextual instances to the following kinds of injection point:

* Any injected field of a bean class

* Any parameter of a bean constructor, bean initializer method, producer method or disposer
method

* Any parameter of an observer method, except for the event parameter

References to contextual instances may also be obtained by programmatic lookup or by Unified
EL expression evaluation.

In general, a bean type or bean name does not uniquely identify a bean. When resolving a bean at
an injection point, the container considers bean type, qualifiers and selected alternatives. When
resolving a name in an EL expression, the container considers the bean name and selected
alternatives. This allows bean developers to decouple type from implementation.

The container is required to support circularities in the bean dependency graph where at least
one bean participating in every circular chain of dependencies has a normal scope, as defined in
Section 6.3, “Normal scopes and pseudo-scopes”. The container is not required to support circular
chains of dependencies where every bean participating in the chain has a pseudo-scope.

5.1. Modularity

Beans and their clients may be deployed in modules in a module architecture such as the Java
EE environment. In a module architecture, certain modules are considered bean archives. In the
Java EE module architecture, any Java EE module or library is a module. The Java EE module or
library is a bean archive if it contains a beans. xm file, as defined in Section 12.1, “Bean archives”.

A bean packaged in a certain module is available for injection, lookup and EL resolution to classes
and JSP/JSF pages packaged in some other module if and only if the bean class of the bean
is required to be accessible to the other module by the class accessibility requirements of the
module architecture. In the Java EE module architecture, a bean class is accessible in a module
if and only if it is required to be accessible according to the class loading requirements defined
by the Java EE platform specification.

Note that, in some Java EE implementations, a bean class might be accessible to some other
class even when this is not required by the Java EE platform specification. For the purposes of this
specification, a class is not considered accessible to another class unless accessibility is explicitly
required by the Java EE platform specification.

65

Chapter 5. Dependency injecti...

An alternative is not available for injection, lookup or EL resolution to classes or JSP/JSF pages
in a module unless the module is a bean archive and the alternative is explicitly selected for the
bean archive or the application.

5.1.1. Declaring selected alternatives

This specification defines two methods of selecting alternatives. From Contexts and Dependency
Injection 1.1 onwards the @°ri ori t y annotation allows an alternative to be selected for an entire
application. Contexts and Dependency Injection 1.0 allowed only for an alternative to be selected
for a bean archive.

5.1.1.1. Declaring selected alternatives for an application

An alternative may be given a priority for the application:

» by placing the @ri ori t y annotation on the bean class of a managed bean or session bean, or

» by placing the @ri ori t y annotation on the bean class that declares the producer method, field
or resource.

5.1.1.2. Declaring selected alternatives for a bean archive

An alternative may be explicitly declared using the <al t er nat i ves> element of the beans. xnm file
of the bean archive. The <al t er nat i ves> element contains a list of bean classes and stereotypes.
An alternative is selected for the bean archive if either:

« the alternative is a managed bean or session bean and the bean class of the bean is listed,

« the alternative is a producer method, field or resource, and the bean class that declares the
method or field is listed, or

e any @\ t er nati ve stereotype of the alternative is listed.

<beans xm ns="http://xmns.jcp.org/xm/ns/javaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocation="http://xmns.jcp.org/xm /ns/javaee http://
xm ns.jcp.org/ xm/ns/javaeel/ beans_1_1. xsd">
<al ternatives>
<cl ass>com acne. nyf wk. | nMenor yDat abase</ cl ass>
<st ereotype>com acne. nyf wk. Mock</ st er eot ype>
<stereotype>com acne. si te. Austral i an</ st er eot ype>
</alternatives>
</ beans>

Each child <cl ass> element must specify the name of a bean class of an alternative bean. If there
is no bean whose bean class has the specified name, or if no bean whose bean class has the
specified name is an alternative, the container automatically detects the problem and treats it as
a deployment problem.

66

Enabled and disabled beans

Each child <stereotype> element must specify the name of an @\l ternative stereotype
annotation. If there is no annotation with the specified name, or the annotation is not an
@\ ternative stereotype, the container automatically detects the problem and treats it as a
deployment problem.

If the same type is listed twice under the <al t er nati ves> element, the container automatically
detects the problem and treats it as a deployment problem.

For a custom implementation of the Bean interface defined in Section 11.1, “The Bean interface”,
the container calls i sAlternative() to determine whether the bean is an alternative, and
get BeanCl ass() and get St er eot ypes() to determine whether an alternative is selected in a
certain bean archive.

5.1.2. Enabled and disabled beans

A bean is said to be enabled if:

* it is deployed in a bean archive, and
* itis not a producer method or field of a disabled bean, and

* itis not specialized by any other enabled bean, as defined in Section 4.3, “Specialization”, and
either

* itis notan alternative, or it is a selected alternative of at least one bean archive or the application.
Otherwise, the bean is said to be disabled.

Note that Section 3.14, “@ew qualified beans” defines a special rule that determines whether a
@ew qualified bean is enabled or disabled. This rule applies as only to @ew qualified beans, as
an exception to the normal rule defined here.

5.1.3. Inconsistent specialization

Suppose an enabled bean X specializes a second bean Y. If there is another enabled bean that
specializes Y we say that inconsistent specialization exists. The container automatically detects
inconsistent specialization and treats it as a deployment problem.

5.1.4. Inter-module injection

A bean is available for injection in a certain module if:

 the bean is not an interceptor or decorator,
 the bean is enabled,

+ the bean is either not an alternative, or the module is a bean archive and the bean is a selected
alternative of the bean archive, or the bean is a selected alternative of the application, and

 the bean class is required to be accessible to classes in the module, according to the class
accessibility requirements of the module architecture.

67

Chapter 5. Dependency injecti...

For a custom implementation of the Bean interface defined in Section 11.1, “The Bean
interface”, the container calls get Beand ass() to determine the bean class of the bean and
I nj ecti onPoi nt. get Menber () and then Menber . get Decl ari ngC ass() to determine the class
that declares an injection point.

5.2. Typesafe resolution

The process of matching a bean to an injection point is called typesafe resolution. Typesafe
resolution usually occurs at application initialization time, allowing the container to warn the user
if any enabled beans have unsatisfied or unresolvable ambiguous dependencies.

5.2.1. Performing typesafe resolution

The container considers bean type and qualifiers when resolving a bean to be injected to an
injection point. The type and qualifiers of the injection point are called the required type and
required qualifiers.

A bean is assignable to a given injection point if:

e The bean has a bean type that matches the required type. For this purpose, primitive types
are considered to match their corresponding wrapper types in j ava. | ang and array types are
considered to match only if their element types are identical. Parameterized and raw types are
considered to match if they are identical or if the bean type is assignable to the required type,
as defined in Section 5.2.4, “Assignability of raw and parameterized types” or Section 8.3.1,
“Assignability of raw and parameterized types for delegate injection points”.

« The bean has all the required qualifiers. If no required qualifiers were explicitly specified, the
container assumes the required qualifier @ef aul t . A bean has a required qualifier if it has a
qualifier with (a) the same type and (b) the same annotation member value for each member
which is not annotated @ avax. ent er pri se. util. Nonbi ndi ng.

A bean is eligible for injection to a certain injection point if:

* itis available for injection in the module that contains the class that declares the injection point,
and

e it is assignable to the injection point (using Section 5.2.4, “Assignability of raw and
parameterized types”).

For a custom implementation of the Bean interface defined in Section 11.1, “The Bean interface”,
the container calls get Types() and get Qual i fi ers() to determine the bean types and qualifiers.

5.2.2. Unsatisfied and ambiguous dependencies

An unsatisfied dependency exists at an injection point when no bean is eligible for injection to the
injection point. An ambiguous dependency exists at an injection point when multiple beans are
eligible for injection to the injection point.

68

Legal injection point types

Note that an unsatisfied or ambiguous dependency cannot exist for a decorator delegate injection
point, defined in Section 8.1.2, “Decorator delegate injection points”.

When an ambiguous dependency exists, the container attempts to resolve the ambiguity. The
container eliminates all eligible beans that are not alternatives, except for producer methods and
fields of beans that are alternatives. If:

« there is exactly one bean remaining, the container will select this bean, and the ambiguous
dependency is called resolvable.

« all the beans left are alternatives with a priority, or producer methods or fields of beans that
are alternatives with a priority, then the container will determine the highest priority value, and
eliminate all beans, except for alternatives with the highest priority and producer methods and
fields of alternatives with the highest priority value. If there is exactly one bean remaining, the
container will select this bean, and the ambiguous dependency is called resolvable.

The container must validate all injection points of all enabled beans, all observer methods,
all disposer methods and all other Java EE component classes supporting injection when the
application is initialized to ensure that there are no unsatisfied or unresolvable ambiguous
dependencies. If an unsatisfied or unresolvable ambiguous dependency exists, the container
automatically detects the problem and treats it as a deployment problem.

For a custom implementation of the Bean interface defined in Section 11.1, “The Bean interface”,
the container calls get | nj ecti onPoi nt s() to determine the set of injection points.

5.2.3. Legal injection point types

Any legal bean type, as defined in Section 2.2.1, “Legal bean types” may be the required type of
an injection point. Furthermore, the required type of an injection point may contain a wildcard type
parameter. However, a type variable is not a legal injection point type.

If an injection point type is a type variable, the container automatically detects the problem and
treats it as a definition error.

5.2.4. Assignability of raw and parameterized types

A parameterized bean type is considered assignable to a raw required type if the raw types
are identical and all type parameters of the bean type are either unbounded type variables or
java. |l ang. Obj ect .

A parameterized bean type is considered assignable to a parameterized required type if they have
identical raw type and for each parameter:

« the required type parameter and the bean type parameter are actual types with identical raw
type, and, if the type is parameterized, the bean type parameter is assignable to the required
type parameter according to these rules, or

69

Chapter 5. Dependency injecti...

« the required type parameter is a wildcard, the bean type parameter is an actual type and the
actual type is assignable to the upper bound, if any, of the wildcard and assignable from the
lower bound, if any, of the wildcard, or

« the required type parameter is a wildcard, the bean type parameter is a type variable and the
upper bound of the type variable is assignable to or assignable from the upper bound, if any, of
the wildcard and assignable from the lower bound, if any, of the wildcard, or

« the required type parameter is an actual type, the bean type parameter is a type variable and
the actual type is assignable to the upper bound, if any, of the type variable, or

« the required type parameter and the bean type parameter are both type variables and the upper
bound of the required type parameter is assignable to the upper bound, if any, of the bean type
parameter.

For example, Dao is eligible for injection to any injection point of type @efault Dao<Order >,
@ef aul t Dao<User >, @ef aul t Dao<?>, @ef ault Dao<? extends Persistent>or @ef aul t
Dao<X ext ends Persi stent>where Xis a type variable.

public class Dao<T extends Persistent> { ... }

Furthermore, User Dao is eligible for injection to any injection point of type @ef aul t Dao<User >,
@ef aul t Dao<?>, @ef aul t Dao<? ext ends Per si st ent >o0r @ef aul t Dao<? ext ends User >.

public class UserDao extends Dao<User> { ... }

A raw bean type is considered assignable to a parameterized required type if the raw types are
identical and all type parameters of the required type are either unbounded type variables or
java.lang.Object.

Note that a special set of rules, defined in Section 8.3.1, “Assignability of raw and parameterized
types for delegate injection points”, apply if and only if the injection point is a decorator delegate
injection point.

5.2.5. Primitive types and null values

For the purposes of typesafe resolution and dependency injection, primitive types and their
corresponding wrapper types in the package j ava. | ang are considered identical and assignable.
If necessary, the container performs boxing or unboxing when it injects a value to a field or
parameter of primitive or wrapper type.

If an injection point of primitive type resolves to a producer method or producer field that returns
a null value at runtime, the container must inject the primitive type’'s default value as defined by
the Java Language Specification.

70

Qualifier annotations with members

5.2.6. Qualifier annotations with members

Qualifier types may have annotation members.

@ayBy(CHEQUE) cl ass ChequePaynent Processor inpl enments Paynment Processor { ... }

@PayBy(CREDI T_CARD) cl ass CreditCardPaynent Processor inplenents Paynment Processor {

Then only ChequePaynent Pr ocessor is a candidate for injection to the following attribute:

@ nj ect @ayBy(CHEQUE) Payment Processor paynent Processor;

On the other hand, only Cr edi t Car dPaynent Pr ocessor is a candidate for injection to this attribute:

@ nj ect @ayBy(CREDI T_CARD) Paynent Processor paynment Processor;

The container calls the equal s() method of the annotation member value to compare values.

An annotation member may be excluded from consideration using the @onbi ndi ng annotation.

@ualifier
@Ret ent i on(RUNTI MVE)
@rar get ({ METHOD, FI ELD, PARAMETER, TYPE})
public @nterface PayBy {
Paynent Met hod val ue() ;
@\onbi ndi ng String coment () default

Array-valued or annotation-valued members of a qualifier type should be annotated @onbi ndi ng
in a portable application. If an array-valued or annotation-valued member of a qualifier type is not
annotated @onbi ndi ng, hon-portable behavior results.

5.2.7. Multiple qualifiers

A bean class or producer method or field may declare multiple qualifiers.

@ynchronous @PayBy(CHEQUE) cl ass ChequePaynent Processor i nplenents Paynent Processor {

71

Chapter 5. Dependency injecti...

Then ChequePaynent Processor would be considered a candidate for injection into any of the
following attributes:

@ nj ect @ayBy(CHEQUE) Paynent Processor paynent Processor;

@ nj ect @ynchronous Paynent Processor paynment Processor;

@ nj ect @ynchronous @PayBy(CHEQUE) Paynent Processor paynent Processor;

A bean must declare all of the qualifiers that are specified at the injection point to be considered
a candidate for injection.

5.3. EL name resolution

The process of matching a bean to a name used in EL is called name resolution. Since there
is no typing information available in EL, the container may consider only the bean name. Name
resolution usually occurs at runtime, during EL expression evaluation.

An EL name resolves to a bean if:

 the bean has the given bean name, and

» the bean is available for injection in the war containing the JSP or JSF page with the EL
expression.

For a custom implementation of the Bean interface defined in Section 11.1, “The Bean interface”,
the container calls get Nane() to determine the bean name.

5.3.1. Ambiguous EL names

An ambiguous EL name exists in an EL expression when an EL name resolves to multiple
beans. When an ambiguous EL name exists, the container attempts to resolve the ambiguity. The
container eliminates all eligible beans that are not alternatives selected for the bean archive or
selected for the application, except for producer methods and fields of beans that are alternatives.
If:

« there is exactly one bean remaining, the container will select this bean, and the ambiguous
dependency is called resolvable.

« all the beans left are alternatives with a priority, then the container will determine the highest
priority value, and eliminate all beans, except for producer methods and fields of beans that are

72

Client proxies

alternatives with the highest priority value. If there is exactly one bean remaining, the container
will select this bean, and the ambiguous dependency is called resolvable.

All unresolvable ambiguous EL names are detected by the container when the application is
initialized. Suppose two beans are both available for injection in a certain war, and either:

» the two beans have the same bean name and the name is not resolvable, or

» the bean name of one bean is of the form x. y, where y is a valid bean name, and x is the bean
name of the other bean,

the container automatically detects the problem and treats it as a deployment problem.

5.4. Client proxies

An injected reference, or reference obtained by programmatic lookup, is usually a contextual
reference as defined by Section 6.5.3, “Contextual reference for a bean”.

A contextual reference to a bean with a normal scope, as defined in Section 6.3, “Normal scopes
and pseudo-scopes”, is not a direct reference to a contextual instance of the bean (the object
returned by Cont ext ual . creat e()). Instead, the contextual reference is a client proxy object.
A client proxy implements/extends some or all of the bean types of the bean and delegates all
method calls to the current instance (as defined in Section 6.3, “Normal scopes and pseudo-
scopes”) of the bean.

There are a number of reasons for this indirection:

« The container must guarantee that when any valid injected reference to a bean of normal scope
is invoked, the invocation is always processed by the current instance of the injected bean. In
certain scenarios, for example if a request scoped bean is injected into a session scoped bean,
or into a servlet, this rule requires an indirect reference. (Note that the @ependent pseudo-
scope is not a normal scope.)

e The container may use a client proxy when creating beans with circular dependencies.
This is only necessary when the circular dependencies are initialized via a managed bean
constructor or producer method parameter. (Beans with scope @ependent never have circular
dependencies.)

« Finally, client proxies may be passivated, even when the bean itself may not be. Therefore the
container must use a client proxy whenever a bean with normal scope is injected into a bean
with a passivating scope, as defined in Section 6.6, “Passivation and passivating scopes”. (On
the other hand, beans with scope @ependent must be serialized along with their client.)

Client proxies are never required for a bean whose scope is a pseudo-scope such as @ependent .

Client proxies may be shared between multiple injection points. For example, a particular container
might instantiate exactly one client proxy object per bean. (However, this strategy is not required
by this specification.)

73

Chapter 5. Dependency injecti...

5.4.1. Client proxy invocation

Every time a method of the bean is invoked upon a client proxy, the client proxy must:

* obtain a contextual instance of the bean, as defined in Section 6.5.2, “Contextual instance of
a bean”, and

* invoke the method upon this instance.

If the scope is not active, as specified in Section 6.5.1, “The active context object for a scope”, the
client proxy rethrows the Cont ext Not Acti veExcepti on or || egal St at eExcepti on.

The behavior of all methods declared by java.l ang. Object, except for toString(), is
undefined for a client proxy. Portable applications should not invoke any method declared by
java. | ang. Obj ect, except for t oSt ri ng(), on a client proxy.

5.5. Dependency injection

From time to time the container instantiates beans and other Java EE component classes
supporting injection. The resulting instance may or may not be a contextual instance as defined
by Section 6.5.2, “Contextual instance of a bean”.

The container is required to perform dependency injection whenever it creates one of the following
contextual objects:

» contextual instances of session beans, and
« contextual instances of managed beans.

The container is also required to perform dependency injection whenever it instantiates any of the
following non-contextual objects:

* non-contextual instances of session beans (for example, session beans obtained by the
application from JNDI or injected using @JB),

« non-contextual instances of managed beans, and
« instances of any other Java EE component class supporting injection.
A Java EE 5 container is not required to support injection for non-contextual objects.

The container interacts with instances of beans and other Java EE component classes supporting
injection by calling methods and getting and setting field values.

The object injected by the container may not be a direct reference to a contextual instance of the
bean. Instead, it is an injectable reference, as defined by Section 6.5.5, “Injectable references”.

74

Injection using the bean constructor

5.5.1. Injection using the bean constructor

When the container instantiates a managed bean or session bean with a constructor annotated
@ nj ect , the container calls this constructor, passing an injectable reference to each parameter. If
there is no constructor annotated @ nj ect , the container calls the constructor with no parameters.

5.5.2. Injection of fields and initializer methods

When the container creates a new instance of a managed bean, session bean, or of any other
Java EE component class supporting injection the container must:

* Initialize the values of all injected fields. The container sets the value of each injected field to
an injectable reference.

« Call all initializer methods, passing an injectable reference to each parameter.

The container must ensure that:

« Initializer methods declared by a class X in the type hierarchy of the bean are called after all
injected fields declared by X or by superclasses of X have been initialized, and after all Java EE
component environment resource dependencies declared by X or by superclasses of X have
been injected.

* Any @ost Const ruct callback declared by a class X in the type hierarchy of the bean is called
after all initializer methods declared by X or by superclasses of X have been called, after all
injected fields declared by X or by superclasses of X have been initialized, and after all Java EE
component environment resource dependencies declared by X or by superclasses of X have
been injected.

e Any servletinit () method is called after all initializer methods have been called, all injected
fields have been initialized and all Java EE component environment resource dependencies
have been injected.

5.5.3. Destruction of dependent objects

When the container destroys an instance of a bean or of any Java EE component class supporting
injection, the container destroys all dependent objects, as defined in Section 6.4.2, “Destruction of
objects with scope @ependent ”, after the @r eDest r oy callback completes and after the servlet
destroy() method is called.

5.5.4. Invocation of producer or disposer methods

When the container calls a producer or disposer method, the behavior depends upon whether the
method is static or non-static:

» |f the method is static, the container must invoke the method.

75

Chapter 5. Dependency injecti...

* Otherwise, if the method is non-static, the container must:

« Obtain a contextual instance of the bean which declares the method, as defined by
Section 6.5.2, “Contextual instance of a bean”.

« Invoke the method upon this instance, as a business method invocation, as defined in
Section 7.2, “Container invocations and interception”.

The container passes an injectable reference to each injected method parameter. The container
is also responsible for destroying dependent objects created during this invocation, as defined in
Section 6.4.2, “Destruction of objects with scope @ependent .

5.5.5. Access to producer field values

When the container accesses the value of a producer field, the value depends upon whether the
field is static or non-static:

If the producer field is static, the container must access the field value.
» Otherwise, if the producer field is non-static, the container must:

« Obtain an contextual instance of the bean which declares the producer field, as defined by
Section 6.5.2, “Contextual instance of a bean”.

* Access the field value of this instance.

5.5.6. Invocation of observer methods

When the container calls an observer method (defined in Section 10.4, “Observer methods”), the
behavior depends upon whether the method is static or non-static:

« [f the observer method is static, the container must invoke the method.
* Otherwise, if the observer method is non-static, the container must:

« Obtain a contextual instance of the bean which declares the observer method according to
Section 6.5.2, “Contextual instance of a bean”. If this observer method is a conditional observer
method, obtain the contextual instance that already exists, only if the scope of the bean that
declares the observer method is currently active, without creating a new contextual instance.

 Invoke the observer method on the resulting instance, if any, as a business method invocation,
as defined in Section 7.2, “Container invocations and interception”.

The container must pass the event object to the event parameter and an injectable instance
to each injected method parameter. The container is also responsible for destroying dependent
objects created during this invocation, as defined in Section 6.4.2, “Destruction of objects with
scope @ependent ”.

76

Injection point metadata

5.5.7. Injection point metadata

The interface j avax. enterprise.inject.spi.lnjectionPoint provides access to metadata
about an injection point. An instance of | nj ect i onPoi nt may represent:

* an injected field or a parameter of a bean constructor, initializer method, producer method,
disposer method or observer method, or

* an instance obtained dynamically using I nst ance. get ().

public interface InjectionPoint {
public Type get Type();

publ i c Set<Annotation> getQualifiers();
publ i c Bean<?> get Bean();

public Member get Member () ;

publi ¢ Annot ated get Annot at ed();

publi ¢ bool ean isDel egate();

public bool ean isTransient();

The get Bean() method returns the Bean object representing the bean that defines the injection
point. If the injection point does not belong to a bean, get Bean() returns a null value. If the
injection point represents a dynamically obtained instance, the get Bean() method should return
the Bean object representing the bean that defines the | nst ance injection point.

The get Type() and get Qual i fi er s() methods return the required type and required qualifiers
of the injection point. If the injection point represents a dynamically obtained instance, the
get Type() and get Qualifiers() methods should return the required type (as defined by
I nst ance. sel ect ()), and required qualifiers of the injection point including any additional
required qualifiers (as defined by | nst ance. sel ect ()).

The get Menber () method returns the Fi el d object in the case of field injection, the Met hod
object in the case of method parameter injection, or the Constructor object in the case
of constructor parameter injection. If the injection point represents a dynamically obtained
instance, the get Menber () method returns the Fi el d object representing the field that defines
the I nst ance injection point in the case of field injection, the Met hod object representing the
method that defines the | nst ance injection point in the case of method parameter injection, or
the Construct or object representing the constructor that defines the I nst ance injection point
in the case of constructor parameter injection.

The get Annot at ed() method returns an instance of
javax. enterprise.inject.spi.AnnotatedField or
javax. enterprise.inject.spi.AnnotatedParaneter, depending upon whether the
injection point is an injected field or a constructor/method parameter. If the
injection point represents a dynamically obtained instance, then the get Annot ated()

77

Chapter 5. Dependency injecti...

method returns an instance of javax.enterprise.inject.spi.AnnotatedField or
javax.enterprise.inject.spi.AnnotatedParaneter representing the I nstance injection
point, depending upon whether the injection point is an injected field or a constructor/method
parameter.

e TheisDel egat e() method returns t r ue if the injection point is a decorator delegate injection
point, and f al se otherwise. If the injection point represents a dynamically obtained instance
then i sDel egat e() returns false.

e The isTransient() method returns true if the injection point is a transient field, and
f al se otherwise. If the injection point represents a dynamically obtained instance then the
i sTransi ent () method returns t rue if the I nst ance injection point is a transient field, and
f al se otherwise.

Occasionally, a component with scope @ependent needs to access metadata relating to the
object into which it is injected. For example, the following producer method creates injectable
Logger s. The log category of a Logger depends upon the class of the object into which it is
injected:

@r oduces Logger createlogger(lnjectionPoint injectionPoint) {
return Logger.getLogger(injectionPoint.getMenber().getDeclaringdass().getNanme());

The container must provide a bean with scope @ependent, bean type | nj ecti onPoi nt and
qualifier @ef aul t , allowing dependent objects, as defined in Section 6.4.1, “Dependent objects”,
to obtain information about the injection point to which they belong. The built-in implementation
must be a passivation capable dependency, as defined in Section 6.6.3, “Passivation capable
dependencies”.

If a bean that declares any scope other than @ependent has an injection point of type
I nj ecti onPoi nt and qualifier @ef aul t, the container automatically detects the problem and
treats it as a definition error.

If a disposer method has an injection point of type I nj ecti onPoi nt and qualifier Def aul t, the
container automatically detects the problem and treats it as a definition error.

If a Java EE component class supporting injection that is not a bean has an injection point of
type I nj ecti onPoi nt and qualifier @ef aul t , the container automatically detects the problem
and treats it as a definition error.

5.5.8. Bean metadata

The interfaces Bean, I nt er cept or and Decor at or provide metadata about a bean.

The container must provide beans allowing a bean instance to obtain a Bean, | nt er cept or or
Decor at or instance containing its metadata:

78

Bean metadata

« a bean with scope @ependent, qualifier @ef aul t and type Bean which can be injected into
any bean instance

» abean with scope @ependent , qualifier @ef aul t and type I nt er cept or which can be injected
into any interceptor instance

» a bean with scope @ependent , qualifier @ef aul t and type Decor at or which can be injected
into any decorator instance

Additionally, the container must provide beans allowing interceptors and decorators to obtain
information about the beans they intercept and decorate:

« a bean with scope @ependent, qualifier @ nt er cept ed and type Bean which can be injected
into any interceptor instance, and

» abean with scope @ependent , qualifier @ecor at ed and type Bean which can be injected into
any decorator instance.

These beans are passivation capable dependencies, as defined in Section 6.6.3, “Passivation
capable dependencies”.

If an I nt er cept or instance is injected into a bean instance other than an interceptor instance,
the container automatically detects the problem and treats it as a definition error.

If a Decorat or instance is injected into a bean instance other than a decorator instance, the
container automatically detects the problem and treats it as a definition error.

If a Bean instance with qualifier @ nt er cept ed is injected into a bean instance other than an
interceptor instance, the container automatically detects the problem and treats it as a definition
error.

If a Bean instance with qualifier @ecor at ed is injected into a bean instance other than a decorator
instance, the container automatically detects the problem and treats it as a definition error.

The injection of bean metadata is restricted. If:

« the injection point is a field, an initializer method parameter or a bean constructor, with qualifier
@ef aul t , then the type parameter of the injected Bean, | nt er cept or or Decor at or must be
the same as the type declaring the injection point, or

« the injection point is a field, an initializer method parameter or a bean constructor of an
interceptor, with qualifier @ nt er cept ed, then the type parameter of the injected Bean must be
an unbounded wildcard, or

« the injection pointis a field, an initializer method parameter or a bean constructor of a decorator,
with qualifier @ecor at ed, then the type parameter of the injected Bean must be the same as
the delegate type, or

79

Chapter 5. Dependency injecti...

« the injection point is a producer method parameter then the type parameter of the injected Bean
must be the same as the producer method return type, or

« the injection point is a parameter of a disposer method then the container automatically detects
the problem and treats it as a definition error.

Otherwise, the container automatically detects the problem and treats it as a definition error.

@Nanmed("Order") public class O derProcessor {
@ nj ect Bean<Order Processor > bean;

public void get BeanNane() {
return bean. get Nane();

5.6. Programmatic lookup

In certain situations, injection is not the most convenient way to obtain a contextual reference. For
example, it may not be used when:

« the bean type or qualifiers vary dynamically at runtime, or

» depending upon the deployment, there may be no bean which satisfies the type and qualifiers, or
« we would like to iterate over all beans of a certain type.

In these situations, an instance of the j avax. enter pri se. i nj ect. | nst ance interface may be
injected:

@ nj ect | nstance<Paynent Processor > paynent Processor;

The method get () returns a contextual reference:

Paynent Processor pp = paynent Processor. get();

Any combination of qualifiers may be specified at the injection point:

@ nj ect @ayBy(CHEQUE) | nstance<Paynent Processor > chequePaynent Processor;

Or, the @ny qualifier may be used, allowing the application to specify qualifiers dynamically:

80

The | nst ance interface

@ nj ect @\ny | nstance<Paynent Processor> anyPaynent Processor;

Annot ati on qualifier = synchronously ? new SynchronousQualifier() : new AsynchronousQualifier()
Paynment Processor pp = anyPaynent Processor. sel ect(qualifier).get().process(paynent);

In this example, the returned bean has qualifier @ynchr onous or @synchr onous depending upon
the value of synchr onousl y.

Finally, the @ew qualifier may be used, allowing the application to obtain a @ew qualified bean,
as defined in Section 3.14, “@ew qualified beans”:

@ nj ect @ew ChequePaymnent Processor. cl ass) | nstance<Paynment Processor> chequePaynent Processor;
It's even possible to iterate over a set of beans:

@ nj ect @\ny | nstance<Paynent Processor> anyPaynent Processor;

for (PaynentProcessor pp: anyPaynent Processor) pp.test();

5.6.1. The instance interface
The I nst ance interface provides a method for obtaining instances of beans with a specified

combination of required type and qualifiers, and inherits the ability to iterate beans with that
combination of required type and qualifiers from j ava. | ang. I t er abl e:

public interface |Instance<T> extends Iterabl e<T> Provider<T> {

public Instance<T> sel ect (Annotation... qualifiers);
public <U extends T> Instance<U> sel ect (C ass<U> subtype, Annotation... qualifiers);
public <U extends T> Instance<U> sel ect (TypeLiteral <U> subtype, Annotation... qualifiers);

publi c bool ean isUnsati sfied();
publi ¢ bool ean i sAnbi guous();

public void destroy(T instance);

For an injected | nst ance:

« the required type is the type parameter specified at the injection point, and

81

Chapter 5. Dependency injecti...

« the required qualifiers are the qualifiers specified at the injection point.

For example, this injected I nst ance has required type Payment Processor and required qualifier
@\ny:

@ nj ect @ny | nstance<Paynent Processor> anyPaynent Processor;

The sel ect () method returns a child | nst ance for a given required type and additional required
qualifiers. If no required type is given, the required type is the same as the parent.

For example, this child I nstance has required type AsynchronousPaynent Processor and
additional required qualifier @dsynchr onous:

I nst ance<Asynchr onousPaynent Processor > async = anyPaynment Processor. sel ect (
Asynchr onousPaynent Processor. cl ass, new AsynchronousQualifier());

If an injection point of raw type | nst ance is defined, the container automatically detects the
problem and treats it as a definition error.

If two instances of the same qualifier type are passed to select(), an
Il | egal Ar gunent Except i on is thrown.

If an instance of an annotation that is not a qualifier type is passed to select(), an
I'l| egal Argument Except i on is thrown.

The get () method must:

* Identify a bean that has the required type and required qualifiers and is eligible for injection
into the class into which the parent | nst ance was injected, according to the rules of typesafe
resolution, as defined in Section 5.2.1, “Performing typesafe resolution”, resolving ambiguities
according to Section 5.2.2, “Unsatisfied and ambiguous dependencies”.

o If typesafe resolution results in an unsatisfied dependency, throw an
Unsati sfi edResol uti onException. If typesafe resolution results in an unresolvable
ambiguous dependency, throw an Anbi guousResol uti onExcepti on.

» Otherwise, obtain a contextual reference for the bean and the required type, as defined in
Section 6.5.3, “Contextual reference for a bean”.

Theiterator () method must:

« Identify the set of beans that have the required type and required qualifiers and are eligible
for injection into the class into which the parent | nst ance was injected, according to the rules
of typesafe resolution, as defined in Section 5.2.1, “Performing typesafe resolution”, resolving
ambiguities according to Section 5.2.2, “Unsatisfied and ambiguous dependencies”.

82

The built-in I nst ance

* Return an I terator, that iterates over the set of contextual references for the resulting beans
and required type, as defined in Section 6.5.3, “Contextual reference for a bean”.

The method i sUnsati sfied() returns true if there is no bean that has the required type and
qualifiers and is eligible for injection into the class into which the parent | nst ance was injected,
or f al se otherwise.

The method i sAmbi guous() returns t r ue if there is more than one bean that has the required
type and qualifiers and is eligible for injection into the class into which the parent I nst ance was
injected, or f al se otherwise.

The method dest r oy() instructs the container to destroy the instance. The bean instance passed
to destroy() should be a dependent scoped bean instance, or a client proxy for a normal scoped
bean. Applications are encouraged to always call destroy() when they no longer require an
instance obtained from I nst ance. All built-in normal scoped contexts support destroying bean
instances. An Unsupport edQper at i onExcepti on is thrown if the active context object for the
scope type of the bean does not support destroying bean instances.

5.6.2. The built-in 1 nstance

The container must provide a built-in bean with:

* I nstance<X> and Pr ovi der <X> for every legal bean type X in its set of bean types,
 every qualifier type in its set of qualifier types,

* scope @ependent,

* no bean name, and

* an implementation provided automatically by the container.

The built-in implementation must be a passivation capable dependency, as defined in
Section 6.6.3, “Passivation capable dependencies”.

5.6.3. Using AnnotationLiteral and TypelLi t eral
javax.enterprise.util.AnnotationLiteral makes it easier to specify qualifiers when calling
select():

publ i ¢ Paynent Processor get Synchr onousPaynent Processor (Paynent Met hod paynent Met hod) {

cl ass SynchronousQualifier extends AnnotationLiteral <Synchronous>
i mpl ements Synchronous {}

cl ass PayByQualifier extends AnnotationLiteral <PayBy>
i mpl ements PayBy {
publi ¢ Paynent Met hod val ue() { return paynment Met hod; }

83

Chapter 5. Dependency injecti...

return anyPayment Processor. sel ect (new SynchronousQualifier(), new PayByQualifier()).get();

javax.enterprise.util.TypeLiteral makes it easier to specify a parameterized type with
actual type parameters when calling sel ect () :

publ i ¢ Paynent Processor <Cheque> get ChequePaynent Processor () {
Paynment Processor <Cheque> pp = anyPaynent Processor
.sel ect (new TypelLiteral <Payment Processor <Cheque>>() {}).get();

84

Chapter 6.

Scopes and contexts

Associated with every scope type is a context object. The context object determines the lifecycle
and visibility of instances of all beans with that scope. In particular, the context object defines:

« When a new instance of any bean with that scope is created
« When an existing instance of any bean with that scope is destroyed
« Which injected references refer to any instance of a bean with that scope

The context implementation collaborates with the container via the Cont ext and Cont ext ual
interfaces to create and destroy contextual instances.

6.1. The contextual INterface

The interface j avax. ent er pri se. cont ext . spi . Cont ext ual defines operations to create and
destroy contextual instances of a certain type. Any implementation of Cont extual is called a
contextual type. In particular, the Bean interface defined in Section 11.1, “The Bean interface”
extends Cont ext ual , so all beans are contextual types.

public interface Contextual <T> {
public T create(Creational Context<T> creational Context);
public void destroy(T instance, Creational Context<T> creational Context);

« create() isresponsible for creating new contextual instances of the type.

« destroy() isresponsible for destroying instances of the type. In particular, it is responsible for
destroying all dependent objects of an instance.

If an exception occurs while creating an instance, the exception is rethrown by the creat e()
method. If the exception is a checked exception, it must be wrapped and rethrown as an
(unchecked) Cr eat i onExcepti on.

If an exception occurs while destroying an instance, the exception must be caught by the
dest roy() method.

If the application invokes a contextual instance after it has been destroyed, the behavior is
undefined.

The container and portable extensions may define implementations of the Cont ext ual interface
that do not extend Bean, but it is not recommended that applications directly implement
Cont ext ual .

85

Chapter 6. Scopes and contexts

6.1.1. The ceational context interface

The interface j avax. ent er pri se. cont ext . spi . Creati onal Cont ext provides operations that
are used by the Cont ext ual implementation during instance creation and destruction.

public interface Creational Context<T> {
public void push(T inconpl etel nstance);
public void rel ease();

e push() registers an incompletely initialized contextual instance the with the container. A
contextual instance is considered incompletely initialized until it is returned by the creat e()
method.

* rel ease() destroys all dependent objects, as defined in Section 6.4.1, “Dependent objects”,
of the instance which is being destroyed, by passing each dependent object to the dest r oy()
method of its Cont ext ual object.

The implementation of Cont ext ual is not required to call push(). However, for certain bean
scopes, invocation of push() between instantiation and injection helps the container minimize the
use of client proxy objects (which would otherwise be required to allow circular dependencies).

If Cont ext ual . creat e() calls push(), it must also return the instance passed to push().

Cont ext ual . create() should use the given Creati onal Cont ext when obtaining contextual
references to inject, as defined in Section 6.5.3, “Contextual reference for a bean”, in order to
ensure that any dependent objects are associated with the contextual instance that is being
created.

Cont ext ual . destroy() should call rel ease() to allow the container to destroy dependent
objects of the contextual instance.

6.2. The wntext Interface

The javax. enterprise. context.spi.Context interface provides an operation for obtaining
contextual instances with a particular scope of any contextual type. Any instance of Cont ext is
called a context object.

The context object is responsible for creating and destroying contextual instances by calling
operations of the Cont ext ual interface.

The Cont ext interface is called by the container and may be called by portable extensions. It
should not be called directly by the application.

public interface Context {
public C ass<? extends Annotation> get Scope();

86

The Cont ext interface

bool ean i sActive();
public <T> T get (Contextual <T> bean);
public <T> T get (Cont ext ual <T> bean, Creati onal Cont ext <T> creati onal Cont ext);

public interface Alterabl eContext extends Context {
public void destroy(Contextual <?> contextual);

The method get Scope() returns the scope type of the context object.

A context object may be defined for any of the built-in scopes and registered with the container
using the AfterBeanDi scovery event as described in Section 11.5.3, “Af t er BeanDi scovery
event”.

At a particular point in the execution of the program a context object may be active with respect
to the current thread. When a context object is active the i sActi ve() method returns true.
Otherwise, we say that the context object is inactive and the i sActi ve() method returns f al se.

The get () method obtains contextual instances of the contextual type represented by the given
instance of Cont ext ual . The get () method may either:

 return an existing instance of the given contextual type, or
« if no Creati onal Cont ext is given, return a null value, or

» ifa Creational Cont ext is given, create a new instance of the given contextual type by calling
Cont ext ual . creat e(), passing the given Cr eat i onal Cont ext , and return the new instance.

The get () method may not return a null value unless no Creati onal Cont ext is given, or
Cont ext ual . creat e() returns a null value.

The get () method may not create a new instance of the given contextual type unless a
Creat i onal Cont ext is given.

The destroy() method destroys an existing contextual instance, removing it from the context
instance.

The Al t er abl eCont ext interface was introduced in Contexts and Dependency Injection for Java
EE 1.1 to allow bean instances to be destroyed by the application. Extensions providing context
implementations for normal scopes should implement Al t er abl eCont ext instead of Cont ext .

If the context object is inactive, the get() and destroy() methods must throw a
Cont ext Not Acti veExcepti on.

When the container calls get() or destroy() for a context that is associated with a
passivating scope it must ensure that the given instance of Cont ext ual and the instance of
Cr eat i onal Cont ext , if given, are serializable.

87

Chapter 6. Scopes and contexts

The context object is responsible for destroying any contextual instance it creates by passing the
instance to the dest roy() method of the Cont ext ual object representing the contextual type. A
destroyed instance must not subsequently be returned by the get () method.

The context object must pass the same instance of Creational Context to
Cont ext ual . destroy() that it passed to Cont ext ual . creat e() when it created the instance.

6.3. Normal scopes and pseudo-scopes

Most scopes are normal scopes. The context object for a normal scope type is a mapping from
each contextual type with that scope to an instance of that contextual type. There may be no
more than one mapped instance per contextual type per thread. The set of all mapped instances
of contextual types with a certain scope for a certain thread is called the context for that scope
associated with that thread.

A context may be associated with one or more threads. A context with a certain scope is said
to propagate from one point in the execution of the program to another when the set of mapped
instances of contextual types with that scope is preserved.

The context associated with the current thread is called the current context for the scope. The
mapped instance of a contextual type associated with a current context is called the current
instance of the contextual type.

The get () operation of the context object for an active normal scope returns the current instance
of the given contextual type.

At certain points in the execution of the program a context may be destroyed. When a context is
destroyed, all mapped instances belonging to that context are destroyed by passing them to the
Cont ext ual . dest roy() method.

Contexts with normal scopes must obey the following rule:

Suppose beans A, B and Z all have normal scopes. Suppose A has an injection point x, and B has
an injection point y. Suppose further that both x and y resolve to bean Z according to the rules of
typesafe resolution. If a is the current instance of A, and b is the current instance of B, then both
a.x and b.y refer to the same instance of Z. This instance is the current instance of Z.

Any scope that is not a normal scope is called a pseudo-scope. The concept of a current instance
is not well-defined in the case of a pseudo-scope.

All normal scopes must be explicitly declared @or mal Scope, to indicate to the container that a
client proxy is required.

All pseudo-scopes must be explicitly declared @cope, to indicate to the container that no client
proxy is required.

All scopes defined by this specification, except for the @ependent pseudo-scope, are normal
scopes.

88

Dependent pseudo-scope

6.4. Dependent pseudo-scope

The @ependent scope type is a pseudo-scope. Beans declared with scope type @ependent
behave differently to beans with other built-in scope types.

When a bean is declared to have @ependent scope:

» No injected instance of the bean is ever shared between multiple injection points.

< Any instance of the bean injected into an object that is being created by the container is bound
to the lifecycle of the newly created object.

« When a Unified EL expression in a JSF or JSP page that refers to the bean by its bean nhame is
evaluated, at most one instance of the bean is instantiated. This instance exists to service just
a single evaluation of the EL expression. It is reused if the bean name appears multiple times
in the EL expression, but is never reused when the EL expression is evaluated again, or when
another EL expression is evaluated.

« Any instance of the bean that receives a producer method, producer field, disposer method or
observer method invocation exists to service that invocation only.

« Any instance of the bean injected into method parameters of a disposer method or observer
method exists to service the method invocation only (except for observer methods of container
lifecycle events).

Every invocation of the get () operation of the Cont ext object for the @ependent scope with a
Cr eat i onal Cont ext returns a new instance of the given bean.

Every invocation of the get () operation of the Cont ext object for the @ependent scope with no
Creat i onal Cont ext returns a null value.

The @ependent scope is always active.

6.4.1. Dependent objects

Many instances of beans with scope @ependent belong to some other bean or Java EE
component class instance and are called dependent objects.

 Instances of decorators and interceptors are dependent objects of the bean instance they
decorate.

« An instance of a bean with scope @ependent injected into a field, bean constructor or initializer
method is a dependent object of the bean or Java EE component class instance into which it
was injected.

< An instance of a bean with scope @ependent injected into a producer method is a dependent
object of the producer method bean instance that is being produced.

89

Chapter 6. Scopes and contexts

« An instance of a bean with scope @ependent obtained by direct invocation of an I nst ance is
a dependent object of the instance of I nst ance.

6.4.2. Destruction of objects with scope @sependent

Dependent objects of a contextual instance are destroyed when Contextual . destroy()
calls Creational Context.rel ease(), as defined in Section 6.1.1, “The Creati onal Cont ext
interface”.

Additionally, the container must ensure that:

all dependent objects of a non-contextual instance of a bean or other Java EE component class
are destroyed when the instance is destroyed by the container,

« all @ependent scoped contextual instances injected into method parameters of a disposer
method or an observer method are destroyed when the invocation completes,

 all @ependent scoped contextual instances injected into method or constructor parameters
that are annotated with @t ansi ent Ref er ence are destroyed when the invocation completes,

e any @ependent scoped contextual instance created to receive a producer method, producer
field, disposer method or observer method invocation is destroyed when the invocation
completes, and

« all @ependent scoped contextual instances created during evaluation of a Unified EL
expression in a JSP or JSF page are destroyed when the evaluation completes.

Finally, the container is permitted to destroy any @ependent scoped contextual instance at any
time if the instance is no longer referenced by the application (excluding weak, soft and phantom
references).

6.4.3. Dependent pseudo-scope and Unified EL

Suppose a Unified EL expression in a JSF or JSP page refers to a bean with scope @ependent
by its bean name. Each time the EL expression is evaluated:

« the bean is instantiated at most once, and
« the resulting instance is reused for every appearance of the bean name, and
« the resulting instance is destroyed when the evaluation completes.

Portable extensions that integrate with the container via Unified EL should also ensure that these
rules are enforced.

6.5. Contextual instances and contextual references

The Cont ext object is the ultimate source of the contextual instances that underly contextual
references.

90

The active context object for a scope

6.5.1. The active context object for a scope

From time to time, the container must obtain an active context object for a certain scope type. The
container must search for an active instance of Cont ext associated with the scope type.

« If no active context object exists for the scope type, the container throws a
Cont ext Not Act i veExcepti on.

 If more than one active context object exists for the given scope type, the container must throw
anlllegal StateException.

If there is exactly one active instance of Cont ext associated with the scope type, we say that the
scope is active.

6.5.2. Contextual instance of a bean

From time to time, the container must obtain a contextual instance of a bean. The container must:

* obtain the active context object for the bean scope, then

e obtain an instance of the bean by calling Context.get(), passing the Bean instance
representing the bean and an instance of Cr eat i onal Cont ext .

From time to time, the container attempts to obtain a contextual instance of a bean that already
exists, without creating a new contextual instance. The container must determine if the scope of
the bean is active and if it is:

* obtain the active context object for the bean scope, then

 attempt to obtain an existing instance of the bean by calling Cont ext . get (), passing the Bean
instance representing the bean without passing any instance of Cr eat i onal Cont ext .

If the scope is not active, or if Cont ext . get () returns a null value, there is no contextual instance
that already exists.

A contextual instance of any of the built-in kinds of bean defined in Chapter 3, Programming
model is considered an internal container construct, and it is therefore not strictly required that
a contextual instance of a built-in kind of bean directly implement the bean types of the bean.
However, in this case, the container is required to transform its internal representation to an object
that does implement the bean types expected by the application before injecting or returning a
contextual instance to the application.

For a custom implementation of the Bean interface defined in Section 11.1, “The Bean interface”,
the container calls get Scope() to determine the bean scope.

6.5.3. Contextual reference for a bean

From time to time, the container must obtain a contextual reference for a bean and a given bean
type of the bean. A contextual reference implements the given bean type and all bean types of the

91

Chapter 6. Scopes and contexts

bean which are Java interfaces. A contextual reference is not, in general, required to implement
all concrete bean types of the bean.

Contextual references must be obtained with a given Cr eat i onal Cont ext , allowing any instance
of scope @ependent that is created to be later destroyed.

e If the bean has a normal scope and the given bean type cannot be proxied by the
container, as defined in Section 3.15, “Unproxyable bean types”, the container throws an
Unpr oxyabl eResol uti onExcepti on.

« If the bean has a normal scope, then the contextual reference for the bean is a client proxy,
as defined in Section 5.4, “Client proxies”, created by the container, that implements the given
bean type and all bean types of the bean which are Java interfaces.

« Otherwise, if the bean has a pseudo-scope, the container must obtain a contextual instance
of the bean. If the bean has scope @ependent, the container must associate it with the
Cr eat i onal Cont ext .

The container must ensure that every injection point of type I njecti onPoi nt and qualifier
@ef aul t of any dependent object instantiated during this process receives:

e aninstance of I nj ect i onPoi nt representing the injection point into which the dependent object
will be injected, or

» anull value if it is not being injected into any injection point.

6.5.4. Contextual reference validity

A contextual reference for a bean is valid only for a certain period of time. The application should
not invoke a method of an invalid reference.

The validity of a contextual reference for a bean depends upon whether the scope of the bean is
a normal scope or a pseudo-scope.

« Any reference to a bean with a normal scope is valid as long as the application maintains a hard
reference to it. However, it may only be invoked when the context associated with the normal
scope is active. If it is invoked when the context is inactive, a Cont ext Not Acti veExcepti on
is thrown by the container.

« Any reference to a bean with a pseudo-scope (such as @ependent) is valid until the bean
instance to which it refers is destroyed. It may be invoked even if the context associated with
the pseudo-scope is not active. If the application invokes a method of a reference to an instance
that has already been destroyed, the behavior is undefined.

6.5.5. Injectable references

From time to time, the container must obtain an injectable reference for an injection point. The
container must:

92

Injectable reference validity

* Identify a bean according to the rules defined in Section 5.2, “Typesafe resolution” and resolving
ambiguities according to Section 5.2.2, “Unsatisfied and ambiguous dependencies”.

« Obtain a contextual reference for this bean and the type of the injection point according to
Section 6.5.3, “Contextual reference for a bean”.

For certain combinations of scopes, the container is permitted to optimize the above procedure:

« The container is permitted to directly inject a contextual instance of the bean, as defined in
Section 6.5.2, “Contextual instance of a bean”.

* If an incompletely initialized instance of the bean is registered with the current
Cr eat i onal Cont ext , as defined in Section 6.1, “The Cont ext ual interface”, the container is
permitted to directly inject this instance.

However, in performing these optimizations, the container must respect the rules of injectable
reference validity.

6.5.6. Injectable reference validity

Injectable references to a bean must respect the rules of contextual reference validity, with the
following exceptions:

» A reference to a bean injected into a field, bean constructor or initializer method is only valid
until the object into which it was injected is destroyed.

« A reference to a bean injected into a producer method is only valid until the producer method
bean instance that is being produced is destroyed.

« Areference to a bean injected into a disposer method or observer method is only valid until the
invocation of the method completes.

The application should not invoke a method of an invalid injected reference. If the application
invokes a method of an invalid injected reference, the behavior is undefined.

6.6. Passivation and passivating scopes

The temporary transfer of the state of an idle object held in memory to some form of secondary
storage is called passivation. The transfer of the passivated state back into memory is called
activation.

6.6.1. Passivation capable beans

A bean is called passivation capable if the container is able to temporarily transfer the state of
any idle instance to secondary storage.

» As defined by the EJB specification, a stateful session beans is passivation capable if:

« interceptors and decorators of the bean are passivation capable, and,

93

Chapter 6. Scopes and contexts

* the stateful session bean does not have the passi vati onCapabl e flag set to f al se.

« As defined by the EJB specification, a stateless session bean or a singleton session bean is
not passivation capable.

« A managed bean is passivation capable if and only if the bean class is serializable and all
interceptors and decorators of the bean are passivation capable.

» A producer method is passivation capable if and only if it never returns a value which is not
passivation capable at runtime.

« A producer field is passivation capable if and only if it never refers to a value which is not
passivation capable at runtime.

A custom implementation of Bean is passivation capable if it implements the interface
Passi vat i onCapabl e. An implementation of Cont ext ual thatis not a bean is passivation capable
if it implements both Passi vat i onCapabl e and Seri al i zabl e.

public interface PassivationCapable {
public String getld();

The get1d() method must return a value that uniquely identifies the instance of Bean or
Cont ext ual . It is recommended that the string contain the package name of the class that
implements Bean or Cont ext ual .

6.6.2. Passivation capable injection points

We call an injection point of a bean passivation capable if the injection point is:

 atransient field, or
« a non-transient field which resolves to a bean that is a passivation capable dependency, or
« a bean constructor parameter which is annotated with @' ansi ent Ref er ence, or

* a bean constructor parameter which resolves to a bean that is a passivation capable
dependency, or

» a method parameter which is annotated with @ ansi ent Ref er ence, or

a method parameter which resolves to a bean that is a passivation capable dependency.

6.6.3. Passivation capable dependencies

A bean is called a passivation capable dependency if any contextual reference for that bean is
preserved when the object holding the reference is passivated and then activated.

94

Passivating scopes

The container must guarantee that:

all beans with normal scope are passivation capable dependencies,

- all passivation capable beans with scope @ependent are passivation capable dependencies,
- all stateless session beans are passivation capable dependencies,

- all singleton session beans are passivation capable dependencies,

- all passivation capable stateful session beans are passivation capable dependencies,

« all resources are passivation capable dependencies, and

« the built-in beans of type | nst ance, Event, I nj ect i onPoi nt and BeanManager are passivation
capable dependencies.

A custom implementation of Bean is a passivation capable dependency if it implements
Passi vat i onCapabl e.

6.6.4. Passivating scopes

A passivating scope requires that:

» beans with the scope are passivation capable, and

« implementations of Cont ext ual passed to any context object for the scope are passivation
capable.

Passivating scopes must be explicitly declared @\or nal Scope(passi vati ng=true).

For example, the built-in session and conversation scopes defined in Section 6.7, “Context
management for built-in scopes” are passivating scopes. No other built-in scopes are passivating
scopes.

6.6.5. Validation of passivation capable beans and
dependencies

For every bean which declares a passivating scope, the container must validate that the bean
truly is passivation capable and that, in addition, its dependencies are passivation capable.

If a managed bean which declares a passivating scope, a stateful session bean which declares
a passivating scope, or a built-in bean:
* is not passivation capable,

* has an injection point that is not passivation capable,

95

Chapter 6. Scopes and contexts

» has an interceptor or decorator that is not passivation capable
* has an interceptor or decorator with an injection point that is not passivation capable
then the container automatically detects the problem and treats it as a deployment problem.

If a producer method declares a passivating scope and:

* has a return type that is declared final and does not implement or extend Seri al i zabl e, or,
 has an injection point that is not passivation capable
then the container automatically detects the problem and treats it as a deployment problem.

If a producer method declares a passivating scope and doesn’t only return Seri al i zabl e types
at runtime, then the container must throw an I | | egal Product Excepti on.

If a producer field declares a passivating scope and has a type that is declared final and does
not implement or extend Ser i al i zabl e then the container automatically detects the problem and
treats it as a deployment problem.

If a producer field declares a passivating scope and doesn’t only contain Seri al i zabl e values at
runtime then the container must throw an 1 | | egal Pr oduct Except i on.

If a producer method or field of scope @ependent returns an unserializable object for injection
into an injection point that requires a passivation capable dependency, the container must throw
an !l egal Product Excepti on

For a custom implementation of Bean, the container calls get I nj ecti onPoi nt s() to determine
the injection points, and | nj ecti onPoi nt. i sTransi ent () to determine whether the injection
point is a transient field.

If a managed bean or a stateful session bean which declares a passivating scope type,
has a decorator or interceptor which is not a passivation capable dependency, the container
automatically detects the problem and treats it as a deployment problem.

6.7. Context management for built-in scopes

The container provides an implementation of the Cont ext interface for each of the built-in scopes.

The built-in request and application context objects are active during servlet, web service and
EJB invocations, and the built in session and request context objects are active during servlet
and web service invocations. For other kinds of invocations, a portable extension may define a
custom context object for any or all of the built-in scopes. For example, a remoting framework
might provide a request context object for the built-in request scope.

The context associated with a built-in normal scope propagates across local, synchronous Java
method calls, including invocation of EJB local business methods. The context does not propagate

96

Request context lifecycle

across remote method invocations or to asynchronous processes such as JMS message listeners
or EJB timer service timeouts.

Portable extensions are encouraged to fire an event with qualifier @ ni ti al i zed(X. cl ass) when
a custom context is initialized, and an event with qualifier @est r oyed(X. cl ass) when a custom
context is destroyed, where X is the scope type associated with the context. A suitable event
payload should be chosen.

6.7.1. Request context lifecycle

The request context is provided by a built-in context object for the built-in scope type
@Request Scoped. The request scope is active:

» during the servi ce() method of any servlet in the web application, during the doFi | ter ()
method of any servlet filter and when the container calls any Ser vl et Request Li st ener or

AsynclLi st ener,
 during any Java EE web service invocation,

« during any remote method invocation of any EJB, during any asynchronous method invocation
of any EJB, during any call to an EJB timeout method and during message delivery to any EJB
message-driven bean, and

 during @ost Const r uct callback of any bean.

The request context is destroyed:

at the end of the servlet request, after the servi ce() method, all doFi I t er () methods, and all
request Dest royed() and onConpl et e() natifications return,

« after the web service invocation completes,

« after the EJB remote method invocation, asynchronous method invocation, timeout or message
delivery completes if it did not already exist when the invocation occurred, or

o after the @PostConstruct callback completes, if it did not already exist when the
@post Const ruct callback occurred.

An event with qualifier @ ni ti al i zed(Request Scoped. cl ass) is fired when the request context
is initialized and an event with qualifier @est r oyed(Request Scoped. cl ass) when the request
context is destroyed. The event payload is:

« the Servl et Request if the context is initialized or destroyed due to a servlet request, or

» the Servl et Request if the context is initialized or destroyed due to a web service invocation, or

e anyjava. |l ang. Obj ect for other types of request.

97

Chapter 6. Scopes and contexts

6.7.2. Session context lifecycle

The session context is provided by a built-in context object for the built-in passivating scope type
@essi onScoped. The session scope is active:

 during the servi ce() method of any servlet in the web application, during the doFi | ter ()
method of any servlet filter and when the container calls any HttpSessionLi stener,
AsynclLi st ener or Servl et Request Li st ener.

The session context is shared between all servlet requests that occur in the same HTTP
session. The session context is destroyed when the HTTPSession times out, after all
Ht t pSessi onLi st ener s have been called, and at the very end of any request in which
i nval i dat e() was called, after all filters and Ser vl et Request Li st ener s have been called.

An event with the Ht t pSessi on as payload and with qualifier
@nitialized(Sessi onScoped. cl ass) is fired when the session context is initialized and an
event with qualifier @est r oyed(Sessi onScoped. cl ass) when the session context is destroyed.

6.7.3. Application context lifecycle

The application context is provided by a built-in context object for the built-in scope type
@vppl i cati onScoped. The application scope is active:

 during the servi ce() method of any servlet in the web application, during the doFil ter ()
method of any servlet filter and when the container calls any Servl et Cont ext Li st ener,
Ht t pSessi onLi st ener, AsyncLi st ener or Ser vl et Request Li st ener,

 during any Java EE web service invocation,

« during any remote method invocation of any EJB, during any asynchronous method invocation
of any EJB, during any call to an EJB timeout method and during message delivery to any EJB
message-driven bean,

« when the disposer method or @r eDest r oy callback of any bean with any normal scope other
than @ppl i cati onScoped is called, and

» during @ost Const ruct callback of any bean.

The application context is shared between all servlet requests, web service invocations, EJB
remote method invocations, EJB asynchronous method invocations, EJB timeouts and message
deliveries to message-driven beans that execute within the same application. The application
context is destroyed when the application is shut down.

An event with qualifier @ ni ti al i zed(Appl i cati onScoped. cl ass) is fired when the application
context is initialized and an event with qualifier @est r oyed(Appl i cat i onScoped. cl ass) is fired
when the application is destroyed. The event payload is:

» the Ser vl et Cont ext if the application is a web application deployed to a Servlet container, or

98

Conversation context lifecycle

e anyjava. | ang. Obj ect for other types of application.

6.7.4. Conversation context lifecycle

The conversation context is provided by a built-in context object for the built-in passivating scope
type @onver sat i onScoped. The conversation scope is active during all Servlet requests.

An event with qualifier @nitialized(ConversationScoped. cl ass) is fired
when the conversation context is initialized and an event with qualifier
@est royed(Conver sat i onScoped. cl ass) is fired when the conversation is destroyed. The
event payload is:

« the conversation id if the conversation context is destroyed and is not associated with a current
Servlet request, or

 the Ser vl et Request if the application is a web application deployed to a Servlet container, or

e anyjava. | ang. Obj ect for other types of application.

The conversation context provides access to state associated with a particular conversation. Every
Servlet request has an associated conversation. This association is managed automatically by
the container according to the following rules:

« Any Servlet request has exactly one associated conversation.

« The container provides a filter with the name "CDI Conversation Filter", which may be mapped
inweb. xnl , allowing the user alter when the conversation is associated with the servlet request.
If this filter is not mapped in any web. xn in the application, the conversation associated with
a Servlet request is determined at the beginning of the request before calling any servi ce()
method of any servlet in the web application, calling the doFi | t er () method of any servlet
filter in the web application and before the container calls any Ser vl et Request Li st ener or
AsynclLi st ener in the web application.

« The implementation should determine the conversation associated with the Servlet request in
a way that does not prevent other filters or servlet from setting the request character encoding
or parsing the request body themselves.

Any conversation is in one of two states: transient or long-running.

» By default, a conversation is transient
* A transient conversation may be marked long-running by calling Conver sati on. begi n()
* A long-running conversation may be marked transient by calling Conver sati on. end()

All long-running conversations have a string-valued unique identifier, which may be set by the
application when the conversation is marked long-running, or generated by the container.

99

Chapter 6. Scopes and contexts

If the conversation associated with the current Servlet request is in the transient state at the end
of a Servlet request, it is destroyed, and the conversation context is also destroyed.

If the conversation associated with the current Servlet request is in the long-running state at the
end of a Servlet request, it is not destroyed. The long-running conversation associated with a
request may be propagated to any Servlet request via use of a request parameter named ci d
containing the unique identifier of the conversation. In this case, the application must manage this
request parameter.

If the current Servlet request is a JSF request, and the conversation is in long-running state, it is
propagated according to the following rules:

« The long-running conversation context associated with a request that renders a JSF view is
automatically propagated to any faces request (JSF form submission) that originates from that
rendered page.

» The long-running conversation context associated with a request that results in a JSF redirect
(a redirect resulting from a navigation rule or JSF Navi gati onHandl er) is automatically
propagated to the resulting non-faces request, and to any other subsequent request to the same
URL. This is accomplished via use of a request parameter named ci d containing the unique
identifier of the conversation.

When no conversation is propagated to a Servlet request, or if a request parameter named
conver sat i onPropagat i on has the value none the request is associated with a new transient
conversation.

All long-running conversations are scoped to a particular HTTP servlet session and may not cross
session boundaries.

In the following cases, a propagated long-running conversation cannot be restored and
reassociated with the request:

« When the HTTP servlet session is invalidated, all long-running conversation contexts created
during the current session are destroyed, after the servlet servi ce() method completes.

« The container is permitted to arbitrarily destroy any long-running conversation that is associated
with no current Servlet request, in order to conserve resources.

The conversation timeout, which may be specified by calling Conver sati on. set Ti meout () is a
hint to the container that a conversation should not be destroyed if it has been active within the
last given interval in milliseconds.

If the propagated conversation cannot be restored, the container must associate
the request with a new transient conversation and throw an exception of type
j avax. ent erpri se. cont ext. Nonexi st ent Conver sati onExcepti on.

The container ensures that a long-running conversation may be associated with at most one
request at a time, by blocking or rejecting concurrent requests. If the container rejects a request,

100

The Conver sati on interface

it must associate the request with a new transient conversation and throw an exception of type

j avax. enterprise. context. BusyConver sati onExcepti on.

6.7.5. The conversation interface

The container provides a built-in bean with bean type Conver sati on, scope @Request Scoped,
and qualifier @ef aul t, named j avax. ent er pri se. cont ext . conver sati on.

public
publ i
publ i
publ i
publ i
publ i
publ i
publ i

nterface Conversation {

Cc
Cc
Cc
Cc
Cc
Cc
Cc

voi d begin();

void begin(String id);

voi d end();

String getld();

| ong get Ti neout () ;

voi d set Ti meout (Il ong mlliseconds);
bool ean i sTransi ent ();

» begi n() marks the current transient conversation long-running. A conversation identifier may,
optionally, be specified. If no conversation identifier is specified, an identifier is generated by
the container.

* end() marks the current long-running conversation transient.

e getld() returns the identifier of the current long-running conversation, or a null value if the
current conversation is transient.

e get Ti meout () returns the timeout, in milliseconds, of the current conversation.

« set Ti meout () sets the timeout of the current conversation.

e isTransient () returns true if the conversation is marked transient, or f al se if it is marked
long-running.

If any method of Conversation is called when the conversation scope is not active, a
Cont ext Not Act i veExcept i on is thrown.

If end() is called, and the current conversation is marked transient, an | | | egal St at eExcepti on

is thrown.

If begin()
Il | egal St at eExcepti on is thrown.

is called, and the current conversation is already marked long-running, an

If begi n() is called with an explicit conversation identifier, and a long-running conversation with
that identifier already exists, an | | | egal Ar gunent Except i on is thrown.

101

102

Chapter 7.

Lifecycle of contextual instances

The lifecycle of a contextual instance of a bean is managed by the context object for the bean’s
scope, as defined in Chapter 6, Scopes and contexts.

Every bean in the system is represented by an instance of the Bean interface defined in
Section 11.1, “The Bean interface”. This interface is a subtype of Cont ext ual . To create and
destroy contextual instances, the context object calls the creat e() and destroy() operations
defined by the interface Cont ext ual , as defined in Section 6.1, “The Cont ext ual interface”.

7.1. Restriction upon bean instantiation

The managed bean and EJB specifications place very few programming restrictions upon the bean
class of a bean. In particular, the class is a concrete class and is not required to implement any
special interface or extend any special superclass. Therefore, bean classes are easy to instantiate
and unit test.

However, if the application directly instantiates a bean class, instead of letting the container
perform instantiation, the resulting instance is not managed by the container and is not a
contextual instance as defined by Section 6.5.2, “Contextual instance of a bean”. Furthermore, the
capabilities listed in Section 2.1, “Functionality provided by the container to the bean” will not be
available to that particular instance. In a deployed application, it is the container that is responsible
for instantiating beans and initializing their dependencies.

If the application requires more control over instantiation of a contextual instance, a producer
method or field may be used. Any Java object may be returned by a producer method or field. It is
not required that the returned object be a contextual reference for a bean. However, if the object is
not a contextual reference for another bean, the object will be contextual instance of the producer
method bean, and therefore available for injection into other objects and use in EL expressions,
but the other capabilities listed in Section 2.1, “Functionality provided by the container to the bean”
will not be available to the object.

In the following example, a producer method returns instances of other beans:

@bessi onScoped
public class Payment StrategyProducer inplenents Serializable {

private Paynent StrategyType paynent Strat egyType;
public void setPayment StrategyType(Paynent Strat egyType type) {

paynment Strat egyType = type;

@roduces Paynment Strategy get Payment Strat egy(@redi t Card Paynent Strategy creditCard,
@cheque Paynent Strategy cheque,

103

Chapter 7. Lifecycle of conte...

@nl i ne Paynent Strategy online) {
switch (paynent StrategyType) {
case CREDI T _CARD: return creditCard;
case CHEQUE: return cheque;
case ONLINE: return online;
default: throw new Il 1 egal StateException();

In this case, any object returned by the producer method has already had its dependencies
injected, receives lifecycle callbacks and event notifications and may have interceptors.

But in this example, the returned objects are not contextual instances:

@sessi onScoped
public class Paynment StrategyProducer inplenents Serializable {

private Payment StrategyType payment StrategyType;

public void setPaynent StrategyType(Paynent Strat egyType type) {
paynment Strat egyType = type,

@°r oduces Paynent Strategy get Paynent Strategy() {
switch (paynment StrategyType) {
case CREDI T_CARD: return new CreditCardPaynent Strategy();
case CHEQUE: return new ChequePaynent Strategy();
case ONLINE: return new OnlinePaynent Strategy();
default: throw new Il 1 egal StateException();

In this case, any object returned by the producer method will not have any dependencies
injected by the container, receives no lifecycle callbacks or event notifications and does not have
interceptors or decorators.

7.2. Container invocations and interception

When the application invokes:

* a method of a bean via a contextual reference to the bean, as defined in Section 6.5.3,
“Contextual reference for a bean”, or

104

Lifecycle of contextual instances

« amethod of a bean via a hon-contextual reference to the bean, if the instance was created by the
container (e.g. using | nj ecti onTar get . produce() or Unmanagedl nst ance. produce()), or

* a business method of a session bean via an EJB remote or local reference,
the invocation is treated as a business method invocation.

When the container invokes a method of a bean, the invocation may or may not be treated as a
business method invocation:

« Invocations of initializer methods by the container are not business method invocations.

« Invocations of producer, disposer and observer methods by the container are business method
invocations and are intercepted by method interceptors and decorators.

* Invocation of lifecycle callbacks by the container are not business method invocations, but are
intercepted by interceptors for lifecycle callbacks.

« Invocation of EJB timer service timeouts by the container are not business method invocations,
but are intercepted by interceptors for EJB timeouts.

« Invocations of interceptors and decorator methods during method or lifecycle callback
interception are not business method invocations, and therefore no recursive interception
occurs.

« Invocations of methods declared by java.lang.Object are not business method invocations.

If, and only if, an invocation is a business method invocation:

« it passes through method interceptors and decorators, and

* in the case of a session bean, it is subject to EJB services such as declarative transaction
management, concurrency, security and asynchronicity, as defined by the EJB specification.

Additionally, invocations of message listener methods of message-driven beans during message
delivery are passed through method interceptors.

Otherwise, the invocation is treated as a normal Java method call and is not intercepted by the
container.

7.3. Lifecycle of contextual instances

The actual mechanics of bean creation and destruction varies according to what kind of bean is
being created or destroyed.

7.3.1. Lifecycle of managed beans

When the creat e() method of the Bean object that represents a managed bean is called, the
container obtains an instance of the bean, as defined by the Managed Beans specification, calling
the bean constructor as defined by Section 5.5.1, “Injection using the bean constructor”, and

105

Chapter 7. Lifecycle of conte...

performing dependency injection as defined in Section 5.5.2, “Injection of fields and initializer
methods”.

When the destroy() method is called, the container destroys the instance, as defined by
the Managed Beans specification, and any dependent objects, as defined in Section 5.5.3,
“Destruction of dependent objects”.

7.3.2. Lifecycle of stateful session beans

When the cr eat e() method of a Bean object that represents a stateful session bean that is called,
the container creates and returns a container-specific internal local reference to a new session
bean instance. The reference must be passivation capable. This reference is not directly exposed
to the application.

Before injecting or returning a contextual instance to the application, the container transforms its
internal reference into an object that implements the bean types expected by the application and
delegates method invocations to the underlying stateful session bean instance. This object must
be passivation capable.

When the destroy() method is called, and if the underlying EJB was not already removed by
direct invocation of a remove method by the application, the container removes the stateful session
bean. The @r eDest r oy callback must be invoked by the container.

Note that the container performs additional work when the underlying EJB is created and removed,
as defined in Section 5.5, “Dependency injection”

7.3.3. Lifecycle of stateless and singleton session beans

When the create() method of a Bean object that represents a stateless session or singleton
session bean is called, the container creates and returns a container-specific internal local
reference to the session bean. This reference is not directly exposed to the application.

Before injecting or returning a contextual instance to the application, the container transforms its
internal reference into an object that implements the bean types expected by the application and
delegates method invocations to the underlying session bean. This object must be passivation
capable.

When the destroy() method is called, the container simply discards this internal reference.

Note that the container performs additional work when the underlying EJB is created and removed,
as defined in Section 5.5, “Dependency injection”

7.3.4. Lifecycle of producer methods

When the creat e() method of a Bean object that represents a producer method is called, the
container must invoke the producer method as defined by Section 5.5.4, “Invocation of producer or
disposer methods”. The return value of the producer method, after method interception completes,
is the new contextual instance to be returned by Bean. creat e() .

106

Lifecycle of producer fields

If the producer method returns a null value and the producer method bean has the scope
@ependent , the creat e() method returns a null value.

Otherwise, if the producer method returns a null value, and the scope of the producer method is
not @ependent , the creat e() method throws an | | | egal Product Excepti on.

When the destroy() method is called, and if there is a disposer method for this producer
method, the container must invoke the disposer method as defined by Section 5.5.4, “Invocation
of producer or disposer methods”, passing the instance given to destroy() to the disposed
parameter. Finally, the container destroys dependent objects, as defined in Section 5.5.3,
“Destruction of dependent objects”.

7.3.5. Lifecycle of producer fields

When the create() method of a Bean object that represents a producer field is called, the
container must access the producer field as defined by Section 5.5.5, “Access to producer field
values” to obtain the current value of the field. The value of the producer field is the new contextual
instance to be returned by Bean. create().

If the producer field contains a null value and the producer field bean has the scope @ependent ,
the creat e() method returns a null value.

Otherwise, if the producer field contains a null value, and the scope of the producer field is not
@ependent , the cr eat e() method throws an | | | egal Product Except i on.

When the dest r oy() method is called, and if there is a disposer method for this producer field, the
container must invoke the disposer method as defined by Section 5.5.4, “Invocation of producer
or disposer methods”, passing the instance given to dest r oy() to the disposed parameter.

7.3.6. Lifecycle of resources

When the creat e() method of a Bean object that represents a resource is called, the container
creates and returns a container-specific internal reference to the Java EE component environment
resource, entity manager, entity manager factory, remote EJB instance or web service reference.
This reference is not directly exposed to the application.

Before injecting or returning a contextual instance to the application, the container transforms its
internal reference into an object that implements the bean types expected by the application and
delegates method invocations to the underlying resource, entity manager, entity manager factory,
remote EJB instance or web service reference. This object must be passivation capable.

The container must perform ordinary Java EE component environment injection upon any non-
static field that functions as a resource declaration, as defined by the Java EE platform and
Common Annotations for the Java platform specifications. The container is not required to perform
Java EE component environment injection upon a static field. Portable applications should not
rely upon the value of a static field that functions as a resource declaration.

References to EJBs and web services are always dependent scoped and a new instance must
be obtained for every injection performed.

107

Chapter 7. Lifecycle of conte...

For an entity manager associated with a resource definition, it must behave as though it were
injected directly using @er si st encCont ext .

When the dest r oy() method of a bean which represents a remote stateful EJB reference is called,
the container will not automatically destroy the EJB reference. The application must explicitly call
the method annotated @enove. This behavior differs to that specified in Section 7.3.2, “Lifecycle
of stateful session beans” for beans which represent a local stateful EJB reference

108

Chapter 8.

Decorators

A decorator implements one or more bean types and intercepts business method invocations of
beans which implement those bean types. These bean types are called decorated types.

Decorators are superficially similar to interceptors, but because they directly implement operations
with business semantics, they are able to implement business logic and, conversely, unable to
implement the cross-cutting concerns for which interceptors are optimized.

Decorators may be associated with any managed bean that is not itself an interceptor or decorator,
with any EJB session bean or with any built-in bean other than the built-in bean with type
BeanManager and qualifier @ef aul t . Decorators are not applied to the return value of a producer
method or the current value of a producer field. A decorator instance is a dependent object of
the object it decorates.

8.1. Decorator beans

A decorator is a managed bean. The set of decorated types of a decorator includes all bean
types of the managed bean which are Java interfaces, except for j ava. i 0. Seri al i zabl e. The
decorator bean class and its superclasses are not decorated types of the decorator. The decorator
class may be abstract.

If the set of decorated types of a decorator is empty, the container automatically detects the
problem and treats it as a definition error.

Decorators of a session bean must comply with the bean provider programming restrictions
defined by the EJB specification. Decorators of a stateful session bean must comply with the rules
for instance passivation and conversational state defined by the EJB specification.

8.1.1. Declaring a decorator

A decorator is declared by annotating the bean class with the @ avax. decor at or . Decor at or
stereotype.

@ecorator @riority(APPLI CATI ON)
cl ass Ti nestanpLogger inplenents Logger { ... }

8.1.2. Decorator delegate injection points

All decorators have a delegate injection point. A delegate injection point is an injection point of the
bean class. The type and qualifiers of the injection point are called the delegate type and delegate
qualifiers. The decorator applies to beans that are assignable to the delegate injection point.

The delegate injection point must be declared by annotating the injection point with the annotation
@ avax. decor at or . Del egat e:

109

Chapter 8. Decorators

@ecorator @°riority(APPLI CATI ON)
cl ass Ti mestanpLogger inplenents Logger {
@nject @el egate @ny Logger | ogger;

@ecorator @°riority(APPLI CATI ON)
cl ass Ti nestanpLogger inplenents Logger {
private Logger | ogger;

@ nj ect
publi c Ti mestanpLogger (@el egate @ebug Logger | ogger) {
t hi s. | ogger =l ogger;

A decorator must have exactly one delegate injection point. If a decorator has more than one
delegate injection point, or does not have a delegate injection point, the container automatically
detects the problem and treats it as a definition error.

The delegate injection point must be an injected field, initializer method parameter or bean
constructor method parameter. If an injection point that is not an injected field, initializer
method parameter or bean constructor method parameter is annotated @el egat e, the container
automatically detects the problem and treats it as a definition error.

If a bean class that is not a decorator has an injection point annotated @el egat e, the container
automatically detects the problem and treats it as a definition error.

The container must inject a delegate object to the delegate injection point. The delegate
object implements the delegate type and delegates method invocations to remaining uninvoked
decorators and eventually to the bean. When the container calls a decorator during business
method interception, the decorator may invoke any method of the delegate object.

@ecorator @°riority(APPLI CATI ON)
cl ass Ti nestanpLogger inpl enents Logger {
@nject @el egate @ny Logger | ogger;

void log(String nessage) {
| ogger.log(tinestanp() + ": " + nessage);

110

Decorated types of a decorator

If a decorator invokes the delegate object at any other time, the invoked method throws an
I'l'l egal St at eExcepti on.

8.1.3. Decorated types of a decorator

The delegate type of a decorator must implement or extend every decorated type (with exactly
the same type parameters). If the delegate type does not implement or extend a decorated type
of the decorator (or specifies different type parameters), the container automatically detects the
problem and treats it as a definition error.

A decorator is not required to implement the delegate type.

A decorator may be an abstract Java class, and is not required to implement every method of
every decorated type. Whenever the decorator does not implement a method of the decorated
type, the container will provide an implicit implementation that calls the method on the delegate.
If a decorator has abstract methods that are not declared by a decorated type, the container
automatically detects the problem and treats it as a definition error.

The decorator intercepts every method which is declared by a decorated type of the decorator
and is implemented by the bean class of the decorator.

8.2. Decorator enablement and ordering

This specification defines two methods of enabling and ordering decorators. From Contexts and
Dependency Injection 1.1 onwards the @ri ori ty annotation allows a decorator to be enabled
and ordered for an entire application. Contexts and Dependency Injection 1.0 allowed only for a
decorator to be enabled and ordered for a bean archive.

Decorators are called after interceptors. Decorators enabled using @ri ority are called before
decorators enabled using beans. xm .

A decorator is said to be enabled if it is enabled in at least one bean archive or is listed in the final
list of decorators for the application, as defined in Section 11.5.2, “Af t er TypeDi scovery event”.

8.2.1. Decorator enablement and ordering for an application

A decorator may be enabled for the entire application by applying the @ri ori t y annotation, along
with a priority value, on the decorator class. Decorators with the smaller priority values are called
first. The order of more than one decorator with the same priority is undefined.

@ecorator @riority(APPLI CATI ON)
cl ass Ti mestanpLogger inplenents Logger {

111

Chapter 8. Decorators

The priority value ranges defined in the Java Interceptors specification section 5.5 should be used
when defining decorator priorities.

8.2.2. Decorator enablement and ordering for a bean archive

A decorator may be explicitly enabled by listing its bean class under the <decor at or s> element
of the beans. xni file of the bean archive.

<beans xm ns="http://xmns.jcp.org/xm/ns/javaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schenma- i nst ance"
xsi: schemaLocation="http://xm ns.jcp.org/ xm /ns/javaee http://
xm ns.jcp.org/ xm /ns/javaee/ beans_1_ 1. xsd">
<decor at or s>
<cl ass>com acne. nyf wk. Ti mest anpLogger </ cl ass>
<cl ass>com acne. nyfwk. | denti t yLogger </ cl ass>
</ decor at or s>
</ beans>

The order of the decorator declarations determines the decorator ordering. Decorators which occur
earlier in the list are called first.

Each child <cl ass> element must specify the name of a decorator bean class. If there is no class
with the specified name, or if the class with the specified name is not a decorator bean class, the
container automatically detects the problem and treats it as a deployment problem.

If the same class is listed twice under the <decor at or s> element, the container automatically
detects the problem and treats it as a deployment problem.

8.3. Decorator resolution

The process of matching decorators to a certain bean is called decorator resolution. A decorator
is bound to a bean if:

e The bean is assignable to the delegate injection point according to the rules defined in
Section 5.2, “Typesafe resolution” (using Section 8.3.1, “Assignability of raw and parameterized
types for delegate injection points”).

» The decorator is enabled in the bean archive containing the bean.

If a decorator matches a managed bean, the managed bean class must be a proxyable bean type,
as defined in Section 3.15, “Unproxyable bean types”.

For a custom implementation of the Decorator interface defined in Section 11.1.1, “The
Decor at or interface”, the container calls get Del egat eType(), get Del egateQual i fi ers() and
get Decor at edTypes() to determine the delegate type and qualifiers and decorated types of the
decorator.

112

Assignability of raw and parameterized types for delegate injection points

8.3.1. Assignability of raw and parameterized types for delegate
Injection points

Decorator delegate injection points have a special set of rules for determining assignability
of raw and parameterized types, as an exception to Section 5.2.4, “Assignability of raw and
parameterized types”.

A raw bean type is considered assignable to a parameterized delegate type if the raw types are
identical and all type parameters of the delegate type are either unbounded type variables or

j ava. | ang. Qbj ect .

A parameterized bean type is considered assignable to a parameterized delegate type if they have
identical raw type and for each parameter:

 the delegate type parameter and the bean type parameter are actual types with identical raw
type, and, if the type is parameterized, the bean type parameter is assignable to the delegate
type parameter according to these rules, or

 the delegate type parameter is a wildcard, the bean type parameter is an actual type and the
actual type is assignable to the upper bound, if any, of the wildcard and assignable from the
lower bound, if any, of the wildcard, or

« the delegate type parameter is a wildcard, the bean type parameter is a type variable and the
upper bound of the type variable is assignable to the upper bound, if any, of the wildcard and
assignable from the lower bound, if any, of the wildcard, or

« the delegate type parameter and the bean type parameter are both type variables and the upper
bound of the bean type parameter is assignable to the upper bound, if any, of the delegate type
parameter, or

« the delegate type parameter is a type variable, the bean type parameter is an actual type, and
the actual type is assignable to the upper bound, if any, of the type variable.

8.4. Decorator invocation

Whenever a business method is invoked on an instance of a bean with decorators, the container
intercepts the business method invocation and, after processing all interceptors of the method,
invokes decorators of the bean.

The container searches for the first decorator of the instance that implements the method that
is being invoked as a business method. If no such decorator exists, the container invokes the
business method of the intercepted instance. Otherwise, the container calls the method of the
decorator.

When any decorator is invoked by the container, it may in turn invoke a method of the delegate.
The container intercepts the delegate invocation and searches for the first decorator of the
instance such that:

113

Chapter 8. Decorators

« the decorator occurs after the decorator invoking the delegate, and
* the decorator implements the method that is being invoked upon the delegate.

If no such decorator exists, the container invokes the business method of the intercepted instance.
Otherwise, the container calls the method of the decorator.

114

Chapter 9.

Interceptor bindings

Managed beans and EJB session and message-driven beans support interception. Interceptors
are used to separate cross-cutting concerns from business logic. The Java Interceptors
specification defines the basic programming model and semantics, and how to associate
interceptors with target classes. This specification defines various extensions to the Java
Interceptors specification, including how to override the interceptor order defined by the
@vri ority annotation.

9.1. Interceptor binding types

This specification extends the Java Interceptors specification and allows interceptor bindings to
be applied to CDI stereotypes.

9.1.1. Interceptor bindings for stereotypes

Interceptor bindings may be applied to a stereotype by annotating the stereotype annotation:

@ransacti onal

@ecur e

@Request Scoped

@5t er eot ype

@rar get (TYPE)

@Ret ent i on(RUNTI ME)

public @nterface Action {}

An interceptor binding declared by a stereotype is inherited by any bean that declares that
stereotype.

If a stereotype declares interceptor bindings, it must be defined as @ar get (TYPE) .

9.2. Declaring the interceptor bindings of an interceptor

This specification extends the Java Interceptors specification and defines how the container must
behave if a definition error is encountered.

9.3. Binding an interceptor to a bean
This specification extends the Java Interceptors specification and defines:
« additional restrictions about the type of bean to which an interceptor can be bound, and

* how the container must behave if a definition error is encountered, and

* how interceptors are bound using stereotypes.

115

Chapter 9. Interceptor bindings

Interceptor bindings may be used to associate interceptors with any managed bean that is not
a decorator.

The set of interceptor bindings for a method declared at class level includes those declared on
stereotypes. An interceptor binding declared on a bean class replaces an interceptor binding of
the same type declared by a stereotype that is applied to the bean class.

The set of interceptor bindings for a producer method is not used to associate interceptors with
the return value of the producer method.

If a managed bean has a class-level or method-level interceptor binding, the managed bean must
be a proxyable bean type, as defined in Section 3.15, “Unproxyable bean types”.

9.4. Interceptor enablement and ordering

This specification extends the Java Interceptors specification and defines:

« support for enabling interceptors only for a bean archive, as defined by Contexts and
Dependency Injection 1.0, and

« the ability to override the interceptor order using the portable extension SPI, defined in
Section 11.5.2, “Af t er TypeDi scovery event”.

An interceptor may be explicitly enabled for a bean archive by listing its class under the
<i nt er cept or s> element of the beans. xn file of the bean archive.

<beans xm ns="http://xmns.jcp.org/xm/ns/javaee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocation="http://xmns.jcp.org/xm /ns/javaee http://
xm ns.jcp.org/ xm /ns/javaee/ beans_1_1.xsd"">
<i nterceptors>
<cl ass>com acne. nyfwk. Transacti onl nt ercept or </ cl ass>
<cl ass>com acne. nyfwk. Loggi ngl nt ercept or </ cl ass>
</interceptors>
</ beans>

The order of the interceptor declarations determines the interceptor ordering. Interceptors which
occur earlier in the list are called first.

Each child <cl ass> element must specify the name of an interceptor class. If there is no class
with the specified name, or if the class with the specified name is not an interceptor class, the
container automatically detects the problem and treats it as a deployment problem.

If the same class is listed twice under the <i nt er cept or s> element, the container automatically
detects the problem and treats it as a deployment problem.

Interceptors enabled using @ri ority are called before interceptors enabled using beans. xm .

116

Interceptor resolution

An interceptor is said to be enabled if it is enabled in at least one bean archive or is listed in the final
list of interceptors for the application, as defined in Section 11.5.2, “Af t er TypeDi scovery event”.

9.5. Interceptor resolution

This specification extends the Java Interceptors specification and defines:

* the effect of applying @onbi ndi ng to an interceptor binding member, and

« how the interceptor bindings of a custom implementation of the I nt erceptor interface are
determined.

If any interceptor binding has a member annotated @ avax. ent er pri se. uti | . Nonbi ndi ng, the
member is ignored when performing interceptor resolution, and the method does not need to have
the same annotation member value.

For a custom implementation of the | nterceptor interface defined in Section 11.1.2, “The
I nterceptor interface”, the container calls get | nterceptorBi ndings() to determine the
interceptor bindings of the interceptor and i nt er cept s() to determine if the interceptor intercepts
a given kind of lifecycle callback, EJB timeout or business method.

117

118

Chapter 10.

Events

Beans may produce and consume events. This facility allows beans to interact in a completely
decoupled fashion, with no compile-time dependency between the interacting beans. Most
importantly, it allows stateful beans in one architectural tier of the application to synchronize their
internal state with state changes that occur in a different tier.

An event comprises:

« A Java object - the event object
» A set of instances of qualifier types - the event qualifiers

The event object acts as a payload, to propagate state from producer to consumer. The event
qualifiers act as topic selectors, allowing the consumer to narrow the set of events it observes.

An observer method acts as event consumer, observing events of a specific type - the observed
event type - with a specific set of qualifiers - the observed event qualifiers. An observer method
will be notified of an event if the event object is assignable to the observed event type, and if the
set of observed event qualifiers is a subset of all the event qualifiers of the event.

10.1. Event types and qualifier types

An event object is an instance of a concrete Java class with no unresolvable type variables. The
event types of the event include all superclasses and interfaces of the runtime class of the event
object.

An event type may not contain an unresolvable type variable.

An event qualifier type is just an ordinary qualifier type as specified in Section 2.3.2, “Defining
new qualifier types”, typically defined as @rar get ({ METHOD, FIELD, PARAMETER, TYPE}) or
@ar get ({ FI ELD, PARAMETER}).

Every event has the qualifier @ avax. enterpri se. i nject. Any, even if it does not explicitly
declare this qualifier.

Any Java type may be an observed event type.

10.2. Firing events

Beans fire events via an instance of the j avax. enter pri se. event . Event interface, which may
be injected:

@ nj ect Event <Loggedl nEvent > | oggedl nEvent ;

119

Chapter 10. Events

The method fire() accepts an event object:

public void login() {

| oggedl nEvent. fire(new Loggedl nEvent (user));

Any combination of qualifiers may be specified at the injection point:
@nject @\dm n Event <Loggedl nEvent > admi nLoggedl nEvent ;
Or the application may specify qualifiers dynamically:

@ nj ect Event <Loggedl nEvent > | ogged| nEvent ;

Loggedl nEvent event = new Loggedl| nEvent (user);
if (user.isAdmin()) {
| oggedl nEvent . sel ect (new Adm nQualifier()).fire(event);

}
el se {

| oggedl nEvent . fire(event);
}

In this example, the event sometimes has the qualifier @dni n, depending upon the value of

user. i sAdm n().

10.2.1. The event interface

The Event interface provides a method for firing events with a specified combination of type and
qualifiers:
public interface Event<T> {

public void fire(T event);

public Event<T> sel ect(Annotation... qualifiers);

public <U extends T> Event <U> sel ect (O ass<U> subtype, Annotation... qualifiers);
public <U extends T> Event <U> sel ect (TypelLiteral <U> subtype, Annotation... qualifiers);

For an injected Event :

120

The built-in Event

« the specified type is the type parameter specified at the injection point, and

« the specified qualifiers are the qualifiers specified at the injection point.

For example, this injected Event has specified type Loggedl nEvent and specified qualifier
@\dnmi n:

@nj ect @\dm n Event <Loggedl nEvent > any;

The sel ect () method returns a child Event for a given specified type and additional specified
qualifiers. If no specified type is given, the specified type is the same as the parent.

For example, this child Event has required type Adni nLoggedl nEvent and additional specified
qualifier @\dni n:

Event <Admi nLoggedl nEvent > adm n = any. sel ect (
Adm nLoggedl nEvent . cl ass,
new Admi nQualifier());

If the specified type contains a type variable, an I | | egal Ar gunent Except i on is thrown.

If two instances of the same qualifier type are passed to select(), an
Il 1 egal Ar gunent Except i on is thrown.

If an instance of an annotation that is not a qualifier type is passed to select(), an
I'l| egal Ar gument Except i on is thrown.

The method fire() fires an event with the specified qualifiers and notifies observers, as defined
by Section 10.5, “Observer notification”. If the container is unable to resolve the parameterized
type of the event object, it uses the specified type to infer the parameterized type of the event

types.

If the runtime type of the event object contains an unresolvable type variable, an
Il | egal Ar gunent Except i on is thrown.

If the runtime type of the event object is assignable to the type of a container lifecycle event, an
I'l| egal Argument Except i on is thrown.

10.2.2. The built-in event

The container must provide a built-in bean with:

* Event <X> in its set of bean types, for every Java type X that does not contain a type variable,

 every event qualifier type in its set of qualifier types,

121

Chapter 10. Events

* scope @ependent,
* no bean name, and
* an implementation provided automatically by the container.

If an injection point of raw type Event is defined, the container automatically detects the problem
and treats it as a definition error.

The built-in implementation must be a passivation capable dependency, as defined in
Section 6.6.3, “Passivation capable dependencies”.

10.3. Observer resolution

The process of matching an event to its observer methods is called observer resolution. The
container considers event type and qualifiers when resolving observers.

Observer resolution usually occurs at runtime.

An event is delivered to an observer method if:

» The observer method belongs to an enabled bean.

« An event type is assignable to the observed event type, taking type parameters into
consideration.

e The observer method has no event qualifiers or has a subset of the event qualifiers. An
observer method has an event qualifier if it has an observed event qualifier with (a) the same
type and (b) the same annotation member value for each member which is not annotated
@ avax. enterprise.util.Nonbinding.

« Eitherthe eventis not a container lifecycle event, as defined in Section 11.5, “Container lifecycle
events”, or the observer method belongs to an extension.

If the runtime type of the event object contains an unresolvable type variable, the container must
throw an |1 | | egal Ar gunent Except i on.

For a custom implementation of the Observer Met hod interface defined in Section 11.1.3,
“The Qbserver Met hod interface”, the container must call get ObservedType() and
get QbservedQual i fi ers() to determine the observed event type and qualifiers.

10.3.1. Assignability of type variables, raw and parameterized
types

An event type is considered assignable to a type variable if the event type is assignable to the
upper bound, if any.

122

Event qualifier types with members

A parameterized event type is considered assignable to a raw observed event type if the raw
types are identical.

A parameterized event type is considered assignable to a parameterized observed event type if
they have identical raw type and for each parameter:

 the observed event type parameter is an actual type with identical raw type to the event type
parameter, and, if the type is parameterized, the event type parameter is assignable to the
observed event type parameter according to these rules, or

 the observed event type parameter is a wildcard and the event type parameter is assignable
to the upper bound, if any, of the wildcard and assignable from the lower bound, if any, of the
wildcard, or

« the observed event type parameter is a type variable and the event type parameter is assignable
to the upper bound, if any, of the type variable.

10.3.2. Event qualifier types with members

As usual, the qualifier type may have annotation members:

@ualifier

@rar get (PARAMETER)

@Ret ent i on(RUNTI ME)

public @nterface Role {
String val ue();

Consider the following event:

@ nj ect Event<Loggedl nEvent > | oggedl nEvent ;

public void login() {
final User user = ...;
| oggedl nEvent . sel ect (new Rol eQualifier() { public String value() { return user.getRole();]

Where Rol eQual i fi er is an implementation of the qualifier type Rol e:

public abstract class RoleQualifier
ext ends Annot ati onLiteral <Rol e>
i mpl enents Role {}

123

Chapter 10. Events

Then the following observer method will always be notified of the event:
public void afterLogi n(@bserves Loggedl nEvent event) { ... }

Whereas this observer method may or may not be notified, depending upon the value of
user.getRol e():

public voi d aft er Adm nLogi n(@bserves @Rol e("adm n") Loggedl nEvent event) { ... }

As usual, the container uses equal s() to compare event qualifier type member values.

10.3.3. Multiple event qualifiers

An event parameter may have multiple qualifiers.
public void afterDocunent Updat edByAdmi n(@bserves @Jpdated @yAdnm n Document doc) ({

Then this observer method will only be notified if all the observed event qualifiers are specified
when the event is fired:

@ nj ect Event <Docunent > docunent Event ;

docunent Event . sel ect (new Updat edQualifier(), new ByAdnmi nQualifier()).fire(document);
Other, less specific, observers will also be naotified of this event:

public void afterDocunent Updat ed(@bserves @Jpdated Docunent doc) { ... }

public void afterDocunent Event (@bserves Docunent doc) { ... }

10.4. Observer methods

An observer method allows the application to receive and respond to event notifications.

An observer method is a non-abstract method of a managed bean class or session bean class
(or of an extension, as defined in Section 11.5, “Container lifecycle events”). An observer method
may be either static or non-static. If the bean is a session bean, the observer method must be
either a business method of the EJB or a static method of the bean class.

124

Event parameter of an observer method

There may be arbitrarily many observer methods with the same event parameter type and
qualifiers.

A bean (or extension) may declare multiple observer methods.

10.4.1. Event parameter of an observer method

Each observer method must have exactly one event parameter, of the same type as the event
type it observes. When searching for observer methods for an event, the container considers the
type and qualifiers of the event parameter.

If the event parameter does not explicitly declare any qualifier, the observer method observes
events with no qualifier.

The event parameter type may contain a type variable or wildcard.

The event parameter may be an array type whose component type contains a type variable or
a wildcard.

10.4.2. Declaring an observer method

An observer method may be declared by annotating a parameter
@ avax. enterprise. event . Qoser ves of a default-access, public, protected or private method.
That parameter is the event parameter. The declared type of the parameter is the observed event

type.

public void afterLogi n(@bserves Loggedl nEvent event) { ... }

If a method has more than one parameter annotated @bser ves, the container automatically
detects the problem and treats it as a definition error.

Observed event qualifiers may be declared by annotating the event parameter:
public void afterLogi n(@bserves @\dm n Loggedl nEvent event) { ... }

If an observer method is annotated @roduces or @nject or has a parameter annotated
@i sposes, the container automatically detects the problem and treats it as a definition error.

If a non-static method of a session bean class has a parameter annotated @bser ves, and the
method is not a business method of the EJB, the container automatically detects the problem and
treats it as a definition error.

Interceptors and decorators may not declare observer methods. If an interceptor or decorator has
a method with a parameter annotated @bser ves, the container automatically detects the problem
and treats it as a definition error.

125

Chapter 10. Events

In addition to the event parameter, observer methods may declare additional parameters, which
may declare qualifiers. These additional parameters are injection points.

public void afterLogi n(@bserves Loggedl nEvent event, @manager User user, Logger log) { ... }

10.4.3. The event et adat a interface

The interface j avax. enterprise.inject.spi.Event Met adat a provides access to metadata
about an observed event.

public interface Event Metadata {
publ i c Set <Annotation> getQualifiers();
public InjectionPoint getlnjectionPoint();
public Type get Type();

« getQualifiers() returns the set of qualifiers with which the event was fired.

e getlnjectionPoint () returns the I nj ecti onPoi nt from which this event payload was fired,
or nul | if it was fired from BeanManager . fireEvent (..).

» get Type() returns the type representing runtime class of the event object with type variables
resolved.

The container must provide a bean with scope @ependent, bean type Event Met adat a and
qualifier @ef aul t, allowing observer methods to obtain information about the events they
observe.

If an injection point of type Event Met adat a and qualifier @ef aul t which is not a parameter of
an observer method exists, the container automatically detects the problem and treats it as a
definition error.

public void afterLogi n(@bserves Loggedl nEvent event, EventMetadata nmetadata) { ... }

10.4.4. Conditional observer methods

A conditional observer method is an observer method which is notified of an event only if an
instance of the bean that defines the observer method already exists in the current context.

A conditional observer method may be declared by specifying r ecei ve=I F_EXI STS.

public void refreshOnDocunent Updat e(@bser ves(recei ve=l F_EXI STS) @Jpdat ed Docunent doc) {

126

Transactional observer methods

Beans with scope @ependent may not have conditional observer methods. If a bean with scope
@ependent has an observer method declared r ecei ve=I F_EXI STS, the container automatically
detects the problem and treats it as a definition error.

The enumeration javax.enterprise. event. Reception identifies the possible values of

receive:

public enum Reception { | F_EX STS, ALWAYS }

10.4.5. Transactional observer methods

Transactional observer methods are observer methods which receive event notifications during
the before or after completion phase of the transaction in which the event was fired. If no
transaction is in progress when the event is fired, they are notified at the same time as other
observers.

* A before completion observer method is called during the before completion phase of the
transaction.

< An after completion observer method is called during the after completion phase of the
transaction.

« An after success observer method is called during the after completion phase of the transaction,
only when the transaction completes successfully.

« An after failure observer method is called during the after completion phase of the transaction,
only when the transaction fails.

The enumeration javax.enterprise.event. TransactionPhase identifies the kind of
transactional observer method:

publ i c enum Transacti onPhase {
I N_PROGRESS,
BEFORE_COMPLETI ON,
AFTER_COVPLETI ON,
AFTER_FAI LURE,
AFTER_SUCCESS

A transactional observer method may be declared by specifying any value other than | N_PROGRESS
for duri ng:

voi d onDocunent Updat e(@bser ves(duri ng=AFTER_SUCCESS) @Jpdat ed Docunent doc) {

127

Chapter 10. Events

10.5. Observer notification

When an event is fired by the application, the container must:

» determine the observer methods for that event according to the rules of observer resolution
defined by Section 10.3, “Observer resolution”, then,

» for each observer method, either invoke the observer method immediately, or register the
observer method for later invocation during the transaction completion phase, using a JTA

Synchroni zati on.

The container calls observer methods as defined in Section 5.5.6, “Invocation of observer
methods”.

 If the observer method is a transactional observer method and there is currently a JTA
transaction in progress, the container calls the observer method during the appropriate
transaction completion phase.

« If there is no context active for the scope to which the bean declaring the observer method
belongs, then the observer method should not be called.

« Otherwise, the container calls the observer immediately.

The order in which observer methods are called is not defined, and so portable applications should
not rely upon the order in which observers are called.

Any observer method called before completion of a transaction may call set Rol | backOnl y() to
force a transaction rollback. An observer method may not directly initiate, commit or rollback JTA
transactions.

Observer methods may throw exceptions:

« If the observer method is a transactional observer method, any exception is caught and logged
by the container.

» Otherwise, the exception aborts processing of the event. No other observer methods of that
event will be called. The BeanManager. fireEvent () or Event.fire() method rethrows the
exception. If the exception is a checked exception, it is wrapped and rethrown as an (unchecked)
Obser ver Excepti on.

For a custom implementation of the Cbser ver Met hod interface defined in Section 11.1.3, “The
Obser ver Met hod interface”, the container must call get Tr ansact i onPhase() to determine if the
observer method is transactional observer method, and noti f y() to invoke the method.

10.5.1. Observer method invocation context

The transaction context, client security context and lifecycle contexts active when an observer
method is invoked depend upon what kind of observer method it is.

128

Observer method invocation context

« If the observer method is a before completion transactional observer method, it is called within
the context of the transaction that is about to complete and with the same client security context
and lifecycle contexts.

« Otherwise, if the observer method is any other kind of transactional observer method, it is called
in an unspecified transaction context, but with the same client security context and lifecycle
contexts as the transaction that just completed.

« Otherwise, the observer method is called in the same transaction context, client security context
and lifecycle contexts as the invocation of Event . fire() or BeanManager. fireEvent ().

Of course, the transaction and security contexts for a business method of a session bean also
depend upon the transaction attribute and @unAs descriptor, if any.

129

130

Chapter 11.

Portable extensions

A portable extension may integrate with the container by:

» Providing its own beans, interceptors and decorators to the container

Injecting dependencies into its own objects using the dependency injection service
* Providing a context implementation for a custom scope

« Augmenting or overriding the annotation-based metadata with metadata from some other
source

11.1. The gean interface

The BeanAt tri but es interface exposes the basic attributes of a bean.

public interface BeanAttributes<T> {
publ i c Set<Type> get Types();
publ i c Set <Annotation> getQualifiers();
public C ass<? extends Annotation> get Scope();
public String getNanme();
public Set<C ass<? extends Annotati on>> get St ereotypes();
public bool ean i sAlternative();

» get Types(),getQualifiers(), getScope(), get Name() and get St er eot ypes() must return
the bean types, qualifiers, scope type, bean name and stereotypes of the bean, as defined in
Chapter 2, Concepts.

e isAlternative() mustreturntrue if the bean is an alternative, and f al se otherwise.

The interface j avax. enter pri se. i nj ect. spi . Bean defines everything the container needs to
manage instances of a certain bean.

public interface Bean<T> extends Contextual <T>, BeanAttributes<T> {
public C ass<?> get Beand ass();
publi ¢ Set<lnjectionPoint> getlnjectionPoints();
publi c bool ean isNullable();

e get Beand ass() returns the bean class of the managed bean or session bean or of the bean
that declares the producer method or field.

131

Chapter 11. Portable extensions

e getlnjectionPoints() returns a set of I nj ecti onPoi nt objects, defined in Section 5.5.7,
“Injection point metadata”, representing injection points of the bean, that will be validated by
the container at initialization time.

e isNul | abl e() is deprecated in CDI 1.1 and should be ignored by the container.

Note that implementations of Bean must also implement the inherited operations defined by the
Cont ext ual interface defined in Section 6.1, “The Cont ext ual interface”.

An instance of Bean must exist for every enabled bean.

A portable extension may add support for new kinds of beans beyond those defined by the this
specification (managed beans, session beans, producer methods, producer fields and resources)
by implementing Bean and registering beans with the container, using the mechanism defined in
Section 11.5.3, “Af t er BeanDi scovery event”.

Custom implementations of Bean are encouraged to implement Passi vat i onCapabl e and may
be required to in later revisions of this specification.

11.1.1. The pecorator interface

The Bean object for a decorator must implement the interface

javax.enterprise.inject.spi.Decorator.

public interface Decorator<T> extends Bean<T> {
publ i c Set<Type> get Decor at edTypes();
public Type get Del egat eType();
publ i ¢ Set <Annot ati on> get Del egateQualifiers();

» get Decor at edTypes() returns the decorated types of the decorator.

» get Del egat eType() and get Del egat eQual i fi ers() return the delegate type and qualifiers
of the decorator.

An instance of Decor at or exists for every enabled decorator.

11.1.2. The interceptor interface

The Bean object for an interceptor must implement
javax.enterprise.inject.spi.lnterceptor.

public interface Interceptor<T> extends Bean<T> {
publ i c Set <Annot ati on> get| nt er cept or Bi ndi ngs() ;
publi c bool ean intercepts(lnterceptionType type);
public Object intercept(lnterceptionType type, T instance, |nvocationContext

132

ctx) throws B

The Obser ver Met hod interface

e get | nterceptorBindi ngs() returns the interceptor bindings of the interceptor.

e intercepts() returnstrue if the interceptor intercepts the specified kind of lifecycle callback
or method invocation, and f al se otherwise.

e intercept() invokes the specified kind of lifecycle callback or method invocation interception
upon the given instance of the interceptor.

An I nt er cepti onType identifies the kind of lifecycle callback, EJB timeout method or business
method.

public enum I nterceptionType {
AROUND _| NVOKE, AROUND_CONSTRUCT, POST_CONSTRUCT, PRE_DESTROY, PRE_PASSI VATE

An instance of | nt er cept or exists for every enabled interceptor.

11.1.3. The mservermethod iNnterface

The interface javax.enterprise.inject.spi.CbserverMethod defines everything the
container needs to know about an observer method.

public interface QobserverMet hod<T> {
public O ass<?> get Beand ass();
public Type get QbservedType();
publ i c Set <Annot ati on> get CbservedQualifiers();
publ i c Reception getReception();
public TransactionPhase get Transacti onPhase();
public void notify(T event);

» get Beand ass() returns the class of the type that declares the observer method.

e get CbservedType() and get ObservedQualifiers() return the observed event type and
qualifiers.

» get Reception() returns | F_EXI STS for a conditional observer and ALWAYS otherwise.

e get Transacti onPhase() returns the appropriate transaction phase for a transactional observer
method or | N_PROGRESS otherwise.

* notify() calls the observer method, as defined in Section 10.5, “Observer notification”.

133

POST_ACTI VATE,

Chapter 11. Portable extensions

An instance of Coser ver Met hod must exist for every observer method of every enabled bean.

11.2. The producer and I nj ectionTar get Interfaces

The interface javax.enterprise.inject.spi.Producer provides a generic operation for
producing an instance of a type.

public interface Producer<T> {
public T produce(Creational Context<T> ctx);
public void dispose(T instance);
publ i c Set <l njectionPoint> getlnjectionPoints();

For a Producer that represents a class:

* produce() calls the constructor annotated @ nj ect if it exists, or the constructor with no
parameters otherwise, as defined in Section 5.5.1, “Injection using the bean constructor”, and
returns the resulting instance. If the class has interceptors, pr oduce() is responsible for building
the interceptors and decorators of the instance. The instance returned by produce() may be
a proxy.

 di spose() does nothing.

e getlnjectionPoints() returns the set of I nj ecti onPoi nt objects representing all injected
fields, bean constructor parameters and initializer method parameters.

For a Producer that represents a producer method or field:

e produce() calls the producer method on, or accesses the producer field of, a contextual
instance of the bean that declares the producer method, as defined in Section 5.5.4, “Invocation
of producer or disposer methods”.

» di spose() calls the disposer method, if any, on a contextual instance of the bean that declares
the disposer method, as defined in Section 5.5.4, “Invocation of producer or disposer methods”,
or performs any additional required cleanup, if any, to destroy state associated with a resource.

e getlnjectionPoints() returnsthe setofl nj ecti onPoi nt objects representing all parameters
of the producer method.

The subinterface j avax. enterprise.inject.spi.lnjectionTarget provides operations for

performing dependency injection and lifecycle callbacks on an instance of a type.

public interface InjectionTarget<T>
extends Producer<T> {

134

The BeanManager object

public void inject(T instance, Creational Context<T> ctx);
public void postConstruct(T instance);
public void preDestroy(T instance);

* inject() performs dependency injection upon the given object. The container performs Java
EE component environment injection, according to the semantics required by the Java EE
platform specification, sets the value of all injected fields, and calls all initializer methods, as
defined in Section 5.5.2, “Injection of fields and initializer methods”.

e post Construct () calls the @ost Construct callback, if it exists, according to the semantics
required by the Java EE platform specification.

« preDestroy() callsthe @reDestroy callback, if it exists, according to the semantics required
by the Java EE platform specification.

Implementations of Producer and I nj ecti onTar get must ensure that the set of injection points
returned by get | nj ect i onPoi nt s() are injected by produce() orinject ().

11.3. The BeanManager ObjeCt

The interface j avax. ent er pri se. i nj ect . spi . BeanManager provides operations for obtaining
contextual references for beans, along with many other operations of use to portable extensions.

The container provides a built-in bean with bean type BeanManager, scope @ependent and
qualifier @ef aul t. The built-in implementation must be a passivation capable dependency, as
defined in Section 6.6.3, “Passivation capable dependencies”. Thus, any bean may obtain an
instance of BeanManager by injecting it:

@ nj ect BeanManager nanager;

Note that, an exception is thrown if the following operations are called before the
Af t er BeanDi scovery event is fired:

e getBeans(String),

* get Beans(Type, Annotation.),

e get Passi vati onCapabl eBean(Stri ng)

* resol ve(Set),

* resol veDecorators(Set, Annotation..),

* resol velnterceptors(Intercepti onType, Annotation.),

135

Chapter 11. Portable extensions

e resol veObserver Met hods(oj ect, Annotation.),
* validate(lnjectionPoint),

and if the following operations are called before the {@Link AfterDeploymentValidation} event is
fired:

* get Ref erence(Bean, Type, Creational Context)
* getlnjectabl eReference(l njectionPoint, Creational Context).

All other operations of BeanManager may be called at any time during the execution of the
application.

11.3.1. Obtaining a reference to the CDI container

Portable extensions and other objects sometimes interact directly with the container via
programmatic API call. The abstractj avax. ent er pri se. i nj ect. spi . CDI provides access to the
BeanManager as well providing lookup of bean instances.

public abstract class CD <T> inpl enents |nstance<T> {
public static CDl <Cbject> current() { ... }
public static void setCDI Provider(CDl Provi der provider);
public abstract BeanManager get BeanManager ();

A portable extension or other object may obtain a reference to the current container by calling
CDI . current (). CDI . get BeanManager () may be called at any time after the container fires the
Bef or eBeanDi scovery container lifecycle event until the container fires the Bef or eShut down
container lifecycle event. Other methods on CDI may be called after the application initialization
is completed until the application shutdown starts. If methods on CDI are called at any other time,
non-portable behavior results.

When CDI . current () is called, get CDI () method is called on
javax.enterprise.inject.spi.CDl Provider.

The CDI Provi der to use may be set by the application or container using the set CDI Pr ovi der ()
method. If the set CDI Provi der () has not been called, the first service provider of the service
javax.enterprise.inject.spi.CD Provider declared in META-INF/services is used. If no
provider is available an I | | egal St at eExcept i on is thrown.

public interface CDIProvider {
public CDI <Chject> getCDl ();

136

Obtaining a contextual reference for a bean

A Java EE container is required to provide a CDI provider that will allow access to the current
container for any Java EE application or Java EE module which contains enabled beans.

Java EE components may obtain an instance of BeanManager from JNDI by looking up the name
j ava: conp/ BeanManager .

11.3.2. Obtaining a contextual reference for a bean

The method BeanManager . get Ref er ence() returns a contextual reference for a given bean and
bean type, as defined in Section 6.5.3, “Contextual reference for a bean”.

public Object getReference(Bean<?> bean, Type beanType, Creational Context<?> ctx);

The first parameter is the Bean object representing the bean. The second parameter represents a
bean type that must be implemented by any client proxy that is returned. The third parameter is an
instance of Cr eat i onal Cont ext that may be used to destroy any object with scope @ependent
that is created.

If the given type is not a bean type of the given bean, an I | | egal Ar gunent Except i on is thrown.

11.3.3. Obtaining an injectable reference

The method BeanManager . get | nj ect abl eRef erence() returns an injectable reference for a
given injection point, as defined in Section 6.5.5, “Injectable references”.

public Object getlnjectabl eReference(lnjectionPoint ij, Creational Context<?> ctx);

The first parameter represents the target injection point. The second parameter is an instance
of Creati onal Cont ext that may be used to destroy any object with scope @ependent that is
created.

If the InjectionPoint represents a decorator delegate injection point,
get | nj ect abl eRef er ence() returns a delegate, as defined in Section 8.1.2, “Decorator delegate
injection points”.

If typesafe resolution results in an unsatisfied dependency, the container must throw an
Unsati sfi edResol uti onExcepti on. If typesafe resolution results in an unresolvable ambiguous
dependency, the container must throw an Anbi guousResol uti onExcept i on.

Implementations of Bean usually maintain a reference to an instance of BeanManager.
When the Bean implementation performs dependency injection, it must obtain the contextual
instances to inject by calling BeanManager . get | nj ect abl eRef er ence(), passing an instance of
I nj ecti onPoi nt that represents the injection point and the instance of Cr eat i onal Cont ext that
was passed to Bean. create().

137

Chapter 11. Portable extensions

11.3.4. Obtaining non-contextual instance

A non-contextual instance can be obtained and injected from an | nj ecti onTar get, however
the I nj ectionTarget interface is designed to work on contextual instances. A helper class,
Unmanaged provides a set of methods optimized for working with non-contextual instances.

For example:

Unmanaged<Foo> unmanagedFoo = new Unnanaged<Foo>(Foo. cl ass);

Unmanaged| nst ance<Foo> f ool nst ance = unnanagedFoo. new nst ance();

Foo foo = fool nstance. produce().inject().postConstruct().get();
/'l Use the foo instance

f ool nst ance. preDestroy(). di spose();

11.3.5. Obtaining a Creational Cont ext

An instance of Creati onal Cont ext for a certain instance of Cont ext ual may be obtained by
calling BeanManager . cr eat eCr eat i onal Cont ext () .

publ i c <T> Creational Cont ext <T> creat eCr eati onal Cont ext (Cont ext ual <T> contextual);

An instance of Creati onal Cont ext for a non-contextual object may be obtained by passing a
null value to cr eat eCr eat i onal Cont ext ().

11.3.6. Obtaining a sean by type

The method BeanManager . get Beans() returns the set of beans which have the given required
type and qualifiers and are available for injection in the module or library containing the class into
which the BeanManager was injected or the Java EE component from whose JNDI environment
namespace the BeanManager was obtained, according to the rules for candidates of typesafe
resolution defined in Section 5.2.1, “Performing typesafe resolution”.

public Set<Bean<?>> get Beans(Type beanType, Annotation... qualifiers);

The first parameter is a required bean type. The remaining parameters are required qualifiers.
If no qualifiers are passed to get Beans() , the default qualifier @ef aul t is assumed.

If the given type represents a type variable, an I | | egal Ar gunment Except i on is thrown.

If two instances of the same qualifier type are given, an 1 | | egal Ar gunent Except i on is thrown.

If an instance of an annotation that is not a qualifier type is given, an 1 | | egal Ar gunent Excepti on
is thrown.

138

Obtaining a Bean by name

11.3.7. Obtaining a sean by name

The method BeanManager . get Beans() which accepts a string returns the set of beans which have
the given bean name and are available for injection in the module or library containing the class into
which the BeanManager was injected or the Java EE component from whose JNDI environment
namespace the BeanManager was obtained, according to the rules of name resolution defined in
Section 5.3, “EL name resolution”.

publ i c Set <Bean<?>> get Beans(String nane);

The parameter is a bean name.

11.3.8. Obtaining a passivation capable bean by identifier

The method BeanManager . get Passi vat i onCapabl eBean() returns the Passi vati onCapabl e
bean with the given identifier (see Section 6.6.1, “Passivation capable beans”).

publ i c Bean<?> get Passi vati onCapabl eBean(String id);

11.3.9. Resolving an ambiguous dependency

The method BeanManager . resol ve() applies the ambiguous dependency resolution rules
defined in Section 5.2.2, “Unsatisfied and ambiguous dependencies” to a set of Bean s.

public <X> Bean<? extends X> resol ve(Set<Bean<? extends X>> beans);

If the ambiguous dependency resolution rules fail (as defined in Section 5.2.2, “Unsatisfied and
ambiguous dependencies”, the container must throw an Ambi guousResol uti onExcepti on.

BeanManager . r esol ve() must return null if:

e null is passed to r esol ve(), or

* no beans are passed to r esol ve().

11.3.10. Validating an injection point

The BeanManager.validate() operation validates an injection point and throws an
I nj ecti onException if there is a deployment problem (for example, an unsatisfied or
unresolvable ambiguous dependency) associated with the injection point.

public void validate(lnjectionPoint injectionPoint);

139

Chapter 11. Portable extensions

11.3.11. Firing an event

The method BeanManager . fireEvent () fires an event and notifies observers, according to
Section 10.5, “Observer notification”.

public void fireEvent ((Qbject event, Annotation... qualifiers);

The first argument is the event object. The remaining parameters are event qualifiers.

If the runtime type of the event object contains a type variable, an 1 | | egal Ar gunent Excepti on
is thrown.

If two instances of the same qualifier type are given, an I | | egal Ar gunent Except i on is thrown.

If an instance of an annotation that is not a qualifier type is given, an | | | egal Ar gunent Excepti on
is thrown.

If the runtime type of the event object is assignable to the type of a container lifecycle event, an
Il egal Argument Except i on is thrown.

11.3.12. Observer method resolution

The method BeanManager . r esol veObser ver Met hods() resolves observer methods for an event
according to the rules of observer resolution defined in Section 10.3, “Observer resolution”.

public <T> Set<Observer Met hod<? super T>> resol veCbserver Met hods(T event, Annotation... qualifi

The first parameter of r esol veCbser ver Met hods() is the event object. The remaining parameters
are event qualifiers.

If the runtime type of the event object contains a type variable, an 1| | egal Ar gunent Excepti on
is thrown.

If two instances of the same qualifier type are given, an 1 | | egal Ar gunent Except i on is thrown.

If an instance of an annotation that is not a qualifier type is given, an 1 | | egal Ar gunent Excepti on
is thrown.

11.3.13. Decorator resolution

The method BeanManager . r esol veDecor at or s() returns the ordered list of decorators for a set
of bean types and a set of qualifiers and which are enabled in the module or library containing
the class into which the BeanManager was injected or the Java EE component from whose JNDI
environment namespace the BeanManager was obtained, as defined in Section 8.3, “Decorator
resolution”.

140

Interceptor resolution

Li st <Decor at or <?>> r esol veDecor at or s(Set <Type> types, Annotation... qualifiers);

The first argument is the set of bean types of the decorated bean. The annotations are qualifiers
declared by the decorated bean.

If two instances of the same qualifier type are given, an 1 | | egal Ar gunent Except i on is thrown.

If an instance of an annotation that is not a qualifier type is given, an 1 | | egal Ar gunent Excepti on
is thrown.

If the set of bean types is empty, an | | | egal Ar gunment Except i on is thrown.

11.3.14. Interceptor resolution

The method BeanManager . r esol vel nt er cept or s() returns the ordered list of interceptors for a
set of interceptor bindings and a type of interception and which are enabled in the module or library
containing the class into which the BeanManager was injected or the Java EE component from
whose JNDI environment namespace the BeanManager was obtained, as defined in Section 9.5,
“Interceptor resolution”.

Li st <l nt ercept or <?>> resol vel nterceptors(lnterceptionType type,
Annot ation... interceptorBindings);

If two instances of the same interceptor binding type are given, an | | | egal Ar gunent Excepti on
is thrown.

If no interceptor binding type instance is given, an 1 | | egal Ar gunent Except i on is thrown.

If an instance of an annotation that is not an interceptor binding type is given, an
Il 1 egal Argunent Except i on is thrown.

11.3.15. Determining if an annotation is a qualifier type, scope
type, stereotype or interceptor binding type

A portable extension may test an annotation to determine if it is a qualifier type, scope type,
stereotype or interceptor binding type, obtain the set of meta-annotations declared by a stereotype
or interceptor binding type, or determine if a scope type is a normal or passivating scope.

publi ¢ bool ean i sScope(d ass<? extends Annotation> annotati onType);

public boolean isQualifier(C ass<? extends Annotation> annotati onType);

publ i ¢ bool ean i sl nt er cept or Bi ndi ng(Cl ass<? ext ends Annot ati on> annot ati onType);
publ i c bool ean isStereotype(d ass<? extends Annotati on> annotati onType);

141

Chapter 11. Portable extensions

publ i ¢ bool ean i sNornal Scope(Cl ass<? extends Annotati on> scopeType);

publ i ¢ bool ean i sPassi vati ngScope(d ass<? extends Annotati on> scopeType);

publ i c Set <Annot ati on> get | nt er cept or Bi ndi ngDefi niti on(C ass<? extends Annotation> qualifierTyj
publ i c Set <Annot ati on> get St er eot ypeDefi ni ti on(Cl ass<? extends Annotati on> stereotype);

11.3.16. Determining the hash code and equivalence of
gualifiers and interceptor bindings

A portable extension may determine if two qualifiers or two interceptor bindings are considered
equivalent for the purposes of typesafe resolution, as defined in Section 5.2.1, “Performing
typesafe resolution”.

publ i c bool ean areQualifiersEqui val ent (Annotation qualifierl, Annotation qualifier?2);
publ i c bool ean arel nterceptorBi ndi ngsEqui val ent (Annot ati on i nt erceptorBi ndi ngl, Annotation inte

A portable extension may determine the hash code of a qualifier or interceptor binding, ignoring
any members annotated with @lonbi ndi ng.

public int getQualifierHashCode(Annotation qualifier);
public int getlnterceptorBi ndi ngHashCode(Annot ati on i nt er cept or Bi ndi ng) ;

11.3.17. Obtaining the active context for a scope

The method BeanManager . get Cont ext () retrieves an active context object associated with the
given scope, as defined in Section 6.5.1, “The active context object for a scope”.

publ i ¢ Cont ext getContext(C ass<? extends Annotation> scopeType);

11.3.18. Obtaining the ELResol ver

The method BeanManager . get ELResol ver () returns the j avax. el . ELResol ver specified in
Section 12.5, “Integration with Unified EL".

public ELResol ver get ELResol ver();

11.3.19. Wrapping a Unified EL expressionFactory

The method BeanManager . wr apExpr essi onFact ory() returns a wrapper
j avax. el . Expressi onFactory that delegates MethodExpression and Val ueExpression

142

Obtaining an Annot at edType for a class

creation to the given Expr essi onFact ory. When a Unified EL expression is evaluated using a
Met hodExpr essi on or Val ueExpr essi on returned by the wrapper Expr essi onFact or y, the rules
defined in Section 6.4.3, “Dependent pseudo-scope and Unified EL” are enforced by the container.

publ i ¢ ExpressionFactory wrapExpressi onFact ory(Expressi onFactory expressi onFactory);

11.3.20. Obtaining an annot at edType fOr a class
The method BeanManager . cr eat eAnnot at edType() returns an Annot at edType that may be

used to read the annotations of the given Java class or interface.

publ i c <T> Annot at edType<T> cr eat eAnnot at edType(d ass<T> type);

11.3.21. Obtaining an injectionTarget for a class

The method BeanManager . get | nj ecti onTar get Fact ory() returns a factory capable of creating
container provided implementations of | nj ecti onTar get for a given Annot at edType or throws
an Il 1 egal Argunent Excepti on if there is a definition error associated with any injection point
of the type.

public <T> I njectionTarget Factory<T> getl njectionTarget Fact ory(Annot at edType<T> type);

public interface InjectionTargetFactory<T> {

public InjectionTarget<T> createlnjectionTarget (Bean<T> bean);

Null should be passedtol nj ecti onTar get Fact ory. creat el nj ecti onTar get () to create anon-
contextual injection target. The method BeanManager . cr eat el nj ecti onTar get () is deprecated
since version 1.1 of Contexts and Dependency Injection.

11.3.22. Obtaining a producer for a field or method

The method BeanManager. get Producer Factory() returns a factory capable of creating
container provided implementations of Producer for a given AnnotatedMethod or
Annot at edFi el d, and declaring bean, or throws an || | egal Argument Except i on if there is a
definition error associated with the producer method or field.

publ i c <X> Producer Fact or y<X> get Producer Fact or y(Annot at edFi el d<? super X> field, Bean<X> decl:

143

Chapter 11. Portable extensions

publ i ¢ <X> Producer Fact or y<X> get Producer Fact or y(Annot at edMet hod<? super X> net hod, Bean<X> dec

public interface ProducerFactory<X> {

public <T> Producer<T> creat eProducer (Bean<T> bean);

Null should be passed to Producer Fact ory. cr eat eProducer () to create a producer of non-
contextual objects.

11.3.23. Obtaining al I nj ecti onPoi nt

The method BeanManager.createlnjectionPoint() returns a container provided
implementation of I nj ecti onPoi nt for a given Annot at edFi el d or Annot at edPar anet er or
throws an | | | egal Ar gunent Except i on if there is a definition error associated with the injection
point.

public InjectionPoint createlnjectionPoint(AnnotatedField<?> field);
public InjectionPoint createlnjectionPoint(AnnotatedParaneter<?> paraneter);

11.3.24. Obtaining d BeanAttributes

The method BeanManager.createBeanAttributes() returns a container provided
implementation of BeanAttributes by reading the annotations of a given Annot at edType
or Annot at edMenber, according to the rules defined in Chapter 2, Concepts, or throws an
Il egal Argument Excepti on if there is a definition error associated with the declared bean
attributes.

public <T> BeanAttributes<T> createBeanAttri butes(AnnotatedType<T> type);
publ i c BeanAttributes<?> createBeanAttri butes(Annot at edMenber <?> nenber);

11.3.25. Obtaining a Bean

The method BeanManager . cr eat eBean() returns a container provided implementation of Bean.
The methods accept:

e aBeanAttribut es, which determines the bean types, qualifiers, scope, name and stereotypes
of the returned Bean, and the return values of i sAl ternative(), and

 a class, which determines the return value of Bean. get d ass() .

144

Obtaining the instance of an Ext ensi on

e an InjectionTarget Factory, which is used to obtain an InjectionTarget. The
InjectionTarget is used to create and destroy instances of the bean, to perform
dependency injection and lifecycle callbacks, and which determines the return value of
Bean. get I nj ecti onPoi nts().

publ i c <T> Bean<T> creat eBean(BeanAttributes<T> attributes, C ass<T> beand ass,
I nj ecti onTar get Fact ory<T> i nj ecti onTar get Factory);

A second version of the method is provided to create a Bean from a producer. The method accepts:

e aBeanAttribut es, which determines the bean types, qualifiers, scope, name and stereotypes
of the returned Bean, and the return values of i sAl ternati ve(), and

 a class, which determines the return value of Bean. get O ass() .

e a ProducerFactory, which is used to obtain a Producer. The Producer is used to
create and destroy instances of the bean, and which determines the return value of
Bean. get | nj ecti onPoi nts().

public <T, X> Bean<T> createBean(BeanAttributes<T> attributes, Cass<X> beand ass,
Producer Fact or y<X> producer);

11.3.26. Obtaining the instance of an extension

The method BeanManager . get Ext ensi on() returns the container’'s instance of an Ext ensi on
class declared in META- | NF/ ser vi ces, orthrows an | | | egal Ar gunent Except i on if the container
has no instance of the given class.

public <T extends Extension> T get Ext ensi on(C ass<T> ext ensi ond ass);

11.4. Alternative metadata sources

A portable extension may provide an alternative metadata source, such as configuration by XML.

The interfaces Annot at edType, Annot at edFi el d, Annot at edMet hod, Annot at edConst r uct or
and Annot at edPar anet er in the package javax.enterprise.inject.spi allow a portable
extension to specify metadata that overrides the annotations that exist on a bean class. The
portable extension is responsible for implementing the interfaces, thereby exposing the metadata
to the container.

In general, the behavior is as defined by the Java Language Specification, and only deviations
from the Java Language Specification are noted.

145

Chapter 11. Portable extensions

The interface j avax. enterpri se.inj ect. spi. Annot at edType exposes the d ass object and
members.

public interface AnnotatedType<X>
ext ends Annotated {
public C ass<X> getJavad ass();
publ i ¢ Set <Annot at edConstruct or <X>> get Constructors();
publ i c Set <Annot at edMet hod<? super X>> get Met hods();
publi ¢ Set <Annot at edFi el d<? super X>> getFi el ds();

e getConstructors() returns all default-access, public, protected or private constructors
declared for the type.

e get Met hods() returns all default-access, public, protected or private methods declared
on the type and those declared on any supertypes. The container should -call
Annot at edMet hod. get JavaMenber (). get Decl ari ngCl ass() to determine the type in the type
hierarchy that declared the method.

e getFields() returns all default-access, public, protected or private fields declared
on the type and those declared on any supertypes. The container should call
Annot at edFi el d. get JavaMenber () . get Decl ari ngC ass() to determine the type in the type
hierarchy that declared the field.

When determining annotations on a type, the container must only consider the special inheritance
rules defined for scope types in Section 4.1, “Inheritance of type-level metadata”.

The interface j avax. ent er pri se. i nj ect. spi . Annot at edFi el d exposes the Fi el d object.
public interface AnnotatedFi el d<X>

ext ends Annot at edMenmber <X> {
public Field getJavaMenber();

The interface j avax. ent er pri se. i nj ect . spi . Annot at edMet hod exposes the Met hod object.

public interface AnnotatedMet hod<X>
ext ends Annot at edCal | abl e<X> {
publ i ¢ Met hod get JavaMenber () ;

The interface javax.enterprise.inject.spi.AnnotatedConstructor exposes the
Const uct or object.

146

Alternative metadata sources

public interface AnnotatedConstructor<x>
ext ends Annot at edCal | abl e<X> {
publ i ¢ Constructor<X> getJavaMenber () ;

The interface j avax. enterpri se. i nj ect. spi . Annot at edPar amet er exposes the posi ti on of
the parameter object and the declaring program element.

public interface AnnotatedParanet er <X>
ext ends Annotated {
public int getPosition();
publ i c Annot at edCal | abl e<X> get Decl ari ngCal | abl e() ;

The interface j avax. enter pri se. i nj ect. spi . Annot at edMenenber exposes the Menber object
and the Annot at edType that defines the member.

public interface AnnotatedMenber<X>
ext ends Annotated {
publ i c Member getJavaMenber();
public bool ean isStatic();
publ i ¢ Annot at edType<X> get Decl ari ngType();

The interface j avax. ent er pri se. i nj ect. spi . Annot at edCal | abl e exposes the parameters of
an invokable object.

Contexts and Dependency Injection for Java EE 1.1 deprecated the
method Annot at edMenber . isStatic(). The container should instead call
Annot at edMenber . get JavaMenber () . get Modi fi ers() to determine if the member is static.

public interface AnnotatedCall abl e<X>
ext ends Annot at edMenber <X> {
publ i c Li st <Annot at edPar anet er <X>> get Paraneters();

The interface j avax. enterpri se.inject.spi.Annot at ed exposes the overriding annotations
and type declarations.

public interface Annotated {
public Type get BaseType();

147

Chapter 11. Portable extensions

public Set<Type> get TypeCd osure();

public <T extends Annotation> T getAnnotation(C ass<T> annot ati onType);

publ i c Set <Annot ati on> get Annot ati ons();

publ i c bool ean i sAnnot ati onPresent (O ass<? extends Annot ation> annot ati onType);

* get BaseType() returns the type of the program element.
» get Typed osure() returns all types to which the base type should be considered assignable.

e get Annot ati on() returns the program element annotation of the given annotation type, or a
null value.

e get Annot at i ons() returns all annotations of the program element.

e i sAnnot ati onPresent () returns true if the program element has an annotation of the given
annotation type, or f al se otherwise.

The container must use the operations of Annot at ed and its subinterfaces to discover program
element types and annotations. The container must not directly call the Java Reflection API. In
particular, the container must:

« call Annot at ed. get BaseType() to determine the type of an injection point, event parameter or
disposed parameter,
 call Annot at ed. get TypeC osure() to determine the bean types of any kind of bean,

e call Annotated. get Annot ati ons() to determine the scope, qualifiers, stereotypes and
interceptor bindings of a bean,

« call Annot at ed. i sAnnot ati onPresent () and Annot at ed. get Annot ati on() to read any bean
annotations defined by this specification, and

e call Annot at edType. get Constructors(), Annot at edType. get Met hods() and
Annot at edType. get Fi el ds() to determine the members of a bean class.

11.5. Container lifecycle events

During the application initialization process, the container fires a series of events, allowing
portable extensions to integrate with the container initialization process defined in Section 12.2,
“Application initialization lifecycle”.

Observer methods of these events must belong to extensions. An extension is a service provider
of the service j avax. ent er pri se. i nj ect. spi . Ext ensi on declared in META- | NF/ ser vi ces.

public interface Extension {}

148

Container lifecycle events

If any method on the event object is called outside of the observer method invocation, an
Il egal St at eExcepti on is thrown.

Service providers may have observer methods, which may observe any event, including
any container lifecycle event, and obtain an injected BeanManager reference. Any decorators
associated with BeanManager will not be applied. If other beans are injected into
an extension’s observer methods, non-portable behavior results. An extension may use
BeanManager . fireEvent () to deliver events to observer methods defined on extensions. The
container is not required to deliver events fired during application initialization to observer methods
defined on beans.

The container instantiates a single instance of each extension at the beginning of the application
initialization process and maintains a reference to it until the application shuts down. The container
delivers event notifications to this instance by calling its observer methods.

For each service provider, the container must provide a bean of scope @\ppl! i cati onScoped and
qualifier @ef aul t, supporting injection of a reference to the service provider instance. The bean
types of this bean include the class of the service provider and all superclasses and interfaces.

Lifecycle events described below can be grouped in to two categories:

» Application lifecycle events, that are fired once:

» BeforeBeanDiscovery

AfterTypeDiscovery

AfterBeanDiscovery

AfterDeploymentValidation

BeforeShutdown
« Bean discovery events, that are fired multiple times:
* ProcessAnnotatedType
» ProcessinjectionPoint
» ProcessinjectionTarget
» ProcessBeanAttributes
* ProcessBean
* ProcessProducer
* ProcessObserverMethod

Note that the chronological order of these events is specified in Section 12.2, “Application
initialization lifecycle”.

149

Chapter 11. Portable extensions

11.5.1. BeforeBeanDi scovery €vent
The container must fire an event before it begins the type discovery process. The event object

must be of type j avax. enter pri se. i nj ect. spi . Bef or eBeanDi scovery:

public interface BeforeBeanD scovery {
public void addQualifier(C ass<? extends Annotation> qualifier);

public void addQualifier(AnnotatedType<? extends Annotation> qualifier);

public void addScope(d ass<? extends Annotation> scopeType, bool ean normal,

public void addStereotype(C ass<? extends Annotation> stereotype, Annotation...

publ i c voi d addl nterceptorBi ndi ng(Cd ass<? extends Annotation> bi ndi ngType, Annotation...
publ i c voi d addl nt ercept or Bi ndi ng(Annot at edType<? extends Annot ati on> bi ndi ngType);
public void addAnnot at edType(Annot at edType<?> type);

public void addAnnot at edType(Annot at edType<?> type, String id);

e addQualifier() declares an annotation type as a qualifier type.
* addScope() declares an annotation type as a scope type.

e addStereotype() declares an annotation type as a stereotype, and specifies its meta-
annotations.

e addl nt ercept or Bi ndi ng() declares an annotation type as an interceptor binding type, and
specifies its meta-annotations.

« addAnnot at edType() adds a given Annot at edType to the set of types which will be scanned
during bean discovery, with an optional identifier. The first version of the method is deprecated
since version 1.1 of Contexts and Dependency Injection.

voi d bef or eBeanDi scovery(@bserves BeforeBeanDi scovery event) { ... }

If any observer method of the Bef or eBeanDi scovery event throws an exception, the exception
is treated as a definition error by the container.

If any Bef or eBeanDi scovery method is called outside of the observer method invocation, an
Il egal Stat eExcepti on is thrown.

11.5.2. After TypeDi scovery event

The container must fire an event when it has fully completed the type discovery process
and before it begins the bean discovery process. The event object must be of type
javax.enterprise.inject.spi.AfterTypeD scovery.

public interface AfterTypeDi scovery {

150

bool ean passi v
st er eot ypel

Af t er BeanDi scovery event

public List<C ass<?>> getAlternatives();

public List<C ass<?>> getlnterceptors();

public List<C ass<?>> getDecorators();

public voi d addAnnot at edType(Annot at edType<?> type, String id);

e getAlternatives() returns the ordered list of enabled alternatives for the application.
Alternatives enabled for a bean archive are not included in the list.

e getlnterceptors() returns the ordered list of enabled interceptors for the application.
Interceptors enabled for a bean archive are not included in the list.

« get Decorat ors() returns the ordered list of enabled decorators for the application. Decorators
enabled for a bean archive are not included in the list.

« addAnnot at edType() adds a given Annot at edType to the set of types which will be scanned
during bean discovery, with an identifier.

If an alternative, interceptor or decorator is added using
Aft er TypeDi scovery. addAnnot at edType() , non-portable behavior results.

Any observer of this event is permitted to add classes to, or remove classes from, the list of
alternatives, list of interceptors or list of decorators. The container must use the final values of
these collections, after all observers of Af t er TypeDi scover y have been called, to determine the
order of the enabled alternatives, interceptors, and decorators for application. The initial values of
these collections are defined by the @ri ori t y annotation.

voi d afterTypeDi scovery(@bserves After TypeDi scovery event) { ... }

If any observer method of a Aft er TypeDi scovery event throws an exception, the exception is
treated as a definition error by the container.

If any After TypeDi scovery method is called outside of the observer method invocation, an
Il egal StateException is thrown.

11.5.3. AfterBeanDi scovery event

The container must fire an event when it has fully completed the bean discovery process, validated
that there are no definition errors relating to the discovered beans, and registered Bean and
Obser ver Met hod objects for the discovered beans.

The event object must be of type j avax. enterpri se. i nject. spi. After BeanDi scovery:

public interface AfterBeanD scovery ({
public void addDefinitionError(Throwable t);
public void addBean(Bean<?> bean);

151

Chapter 11. Portable extensions

public void addOoserver Met hod(Gbser ver Met hod<?> obser ver Met hod) ;

public void addCont ext (Cont ext context);

public <T> Annot at edType<T> get Annot at edType(d ass<T> type, String id);
public <T> Iterabl e<Annot at edType<T>> get Annot at edTypes(d ass<T> type);

« addDefini tionError () registers a definition error with the container, causing the container to
abort deployment after all observers have been natified.

« addBean() fires an event of type ProcessBean containing the given Bean and then registers
the Bean with the container, thereby making it available for injection into other beans. The given
Bean may implement | nt er cept or or Decor at or .

* addObserver Met hod() fires an event of type ProcessObser ver Met hod containing the given
Obser ver Met hod and then registers the Goser ver Met hod with the container, thereby making
it available for event notifications.

e addCont ext () registers a custom Cont ext object with the container.

* get Annot at edType() and get Annot at edTypes() returns the Annot at edType s discovered or
added during container initialization. The id of an Annot at edType added by the container is not
defined. If the i d passed is null, the container should substitute the container generated id.

A portable extension may take advantage of this event to register beans, interceptors, decorators,
observer methods and custom context objects with the container.

voi d afterBeanDi scovery(@hbserves AfterBeanDi scovery event, BeanManager nanager) {

If any observer method of the Af t er BeanDi scovery event throws an exception, the exception is
treated as a definition error by the container.

If any AfterBeanDi scovery method is called outside of the observer method invocation, an
Il egal StateException is thrown.

11.5.4. At terDepl oynent Val i dati on €vent

The container must fire an event after it has validated that there are no deployment problems and
before creating contexts or processing requests.

The event object must be of type
javax.enterprise.inject.spi.AfterDepl oynent Val i dati on:

public interface AfterDepl oynentValidation {
public void addDepl oynent Probl en{ Throwabl e t);

152

Bef or eShut down event

» addDepl oynent Probl en() registers a deployment problem with the container, causing the
container to abort deployment after all observers have been notified.

voi d afterDepl oynment Val i dati on(@bserves AfterDepl oyment Val i dati on event, BeanManager nanager)

If any observer method of the After Depl oynent Val i dati on event throws an exception, the
exception is treated as a deployment problem by the container.

If any Af t er Depl oynent Val i dat i on method is called outside of the observer method invocation,
an || egal Stat eExcepti on is thrown.

The container must not allow any request to be processed by the deployment until all observers
of this event return.

11.5.5. Bef oreshut down €vent

The container must fire a final event after it has finished processing requests and destroyed all
contexts.

The event object must be of type j avax. ent erpri se. i nj ect . spi . Bef or eShut down:

public interface BeforeShutdown {}

voi d bef or eShut down(@bser ves Bef or eShut down event, BeanManager manager) { ... }

If any observer method of the Bef or eShut down event throws an exception, the exception is
ignored by the container.

11.5.6. processAnnot at edType €VENt

The container must fire an event, before it processes a type, for every Java class, interface
(excluding the special kind of interface declaration annotation type) or enum discovered

as defined in Section 12.4.1, “Type discovery”
An event is not fired for any type annotated with @/et oed, or in a package annotated with @/et oed.

The event object must be of type j avax. enterpri se. i nj ect. spi . ProcessAnnot at edType<X>,
where X is the class, for types discovered in a bean archive, or of type
javax. enterprise.inject.spi.ProcessSyntheticAnnot atedType<X> for types added by
Bef or eBeanDi scovery. addAnnot at edType() or Aft er TypeDi scovery. addAnnot at edType() .

The annotation @Vt hAnnot ati ons may be applied to the event parameter. If the annotation is
applied, the container must only deliver ProcessAnnot at edType events for types which contain

153

Chapter 11. Portable extensions

at least one of the annotations specified. The annotation can appear on the annotated type, or on
any member, or any parameter of any member of the annotated type, as defined in Section 11.4,
“Alternative metadata sources”. The annotation may be applied as a meta-annotation on any
annotation considered.

If the @Vt hAnnot ati ons annotation is applied to any other event parameter, the container
automatically detects the problem and treats it as a definition error.

public interface ProcessAnnotatedType<X> {
publ i ¢ Annot at edType<X> get Annot at edType();
public void set Annot at edType(Annot at edType<X> type);
public void veto();

i nterface ProcessSynt heti cAnnot at edType<X> ext ends ProcessAnnot at edType<X> {
publi ¢ Extension get Source();

e get Annot at edType() returns the Annot at edType object that will be used by the container to
read the declared annotations.

* set Annot at edType() replaces the Annot at edType.
» veto() forces the container to ignore the type.
» get Sour ce() returns the Ext ensi on instance that added the annotated type.

Any observer of this event is permitted to wrap and/or replace the Annot at edType. The container
must use the final value of this property, after all observers have been called, as the only source
of types and annotations for the program elements.

For example, the following observer decorates the Annot at edType for every class that is
discovered by the container.

<T> voi d decor at eAnnot at edType(@bserves ProcessAnnot at edType<T> pat) {
pat . set Annot at edType(decor at e(pat.get Annot atedType()));

If any observer method of a Pr ocessAnnot at edType event throws an exception, the exception is
treated as a definition error by the container.

If any ProcessAnnot at edType method is called outside of the observer method invocation, an
Il egal StateException is thrown.

154

Processl nj ecti onPoi nt event

11.5.7. processinjecti onPoi nt €vent

The container must fire an event for every injection point of every Java EE component class
supporting injection that may be instantiated by the container at runtime, including every managed
bean declared using @sanagedBean, EJB session or message-driven bean, bean, interceptor or
decorator.

The event object must be of type j avax. ent er pri se. i nj ect. spi . Processl nj ecti onPoi nt <T,
X>where T is the managed bean class, session bean class or Java EE component class supporting
injection, and X is the declared type of the injection point.

public interface ProcesslnjectionPoint<T, X> {
public InjectionPoint getlnjectionPoint();
public void setlnjectionPoint(lnjectionPoint injectionPoint);
public void addDefinitionError(Throwable t);

e getlnjectionPoint () returns the | nj ecti onPoi nt object that will be used by the container
to perform injection.

e setlnjectionPoint() replaces the I nj ecti onPoi nt .

« addDefini tionError () registers a definition error with the container, causing the container to
abort deployment after bean discovery is complete.

Any observer of this event is permitted to wrap and/or replace the I nj ect i onPoi nt . The container
must use the final value of this property, after all observers have been called, whenever it performs
injection upon the injection point.

If any observer method of a Processl nj ecti onPoi nt event throws an exception, the exception
is treated as a definition error by the container.

If any Processl nj ecti onPoi nt method is called outside of the observer method invocation, an
Il 1 egal StateException is thrown.

11.5.8. ProcessinjectionTarget €vent

The container must fire an event for every Java EE component class supporting injection that
may be instantiated by the container at runtime, including every managed bean declared using
@mnagedBean, EJB session or message-driven bean, bean, interceptor or decorator.

The event object must be of type
javax.enterprise.inject.spi.ProcesslnjectionTarget<x>, where X is the managed bean
class, session bean class or Java EE component class supporting injection.

public interface ProcesslnjectionTarget<X> {

155

Chapter 11. Portable extensions

publ i ¢ Annot at edType<X> get Annot at edType() ;

public InjectionTarget<X> getlnjectionTarget();

public void setlnjectionTarget(InjectionTarget<X> injectionTarget);
public void addDefinitionError(Throwable t);

e get Annot at edType() returns the Annot at edType representing the managed bean class,
session bean class or other Java EE component class supporting injection.

e getlnjectionTarget () returnsthe I nj ecti onTar get object that will be used by the container
to perform injection.

e setlnjectionTarget () replacesthe | njectionTarget.

» addDefini tionError () registers a definition error with the container, causing the container to
abort deployment after bean discovery is complete.

Any observer of this event is permitted to wrap and/or replace the InjectionTarget. The
container must use the final value of this property, after all observers have been called, whenever
it performs injection upon the managed bean, session bean or other Java EE component class
supporting injection.

For example, this observer decorates the | nj ecti onTar get for all servlets.

<T extends Servlet> void decorateServl|et(@bserves ProcesslnjectionTarget<T> pit) {
pit.setlnjectionTarget(decorate(pit.getlnjectionTarget()));

If any observer method of a Pr ocessl nj ecti onTar get event throws an exception, the exception
is treated as a definition error by the container.

If any Processl nj ecti onTar get method is called outside of the observer method invocation, an
Il 1 egal StateException is thrown.

11.5.9. processBeanAttributes €vent

The container must fire an event for each bean, interceptor or decorator deployed in a bean
archive, before registering the Bean object. No event is fired for any:

* @ew qualified bean, defined in Section 3.14, “@ew qualified beans”, or,
» beans added programmatically using Af t er BeanDi scovery. addBean(), or,

« for any built-in beans.

156

Pr ocessBean event

The event object must be of type j avax. ent er pri se. i nj ect. spi . ProcessBeanAttri but es<T>
where T is the bean class of the managed bean or session bean, the return type of the producer
method, or the type of the producer field.

Resources are considered to be producer fields.

public interface ProcessBeanAttributes<T> {
publi ¢ Annot ated get Annot at ed();
publ i c BeanAttributes<T> getBeanAttri butes();
public void setBeanAttributes(BeanAttributes<T> beanAttri butes);
public void addDefinitionError(Throwable t);
public void veto();

e get Annot at ed() returns the Annot at edType representing the managed bean class or session
bean class, the Annot at edMet hod representing the producer field, or the Annot at edFi el d
representing the producer field.

e getBeanAttributes() returns the BeanAttri but es object that will be used by the container
to manage instances of the bean.

e setBeanAttributes() replaces the BeanAttri butes.

» addDefi ni tionError () registers a definition error with the container, causing the container to
abort deployment after bean discovery is complete.

» veto() forces the container to ignore the bean.

Any observer of this event is permitted to wrap and/or replace the BeanAt t ri but es. The container
must use the final value of this property, after all observers have been called, to manage instances
of the bean. Changes to BeanAt t ri but es are not propagated to the annotated type from which
the bean definition was created.

Any bean which has its bean attributes altered must have it's definition validated during
deployment validation.

If any observer method of a ProcessBeanAt t ri but es event throws an exception, the exception
is treated as a definition error by the container.

If any ProcessBeanAttri but es method is called outside of the observer method invocation, an
Il egal StateException is thrown.

11.5.10. processBean €VENt

The container must fire an event for each bean, interceptor or decorator deployed in a bean
archive, after firing the ProcessBeanAttri but es for the bean and before registering the Bean

157

Chapter 11. Portable extensions

object. No event is fired for any @ew qualified bean, defined in Section 3.14, “@ew qualified
beans”.

The event object type in the package j avax. ent er pri se. i nj ect. spi depends upon what kind
of bean was discovered:

e For a managed bean with bean class X, the container must raise an event of type
Pr ocessManagedBean<X>.

e For a session bean with bean class X, the container must raise an event of type
Pr ocessSessi onBean<X>.

» For a producer method with method return type X of a bean with bean class T, the container
must raise an event of type Pr ocessPr oducer Met hod<T, X>.

» For a producer field with field type X of a bean with bean class T, the container must raise an
event of type Pr ocessProducer Fi el d<T, X>.

Resources are considered to be producer fields.

The interface j avax. enterpri se.inject.spi.ProcessBean is a supertype of all these event
types:

public interface ProcessBean<X> {
publ i c Annot ated get Annot at ed();
publ i ¢ Bean<X> get Bean();
public void addDefinitionError(Throwable t);

e get Annotated() returns the AnnotatedType representing the bean class, the
Annot at edMet hod representing the producer method, or the Annot at edFi el d representing the
producer field.

* get Bean() returns the Bean object that is about to be registered. The Bean may implement
I nt ercept or or Decor at or.

» addDefini tionError() registers a definition error with the container, causing the container to
abort deployment after bean discovery is complete.

public interface ProcessSessi onBean<X>
ext ends ProcessManagedBean<Obj ect > {
public String getEj bNanme();
publ i ¢ Sessi onBeanType get Sessi onBeanType();

158

ProcessProducer event

* get Ej bNane() returns the EJB name of the session bean.

e get Sessi onBeanType() returns a javax.enterprise.inject.spi.SessionBeanType
representing the kind of session bean.

publ i c enum Sessi onBeanType { STATELESS, STATEFUL, SINGLETON }

public interface ProcessManagedBean<X>
ext ends ProcessBean<X> {
publ i c Annot at edType<X> get Annot at edBeand ass();

public interface ProcessProducer Met hod<T, X>
ext ends ProcessBean<X> {
publ i ¢ Annot at edMet hod<T> get Annot at edPr oducer Met hod() ;
publ i ¢ Annot at edPar anet er <T> get Annot at edDi sposedPar anet er () ;

public interface ProcessProducerFiel d<T, X>
ext ends ProcessBean<X> {
publ i ¢ Annot at edFi el d<T> get Annot at edPr oducer Fi el d();
publ i ¢ Annot at edPar anet er <T> get Annot at edDi sposedPar aneter () ;

If any observer method of a Pr ocessBean event throws an exception, the exception is treated as
a definition error by the container.

If any ProcessBean method is called outside of the observer method invocation, an
Il egal St at eExcepti on is thrown.

11.5.11. processpProducer €vent

The container must fire an event for each producer method or field of each bean, including
resources.

The event object must be of type j avax. enterprise.inject.spi.ProcessProducer<T, X>,
where T is the bean class of the bean that declares the producer method or field and Xis the return
type of the producer method or the type of the producer field.

public interface ProcessProducer<T, X> {
publ i ¢ Annot at edMenber <T> get Annot at edMenber () ;

159

Chapter 11. Portable extensions

publi ¢ Producer<X> get Producer();
public void setProducer (Producer<X> producer);
public void addDefinitionError(Throwable t);

e get Annot at edMenber () returns the Annot at edFi el d representing the producer field or the
Annot at edMet hod representing the producer method.

e get Producer () returns the Producer object that will be used by the container to call the
producer method or read the producer field.

« set Producer () replaces the Producer.

« addDefini tionError () registers a definition error with the container, causing the container to
abort deployment after bean discovery is complete.

Any observer of this event is permitted to wrap and/or replace the Pr oducer . The container must
use the final value of this property, after all observers have been called, whenever it calls the
producer or disposer.

For example, this observer decorates the Producer for all producer methods and fields of type
EntityManager.

voi d decorat eEntityManager (@bserves ProcessProducer<?, EntityManager> pp) {
pit.setProducer(decorate(pp.getProducer()));

If any observer method of a Pr ocessPr oducer event throws an exception, the exception is treated
as a definition error by the container.

If any ProcessProducer method is called outside of the observer method invocation, an
Il 1 egal StateException is thrown.

11.5.12. processbserver Met hod €vVent

The container must fire an event for each observer method of each bean, before registering the
CObser ver Met hod object.

The event object must be of type j avax. ent erpri se. i nj ect. spi . ProcessCbser ver Met hod<T,
X>, where T is the observed event type of the observer method and X is the bean class of the
bean that declares the observer method.

public interface ProcessCbserverMet hod<T, X> {
publ i c Annot at edMet hod<X> get Annot at edMet hod() ;
publ i c Observer Met hod<T> get Cbser ver Met hod() ;

160

ProcessCbser ver Met hod event

public void addDefinitionError(Throwable t);

e get Annot at edMet hod() returns the Annot at edMet hod representing the observer method.

e get Cbserver Met hod() returns the Obser ver Met hod object that will be used by the container
to call the observer method.

« addDefini tionError() registers a definition error with the container, causing the container to
abort deployment after bean discovery is complete.

If any observer method of a ProcessObser ver Met hod event throws an exception, the exception
is treated as a definition error by the container.

If any ProcessObser ver Met hod method is called outside of the observer method invocation, an
Il 1 egal StateException is thrown.

161

162

Chapter 12.

Packaging and deployment

When an application is started, the container must perform bean discovery, detect definition errors
and deployment problems and raise events that allow portable extensions to integrate with the
deployment lifecycle.

Bean discovery is the process of determining:

» The bean archives that exist in the application, and the beans they contain
< Which alternatives, interceptors and decorators are enabled for each bean archive
» The ordering of enabled interceptors and decorators

Additional beans may be registered programmatically with the container by the application or a
portable extension after the automatic bean discovery completes. Portable extensions may even
integrate with the process of building the Bean object for a bean, to enhance the container’s built-
in functionality.

12.1. Bean archives

Bean classes of enabled beans must be deployed in bean archives.

A bean archive has a bean discovery mode of al | , annot at ed or none. A bean archive which
contains a beans. xnl file with no version has a default bean discovery mode of al | . A bean
archive which contains a beans. xml file with version 1.1 (or later) must specify the bean-
di scovey- node attribute. The default value for the attribute is annot at ed.

An archive which:

e contains a beans. xni file with the bean- di scovery- node of none, or,
» contains an extension and no beans. xm file
is not a bean archive.

An explicit bean archive is an archive which contains a beans. xni file:

« with a version number of 1. 1 (or later), with the bean- di scovery-node of al | , or,
 with no version number, or,
« thatis an empty file.

An implicit bean archive is any other archive which contains one or more bean classes with a
bean defining annotation as defined in Section 2.5.1, “Bean defining annotations”, or one or more
session beans.

163

Chapter 12. Packaging and dep...

When determining which archives are bean archives, the container must consider:

« Library jars, EJB jars or application client jars

e The WEB- | NF/ cl asses directory of a war

 Directories in the JVM classpath

The container is not required to support application client jar bean archives.

A Java EE container is required by the Java EE specification to support Java EE modules. Other
containers may or may not provide support for war, EJB jar or rar bean archives.

The beans. xm file must be named:

¢ META-I|I NF/ beans. xm , or,
e in awar, VEB- | NF/ beans. xml or WEB- | NF/ cl asses/ META- | NF/ beans. xni .

If a war has a file named beans. xnl in both the WEB- I NF directory and in the VEB- | NF/
cl asses/ META- | NF directory, then non-portable behavior results. Portable applications must have
a beans. xni file in only one of the WEB- | NF or the VEB- | NF/ cl asses/ META- | NF directories.

For compatibility with Contexts and Dependency 1.0, products must contain an option to cause
an archive to be ignored by the container when no beans. xnl is present.

The container searches for beans in all bean archives in the application classpath:

 In an application deployed as an ear, the container searches every bean archive bundled with
or referenced by the ear, including bean archives bundled with or referenced by wars, EJB jars
and rars contained in the ear. The bean archives might be library jars, EJB jars or war WEB-
I NF/ cl asses directories.

* In an application deployed as a war, the container searches every bean archive bundled with
or referenced by the war. The bean archives might be library jars or the WEB- | NF/ cl asses
directory.

* In an application deployed as an EJB jar, the container searches the EJB jar, if it is a bean
archive, and every bean archive referenced by the EJB jar.

* In an application deployed as a rar, the container searches every bean archive bundled with
or referenced by the rar.

« An embeddable EJB container searches each bean archive in the JVM classpath that is listed in
the value of the embeddable container initialization property j avax. ej b. enbeddabl e. modul es,
or every bean archive in the JVM classpath if the property is not specified. The bean archives
might be directories, library jars or EJB jars.

164

Application initialization lifecycle

If a bean class is deployed in two different bean archives, non-portable behavior results. Portable
applications must deploy each bean class in no more than one bean archive.

Explicit bean archives may contain classes which are not deployed as beans. For example a bean
archive might contain message-driven beans.

Implicit bean archives are likely to contain classes which are not deployed as beans.

An extension may be deployed in any archive, including those that are not bean archives.

12.2. Application initialization lifecycle

When an application is started, the container performs the following steps:

First, the container must search for service providers for the service
javax. enterprise.inject.spi.Extension defined in Section 11.5, “Container lifecycle
events”, instantiate a single instance of each service provider, and search the service provider
class for observer methods of initialization events.

Next, the container must fire an event of type Bef oreBeanDi scovery, as defined in
Section 11.5.1, “Bef or eBeanDi scovery event”,

Next, the container must perform type discovery, as defined in ??7.

Next, the container must fire an event of type AfterTypeDi scovery, as defined in
Section 11.5.2, “Af t er TypeDi scovery event”.

Next, the container must perform bean discovery, as defined in ??77.

Next, the container must fire an event of type AfterBeanDi scovery, as defined in
Section 11.5.3, “Af t er BeanDi scovery event”, and abort initialization of the application if any
observer registers a definition error.

Next, the container must detect deployment problems by validating bean dependencies and
specialization and abort initialization of the application if any deployment problems exist, as
defined in Section 2.9, “Problems detected automatically by the container”.

Next, the container must fire an event of type After Depl oynment Val i dati on, as defined in
Section 11.5.4, “Af t er Depl oyrent Val i dat i on event”, and abort initialization of the application
if any observer registers a deployment problem.

Finally, the container begins directing requests to the application.

12.3. Application shutdown lifecycle

When an application is stopped, the container performs the following steps:

 First, the container must destroy all contexts.

165

Chapter 12. Packaging and dep...

* Finally, the container must fire an event of type Bef or eShut down, as defined in Section 11.5.5,
“Bef or eShut down event”.

12.4. Type and Bean discovery

The container automatically discovers managed beans (according to the rules of Section 3.1.1,
“Which Java classes are managed beans?”) and session beans in bean archives and searches
the bean classes for producer methods, producer fields, disposer methods and observer methods.

12.4.1. Type discovery

First the container must discover types. The container discovers:

« each Java class, interface (excluding the special kind of interface declaration annotation type)
or enum deployed in an explicit bean archive, and

« each Java class with a bean defining annotation in an implicit bean archive.
» each session bean

that is not excluded from discovery by an exclude filter as defined in Section 12.4.2, “Exclude
filters”.

Then, for every type discovered the container must create an Annot at edType representing
the type and fire an event of type ProcessAnnot atedType, as defined in Section 11.5.6,
“Pr ocessAnnot at edType event”.

If an extension calls Bef or eBeanDi scovery. addAnnot at edType() or
Aft er TypeDi scovery. addAnnot at edType(), the type passed must be added to the set of
discovered types and the container must fire an event of type Pr ocessSynt het i cAnnot at edType
for every type added, as defined in Section 11.5.6, “Pr ocessAnnot at edType event’+

12.4.2. Exclude filters

Exclude filters are defined by <excl ude> elements in the beans. xm for the bean archive as
children of the <scan> element. By default an exclude filter is active. If the exclude filter definition
contains:

* a child element named <i f - cl ass- avai | abl e> with a nane attribute, and the classloader for
the bean archive can not load a class for that name, or

* achild element named <i f - cl ass- not - avai | abl e> with a nane attribute, and the classloader
for the bean archive can load a class for that name, or

 a child element named <i f - syst em pr oper t y> with a nane attribute, and there is no system
property defined for that name, or

166

Exclude filters

» achild element named <i f - syst em pr oper t y> with a name attribute and a val ue attribute, and
there is no system property defined for that name with that value.

then the filter is inactive.

If the filter is active, and:

« the fully qualified name of the type being discovered matches the value of the name attribute
of the exclude filter, or

 the package name of the type being discovered matches the value of the name attribute with
a suffix ".*" of the exclude filter, or

« the package name of the type being discovered starts with the value of the name attribute with
a suffix ".**" of the exclude filter

then we say that the type is excluded from discovery.

For example, consider the follow beans. xmi file:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<beans xm ns="http://xmns.jcp.org/xm/ns/javaee">

<scan>
<excl ude nane="com acne.rest.*" />

<excl ude name="com acne. faces. **">
<i f-cl ass-not-avai |l abl e name="j avax. f aces. cont ext . FacesCont ext "/ >
</ excl ude>

<excl ude nane="com acne. ver bose. *" >
<if-system property name="verbosity" val ue="|ow'/>
</ excl ude>

<excl ude nane="com acne. ej b. **" >
<if-cl ass-avail abl e name="j avax. enterpri se. i nj ect. Model "/ >
<if-system property name="excl ude-ejbs"/>
</ excl ude>
</ scan>

</ beans>

The first exclude filter will exclude all classes in com acne. rest package. The second exclude
filter will exclude all classes in the com acne. f aces package, and any subpackages, but only
if JSF is not available. The third exclude filter will exclude all classes in the com acne. ver bose
package if the system property ver bosi t y has the value | ow. The fourth exclude filter will exclude
all classes in the com acne. ej b package, and any subpackages if the system property excl ude-

167

Chapter 12. Packaging and dep...

ej bs is set (with any value) and at the same time, the j avax. enterpri se. i nj ect. Model class
is available to the classloader.

12.4.3. Bean discovery

For every type in the set of discovered types (as defined in Section 12.4.1, “Type discovery”), the
container must:

* inspect the type metadata to determine if it is a bean or other Java EE component class
supporting injection, and then

* detect definition errors by validating the class and its metadata, and then

« if the class is a managed bean, session bean, or other Java EE component class supporting
injection, fire an event of type Pr ocessl nj ecti onPoi nt for each injection point in the class, as
defined in Section 11.5.7, “Pr ocessl nj ect i onPoi nt event”, and then

« if the class is a managed bean, session bean, or other Java EE component class supporting
injection, fire an event of type Processl njectionTarget, as defined in Section 11.5.8,
“Processl nj ectionTar get event”, and then

« determine which alternatives, interceptors and decorators are enabled, according to the rules
defined in Section 5.1.2, “Enabled and disabled beans”, Section 9.4, “Interceptor enablement
and ordering” and Section 8.2, “Decorator enablement and ordering”, and then

« if the class is an enabled bean, interceptor or decorator, fire an event of type
ProcessBeanAt tri but es, as defined in Section 11.5.9, “Pr ocessBeanAt t ri but es event”, and
then

« ifthe classis an enabled bean, interceptor or decorator and if Pr ocessBeanAt t ri but es. vet o()
wasn’t called in previous step, fire an event which is a subtype of Pr ocessBean, as defined in
Section 11.5.10, “Pr ocessBean event”.

For each enabled bean, the container must search the class for producer methods and fields,
as defined in Section 3.3, “Producer methods” and in Section 3.4, “Producer fields”, including
resources, and for each producer:

« ifitis a producer method, fire an event of type Pr ocessl nj ect i onPoi nt for each injection point
in the method parameters, as defined in Section 11.5.7, “Pr ocessl nj ect i onPoi nt event”, and
then

- fire an event of type ProcessProducer, as defined in Section 11.5.11, “ProcessProducer
event”, and then

« if the producer method or field is enabled, fire an event of type ProcessBeanAttri but es, as
defined in Section 11.5.9, “ProcessBeanAt t ri but es event”, and then

168

Integration with Unified EL

« ifthe producer method or field is enabled and if Pr ocessBeanAt t ri but es. vet o() wasn'’t called
in previous step, fire an event which is a subtype of Pr ocessBean, as defined in Section 11.5.10,
“Pr ocessBean event”.

For each enabled bean, the container must search for disposer methods as defined in Section 3.5,
“Disposer methods”, and for each disposer method:

« fire an event of type Pr ocessl nj ect i onPoi nt for each injection point in the method parameters,
as defined in Section 11.5.7, “Pr ocessl nj ect i onPoi nt event”.

For each enabled bean, the container must search the class for observer methods, and for each
observer method:

« fire an event of type Pr ocessl nj ect i onPoi nt for each injection point in the method parameters,
as defined in Section 11.5.7, “Processl nj ect i onPoi nt event”, and then

- fire an event of type ProcessQoserverMethod, as defined in Section 11.5.12,
“ProcessCbser ver Met hod event”.

Then, the container registers the Bean and Cbser ver Met hod objects:

» Foreach enabled bean that is not an interceptor or decorator, the container registers an instance
of the Bean interface defined in Section 11.1, “The Bean interface”.

« For each enabled interceptor, the container registers an instance of the I nt er cept or interface
defined in Section 11.1.2, “The I nt er cept or interface”.

» For each enabled decorator, the container registers an instance of the Decor at or interface
defined in Section 11.1.1, “The Decor at or interface”.

» For each observer method of every enabled bean, the container registers an instance of the
bser ver Met hod interface defined in Section 11.1.3, “The Cbser ver Met hod interface”.

12.5. Integration with Unified EL

The container must provide a Unified EL ELResol ver to the servlet engine and JSF
implementation that resolves bean names using the rules of name resolution defined in
Section 5.3, “EL name resolution” and resolving ambiguities according to Section 5.3.1,
“Ambiguous EL names”.

 If a name used in an EL expression does not resolve to any bean, the ELResol ver must return
a null value.

» Otherwise, if a name used in an EL expression resolves to exactly one bean, the ELResol ver
must return a contextual instance of the bean, as defined in Section 6.5.2, “Contextual instance
of a bean”.

169

170

	Contexts and Dependency Injection for the Java EE platform
	Table of Contents
	Preface
	1. Evaluation license
	2. Foreword
	3. Major changes

	Chapter 1. Architecture
	1.1. Contracts
	1.2. Relationship to other specifications
	1.2.1. Relationship to the Java EE platform specification
	1.2.2. Relationship to EJB
	1.2.3. Relationship to managed beans
	1.2.4. Relationship to Dependency Injection for Java
	1.2.5. Relationship to Java Interceptors
	1.2.6. Relationship to JSF
	1.2.7. Relationship to Bean Validation

	1.3. Introductory examples
	1.3.1. JSF example
	1.3.2. EJB example
	1.3.3. Java EE component environment example
	1.3.4. Event example
	1.3.5. Injection point metadata example
	1.3.6. Interceptor example
	1.3.7. Decorator example

	Chapter 2. Concepts
	2.1. Functionality provided by the container to the bean
	2.2. Bean types
	2.2.1. Legal bean types
	2.2.2. Restricting the bean types of a bean
	2.2.3. Typecasting between bean types

	2.3. Qualifiers
	2.3.1. Built-in qualifier types
	2.3.2. Defining new qualifier types
	2.3.3. Declaring the qualifiers of a bean
	2.3.4. Specifying qualifiers of an injected field
	2.3.5. Specifying qualifiers of a method or constructor parameter

	2.4. Scopes
	2.4.1. Built-in scope types
	2.4.2. Defining new scope types
	2.4.3. Declaring the bean scope
	2.4.4. Default scope

	2.5. Default bean discovery mode
	2.5.1. Bean defining annotations

	2.6. Bean names
	2.6.1. Declaring the bean name
	2.6.2. Default bean names
	2.6.3. Beans with no name

	2.7. Alternatives
	2.7.1. Declaring an alternative

	2.8. Stereotypes
	2.8.1. Defining new stereotypes
	2.8.1.1. Declaring the default scope for a stereotype
	2.8.1.2. Specifying interceptor bindings for a stereotype
	2.8.1.3. Declaring a @Named stereotype
	2.8.1.4. Declaring an @Alternative stereotype
	2.8.1.5. Stereotypes with additional stereotypes

	2.8.2. Declaring the stereotypes for a bean
	2.8.3. Built-in stereotypes

	2.9. Problems detected automatically by the container

	Chapter 3. Programming model
	3.1. Managed beans
	3.1.1. Which Java classes are managed beans?
	3.1.2. Bean types of a managed bean
	3.1.3. Declaring a managed bean
	3.1.4. Specializing a managed bean
	3.1.5. Default bean name for a managed bean

	3.2. Session beans
	3.2.1. EJB remove methods of session beans
	3.2.2. Bean types of a session bean
	3.2.3. Declaring a session bean
	3.2.4. Specializing a session bean
	3.2.5. Default bean name for a session bean

	3.3. Producer methods
	3.3.1. Bean types of a producer method
	3.3.2. Declaring a producer method
	3.3.3. Specializing a producer method
	3.3.4. Default bean name for a producer method

	3.4. Producer fields
	3.4.1. Bean types of a producer field
	3.4.2. Declaring a producer field
	3.4.3. Default bean name for a producer field

	3.5. Disposer methods
	3.5.1. Disposed parameter of a disposer method
	3.5.2. Declaring a disposer method
	3.5.3. Disposer method resolution

	3.6. Java EE components
	3.7. Resources
	3.7.1. Declaring a resource
	3.7.2. Bean types of a resource

	3.8. Additional built-in beans
	3.9. Bean constructors
	3.9.1. Declaring a bean constructor

	3.10. Injected fields
	3.10.1. Declaring an injected field

	3.11. Initializer methods
	3.11.1. Declaring an initializer method

	3.12. The default qualifier at injection points
	3.13. The qualifier @Named at injection points
	3.14. @New qualified beans
	3.15. Unproxyable bean types

	Chapter 4. Inheritance and specialization
	4.1. Inheritance of type-level metadata
	4.2. Inheritance of member-level metadata
	4.3. Specialization
	4.3.1. Direct and indirect specialization

	Chapter 5. Dependency injection, lookup and EL
	5.1. Modularity
	5.1.1. Declaring selected alternatives
	5.1.1.1. Declaring selected alternatives for an application
	5.1.1.2. Declaring selected alternatives for a bean archive

	5.1.2. Enabled and disabled beans
	5.1.3. Inconsistent specialization
	5.1.4. Inter-module injection

	5.2. Typesafe resolution
	5.2.1. Performing typesafe resolution
	5.2.2. Unsatisfied and ambiguous dependencies
	5.2.3. Legal injection point types
	5.2.4. Assignability of raw and parameterized types
	5.2.5. Primitive types and null values
	5.2.6. Qualifier annotations with members
	5.2.7. Multiple qualifiers

	5.3. EL name resolution
	5.3.1. Ambiguous EL names

	5.4. Client proxies
	5.4.1. Client proxy invocation

	5.5. Dependency injection
	5.5.1. Injection using the bean constructor
	5.5.2. Injection of fields and initializer methods
	5.5.3. Destruction of dependent objects
	5.5.4. Invocation of producer or disposer methods
	5.5.5. Access to producer field values
	5.5.6. Invocation of observer methods
	5.5.7. Injection point metadata
	5.5.8. Bean metadata

	5.6. Programmatic lookup
	5.6.1. The Instance interface
	5.6.2. The built-in Instance
	5.6.3. Using AnnotationLiteral and TypeLiteral

	Chapter 6. Scopes and contexts
	6.1. The Contextual interface
	6.1.1. The CreationalContext interface

	6.2. The Context interface
	6.3. Normal scopes and pseudo-scopes
	6.4. Dependent pseudo-scope
	6.4.1. Dependent objects
	6.4.2. Destruction of objects with scope @Dependent
	6.4.3. Dependent pseudo-scope and Unified EL

	6.5. Contextual instances and contextual references
	6.5.1. The active context object for a scope
	6.5.2. Contextual instance of a bean
	6.5.3. Contextual reference for a bean
	6.5.4. Contextual reference validity
	6.5.5. Injectable references
	6.5.6. Injectable reference validity

	6.6. Passivation and passivating scopes
	6.6.1. Passivation capable beans
	6.6.2. Passivation capable injection points
	6.6.3. Passivation capable dependencies
	6.6.4. Passivating scopes
	6.6.5. Validation of passivation capable beans and dependencies

	6.7. Context management for built-in scopes
	6.7.1. Request context lifecycle
	6.7.2. Session context lifecycle
	6.7.3. Application context lifecycle
	6.7.4. Conversation context lifecycle
	6.7.5. The Conversation interface

	Chapter 7. Lifecycle of contextual instances
	7.1. Restriction upon bean instantiation
	7.2. Container invocations and interception
	7.3. Lifecycle of contextual instances
	7.3.1. Lifecycle of managed beans
	7.3.2. Lifecycle of stateful session beans
	7.3.3. Lifecycle of stateless and singleton session beans
	7.3.4. Lifecycle of producer methods
	7.3.5. Lifecycle of producer fields
	7.3.6. Lifecycle of resources

	Chapter 8. Decorators
	8.1. Decorator beans
	8.1.1. Declaring a decorator
	8.1.2. Decorator delegate injection points
	8.1.3. Decorated types of a decorator

	8.2. Decorator enablement and ordering
	8.2.1. Decorator enablement and ordering for an application
	8.2.2. Decorator enablement and ordering for a bean archive

	8.3. Decorator resolution
	8.3.1. Assignability of raw and parameterized types for delegate injection points

	8.4. Decorator invocation

	Chapter 9. Interceptor bindings
	9.1. Interceptor binding types
	9.1.1. Interceptor bindings for stereotypes

	9.2. Declaring the interceptor bindings of an interceptor
	9.3. Binding an interceptor to a bean
	9.4. Interceptor enablement and ordering
	9.5. Interceptor resolution

	Chapter 10. Events
	10.1. Event types and qualifier types
	10.2. Firing events
	10.2.1. The Event interface
	10.2.2. The built-in Event

	10.3. Observer resolution
	10.3.1. Assignability of type variables, raw and parameterized types
	10.3.2. Event qualifier types with members
	10.3.3. Multiple event qualifiers

	10.4. Observer methods
	10.4.1. Event parameter of an observer method
	10.4.2. Declaring an observer method
	10.4.3. The EventMetadata interface
	10.4.4. Conditional observer methods
	10.4.5. Transactional observer methods

	10.5. Observer notification
	10.5.1. Observer method invocation context

	Chapter 11. Portable extensions
	11.1. The Bean interface
	11.1.1. The Decorator interface
	11.1.2. The Interceptor interface
	11.1.3. The ObserverMethod interface

	11.2. The Producer and InjectionTarget interfaces
	11.3. The BeanManager object
	11.3.1. Obtaining a reference to the CDI container
	11.3.2. Obtaining a contextual reference for a bean
	11.3.3. Obtaining an injectable reference
	11.3.4. Obtaining non-contextual instance
	11.3.5. Obtaining a CreationalContext
	11.3.6. Obtaining a Bean by type
	11.3.7. Obtaining a Bean by name
	11.3.8. Obtaining a passivation capable bean by identifier
	11.3.9. Resolving an ambiguous dependency
	11.3.10. Validating an injection point
	11.3.11. Firing an event
	11.3.12. Observer method resolution
	11.3.13. Decorator resolution
	11.3.14. Interceptor resolution
	11.3.15. Determining if an annotation is a qualifier type, scope type, stereotype or interceptor binding type
	11.3.16. Determining the hash code and equivalence of qualifiers and interceptor bindings
	11.3.17. Obtaining the active Context for a scope
	11.3.18. Obtaining the ELResolver
	11.3.19. Wrapping a Unified EL ExpressionFactory
	11.3.20. Obtaining an AnnotatedType for a class
	11.3.21. Obtaining an InjectionTarget for a class
	11.3.22. Obtaining a Producer for a field or method
	11.3.23. Obtaining an InjectionPoint
	11.3.24. Obtaining a BeanAttributes
	11.3.25. Obtaining a Bean
	11.3.26. Obtaining the instance of an Extension

	11.4. Alternative metadata sources
	11.5. Container lifecycle events
	11.5.1. BeforeBeanDiscovery event
	11.5.2. AfterTypeDiscovery event
	11.5.3. AfterBeanDiscovery event
	11.5.4. AfterDeploymentValidation event
	11.5.5. BeforeShutdown event
	11.5.6. ProcessAnnotatedType event
	11.5.7. ProcessInjectionPoint event
	11.5.8. ProcessInjectionTarget event
	11.5.9. ProcessBeanAttributes event
	11.5.10. ProcessBean event
	11.5.11. ProcessProducer event
	11.5.12. ProcessObserverMethod event

	Chapter 12. Packaging and deployment
	12.1. Bean archives
	12.2. Application initialization lifecycle
	12.3. Application shutdown lifecycle
	12.4. Type and Bean discovery
	12.4.1. Type discovery
	12.4.2. Exclude filters
	12.4.3. Bean discovery

	12.5. Integration with Unified EL

