Drools Planner User Guide

1. Planner iNTrOQUCTIONiiiiiii e e e e et e e e et e e e e et e e e e et s e e e eate s aeeeees 1
1.1. What iS Drools PIANNEIr? ..ottt e e e e e aens 1
1.2. Status Of Drools PIANNETiiiiiiiiiei e e e e s 2
1.3. Getting Drools Planner and running the examplesccccoooiiiiiiiiiii e, 2

1.3.1. Getting the release package and running the examplescceeeeennn. 2
1.3.2. Get it With MAVEN ...coeeiii e e e 2
1.3.3. BUild it frOM SOUICEcieiiiiieiiii e e e 3
1.4. Questions, issues and BIOgScoouiiiiiii 3

2. USE CaSES and EXaMPIES ..ouiiiiiiii i 5
200 1o o Yo 18X 1T o PPN 5
2.2. The N qUEENS EXAMPIEiiii i e aa s 5

A T o] = =T 1= o T | P 5
2.2.2. Problem StatemMentcouuiiiiiiiiei e 7
2.2.3. SOIULION(S) eettnietiiii ettt ettt et 7
2.2.4. PrODIBIM SIZE ..uuiiiiiii i 8
2.2.5. DOMAIN Class QIAQIaAMuuiiiiiiiieiiiii et 8
2.3. The Manners 2009 eXampPleccouiiiiiiiiiiii e e 9
2.3.1. Problem State€mMeNtoiiiiiiiiiiiei e 9
2.4. The Traveling Salesman Problem (TSP) exampleccccooveiiiiiiiiiiiiniciieeeeee, 10
2.4.1. Problem State@mMeNntoiiiiiiiii e 10
2.5. The Traveling Tournament Problem (TTP) examplecccoovviiiiiiiiiiiniiiineeeen, 10
2.5.1. SCre@NSNOL . .oviiii e 10
2.5.2. Problem StatemMentcoouuniiiiiiiiiee e 12
2.5.3. Simple and smart implementationcccooeeiiiiiieiiiin e 12
2.5.4. ProbDIBIM SIZE ..uuiiiiiii i 12
2.6. CloUd DAIANCING ...vuiiiiiie et 13
2.6.1. Problem StatemMentcocuuuiiiiiiiiieee e 13
2.7. The ITC 2007 curriculum course examplecoooieiiiiiiiiiiee e 14
2.7.1. Problem StatemMentcoouuniiiiiiiieee e 14
2.8. The ITC 2007 examination eXampleoiviiiiiiiiiii e 14
2.8.1. SCIrEENSNOL ...t e 14
2.8.2. Problem State@meNntviiiiiii e 16
2.8.3. PrODIBIM SIZE ..vuiiiiiiii e 16
2.8.4. DOMAIN Class QIAgramoveiiiiiiiiiii et 17
2.9. The patient admission scheduling (PAS) exampleccoooviiiiiiiiiiiiiiieceeeen, 19
2.10. The INRC 2010 nurse rostering exampleccooveeiiiiiiiiiiie e 19
2.10.1. Problem State@meNntcooouuiiiiiiiiee e 19

3. Planner configUIAtioNcoouueiiiii et 21

3.1 TYPES OF SOIVEIS ..eiiiiii e e e e e e e e e e aaa e 21
R T00 I T = 11 1 I o] (o= P 21
3.1.2. Branch and DOUNGcooouiiiiiiiiii e e 21
3130 SIMPIEX ot 21
3.1.4. Genetic algorithMsc..iiiiiii e 22

Drools Planner User Guide

3.1.5. Local search (tabu search, simulated annealing, ...)ccoooviiiiiiiiinneiiinnnnn. 22

3.2. The size of real world ProblEMSciiiiiii e 23
3.3. The SOIVEr INTEITACEuiieiiiii e e e e s 23
3.4, BUIlAING @ SOIVET ...couniii e 24
3.4.1. ENVIFONMENT MOUE . cevniiiiieiiee e e e e e eenas 25

3.5. The SOIUtioN INLEITACEcceveiiiiii e 26
3.5.1. The getScore and setScore Methodsc.ovvviiiiiiiiiii e 26
3.5.2. The getFacts Methodoooiiiiiiiii e 27
3.5.3. The cloneSolution Methodooveiiiiiiiiiii e 27

3.6. The starting SOIULIONiouiiiiii e e e e e e e e e e e eaaeees 28
3.6.1. A simple filler @algorithm ... 28
3.6.2. StartingSolutionINitialiZercooviiiiii 29

3.7. S0IVING @ PrODIBIM L.t 30
4, Score calculation with @ rule eNgINecooiiiiiiiii i 33
4.1. Rule based score CalCulationoovuiiiiiiiiii e 33
4.2. Defining the SCOre rules SOUICEcivuiiiiiiiiie e e 33
4.2.1. A scoreDrl resource on the classpathcccoooeviiiiiiiii e, 33
4.2.2. A RuleBase (possibly defined by GUVNOr)coooviiiiiiiiiii e, 33

4.3. Implementing @ SCOME FUIEoouuiiiiii e 33
4.4, Delta based Score CalCulationuiiiiiiiiiiiii e 34
4.5. The ScoreDefinition INterfacecooviiiiiiii e 35
T T FS = U (o I v o T 38
5. LOCAl SEAICH SOIVET .o e 39
LN I @ =T T PP 39
LT N 1 10 1Y PP 39
LRG0 NV o =Y o =1 = 4o o [43
L N (=] o TP UPPTPP 44
5.5. Getting stuck in [ocal OPptimaiiiiiiiiii e 47
5.6. DeCiding the NEXE STEP ..ovvuiiiiiii e 48
LG T8 I S 7= 1= Td (o SRR 49
5.8.2. ACCEPION .ttt 49
LT T T o] = o =] PP 52

L 1= 21 A=] (Vi) o P 54
LS T =T 011 =1 o o PP 54
5.8.1. TimeMillisSpendTerminationcccoeeiiiiiiiiiiiii e 54
5.8.2. StepCountTermMinationccceuuiiiiiiieiiie e e e e e e e eaa s 55
5.8.3. ScoreAttainedTerminNationccooeuuioiiieeine e e eees 55
5.8.4. UnimprovedStepCountTerminationccoovvviiieiiiieiiiiecin e 56
5.8.5. Combining TerminatioNSveeiiuiiiiiiiiieee e 56
5.8.6. Another thread can ask a Solver to terminate earlycccoocoiiiin, 56

5.9. Using a custom Selector, Acceptor, Forager or Terminationccoeveveneeenns 57
6. Benchmarking and tWeakKingccoiiiiiiiiiiii e e 59
6.1. Finding the best configurationcooooiiuiiiiiiiii e 59
6.2. Building a BeENChMArkercc.oiiiiiiii e 59

Vi

Drools

Planner &

viii

Chapter 1.

Chapter 1. Planner introduction

1.1. What is Drools Planner?

Drools Planner [http://www.jboss.org/drools/drools-planner] optimizes automated
planning by combining a search algorithm with the power of the Drools rule engine. Use cases
of planning problems include:

« Employee shift rostering, such as nurse rostering

» Vehicle routing, freight routing and people routing, such as The traveling salesman problem
[http://en.wikipedia.org/wiki/Travelling_salesman_problem] and The traveling tournament
problem [http://mat.gsia.cmu.edu/TOURN/]

« Educational timetabling, such as lesson scheduling, course schedule, exam scheduling and
conference scheduling

 Bin packing, stock sorting and storage organizing
* Machine queue planning

« Miss manners too (although the Drools Planner example solves this differently than the pure
Drools Expert example)

A planning problem consists out of a number of constraints. Generally, there are 3 types of
constraints:

» A (negative) hard constraint must not be broken. For example: 1 teacher can not teach 2 different
lessons at the same time.

* A (negative) soft constraint should not be broken if it can be avoided. For example: Teacher A
does not like to teach on Friday afternoon.

» A positive constraint (or reward) should be fulfilled if possible. For example: Teacher B likes to
teach on Monday morning.

These constraints define the score function of a planning problem. This is where the drools rule
engine comes into play: adding constraints with score rules is easy and scalable.

A planning problem has a number of solutions. Each solution has a score. There are 3 categories
of solutions:

« A possible solution is a solution that does or does not break any number of constraints. Planning
problems tend to have a incredibly large number of possible solutions. Most of those solutions
are worthless.

» Afeasible solution is a solution that does not break any (negative) hard constraints. The number
of feasible solutions tends to be relative to the number of possible solutions. Sometimes there
are no feasible solutions. Every feasible solution is a possible solution.

http://www.jboss.org/drools/drools-planner
http://www.jboss.org/drools/drools-planner
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://en.wikipedia.org/wiki/Travelling_salesman_problem
http://mat.gsia.cmu.edu/TOURN/
http://mat.gsia.cmu.edu/TOURN/
http://mat.gsia.cmu.edu/TOURN/

Chapter 1. Planner introduction

« An optimal solution is a solution with the highest score. Planning problems tend to have 1 or a
few optimal solutions. There is always at least 1 optimal solution, even in the remote case that
it's not a feasible solution because there are no feasible solutions.

Drools Planner supports several search algorithms to efficiently wade through the incredibly large
number of possible solutions. It makes it easy to switch the search algorithm, by simply
changing the solver configuration.

1.2. Status of Drools Planner

Drools Planner is production ready. The APl is almost stable but
backward incompatible changes can occur. With the recipe called
Upgr adeFr onPr evi ousVer si onReci pe. t xt [https://github.com/droolsjbpm/drools-planner/blob/
master/drools-planner-distribution/src/main/assembly/filtered-resources/
UpgradeFromPreviousVersionRecipe.txt] you can easily upgrade and deal with any backwards
incompatible changes between versions. This recipe is included in every release.

Drools Planner, like Drools, is open source software under the Apache Software License.
1.3. Getting Drools Planner and running the examples

1.3.1. Getting the release package and running the examples

You can download a release of Drools Planner from the drools download site [http:/
www.jboss.org/drools/downloads.html]. To run an example, just open the directory exanpl es and
run the script (r unExanpl es. sh on linux or r unExanpl es. bat on windows) and pick an example:

$ cd exanpl es
$./runExanpl es. sh

$ cd exanpl es
$ runExanpl es. bat

1.3.2. Get it with maven

The Drools Planner jars are available on the jboss maven repository [http://repository.jboss.com/
maven2/]. If you use maven 2 or 3, just add a dependency to dr ool s- pl anner-core in your
project's pom xm :

<dependency>
<gr oupl d>or g. drool s. pl anner </ gr oupl d>
<artifact!|d>drool s-planner-core</artifactld>

https://github.com/droolsjbpm/drools-planner/blob/master/drools-planner-distribution/src/main/assembly/filtered-resources/UpgradeFromPreviousVersionRecipe.txt
https://github.com/droolsjbpm/drools-planner/blob/master/drools-planner-distribution/src/main/assembly/filtered-resources/UpgradeFromPreviousVersionRecipe.txt
https://github.com/droolsjbpm/drools-planner/blob/master/drools-planner-distribution/src/main/assembly/filtered-resources/UpgradeFromPreviousVersionRecipe.txt
https://github.com/droolsjbpm/drools-planner/blob/master/drools-planner-distribution/src/main/assembly/filtered-resources/UpgradeFromPreviousVersionRecipe.txt
http://www.jboss.org/drools/downloads.html
http://www.jboss.org/drools/downloads.html
http://www.jboss.org/drools/downloads.html
http://repository.jboss.com/maven2/
http://repository.jboss.com/maven2/
http://repository.jboss.com/maven2/

Build it from source

<ver si on>5. x</ ver si on>
</ dependency>

You might also need to add the jboss repository in your repository manager (nexus, archiva, ...)
or your ~/ settings. xm :

<repositories>
<repository>
<i d>j boss- publ i c-reposi tory-group</id>
<nane>JBoss Public Maven Repository G oup</nane>
<url >https://repository.jboss. org/ nexus/ cont ent/ groups/ public/</url>
<rel eases>
<enabl ed>t r ue</ enabl ed>
</rel eases>
<snapshot s>
<enabl ed>t rue</ enabl ed>
</ snapshot s>
</repository>

</repositories>

1.3.3. Build it from source

You can also easily build it from source yourself. Clone drools from GitHub and do a maven 2 build:

$ git clone git@ithub.comdrool sjbpnfdrool s-planner.git drool s-pl anner

$ cd drool s-pl anner
$ nmvn - Dski pTests cl ean instal

After that, you can run any example directly from the command line, just run this command and
pick an example:

$ cd drool s-pl anner - exanpl es
$ nvn exec: exec

1.4. Questions, issues and blogs

Your questions and remarks are welcome on the user mailing list [http://www.jboss.org/drools/
lists.html]. Start the subject of your mail with [pl anner] . You can read/write to the user mailing

http://www.jboss.org/drools/lists.html
http://www.jboss.org/drools/lists.html
http://www.jboss.org/drools/lists.html

Chapter 1. Planner introduction

list without littering your mailbox through this web forum [http://n3.nabble.com/Drools-User-
f47000.html] or this newsgroup [nntp://news.gmane.org/gmane.comp.java.drools.user].

Feel free to report an issue (such as a bug, improvement or a new feature request) for the
Drools Planner code or for this manual to the drools issue tracker [https://jira.jpboss.org/jira/browse/
JBRULES]. Select the component dr ool s- pl anner.

Pull requests (and patches) are very welcome and get priority treatment! Attach them to a JIRA
issue and optionally send a mail to the dev mailing list to get the issue fixed fast. By open
sourcing your improvements, you 'll benefit from our peer review, improvements made upon your
improvements and maybe even a thank you on our blog.

Check our blog [http://blog.athico.com/search/label/planner] and twitter (Geoffrey De Smet [http://
twitter.com/geoffreydesmet]) for news. If Drools Planner helps you, don't forget to blog or to twitter
about it!

http://n3.nabble.com/Drools-User-f47000.html
http://n3.nabble.com/Drools-User-f47000.html
http://n3.nabble.com/Drools-User-f47000.html
nntp://news.gmane.org/gmane.comp.java.drools.user
nntp://news.gmane.org/gmane.comp.java.drools.user
https://jira.jboss.org/jira/browse/JBRULES
https://jira.jboss.org/jira/browse/JBRULES
https://jira.jboss.org/jira/browse/JBRULES
http://blog.athico.com/search/label/planner
http://blog.athico.com/search/label/planner
http://twitter.com/geoffreydesmet
http://twitter.com/geoffreydesmet
http://twitter.com/geoffreydesmet

Chapter 2.

Chapter 2. Use cases and examples

2.1. Introduction

Drools Planner has several examples. In this manual we explain Drools Planner mainly using
the n queens example. So it's advisable to read at least the section about that example. For
advanced users, the following examples are recommended: curriculum course, examination and
nurse rostering.

You can find the source code of all these examples in the drools source distribution and also in
git under dr ool s- pl anner/ dr ool s- pl anner - exanpl es.

2.2. The n queens example

2.2.1. Screenshot

Here is a screenshot of the example:

Chapter 2. Use cases and examples

Drools solver example nqueens

Load unsolvedNQueens04.xmil Load solvedNQueens04.xmi
Load unsolvedNQueens03.xmi Load snluedﬂﬂueensﬂﬂ.:mﬂ
Load unsolvedNQueens16.xmil Load solvedNQueens16.xmi S ——
Load unsolvedNQueens32.xmi Load sohvedNQueens32.xmil
Load unsolvedNQueenstd.xmil Load solvedNQueenstd.xmi

Wiy

L

igure 2.1. Screg nswe n

Problem statement

2.2.2. Problem statement

The n queens puzzle is a puzzle with the follow constraints:

» Use a chessboard of n rows and n columns.
» Place n queens on the chessboard.

« No 2 queens can attack each other. Note that a queen can attack any other queen on the same
horizontal, vertical or diagonal line.

The most common n queens puzzle is the 8 queens puzzle, with n = 8. We 'll explain Drools
Planner using the 4 queens puzzle as the primary example.

A proposed solution could be:

A-B C D

8%

iy

W N = O

Figure 2.2. A wrong solution for the 4 queens puzzle

The above solution is wrong because queens Al and B0 can attack each other (as can queens BO
and D0). Removing queen BO would respect the "no 2 queens can attack each other" constraint,
but would break the "place n queens" constraint.

2.2.3. Solution(s)

Below is a correct solution:

Ww N H O

hig

Figure 2.3. A correct solution for the 4 queens puzzle

Chapter 2. Use cases and examples

All the constraints have been met, so the solution is correct. Note that most n queens puzzles
have multiple correct solutions. We 'll focus on finding a single correct solution for a given n, not
on finding the number of possible correct solutions for a given n.

2.2.4. Problem size

These numbers might give you some insight on the size of this problem.

Table 2.1. NQueens problem size

queens (n) # possible # feasible # optimal # possible /
solutions (each solutions solutions optimal
queen its own (distinct) (distinct)
column)
4 256 2 2 128
8 16777216 64 64 262144
16 184467440737095346172512 14772512 1248720872503
32 1.46150163733090291820368483e ? ?
+48
64 3.94020061963944792122790401e 7 ?
+115
n n-n ? # feasible | ?
solutions

The Drools Planner implementation has not been optimized because it functions as a beginner
example. Nevertheless, it can easily handle 64 queens.

2.2.5. Domain class diagram

Use a good domain model and it will be easier to understand and solve your problem with Drools
Planner. We 'll use this domain model for the n queens example:

The Manners 2009 example

<<interface>>
Solution
+getFactz(): Collection<? extends Objec
Queen +cloneSolution() : Solution
= int 41\
: 1int - I
=t¥ {): int { |
et¥ () : int | thueensnis:| NQuUeeNs
=etAscendingD() : int 1
=tDe=scendingD() : int +getN(): int

Figure 2.4. NQueens domain class diagram

A Queen instance has an x (its column, for example: 0 is column A, 1 is column B, ...) and ay
(its row, for example: 0 is row 0, 1 is row 1, ...). Based on the x and y, the ascending diagonal
line as well as the descending diagonal line can be calculated. The x and y indexes start from the
upper left corner of the chessboard.

Table 2.2. A solution for the 4 queens puzzle shown in the domain model

A solution Queen ascendingD descendingD

(x+y) x-y)

A B M D 0 1 1 (%) -1
@ 1 0() 10 1

2 2 4 0

DO 3 0 () 3 3

W N = O

A single NQueens instance contains a list of all Queen instances. It is the Sol ut i on implementation
which will be supplied to and retrieved from the Solver. Notice that in the 4 queens example,
NQueens's get N() method will always return 4.

2.3. The Manners 2009 example

2.3.1. Problem statement

In Manners 2009, miss Manners is throwing a party again.

Chapter 2. Use cases and examples

This time she invited 144 guests and prepared 12 round tables with 12 seats each.
« Every guest should sit next to someone (left and right) of the opposite gender.
« And that neighbour should have at least one hobby in common with the guest.

« Also, this time there should be 2 politicians, 2 doctors, 2 socialites, 2 sports stars, 2 teachers
and 2 programmers at each table.

« And the 2 politicians, 2 doctors, 2 sports stars and 2 programmers shouldn't be the same kind.

2.4. The Traveling Salesman Problem (TSP) example

2.4.1. Problem statement

Given a list of cities, find the shortest tour for a salesman that visits each city exactly once. See
the wikipedia definition of the traveling Salesman Problem. [Traveling Salesman Problem]

It is one of the most intensively studied problems [one of the most intensively studied problems]
in computational mathematics. In the real world, it's often part of a planning problem, along with
other constraints such as employee shift time constraints.

2.5. The Traveling Tournament Problem (TTP) example

2.5.1. Screenshot

Here is a screenshot of the example:

10

Traveling Salesman Problem
Traveling Salesman Problem
Traveling Salesman Problem
one of the most intensively studied problems
one of the most intensively studied problems

Screenshot

Drools solver example travelingtournament/smart

Load 1-nlD4.xmil

Load 1-nl06.xmi

Load 1-nlD3.xmil

Load 1-nl04-score3276.xmil

Load 1-nl06-score24073.xml

Load 1-nl10.xmil

Load 1-nl12.xmi

Load 1-nl14.xmil

Load 1-nl03-score4 1367 -times365.Xn

Load 1-nl12-score126397-time26345.x

Load 1-nl16.xmil

Lnzad 3 hradd wiml

Load 1-nl14-score224764-timed 167s.X

[Match-6] NYM + PHI @ O

[Match-20] FLA + ATL @ 0

[Match-7] NYM + MON @ 1

[Match-10] PHI + ATL @ 1

[Match-4] ATL + PIT @ 2

[Match-12] PHI + MON @ 2

[Match-0] ATL + NYM @ 3

[Match-18] MON + FLA @ 3

[Match-8] NYM + FLA @ 4

[Match-17] MON + PHI @ 4

[Match-9] NYM + PIT @ 5

[Match-13] PHI + FLA @ 5

[Match-5] NYM + ATL @ 6

[Match-14] PHI + PIT @ 6

[Match-2] ATL + MON @ 7

[Match-22] FLA + PHI @ 7

[Match-1] ATL + PHI @ 8

[Match-16] MON + NYM @ 3

[Match-3] ATL + FLA @ 9

[Match-11] PHI + NYM @ 9

Score = -24.073

Figure 2.5. Screenshot of the traveling tournament example

11

Chapter 2. Use cases and examples

2.5.2. Problem statement

Schedule matches between N teams with the following hard constraints:

« Each team plays twice against every other team: once home and once away.

« Each team has exactly 1 match on each timesiot.

» No team must have more than 3 consecutive home or 3 consecutive away matches.
» No repeaters: no 2 consecutive matches of the same 2 opposing teams.

and the following soft constraint:

» Minimize the total distance traveled by all teams.

You can find a detailed description as well as several records of this problem here. [http:/
mat.gsia.cmu.edu/TOURN/]

2.5.3. Simple and smart implementation

There are 2 implementations (simple and smart) to demonstrate the importance of some
performance tips. The Dr ool sPl anner Exanpl esApp always runs the smart implementation, but
with these commands you can compare the 2 implementations yourself:

$ m/n exec: exec =
Dexec. mai nCl ass="or g. drool s. pl anner. exanpl es. travel i ngt our nanment . app. si npl e. Si npl eTr avel i ngTour

$ nmvn exec: exec -
Dexec. mai nCl ass="or ¢g. dr ool s. pl anner . exanpl es. travel i ngt our nanent . app. smart. Smart Tr avel i ngTour n¢

The smart implementation performs and scales exponentially better than the simple
implementation.

2.5.4. Problem size
These numbers might give you some insight on the size of this problem.

Table 2.3. Traveling tournament problem size

teams # days # matches # possible # possible # feasible # optimal
solutions solutions solutions solutions

(simple) (smart)

4 6 12 2176782336/ <= 518400 | ? 1?

12

http://mat.gsia.cmu.edu/TOURN/
http://mat.gsia.cmu.edu/TOURN/
http://mat.gsia.cmu.edu/TOURN/

Cloud balancing

teams # matches # possible # possible # feasible # optimal
solutions solutions solutions solutions
(simple) (smart)
6 10 30 10000000000€6000000000900000000 | 1?
47784725839872000000
8 14 56 1.52464943788290465606136043e 1?
+64 5.77608277425558771434498864¢e
+43
10 18 90 9.43029892325559280477@52413e 1?
+112 1.07573451027871200629339068e
+79
12 22 132 1.584141124%8195320415235060e 1?
+177 2.01650616733413376416949843e
+126
14 26 182 3.35080635695403223315189511e 1?
+257 1.73513467024013808570420241e
+186
16 30 240 3.22924601798855400751522483e 1?
+354 2.45064610271441678267620602¢
+259
n 2*(n-1) n*(n-1) @*(n-1N"N <=({(2*(n ? 1?
(n*(n-1)) -1))H~(n/
2))

2.6. Cloud balancing

2.6.1. Problem statement

There are a number of computers available. Assign a list of processes on those computers.

Hard constraints:

» Every computer should be able to handle the sum of each of the minimal hardware requirements
(CPR, RAM, network bandwith) of all its processes.

Soft constraints:

» Each computer that has one or more processes assigned, has a fixed cost. Minimize the total
cost.

This is a form of bin packing.

13

Chapter 2. Use cases and examples

2.7. The ITC 2007 curriculum course example

2.7.1. Problem statement

Schedule lectures into rooms and time periods.

You can find a more detailed description of this problem here. [http://www.cs.qub.ac.uk/itc2007/
curriculmcourse/course_curriculm_index.htm]

2.8. The ITC 2007 examination example

2.8.1. Screenshot

Here is a screenshot of the example:

14

http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/course_curriculm_index.htm

Screenshot

Drools solver example itc2007/examination

Load constraint_test_set.xml Load exam_comp_set1_ge0ffrey.xmi

Load exam_comp_set1.xml
Load exam_comp_set2_gelffrey.xmil

Load exam_comp_set2.xmil

Load exam_comp_set3_gelffrey.<mil
Load exam_comp_set3.xml

Load exam_comp_setd.xml Load exam_comp_setd_gelffrey.xmil
Period \ Room 0 {260} 1 {1003 2 {129}
15:04:20035 09:30:00 {210} 0 {195, 252} 3
1 {135, 85}
15:04:2005 14:00:00 {210} 4
595 {180, 56}
-
13:04:20035 09:30:00 {210} 56 {180, 54}
5
igure 2.6. Screenshot of thg examination example

‘] I
Score = -258.000.000

Chapter 2. Use cases and examples

2.8.2. Problem statement

Schedule each exam into a period and into a room. Multiple exams can share the same room
during the same period.

There are a number of hard constraints that cannot be broken:

Exam conflict: 2 exams that share students should not occur in the same period.
* Room capacity: A room's seating capacity should suffice at all times.

» Period duration: A period's duration should suffice for all of its exams.

» Period related hard constraints should be fulfilled:

» Coincidence: 2 exams should use the same period (but possibly another room).

e Exclusion: 2 exams should not use the same period.

 After: 1 exam should occur in a period after another exam's period.

* Room related hard constraints should be fulfilled:

» Exclusive: 1 exam should not have to share its room with any other exam.
There are also a number of soft constraints that should be minimized (each of which has
parameterized penalty’s):

e 2 exams in a row.

e 2 exams in a day.

» Period spread: 2 exams that share students should be a number of periods apart.
» Mixed durations: 2 exams that share a room should not have different durations.
» Front load: Large exams should be scheduled earlier in the schedule.

» Period penalty: Some periods have a penalty when used.

« Room penalty: Some rooms have a penalty when used.

It uses large test data sets of real-life universities.

You can find a more detailed description of this problem here. [http://www.cs.qub.ac.uk/itc2007/
examtrack/exam_track _index.htm]

2.8.3. Problem size

These numbers might give you some insight on the size of this problem.

16

http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm
http://www.cs.qub.ac.uk/itc2007/examtrack/exam_track_index.htm

Domain class diagram

Table 2.4. Examination problem size

exams/ # periods #rooms # #feasible # optimal
students topics possible | solutions solutions
solutions
exam_comp7888L 607 54 7 107564 ? 1?
exam_compl2482 870 40 49 1072864 7 1?
exam_compl&8aed 934 36 48 1003023 7 1?
exam_comp44214 273 21 1 10”360 ? 1?
exam_comp3 &t 1018 42 3 1072138 7 1?
exam_comp/3e% 242 16 8 107509 ? 1?
exam_compl3égb 1096 80 28 10n3671 ? 1?
exam_comp/ 5&8 598 80 8 1071678 7 1?
? S t p r (p*nNre 2 1?

Geoffrey De Smet (the Drools Planner lead) finished 4th in the International Timetabling
Competition 2007's examination track with a very early version of Drools Planner. Many
improvements have been made since then.

2.8.4. Domain class diagram

Below you can see the main examination domain classes:

17

Chapter 2. Use cases and examples

Figg

< <interface> =

- lang

!
i

Mot asserted into the working

e ™ e ™ B 0

™

PeriodHardConstraintType

Solution —_—
.f_’;‘:. I
i — twh
. = T
<< singletons = .
Examination _ El
I] -m
1 | - examlList :1]:::
An exam changes during sokving: S . -fr
The exam.period and/far exarm. L. I
room reference change.
The exarm.id and exarm.topic - Exam
reference do not change. —id : long
| - Foom
L /- topic 0+ |- Period .
Calculated before solving 'l“-[1 \,la’
. :] Period
TopicConflict
— - id : long
- studentsize :int - startDateTimestring : String
- periodindex © int
* _ o - dasdndex ; int
- leftTopic - - duration : int
- rightTopic - penalty : int
- frontLoadLlLast : boolean
1 1
Topic T _ topic
~id : long — | PeriodHardConstraint
- duration : int - leftTapicf _ ., lang
- frontLoadLarge : boolean 1
- rightTopic
- studentList 1
o _
e—2—Examtrater-domatclass diagram < < ERUM > =
Student

- COINCIDEMCE : int
- EXCLUSIOM : int
- AFTER : int

The patient admission scheduling (PAS) example

Notice that we've split up the exam concept into an Exam class and a Topi ¢ class. The Exam
instances change during solving, when they get another period or room property. The Topi c,
Peri od and Roominstances never change during solving.

2.9. The patient admission scheduling (PAS) example

In this problem, we have to assign each patient (that will come to the hospital) a bed for each
night that the patient will stay in the hospital. Each bed belongs to a room and each room belongs
to a department. The arrival and departure dates of the patients is fixed: only a bed needs to be
assigned for each night.

There are a couple of hard constraints:

2 patients shouldn't be assigned to the same bed in the same night.

« A room can have a gender limitation: only females, only males, the same gender in the same
night or no gender limitation at all.

* A department can have a minimum or maximum age.

A patient can require a room with specific equipment(s).

And of course, there are also some soft constraints:

« A patient can prefer a maximum room size, for example if he/she want a single room.

A patient is best assigned to a department that specializes in his/her problem.
* A patient is best assigned to a room that specializes in his/her problem.
« A patient can prefer a room with specific equipment(s).

The problem is defined on this webpage [http://allserv.kahosl.be/~peter/pas/] and the test data
comes from real world hospitals.

2.10. The INRC 2010 nurse rostering example

2.10.1. Problem statement

Schedule nurses into shifts.

You can find a more detailed description of this problem here. [http://www.kuleuven-kortrijk.be/
nrpcompetition]

19

http://allserv.kahosl.be/~peter/pas/
http://allserv.kahosl.be/~peter/pas/
http://www.kuleuven-kortrijk.be/nrpcompetition
http://www.kuleuven-kortrijk.be/nrpcompetition
http://www.kuleuven-kortrijk.be/nrpcompetition

20

Chapter 3.

Chapter 3. Planner configuration

3.1. Types of solvers

Different solvers solve problems in different ways. Each type has advantages and disadvantages.
We 'll roughly discuss a few of the solver types here. You can safely skip this section.

3.1.1. Brute force

Brute force creates and evaluates every possible solution, usually by creating a search tree.

Advantages:

« It knows when it has found an optimal solution. If there is more then 1 optimal solution, it finds
all optimal solutions.

« ltis straightforward and simple to implement.

Disadvantages:

« It performs and scales horribly. Mostly unusable for a real-world problem due to time limitations.

Brute force is currently not implemented in Drools Planner. But we have plans to implement it in
the future, as a reference for validating the output of the other solver types.

3.1.2. Branch and bound

Branch and bound is an improvement over brute force, as it prunes away subsets of solutions
which cannot have a better solution than the best solution already found at that point.

Advantages:

* It knows when it has found an optimal solution. If there is more then 1 optimal solution, it can
find all optimal solutions if needed.

* It can determine the bounds of a problem, which gives an indication of the quality of a solution.

Disadvantages:

« |t still scales very badly. Mostly unusable for a real-world problem due to time limitations.

Branch and bound is currently notimplemented in Drools Planner. But we have plans to implement
it in the future, as a reference for validating the output of the other solver types.

3.1.3. Simplex

Simplex is an algorithm to find the numerical solution of a linear programming problem.

21

Chapter 3. Planner configuration

Advantages:

« It knows when it has found an optimal solution.

Disadvantages:

 It's complex and mathematical to implement constraints.

Drools Planner does not implement simplex.

3.1.4. Genetic algorithms

Advantages:

* It's scalable.
« Given a limited time, it can still deliver a pretty decent solution.

Disadvantages:

« It does not know when it has found an optimal solution.

« If the optimal score is unknown (which is usually the case), it must be told when to stop looking
(for example based on time spend, user input, ...).

The genetic algorithm is currently not implemented in Drools Planner.

3.1.5. Local search (tabu search, simulated annealing, ...)

Local search starts from an initial solution and evolves that single solution into a mostly better
and better solution. It uses a single search path of solutions, not a search tree. At each solution
in this path it evaluates a number of moves on the solution and applies the most suitable move
to take the step to the next solution.

Local search works a lot like a human planner: it uses a single search path and moves facts
around to find a good feasible solution.

A simple local search can easily get stuck in a local optima, but improvements (such as tabu
search and simulated annealing) address this problem.

Advantages:

 It's relatively simple and natural to implement constraints (at least in Drools Planner's
implementation).

e It's very scalable, even when adding extra constraints (at least in Drools Planner's
implementation).

* Given a limited time, it can still deliver a pretty decent solution.

Disadvantages:

22

The size of real world problems

* It does not know when it has found an optimal solution.

* If the optimal score is unknown (which is usually the case), it must be told when to stop looking
(for example based on time spend, user input, ...).

Drools Planner implements local search, including tabu search and simulated annealing.

3.2. The size of real world problems

As a planning problem gets bigger, the search space tends to blow up really fast. It's not
uncommon to see that it's possible to optimally plan 5 people in less then a second, while planning
6 people optimally would take years. Take a look at the problem size of the examples: many
instances have a lot more possible solutions than the minimal number of atoms in the known
universe (10"80).

The cold, hard reality is that for most real-world planning problems we will not find the optimal
solution in our lifetimes. But that's OK, as long as we improve upon the solutions created by
human planners (which is easy) or other systems.

Planning competitions (such as the International Timetabling Competition) show that local search
variations (tabu search, simulated annealing, ...) usually perform best for real-world problems
given real-world time limitations.

3.3. The Solver interface

Solving a planning problem with Drools Planner consists out of 4 steps:

1. Build a solver, for example a tabu search solver for any NQueens puzzle.

2. Set a starting solution on the solver, for example a 4 Queens puzzle instance.
3. Solve it.

4. Get the best solution found by the solver.

Every build-in solver implemented in Drools Planner implements the Sol ver interface:

public interface Sol ver {
voi d setStartingSol uti on(Sol ution solution);
Sol uti on get Best Sol ution();
void solve();

Il

23

Chapter 3. Planner configuration

There is normally no need to implement the Sol ver interface yourself.

A Sol ver should only be accessed from a single thread, except for the methods that are
specifically javadocced as thread-safe.

3.4. Building a Solver

You can build a Sol ver instance with the Xnl Sol ver Confi gur er. Configure it with a solver
configuration XML file:

Xm Sol ver Confi gurer configurer = new Xm Sol ver Confi gurer();
configurer.configure("/org/drool s/planner/exanpl es/ nqueens/ sol ver/
nqueensSol ver Confi g. xm ");
Sol ver sol ver = configurer. buil dSol ver();

A basic solver configuration file looks something like this:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<l ocal Sear chSol ver >
<scoreDr| >/ org/ drool s/ pl anner/ exanpl es/ nqueens/ sol ver/
nQueensScor eRul es. drl </ scoreDr| >
<scor eDefinition>
<scor eDefini ti onType>S|I MPLE</ scor eDefi ni ti onType>
</ scoreDefinition>
<term nati on>
<scor eAtt ai ned>0</ scor eAtt ai ned>
</term nati on>
<sel ect or>

<noveFact oryCl ass>or g. drool s. pl anner . exanpl es. nqueens. sol ver. NQueensMveFact or y</
noveFact oryCl ass>
</ sel ect or >
<accept or >
<conpl et eSol uti onTabuSi ze>1000</ conpl et eSol uti onTabuSi ze>
</ accept or >
<f or ager >
<pi ckEar | yType>NEVER</ pi ckEar | yType>
</ forager >
</l ocal Sear chSol ver >

This is a tabu search configuration for n queens. We 'll explain the various parts of a configuration
later in this manual.

Drools Planner makes it relatively easy to switch a solver type just by changing
the configuration. There's even a benchmark utility which allows you to play out different
configurations against each other and report the most appropriate configuration for your problem.

24

Environment mode

You could for example play out tabu search versus simulated annealing, on 4 queens and 64
queens.

3.4.1. Environment mode

A solver has a single Randominstance. Some solver configurations use the Randominstance a lot
more than others. For example simulated annealing depends highly on random numbers, while
tabu search only depends on it to deal with score ties. The environment mode influences the seed
of that Randominstance.

The environment mode also allows you to detect common bugs in your implementation.

You can set the environment mode in the solver configuration XML file:

<l ocal SearchSol ver >
<envi r onment Mode>DEBUG</ envi r onnent Mode>

</ | ocal SearchSol ver >

There are 3 environment modes:
3.4.1.1. DEBUG

The debug mode is reproducible (see the reproducible mode) and also turns on assertions (such
as assert that the undo Move is uncorrupted) to fail-fast on a bug in your Move implementation,
your score rule, ...

The debug mode is slow.

It's recommended to write a test case which does a short run of your planning problem with debug
mode on.

3.4.1.2. REPRODUCIBLE (default)

The reproducible mode is the default mode because it is recommended during development. In
this mode, 2 runs on the same computer will execute the same code in the same order. They will
also yield the same result, except if they use a time based termination and they have a sufficiently
large difference in allocated CPU time. This allows you to benchmark new optimizations (such as
a new move implementation or a different minimalAcceptedSelection setting) fairly.

The reproducible mode is not much slower than the production mode.

In practice, this mode uses the default random seed, and it also disables certain concurrency
optimizations (such as work stealing).

3.4.1.3. PRODUCTION

The production mode is the fastest and the most robust, but not reproducible. It is recommended
for a production environment.

25

Chapter 3. Planner configuration

The random seed is different on every run, which makes it more robust against an unlucky random
seed. An unlucky random seed gives a bad result on a certain data set with a certain solver
configuration. Note that in most use cases the impact of the random seed is relatively low on
the result (even with simulated annealing). An occasional bad result is far more likely caused by
another issue (such as a score trap).

3.5. The Solution interface

A Solver can only solve 1 problem instance at a time.
You need to present the problem as a starting Sol ut i on instance to the solver.

You need to implement the Sol ut i on interface:

public interface Sol ution<S extends Score> {

S get Score();
voi d set Score(S score);

Col | ecti on<? extends Object> getFacts();

Sol uti on<S> cl oneSol ution();

For example, an NQueens instance just holds a list of all its queens:

public class NQueens inplenments Sol uti on<Si npl eScore> {
private List<Queen> queenLi st;

Il

3.5.1. The getScore and setScore methods

A Sol uti on requires a score property. The score property is null if the Sol uti on is uninitialized
or if the score has not yet been (re)calculated. The score property is usually typed to the specific
Scor e implementation you use. For example, NQueens uses a Si npl eScor e:

private SinpleScore score;

public Sinmpl eScore getScore() {

26

The getFacts method

return score,

public void set Score(Si nmpl eScore score) {
this.score = score;

Most use cases use a Har dAndSof t Scor e instead.

3.5.2. The getFacts method

All objects returned by the get Fact s() method will be asserted into the drools working memory.
Those facts can be used by the score rules. For example, NQueens just returns all Queen instances.

public Collection<? extends Object> getFacts() {
return queenLi st;

3.5.3. The cloneSolution method

Most solvers use the cl oneSol uti on() method to clone the solution each time they encounter a
new best solution. The NQueens implementation just clones all Queen instances:

publ i c NQueens cl oneSol ution() ({
NQueens cl one = new NQueens();
Li st <Queen> cl onedQueenLi st = new ArraylLi st <Queen>(queenLi st.size());
for (Queen queen : queenList) {
cl onedQueenlLi st . add(queen. cl one());

}

cl one. queenLi st = cl onedQueenlLi st ;
cl one. score = score;
return clone;

The cl oneSol uti on() method should clone no more and no less than the parts of the Sol uti on
that can change during planning. For example, in the curriculum course schedule example the
lectures are cloned, but teachers, courses, timeslots, periods, rooms, ... are not cloned because
only a lecture's appointed period or room changes during solving:

/**
* Clone will only deep copy the { #l ectureList}.
*/

public Curricul umCour seSchedul e cl oneSol ution() {

27

Chapter 3. Planner configuration

Curri cul unCour seSchedul e cl one = new Curri cul umCour seSchedul e() ;

cl one. teacher Li st = teacherlLi st;
clone. curriculunlLi st = curricul unli st;
cl one. courseLi st = courseli st;
cl one. dayLi st = dayli st;
clone.tineslotList = tineslotlList;
cl one. peri odLi st = peri odLi st ;
cl one.roonLi st = roonli st;
cl one. unavai | abl ePeri odConstrai ntLi st = unavai | abl ePeri odConstrai ntLi st ;
Li st <Lecture> cl onedLecturelLi st = new ArraylList<Lecture>(lectureList.size());
for (Lecture lecture : lectureList) {
Lecture clonedLecture = | ecture.clone();
cl onedLect urelLi st. add(cl onedLecture);
}
clone. |l ectureLi st = cl onedLect ureli st;
cl one. score = score;
return clone

3.6. The starting solution

First, you will need to make a starting solution and set that on the solver:

sol ver. set StartingSol uti on(startingSol ution);

3.6.1. A simple filler algorithm

For 4 queens we use a simple filler algorithm that creates a starting solution with all queens on
a different x and on the same y (with y = 0).

A B C D
g g

Ww N ¥+ ©

Figure 3.1. Starting solution for the 4 queens puzzle

Here's how we generate it:

28

StartingSolutionlInitializer

private NQueens createNQueens(int n) {

NQueens nQueens = new NQueens();
nQueens. set | d(OL);
Li st <Queen> queenLi st = new ArraylLi st <Queen>(n);
for (int i =0; i <n; i++) {
Queen queen = new Queen();
queen. setld((long) i);
qgueen.setX(i); // Different colum
queen. setY(0); // Sane row
queenLi st . add(queen);

}

nQueens. set QueenLi st (queenLi st);
return nQueens;

The starting solution will probably be far from optimal (or even feasible). Here, it's actually the
worst possible solution. However, we 'll let the solver find a much better solution for us anyway.

3.6.2. StartingSolutioninitializer

For large problems, a simple filler algorithm like cr eat eNQueens(i nt) doesn't suffice. A (local
search) solver starting from a bad starting solution wastes a lot of time to reach a solution which
an initializer algorithm can generate in a fraction of that time.

An initializer algorithm usually works something like this:
« It sorts the unplanned elements in a queue according to some general rules, for example by
exam student size.

* Next, it plans them in the order they come from the queue. Each element is put the best, still
available spot.

« Itdoesn't change an already planned element. It exits when the queue is empty and all elements
are planned.

Such an algorithm is very deterministic: it's really fast, but you can't give it more time to generate
an even better solution. In some cases the solution it generates will be feasible, but in most cases
it won't. You 'll need a real solver to get to a feasible or more optimal solution. Nevertheless
you 'll want to such an initializer to give the real solver a serious head start. You can do this by
implementing the St arti ngSol utionlnitializer interface:

public interface StartingSolutionlnitializer extends Sol ver Aware {
bool ean isSolutionlnitialized(Solution solution);

void initializeSolution(Solution solution);

29

Chapter 3. Planner configuration

You'll need to set a (uninitialized) solution on the solver. Once the solver starts, it will first call the
StartingSol utionlnitializer toinitialize the solution. If the Starti ngSol utionlnitializer
adds, edits or removes facts it needs to notify the workingMemory about this. It can use score
calculation during its initialization process.

Here's an example on how you add the St arti ngSol utionlnitializer to the configuration:

<l ocal Sear chSol ver >
StartingSolutionlnitializer</
startingSol utionlnitializerd ass>

</ | ocal Sear chSol ver >

3.7. Solving a problem

Solving a problem is quite easy once you have a solver and the starting solution:

sol ver.set StartingSol ution(startingSol ution);
sol ver. sol ve();
Sol ution best Sol uti on = sol ver. get Best Sol uti on();

The sol ve() method will take a long time (depending on the problem size and the solver
configuration). The solver will remember (actually clone) the best solution it encounters during its
solving. Depending on a number factors (including problem size, how long you allow the solver
to work, which solver type you use, ...), that best solution will be a feasible or even an optimal

solution.
A B C D

0 i

1|

2 g

3| [

Figure 3.2. Best solution for the 4 queens puzzle (also an optimal solution)

30

Solving a problem

After a problem is solved, you can reuse the same solver instance to solve another problem (of
the same problem type).

31

32

Chapter 4.

Chapter 4. Score calculation with a
rule engine

4.1. Rule based score calculation

The score calculation (or fithess function) of a planning problem is based on constraints (such as
hard constraints, soft constraints, rewards, ...). A rule engine, such as Drools, makes it easy to
implement those constraints as score rules.

Adding more constraints is easy and scalable (once you understand the DRL syntax). This
allows you to add a bunch of soft constraint score rules on top of the hard constraints score rules
with little effort and at a reasonable performance cost. For example, for a freight routing problem
you could add a soft constraint to avoid the certain flagged highways during rush hour.

4.2. Defining the score rules source

There are 2 ways to define where your score rules live.

4.2.1. A scoreDrl resource on the classpath

This is the simplest way: the score rule live in a DRL file which is a resource on the classpath.

Just add your score rules *. dr | file in the solver configuration, for example:

<scoreDr| >/ org/ drool s/ pl anner/ exanpl es/ nqueens/ sol ver/
nQueensScor eRul es. drl </ scoreDr| >

You can add multiple <scor eDr | > entries if needed, but normally you 'll define all your score rules
in 1 file.

4.2.2. A RuleBase (possibly defined by Guvnor)

If you prefer to build the Rul eBase yourself or if you're combining Planner with Guvnor, you can
set the Rul eBase on the Xm Sol ver Confi gur er before building the Sol ver:

xm Sol ver Confi gurer. get Confi g().set Rul eBase(rul eBase);

4.3. Implementing a score rule

The score calculation of a planning problem is based on constraints (such as hard constraints,
soft constraints, rewards, ...). A rule engine, such as Drools, makes it easy to implement those
constraints as score rules.

33

Chapter 4. Score calculation ...

Here's an example of a constraint implemented as a score rule in such a DRL file:

rule "nultipl eQueensHorizontal "
when
$gl : Queen(S$id : id, $y : vy);
$g2 : Queen(id > $id, y == $y);
t hen
i nsertLogi cal (new
Unwei ght edConstrai nt Cccurrence("mul ti pl eQueensHori zontal ", $qi1, $q2));
end

This score rule will fire once for every 2 queens with the same y. The (id > $i d) condition is
needed to assure that for 2 queens A and B, it can only fire for (A, B) and not for (B, A), (A, A) or
(B, B). Let's take a closer look at this score rule on the starting solution of 4 queens:

A B C D
g g

Ww N ¢+ ©

Figure 4.1. Starting solution for the 4 queens puzzle

In this starting solution the multipleQueensHorizontal score rule will fire for 6 queen couples: (A,
B), (A, C), (A, D), (B, C), (B, D) and (C, D). Because none of the queens are on the same vertical
or diagonal line, this starting solution will have a score of - 6. An optimal solution of 4 queens has
a score of 0.

4.4. Delta based score calculation

It's recommended to use Drools in forward-chaining mode (which is the default behaviour), as for
score implementations this will create the effect of a delta based score calculation instead of a full
score calculation on each solution evaluation. For example, if a single queen A moves fromy0to 3,
it won't bother to recalculate the "multiple queens on the same horizontal line" constraint between
2 queens if neither of those queens is queen A. This is a huge performance gain. Drools Planner
gives you this huge performance gain without forcing you to write a very complicated delta
based score calculation algorithm. Just let the Drools rule engine do the hard work.

34

The ScoreDefinition interface

D Delta based
score calculation

The rule engine
(with forward chaining)
Ms@ﬂ only recalculates dirty tuples.

Ww N H O
r
w N +H 0O

queens dirty total speedup
4 3 of 6 time/ 2

8 7of 28 time/ 4

16 150f 120 time/ 8

32 31of 496 time/ 16

64 63 of 2016 time /32

Figure 4.2. Delta based score calculation for the 4 queens puzzle

The speedup due to delta based score calculation is huge, because the speedup is relative to
the size of your planning problem (your n). By using score rules, you get that speedup without
writing any delta code.

4.5. The ScoreDefinition interface

The ScoreDefinition interface defines the score representation. The score must a Score
instance and the instance type (for example Def aul t Har dAndSof t Score) must be stable
throughout the solver runtime.

The solver aims to find the solution with the highest score. The best solution is the solution with
the highest score that it has encountered during its solving.

Most planning problems tend to use negative scores (the amount of negative constraints being
broken) with an impossible perfect score of 0. This explains why the score of a solution of 4 queens
is the negative of the number of queen couples which can attack each other.

A Scor eDef i ni ti on instance is configured in the solver configuration:

<scor eDefinition>
<scor eDefinitionType>S|I MPLE</ scoreDefi ni ti onType>

35

Chapter 4. Score calculation ...

</ scoreDefinition>

There are a couple of build-in Scor eDef i ni ti on implementations:

e SIMPLE: The Si npl eScor eDef i ni ti on defines the Scor e as a Si npl eScor e which has a single
int value, for example - 123.

« HARD AND _SOFT: The HardAndSoftScoreDefinition defines the Score as a
Har dAndSof t Score which has a hard int value and a soft int value, for example
-123har d/ - 456so0f t .

You can implement your own Scor eDef i ni ti on, although the build-in score definitions should
suffice for most needs.

A ScoreCal cul ator instance is asserted into the working memory as a global called
scor eCal cul at or. Your score rules need to (indirectly) update that instance. Usually you 'll make
a single rule as an aggregation of the other rules to update the score:

gl obal Si npl eScoreCal cul at or scoreCal cul at or

rule "nultipl eQueensHorizontal "
when
$gl : Queen($id : id, $y : vy);
$g2 : Queen(id > $id, y == $y);
t hen
i nsertLogi cal (new
Unwei ght edConstrai nt Cccurrence("mul ti pl eQueensHori zontal ", $qi1, $q2));
end

/1 multipleQueensVertical is obsolete because it is always O

rule "multipl eQueensAscendi nghi agonal "
when
$gl1 : Queen($id : id, $ascendi ngD : ascendi ngD);
$g2 : Queen(id > $id, ascendi ngD == $ascendi ngD)
t hen
i nsertLogi cal (new
Unwei ght edConstrai nt Cccurrence(" mul ti pl eQueensAscendi nghi agonal ", $ql1, $q2));
end

rule "mul tipl eQueensDescendi nghi agonal "
when
$gl : Queen($id : id, $descendingD : descendi ngD);
$g92 : Queen(id > $id, descendi ngD == $descendi ngD);
t hen
i nsertLogi cal (new
Unwei ght edConstrai nt Cccurrence(" mul ti pl eQueensDescendi ngDi agonal ", $ql1, $q92));
end

36

The ScoreDefinition interface

rul e "hardConstrai nt sBroken"
when
$occurrenceCount : Number () from accurnul at e(
$unwei ght edConstrai nt Occurrence : Unwei ght edConstrai nt Occurrence(),
count ($unwei ght edConst r ai nt Cccurrence)
)
t hen
scoreCal cul at or. set Score(- $occurrenceCount.intVal ue());
end

Optionally, you can also weigh your constraints differently, by multiplying the count of each score
rule with its weight. For example in freight routing, you can make 5 broken "avoid crossroads" soft
constraints count as much as 1 broken "avoid highways at rush hour" soft constraint. This allows
your business analysts to easily tweak the score function as they see fit.

Here's an example of all the NQueens constraints written as a single rule, using multi pattern
accumulates and making multipleQueensHorizontal constraint outweigh the other constraints 5
times:

[/ Warning: This currently triggers backwards chai ni ng i nst ead of forward chai ni ng
and seriously hurts performance and scalability.
rul e "constraint sBroken"
when
$mul ti pl eQueensHori zontal : Long()
from accunul at e(
$gl : Queen(S$id : id, $y : vy)
and Queen(id > $id, y == $y),
count ($g1)
)
$mul ti pl eQueensAscendi nghi agonal : Long()
from accumul at e(
$g2 : Queen($id : id, $ascendingD : ascendi ngD)
and Queen(id > $id, ascendi ngD == $ascendi ngD),
count ($92)
)
$mul ti pl eQueensDescendi nghi agonal : Long()
from accunul at e(
$g3 : Queen($id : id, $descendingD : descendi ngD)
and Queen(id > $id, descendi ngD == $descendi ngD),
count ($93)
)
t hen
scoreCal cul ator.set Score(- (5 * $nmultipleQueensHorizontal) -
$nul ti pl eQueensAscendi ngDi agonal - $mul ti pl eQueensDescendi ngDi agonal) ;
end

37

Chapter 4. Score calculation ...

4.6. Tips and tricks

 If you know a certain constraint can never be broken, don't bother writing a score rule for it.
For example, the n queens example doesn't have a "multipleQueensVertical" rule because a
gueen's x never changes and the starting solution puts each queen on a different x. This tends to
give a huge performance gain, not just because the score function is faster, but mainly because
most solver implementations will spend less time evaluating unfeasible solutions.

» Be watchfull for score traps. A score trap is a state in which several moves need to be done to
resolve or lower the weight of a single constraint occurrence. Some examples of score traps:

« If you need 2 doctors at each table, but you're only moving 1 doctor at a time, then the solver
has no insentive to move a doctor to a table with no doctors. Punish a table with no doctors
more then a table with only 1 doctor in your score function.

 If you only add the table as a cause of the ConstraintOccurrence and forget the jobType
(which is doctor or politician), then the solver has no insentive to move a docter to table which
is short of a doctor and a politician.

« If you use tabu search, combine it with a mi ni mal Accept edSel ecti on selector. Take some
time to tweak the value of ni ni nal Accept edSel ect i on.

» Verify that your score calculation happens in the correct Number type. If you're making the
sum of integer values, don't let drools use Double's or your performance will hurt. Solver
implementations will usually spend most of their execution time running the score function.

« Always remember that premature optimization is the root of all evil. Make sure your design is
flexible enough to allow configuration based tweaking.

e Currently, don't allow drools to backward chain instead of forward chain, so avoid query's. It
kills scalibilty.

» Currently, don't allow drools to switch to MVEL mode, for performance. You can avoid this by
using eval in the score rules, for example: eval (day. get | ndex() == $dayl. getlndex() +
3).

» For optimal performance, use at least java 1.6 and always use server mode (j ava -server).
We have seen performance increases of 30% by switching from java 1.5 to 1.6 and 50% by
turning on server mode.

* If you're doing performance tests, always remember that the JVM needs to warm up. First load
your solver and do a short run, before you start benchmarking it.

In case you haven't figured it out yet: performance (and scalability) is very important for solving
planning problems. What good is a real-time freight routing solver that takes a day to find a feasible
solution? Even small and innocent looking problems can hide an enormous problem size. For
example, they probably still don't know the optimal solution of the traveling tournament problem
for as little as 10 traveling teams.

38

Chapter 5.

Chapter 5. Local search solver

5.1. Overview

In number of possible solutions for a planning problem can be mind blowing. For example:

» 4 queens has 256 possible solutions (n ~ n) and 2 optimal solutions.
» 5 queens has 3125 possible solutions (n ~ n) and 1 optimal solution.

» 8 queens has 16777216 possible solutions (n ~ n) and 92 optimal solutions.

Most real-life planning problems have an incredible number of possible solutions and only 1 or
a few optimal solutions.

An algorithm that checks every possible solution (even with pruning) can easily run for billions
of years on a single real-life planning problem. Most of the time, we are happy with a feasible
solution found in a limited amount of time. Local search tends to find a feasible solution relatively
fast. Because it acts very much like a human, it is also pretty natural to program.

Local search solves a problem by making a move on the current solution which changes it into a
better solution. It does that high number of iterations untill its time runs out and it is satisfied with
the solution. It starts with the starting solution.

A local search algorithm and the drools rule engine turn out to be a really nice combination,
because:

« Arule engine such as Drools Expertis great for calculating the score of a solution of a planning
problem. It make it easy to add additional soft or hard constraints such as "a teacher shouldn't
teach more then 7 hours a day". However it tends to be too complex to use to actually find
new solutions.

* Alocal search algorithm is great at finding new improving solutions for a planning problem,
without brute-forcing every possibility. However it needs to know the score of a solution and
normally offers no support in calculating that score.

Drools Planner's local search implementation combines both. On top of that, it also offers
additional support for benchmarking, etc.

5.2. Amove

A move is the change from a solution A to a solution B. For example, below you can see a single
move on the starting solution of 4 queens that moves a single queen to another row:

39

Chapter 5. Local search solver

A B C D A B C D
g g N
1 1
2 ¥ 2 Wi
3 3

Figure 5.1. A single move (4 queens example)

A move can have a small or large impact. In the above example, the move of queen CO to C2
is a small move. Some moves are the same move type. These are some possibilities for move
types in n queens:

* Move a single queen to another row. This is a small move. For example, move queen CO to C2.

Move all queens a number of rows down or up. This a big move.

* Move a single queen to another column. This is a small move. For example, move queen C2
to AO (placing it on top of queen AQ).

Add a queen to the board at a certain row and column.
* Remove a queen from the board.

Because we have decided that all queens will be on the board at all times and each queen has
an appointed column (for performance reasons), only the first 2 move types are usable in our
example. Furthermore, we 're only using the first move type in the example because we think it
gives the best performance, but you are welcome to prove us wrong.

Each of your move types will be an implementation of the Move interface:

public interface Mve {
bool ean i sMbveDoabl e(Eval uati onHandl er eval uati onHandl er);
Move creat eUndoMove(Eval uati onHandl er eval uati onHandl er);

voi d doMove(Eval uati onHandl er eval uati onHandl er);

Let's take a look at the Move implementation for 4 queens which moves a queen to a different row:

public class YChangeMove inplenents Mve {

40

A move

private Queen queen;
private int toY;

publi ¢ YChangeMove(Queen queen, int toY) {
thi s. queen = queen;
this.toY = toY;

/1l ... see bel ow

An instance of YChangeMove moves a queen from its current y to a different y.

Drools Planner calls the doMove(Wor ki ngMenor y) method to do a move. The Move implementation
must notify the working memory of any changes it does on the solution facts:

public void doMove(Wrki ngMenory wor ki ngMenory) {
Fact Handl e queenHandl e = wor ki ngMenory. get Fact Handl e(queen) ;
queen. set Y(t oY) ;
wor ki ngMenor y. updat e(queenHandl e, queen); // after changes are nade

You need to call the wor ki ngMenory. updat e(Fact Handl e, Obj ect) method after modifying the
fact. Note that you can alter multiple facts in a single move and effectively create a big move (also
known as a coarse-grained move).

Drools Planner automatically filters out non doable moves by calling the
i sDoabl e(Wor ki ngMenory) method on a move. A non doable move is:

< A move that changes nothing on the current solution. For example, moving queen BO to row
0 is not doable.

« A move that is impossible to do on the current solution. For example, moving queen BO to row
10 is not doable because it would move it outside the board limits.

In the n queens example, a move which moves the queen from its current row to the same row
isn't doable:

publi ¢ bool ean i sMbveDoabl e(Wor ki ngMenory wor ki ngMenory) {
int fronY = queen. getY();
return fron¥ != toY,;

41

Chapter 5. Local search solver

Because we won't generate a move which can move a queen outside the board limits, we don't
need to check it. A move that is currently not doable can become doable on a later solution.

Each move has an undo move: a move (usually of the same type) which does the exact opposite.
In the above example the undo move of CO to C2 would be the move C2 to C0O. An undo move
can be created from a move, but only before the move has been done on the current solution.

public Move createUndoMove(Wor ki ngMenory wor ki ngMenory) {
return new YChangeMove(queen, queen.getY());

Notice that if CO would have already been moved to C2, the undo move would create the move
C2to C2, instead of the move C2 to CO.

The local search solver can do and undo a move more than once, even on different (successive)
solutions.

A move must implement the equal s() and hashcode() methods. 2 moves which make the same
change on a solution, must be equal.

publi ¢ bool ean equal s(Obj ect 0) {

if (this == 0) {
return true;

} else if (o instanceof YChangeMove) ({
YChangeMove ot her = (YChangeMove) o;
return new Equal sBui | der ()

. append(queen, ot her.queen)
. append(toY, other.toY)
.isEqual s();

} else {

return fal se;

public int hashCode() ({
return new HashCodeBui | der ()
. append(queen)

. append(t oY)
. toHashCode() ;

In the above example, the Queen class uses the default bj ect equal () and hashcode()
implementations. Notice that it checks if the other move is an instance of the same move type.
This is important because a move will be compared to a move with another move type if you're
using more then 1 move type.

42

Move generation

It's also recommended to implement the toString() method as it allows you to read Drools
Planner's logging more easily:

public String toString() {
return queen + " =>" + toY;

Now that we can make a single move, let's take a look at generating moves.

5.3. Move generation

At each solution, local search will try all possible moves and pick the best move to change to the
next solution. It's up to you to generate those moves. Let's take a look at all the possible moves
on the starting solution of 4 queens:

3
3l 31
yy|yy

O Doable move

[Mot doable move
[no change)

Ww N H O

Figure 5.2. Possible moves at step 0 (4 queens example)

As you can see, not all the moves are doable. At the starting solution we have 12 doable moves
(n * (n - 1)), one of which will be move which changes the starting solution into the next
solution. Notice that the number of possible solutions is 256 (n ~ n), much more that the amount
of doable moves. Don't create a move to every possible solution. Instead use moves which can
be sequentially combined to reach every possible solution.

It's highly recommended that you verify all solutions are connected by your move set. This
means that by combining a finite number of moves you can reach any solution from any solution.
Otherwise you're already excluding solutions at the start. Especially if you're using only big moves,
you should check it. Just because big moves outperform small moves in a short test run, it doesn't
mean that they will outperform them in a long test run.

You can mix different move types. Usually you're better off preferring small (fine-grained) moves
over big (course-grained) moves because the score delta calculation will pay off more. However,
as the traveling tournament example proves, if you can remove a hard constraint by using a certain
set of big moves, you can win performance and scalability. Try it yourself: run both the simple

43

Chapter 5. Local search solver

(small moves) and the smart (big moves) version of the traveling tournament example. The smart
version evaluates a lot less unfeasible solutions, which enables it to outperform and outscale the
simple version.

Move generation currently happens with a MoveFact ory:

public class NQueensMyveFactory extends CachedMbvelLi st MoveFactory {

public List<Mve> createMveList(Solution solution) {
NQueens nQueens = (NQueens) sol ution;
Li st <Mbve> noveli st = new ArrayLi st <Move>();
for (Queen queen : nQueens. get QueenList()) {
for (int n: nQueens.createNList()) {
noveli st . add(new YChangeMove(queen, n));

}

return noveLi st;

But we might be making move generation part of the DRL's in the future.

5.4. A step

A step is the winning move. The local search solver tries every move on the current solution and
picks the best accepted move as the step:

44

A step

A B C D
g g

Score -6

Ww N H O

i

Score -4 Score -4 Score -3 Score -4

Figure 5.3. Decide the next step at step 0 (4 queens example)

Because the move BO to B3 has the highest score (- 3), it is picked as the next step. Notice that
CO0 to C3 (not shown) could also have been picked because it also has the score - 3. If multiple
moves have the same highest score, one is picked randomly, in this case BO to B3.

The step is made and from that new solution, the local search solver tries all the possible moves
again, to decide the next step after that. It continually does this in a loop, and we get something
like this:

45

Chapter 5. Local search solver

Step 0

Step 1

Step 2

Step 3

Score -6

w N H O

Score -4

Score -4

Score -4

g

g

] |w

Score -1

Score -3

Score -4

m

g

g

iy

iip

g

g

g

g

Score -3

Figure 5.4. All steps (4 queens example)

Notice that the local search solver doesn't use a search tree, but a search path. The search path
is highlighted by the green arrows. At each step it tries all possible moves, but unless it's the

Score -3

46

Score -4

Getting stuck in local optima

step, it doesn't investigate that solution further. This is one of the reasons why local search is
very scalable.

As you can see, the local search solver solves the 4 queens problem by starting with the starting
solution and make the following steps sequentially:

1. BOto B3
2. DO to B2
3. A0OtoB1

If we turn on INFO logging, this is reflected into the logging:

INFO Solving with random seed (0).

INFO Starting with tinme spend (0), score (-6), new best score (-6).

INFO Step index (0), tine spend (4), score (-3), new best score (-3), accepted
nmove size (12) for picked step ([Queen-1] 1 @0 => 3).

INFO Step index (1), tine spend (7), score (-1), new best score (-1), accepted
move size (12) for picked step ([Queen-0] 0 @0 => 1).

INFO Step index (2), time spend (10), score (0), new best score (0), accepted
nmove size (12) for picked step ([Queen-3] 3 @0 => 2).

INFO Solved at step index (2) with tine spend (10) for best score (0) wth
average cal cul ate count per second (7300).

Notice that the logging uses the t oSt ri ng() method of our Move implementation: [Queen-1] 1
@0 => 3.

The local search solver solves the 4 queens problem in 3 steps, by evaluating only 37
possible solutions (3 steps with 12 moves each + 1 starting solution), which is only fraction
of all 256 possible solutions. It solves 16 queens in 31 steps, by evaluating only 7441 out of
18446744073709551616 possible solutions.

5.5. Getting stuck in local optima

A simple local search always takes improving moves. This may seem like a good thing, but it's
not. It suffers from a number of problems:

« It can get stuck in a local optimum. For example if it reaches a solution X with a score -1 and
there is no improving move, it is forced to take a next step that leads to a solution Y with score
-2, after that however, it's very real that it will pick the step back to solution X with score -1. It
will then start looping between solution X and Y.

« It can start walking in its own footsteps, picking the same next step at every step.

Of course Drools Planner implements better local searches, such as tabu search and simulated
annealing which can avoid these problems. We recommend to never use a simple local search,
unless you're absolutely sure there are no local optima in your planning problem.

47

Chapter 5. Local search solver

5.6. Deciding the next step

The local search solver decides the next step with the aid of 3 configurable components:

« A selector which selects (or generates) the possible moves of the current solution.
« An acceptor which filters out unacceptable moves. It can also weigh a move it accepts.

« A forager which gathers all accepted moves and picks the next step from them.

A B C D
g g R

Score -6

Ww N H O

g

Score -4 Score -4 Score -3 Score -4

Figure 5.5. Decide the next step at step 0 (4 queens example)

In the above example the selector generated the moves shown with the blue lines, the acceptor
accepted all of them and the forager picked the move BO to B3.

If we turn on DEBUG logging, we can see the decision making in the log:

INFO Solving with random seed (0).
INFO Starting with tinme spend (0), score (-6), new best score (-6).

DEBUG I gnoring not doable nove ([Queen-0] 0 @0 => 0).

DEBUG Move score (-4), accept chance (1.0) for nove ([Queen-0] 0 @0 => 1).
DEBUG Move score (-4), accept chance (1.0) for nove ([Queen-0] 0 @0 => 2).
DEBUG Move score (-4), accept chance (1.0) for nove ([Queen-0] 0 @O0 => 3).
DEBUG Move score (-3), accept chance (1.0) for nove ([Queen-1] 1 @0 => 3).

48

Selector

DEBUG Move score (-3), accept chance (1.0) for nove ([Queen-2] 2 @0 => 3).

DEBUG Move score (-4), accept chance (1.0) for nove ([Queen-3] 3 @0 => 3).
INFO Step index (0), tine spend (6), score (-3), new best score (-3), accepted
nmove size (12) for picked step ([Queen-1] 1 @0 => 3).

5.6.1. Selector

A selector is currently based on a MoveFact ory.

<sel ect or >

<noveFact oryCl ass>or g. dr ool s. pl anner . exanpl es. nqueens. sol ver. NQueensM©oveFact or y</
noveFact oryCl ass>
</ sel ect or >

You're not obligated to generate the same set of moves at each step. It's generally a good idea
to use several selectors, mixing fine grained moves and course grained moves:

<sel ect or >
<sel ect or >

.nurserostering. sol ver. nove. f act ory. Enpl oyeeChangeMveFact or y</
noveFact oryCl ass>
</ sel ector>
<sel ect or>

serostering. sol ver. nove. factory. Assi gnnment Swi t chMbveFact ory</
noveFact oryCl ass>
</ sel ector>
<sel ect or>

pve. factory. Assi gnment Pi | | ar Part Swi t chMoveFact ory</
noveFact or yCl ass>
</ sel ector>
</ sel ector>

5.6.2. Acceptor

An acceptor is used (together with a forager) to active tabu search, simulated annealing, great
deluge, ... For each move it generates an accept chance. If a move is rejected it is given an accept
chance of 0. 0.

49

Chapter 5. Local search solver

You can implement your own Accept or, although the build-in acceptors should suffice for most
needs. You can also combine multiple acceptors.

5.6.2.1. Tabu search acceptor

When tabu search takes steps it creates tabu's. It does not accept a move as the next step if that
move breaks tabu. Drools Planner implements several tabu types:

» Solution tabu makes recently visited solutions tabu. It does not accept a move that leads to one
of those solutions. If you can spare the memory, don't be cheap on the tabu size. We recommend
this type of tabu because it tends to give the best results and requires little or no tweaking.

<accept or>
<conpl et eSol ut i onTabuSi ze>1000</ conpl et eSol uti onTabuSi ze>
</ accept or >

« Move tabu makes recent steps tabu. It does not accept a move equal to one of those steps.

<accept or >
<conpl et eMoveTabuSi ze>7</ conpl et eMoveTabuSi ze>
</ accept or >

« Undo move tabu makes the undo move of recent steps tabu.

<accept or >
<conpl et eUndoMoveTabuSi ze>7</ conpl et eUndoMoveTabuSi ze>
</ accept or >

» Property tabu makes a property of recent steps tabu. For example, it can make the queen tabu,
so that a recently moved queen can't be moved.

<accept or>
<conpl et ePropertyTabuSi ze>5</ conpl et ePropertyTabuSi ze>
</ accept or >

To use property tabu, your moves must implement the TabuPr opert yEnabl ed interface, for
example:

public class YChangeMve inplenments Move, TabuPropertyEnabl ed {

private Queen queen

50

Acceptor

private int toY;
/1

public List<? extends Object> get TabuPropertyList() {
return Col | ections. singletonList(queen);

You can also make multiple properties tabu (with OR or AND semantics):

public List<? extends Cbject> get TabuPropertyList() {
/] tabu with other npves that contain the same |eftExam OR the
sanme ri ght Exam
return Arrays. asList(leftExam rightExan);

public List<? extends Object> get TabuPropertyList() {
/1 tabu with other nobves that contain the same exam AND the sane
toPeriod (but not necessary the same toRoom
return Col |l ections. singletonList(Arrays. asLi st(exam toPeriod));

You can even combine tabu types:

<accept or >
<conpl et eSol uti onTabuSi ze>1000</ conpl et eSol uti onTabuSi ze>
<conpl et eMbveTabuSi ze>7</ conpl et eMoveTabuSi ze>

</ accept or >

If you pick a too small tabu size, your solver can still get stuck in a local optimum. On the other
hand, with the exception of solution tabu, if you pick a too large tabu size, your solver can get
stuck by bouncing of the walls. Use the benchmarker to fine tweak your configuration. Experiments
teach us that it is generally best to use a prime number for the move tabu, undo move tabu or
property tabu size.

A tabu search acceptor should be combined with a high or no subset selection.
5.6.2.2. Simulated annealing acceptor

Simulated annealing does not always pick the move with the highest score, neither does it evaluate
many moves per step. At least at first. Instead, it gives unimproving moves also a chance to be

51

Chapter 5. Local search solver

picked, depending on its score and the time gradient of the Ter mi nat i on. In the end, it gradually
turns into a simple local search, only accepting improving moves.

In many use cases, simulated annealing surpasses tabu search. By changing a few lines of
configuration, you can easily switch from tabu search to simulated annealing and back.

Start with a si nul at edAnneal i ngSt art i ngTenper at ur e set to the maximum score delta a single
move can cause. Use the Benchmar ker to tweak the value.

<acceptor >
<si mul at edAnneal i ngSt arti ngTenper at ur e>2har d/ 100sof t </
si mul at edAnneal i ngSt arti ngTenper at ur e>
</ accept or >
<f or ager >
<m ni mal Accept edSel ect i on>4</ mi ni mal Accept edSel ecti on>
</ forager >

A simulated annealing acceptor should be combined with a low subset selection. The classic
algorithm uses a mi ni mal Accept edSel ect i on of 1, but usually 4 performs better.

You can even combine it with a tabu acceptor at the same time. Use a lower tabu size than in
a pure tabu search configuration.

<accept or >
<si mul at edAnneal i ngSt arti ngTenper at ur e>10. 0</
si mul at edAnneal i ngSt arti ngTenper at ur e>
<conpl et ePr opert yTabuSi ze>5</ conpl et ePropert yTabuSi ze>
</ accept or >
<f or ager >
<m ni mal Accept edSel ect i on>4</ mi ni mal Accept edSel ecti on>

</ forager >

This differs from phasing, another powerful technique, where first simulated annealing is used,
followed by tabu search.

5.6.3. Forager

A forager gathers all accepted moves and picks the move which is the next step. Normally it picks
the accepted move with the highest score. If several accepted moves have the highest score, one
is picked randomly, weighted on their accept chance.

You can implement your own For ager , although the build-in forager should suffice for most needs.

52

Forager

5.6.3.1. Subset selection

When there are many possible moves, it becomes inefficient to evaluate all of them at every step.
To evaluate only a random subset of all the moves, use:

e An mi ni mal Accept edSel ecti on integer, which specifies how many accepted moves should
have be evaluated during each step. By default it is positive infinity, so all accepted moves are
evaluated at every step.

<f or ager >
<m ni mal Accept edSel ecti on>1000</ m ni mal Accept edSel ecti on>
</ f or ager >

Unlike the n queens problem, real world problems require the use of subset selection. Start from
an mi ni nal Accept edSel ect i on that takes a step in less then 2 seconds. Turn on INFO logging
to see the step times. Use the Benchmar ker to tweak the value.

5.6.3.2. Pick early type

A forager can pick a move early during a step, ignoring subsequent selected moves. There are
3 pick early types:

* NEVER: A move is never picked early: all accepted moves are evaluated that the selection allows.
This is the default.

<f or ager >
<pi ckEar | yType>NEVER</ pi ckEar| yType>
</ f or ager >

e FI RST_BEST_SCORE_| MPROVI NG Pick the first accepted move that improves the best score. If
none improve the best score, it behaves exactly like the pickEarlyType NEVER.

<f or ager >
<pi ckEar | yType>FI RST_BEST_SCORE | MPROVI NG</ pi ckEar | yType>
</ f or ager >

e FIRST_LAST STEP_SCORE | MPROVI NG Pick the first accepted move that improves the last step
score. If none improve the last step score, it behaves exactly like the pickEarlyType NEVER.

<f or ager >

53

Chapter 5. Local search solver

<pi ckEar | yType>FI RST_LAST_STEP_SCORE_| MPROVI NG</ pi ckEar | yType>
</ forager>

5.7. Best solution

Because the current solution can degrade (especially in tabu search and simulated annealing),
the local search solver remembers the best solution it has encountered through the entire search
path. Each time the current solution is better than the last best solution, the current solution is
cloned and referenced as the new best solution.

You can listen to solver events, including when the best solution changes during solving, by adding
a Sol ver Event Li st ener to the Sol ver:

public interface Sol ver {
Il

voi d addEvent Li st ener (Sol ver Event Li st ener eventLi stener);
voi d renmoveEvent Li st ener (Sol ver Event Li st ener eventLi stener);

5.8. Termination

Sooner or later the local search solver will have to stop solving. This can be because of a number
of reasons: the time is up, the perfect score has been reached, ... The only thing you can't depend
on is on finding the optimal solution (unless you know the optimal score), because a local search
algorithm doesn't know it when it finds the optimal solution. For real-life problems this doesn't turn
out to be much of a problem, because finding the optimal solution would take billions of years, so
you 'll want to terminate sooner anyway.

You can configure when a local search solver needs to stop by configuring a Ter mi nati on. A
Termi nati on can calculate a time gradient, which is a ratio between the time already spend
solving and the expected entire solving time.

You can implement your own Ter nmi nat i on, although the build-in Terminations should suffice for
most needs.

5.8.1. TimeMillisSpendTermination

Terminates when an amount of time has been reached:

<term nati on>
<maxi munM nut esSpend>2</ maxi nunM nut esSpend>

54

StepCountTermination

</term nation>
or

<term nati on>
<maxi munmHour sSpend>1</ maxi nmunHour sSpend>
</termnation>

Note that the time taken by a Starti ngSol uti onl nitializer also is taken into account by this
Termination. So if you give the solver 2 minutes to solve something, but the initializer takes 1
minute, the local search solver will only have a minute left.

Note that if you use this Termination, you will most likely sacrifice reproducibility. The best solution
will depend on available CPU time, not only because it influences the amount of steps taken,
but also because time gradient based algorithms (such as simulated annealing) will probably act
differently on each run.

5.8.2. StepCountTermination

Terminates when an amount of steps has been reached:

<term nati on>
<maxi muntt epCount >100</ maxi nuntt epCount >
</term nation>

5.8.3. ScoreAttainedTermination

Terminates when a certain score has been reached. You can use this Termination if you know
the perfect score, for example for 4 queens:

<t erm nati on>
<scor eAtt ai ned>0</ scor eAtt ai ned>
</term nation>

You can also use this Termination to terminate once it reaches a feasible solution. For a solver
problem with hard and soft constraints, it could look like this:

<t erm nati on>
<scor eAt t ai ned>0har d/ - 5000so0f t </ scor eAtt ai ned>
</term nation>

55

Chapter 5. Local search solver

5.8.4. UnimprovedStepCountTermination

Terminates when the best score hasn't improved in a number of steps:

<term nation>
<maxi munni npr ovedSt epCount >100</ naxi mumni npr ovedSt epCount >
</term nation>

If it hasn'timproved recently, it's probably not going to improve soon anyway and it's not worth the
effort to continue. We have observed that once a new best solution is found (even after a long time
of no improvement on the best solution), the next few step tend to improve the best solution too.

5.8.5. Combining Terminations

Terminations can be combined, for example: terminate after 100 steps or if a score of 0 has been
reached:

<term nation>
<term nati onConposi tionStyl e>OR</term nati onConposi tionStyl e>
<maxi munst epCount >100</ maxi nunst epCount >
<scor eAtt ai ned>0</ scor eAt t ai ned>

</term nation>

Alternatively you can use AND, for example: terminate after reaching a feasible score of at least
-100 and no improvements in 5 steps:

<term nation>
<term nati onConposi tionStyl e>AND</t erm nati onConposi ti onStyl e>
<maxi mumni npr ovedSt epCount >5</ maxi mumdni npr ovedSt epCount >
<scor eAtt ai ned>- 100</ scor eAt t ai ned>

</term nation>

This ensures it doesn't just terminate after finding a feasible solution, but also makes any obvious
improvements on that solution before terminating.

5.8.6. Another thread can ask a Solver to terminate early

Sometimes you 'll want to terminate a Solver early from another thread, for example because a
user action or a server restart. That cannot be configured by a Ter mi nat i on as it's impossible to
predict when and if it will occur. Therefor the Sol ver interface has these 2 thread-safe methods:

public interface Sol ver {

56

Using a custom Selector, Acceptor, Forager or Termination

Il

bool ean term nateEarly();
bool ean i sTerm nat edEarly();

If you call the t er mi nat eEar | y() method from another thread, the Sol ver will terminate at its
earliest convenience and the sol ve() method will return in the original solver thread.

5.9. Using a custom Selector, Acceptor, Forager or
Termination

It is easy to plug in a custom Sel ect or, Accept or, For ager or Termi nati on by extending the
abstract class and also the config class.

For example, to use a custom Selector, extend the AbstractSelector
class (see All MovesOf OneExantel ector), extend the SelectorConfig class (see
Al | MovesCOf OneExansel ect or Conf i g) and configure it in the configuration XML.:

s. pl anner . exanpl es. exanmi nati on. sol ver. sel ect or. Al | MovesOf OneExantel ect or Confi g"/
>

If you build a better implementation that's not domain specific, consider adding it as a patch in our
issue tracker and we'll take it along in future refactors and optimize it.

57

58

Chapter 6.

Chapter 6. Benchmarking and
tweaking

6.1. Finding the best configuration

Drools Planner supports several solver types, but you're probably wondering which is the best
one? Although some solver types generally perform better then others, it really depends on your
problem domain. Most solver types also have settings which can be tweaked. Those settings can
influence the results of a solver a lot, although most settings perform pretty good out-of-the-box.

Luckily, Drools Planner includes a benchmarker, which allows you to play out different solver
types and different settings against each other, so you can pick the best configuration for your
problem domain.

6.2. Building a Benchmarker

You can build a Benchmar ker instance with theXnl Sol ver Benchmar ker . Configure it with a
benchmarker configuration xml file:

Xm Sol ver Benchmar ker benchmar ker = new Xml Sol ver Benchnar ker () ;
benchmar ker . confi gure("/ or g/ drool s/ pl anner/ exanpl es/ nqueens/ benchmar k/
nqueensSol ver Benchmar kConfi g. xm ") ;
benchmar ker . benchmar k() ;
benchrmar ker. witeResults(resultFile);

A basic benchmarker configuration file looks something like this:

<?xm version="1.0" encodi ng="UTF-8"?>
<sol ver Benchmar kSui t e>
<benchmar kDi r ect or y>| ocal / dat a/ nqueens</ benchmar kDi r ect or y>

<i nherit edSol ver Benchmar k>
<unsol vedSol ut i onFi | e>dat a/ nqueens/ unsol ved/ unsol vedNQueens32. xm </
unsol vedSol uti onFi | e>
<unsol vedSol ut i onFi | e>dat a/ nqueens/ unsol ved/ unsol vedNQueens64. xm </
unsol vedSol uti onFi | e>
<l ocal Sear chSol ver >
<scoreDr| >/ org/ drool s/ pl anner/ exanpl es/ nqueens/ sol ver/
nQueensScor eRul es. drl </ scoreDr| >
<scor eDefinition>
<scor eDefiniti onType>SlI MPLE</ scor eDefi ni ti onType>
</ scoreDefinition>
<term nation>

59

Chapter 6. Benchmarking and t...

<maxi munSeconds Spend>20</ maxi mnunSeconds Spend>
</term nati on>
<sel ect or>

>or g. drool s. pl anner . exanpl es. nqueens. sol ver. nove. f act ory. NQueensMveFact or y</
noveFact oryCl ass>
</ sel ector>
<f or ager >
<pi ckEar | yType>NEVER</ pi ckEar | yType>
</ f or ager >
</l ocal Sear chSol ver >
</inheritedSol ver Benchmar k>

<sol ver Benchnar k>
<nanme>Sol ution tabu</nanme>
<l ocal Sear chSol ver >
<accept or >
<conpl et eSol uti onTabuSi ze>1000</ conpl et eSol uti onTabuSi ze>
</ accept or >
</l ocal Sear chSol ver >
</ sol ver Benchmar k>
<sol ver Benchnar k>
<nane>Move tabu 5</ nane>
<l ocal Sear chSol ver >
<accept or >
<conpl et eMbveTabuSi ze>5</ conpl et eMoveTabuSi ze>
</ accept or >
</l ocal Sear chSol ver >
</ sol ver Benchmar k>
<sol ver Benchnar k>
<nane>Move tabu 7</nane>
<l ocal Sear chSol ver >
<accept or >
<conpl et eMbveTabuSi ze>7</ conpl et eMoveTabuSi ze>
</ accept or >
</l ocal Sear chSol ver >
</ sol ver Benchmar k>
<sol ver Benchnar k>
<nanme>Sol ution tabu and nove tabu 7</nane>
<l ocal Sear chSol ver >
<accept or >
<conpl et eSol ut i onTabuSi ze>1000</ conpl et eSol uti onTabuSi ze>
<conpl et eMbveTabuSi ze>7</ conpl et eMoveTabuSi ze>
</ accept or >
</l ocal Sear chSol ver >
</ sol ver Benchmar k>
</ sol ver Benchmar kSui t e>

60

Best score over time statistic (graph and CSV)

This benchmarker will try 4 configurations (1 solution tabu, 2 move tabu's and 1 solution-move
tabu) on 2 data sets (32 and 64 queens), so it will run 8 solvers.

Every sol ver Benchmar k entity contains a solver configuration (for example a local search solver)
and one or more unsol vedSol ut i onFi | e entities. It will run the solver configuration on each of
those unsolved solution files. A nane is optional and generated if absent. The common part of
multiple sol ver Benchmar k entities can be extracted to the i nheri t edSol ver Benchnar k entity,
but they can still be overwritten per sol ver Benchmar k entity.

You need to specify a benchmar kDi r ect or y (relative to the working directory). A summary statistic
and the best solution of each solver run will be written in that directory.

6.3. Best score over time statistic (graph and CSV)

The benchmarker supports outputting the best score over time statistic as a graph and a CSV
(comma separated values) file. Here's an example of a graph:

61

Chapter 6. Benchmarking and t...

exam_comp_set7 best score si

-5.000 - -

——

EEED an//’A

-5.500 -
-5.750
-6.000 -

-6.250 1

SCore

-6.500 -

-6.750 1

-7.000 -

-7.250 4

-7.500 -

-7.750

0 500.000 1.000.000 1.500.000 2.000.000 2.500.000
Time millis spend

— absoluteS 00 _moveTabu?7 — absolute500_propermyTabulo absolutes00WithCus

absoluteS Q0WithCustomSelector_propertyTabulo

Figure 6.1. Best score over time statistic

62

Best score over time statistic (graph and CSV)

To configure graph and CSV output of the best score over time, just add a sol ver St ati sti cType
line:

<sol ver Benchmar kSui t e>
<benchmar kDi r ect or y>l ocal / dat a/ nqueens/ sol ved</ benchmar kDi r ect or y>
<sol ver St ati sti cType>BEST_SOLUTI ON_CHANGED</ sol ver St ati sti cType>

</ sol ver Benchmar kSui t e>

It will output all graphs and CSV files in the benchmar kDi r ect ory.

63

64

Index

65

66

	Drools Planner User Guide
	Table of Contents
	
	Chapter 1. Planner introduction
	1.1. What is Drools Planner?
	1.2. Status of Drools Planner
	1.3. Getting Drools Planner and running the examples
	1.3.1. Getting the release package and running the examples
	1.3.2. Get it with maven
	1.3.3. Build it from source

	1.4. Questions, issues and blogs

	Chapter 2. Use cases and examples
	2.1. Introduction
	2.2. The n queens example
	2.2.1. Screenshot
	2.2.2. Problem statement
	2.2.3. Solution(s)
	2.2.4. Problem size
	2.2.5. Domain class diagram

	2.3. The Manners 2009 example
	2.3.1. Problem statement

	2.4. The Traveling Salesman Problem (TSP) example
	2.4.1. Problem statement

	2.5. The Traveling Tournament Problem (TTP) example
	2.5.1. Screenshot
	2.5.2. Problem statement
	2.5.3. Simple and smart implementation
	2.5.4. Problem size

	2.6. Cloud balancing
	2.6.1. Problem statement

	2.7. The ITC 2007 curriculum course example
	2.7.1. Problem statement

	2.8. The ITC 2007 examination example
	2.8.1. Screenshot
	2.8.2. Problem statement
	2.8.3. Problem size
	2.8.4. Domain class diagram

	2.9. The patient admission scheduling (PAS) example
	2.10. The INRC 2010 nurse rostering example
	2.10.1. Problem statement

	Chapter 3. Planner configuration
	3.1. Types of solvers
	3.1.1. Brute force
	3.1.2. Branch and bound
	3.1.3. Simplex
	3.1.4. Genetic algorithms
	3.1.5. Local search (tabu search, simulated annealing, ...)

	3.2. The size of real world problems
	3.3. The Solver interface
	3.4. Building a Solver
	3.4.1. Environment mode
	3.4.1.1. DEBUG
	3.4.1.2. REPRODUCIBLE (default)
	3.4.1.3. PRODUCTION

	3.5. The Solution interface
	3.5.1. The getScore and setScore methods
	3.5.2. The getFacts method
	3.5.3. The cloneSolution method

	3.6. The starting solution
	3.6.1. A simple filler algorithm
	3.6.2. StartingSolutionInitializer

	3.7. Solving a problem

	Chapter 4. Score calculation with a rule engine
	4.1. Rule based score calculation
	4.2. Defining the score rules source
	4.2.1. A scoreDrl resource on the classpath
	4.2.2. A RuleBase (possibly defined by Guvnor)

	4.3. Implementing a score rule
	4.4. Delta based score calculation
	4.5. The ScoreDefinition interface
	4.6. Tips and tricks

	Chapter 5. Local search solver
	5.1. Overview
	5.2. A move
	5.3. Move generation
	5.4. A step
	5.5. Getting stuck in local optima
	5.6. Deciding the next step
	5.6.1. Selector
	5.6.2. Acceptor
	5.6.2.1. Tabu search acceptor
	5.6.2.2. Simulated annealing acceptor

	5.6.3. Forager
	5.6.3.1. Subset selection
	5.6.3.2. Pick early type

	5.7. Best solution
	5.8. Termination
	5.8.1. TimeMillisSpendTermination
	5.8.2. StepCountTermination
	5.8.3. ScoreAttainedTermination
	5.8.4. UnimprovedStepCountTermination
	5.8.5. Combining Terminations
	5.8.6. Another thread can ask a Solver to terminate early

	5.9. Using a custom Selector, Acceptor, Forager or Termination

	Chapter 6. Benchmarking and tweaking
	6.1. Finding the best configuration
	6.2. Building a Benchmarker
	6.3. Best score over time statistic (graph and CSV)

	Index

