Hibernate Annotations

Reference Guide

3.5.6-Final

by Emmanuel Bernard

g (=Y 7= o < v

1. Setting up an anNOLAtiONS PrOJECT ...ciiiti i 1
I =0 [U1 =T =T o £ 1
1.2, CONFIQUIALTION ettt ettt et e e e e eaaans 1
I R (01 1= 4
S o T o 11T TP PP 5

bV - o o T Yo TN =11 41 1= PN 7
0 T [1 1 T PPN 7
2.2. Mapping with JPA (Java Persistence ANNOtatioNS)cc.oveveiiiiiiieiiiieiiiieeiieeeaiees 7

2.2.1. Marking a POJO as persistent entitycoveveeiiiiiiiiiiieeieeeecee e 7
2.2.2. Mapping Simple Propertiesccouuiiiiieiiii e 9
2.2.3. Mapping identifier Propertiesoooceeuiiiiiiiiii e 15
2.2.4. Mapping iNNEMHLANCEuiiiiiei e 24
2.2.5. Mapping entity associations/relationshipscccovoiiiiiiiiniiie, 28
2.2.6. Mapping composite primary keys and foreign keys to composite primary
KBy S e e 43
2.2.7. Mapping secondary tablescoooiiiiiiii 45
2.2.8. CaAChING ENEILIESvuiiieiiti et e e et e e e e e eens 45
bR TV - o) o 11 Vo @ U =T 4T 47
2.3.1. Mapping JP-QL/HQL QUETIEScouuuiiiiiiieieiiii ettt e a7
2.3.2. MappIiNg NALIVE QUETIEScvvueiiiieiii e e et e e e e e e e e e e aaaas 48
2.4. Hibernate ANNotation EXIENSIONSoieuniiiiiieiiieeie e e 52
o T = 111 Y PSP 52
2.4.2. 1dENLTIEE ..o e 55
2.3, PO PITY ittt 56
A [o] o 1T 1 = L g o USRI 60
2.4.5. Single Association related annotationsccccoeeveviiiieiie i, 60
2.4.6. Collection related annotationscouveiiiiiiiiie e 63
o R O 1=t Vo [TP 66
248, FI OIS e 67
2.4.9. QUETIES .ouiiiiiieei ettt et e e e e 68
2.4.10. Custom SQL for CRUD OpErationscocuuuiieieiiiiieiiiiieeeeii et 69
b O V]][~ 70
2.4.12. FetCh Profiles ..o 71

3. Overriding metadata through XMLooiiiiiiiiii e e 73

3L PHINCIPIES et 73
3.1.1. Global level metadatacoveiiiiiiiiiiii e 73
3.1.2. Entity level metadataooveieiiiiiiiii e 74
3.1.3. Property level metadatacocoeuiiiiiiieiiiicie e 76
3.1.4. Association level metadatacoooeuiiiiiiiiiii e 77

4. AAItional MOAUIES ... e et e e et e e e s 79
4.1, Bean Validationooiiiiiiiieiee e e 79

4.1.1. Adding Bean Validationccoeiiiiiiiiiiii e 79
4.1.2. CONFIQUIALTION ...ieiiiii et 79

Hibernate Annotations

4.1.3. Catching VIOIAtIONSuiiiiiiiii e e e e e e e 81
4.1.4. Databa@se SCREMAceuiiiii i e e 81
4.2, Hibernate Validator 3uiiiiiiiiiiiis e e s 82
4.2.1. DESCHIPHION ...ttt ettt e et e et e e e ena s 82
4.2.2. Integration with Hibernate ANNotationscccceceiveviiiiiiiieiii e, 82
4.3. HIDErNate SEAICHoeeiiiii e e 83
O Tt O I T3 1) 1 o 83
4.3.2. Integration with Hibernate Annotationscccooveiiiiiiiiiiiinn e 83

Preface

Hibernate, like all other object/relational mapping tools, requires metadata that governs the
transformation of data from one representation to the other. Hibernate Annotations provides
annotation-based mapping metadata.

The JPA specification recognizes the interest and the success of the transparent object/
relational mapping paradigm. It standardizes the basic APIs and the metadata needed for any
object/relational persistence mechanism. Hibernate EntityManager implements the programming
interfaces and lifecycle rules as defined by the JPA persistence specification and together with
Hibernate Annotations offers a complete (and standalone) JPA persistence solution on top of the
mature Hibernate Core. You may use a combination of all three together, annotations without
JPA programming interfaces and lifecycle, or even pure native Hibernate Core, depending on the
business and technical needs of your project. At all time you can fall back to Hibernate native
APIs, or if required, even to native JDBC and SQL.

This release of Hibernate Annotations is based on the final release of the JPA 2 specification (aka
JSR-317 [http://jcp.org/en/jsr/detail?id=317]) and supports all its features (including the optional
ones). Hibernate specific features and extensions are also available through unstandardized,
Hibernate specific annotations.

If you are moving from previous Hibernate Annotations versions, please have a look at Java
Persistence migration guide [http://www.hibernate.org/398.html].

http://jcp.org/en/jsr/detail?id=317
http://jcp.org/en/jsr/detail?id=317
http://www.hibernate.org/398.html
http://www.hibernate.org/398.html
http://www.hibernate.org/398.html

vi

Chapter 1.

Setting up an annotations project

1.1. Requirements

» Make sure you have JDK 5.0 or above installed.

» Download and unpack the Hibernate Core distribution from the Hibernate website. Hibernate
3.5 and onward contains Hibernate Annotations.

 Alternatively add the following dependency in your dependency manager (like Maven or Ivy).
Here is an example

<project ...>

<dependenci es>
<dependency>
<groupl d>or g. hi ber nat e</ gr oupl d>
<artifact!d>hi bernate-annotations</artifactld>
<ver si on>${ hi ber nat e- cor e- ver si on} </ ver si on>
</ dependency>
</ dependenci es>
</ proj ect >

1.2. Configuration

First, set up your classpath (after you have created a new project in your favorite IDE):

» Copy hi bernat e3. j ar and the required 3rd party libraries available in | i b/ r equi r ed.
e Copy lib/jpalhibernate-jpa-2.0-api-1.0.0.Final.jar toyour classpath as well.

Alternatively, import your pom.xml in your favorite IDE and let the dependencies be resolved
automatically,

(3

We recommend you use Hibernate Validator [http://validator.hibernate.org] and the Bean
Validation specification capabilities as its integration with Java Persistence 2 has been

http://validator.hibernate.org
http://validator.hibernate.org

Chapter 1. Setting up an anno...

standardized. Download Hibernate Validator 4 or above from the Hibernate website and add
hi bernate-val i dator.jar and val i dation-api.jar in your classpath. Alternatively add the
following dependency in your pom xni .

<proj ect >

<dependenci es>
<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifact!|d>hi bernate-validator</artifactld>
<versi on>${ hi ber nat e-val i dat or - ver si on} </ ver si on>
</ dependency>

</ dependenci es>

</ proj ect>

If you wish to use Hibernate Search [http://search.hibernate.org], download it from the Hibernate
website and add hi ber nat e- sear ch. j ar and its dependencies in your classpath. Alternatively
add the following dependency in your pom xni .

<proj ect >

<dependenci es>
<dependency>
<groupl d>or g. hi ber nat e</ gr oupl d>
<artifact!d>hi bernate-search</artifact!d>
<ver si on>${ hi ber nat e- sear ch- ver si on} </ ver si on>
</ dependency>

</ dependenci es>

</ proj ect >

We recommend you use the JPA 2 APIs to bootstrap Hibernate (see the Hibernate EntityManager
documentation for more information). If you use Hibernate Core and its native APIs read on.

If you boot Hibernate yourself, make sure to use the Annot ati onConfi gur ati on class instead of
the Confi gurati on class. Here is an example using the (legacy) Hi ber nat eUti | approach:

package hel | o;

inport org.hibernate.*
inmport org. hibernate.cfg.*
inmport test.*;

inmport test.ani mals. Dog

public class HibernateUtil {

private static final SessionFactory sessionFactory;

http://search.hibernate.org
http://search.hibernate.org

Configuration

static {
try {

sessi onFactory = new Annot ati onConfi guration()

.configure().buil dSessionFactory();
} catch (Throwabl e ex) {
/1 Log exception!
throw new ExceptionlnlnitializerError(ex);

public static Session getSession()
throws Hi bernat eException {
return sessi onFactory. openSession();

Interesting here is the use of Annot ati onConfi gur ati on. The packages and annotated classes
are declared in your regular XML configuration file (usually hi ber nate. cfg. xml). Here is the

equivalent of the above declaration:

<! DOCTYPE hi ber nat e-confi gurati on PUBLIC
"~/ Hi bernat e/ H bernate Configuration DID 3.0//EN'

"http://hibernate. sourceforge. net/hi bernate-configuration-3.0.dtd">

<hi ber nat e- confi gurati on>
<sessi on-factory>
<mappi ng package="test.ani mal s"/>
<mappi ng cl ass="test.Flight"/>
<mappi ng cl ass="test. Sky"/>
<mappi ng cl ass="test.Person"/>
<mappi ng cl ass="test. ani mal s. Dog"/ >

<mappi ng resource="test/ani mal s/orm xm "/ >
</ sessi on-factory>
</ hi ber nat e- confi gurati on>

Note that you can mix the legacy hbm.xml use and the annotation approach. The resource element
can be either an hbm file or an EJB3 XML deployment descriptor. The distinction is transparent

for your configuration process.

Alternatively, you can define the annotated classes and packages using the programmatic API

sessionFactory = new Annot ati onConfiguration()

. addPackage("test.aninals") //the fully qualified package nane

. addAnnot at edCl ass(Fl i ght. cl ass)
. addAnnot at edd ass(Sky. cl ass)
. addAnnot at edd ass(Per son. cl ass)
. addAnnot at edd ass(Dog. cl ass)

. addResour ce("test/ani mal s/ orm xnml ")

.configure()
. bui | dSessi onFactory();

Chapter 1. Setting up an anno...

There is no other difference in the way you use Hibernate APIs with annotations, except for this
startup routine change or in the configuration file. You can use your favorite configuration method
for other properties (hi ber nat e. properti es, hi ber nat e. cf g. xn , programmatic APIs, etc).

(3

To ease the migration process from hbm files to annotations, the configuration mechanism
detects the mapping duplication between annotations and hbm files. HBM files are then
prioritized over annotated metadata on a class to class basis. You can change the priority using
hi ber nat e. mappi ng. pr ecedence property. The default is hbm cl ass, changing it to cl ass,
hbmwill prioritize the annotated classes over hbm files when a conflict occurs.

1.3. Properties

On top of the Hibernate Core properties, Hibernate Annotations reacts to the following one.

Table 1.1. Hibernate Annotations specific properties

Property

Function

hi ber nat e. cache. def aul t _cache_concur r enSettingatisgg to give the name of the default

org. hi bernat e. annot ati ons. CacheConcurr e
to use when either @acheabl e @ache} is
used. @ache(strategy="..") is used to
override this default.

hi ber nat e. i d. new_gener at or _nappi ngs

true or false. Setting which indicates
whether or notthe new | dent i fi er Gener at or
implementations are used for AUTO, TABLE
and SEQUENCE. Default to false to keep
backward compatibility.

ncySt rat egy

I

Logging

1.4. Logging

Hibernate Annotations utilizes Simple Logging Facade for Java [http://www.slf4j.org/] (SLF4J)
in order to log various system events. SLF4J can direct your logging output to several logging
frameworks (NOP, Simple, log4j version 1.2, JDK 1.4 logging, JCL or logback) depending on your
chosen binding. In order to setup logging properly you will need sl f 4j - api . j ar in your classpath
together with the jar file for your preferred binding - sl f 4j -1 og4j 12. j ar in the case of Log4J.
See the SLF4J documentation [http://www.slf4j.org/manual.html] for more detail.

The logging categories interesting for Hibernate Annotations are:

Table 1.2. Hibernate Annotations Log Categories

Category Function

org.hibernate.cfg Log all configuration related events (not only
annotations).

For further category configuration refer to the Logging [http://www.hibernate.org/hib_docs/v3/
reference/en/html_single/#configuration-logging] in the Hibernate Core documentation.

http://www.slf4j.org/
http://www.slf4j.org/
http://www.slf4j.org/manual.html
http://www.slf4j.org/manual.html
http://www.hibernate.org/hib_docs/v3/reference/en/html_single/#configuration-logging
http://www.hibernate.org/hib_docs/v3/reference/en/html_single/#configuration-logging
http://www.hibernate.org/hib_docs/v3/reference/en/html_single/#configuration-logging

Chapter 2.

Mapping Entities

2.1. Intro

This section explains how to describe persistence mappings using Java Persistence 2.0
annotations as well as Hibernate-specific annotation extensions.

2.2. Mapping with JPA (Java Persistence Annotations)

JPA entities are plain POJOs. Actually, they are Hibernate persistent entities. Their mappings are
defined through JDK 5.0 annotations instead of hbm.xml files. A JPA 2 XML descriptor syntax
for overriding is defined as well). Annotations can be split in two categories, the logical mapping
annotations (describing the object model, the association between two entities etc.) and the
physical mapping annotations (describing the physical schema, tables, columns, indexes, etc).
We will mix annotations from both categories in the following code examples.

JPA annotations are in the j avax. per si st ence. * package. You favorite IDE can auto-complete
annotations and their attributes for you (even without a specific "JPA" module, since JPA
annotations are plain JDK 5 annotations).

A good an complete set of working examples can be found in the Hibernate Annotations test suite
itself: most of the unit tests have been designed to represent a concrete example and be a source
of inspiration for you. You can get the test suite sources in the distribution.

2.2.1. Marking a POJO as persistent entity

Every persistent POJO class is an entity and is declared using the @nti ty annotation (at the
class level):

@ntity
public class Flight inplenents Serializable {
Long id;

@d
public Long getld() { return id; }

public void setld(Long id) { this.id =id; }

@nt ity declares the class as an entity (i.e. a persistent POJO class), @ d declares the identifier
property of this entity. The other mapping declarations are implicit. The class Flight is mapped to
the Flight table, using the column id as its primary key column.

Chapter 2. Mapping Entities

@ Note

The concept of configuration by exception is central to the JPA specification.

Depending on whether you annotate fields or methods, the access type used by Hibernate will be
field orproperty. The EJB3 spec requires that you declare annotations on the element type
that will be accessed, i.e. the getter method if you use pr oper t y access, the field if you use fi el d
access. Mixing annotations in both fields and methods should be avoided. Hibernate will guess
the access type from the position of @ d or @nbedded! d.

2.2.1.1. Defining the table

@rabl e is set at the class level; it allows you to define the table, catalog, and schema names for
your entity mapping. If no @rabl e is defined the default values are used: the unqualified class
name of the entity.

@ntity
@rabl e(nane="t bl _sky")
public class Sky inplenents Serializable {

}

The @rabl e element contains a schema and cat al og attributes, if they need to be defined. You can
also define unique constraints to the table using the @Jni queConst r ai nt annotation in conjunction
with @rabl e (for a unigue constraint bound to a single column, it is recommended to use the
@col umm. uni que approach (refer to @ol unm for more information).

@abl e(nane="t bl _sky",
uni queConstraints = {@ni queConstrai nt (col umNanmes={"nonth", "day"})}

)

A unique constraint is applied to the tuple month, day. Note that the col uitmNanes array refers
to the logical column names.

The logical column name is defined by the Hibernate Nami ngStrat egy implementation. The
default JPA naming strategy uses the physical column name as the logical column name
but it could be different if for example you append fld_ to all your columns using a custom
Nami ngSt r at egy implementation. Note that the logical column name is not necessarily equals
to the property name esp when the column name is explicitly set. Unless you override the
Nami ngSt r at egy, you shouldn't worry about that.

2.2.1.2. Versioning for optimistic locking

You can add optimistic locking capability to an entity using the @/er si on annotation:

Mapping simple properties

@ntity

public class Flight inplenents Serializable {
@/er si on
@Col umm(nanme=" OPTLOCK")
public Integer getVersion() { ... }

The version property will be mapped to the OPTLOCK column, and the entity manager will use it to
detect conflicting updates (preventing lost updates you might otherwise see with the last-commit-
wins strategy).

The version column may be a numeric (the recommended solution) or a timestamp.
Hibernate supports any kind of type provided that you define and implement the appropriate
User Ver si onType.

The application must not alter the version number set up by Hibernate in
any way. To artificially increase the version number, check in Hibernate Entity
Manager's reference documentation LockMbdeType. OPTI M STI C_FORCE_| NCREMENT or
LockModeType. PESSI M STI C_FORCE_| NCREVENT.

2.2.2. Mapping simple properties
2.2.2.1. Declaring basic property mappings

Every non static non transient property (field or method depending on the access type) of an entity
is considered persistent, unless you annotate it as @t ansi ent . Not having an annotation for your
property is equivalent to the appropriate @asi ¢ annotation. The @asi ¢ annotation allows you to
declare the fetching strategy for a property:

public transient int counter; //transient property
private String firstname; //persistent property

@ransi ent
String getLengthlnMeter() { ... } //transient property

String getNanme() {... } // persistent property

@Basi c
int getLength() { ... } // persistent property

@asi c(fetch = FetchType. LAZY)
String getDetailedComment() { ... } // persistent property

@enpor al (Tenpor al Type. Tl VE)
java.util.Date getDepartureTinme() { ... } // persistent property

@Enuner at ed(Enunilype. STRI NG)
Starred getNote() { ... } //enumpersisted as String in database

Chapter 2. Mapping Entities

count er, a transient field, and | engt hl nMet er , a method annotated as @ ansi ent, and will be
ignored by the entity manager. nane, | engt h, and fi r st nane properties are mapped persistent
and eagerly fetched (the default for simple properties). The det ai | edConment property value will
be lazily fetched from the database once a lazy property of the entity is accessed for the first time.
Usually you don't need to lazy simple properties (not to be confused with lazy association fetching).

@ Note

To enable property level lazy fetching, your classes have to be instrumented:
bytecode is added to the original class to enable such feature, please refer to the
Hibernate reference documentation. If your classes are not instrumented, property
level lazy loading is silently ignored.

The recommended alternative is to use the projection capability of JP-QL (Java Persistence Query
Language) or Criteria queries.

JPA support property mapping of all basic types supported by Hibernate (all basic Java types ,
their respective wrappers and serializable classes). Hibernate Annotations support out of the box
enum type mapping either into a ordinal column (saving the enum ordinal) or a string based column
(saving the enum string representation): the persistence representation, defaulted to ordinal, can
be overridden through the @nuner at ed annotation as shown in the not e property example.

In plain Java APIs, the temporal precision of time is not defined. When dealing with temporal
data you might want to describe the expected precision in database. Temporal data can have
DATE, Tl ME, or TI MESTAMP precision (ie the actual date, only the time, or both). Use the @renpor al
annotation to fine tune that.

@.ob indicates that the property should be persisted in a Blob or a Clob depending on the property
type: j ava. sql . O ob, Character[], char[] and java.lang.St ri ng will be persisted in a Clob.
java.sqgl . Bl ob, Byte[], byte[] and serializable type will be persisted in a Blob.

@.ob
public String getFull Text () {
return full Text;

}

@.0b
public byte[] getFull Code() {
return full Code;

}

If the property type implementsj ava. i o. Seri al i zabl e and is not a basic type, and if the property
is not annotated with @.ob, then the Hibernate seri al i zabl e type is used.

10

Mapping simple properties

2.2.2.2. Access type

By default the access type of a class hierarchy is defined by the position of the @ d or @nbedded! d
annotations. If these annotations are on a field, then only fields are considered for persistence
and the state is accessed via the field. If there annotations are on a getter, then only the getters
are considered for persistence and the state is accessed via the getter/setter. That works well in
practice and is the recommended approach.

@ Note

The placement of annotations within a class hierarchy has to be consistent
(either field or on property) to be able to determine the default access type. It is
recommended to stick to one single annotation placement strategy throughout your
whole application.

However in some situations, you need to:

« force the access type of the entity hierarchy
« override the access type of a specific entity in the class hierarchy
» override the access type of an embeddable type

The best use case is an embeddable class used by several entities that might not use the same
access type. In this case it is better to force the access type at the embeddable class level.

To force the access type on a given class, use the @\ccess annotation as showed below:

@ntity
public class Oder {
@d private Long id;
public Long getld() { return id; }
public void setld(Long id) { this.id =id; }

@nbedded private Address address;
public Address get Address() { return address; }
public void setAddress() { this.address = address; }

}

@ntity

public class User {
private Long id;
@d public Long getld() { return id; }
public void setld(Long id) { this.id =id; }

private Address address;
@nbedded public Address get Address() { return address; }
public void setAddress() { this.address = address; }

}

@nbeddabl e

11

Chapter 2. Mapping Entities

@\ccess(AcessType. PROPERTY)

public class Address {
private String streetl;
public String getStreet1() { return streetl; }
public void setStreet1() { this.streetl = streetl; }

private hashCode; //not persistent

You can also override the access type of a single property while keeping the other properties
standard.

@ntity
public class Oder {
@d private Long id;
public Long getld() { return id; }
public void setld(Long id) { this.id =id; }
@ransient private String userld;
@ransient private String orderld;

@\ccess(AccessType. PROPERTY)
public String getOrderNunber() { return userid + ":" + orderld; }
public void setOderNunber() { this.userld = ...; this.orderld = ...; }

In this example, the default access type is FI ELD except for the or der Nunber property. Note that
the corresponding field, if any must be marked as @r ansi ent ortransi ent.

@ @org.hibernate.annotations.AccessType

The annotation @r g. hi ber nat e. annot ati ons. AccessType should be
considered deprecated for FIELD and PROPERTY access. It is still useful however
if you need to use a custom access type.

2.2.2.3. Declaring column attributes

The column(s) used for a property mapping can be defined using the @ol urm annotation. Use it
to override default values (see the EJB3 specification for more information on the defaults). You
can use this annotation at the property level for properties that are:

* not annotated at all

« annotated with @asi c

» annotated with @/er si on
« annotated with @.ob

< annotated with @enpor al

12

Mapping simple properties

@Entity
public class Flight inplenents Serializable {

@ol unm(updat abl e = fal se, nanme = "flight_nanme", nullable = fal se, |ength=50)
public String getNane() { ... }

The nane property is mapped to the f I i ght _nanme column, which is not nullable, has a length of
50 and is not updatable (making the property immutable).

This annotation can be applied to regular properties as well as @ d or @/er si on properties.

@ol umm(
name="col utmmNange" ;
bool ean uni que() default false;
bool ean nul |l abl e() default true;
bool ean insertabl e() default true;
bool ean updat abl e() default true;
String columbDefinition() default ""
String table() default "";

int length() default 255;

OO0 Q0O0000®SO

int precision() default 0; // decimal precision
int scale() default 0; // decinmal scale

name (optional): the column name (default to the property name)

uni que (optional): set a unique constraint on this column or not (default false)

nul | abl e (optional): set the column as nullable (default true).

i nsert abl e (optional): whether or not the column will be part of the insert statement (default
true)

updat abl e (optional): whether or not the column will be part of the update statement (default
true)

col umDef i ni ti on (optional): override the sqgl DDL fragment for this particular column (non
portable)

t abl e (optional): define the targeted table (default primary table)

@ o0 o00o00e

| engt h (optional): column length (default 255)

09

pr eci si on (optional): column decimal precision (default 0)

if scal e (optional): column decimal scale if useful (default 0)

2.2.2.4. Embedded objects (aka components)

It is possible to declare an embedded component inside an entity and even override its column
mapping. Component classes have to be annotated at the class level with the @nbeddabl e

13

Chapter 2. Mapping Entities

annotation. It is possible to override the column mapping of an embedded object for a particular
entity using the @nbedded and @t t ri but eOverri de annotation in the associated property:

@ntity

public class Person inplenents Serializable {

/| Persistent conponent using defaults
Addr ess honeAddr ess;

@nbedded
@\ttributeOverrides({
@\t tributeOverride(name="iso2", colum = @ol um(nane="bornlso2")),
@\t tributeOverride(name="nane", colum = @ol um(nane="bornCountryNane"))

})
Country bornl n;

}
@nbeddabl e
public class Address inplenments Serializable {
String city;
Country nationality; //no overriding here
}
@nbeddabl e

public class Country inplenments Serializable {
private String iso2;
@Col utm(nane="countryNane") private String nang;

public String getlso2() { return iso2; }
public void setlso2(String iso2) { this.iso2 = iso02; }

public String getNane() { return name; }
public void setNane(String nane) { this.nane = nane; }

An embeddable object inherits the access type of its owning entity (note that you can override
that using the @ccess annotation).

The Person entity has two component properties, homeAddr ess and bor nl n. honeAddr ess
property has not been annotated, but Hibernate will guess that it is a persistent component by
looking for the @nbeddabl e annotation in the Address class. We also override the mapping of a
column name (to bor nCount r yNane) with the @nbedded and @\t t ri but eOverri de annotations
for each mapped attribute of Country. As you can see, Country is also a nested component
of Addr ess, again using auto-detection by Hibernate and JPA defaults. Overriding columns of
embedded objects of embedded objects is through dotted expressions.

14

Mapping identifier properties

@nbedded
@\ttributeOverrides({
@\ttributeOverride(nane="city", colum = @ol um(name="fld city")),
@\ttributeOverride(nanme="nationality.iso2", colum = @ol um(nanme="nat_Iso2")),
@\t tributeOverride(nane="nationality.nane", colum = @ol umm(nanme="nat _CountryNane"))
/I nationality colums in honeAddress are overridden

1)

Addr ess honmeAddr ess;

Hibernate Annotations supports something that is not explicitly supported by the JPA specification.
You can annotate a embedded object with the @mappedSuper cl ass annotation to make the
superclass properties persistent (see @mappedSuper cl ass for more informations).

You can also use association annotations in an embeddable object (ie @neToOne,
@MmanyToOne, @neToMany or @anyToMany). To override the association columns you can use
@\ssoci ati onOverri de.

If you want to have the same embeddable object type twice in the same entity, the column name
defaulting will not work as several embedded objects would share the same set of columns. In
plain JPA, you need to override at least one set of columns. Hibernate, however, allows you to
enhance the default naming mechanism through the Nami ngSt r at egy interface. You can write a
strategy that prevent name clashing in such a situation. Def aul t Conponent Saf eNani ngSt r at egy
is an example of this.

2.2.2.5. Non-annotated property defaults

If a property is not annotated, the following rules apply:

« If the property is of a single type, it is mapped as @Basic

« Otherwise, if the type of the property is annotated as @Embeddable, it is mapped as
@Embedded

« Otherwise, if the type of the property is Seri al i zabl e, it is mapped as @asi ¢ in a column
holding the object in its serialized version

« Otherwise, if the type of the property is j ava. sgl . d ob or j ava. sqgl . Bl ob, it is mapped as
@ ob with the appropriate LobType

2.2.3. Mapping identifier properties

The @ d annotation lets you define which property is the identifier of your entity. This property
can be set by the application itself or be generated by Hibernate (preferred). You can define the
identifier generation strategy thanks to the @zener at edVval ue annotation.

2.2.3.1. Generating the identifier property

JPA defines five types of identifier generation strategies:

15

Chapter 2. Mapping Entities

e AUTO - either identity column, sequence or table depending on the underlying DB
» TABLE - table holding the id

e IDENTITY - identity column

« SEQUENCE - sequence

* identity copy - the identity is copied from another entity

Hibernate provides more id generators than the basic JPA ones. Check Section 2.4, “Hibernate
Annotation Extensions” for more informations.

The following example shows a sequence generator using the SEQ_STORE configuration (see
below)

@d @enerat edVal ue(strategy=CGenerati onType. SEQUENCE, gener at or =" SEQ STORE")
public Integer getld() { ... }

The next example uses the identity generator:

@d @enerat edVal ue(strategy=CGenerationType. | DENTI TY)
public Long getld() { ... }

The AUTO generator is the preferred type for portable applications (across several DB vendors).
The identifier generation configuration can be shared for several @d mappings with the
generator attribute. There are several configurations available through @equenceGener at or
and @rabl eGener at or. The scope of a generator can be the application or the class. Class-
defined generators are not visible outside the class and can override application level generators.
Application level generators are defined at XML level (see Chapter 3, Overriding metadata through
XML):

<t abl e- gener at or nane="EMP_GEN'
t abl e=" GENERATOR_TABLE"
pk- col um- nanme="key"
val ue- col um- nane="hi "
pk- col um- val ue="EMP"
al |l ocati on-si ze="20"/>

//and the annotation equival ent

@ avax. per si st ence. Tabl eGener at or (
name="EMP_GEN",
t abl e=" GENERATOR _TABLE",
pkCol umName = "key",
val ueCol umNane = "hi"
pkCol umVal ue="EMP",
al | ocati onSi ze=20

16

Mapping identifier properties

)

<sequence- gener at or nanme="SEQ CGEN'
sequence- nane="ny_sequence"
al | ocati on-si ze="20"/>

//and the annotation equival ent

@ avax. per si st ence. SequenceGener at or (
name="SEQ CGEN',
sequenceNane="ny_sequence",
al | ocati onSi ze=20

If JPA XML (like META-1 NF/ orm xm) is used to define the generators, EMP_GEN and SEQ GEN
are application level generators. EMP_GEN defines a table based id generator using the hilo
algorithm with a max_| o of 20. The hivalue is keptin at abl e "GENERATOR_TABLE". The information
is kept in a row where pkCol urmNane "key" is equals to pkCol ummVal ue "EMP" and column
val ueCol utmNane "hi " contains the the next high value used.

SEQ GEN defines a sequence generator using a sequence named ny_sequence. The allocation
size used for this sequence based hilo algorithm is 20. Note that this version of Hibernate
Annotations does not handle i ni ti al Val ue in the sequence generator. The default allocation
size is 50, so if you want to use a sequence and pickup the value each time, you must set the
allocation size to 1.

Important

We recommend all new projects to use
hi ber nat e. i d. new_gener at or _mappi ngs=t r ue as the new generators are more
efficient and closer to the JPA 2 specification semantic. However they are not
backward compatible with existing databases (if a sequence or a table is used
for id generation). See Section 1.3, “Properties” for more information on how to
activate them.

@ Note

Package level definition is not supported by the JPA specification. However,
you can use the @senericGenerator at the package level (see

).

The next example shows the definition of a sequence generator in a class scope:

@Entity
@ avax. per si st ence. SequenceGener at or (

17

Chapter 2. Mapping Entities

nane="SEQ STORE",
sequenceNanme="rny_sequence"

)

public class Store inplenments Serializable {
private Long id;

@d @enerat edVal ue(strategy=Generati onType. SEQUENCE, gener ator="SEQ STORE")
public Long getld() { return id; }

This class will use a sequence named my_sequence and the SEQ_STORE generator is not
visible in other classes. Note that you can check the Hibernate Annotations tests in the
org.hibernate.test.annotations.id package for more examples.

Finally, you can ask Hibernate to copy the identifier from another associated entity. In the
Hibernate jargon, it is known as a foreign generator but the JPA mapping reads better and is
encouraged.

@ntity

class Medical History inplements Serializable {
@d @neToOne
@oi nCol um(nane = "person_id")

Person patient;

@ntity
public class Person inplenents Serializable {
@d @xneratedVal ue I nteger id;

Or alternatively

@ntity
cl ass Medical History inplenments Serializable {
@d Integer id;

@mpsl d @neToOne
@oi nCol um(nane = "patient_id")
Person patient;

@ntity
cl ass Person {
@d @xneratedVal ue I nteger id;

If you are interested in more examples of "derived identities”, the JPA 2 specification has a great
set of them in chapter 2.4.1.3.

But an identifier does not have to be a single property, it can be composed of several properties.

18

Mapping identifier properties

2.2.3.2. Composite identifier

You can define a composite primary key through several syntaxes:

e use a component type to represent the identifier and map it as a property in the entity: you then
annotated the property as @nbedded! d. The component type has to be Seri al i zabl e.

* map multiple properties as @ d properties: the identifier type is then the entity class itself and
needs to be Seri al i zabl e. This approach is unfortunately not standard and only supported
by Hibernate.

* map multiple properties as @ d properties and declare an external class to be the identifier
type. This class, which needs to be Seri al i zabl e, is declared on the entity via the @ dC ass
annotation. The identifier type must contain the same properties as the identifier properties of
the entity: each property name must be the same, its type must be the same as well if the entity
property is of a basic type, its type must be the type of the primary key of the associated entity
if the entity property is an association (either a @neToOne or a @/any ToOne).

As you can see the last case is far from obvious. It has been inherited from the dark ages of EJB
2 for backward compatibilities and we recommend you not to use it (for simplicity sake).

Let's explore all three cases using examples.

2.2.3.2.1. @EmbeddedId property

Here is a simple example of @nbedded! d.

@ntity

class User {
@nbedded! d
@\t tributeOverride(name="firstNane", colum=@Col um(nanme="fld_firstnane")
Userld id;

I nt eger age;

}

@nbeddabl e

class Userld inplenents Serializable {
String firstNang;
String | ast Nane;

}

You can notice that the Userld class is serializable. To override the column mapping, use
@\ttributeOverride.

An embedded id can itself contains the primary key of an associated entity.

@Entity
cl ass Customner {

19

Chapter 2. Mapping Entities

@nbeddedl d Custonerld id;
bool ean preferredCustoner;

@mpsl d("userld")

@oi nCol ums({
@oi nCol um(nanme="userfirstname_fk", referencedCol umName="firstNanme"),
@oi nCol um(nanme="user | ast nane_f k", referencedCol umNanme="1 ast Nane")

D)
@neToOne User user;

}

@nbeddabl e

class Custonerld inplements Serializable {
Userld userld;
String customner Nunber;

}

@ntity

class User {
@nbeddedl d Userld id;
I nt eger age;

}

@nbeddabl e

class Userld inplenents Serializable {
String firstNang;
String | ast Nare;

}

In the embedded id object, the association is represented as the identifier of the associated
entity. But you can link its value to a regular association in the entity via the @aps! d annotation.
The @apslid value correspond to the property name of the embedded id object containing
the associated entity's identifier. In the database, it means that the Custoner. user and the
Customer | d. user | d properties share the same underlying column (user _f k in this case).

In practice, your code only sets the Cust oner . user property and the user id value is copied by
Hibernate into the Cust oner | d. user | d property.

Warning

The id value can be copied as late as flush time, don't rely on it until after flush time.

While not supported in JPA, Hibernate lets you place your association directly in the embedded
id component (instead of having to use the @/aps! d annotation).

@ntity

cl ass Custoner {
@nbeddedl d Custonerld id;
bool ean preferredCust oner;

}

@nbeddabl e

20

Mapping identifier properties

class Customerld inplenents Serializable {

@neToOne

@oi nCol ums({
@oi nCol um(nanme="userfirstnanme_fk", referencedCol umNanme="firstNanme"),
@oi nCol um(nanme="user | ast nane_f k", referencedCol umName="1ast Nane")

b

User user;

String custoner Nunber;

@ntity

class User {
@nbeddedl d Userld id;
I nt eger age;

@nbeddabl e

class Userld inplenents Serializable {
String firstNang;
String | ast Nare;

2.2.3.2.2. Multiple @Id properties

Another, arguably more natural, approach is to place @ d on multiple properties of my entity. This
approach is only supported by Hibernate but does not require an extra embeddable component.

@Entity
class Customer inplenents Serializable {
@d @mneToOne
@oi nCol ums({
@oi nCol um(nane="userfirstnanme_fk", referencedCol umNane="firstNane"),
@oi nCol um(nanme="user | ast nane_f k", referencedCol umName="1 ast Nane")

b

User user;
@d String custoner Nunber;

bool ean preferredCustoner;

@ntity

class User {
@nbeddedl d Userld id;
I nt eger age;

@nbeddabl e

class Userld inplenents Serializable {
String firstNang;
String | ast Nane;

In this case Cust oner being it's own identifier representation, it must implement Seri al i zabl e.

21

Chapter 2. Mapping Entities

2.2.3.2.3. @ldClass

@ dd ass on an entity points to the class (component) representing the identifier of the class. The
properties marked @ d on the entity must have their corresponding property on the @ dd ass. The
return type of search twin property must be either identical for basic properties or must correspond
to the identifier class of the associated entity for an association.

Warning

This approach is inherited from the EJB 2 days and we recommend against its use.
But, after all it's your application and Hibernate supports it.

@ntity
cl ass Custoner {
@d @neToOne
@oi nCol ums({
@oi nCol um(name="userfirstname_fk", referencedCol umName="firstNanme"),
@oi nCol um(nanme="user | ast nane_f k", referencedCol umNanme="1 ast Nane")

b

User user;
@d String customer Nunber;

bool ean preferredCust oner;

}

class Customerld inplenents Serializable {
User |l d user;
String customer Nunber;

}

@Entity

class User {
@nbeddedl d Userld id;
I nt eger age;

}

@nbeddabl e

class Userld inplenents Serializable {
String firstNane;
String | ast Nane;

}

Cust omer and Cust oner | d do have the same properties cust omer Nunber as well as user .

While not JPA standard, Hibernate let's you declare the vanilla associated property in the
@ dd ass.

@ntity

cl ass Customer {

22

Mapping identifier properties

@d @mneToOne

@oi nCol ums({
@oi nCol um(nanme="userfirstnanme_fk", referencedCol umNanme="firstNanme"),
@oi nCol um(name="user | ast nane_f k", referencedCol umNanme="1 ast Nane")

19

User user;
@d String custoner Nunber;

bool ean preferredCustoner;

class Custonerld inplements Serializable {
@neToOne User user;
String customner Nunber;

@ntity

class User {
@nbeddedl d Userld id;
I nt eger age;

@nbeddabl e

class Userld inplenents Serializable {
String firstNang;
String | ast Nare;

2.2.3.2.4. Partial identifier generation

Hibernate supports the automatic generation of some of the identifier properties. Simply use the
@z=ner at edVal ue annotation on one or several id properties.

Warning

The Hibernate team has always felt such a construct as fundamentally wrong. Try
hard to fix your data model before using this feature.

@ntity

public class Custonerlnventory inplenents Serializable {
@d
@abl eGenerat or (namre = "inventory",

tabl e = "U_SEQUENCES",
pkCol umName = "S_ | D',
val ueCol utmNane = "S_NEXTNUM',

pkCol umVal ue = "inventory",

al | ocati onSi ze = 1000)
@ener at edVal ue(strategy = GenerationType. TABLE, generator = "inventory")
I nteger id;

@d @mbnyToOne(cascade = CascadeType. MERGE)

23

Chapter 2. Mapping Entities

Cust oner custoner;

}

@ntity

public class Custoner inplenents Serializable {
@d
private int id;

You can also generate properties inside an @nbedded! d class.

2.2.4. Mapping inheritance

EJB3 supports the three types of inheritance:

» Table per Class Strategy: the <union-class> element in Hibernate
» Single Table per Class Hierarchy Strategy: the <subclass> element in Hibernate
» Joined Subclass Strategy: the <joined-subclass> element in Hibernate

The chosen strategy is declared at the class level of the top level entity in the hierarchy using the
@ nheri t ance annotation.

@ Note

Annotating interfaces is currently not supported.

2.2.4.1. Table per class

This strategy has many drawbacks (esp. with polymorphic queries and associations) explained
in the JPA spec, the Hibernate reference documentation, Hibernate in Action, and many other
places. Hibernate work around most of them implementing this strategy using SQL UNI ON queries.
It is commonly used for the top level of an inheritance hierarchy:

@ntity
@ nheritance(strategy = InheritanceType. TABLE_PER CLASS)
public class Flight inplenents Serializable { ... }

This strategy supports one-to-many associations provided that they are bidirectional. This strategy
does not support the | DENTI TY generator strategy: the id has to be shared across several tables.
Consequently, when using this strategy, you should not use AUTO nor | DENTI TY.

2.2.4.2. Single table per class hierarchy

All properties of all super- and subclasses are mapped into the same table, instances are
distinguished by a special discriminator column:

24

Mapping inheritance

@ntity
@ nheritance(strategy=Il nheritanceType. SI NGLE_TABLE)
@i scri m nat or Col umm(

name="pl anet ype",

di scri m nat or Type=Di scri nmi nat or Type. STRI NG

)
@i scri m natorVal ue(" Pl ane")
public class Plane { ... }

@Entity
@i scri m nat or Val ue(" A320")
public class A320 extends Plane { ... }

Pl ane is the superclass, it defines the inheritance strategy | nheritanceType. S| NGLE_TABLE.
It also defines the discriminator column through the @i scri mi nat or Col uim annotation, a
discriminator column can also define the discriminator type. Finally, the @i scri mi nat or Val ue
annotation defines the value used to differentiate a class in the hierarchy. All of these
attributes have sensible default values. The default name of the discriminator column is
DTYPE. The default discriminator value is the entity name (as defined in @ntity. nane) for
DiscriminatorType.STRING. A320 is a subclass; you only have to define discriminator value if you
don't want to use the default value. The strategy and the discriminator type are implicit.

@nheritance and @i scri m nat or Col unm should only be defined at the top of the entity
hierarchy.

2.2.4.3. Joined subclasses

The @primaryKeyJoi nCol uim and @°ri mar yKeyJoi nCol urms annotations define the primary
key(s) of the joined subclass table:

@Entity

@ nheritance(strategy=InheritanceType. JO NED)
public class Boat inplenents Serializable { ... }
@ntity

public class Ferry extends Boat { ... }

@Entity

@r i mar yKeyJoi nCol uim(nane="BOAT_I| D")

public class AmericaCupClass extends Boat { ... }

All of the above entities use the JO NED strategy, the Ferry table is joined with the Boat table
using the same primary key names. The Aneri caCupd ass table is joined with Boat using the join
condition Boat . i d = Ameri caCupC ass. BOAT_I D.

25

Chapter 2. Mapping Entities

2.2.4.4. Inherit properties from superclasses

This is sometimes useful to share common properties through a technical or a business superclass
without including it as a regular mapped entity (ie no specific table for this entity). For that purpose
you can map them as @ppedSuper cl ass.

@mppedSuper cl ass

public class BaseEntity {
@Basi ¢
@enpor al (Tenpor al Type. TI MESTAMP)
public Date getlLastUpdate() { ... }
public String getlLastUpdater() { ... }

-

@ntity class Order extends BaseEntity {
@d public Integer getld() { ... }

-

In database, this hierarchy will be represented as an Or der table having the i d, | ast Updat e and
| ast Updat er columns. The embedded superclass property mappings are copied into their entity
subclasses. Remember that the embeddable superclass is not the root of the hierarchy though.

(3

(3

Mapping inheritance

(3

You can override columns defined in entity superclasses at the root entity level using the
@\t tribut eOverri de annotation.

@mappedSuper cl ass
public class FlyingQbject inplenents Serializable {

public int getAltitude() {
return altitude;

@r ansi ent
public int getMetricAtitude() {
return nmetricAltitude;

@manyToOne
public Propul si onType get Propul sion() {
return metricAltitude;

-

@ntity
@\ttributeOverride(nanme="al titude", colum = @ol um(nane="fld_altitude"))
@\ssoci ati onOverri de(
nane="propul si on",
j oi nCol ums = @oi nCol um(nane="f| d_propul si on_fk")
)
public class Plane extends FlyingQbject {

-

The al titude property will be persisted in an fld_al titude column of table Pl ane and the
propulsion association will be materialized in a f | d_pr opul si on_f k foreign key column.

You can define @t tributeOverride(s) and @ssoci ati onOverride(s) on @ntity classes,
@mppedSuper cl ass classes and properties pointing to an @nbeddabl e object.

27

Chapter 2. Mapping Entities

2.2.5. Mapping entity associations/relationships

2.2.5.1. One-to-one

You can associate entities through a one-to-one relationship using @neToOne. There are three
cases for one-to-one associations: either the associated entities share the same primary keys
values, a foreign key is held by one of the entities (note that this FK column in the database should
be constrained unique to simulate one-to-one multiplicity), or a association table is used to store
the link between the 2 entities (a unique constraint has to be defined on each fk to ensure the
one to one multiplicity).

First, we map a real one-to-one association using shared primary keys:

@ntity
public class Body {
@d
public Long getld() { return id; }

@neToOne(cascade = CascadeType. ALL)
@r i mar yKeyJoi nCol umm
public Heart getHeart() {

return heart;

}

@ntity
public class Heart {
@d
public Long getld() { ...}

The @ri mar yKeyJoi nCol uim annotation does say that the primary key of the entity is used as
the foreign key value to the associated entity.

In the following example, the associated entities are linked through an explicit foreign key column:

@ntity

public class Custoner inplenents Serializable {
@neToOne(cascade = CascadeType. ALL)
@oi nCol um(nane="passport _fk")
public Passport getPassport() {

}

@ntity

public class Passport inplenents Serializable {
@neToOne(mappedBy = "passport")
public Custoner getOaner() {

28

Mapping entity associations/relationships

A Custoner is linked to a Passport, with a foreign key column named passport_fk in the
Customer table. The join column is declared with the @oi nCol uim annotation which looks
like the @ol umm annotation. It has one more parameters named r ef er encedCol umNane. This
parameter declares the column in the targeted entity that will be used to the join. Note that
when using r ef er encedCol utmNane to a non primary key column, the associated class has to be
Seri al i zabl e. Also note that the r ef er encedCol umNane to a non primary key column has to
be mapped to a property having a single column (other cases might not work).

The association may be bidirectional. In a bidirectional relationship, one of the sides (and only one)
has to be the owner: the owner is responsible for the association column(s) update. To declare
a side as not responsible for the relationship, the attribute mappedBy is used. mappedBy refers to
the property name of the association on the owner side. In our case, this is passport. As you
can see, you don't have to (must not) declare the join column since it has already been declared
on the owners side.

If no @oi nCol umm is declared on the owner side, the defaults apply. A join column(s) will be
created in the owner table and its name will be the concatenation of the name of the relationship in
the owner side, _ (underscore), and the name of the primary key column(s) in the owned side. In
this example passport _i d because the property name is passport and the columnid of Passport
isid.

The third possibility (using an association table) is quite exotic.

@ntity
public class Custoner inplenents Serializable {
@neToOne(cascade = CascadeType. ALL)
@oi nTabl e(nane = "Cust oner Passports",
joi nCol ums = @oi nCol um(nanme="cust oner _fk"),
i nverseJoi nCol ums = @oi nCol um(nanme="passport_fk")

)
public Passport getPassport() {

}

@ntity

public class Passport inplenments Serializable {
@neToOne(nappedBy = "passport")
public Custoner getOaner() {

A Cust omrer is linked to a Passport through a association table named Cust oner Passport s ; this
association table has a foreign key column named passport _f k pointing to the Passport table
(materialized by the i nver seJoi nCol umrm, and a foreign key column named cust oner _f k pointing
to the Cust orrer table materialized by the j oi nCol unms attribute.

29

Chapter 2. Mapping Entities

You must declare the join table name and the join columns explicitly in such a mapping.
2.2.5.2. Many-to-one

Many-to-one associations are declared at the property level with the annotation @anyToOne:

@ntity()
public class Flight inplements Serializable {
@m&nyToOne(cascade = {CascadeType. PERSI ST, CascadeType. MERGE})
@oi nCol um(nane="COVP_| D)
publ i c Conpany get Conpany() {
return conpany;

}

The @oi nCol unm attribute is optional, the default value(s) is like in one to one, the concatenation
of the name of the relationship in the owner side, _ (underscore), and the name of the primary key
column in the owned side. In this example conmpany_i d because the property name is conpany
and the column id of Company is i d.

@manyToOne has a parameter named t ar get Ent i t y which describes the target entity name. You
usually don't need this parameter since the default value (the type of the property that stores the
association) is good in almost all cases. However this is useful when you want to use interfaces
as the return type instead of the regular entity.

@ntity
public class Flight inplenents Serializable {
@manyToOne(cascade = {CascadeType. PERSI ST, CascadeType. MERCE}, targetEntity=Conpanylnpl.class)
@oi nCol um(nane="COWP_| D")
publ i c Conpany get Conpany() {
return conpany;

}
}

public interface Conpany {

}

You can also map a many-to-one association through an association table. This association table
described by the @oi nTabl e annotation will contains a foreign key referencing back the entity
table (through @oi nTabl e. j oi nCol uims) and a a foreign key referencing the target entity table
(through @oi nTabl e. i nver seJoi nCol urms).

@ntity

public class Flight inplenments Serializable {
@manyToOne(cascade = {CascadeType. PERSI ST, CascadeType. MERGE})
@oi nTabl e(nane="Fl i ght _Conpany",

30

Mapping entity associations/relationships

joinCol ums = @oi nCol um(nanme="FLI GHT_I D"),
i nver seJoi nCol ums = @oi nCol um(name="COWP_I D")

)
publ i c Conpany get Conpany() {
return conpany;

}

2.2.5.3. Collections

You can map Col | ecti on, Li st, Map and Set pointing to associated entities as one-to-many or
many-to-many associations using the @neToMany or @/anyToMany annotation respectively. If the
collection is of a basic type or of an embeddable type, use @l enent Col | ect i on. We will describe
that in more detail in the following subsections.

2.2.5.3.1. One-to-many

One-to-many associations are declared at the property level with the annotation @neToMany. One
to many associations may be bidirectional.

2.2.5.3.1.1. Bidirectional

Since many to one are (almost) always the owner side of a bidirectional relationship in the JPA
spec, the one to many association is annotated by @neToMany(mrappedBy=. . .)

@ntity
public class Troop {
@neToMany(mappedBy="t r oop")
public Set<Sol di er> get Sol diers() {

}

@ntity

public class Soldier {
@anyToOne
@oi nCol um(nanme="troop_fk")
public Troop get Troop() {

Tr oop has a bidirectional one to many relationship with Sol di er through the t r oop property. You
don't have to (must not) define any physical mapping in the mappedBy side.

To map a bidirectional one to many, with the one-to-many side as the owning side, you have to
remove the mappedBy element and set the many to one @oi nCol umm as insertable and updatable
to false. This solution is not optimized and will produce some additional UPDATE statements.

@ntity

31

Chapter 2. Mapping Entities

public class Troop {
@neToMany
@oi nCol um(name="troop_fk") //we need to duplicate the physical information
public Set<Sol di er> get Soldiers() {

@ntity

public class Soldier {
@manyToOne
@oi nCol um(nanme="troop_fk", insertabl e=fal se, updatabl e=fal se)
public Troop get Troop() {

2.2.5.3.1.2. Unidirectional

A unidirectional one to many using a foreign key column in the owned entity is not that common
and not really recommended. We strongly advise you to use a join table for this kind of association
(as explained in the next section). This kind of association is described through a @oi nCol umm

@ntity

public class Custoner inplenents Serializable {
@neToMany(cascade=CascadeType. ALL, fetch=FetchType. EACER)
@oi nCol um(nane="CUST_I D")
public Set<Ticket> getTickets() {

}

@ntity

public class Ticket inplenents Serializable {
/1no bidir

}

Cust oner describes a unidirectional relationship with Ti cket using the join column CUST_I D.
2.2.5.3.1.3. Unidirectional with join table

A unidirectional one to many with join table is much preferred. This association is described
through an @oi nTabl e.

@Entity
public class Trainer {
@neToMany
@oi nTabl e(
name="Tr ai nedMonkeys",
joinColums = @oi nCol um(nane="trainer_id"),
i nverseJoi nCol ums = @oi nCol um(nane="nonkey_i d")

)
publ i c Set <Monkey> get Tr ai nedMbnkeys() {

32

Mapping entity associations/relationships

@ntity
public class Mnkey {
. //no bidir

}

Tr ai ner describes a unidirectional relationship with Monkey using the join table Tr ai nedMonkeys,
with a foreign key t r ai ner _i d to Tr ai ner (j oi nCol unms) and a foreign key nonkey_i d to Monkey
(i nver sej oi nCol umms).

2.2.5.3.1.4. Defaults

Without describing any physical mapping, a unidirectional one to many with join table is used.
The table name is the concatenation of the owner table name, _, and the other side table name.
The foreign key name(s) referencing the owner table is the concatenation of the owner table, _,
and the owner primary key column(s) name. The foreign key name(s) referencing the other side
is the concatenation of the owner property name, _, and the other side primary key column(s)
name. A unique constraint is added to the foreign key referencing the other side table to reflect
the one to many.

@ntity
public class Trainer {
@neToMany
public Set<Tiger> getTrai nedTi gers() {

}

@ntity

public class Tiger {
. //no bidir

}

Tr ai ner describes a unidirectional relationship with Ti ger using the join table Tr ai ner _Ti ger,
with a foreign key trainer_id to Trainer (table name, _, trainer id) and a foreign key
trai nedTi gers_i d to Monkey (property name, _, Tiger primary column).

2.2.5.3.2. Many-to-many

2.2.5.3.2.1. Definition

A many-to-many association is defined logically using the @/any ToMany annotation. You also have
to describe the association table and the join conditions using the @oi nTabl e annotation. If the
association is bidirectional, one side has to be the owner and one side has to be the inverse end
(ie. it will be ignored when updating the relationship values in the association table):

@Entity
public class Enployer inplenents Serializable {
@manyToMany (

33

Chapter 2. Mapping Entities

target Entity=org. hi bernate. test. nmetadata. nanyt omany. Enpl oyee. cl ass,
cascade={ CascadeType. PERSI ST, CascadeType. VERGE}
)
@oi nTabl e(
nane=" EMPLOYER_EMPLOYEE",
j 0i nCol ums=@oi nCol uim(nane="EMPER_| D"),
i nver seJoi nCol ums=@oi nCol um(nane="EMPEE_| D")

)
public Collection get Enpl oyees() {
return enpl oyees;

}

@Entity
public class Enployee i nplenents Serializable {
@manyToMany (
cascade = {CascadeType. PERSI ST, CascadeType. MERGE},
mappedBy = "enpl oyees",
targetEntity = Enployer.cl ass

)
public Collection getEnployers() {
return enployers;

}

We've already shown the many declarations and the detailed attributes for associations. We'll go
deeper in the @oi nTabl e description, it defines a nane, an array of join columns (an array in
annotation is defined using { A, B, C }), and an array of inverse join columns. The latter ones are
the columns of the association table which refer to the Enpl oyee primary key (the "other side").

As seen previously, the other side don't have to (must not) describe the physical mapping: a simple
mappedBy argument containing the owner side property name bind the two.

2.2.5.3.2.2. Default values

As any other annotations, most values are guessed in a many to many relationship. Without
describing any physical mapping in a unidirectional many to many the following rules applied. The
table name is the concatenation of the owner table name, _ and the other side table name. The
foreign key name(s) referencing the owner table is the concatenation of the owner table name, _
and the owner primary key column(s). The foreign key name(s) referencing the other side is the
concatenation of the owner property name, _, and the other side primary key column(s). These
are the same rules used for a unidirectional one to many relationship.

@ntity

public class Store {
@manyToMany(cascade = CascadeType. PERSI ST)
public Set<City> getlnplantedlin() {

34

Mapping entity associations/relationships

}

@ntity
public class City {
. I/no bidirectional relationship

}

A Store_City isused as the join table. The St or e_i d column is a foreign key to the St or e table.
The i mpl ant edl n_i d column is a foreign key to the Ci ty table.

Without describing any physical mapping in a bidirectional many to many the following rules
applied. The table name is the concatenation of the owner table name, _and the other side table
name. The foreign key name(s) referencing the owner table is the concatenation of the other side
property name, _, and the owner primary key column(s). The foreign key name(s) referencing the
other side is the concatenation of the owner property name, _, and the other side primary key
column(s). These are the same rules used for a unidirectional one to many relationship.

@ntity

public class Store {
@manyToMany(cascade = {CascadeType. PERSI ST, CascadeType. MERGE})
publ i c Set<Custoner> get Custoners() {

}
}

@ntity

public class Custoner {
@anyToMany(nappedBy="cust oners")
public Set<Store> getStores() {

}

A St or e_Cust omer is used as the join table. The st or es_i d column is a foreign key to the St or e
table. The cust oners_i d column is a foreign key to the Cust oner table.

2.2.5.3.3. Collection of basic types or embeddable objects

In some simple situation, do don't need to associate two entities but simply create a collection of
basic types or embeddable objects. Use the @ enent Col | ecti on in this case.

@ntity
public class User {
[...]
public String getLastnane() { ...}

@ enent Col | ecti on
@ol | ecti onTabl e(name="Ni cknanes", joi nCol ums=@oi nCol utm(nane="user _i d"))
@Col um(nane="ni cknane")

35

Chapter 2. Mapping Entities

public Set<String> getNi cknames() { ... }

The collection table holding the collection data is set using the @ol | ect i onTabl e annotation. If
omitted the collection table name default to the concatenation of the name of the containing entity
and the name of the collection attribute, separated by an underscore: in our example, it would
be User _ni cknanes.

The column holding the basic type is set using the @ol uim annotation. If omitted, the column
name defaults to the property name: in our example, it would be ni cknamnes.

But you are not limited to basic types, the collection type can be any embeddable
object. To override the columns of the embeddable object in the collection table, use the
@\t tribut eOverri de annotation.

@ntity
public class User {
[...]
public String getLastnane() { ...}

@l enent Col | ecti on
@ol | ecti onTabl e(name="Addr esses", joi nCol ums=@oi nCol utm(nane="user _i d"))
@\ttributeOverrides({

@\ttributeOverride(nane="streetl1", colum=@olum(nanme="fld_street"))

9]
publi c Set <Address> get Addresses() { ... }

}

@nbeddabl e

public class Address {
public String getStreet1() {...}
[...]

Such an embeddable object cannot contains a collection itself.

@ Note

in @\ttributeOverride, you must use the val ue. prefix to override properties
of the embeddable object used in the map value and the key. prefix to override
properties of the embeddable object used in the map key.

@ntity
public class User {
@l enent Col | ecti on
@\ttributeOverrides({
@\ttributeOverride(name="key.street1l", colum=@ol um(nane="fld_street")),
@\t tributeOverride(name="val ue.stars", col um=@ol um(name="f1|d_note"))

})

36

Mapping entity associations/relationships

publ i c Map<Address, Rati ng> get FavHonmes() { ... }

(3

2.2.5.3.4. Indexed collections (List, Map)

Lists can be mapped in two different ways:

» as ordered lists, the order is not materialized in the database
» as indexed lists, the order is materialized in the database

To order lists in memory, add @ avax. persi st ence. Or der By to your property. This annotation
takes into parameter a list of comma separated properties (of the target entity) and order the
collection accordingly (eg firstname asc, age desc), if the string is empty, the collection will
be ordered by the primary key of the target entity.

@ntity

public class Custoner {
@d @eneratedValue public Integer getld() { returnid; }
public void setld(Integer id) { this.id =id; }
private Integer id;

@neToMany(mappedBy="cust oner")

@ der By(" nunber")

public List<Order> getOrders() { return orders; }

public void setOrders(List<Order> orders) { this.orders = orders; }
private List<Order> orders;

@ntity

public class Oder {
@d @xneratedValue public Integer getld() { returnid; }
public void setld(Integer id) { this.id =id; }
private Integer id;

public String getNunber() { return nunber; }
public void setNunber(String nunber) { this.nunber = nunber; }
private String nunber;

@manyToOne

public Customer getCustoner() { return custoner; }

public void setCustoner(Custoner custoner) { this.custoner = custoner; }
private Custoner nunber;

-- Tabl e schema

37

Chapter 2. Mapping Entities

Oder		Customer
oemmmnnmsnnsas	[=eemeasnss	
id		id
nunber	[----------	

To store the index value in a dedicated column, use the @ avax. persi stence. O der Col um
annotation on your property. This annotations describes the column name and attributes of the
column keeping the index value. This column is hosted on the table containing the association
foreign key. If the column name is not specified, the default is the name of the referencing property,
followed by underscore, followed by ORDER (in the following example, it would be or der s_ ORDER).

@ntity

public class Custoner {
@d @eneratedValue public Integer getld() { returnid; }
public void setld(Integer id) { this.id =id; }
private Integer id;

@neToMany(mappedBy="cust oner")

@ der Col umm(nane" orders_i ndex")

public List<Order> getOrders() { return orders; }

public void setOrders(List<Order> orders) { this.orders = orders; }
private List<Order> orders;

@ntity

public class Oder {
@d @=neratedVal ue public Integer getld() { returnid; }
public void setld(Integer id) { this.id =id; }
private Integer id;

public String getNumber() { return nunber; }
public void setNunber(String nunber) { this.nunber = nunber; }
private String nunber;

@manyToOne

public Custoner getCustoner() { return custoner; }

public void setCustoner(Custoner custoner) { this.customer = custoner; }
private Custoner nunber;

}

-- Table schema

R ks | fe=meemmee- |

| Order | | Customer |

==meemmzmmeozs | [oo=eessass |
id | id |

I I
| nunber |]---------- |
| customer_id |
I I

orders_i ndex

38

Mapping entity associations/relationships

@ Note

We recommend you to convert @r g. hi ber nat e. annot at i ons. | ndexCol unm
usages to @ der Col unm unless you are making use of the base property. The
base property lets you define the index value of the first element (aka as base
index). The usual value is 0 or 1. The default is 0 like in Java.

Likewise, maps can borrow their keys from one of the associated entity properties or have
dedicated columns to store an explicit key.

To use one of the target entity property as a key of the map, use @vapKey(name="nyProperty")
(nyProperty is a property name in the target entity). When using @apKey (without property
name), the target entity primary key is used. The map key uses the same column as the property
pointed out: there is no additional column defined to hold the map key, and it does make sense
since the map key actually represent a target property. Be aware that once loaded, the key is no
longer kept in sync with the property, in other words, if you change the property value, the key will
not change automatically in your Java model.

@ntity

public class Custoner {
@d @=xneratedVal ue public Integer getld() { returnid; }
public void setld(Integer id) { this.id =id; }
private Integer id;

@neToMany(mappedBy="cust oner")
@mpKey(nane" nunber ")
public Map<String, Order> getOrders() { return orders; }
public void setOders(Map<String, Order> order) { this.orders = orders; }
private Map<String, Order> orders;
}

@ntity

public class Oder {
@d @xneratedVal ue public Integer getld() { returnid; }
public void setld(Integer id) { this.id =id; }
private Integer id;

public String getNurmber() { return number; }
public void setNunber(String nunber) { this.nunber = nunber; }
private String nunber;

@mnyToOne

public Custoner getCustoner() { return custoner; }

public void setCustoner(Custonmer custoner) { this.customer = custoner; }
private Customer nunber;

-- Table schema

39

Chapter 2. Mapping Entities

| id | | id |
| nunber] |ec=cemcess I
|

Otherwise, the map key is mapped to a dedicated column or columns. To customize things, use
one of the following annotations:

« @MapKeyCol umm if the map key is a basic type, if you don't specify the column name, the name
of the property followed by underscore followed by KEY is used (for example or der s_KEY).

e @mpKeyEnuner at ed / @/apKeyTenpor al if the map key type is respectively an enum or a Dat e.
e @pKeyJoi nCol unmm/@vapKeyJoi nCol umms if the map key type is another entity.

e @ttributeOverride/@ttributeOverrides whenthe map key is a embeddable object. Use
key. as a prefix for your embeddable object property names.

You can also use @hapKeyd ass to define the type of the key if you don't use generics (at this
stage, you should wonder why at this day and age you don't use generics).

@ntity

public class Custoner {
@d @=neratedVal ue public Integer getld() { returnid; }
public void setld(Integer id) { this.id =1id; }
private Integer id;

@neToMany @oi nTabl e(nanme="Cust _Order")

@mpKeyCol um(nane" or der s_nunber")

public Map<String, Order> getOrders() { return orders; }

public void setOrders(Map<String, Order> orders) { this.orders = orders; }
private Map<String, Order> orders;

@Entity

public class Oder {
@d @eneratedVal ue public Integer getld() { returnid; }
public void setld(Integer id) { this.id =id; }
private Integer id;

public String getNunmber() { return nunber; }
public void setNunber(String nunber) { this.nunber = nunber; }
private String nunber;

@manyToOne
public Custoner getCustoner() { return custoner; }

public void setCustoner(Custoner custoner) { this.customer = custoner; }
private Custoner nunber;

-- Table schema

| Order | | Custoner | | Cust_Order |

40

Mapping entity associations/relationships

Note

We recommend you to migrate from @r g. hi ber nat e. annot at i ons. MapKey /
@r g. hi ber nat e. annot at i on. MapKeyMany ToMany to the new standard approach

described above.

Let's now explore the various collection semantics based on the mapping you are choosing.

Table 2.1. Collections semantics

Semantic java representation annotations
Bag semantic java.util.List, @ElementCollection or
java.util.Collection @OneToMany or

@ManyToMany

Bag semantic with primary key | java.util.List, (@ElementCollection or

(without the limitations of Bag | java.util.Collection @OneToMany or

semantic) @ManyToMany) and
@Collectionld

List semantic java.util.List (@ElementCollection or
@OneToMany or
@ManyToMany) and
(@OrderColumn or
@org.hibernate.annotations.Inc

Set semantic java.util.Set @ElementCollection or
@OneToMany or
@ManyToMany

Map semantic java.util.Map (@ElementCollection or
@OneToMany or
@ManyToMany) and
((nothing or
@MapKeyJoinColumn/
@MapKeyColumn for true
map support) OR

@javax.persistence.MapKey)

Specifically, java.util.List collections without @OrderColumn or @IndexColumn are going to be

considered as bags.

41

lexColumn)

Chapter 2. Mapping Entities

More support for collections are available via Hibernate specific extensions (see Section 2.4,
“Hibernate Annotation Extensions”).

2.2.5.4. Transitive persistence with cascading

You probably have noticed the cascade attribute taking an array of CascadeType as a value. The
cascade concept in JPA is very is similar to the transitive persistence and cascading of operations
in Hibernate, but with slightly different semantics and cascading types:

» CascadeType. PERSI ST: cascades the persist (create) operation to associated entities persist()
is called or if the entity is managed

» CascadeType. MERGE: cascades the merge operation to associated entities if merge() is called
or if the entity is managed

* CascadeType. REMOVE: cascades the remove operation to associated entities if delete() is called

e CascadeType. REFRESH. cascades the refresh operation to associated entities if refresh() is
called

* CascadeType. DETACH: cascades the detach operation to associated entities if detach() is called

* CascadeType. ALL: all of the above

@ Note

CascadeType.ALL also covers Hibernate specific operations like save-update, lock
etc... Check for more information

Please refer to the chapter 6.3 of the JPA specification for more information on cascading and
create/merge semantics.

You can also enable the orphan removal semantic. If an entity is removed from a @neToMany
collection or an associated entity is dereferenced from a @neToOne association, this associated
entity can be marked for deletion if or phanRenoval is set to true. In a way, it means that the
associated entity's lifecycle is bound to the owning entity just like an embeddable object is.

@ntity class Customer {
@neToMany(or phanRenoval =true) public Set<Order> getOrders() { return orders; }
public void setOrders(Set<Order> orders) { this.orders = orders; }
private Set<Order> orders;

[...1]
}

@ntity class Oder { ... }

42

Mapping composite primary keys and foreign keys to composite primary keys

Cust oner customer = em find(Custoner.class, 11);
Order order = emfind(Order.class, 11);
custoner.get Orders().renmove(order); //order will be deleted by cascade

2.2.5.5. Association fetching

You have the ability to either eagerly or lazily fetch associated entities. The f et ch parameter
can be set to Fet chType. LAZY or Fet chType. EAGER. EAGER will try to use an outer join select to
retrieve the associated object, while LAZY will only trigger a select when the associated object is
accessed for the first time. @neToMany and @kanyToMany associations are defaulted to LAZY and
@neToOne and @anyToOne are defaulted to EAGER. For more information about static fetching,
check Section 2.4.5.1, “Lazy options and fetching modes”.

The recommanded approach is to use LAZY on all static fetching definitions and override this
choice dynamically through JP-QL. JP-QL has a fetch keyword that allows you to override
laziness when doing a particular query. This is very useful to improve performance and is decided
on a use case to use case basis.

2.2.6. Mapping composite primary keys and foreign keys to
composite primary keys

Composite primary keys use a embedded class as the primary key representation, so you'd use
the @ d and @nbeddabl e annotations. Alternatively, you can use the @nbeddedl d annotation.
Note that the dependent class has to be serializable and implements equal s() /hashCode() . You
can also use @ dd ass. These are more detailed in Section 2.2.3, “Mapping identifier properties”.

@ntity
public class Regional Article inplements Serializable {

@d
public Regional ArticlePk getPk() { ... }
}
@nbeddabl e
public class Regional ArticlePk inplenents Serializable { ... }

or alternatively

@Entity
public class Regional Article inplenents Serializable {

@nbedded! d
public Regional ArticlePk getPk() { ... }
}
public class Regional ArticlePk inplenents Serializable { ... }

43

Chapter 2. Mapping Entities

@nbeddabl e inherit the access type of its owning entity unless @ccess is used. Composite
foreign keys (if not using the default sensitive values) are defined on associations using the
@oi nCol ums element, which is basically an array of @oi nCol um. It is considered a good
practice to express r ef er encedCol utmNanes explicitly. Otherwise, Hibernate will suppose that
you use the same order of columns as in the primary key declaration.

@ntity

public class Parent inplenents Serializable {
@d
public ParentPk id;
public int age;

@neToMany(cascade=CascadeType. ALL)
@oi nCol ums ({

@oi nCol um(nane="parent G vility", referencedCol uimNane = "isMale"),
@oi nCol um(nane="par ent Last Name", referencedCol uimNane = "| ast Nane"),
@oi nCol um(nane="par ent Fi r st Nanme", referencedCol umNanme = "firstNanme")
b
public Set<Child> children; //unidirectional
}
@ntity

public class Child inplenents Serializable {
@d @ener at edVal ue
public Integer id;

@manyToOne
@oi nCol ums ({
@oi nCol um(nanme="parentCivility", referencedColumNanme = "isMale"),
@oi nCol um(nanme="par ent Last Name", referencedCol umNane = "| ast Nane"),
@oi nCol um(nane="par ent Fi rst Nane", referencedCol umNane = "firstNanme")
b
public Parent parent; //unidirectional
}
@nbeddabl e

public class ParentPk inplenents Serializable {
String firstName;
String | ast Nane;

Note the explicit usage of the r ef er encedCol unmNane.

44

Mapping secondary tables

2.2.7. Mapping secondary tables

You can map a single entity to several tables using the @econdar yTabl e or @econdar yTabl es
class level annotations. To express that a column is in a particular table, use the t abl e parameter
of @ol um or @oi nCol um.

@ntity
@abl e(nane="Mai nCat ")
@secondar yTabl es({

b
publ

@econdar yTabl e(name="Cat 1", pkJoi nCol ums={
@°r i mar yKeyJoi nCol uim(nane="cat _i d", referencedCol umNanme="id")

D
@econdar yTabl e(name="Cat 2", uni queConstrai nt s={ @i queConstrai nt (col umNanes={"storyPart2"})})

ic class Cat inplenents Serializable {

private |nteger id;
private String nang;
private String storyPart1;
private String storyPart?2;

@d @ener at edVal ue
public Integer getld() {
return id;

}

public String getNanme() {
return name;

@col um(t abl e="Cat 1")
public String getStoryPart1() {
return storyPart1;

}

@Col umm(t abl e="Cat 2")
public String getStoryPart2() {
return storyPart2;

In this example, name will be in Mai nCat . st oryPart 1 will be in Cat 1 and st or yPart 2 will be in
Cat 2. Cat 1 will be joined to Mai nCat using the cat _i d as a foreign key, and Cat 2 using i d (ie

the

same column name, the Mai nCat id column has). Plus a unique constraint on st oryPart 2

has been set.

2.2.8. Caching entities

Hibernate offers naturally a first level cache for entities called a persistence context via the notion
of Sessi on. This cache is contextual to the use case at hand. Some entities however are shared
by many different use cases and are barely changed. You can cache these in what is called the

second level cache.

45

Chapter 2. Mapping Entities

By default, entities are not part of the second level cache. While we do not recommend that, you
can override this by setting the shar ed- cache- node element in your persistence.xml file or by
using the j avax. per si st ence. shar edCache. node property. The following values are possible:

* ENABLE_SELECTI VE (Default and recommended value): entities are not cached unless explicitly
marked as cacheable.

» DI SABLE_SELECTI VE: entities are cached unless explicitly marked as not cacheable.
* ALL: all entities are always cached even if marked as non cacheable.

« NONE: no entity are cached even if marked as cacheable. This option can make sense to disable
second-level cache altogether.

The cache concurrency strategy used by default can be set with the
hi ber nat e. cache. def aul t _cache_concurrency_strat egy property:

* read-only
e read-wite
e nonstrict-read-wite

e transacti onal

@ Note

It is recommended to define the cache concurrency strategy per entity rather than
using a global one. Use the @r g. hi ber nat e. annot at i ons. Cache annotation for
that.

@ntity @acheabl e
@Cache(usage = CacheConcurrencyStrat egy. NONSTRI CT_READ WRI TE)
public class Forest { ... }

Hibernate also let's you cache the content of a collection or the identifiers if the collection contains
other entities. Use the @ache annotation on the collection property.

@neToMany(cascade=CascadeType. ALL, fetch=FetchType. EAGER)
@oi nCol um(nane="CUST_I| D")
@ache(usage = CacheConcurrencyStrat egy. NONSTRI CT_READ WRI TE)
public SortedSet <Ti cket> getTi ckets() {

return tickets;

}

@r g. hi ber nat e. annot at i ons. Cache defines the caching strategy and region of a given second
level cache.

46

Mapping Queries

@ache(
CacheConcurrencyStrategy usage();

String region() default ""

00

String include() default "all";

€ usage: the given cache concurrency strategy (NONE, READ_ONLY,
NONSTRICT_READ_WRITE, READ_WRITE, TRANSACTIONAL)

€ region (optional): the cache region (default to the fqcn of the class or the fq role name of
the collection)

© incl ude (optional): all to include all properties, non-lazy to only include non lazy properties
(default all).

2.3. Mapping Queries

While you can write queries in your code, it is considered a good practice to externalize them:

« it make developer/DBA communications easier
« named queries are pre-compiled by Hibernate at startup time

Unfortunately, you lose the type-safety of queries written using the Criteria API.
2.3.1. Mapping JP-QL/HQL queries

You can map JP-QL/HQL queries using annotations. @lamedQuery and @anedQueri es can be
defined at the class level or in a JPA XML deployment descriptor. However their definitions are
global to the session factory/entity manager factory scope. A named query is defined by its name
and the actual query string.

<entity-mappi ngs>
<naned- query nane="pl ane. getAl | ">
<query>sel ect p from Pl ane p</query>
</ naned- quer y>

</ entity-mappi ngs>

@ntity
@anmedQuer y(name="ni ght . nor eRecent Than", query="select n from Ni ght n where n.date >= :date")
public class Night {

}

public class MyDao {
doStuff() {
Query q = s.get NanedQuery("ni ght. noreRecent Than");
g.setDate("date", aMonthAgo);
List results = q.list();

47

Chapter 2. Mapping Entities

You can also provide some hints to a query through an array of Quer yH nt through a hints
attribute.

The available Hibernate hints are

Table 2.2. Query hints

hint description

org.hibernate.cacheable Whether the query should interact with the
second level cache (defualt to false)

org.hibernate.cacheRegion Cache region name (default used otherwise)
org.hibernate.timeout Query timeout

org.hibernate.fetchSize resultset fetch size

org.hibernate.flushMode Flush mode used for this query
org.hibernate.cacheMode Cache mode used for this query
org.hibernate.readOnly Entities loaded by this query should be in read

only mode or not (default to false)

org.hibernate.comment Query comment added to the generated SQL

You can also define the lock mode by which the returned entities should be locked using the
| ockMode property. This is equivalent to the optional lock mode of the entitymanager lookup
operations.

2.3.2. Mapping native queries

You can also map a native query (ie a plain SQL query). To achieve that, you need to describe the
SQL resultset structure using @ql Resul t Set Mappi ng (or @ql Resul t Set Mappi ngs if you plan to
define several resulset mappings). Like @amedQuery, a @ql Resul t Set Mappi ng can be defined
at class level or in a JPA XML file. However its scope is global to the application.

As we will see, a resul t Set Mappi ng parameter is defined in @lanmedNat i veQuery, it represents
the name of a defined @ql Resul t Set Mappi ng. The resultset mapping declares the entities
retrieved by this native query. Each field of the entity is bound to an SQL alias (or column name).
All fields of the entity including the ones of subclasses and the foreign key columns of related
entities have to be present in the SQL query. Field definitions are optional provided that they map
to the same column name as the one declared on the class property.

@\amedNat i veQuer y(name="ni ght &rea", query="select night.id nid, night.night_duration, "
+ " night.night_date, area.id aid, night.area_id, area.nane "
+ "from Ni ght night, Area area where night.area id = area.id",

48

Mapping native queries

resul t Set Mappi ng="]j oi nMappi ng")
@9l Resul t Set Mappi ng(nane="j oi nMappi ng", entities={
@ntityResult(entityd ass=Night.class, fields = {
@i el dResul t (name="id", colum="nid"),
@i el dResul t (name="dur ation", col um="ni ght_duration"),
@i el dResul t (nane="date", col um="ni ght _date"),
@i el dResul t (name="area", colum="area_id"),
di scri m nat or Col um="di sc"
.
@ntityResult(entityCd ass=org. hi bernate.test.annotations.query. Area.class, fields = {
@i el dResul t (nanme="id", colum="aid"),
@i el dResul t (nane="nanme", col utMm="nane")

9]
}

In the above example, the ni ght &r ea named query use the j oi nMappi ng result set mapping.
This mapping returns 2 entities, Ni ght and Ar ea, each property is declared and associated to
a column name, actually the column name retrieved by the query. Let's now see an implicit
declaration of the property / column.

@ntity
@ql Resul t Set Mappi ng(nanme="inplicit",
entities=@ntityResult(entityd ass=SpaceShi p.cl ass))
@NanmedNat i veQuer y(nanme="i npl i ci t Sanpl e",
query="sel ect * from SpaceShip",
resul t Set Mappi ng="inplicit")
public class SpaceShip {
private String nang;
private String nodel;
private doubl e speed;

@d
public String getNane() {
return nane;

public void setNane(String nane) {
t hi s. nane = nane;

@col umm(nane="nodel _t xt")
public String getMdel () {
return nodel ;

public void setMdel (String nodel) {
t hi s. nodel = nodel ;

public doubl e get Speed() {
return speed;

public void set Speed(doubl e speed) {

49

Chapter 2. Mapping Entities

this.speed = speed;

In this example, we only describe the entity member of the result set mapping. The property /
column mappings is done using the entity mapping values. In this case the nodel property is
bound to the model _t xt column. If the association to a related entity involve a composite primary
key, a @i el dResul t element should be used for each foreign key column. The @i el dResul t

name is composed of the property name for the relationship, followed by a dot ("."), followed by
the name or the field or property of the primary key.

@ntity
@ql Resul t Set Mappi ng(name="conposi t ekey",
entities=@ntityResult(entityd ass=SpaceShip.cl ass,

fields = {
@i el dResul t (name="nane", colum = "nane"),
@i el dResul t (name="nodel ", colum = "nodel "),
@i el dResul t (name="speed", colum = "speed"),
@i el dResul t (name="captain.firstnane", colum = "firstn"),
@i el dResul t (nanme="capt ai n. | ast nane", colum = "lastn"),
@i el dResul t (name="di nensi ons. | ength", colum = "length"),
@i el dResul t (name="di nensi ons. w dth", colum = "wi dth")
b,

colums = { @ol umResul t (name = "surface"),

@Col umResul t (name = "volune") })

@NamedNat i veQuer y(name="conposi t ekey",
query="sel ect nane, nodel, speed, Inanme as lastn, fname as firstn, length, width, length
* width as surface from SpaceShip",
resul t Set Mappi ng="conposi t ekey")
)
public class SpaceShip {
private String nang;
private String nodel;
private doubl e speed;
private Captain captain;
private Di nensions di nensions;

@d
public String getNane() {
return name;

public void setNane(String nane) {
thi s. name = nane;

@manyToOne(f et ch= Fet chType. LAZY)
@oi nCol ums({

@oi nCol um(nane="f nane", referencedCol umNane = "firstnane"),
@oi nCol um(nanme="1 name", referencedCol uimNanme = "| ast nanme")
)

public Captain getCaptain() {
return captain;

50

Mapping native queries

public void setCaptain(Captain captain) {
this.captain = captain;

public String getMdel () {
return nodel ;

public void setMdel (String nodel) {
this. model = nodel ;

public doubl e get Speed() {
return speed;

public void set Speed(doubl e speed) {
this.speed = speed;

public Di mensions get D nmensions() {
return di nensions;

public void setDi nensions(D nensions di mensions) {
thi s. di nensi ons = di nensi ons;

@ntity

@dd ass(ldentity.class)

public class Captain inplenments Serializable {
private String firstnane;
private String |astnane;

@d
public String getFirstname() {
return firstnane;

public void setFirstname(String firstname) {
this.firstname = firstnane;

@d
public String getLastnane() {
return | astnane;

public void setLastnanme(String |astnanme) {
this.lastname = | ast nane;

If you retrieve a single entity and if you use the default mapping, you can use the resul t d ass
attribute instead of r esul t Set Mappi ng:

51

Chapter 2. Mapping Entities

@anmedNat i veQuer y(name="i npli ci t Sanpl e", query="select * from SpaceShi p",
resul t O ass=SpaceShi p. cl ass)
public class SpaceShip {

In some of your native queries, you'll have to return scalar values, for example when building
report queries. You can map them in the @ql Resul t set Mappi ng through @ol umResul t. You
actually can even mix, entities and scalar returns in the same native query (this is probably not
that common though).

@59l Resul t Set Mappi ng(nanme="scal ar", col utms=@ol ummResul t (nane="di mensi on"))
@NamedNat i veQuer y(nanme="scal ar", query="sel ect I engt h*wi dt h as di mensi on from
SpaceShi p", result Set Mappi ng="scal ar")

An other query hint specific to native queries has been introduced: or g. hi ber nat e. cal | abl e
which can be true or false depending on whether the query is a stored procedure or not.

2.4. Hibernate Annotation Extensions

Hibernate 3.1 offers a variety of additional annotations that you can mix/match with your EJB 3
entities. They have been designed as a natural extension of EJB3 annotations.

To empower the EJB3 capabilities, hibernate provides specific annotations that match hibernate
features. The or g. hi ber nat e. annot at i ons package contains all these annotations extensions.

2.4.1. Entity

You can fine tune some of the actions done by Hibernate on entities beyond what the EJB3 spec
offers.

@r g. hi bernat e. annot ati ons. Entity adds additional metadata that may be needed beyond
what is defined in the standard @ntity

» mutable: whether this entity is mutable or not

« dynamiclnsert: allow dynamic SQL for inserts

» dynamicUpdate: allow dynamic SQL for updates

» selectBeforeUpdate: Specifies that Hibernate should never perform an SQL UPDATE unless it
is certain that an object is actually modified.

» polymorphism: whether the entity polymorphism is of PolymorphismType.IMPLICIT (default) or
PolymorphismType.EXPLICIT

 optimisticLock: optimistic locking strategy (OptimisticLockType.VERSION,
OptimisticLockType.NONE, OptimisticLockType.DIRTY or OptimisticLockType.ALL)

52

Entity

(3

Here are some additional Hibernate annotation extensions

@r g. hi ber nat e. annot at i ons. Bat chSi ze allows you to define the batch size when fetching
instances of this entity (eg. @at chSi ze(si ze=4)). When loading a given entity, Hibernate will
then load all the uninitialized entities of the same type in the persistence context up to the batch
size.

@r g. hi ber nat e. annot at i ons. Proxy defines the laziness attributes of the entity. lazy (default
to true) define whether the class is lazy or not. proxyClassName is the interface used to generate
the proxy (default is the class itself).

@r g. hi ber nat e. annot at i ons. Wher e defines an optional SQL WHERE clause used when
instances of this class is retrieved.

@r g. hi ber nat e. annot at i ons. Check defines an optional check constraints defined in the DDL
statetement.

@nbDel et e(acti on=OnDel et eActi on. CASCADE) on joined subclasses: use a SQL cascade
delete on deletion instead of the regular Hibernate mechanism.

@rabl e(appl i esTo="t abl eNane", i ndexes = { @ ndex(nane="i ndex1",
col umNanes={"col um1", "columm2"}) }) creates the defined indexes on the columns of
table t abl eName. This can be applied on the primary table or any secondary table. The @rabl es
annotation allows your to apply indexes on different tables. This annotation is expected where
@ avax. per si st ence. Tabl e or @ avax. per si st ence. Secondar yTabl e(s) occurs.

(3

@r g. hi ber nat e. annot at i ons. Tabl e can also be used to define the following elements of
secondary tables:

» fetch: If set to JOIN, the default, Hibernate will use an inner join to retrieve a secondary table
defined by a class or its superclasses and an outer join for a secondary table defined by a

53

Chapter 2. Mapping Entities

subclass. If set to select then Hibernate will use a sequential select for a secondary table
defined on a subclass, which will be issued only if a row turns out to represent an instance of
the subclass. Inner joins will still be used to retrieve a secondary defined by the class and its
superclasses.

e inverse: If true, Hibernate will not try to insert or update the properties defined by this join.
Default to false.

e optional : If enabled (the default), Hibernate will insert a row only if the properties defined by
this join are non-null and will always use an outer join to retrieve the properties.

 forei gnKey: defines the Foreign Key name of a secondary table pointing back to the primary
table.

@ mut abl e marks an entity or collection as immutable. An immutable entity may not be updated
by the application. This allows Hibernate to make some minor performance optimizations. Updates
to an immutable entity will be ignored, but no exception is thrown. @ mut abl e must be used on
root entities only. @ nmut abl e placed on a collection makes the collection immutable, meaning
additions and deletions to and from the collection are not allowed. A Hi ber nat eExcepti on is
thrown in this case.

@er si st er lets you define your own custom persistence strategy. You may, for example, specify
your own subclass of or g. hi ber nat e. persi ster. EntityPersi ster or you might even provide
a completely new implementation of the interface or g. hi ber nat e. persi st er. d assPer si st er
that implements persistence via, for example, stored procedure calls, serialization to flat files or
LDAP.

@ntity
@Bat chSi ze(si ze=5)
@rg. hi bernate. annotations. Entity(
sel ect Bef oreUpdate = true,
dynamiclnsert = true, dynanmicUpdate = true,
optimsticLock = OptimsticLockType. ALL,
pol ynor phi sm = Pol ynor phi snilype. EXPLI CI T)
@\er e(cl ause="1=1")

@r g. hi ber nat e. annot ati ons. Tabl e(nane="Forest", indexes = { @ndex(nanme="idx", columNanes = { "nane", "length" }
@Per si ster (i npl =M/EntityPersister.cl ass)

public class Forest { ... }

@ntity

@ nheri tance(
strat egy=I nheri tanceType. JO NED

)

public class Vegetable { ... }

@ntity
@nDel et e(acti on=0nDel et eAct i on. CASCADE)
public class Carrot extends Vegetable { ... }

54

Identifier

2.4.2. ldentifier

Hibernate Annotations goes beyond the Java Persistence specification when defining identifiers.

2.4.2.1. Generators

@r g. hi ber nat e. annot ati ons. Generi cGener at or and
@r g. hi bernat e. annot ati ons. Generi cGenerators allows you to define an Hibernate

specific id generator.

@d @zener at edVal ue(gener at or ="syst em uui d")
@zeneri cGener at or (nane="system uui d*, strategy = "uuid")
public String getld() {

@d @ener at edVal ue(gener at or ="hi bseq")

@zeneri cCGener at or (name="hi bseq", strategy = "seqghilo",
paraneters = {
@par anet er (nane="max_| 0", value = "5"),

@par anet er (nane="sequence", val ue="heybabyhey")

)
public Integer getld() {

strategy is the short name of an Hibernate3 generator strategy or the fully qualified class
name of an I denti fi er Gener at or implementation. You can add some parameters through the
par anet er s attribute.

Contrary to their standard counterpart, @eneri cGener at or and @seneri cGenerators can be
used in package level annotations, making them application level generators (just like if they were
in a JPA XML file).

@zeneri cCGener at or s(
{
@seneri cCGener at or (
name="hi bseq",
strategy = "seqghilo",
paraneters = {
@par anet er (nane="nmax_| o", value = "5"),
@par anet er (nane="sequence", val ue="heybabyhey")

).
@zenericGenerator(...)
}

)

package org. hi bernate.test. nodel

55

Chapter 2. Mapping Entities

2.4.2.2. @Naturalld

While not used as identifier property, some (group of) properties represent natural identifier of
an entity. This is especially true when the schema uses the recommended approach of using
surrogate primary key even if a natural business key exists. Hibernate allows to map such natural
properties and reuse them in a Criteria query. The natural identifier is composed of all the
properties marked @\at ur al | d.

@ntity

public class Citizen {
@d
@=xner at edVal ue
private Integer id,
private String firstname;
private String |astnang;

@\aturalld
@manyToOne
private State state;

@\aturalld

private String ssn;

//and | ater on query

List results = s.createCriteria(Citizen.class)
.add(Restrictions.naturalld().set("ssn", "1234").set("state", ste))
list();

Note that the group of properties representing the natural identifier have to be unique (Hibernate
will generate a unique constraint if the database schema is generated).

2.4.3. Property

2.4.3.1. Formula

Sometimes, you want the Database to do some computation for you rather than in the JVM, you
might also create some kind of virtual column. You can use a SQL fragment (aka formula) instead
of mapping a property into a column. This kind of property is read only (its value is calculated by
your formula fragment).

@ormul a("obj _Iength * obj _height * obj_wi dth")
public | ong get Qoj ect Vol une()

The SQL fragment can be as complex as you want and even include subselects.

56

Property

2.4.3.2. Type

@r g. hi ber nat e. annot at i ons. Type overrides the default hibernate type used: this is generally
not necessary since the type is correctly inferred by Hibernate. Please refer to the Hibernate
reference guide for more informations on the Hibernate types.

@r g. hi ber nat e. annot at i ons. TypeDef and @r g. hi ber nat e. annot at i ons. TypeDef s allows
you to declare type definitions. These annotations can be placed at the class or package level.
Note that these definitions are global for the session factory (even when defined at the class level).
If the type is used on a single entity, you can place the definition on the entity itself. Otherwise,
it is recommended to place the definition at the package level. In the example below, when
Hibernate encounters a property of class PhoneNuner , it delegates the persistence strategy to the
custom mapping type PhoneNurber Type. However, properties belonging to other classes, too, can
delegate their persistence strategy to PhoneNunber Type, by explicitly using the @ype annotation.

Note

Package level annotations are placed in a file named package- i nf o. j ava in the
appropriate package. Place your annotations before the package declaration.

@ypeDef (
name = "phoneNunber",
def aul t For Type = PhoneNunber. cl ass,
typeCd ass = PhoneNunber Type. cl ass

)

@ntity
public class ContactDetails {
[...]
private PhoneNunber | ocal PhoneNunber ;
@vype(type="phoneNurber")
private OverseasPhoneNunber overseasPhoneNunber;

[...]

The following example shows the usage of the par anet er s attribute to customize the TypeDef.

//in org/hibernate/test/annotations/entity/package-info.java
@ypeDef s(
{
@ypeDef (
nane="caster",
typed ass = CasterStringType.cl ass,
paraneters = {
@par anet er (nane="cast", val ue="|ower")

}

57

Chapter 2. Mapping Entities

)

package org. hibernate.test.annotations.entity;

//in org/hibernate/test/annotations/entity/Forest.]java
public class Forest {

@ype(type="caster")

public String getSnmall Text() {

When using composite user type, you will have to express column definitions. The @ol unms has
been introduced for that purpose.

@vype(type="org. hi bernate.test.annotations.entity.MnetaryAnount User Type")
@ol ums(col ums = {

@col um(nane="r_anmount "),

@ol um(nanme="r _currency")

})
publ i c Monet aryAmount get Anount () {

return anount;

public class MnetaryAnount inplenents Serializable {
private Bi gDecimal amount;
private Currency currency;

2.4.3.3. Index

You can define an index on a particular column using the @ ndex annotation on a one column
property, the columnNames attribute will then be ignored

@Col um(secondar yTabl e="Cat 1")

@ ndex(nane="st oryli ndex")

public String getStoryPart1() {
return storyPart1;

2.4.3.4. @Parent

When inside an embeddable object, you can define one of the properties as a pointer back to
the owner element.

@ntity
public class Person {
@nbeddabl e public Address address;

58

Property

}

@nbeddabl e
public class Address {
@arent public Person owner;

person == person. addr ess. owner

2.4.3.5. Generated properties

Some properties are generated at insert or update time by your database. Hibernate can deal with
such properties and triggers a subsequent select to read these properties.

@ntity
public class Antenna {
@d public Integer id;
@ener at ed(Gener ati onTi me. ALWAYS)
@ol um(insertable = fal se, updatable = fal se)
public String |ongitude;

@zener at ed(Gener ati onTi me. | NSERT) @Col um(insertable = fal se)
public String |atitude;

Annotate your property as @xner at ed You have to make sure your insertability or updatability
does not conflict with the generation strategy you have chosen. When Gener ati onTi me. | NSERT
is chosen, the property must not contains insertable columns, when Gener at i onTi me. ALWAYS is
chosen, the property must not contains insertable nor updatable columns.

@/er si on properties cannot be @xener at ed(| NSERT) by design, it has to be either NEVER or
ALWAYS.

2.4.3.6. @Target

Sometimes, the type guessed by reflection is not the one you want Hibernate to use. This is
especially true on components when an interface is used. You can use @rarget to by pass
the reflection guessing mechanism (very much like the target Entity attribute available on
associations.

@nbedded

@rar get (Oaner | npl . cl ass)

public Oaner getOaner() {
return owner;

}

59

Chapter 2. Mapping Entities

2.4.3.7. Optimistic lock

It is sometimes useful to avoid increasing the version number even if a given property is
dirty (particularly collections). You can do that by annotating the property (or collection) with
@ptim sticlLock(excl uded=true).

More formally, specifies that updates to this property do not require acquisition of the optimistic
lock.

2.4.4. Inheritance

SINGLE_TABLE is a very powerful strategy but sometimes, and especially for legacy
systems, you cannot add an additional discriminator column. For that purpose Hibernate has
introduced the notion of discriminator formula: @i scri mi nat or For mul a is a replacement of
@i scri nm nat or Col um and use a SQL fragment as a formula for discriminator resolution (no
need to have a dedicated column).

@ntity
@i scri m nat or Fornul a("case when forest_type is null then O el se forest_type end")
public class Forest { ... }

By default, when querying the top entities, Hibernate does not put a restriction clause
on the discriminator column. This can be inconvenient if this column contains values not
mapped in your hierarchy (through @i scri ni nat or Val ue). To work around that you can use
@orceDi scriminator (at the class level, next to @i scri mi nat or Col unmm). Hibernate will then
list the available values when loading the entities.

You can define the foreign key name generated by Hibernate for subclass tables in the JOINED
inheritance strategy.

@ntity

@ nheritance(strategy = InheritanceType.JO NED)
public abstract class File { ... }

@ntity

@orei gnKey(nane = "FK_DOCU_FI LE")
public class Docunent extends File {

The foreign key from the Docunent table to the Fi | e table will be named FK_DOCU_FI LE.

2.4.5. Single Association related annotations

By default, when Hibernate cannot resolve the association because the expected associated
element is not in database (wrong id on the association column), an exception is raised by
Hibernate. This might be inconvenient for legacy and badly maintained schemas. You can ask
Hibernate to ignore such elements instead of raising an exception using the @t Found annotation.

60

Single Association related annotations

This annotation can be used on a @neToOne (with FK), @/anyToOne, @neToMany or @/any ToMany
association.

@ntity
public class Child {

@manyToOne

@Not Found(act i on=Not FoundAct i on. | GNORE)
public Parent getParent() { ... }

Sometimes you want to delegate to your database the deletion of cascade when a given entity
is deleted.

@ntity
public class Child {

@manyToOne

@nDel et e(acti on=0nDel et eAct i on. CASCADE)
public Parent getParent() { ... }

In this case Hibernate generates a cascade delete constraint at the database level.

Foreign key constraints, while generated by Hibernate, have a fairly unreadable name. You can
override the constraint name by use @or ei gnKkey.

@ntity
public class Child {

@manyToOne

@or ei gnKey(nane="FK_PARENT")
public Parent getParent() { ... }

}

alter table Child add constraint FK_PARENT foreign key (parent_id) references Parent

2.4.5.1. Lazy options and fetching modes

JPA comes with the f et ch option to define lazy loading and fetching modes, however Hibernate
has a much more option set in this area. To fine tune the lazy loading and fetching strategies,
some additional annotations have been introduced:

e @azyToOne: defines the lazyness option on @manyToOne and @neToOne associations.
LazyToOneOpt i on can be PROXY (ie use a proxy based lazy loading), NO_PROXY (use a bytecode

61

Chapter 2. Mapping Entities

enhancement based lazy loading - note that build time bytecode processing is necessary) and
FALSE (association not lazy)

e @azyCol | ecti on: defines the lazyness option on @any ToMany and @neToMany associations.
LazyCollectionOption can be TRUE (the collection is lazy and will be loaded when its state is
accessed), EXTRA (the collection is lazy and all operations will try to avoid the collection loading,
this is especially useful for huge collections when loading all the elements is not necessary)
and FALSE (association not lazy)

« @et ch: defines the fetching strategy used to load the association. Fet chMbde can be SELECT
(a select is triggered when the association needs to be loaded), SUBSELECT (only available for
collections, use a subselect strategy - please refers to the Hibernate Reference Documentation
for more information) or JO N (use a SQL JOIN to load the association while loading the owner
entity). JO Noverrides any lazy attribute (an association loaded through a JO N strategy cannot
be lazy).

The Hibernate annotations overrides the EJB3 fetching options.

Table 2.3. Lazy and fetch options equivalent

Annotations Lazy Fetch
@[One|Many]ToOne] @LazyToOne(PROXY) @Fetch(SELECT)
(fetch=FetchType.LAZY)

@[One|Many]ToOne] @LazyToOne(FALSE) @Fetch(JOIN)
(fetch=FetchType.EAGER)

@ManyTo[One|Many] @LazyCollection(TRUE) @Fetch(SELECT)
(fetch=FetchType.LAZY)

@ManyTo[One|Many] @LazyCollection(FALSE) @Fetch(JOIN)

(fetch=FetchType.EAGER)

2.45.2. @Any

The @\ny annotation defines a polymorphic association to classes from multiple tables. This type of
mapping always requires more than one column. The first column holds the type of the associated
entity. The remaining columns hold the identifier. It is impossible to specify a foreign key constraint
for this kind of association, so this is most certainly not meant as the usual way of mapping
(polymorphic) associations. You should use this only in very special cases (eg. audit logs, user
session data, etc).

The @ny annotation describes the column holding the metadata information. To link the value
of the metadata information and an actual entity type, The @nyDef and @nyDef s annotations
are used.

@\ny(metaCol um = @ol um(name = "property_type"), fetch=FetchType. EAGER)
@\nyMet aDef (
idType = "integer",

62

Collection related annotations

met aType = "string",

met avVal ues = {
@kt aVal ue(value = "S", targetEntity = StringProperty.class),
@kt aVal ue(value = "I", targetEntity = IntegerProperty.class)

1)
@oi nCol um(nanme = "property_id")
public Property get Mai nProperty() {
return mai nProperty;

}

i dType represents the target entities identifier property type and et aType the metadata type
(usually String).

Note that @\nyDef can be mutualized and reused. It is recommended to place it as a package
metadata in this case.

//on a package
@\nyMet aDef (name="property"
idType = "integer",
met aType = "string",
met aVal ues = {
@kt aVal ue(val ue
@kt aVal ue(val ue
)

package org. hi bernate.test.annotations. any;

"S", targetEntity = StringProperty.class),
"I", targetEntity I nt eger Property.class)

//in a class
@\ny(met aDef="property", netaColum = @ol um(nane = "property_type"), fetch=FetchType. EAGER)
@oi nCol um(name = "property_id")
public Property get Mai nProperty() {
return mai nProperty;

}

2.4.6. Collection related annotations

2.4.6.1. Enhance collection settings

It is possible to set

« the batch size for collections using @BatchSize

« the where clause, using @Where (applied on the target entity) or @WhereJoinTable (applied
on the association table)

« the check clause, using @Check
» the SQL order by clause, using @OrderBy

- the delete cascade strategy through @OnDelete(action=OnDeleteAction. CASCADE)

63

Chapter 2. Mapping Entities

« the collection immutability using @Immutable: if set specifies that the elements of the collection
never change (a minor performance optimization in some cases)

« a custom collection persister (ie the persistence strategy used) using @er si st er : the class
must implement or g. hi ber nat e. persi ster.col |l ecti onCol | ecti onPersi ster

You can also declare a sort comparator. Use the @ort annotation. Expressing the comparator
type you want between unsorted, natural or custom comparator. If you want to use your own
comparator implementation, you'll also have to express the implementation class using the
conpar at or attribute. Note that you need to use either a Sort edSet or a Sor t edMap interface.

@neToMany(cascade=CascadeType. ALL, fetch=FetchType. EAGER)
@oi nCol um(nane="CUST_I| D")
@ort (type = Sort Type. COMPARATOR, conparator = Ti cket Conpar at or. cl ass)
@\here(cl ause="1=1")
@nDel et e(act i on=0nDel et eAct i on. CASCADE)
public SortedSet <Ti cket> getTickets() {
return tickets;

}

Please refer to the previous descriptions of these annotations for more informations.

Foreign key constraints, while generated by Hibernate, have a fairly unreadable name. You can
override the constraint name by use @or ei gnkKey. Note that this annotation has to be placed on
the owning side of the relationship, i nver seNane referencing to the other side constraint.

@ntity
public class Wnman {

@manyToMany(cascade = {CascadeType. ALL})
@or ei gnKey(nanme = "TO WOMAN_FK", inverseName = "TO MAN FK")
public Set<Man> get Mens() {

return mens;

}
}

alter table Man_Wonan add constraint TO WOMAN_FK foreign key (woman_id) references Wman
alter table Man_Wonman add constraint TO MAN FK foreign key (man_id) references Man

2.4.6.2. Extra collection types

2.4.6.2.1. Bidirectional association with indexed collections

A bidirectional association where one end is an indexed collection (ie. represented as a
@ der Col umm, or as a Map) requires special consideration. If a property on the associated class
explicitly maps the indexed value, the use of rappedBy is permitted:

@ntity

64

Collection related annotations

public class Parent {
@neToMany(mappedBy="parent ")
@ der Col umm(nanme="order")
private List<Child> children;

}

@ntity
public class Child {

//the index colum is mapped as a property in the associated entity
@ol um(name="order")
private int order;

@manyToOne
@oi nCol um(nane="parent _id", null abl e=fal se)
private Parent parent;

But, if there is no such property on the child class, we can't think of the association as truly
bidirectional (there is information available at one end of the association that is not available at
the other end: the index). In this case, we can't map the collection as mappedBy. Instead, we could
use the following mapping:

@ntity
public class Parent {
@neToMany
@D der Col um(name="order")
@oi nCol um(nane="parent _id", null abl e=fal se)
private List<Child> children;

}

@Entity
public class Child {

@manyToOne
@oi nCol um(nanme="parent _i d", insertable=false, updatabl e=false, nullable=false)
private Parent parent;

Note that in this mapping, the collection-valued end of the association is responsible for updating
the foreign key.

2.4.6.2.2. Bag with primary key

Another interesting feature is the ability to define a surrogate primary key to a bag collection. This
remove pretty much all of the drawbacks of bags: update and removal are efficient, more than
one EAGER bag per query or per entity. This primary key will be contained in a additional column
of your collection table but will not be visible to the Java application. @Collectionld is used to

65

Chapter 2. Mapping Entities

mark a collection as id bag, it also allow to override the primary key column(s), the primary key
type and the generator strategy. The strategy can be i denti ty, or any defined generator name
of your application.

@ntity
@abl eGener at or (name="i ds_generator", table="|DS")
public class Passport {

@manyToMany(cascade = CascadeType. ALL)
@oi nTabl e(name=" PASSPORT_VI SASTAMP")

@col | ecti onl d(
col ums = @Col um(nane="COLLECTION_ID"),

type=@ype(type="1ong"),
generator = "ids_generator"

)
private Col | ecti on<Stanp> visaStanp = new ArrayList();

2.4.6.2.3. @ManyToAny

@mnyToAny allows polymorphic associations to classes from multiple tables. This type of mapping
always requires more than one column. The first column holds the type of the associated entity.
The remaining columns hold the identifier. It is impossible to specify a foreign key constraint for this
kind of association, so this is most certainly not meant as the usual way of mapping (polymorphic)
associations. You should use this only in very special cases (eg. audit logs, user session data, etc).

@manyToAny(
met aCol umm = @ol um(nanme = "property_type"))
@\ny Met aDef (
idType = "integer",

met aType = "string",
met aVal ues = {
@kt aVal ue(value = "S", targetEntity = StringProperty.class),

@ktaVal ue(value = "I", targetEntity = IntegerProperty.class) })
@Cascade({ org. hibernate. annot ati ons. CascadeType. ALL })
@oi nTabl e(name = "obj _properties", joinColums = @oi nCol um(nanme = "obj _id"),
i nverseJoi nCol ums = @oi nCol um(nanme = "property_id"))

public List<Property> getGeneral Properties() {

Like @ny, @hanyToAny can use named @nyDef s, see Section 2.4.5.2, “@Any” for more info.

2.4.7. Cascade

Hibernate offers more operations than the Java Persistence specification. You can use the
@ascade annotation to cascade the following operations:

* PERSIST

66

Filters

* MERGE

+ REMOVE

* REFRESH
 DELETE

* SAVE_UPDATE
* REPLICATE

e DELETE_ORPHAN (alternatively, use the @neTone. or phanRenoval or
@neToMany. or phanRenoval flag)

e LOCK
« EVICT (alternatively, use the standard DETACH flag).

This is especially useful for SAVE_UPDATE (which is the operation cascaded at flush time if you
use plain Hibernate Annotations - Hibernate EntityManager cascade PERSI ST at flush time as per
the specification).

@neToMany(cascade = {CascadeType. PERSI ST, CascadeType. MERGE})
@ascade(org. hi bernat e. annot ati ons. CascadeType. REPLI CATE)
public Col |l ection<Enpl oyer> get Enpl oyers()

Itis recommended to use @ascade to compliment @ To* (cascade=. . .) as shown inthe previous
example.

2.4.8. Filters

Hibernate has the ability to apply arbitrary filters on top of your data. Those filters are applied at
runtime on a given session. First, you need to define them.

@r g. hi bernate. annotations. FilterDef or @ilterDefs define filter definition(s) used by
filter(s) using the same name. A filter definition has a hame() and an array of parameters(). A
parameter will allow you to adjust the behavior of the filter at runtime. Each parameter is defined
by a @ar anDef which has a name and a type. You can also define a defaultCondition() parameter
foragiven @i | t er Def to set the default condition to use when none are defined in each individual
@ilter. A@ilterDef (s) can be defined at the class or package level.

We now need to define the SQL filter clause applied to either the entity load or the collection load.
@i | ter is used and placed either on the entity or the collection element

@Entity
@i | ter Def (nanme="m nLengt h", paraneters=@aranDef (name="ni nLength", type="integer"))
@ilters({

67

Chapter 2. Mapping Entities

@i | ter(nane="bet weenLengt h", condition=":m nLength <= length and : maxLength >= | ength"),
@i | ter(name="mi nLength", condition=":nmi nLength <= | ength")

1)

public class Forest { ... }

When the collection use an association table as a relational representation, you might want to
apply the filter condition to the association table itself or to the target entity table. To apply the
constraint on the target entity, use the regular @i | t er annotation. However, if you wan to target
the association table, use the @i | t er Joi nTabl e annotation.

@neToMany

@oi nTabl e

//filter on the target entity table

@i | ter (nane="bet weenLengt h", condition=":m nLength <= |l ength and : maxLength >= | ength")
[/filter on the association table

@i | terJoi nTabl e(name="security", condition=":userlevel >= requredLevel")

public Set<Forest> getForests() { ... }

2.4.9. Queries

Since Hibernate has more features on named queries than the one
defined in the JPA specification, @r g. hi ber nat e. annot at i ons. NanedQuery,
@r g. hi ber nat e. annot at i ons. NamedQueri es,

@r g. hi ber nat e. annot at i ons. NamedNat i veQuery and
@r g. hi bernat e. annot ati ons. NanedNat i veQueri es have been introduced. They add some
attributes to the standard version and can be used as a replacement:

 flushMode: define the query flush mode (Always, Auto, Commit or Manual)

« cacheable: whether the query should be cached or not

» cacheRegion: cache region used if the query is cached

« fetchSize: JDBC statement fetch size for this query

* timeout: query time out

« callable: for native queries only, to be set to true for stored procedures

e comment: if comments are activated, the comment seen when the query is sent to the database.
» cacheMode: Cache interaction mode (get, ignore, normal, put or refresh)

« readOnly: whether or not the elements retrievent from the query are in read only mode.

Those hints can be set in a standard @ avax. per si st ence. NamedQuer y annotations through the
detyped @uer yHi nt . Another key advantage is the ability to set those annotations at a package
level.

68

Custom SQL for CRUD operations

2.4.10. Custom SQL for CRUD operations

Hibernate gives you the ability to override every single SQL statement generated. We have seen
native SQL query usage already, but you can also override the SQL statement used to load or
change the state of entities.

@ntity
@rabl e(nanme="CHACS")
@QLI nsert(sql ="I NSERT | NTO CHACS(si ze, nane, nicknane, id) VALUES(?, upper(?),?,?)")
@Q Updat e(sql =" UPDATE CHACS SET size = ?, nane = upper(?), nickname = ? WHERE id = ?")
@Q.Del et e(sql ="DELETE CHACS WHERE id = ?")
@Q.Del et eAl | (sqgl ="DELETE CHACS")
@.oader (nanedQuery = "chaos")
@NanmedNat i veQuer y(name="chaos", query="sel ect id, size, nane, |ower(nicknanme) as ni cknane from
CHACS where id= ?", resultd ass = Chaos. cl ass)
public class Chaos {
@d
private Long id;
private Long size;
private String nang;
private String nicknane;

@Q I nsert, @Q.Update, @Q.Del ete, @Q.Del eteAl | respectively override the INSERT
statement, UPDATE statement, DELETE statement, DELETE statement to remove all entities.

If you expect to call a store procedure, be sure to set the callable attribute to true
(@QInsert(cal | abl e=true, ...)).

To check that the execution happens correctly, Hibernate allows you to define one of those three
strategies:

« NONE: no check is performed: the store procedure is expected to fail upon issues
* COUNT: use of rowcount to check that the update is successful
* PARAM: like COUNT but using an output parameter rather that the standard mechanism

To define the result check style, use the check parameter
(@QLUpdat e(check=Resul t CheckSt yl e. COUNT, ...)).

You can also override the SQL load statement by a native SQL query or a HQL query. You just
have to refer to a named query with the @.oader annotation.

You can use the exact same set of annotations to override the collection related statements.

@neToMany

@oi nCol um(name="chaos_f k")

@QLI nsert (sql ="UPDATE CASI M R_PARTI CULE SET chaos_fk = ? where id = ?")
@Q.Del et e(sql =" UPDATE CASI M R_PARTI CULE SET chaos_fk = null where id = ?")

69

Chapter 2. Mapping Entities

private Set<CasimirParticle> particles = new HashSet<CasinmirParticle>();

The parameters order is important and is defined by the order Hibernate handle
properties. You can see the expected order by enabling debug logging for the
org. hi bernate. persister.entity level. With this level enabled Hibernate will print out the
static SQL that is used to create, update, delete etc. entities. (To see the expected sequence,
remember to not include your custom SQL through annotations as that will override the Hibernate
generated static sql.)

Overriding SQL statements for secondary tables is also possible using
@r g. hi bernat e. annot ati ons. Tabl e and either (or all) attributes sql I nsert, sql Updat e,
sql Del et e:

@ntity
@secondar yTabl es({
@econdaryTabl e(name = ""Cat nbr1™ "),
@econdar yTabl e(name = "Cat2"})
@r g. hi ber nat e. annot ati ons. Tabl es({
@abl e(appliesTo = "Cat", comment = "My cat table"),
@abl e(appliesTo = "Cat2", forei gnKey = @oreignKey(name="FK_CAT2_CAT"), fetch = FetchMbde. SELECT,
sql I nsert=@QLI nsert(sqgl ="insert into Cat2(storyPart2, id) values(upper(?), ?2)"))

1)
public class Cat inplenents Serializable {

The previous example also show that you can give a comment to a given table (promary or
secondary): This comment will be used for DDL generation.

2.4.11. Tuplizer

org. hi bernate. tuple. Tuplizer, and its sub-interfaces, are responsible for managing
a particular representation of a piece of data, given that representation's
org. hi bernate. EntityMde. If a given piece of data is thought of as a data structure,
then a tuplizer is the thing which knows how to create such a data structure and how to
extract values from and inject values into such a data structure. For example, for the POJO
entity mode, the correpsonding tuplizer knows how create the POJO through its constructor
and how to access the POJO properties using the defined property accessors. There are
two high-level types of Tuplizers, represented by the org. hi bernate. tupl e. EntityTuplizer
and or g. hi ber nat e. t upl e. Conponent Tupl i zer interfaces. EntityTuplizers are responsible for
managing the above mentioned contracts in regards to entities, while Conponent Tupl i zers do
the same for components. Check the Hibernate reference documentation for more information.

To define tuplixer in annotations, simply use the @upl i zer annotation on the according element

@ntity
@uplizer(impl = Dynami cEntityTuplizer.class)
public interface Cuisine {

@d

70

Fetch profiles

@xner at edVal ue
public Long getld();
public void setld(Long id);

public String getNane();
public void setNane(String nane);

@uplizer(inpl = Dynami cConponent Tupli zer. cl ass)
public Country getCountry();
public void setCountry(Country country);

2.4.12. Fetch profiles

In Section 2.4.5.1, “Lazy options and fetching modes” we have seen how to affect the
fetching strategy for associated objects using the @et ch annotation. An alternative approach
is a so called fetch profile. A fetch profile is a named configuration associated with the
or g. hi ber nat e. Sessi onFact ory which gets enabled on the or g. hi ber nat e. Sessi on. Once
enabled on a or g. hi ber nat e. Sessi on, the fetch profile will be in affect for that session until it is
explicitly disabled. Lets look at an example:

@ntity
@etchProfile(name = "custoner-w th-orders", fetchOverrides = {
@etchProfile. FetchOverride(entity = Custoner.class, association = "orders", node = FetchMde.JO N)
9]
public class Custoner {
@d
@ener at edVval ue
private long id;
private String nane;
private |ong customer Nunber;
@neToMany
private Set<Order> orders;
/] standard getter/setter
}

In the normal case the orders association would be lazy loaded by Hibernate, but in a usecase
where it is more efficient to load the customer and their orders together you could do something
like this:

Sessi on session = ...;

sessi on. enabl eFetchProfil e("custonmer-with-orders"); // nanme natches @wetchProfile nane
Cust oner custonmer = (Custoner) session.get(Custoner.class, custonerld);

session. di sabl eFetchProfil e("custonmer-wi th-orders”); // or just close the session

71

Chapter 2. Mapping Entities

(3

Currently only join style fetch profiles are supported, but they plan is to support additional
styles. See HHH-3414 [http://opensource.atlassian.com/projects/hibernate/browse/HHH-3414]
for details. Refer also to the discussion about fetch profiles in the Hibernate Core documentation.

72

http://opensource.atlassian.com/projects/hibernate/browse/HHH-3414
http://opensource.atlassian.com/projects/hibernate/browse/HHH-3414

Chapter 3.

Overriding metadata through XML

The primary target for metadata in EJB3 is annotations, but the EJB3 specification provides a way
to override or replace the annotation defined metadata through an XML deployment descriptor.
In the current release only pure EJB3 annotations overriding are supported. If you wish to use
Hibernate specific features in some entities, you'll have to either use annotations or fallback to
hbm files. You can of course mix and match annotated entities and entities describes in hbm files.

The unit test suite shows some additional XML file samples.

3.1. Principles

The XML deployment descriptor structure has been designed to reflect the annotations one. So if
you know the annotations structure, using the XML schema will be straightforward for you.

You can define one or more XML files describing your metadata, these files will be merged by
the overriding engine.

3.1.1. Global level metadata

You can define global level metadata available for all XML files. You must not define these
metadata more than once per deployment.

<?xm version="1.0" encodi ng="UTF-8"?>

<entity-mappi ngs
xm ns="http://java. sun. com xnl / ns/ per si st ence/ or nf
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocation="http://java. sun. com xnl / ns/ per si stence/ orm orm 2_0. xsd"
version="2.0">

<persi st ence- uni t - net adat a>
<xm - mappi ng- net adat a- conpl et e/ >
<persi st ence-uni t -def aul t s>
<schenma>nyschema</ schena>
<cat al og>mycat al og</ cat al og>
<cascade- persi st/ >
</ persi stence-unit-defaul ts>
</ persi st ence-uni t - nmet adat a>

xnl - mappi ng- net adat a- conpl et e means that all entity, mapped-superclasses and embeddable
metadata should be picked up from XML (ie ignore annotations).

schema / cat al og will override all default definitions of schema and catalog in the metadata
(both XML and annotations).

cascade- per si st means that all associations have PERSIST as a cascade type. We recommend
you to not use this feature.

73

Chapter 3. Overriding metadat...

3.1.2. Entity level metadata

You can either define or override metadata informations on a given entity.

<?xm version="1.0" encodi ng="UTF-8"?>

<entity-mappi ngs 1]
xm ns="http://java. sun. com xnml / ns/ per si st ence/ or nf
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http://java. sun. com xnl / ns/ persi stence/ orm orm 2_0. xsd"
version="2.0">

<package>or g. hi bernate. t est. annot ati ons. refl ecti on</ package> 2]
<entity class="Adm nistration" access="PROPERTY" netadata-conplete="true"> e

<tabl e nane="tbl _adm n"> 0
<uni que-const rai nt >
<col um- name>f i r st nane</ col uim- nanme>
<col um- nane>| ast nane</ col utm- nanme>
</ uni que- const r ai nt >
</t abl e>

<secondary-tabl e nane="adni n2"> 5
<pri mary-key-joi n-col um nane="adm n_i d" referenced-col um-nane="id"/>
<uni que-constrai nt >

<col um- name>addr ess</ col um- nanme>
</ uni que- constrai nt >

</ secondary-tabl e>

<i d-class cl ass="Soci al SecurityNunmber"/>
<i nheritance strategy="JO NED'/>

<sequence- gener at or nane="seqghi |l 0" sequence-nane="seqghil 0"/ >

0000

<t abl e-generat or nane="tabl e" tabl e="tabl ehilo"/>
</entity>
<entity class="Postal Adm ni stration">

<pri mary-key-join-col um nane="id"/> 10]

</entity>

</ entity-mappi ngs>

entity- mappi ngs: entity-mappings is the root element for all XML files. You must declare
the xml schema, the schema file is included in the hibernate-annotations.jar file, no internet
access will be processed by Hibernate Annotations.

package (optional): default package used for all non qualified class names in the given
deployment descriptor file.

entity: desribes an entity.

met adat a- conpl et e defines whether the metadata description for this element is complete
or not (in other words, if annotations present at the class level should be considered or not).

74

Entity level metadata

00 Q0

An entity has to have a cl ass attribute refering the java class the metadata applies on.

You can overrides entity hame through the name attribute, if none is defined and if an
@nt i ty. nane is present, then it is used (provided that metadata complete is not set).

For metadata complete (see below) element, you can define an access (either FI ELD or
PROPERTY (default)). For non medatada complete element, if access is not defined, the @Id
position will lead position, if access is defined, the value is used.

t abl e: you can declare table properties (name, schema, catalog), if none is defined, the java
annotation is used.

You can define one or several unique constraints as seen in the example

secondar y-t abl e: defines a secondary table very much like a regular table except that you
can define the primary key / foreign key column(s) through the pri mar y- key-j oi n- col um
element. On non metadata complete, annotation secondary tables are used only if there is
no secondar y-t abl e definition, annotations are ignored otherwise.

i d- cl ass: defines the id class in a similar way @ dd ass does

i nheri t ance: defines the inheritance strategy (JO NED, TABLE_PER _CLASS, S| NGLE_TABLE),
Available only at the root entity level

sequence- gener at or : defines a sequence generator

t abl e- gener at or : defines a table generator

pri mary-key-j oi n-col um: defines the primary key join column for sub entities when
JOINED inheritance strategy is used

<?xm version="1.0" encodi ng="UTF-8"?>

<entity-mappi ngs

xm ns="http://java. sun. com xm / ns/ per si st ence/ or n

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xsi : schemaLocati on="http://java. sun. com xnl / ns/ per si stence/ orm orm 2_0. xsd"
versi on="2.0">

<package>or g. hi bernat e. test. annot ati ons. refl ecti on</ package>
<entity class="Muisic" access="PROPERTY" netadata-conplete="true">

<di scri m nat or - val ue>Generi c</di scri ni nat or - val ue> 0
<di scri m nat or - col um | engt h="34"/>

</entity>

<entity class="Postal Adm ni stration">
<primary-key-join-colum nane="id"/>

<naned- query name="adni nByl d"> 9
<query>sel ect mfrom Admi ni stration mwhere mid = :id</query>
<hi nt name="org. hi bernate.tinmeout" val ue="200"/>

</ naned- quer y>

<naned- native-query name="al | Adni n" result-set-mappi ng="adm nrs"> (3
<query>sel ect *, count(taxpayer_id) as taxPayerNunber
from Adm ni stration, TaxPayer
where taxpayer_adnmin_id = adnmin_id group by ...</query>

75

Chapter 3. Overriding metadat...

<hi nt nane="org. hi bernate. tineout" val ue="200"/>
</ nanmed- nati ve- query>

<sql -resul t - set - mappi ng nanme="admni nrs" > "
<entity-result entity-class="Adnm nistration">
<field-result nane="name" col um="fld_nane"/>
</entity-result>
<col um-result nane="t axPayer Nunber" />
</ sql -resul t-set - mappi ng>

<attri bute-override nanme="ground"> G’
<col um nane="fl d_ground"” uni que="true" scal e="2"/>
</attribute-override>
<associ ati on-override name="referer">
<j oi n-col um nane="referer_id" referenced-col um-name="id"/>
</ associ ati on-overri de>

</entity>
</ entity-mappi ngs>

© discrimnator-value / discrininator-col um: defines the discriminator value and the
column holding it when the SINGLE_TABLE inheritance strategy is chosen

€ naned- query: defines named queries and possibly the hints associated to them. Those
definitions are additive to the one defined in annotations, if two definitions have the same
name, the XML one has priority.

© nanmed-native-query: defines an named native query and its sql result set mapping.
Alternatively, you can define the resul t - cl ass. Those definitions are additive to the one
defined in annotations, if two definitions have the same name, the XML one has priority.

€ sql-result-set-mappi ng: describes the result set mapping structure. You can define both
entity and column mappings. Those definitions are additive to the one defined in annotations,
if two definitions have the same name, the XML one has priority

© attribute-override / association-override: defines a column or join column
overriding. This overriding is additive to the one defined in annotations

Same applies for <enbeddabl e> and <nmapped- super cl ass>.

3.1.3. Property level metadata

You can of course defines XML overriding for properties. If metadata complete is defined, then
additional properties (ie at the Java level) will be ignored. Otherwise, once you start overriding a
property, all annotations on the given property are ignored. All property level metadata behave in
entity/attributes, mapped- supercl ass/attri butes or enbeddabl e/ attri butes.

<attributes>
<id name="id">
<col um nanme="fld_id"/>
<gener at ed- val ue gener ator="generator" strategy="SEQUENCE"/ >
<t enpor al >DATE</ t enpor al >
<sequence- gener at or name="generator" sequence-name="seq"/>
</id>
<version name="version"/>
<enbedded nane="enbeddedbj ect" >

76

Association level metadata

<attribute-override name"subproperty">
<col um nanme="my_col um"/>

</attribute-override>

</ enmbedded>

<basi c name="status" optional ="fal se">
<enuner at ed>STRI NG</ enuner at ed>

</ basi c>

<basi c nane="serial" optional ="true">
<col um nanme="seri al bytes"/>
<l ob/ >

</ basi c>

<basi c name="terni nusTi me" fetch="LAZY">
<t enpor al >TI MESTAMP</ t enpor al >

</ basi c>

</attributes>

You can override a property through i d, enbedded- i d, ver si on, enbedded and basi c. Each of
these elements can have subelements accordingly: | ob, t enpor al , enuner at ed, col um.

3.1.4. Association level metadata

You can define XML overriding for associations. All association level metadata behave inenti t y/
attri but es, mapped- supercl ass/ attri but es or enbeddabl e/ attri butes.

<attributes>
<one-to-many name="pl ayers" fetch="EAGER"'>
<map- key name="nane"/>
<j oi n-col um nane="driver"/>
<j oi n-col um name="nunber"/ >
</ one-t o- many>
<many-to- many nanme="roads" target-entity="Adm nistration">
<or der - by>maxSpeed</ or der - by>
<j oi n-tabl e nane="bus_road" >
<j oi n-col um nanme="driver"/>
<j oi n-col um nanme="nunber" />
<i nverse-j oi n-col um name="road_i d"/>
<uni que- constrai nt>
<col um- nanme>dri ver </ col um- nane>
<col um- nanme>nunber </ col um- nane>
</ uni que- constrai nt >
</j oi n-t abl e>
</ many-t o- many>
<many-to-many name="al | Ti meDri vers" mapped- by="dri venBuses" >
</attributes>

You can override an association through one- t o- nany, one- t o- one, many-t o- one, and nany- t o-
many. Each of these elements can have subelements accordingly: j oi n-t abl e (which can have
j oi n-col ums and i nver se-j oi n- col ums), j oi n- col ums, map- key, and or der - by. napped-
by and target-entity can be defined as attributes when it makes sense. Once again the
structure is reflects the annotations structure. You can find all semantic informations in the chapter
describing annotations.

77

78

Chapter 4.

Additional modules

Hibernate Annotations mainly focuses on persistence metadata. The project also have a nice
integration with some external modules.

4.1. Bean Validation

Bean Validation standardizes how to define and declare domain model level constraints. You can,
for example, express that a property should never be null, that the account balance should be
strictly positive, etc. These domain model constraints are declared in the bean itself by annotating
its properties. Bean Validation can then read them and check for constraint violations. The
validation mechanism can be executed in different layers in your application without having to
duplicate any of these rules (presentation layer, data access layer). Following the DRY principle,
Bean Validation and its reference implementation Hibernate Validator has been designed for that
purpose.

The integration between Hibernate and Bean Validation works at two levels. First, it is able to
check in-memory instances of a class for constraint violations. Second, it can apply the constraints
to the Hibernate metamodel and incorporate them into the generated database schema.

Each constraint annotation is associated to a validator implementation responsible for checking
the constraint on the entity instance. A validator can also (optionally) apply the constraint to the
Hibernate metamodel, allowing Hibernate to generate DDL that expresses the constraint. With
the appropriate event listener, you can execute the checking operation on inserts, updates and
deletes done by Hibernate.

When checking instances at runtime, Hibernate Validator returns information about
constraint violations in a set of ConstraintViolations. Among other information, the
Constrai nt Vi ol ati on contains an error description message that can embed the parameter
values bundle with the annotation (eg. size limit), and message strings that may be externalized
to a Resour ceBundl e.

4.1.1. Adding Bean Validation

To enable the Hibernate - Bean Validation integration, simply add a Bean Validation provider
(preferably Hibernate Validation 4) in your classpath.

4.1.2. Configuration

By default, no configuration is necessary.

The Def aul t group is validated on entity insert and update and the database model is updated
accordingly based on the Def aul t group as well.

You can customize the Bean Validation integration by setting the validation mode. Use
the javax. persistence. validation.mode property and set it up for example in your
persi stence. xm file or your hi ber nat e. cf g. xm file. Several options are possible:

79

Chapter 4. Additional modules

» aut o (default): enable integration between Bean Validation and Hibernate (callback and ddl
generation) only if Bean Validation is present in the classpath.

» none: disable all integration between Bean Validation and Hibernate

« cal | back: only validate entities when they are either inserted, updated or deleted. An exception
is raised if no Bean Validation provider is present in the classpath.

 ddl : only apply constraints to the database schema when generated by Hibernate. An exception
is raised if no Bean Validation provider is present in the classpath. This value is not defined by
the Java Persistence spec and is specific to Hibernate.

<persi stence ...>
<persi stence-unit ...>

<properties>
<property name="j avax. persi stence. val i dati on. node"
val ue="cal | back, ddl"/>
</ properties>
</ persi stence-unit>
</ persi st ence>

If you want to validate different groups during insertion, update and deletion, use:

e javax. persi stence. val i dati on. group. pre-persist: groups validated when an entity is
about to be persisted (default to Def aul t)

 javax. persi stence. val i dati on. group. pre-updat e: groups validated when an entity is
about to be updated (default to Def aul t)

* javax. persi stence. val i dation. group. pre-renove: groups validated when an entity is
about to be deleted (default to no group)

e org. hi bernate. val i dat or. group. ddl : groups considered when applying constraints on the
database schema (default to Def aul t)

Each property accepts the fully qualified class names of the groups validated separated by a
comma (,)

80

Catching violations

Example 4.1. Using custom groups for validation

<persi stence ...>
<persi stence-unit ...>

<properties>
<property nanme="j avax. persi stence. val i dati on. group. pre-update"
val ue="j avax. val i dati on. group. Defaul t, com acne. group. Strict"/>
<property name="javax. persi stence. val i dation. group. pre-renove"
val ue="com acne. group. OnDel ete"/ >
<property nane="org. hi bernate. val i dator. group. ddl "
val ue="com acne. group. DDL"/ >
</ properties>
</ persi st ence-uni t >
</ persi st ence>

@ Note

You can set these properties in hi ber nat e. cf g. xn , hi ber nat e. properti es or
programmatically.

4.1.3. Catching violations

If an entity is found to be invalid, the list of constraint violations is propagated by the
Constrai nt Vi ol ati onExcept i on which exposes the set of Const r ai nt Vi ol ati ons.

This exception is wrapped in a Rol | backExcept i on when the violation happens at commit time.
Otherwise the Const r ai nt Vi ol ati onExcept i on is returned (for example when calling f I ush() .
Note that generally, catchable violations are validated at a higher level (for example in Seam /
JSF 2 via the JSF - Bean Validation integration or in your business layer by explicitly calling Bean
Validation).

An application code will rarely be looking for a Constrai nt Vi ol ati onExcepti on raised by
Hibernate. This exception should be treated as fatal and the persistence context should be
discarded (Enti t yManager or Sessi on).

4.1.4. Database schema

Hibernate uses Bean Validation constraints to generate an accurate database schema:

e @\t Nul | leads to a not null column (unless it conflicts with components or table inheritance)
e @5i ze. max leads to a var char (max) definition for Strings
e @ n, @ax lead to column checks (like val ue <= max)

e @i gits leads to the definition of precision and scale (ever wondered which is which? It's easy
now with @i gits:))

81

Chapter 4. Additional modules

These constraints can be declared directly on the entity properties or indirectly by using constraint
composition.

4.2. Hibernate Validator 3

Warning

We strongly encourage you to use Hibernate Validator 4 and the Bean Validation
integration. Consider Hibernate Validator 3 as legacy.

4.2.1. Description

Annotations are a very convenient and elegant way to specify invariant constraints for a domain
model. You can, for example, express that a property should never be null, that the account
balance should be strictly positive, etc. These domain model constraints are declared in the
bean itself by annotating its properties. A validator can then read them and check for constraint
violations. The validation mechanism can be executed in different layers in your application without
having to duplicate any of these rules (presentation layer, data access layer). Following the DRY
principle, Hibernate Validator has been designed for that purpose.

Hibernate Validator works at two levels. First, it is able to check in-memory instances of a class
for constraint violations. Second, it can apply the constraints to the Hibernate metamodel and
incorporate them into the generated database schema.

Each constraint annotation is associated to a validator implementation responsible for checking
the constraint on the entity instance. A validator can also (optionally) apply the constraint to the
Hibernate metamodel, allowing Hibernate to generate DDL that expresses the constraint. With
the appropriate event listener, you can execute the checking operation on inserts and updates
done by Hibernate. Hibernate Validator is not limited to use with Hibernate. You can easily use
it anywhere in your application.

When checking instances at runtime, Hibernate Validator returns information about constraint
violations in an array of | nval i dval ue s. Among other information, the | nval i dval ue contains
an error description message that can embed the parameter values bundle with the annotation
(eg. length limit), and message strings that may be externalized to a Resour ceBundl e .

4.2.2. Integration with Hibernate Annotations

If Hibernate Validator (hi bernate-validator.jar) is available in the classpath, Hibernate
Annotations will integrate in two ways:

« Constraints will be applied to the Data Definition Language. In other words, the database
schema will reflect the constraints (provided that you use the hbm2ddl tool).

» Before an entity change is applied to the database (insert or update), the entity is validated.
Validation errors, if any, will be carried over through an I nval i dSt at eExcept i on.

82

Hibernate Search

For entities free of validation rules, the runtime performance cost is null.

To disable constraint propagation to DDL, set up hi ber nat e. val i dat or . appl y_t o_ddl to false
in the configuration file. Such a need is very uncommon and not recommended.

To disable pre-entity change validation, set up
hi ber nat e. val i dat or. aut or egi st er _| i st ener s to false in the configuration file. Such a need
is very uncommon and not recommended.

Check the Hibernate Validator reference documentation for more information.
4.3. Hibernate Search

4.3.1. Description

Full text search engines like Apache Lucene™ are a very powerful technology to bring free text/
efficient queries to applications. If suffers several mismatches when dealing with a object domain
model (keeping the index up to date, mismatch between the index structure and the domain model,
querying mismatch...) Hibernate Search indexes your domain model thanks to a few annotations,
takes care of the database / index synchronization and brings you back regular managed objects
from free text queries. Hibernate Search is using Apache Lucene [http://lucene.apache.org] under
the cover.

4.3.2. Integration with Hibernate Annotations

Hibernate Search integrates with Hibernate Annotations transparently provided that hibernate-
search.jar is present in the classpath. If you do not wish to automatically register Hibernate Search
event listeners, you can set hi ber nat e. sear ch. aut or egi ster _| i st ener s to false. Such a need
is very uncommon and not recommended.

Check the Hibernate Search reference documentation for more information.

83

http://lucene.apache.org
http://lucene.apache.org

84

	Hibernate Annotations
	Table of Contents
	Preface
	Chapter 1. Setting up an annotations project
	1.1. Requirements
	1.2. Configuration
	1.3. Properties
	1.4. Logging

	Chapter 2. Mapping Entities
	2.1. Intro
	2.2. Mapping with JPA (Java Persistence Annotations)
	2.2.1. Marking a POJO as persistent entity
	2.2.1.1. Defining the table
	2.2.1.2. Versioning for optimistic locking

	2.2.2. Mapping simple properties
	2.2.2.1. Declaring basic property mappings
	2.2.2.2. Access type
	2.2.2.3. Declaring column attributes
	2.2.2.4. Embedded objects (aka components)
	2.2.2.5. Non-annotated property defaults

	2.2.3. Mapping identifier properties
	2.2.3.1. Generating the identifier property
	2.2.3.2. Composite identifier
	2.2.3.2.1. @EmbeddedId property
	2.2.3.2.2. Multiple @Id properties
	2.2.3.2.3. @IdClass
	2.2.3.2.4. Partial identifier generation

	2.2.4. Mapping inheritance
	2.2.4.1. Table per class
	2.2.4.2. Single table per class hierarchy
	2.2.4.3. Joined subclasses
	2.2.4.4. Inherit properties from superclasses

	2.2.5. Mapping entity associations/relationships
	2.2.5.1. One-to-one
	2.2.5.2. Many-to-one
	2.2.5.3. Collections
	2.2.5.3.1. One-to-many
	2.2.5.3.1.1. Bidirectional
	2.2.5.3.1.2. Unidirectional
	2.2.5.3.1.3. Unidirectional with join table
	2.2.5.3.1.4. Defaults

	2.2.5.3.2. Many-to-many
	2.2.5.3.2.1. Definition
	2.2.5.3.2.2. Default values

	2.2.5.3.3. Collection of basic types or embeddable objects
	2.2.5.3.4. Indexed collections (List, Map)

	2.2.5.4. Transitive persistence with cascading
	2.2.5.5. Association fetching

	2.2.6. Mapping composite primary keys and foreign keys to composite primary keys
	2.2.7. Mapping secondary tables
	2.2.8. Caching entities

	2.3. Mapping Queries
	2.3.1. Mapping JP-QL/HQL queries
	2.3.2. Mapping native queries

	2.4. Hibernate Annotation Extensions
	2.4.1. Entity
	2.4.2. Identifier
	2.4.2.1. Generators
	2.4.2.2. @NaturalId

	2.4.3. Property
	2.4.3.1. Formula
	2.4.3.2. Type
	2.4.3.3. Index
	2.4.3.4. @Parent
	2.4.3.5. Generated properties
	2.4.3.6. @Target
	2.4.3.7. Optimistic lock

	2.4.4. Inheritance
	2.4.5. Single Association related annotations
	2.4.5.1. Lazy options and fetching modes
	2.4.5.2. @Any

	2.4.6. Collection related annotations
	2.4.6.1. Enhance collection settings
	2.4.6.2. Extra collection types
	2.4.6.2.1. Bidirectional association with indexed collections
	2.4.6.2.2. Bag with primary key
	2.4.6.2.3. @ManyToAny

	2.4.7. Cascade
	2.4.8. Filters
	2.4.9. Queries
	2.4.10. Custom SQL for CRUD operations
	2.4.11. Tuplizer
	2.4.12. Fetch profiles

	Chapter 3. Overriding metadata through XML
	3.1. Principles
	3.1.1. Global level metadata
	3.1.2. Entity level metadata
	3.1.3. Property level metadata
	3.1.4. Association level metadata

	Chapter 4. Additional modules
	4.1. Bean Validation
	4.1.1. Adding Bean Validation
	4.1.2. Configuration
	4.1.3. Catching violations
	4.1.4. Database schema

	4.2. Hibernate Validator 3
	4.2.1. Description
	4.2.2. Integration with Hibernate Annotations

	4.3. Hibernate Search
	4.3.1. Description
	4.3.2. Integration with Hibernate Annotations

