
TCK Reference Guide for Jakarta
Bean Validation

Emmanuel Bernard - Red Hat, Inc., Hardy Ferentschik - Red Hat, Inc., Gunnar
Morling - Red Hat, Inc.

Version 2.0.6, 2020-10-06

Table of Contents
Preface . 1

Who Should Use This Guide . 1
Before You Read This Guide . 1
How This Guide Is Organized . 1

1. Introduction . 3
1.1. TCK Primer . 3
1.2. Compatibility Testing . 3
1.3. About the Jakarta Bean Validation TCK . 4

2. Appeals Process . 6
2.1. What challenges to the TCK may be submitted? . 6
2.2. How these challenges are submitted? . 6
2.3. How and by whom challenges are addressed? . 6
2.4. How accepted challenges to the TCK are managed? . 6

3. Installation . 8
3.1. Obtaining the Software . 8
3.2. The TCK Environment . 8

4. Reports . 13
4.1. Jakarta Bean Validation TCK Coverage Report . 13
4.2. The TestNG Report . 15

5. Running the TCK test suite . 16
5.1. Setup examples . 16
5.2. Configuring TestNG to execute the TCK . 16
5.3. Selecting the ValidationProvider . 17
5.4. Selecting the DeployableContainer . 17
5.5. arquillian.xml . 18

6. Running the Signature Test . 20
6.1. Executing the signature check . 20
6.2. Forcing a signature test failure . 21

Preface
This guide describes how to download, install, configure, and run the Technology Compatibility
Kit (TCK) used to verify the compatibility of an implementation of Jakarta Bean Validation 2.0.

The Jakarta Bean Validation TCK is built atop Arquillian, a portable and configurable automated
test suite for authoring unit and integration tests in a Jakarta EE environment.

The Jakarta Bean Validation TCK is provided under the Apache Public License 2.0.

Who Should Use This Guide
This guide is for implementors of the Jakarta Bean Validation specification to assist in running
the test suite that verifies the compatibility of their implementation.

Before You Read This Guide
The Jakarta Bean Validation TCK is based on the Jakarta Bean Validation specification 2.0.
Information about the specification can be found on the Jakarta Bean Validation page.

How This Guide Is Organized
If you are running the Jakarta Bean Validation TCK for the first time, read Introduction
completely for the necessary background information about the TCK. Once you have reviewed
that material, perform the steps outlined in the remaining chapters.

• Introduction gives an overview of the principles that apply generally to all Technology
Compatibility Kits (TCKs), outlines the appeals process and describes the Jakarta Bean
Validation TCK architecture and components.

• Appeals Process explains the process to be followed by an implementor should they wish to
challenge any test in the TCK.

• Installation explains where to obtain the required software for the Jakarta Bean Validation
TCK and how to install it.

• Reports explains the test reports that are generated by the TCK test suite and introduces
the TCK audit report as a tool for measuring the completeness of the TCK in testing the
Jakarta Bean Validation specification and in understanding how test cases relate to the
specification.

• Running the TCK test suite details the configuration of the test harness and documents how
to create a TCK runner for executing the TCK test suite, either in standalone or container
mode.

1

http://www.jboss.org/arquillian.html
http://www.apache.org/licenses/LICENSE-2.0
https://projects.eclipse.org/projects/ee4j.bean-validation

• Running the Signature Test finally documents how to use the SigTest tool for ensuring
compatibility of types provided in the package javax.validation with the official API
signature defined by the specification.

2

Chapter 1. Introduction
This chapter explains the purpose of a TCK and identifies the foundation elements of the
Jakarta Bean Validation TCK.

1.1. TCK Primer
A TCK, or Technology Compatibility Kit, is one of the three required pieces for any JSR (the
other two being the specification document and the reference implementation). The TCK is a set
of tools and tests to verify that an implementation of the technology conforms to the
specification. The tests are the primary component, but the tools serve an equally critical role of
providing a framework and/or set of SPIs for executing the tests.

The tests in the TCK are derived from assertions in the written specification document. The
assertions are itemized in an XML document (tck-audit.xml), where they each get assigned a
unique identifier, and materialize as a suite of automated tests that collectively validate whether
an implementation complies with the aforementioned assertions, and in turn the specification.
For a particular implementation to be certified, all of the required tests must pass (meaning the
provided test suite must be run unmodified).

A TCK is entirely implementation agnostic. It should validate assertions by consulting the
specification’s public API.

1.2. Compatibility Testing
The goal of any specification is to eliminate portability problems so long as the program which
uses the implementation also conforms to the rules laid out in the specification.

Executing the TCK is a form of compatibility testing. It’s important to understand that
compatibility testing is distinctly different from product testing. The TCK is not concerned with
robustness, performance or ease of use, and therefore cannot vouch for how well an
implementation meets these criteria. What a TCK can do is to ensure the exactness of an
implementation as it relates to the specification.

Compatibility testing of any feature relies on both a complete specification and a complete
reference implementation. The reference implementation demonstrates how each test can be
passed and provides additional context to the implementor during development for the
corresponding assertion.

1.2.1. Why Compatibility Is Important

Java platform compatibility is important to different groups involved with Java technologies for
different reasons:

3

• Compatibility testing is the means by which the JCP ensures that the Java platform does
not become fragmented as it is ported to different operating systems and hardware.

• Compatibility testing benefits developers working in the Java programming language,
enabling them to write applications once and deploy them across heterogeneous computing
environments without porting.

• Compatibility testing enables application users to obtain applications from disparate
sources and deploy them with confidence.

• Conformance testing benefits Java platform implementors by ensuring the same extent of
reliability for all Java platform ports.

The Jakarta Bean Validation specification goes to great lengths to ensure that programs written
for Jakarta EE are compatible and the TCK is rigorous about enforcing the rules the
specification lays down.

1.3. About the Jakarta Bean Validation TCK
The Jakarta Bean Validation TCK is designed as a portable, configurable and automated test
suite for verifying the compatibility of an implementation of Jakarta Bean Validation. The test
suite is built atop TestNG and provides a series of extensions that allow runtime packaging and
deployment of Jakarta EE artifacts for in-container testing (Arquillian).

Each test class in the suite acts as a deployable unit. The deployable units, or artifacts, are
defined in a declarative way using annotations.

The declarative approach allows many of the tests to be executed in a standalone
implementation of Jakarta Bean Validation, accounting for a boost in developer productivity.
However, an implementation is only valid if all tests pass using the in-container execution mode.
The standalone mode is merely a developer convenience.

The reason the Jakarta Bean Validation TCK must pass running in a Jakarta
EE container is that Jakarta Bean Validation is part of Jakarta EE 8 itself.

1.3.1. TCK Components

The Jakarta Bean Validation TCK includes the following components:

• The test suite, which is a collection of TestNG tests, the TestNG test suite descriptor and
supplemental resources that configure Jakarta Bean Validation and other software
components.

• The TCK audit (tck-audit.xml) used to list out the assertions identified in the Jakarta
Bean Validation specification. It matches the assertions to test cases in the test suite by
unique identifier and produces a coverage report.

4

The audit document is provided along with the TCK. Each assertion is defined with a
reference to a chapter, section and paragraph from the specification document, making it
easy for the implementor to locate the language in the specification document that
supports the feature being tested.

• TCK documentation accompanied by release notes identifying updates between versions.

• TCK Container Adapter provided as a convenience for developers in order to run and debug
tests outside of the Jakarta EE container.

• Setup examples demonstrating Maven and Ant setups to run the TCK test suite

1.3.2. Passing the Jakarta Bean Validation TCK

In order to pass the Jakarta Bean Validation TCK (which is one requirement for becoming a
certified Jakarta Bean Validation provider), you need to:

• Pass the Jakarta Bean Validation signature tests (see Running the Signature Test) asserting
the correctness of the Bean Validation API used.

• Run and pass the test suite (see Running the TCK test suite). The test must be run within a
Jakarta EE 8 container and pass with an unmodified TestNG suite file.

The designated reference runtime for compatibility testing of the Jakarta
Bean Validation specification is the Jakarta EE 8 reference implementation
(RI), aka Eclipse GlassFish 5.1+.

5

Chapter 2. Appeals Process
While the Jakarta Bean Validation TCK is rigorous about enforcing an implementation’s
conformance to the Jakarta Bean Validation specification, it’s reasonable to assume that an
implementor may discover new and/or better ways to validate the assertions. The appeals
process is defined by the Jakarta EE Jakarta EE TCK Process 1.0.

2.1. What challenges to the TCK may be submitted?
Any test case (i.e. @Test method), test case configuration (e.g. @Deployment, validation.xml),
test entities, annotations and other resources may be challenged by an appeal.

What is generally not challengeable are the assertions made by the specification. The
specification document is controlled by a separate process and challenges to it should be
handled through the Jakarta Bean Validation EG by sending an e-mail to bean-validation-
dev@eclipse.org.

2.2. How these challenges are submitted?
To submit a challenge, a new issue of type Bug should be created against BVTCK in the
Hibernate JIRA instance. The appellant should complete the Summary, Component (TCK
Appeal), Environment and Description fields only. Any communication regarding the issue
should be added in the comments of the issue for accurate record.

To submit an issue in the Hibernate JIRA, you must have a (free) JIRA member account. You can
create a member account using the on-line registration.

2.3. How and by whom challenges are addressed?
The challenges will be addressed in a timely fashion by the Bean Validation TCK Project Lead, as
designated by the Specification Lead, Red Hat Inc., or his/her designate. The appellant can also
monitor the process by watching the issue filed against BVTCK.

The current TCK Project Lead is listed on the Bean Validation Project Summary Page on Jakarta
EE.

2.4. How accepted challenges to the TCK are
managed?
The workflow for TCK challenges is outlined in the Jakarta EE TCK Process 1.0.

Periodically, an updated TCK will be released, containing tests altered due to challenges - no

6

https://github.com/jakartaee/specification-committee/blob/master/process.adoc
mailto:bean-validation-dev@eclipse.org
mailto:bean-validation-dev@eclipse.org
https://hibernate.atlassian.net/browse/BVTCK
https://hibernate.atlassian.net/secure/Signup!default.jspa
https://hibernate.atlassian.net/browse/BVTCK
https://jakarta.ee/specifications/bean-validation
https://github.com/jakartaee/specification-committee/blob/master/process.adoc

new tests will be added. Implementations are required to pass the updated TCK. This release
stream is named 2.0.x, where x will be incremented.

Additionally, new tests will be added to the TCK improving coverage of the specification. We
encourage implementations to pass this TCK, however it is not required. This release stream is
named 2.y.z where y >= 1.

7

Chapter 3. Installation
This chapter explains how to obtain the TCK and supporting software and provides
recommendations for how to install/extract it on your system.

3.1. Obtaining the Software
You can obtain a release of the Jakarta Bean Validation TCK project via the official Jakarta Bean
Validation home page. The Jakarta Bean Validation TCK is distributed as a ZIP file, which
contains the TCK artifacts (the test suite binary and source, the test suite descriptor, the audit
source and report), the TCK library dependencies in /lib and documentation in /doc. The
contents should look like:

artifacts/
changelog.txt
docs/
lib/
license.txt
setup-examples/
src/
readme.md

You can also download the source code from GitHub - https://github.com/eclipse-
ee4j/beanvalidation-tck.

The Jakarta Bean Validation reference implementation (RI) project is named Hibernate
Validator. You can obtain the Hibernate Validator release used as reference implementation
from the Hibernate Validator download page.

Hibernate Validator is not required for running the Bean Validation TCK, but
it can be used as a reference for familiarizing yourself with the TCK before
testing your own Jakarta Bean Validation implementation.

3.2. The TCK Environment
The TCK requires the following two Java runtime environments:

• Java 8 (including a JavaFX implementation)

• Jakarta EE 8 or better (e.g. Eclipse GlassFish 5.1+)

You should refer to vendor instructions for how to install the runtime.

The rest of the TCK software can simply be extracted. It’s recommended that you create a

8

http://beanvalidation.org/tck/
http://beanvalidation.org/tck/
https://github.com/eclipse-ee4j/beanvalidation-tck
https://github.com/eclipse-ee4j/beanvalidation-tck
https://hibernate.org/validator/releases/

dedicated folder to hold all of the Jakarta Bean Validation-related artifacts. This guide assumes
the folder is called jakarta-bean-validation. Extract the src folder of the TCK distribution
into a sub-folder named tck or use the following git commands:

git clone git://github.com/eclipse-ee4j/beanvalidation-tck tck
git checkout 2.0.6

You can also check out the full Hibernate Validator source into a subfolder ri. This will allow
you to run the TCK against Hibernate Validator.

git clone git://github.com/hibernate/hibernate-validator.git ri
git checkout 6.2.0.Final

The resulting folder structure is shown here:

jakarta-bean-validation/
 ri/
 tck/

Now lets have a look at one concrete test of the TCK, namely ConstraintInheritanceTest
(found in
tck/tests/src/main/java/org/hibernate/beanvalidation/tck/tests/constraint
s/inheritance/ConstraintInheritanceTest.java):

package org.hibernate.beanvalidation.tck.tests.constraints.inheritance;

import static
org.hibernate.beanvalidation.tck.util.ConstraintViolationAssert.assertCorrectC
onstraintTypes;
import static org.testng.Assert.assertEquals;
import static org.testng.Assert.assertTrue;

import java.lang.annotation.Annotation;
import java.util.ArrayList;
import java.util.List;
import java.util.Set;

import javax.validation.ConstraintViolation;
import javax.validation.constraints.DecimalMin;
import javax.validation.constraints.NotNull;
import javax.validation.constraints.Size;
import javax.validation.metadata.BeanDescriptor;
import javax.validation.metadata.ConstraintDescriptor;
import javax.validation.metadata.PropertyDescriptor;

import org.hibernate.beanvalidation.tck.beanvalidation.Sections;
import org.hibernate.beanvalidation.tck.tests.AbstractTCKTest;
import org.jboss.arquillian.container.test.api.Deployment;
import org.jboss.shrinkwrap.api.spec.WebArchive;
import org.jboss.test.audit.annotations.SpecAssertion;

9

import org.jboss.test.audit.annotations.SpecVersion;
import org.testng.annotations.Test;

/**
 * @author Hardy Ferentschik
 */
@SpecVersion(spec = "beanvalidation", version = "2.0.0")
public class ConstraintInheritanceTest extends AbstractTCKTest {

 @Deployment
 public static WebArchive createTestArchive() {
 return webArchiveBuilder()
 .withTestClassPackage(ConstraintInheritanceTest.class)
 .build();
 }

 @Test
 @SpecAssertion(section = Sections
.CONSTRAINTDECLARATIONVALIDATIONPROCESS_INHERITANCE, id = "b")
 public void testConstraintsOnSuperClassAreInherited() {
 BeanDescriptor beanDescriptor = getValidator().getConstraintsForClass(
Bar.class);

 String propertyName = "foo";
 assertTrue(beanDescriptor.getConstraintsForProperty(propertyName)
!= null);
 PropertyDescriptor propDescriptor = beanDescriptor
.getConstraintsForProperty(propertyName);

 Annotation constraintAnnotation = propDescriptor
.getConstraintDescriptors()
 .iterator()
 .next().getAnnotation();
 assertTrue(constraintAnnotation.annotationType() == NotNull.class);
 }

 @Test
 @SpecAssertion(section = Sections
.CONSTRAINTDECLARATIONVALIDATIONPROCESS_INHERITANCE, id = "a")
 @SpecAssertion(section = Sections
.CONSTRAINTDECLARATIONVALIDATIONPROCESS_INHERITANCE, id = "b")
 public void testConstraintsOnInterfaceAreInherited() {
 BeanDescriptor beanDescriptor = getValidator().getConstraintsForClass(
Bar.class);

 String propertyName = "fubar";
 assertTrue(beanDescriptor.getConstraintsForProperty(propertyName)
!= null);
 PropertyDescriptor propDescriptor = beanDescriptor
.getConstraintsForProperty(propertyName);

 Annotation constraintAnnotation = propDescriptor
.getConstraintDescriptors()
 .iterator()
 .next().getAnnotation();
 assertTrue(constraintAnnotation.annotationType() == NotNull.class);
 }

 @Test
 @SpecAssertion(section = Sections
.CONSTRAINTDECLARATIONVALIDATIONPROCESS_INHERITANCE, id = "a")

10

 @SpecAssertion(section = Sections
.CONSTRAINTDECLARATIONVALIDATIONPROCESS_INHERITANCE, id = "c")
 public void testConstraintsOnInterfaceAndImplementationAddUp() {
 BeanDescriptor beanDescriptor = getValidator().getConstraintsForClass(
Bar.class);

 String propertyName = "name";
 assertTrue(beanDescriptor.getConstraintsForProperty(propertyName)
!= null);
 PropertyDescriptor propDescriptor = beanDescriptor
.getConstraintsForProperty(propertyName);

 List<Class<? extends Annotation>> constraintTypes =
getConstraintTypes(propDescriptor.getConstraintDescriptors());

 assertEquals(constraintTypes.size(), 2);
 assertTrue(constraintTypes.contains(DecimalMin.class));
 assertTrue(constraintTypes.contains(Size.class));
 }

 @Test
 @SpecAssertion(section = Sections
.CONSTRAINTDECLARATIONVALIDATIONPROCESS_INHERITANCE, id = "a")
 @SpecAssertion(section = Sections
.CONSTRAINTDECLARATIONVALIDATIONPROCESS_INHERITANCE, id = "c")
 public void testConstraintsOnSuperAndSubClassAddUp() {
 BeanDescriptor beanDescriptor = getValidator().getConstraintsForClass(
Bar.class);

 String propertyName = "lastName";
 assertTrue(beanDescriptor.getConstraintsForProperty(propertyName)
!= null);
 PropertyDescriptor propDescriptor = beanDescriptor
.getConstraintsForProperty(propertyName);

 List<Class<? extends Annotation>> constraintTypes =
getConstraintTypes(propDescriptor.getConstraintDescriptors());

 assertEquals(constraintTypes.size(), 2);
 assertTrue(constraintTypes.contains(DecimalMin.class));
 assertTrue(constraintTypes.contains(Size.class));
 }

 @Test
 @SpecAssertion(section = Sections
.CONSTRAINTDECLARATIONVALIDATIONPROCESS_VALIDATIONROUTINE, id = "a")
 public void testValidationConsidersConstraintsFromSuperTypes() {
 Set<ConstraintViolation<Bar>> violations = getValidator().validate(
new Bar());
 assertCorrectConstraintTypes(
 violations,
 DecimalMin.class, DecimalMin.class, ValidBar.class, //Bar
 NotNull.class, Size.class, ValidFoo.class, //Foo
 NotNull.class, Size.class, ValidFubar.class //Fubar
);
 }

 private List<Class<? extends Annotation>> getConstraintTypes(Iterable
<ConstraintDescriptor<?>> descriptors) {
 List<Class<? extends Annotation>> constraintTypes = new ArrayList
<Class<? extends Annotation>>();

11

 for (ConstraintDescriptor<?> constraintDescriptor : descriptors) {
 constraintTypes.add(constraintDescriptor.getAnnotation()
.annotationType());
 }

 return constraintTypes;
 }
}

Each test class is treated as an individual artifact (hence the @Deployment annotation on the
class). In most tests the created artifact is a standard Web application Archive build via
WebArchiveBuilder which in turn is a helper class of the TCK itself alleviating the creation of
of the artifact. All methods annotated with @Test are actual tests which are getting run. Last
but not least we see the use of the @SpecAssertion annotation which creates the link between
the tck-audit.xml document and the actual test (see TCK Primer).

Example 1. Running the TCK against the Jakarta Bean Validation RI (Hibernate Validator) and WildFly 10.1

• Install Maven. You can find documentation on how to install Maven 3 on the Maven
official website.

• Change to the ri/tck-runner directory.

• Next, instruct Maven to run the TCK:

mvn test -Dincontainer

• TestNG will report, via Maven, the outcome of the run, and report any failures on the
console. Details can be found in target/surefire-reports/TestSuite.txt.

12

http://en.wikipedia.org/wiki/WAR_file_format_%28Sun%29
https://maven.apache.org/install.html
https://maven.apache.org/install.html

Chapter 4. Reports
This chapter covers the two types of reports that can be generated from the TCK, an assertion
coverage report and the test execution results.

4.1. Jakarta Bean Validation TCK Coverage Report
A specification can be distilled into a collection of assertions that define the behavior of the
software. This section introduces the Bean Validation TCK coverage report, which documents
the relationship between the assertions that have been identified in the Jakarta Bean Validation
specification document and the tests in the TCK test suite.

The structure of this report is controlled by the assertion document, so we’ll start there.

4.1.1. Jakarta Bean Validation TCK Assertions

The Jakarta Bean Validation TCK developers have analyzed the Jakarta Bean Validation
specification document and identified the assertions that are present in each chapter. Here’s an
example of one such assertion found in section 2.1: "Every constraint annotation must define a
message element of type String"

The assertions are listed in the XML file tck-audit.xml in the Jakarta Bean Validation TCK
distribution. Each assertion is identified by the section of the specification document in which it
resides and assigned a unique paragraph identifier to narrow down the location of the assertion
further. To continue with the example, the assertion shown above is listed in the tck-
audit.xml file using this XML fragment:

<section id="constraintsdefinitionimplementation-constraintdefinition-
properties-message" title="message" level="4">
 ...
 <!-- 3.1.1.1 -
CONSTRAINTSDEFINITIONIMPLEMENTATION_CONSTRAINTDEFINITION_PROPERTIES_MESSAGE
-->
 <assertion id="a">
 <text>Every constraint annotation must define a message element of
type String.</text>
 </assertion>
 ...
</section>

The strategy of the Jakarta Bean Validation TCK is to write a test which validates this assertion
when run against an implementation. A test case (a method annotated with @Test) is correlated
with an assertion using the @org.jboss.test.audit.annotations.SpecAssertion
annotation as follows:

13

@Test(expectedExceptions = ConstraintDefinitionException.class)
...
@SpecAssertion(section = Sections
.CONSTRAINTSDEFINITIONIMPLEMENTATION_CONSTRAINTDEFINITION_PROPERTIES_MESSAGE,
id = "a")
...
public void testConstraintDefinitionWithoutMessageParameter() {
 getValidator().validate(new DummyEntityNoMessage());
 fail("The used constraint does not define a message parameter. The
validation should have failed.");
}

To help evaluate the distribution of coverage for these assertions, the TCK provides a detailed
coverage report. This report is also useful to help implementors match tests with the language
in the specification that supports the behavior being tested.

4.1.2. The Coverage Report

The coverage report is an HTML report generated as part of the TCK project build. Specifically, it
is generated by an annotation processor that attaches to the compilation of the classes in the
TCK test suite. You can find the source code for this processor in the GitHub repository
https://github.com/jboss/jboss-test-audit The report is written to the file target/coverage-
report/coverage-beanvalidation.html. The report itself has five sections:

1. Chapter Summary - List the chapters (that contain assertions) in the specification
document along with total assertions, tests and coverage percentage.

2. Section Summary - Lists the sections (that contain assertions) in the specification
document along with total assertions, tests and coverage percentage.

3. Coverage Detail - Each assertion and the test that covers it, if any.

4. Unmatched Tests - A list of tests for which there is no matching assertion (useful during
TCK development).

5. Unversioned Tests - A list of tests for which there is no @SpecVersion annotation on the
test class (useful during TCK development).

The coverage report is color coded to indicate the status of an assertion, or group of assertions.
The status codes are as follows:

• Covered - a test exists for this assertion

• Not covered - no test exists for this assertion

• Unimplemented - a test exists, but is unimplemented

• Untestable - the assertion has been deemed untestable, a note, explaining why, is normally
provided

14

https://github.com/jboss/jboss-test-audit

For reasons provided in the tck-audit.xml document and presented in the coverage report,
some assertions are not testable.

The coverage report does not give any indication as to whether the tests are passing. That’s
where the TestNG reports come in.

4.2. The TestNG Report
As you by now know, the Jakarta Bean Validation TCK test suite is really just a TestNG test
suite. That means an execution of the Jakarta Bean Validation TCK test suite produces all the
same reports that TestNG produces. This section will go over those reports and show you were
to go to find each of them.

4.2.1. Maven, Surefire and TestNG

When the Jakarta Bean Validation TCK test suite is executed during the Maven test phase of the
TCK runner project, TestNG is invoked indirectly through the Maven Surefire plugin. Surefire is a
test execution abstraction layer capable of executing a mix of tests written for JUnit, TestNG,
and other supported test frameworks.

Why is this relevant? It means two things. First, it means that you are going to get a summary of
the test run on the commandline. Here’s the output generated when the tests are run using
standalone mode.

 T E S T S

Running TestSuite
Tests run: 976, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 35.288 sec -
in TestSuite

Results :

Tests run: 976, Failures: 0, Errors: 0, Skipped: 0

The number of tests executed, the execution time, and the output will differ
when you run the tests using in-container mode as the Bean Validation TCK
requires.

If the Maven reporting plugin that compliments Surefire is configured properly, Maven will also
generate a generic HTML test result report. That report is written to the file test-report.html in
the target/surefire-reports directory of the TCK runner project. It shows how many tests
were run, how many failed and the success rate of the test run.

15

Chapter 5. Running the TCK test suite
This chapter lays out how to run and configure the TCK harness against a given Jakarta Bean
Validation provider in a given Jakarta EE container. If you have not by now made yourself
familiar with the Arquillian documentation, this is a good time to do it. It will give you a deeper
understanding of the different parts described in the following sections.

5.1. Setup examples
The TCK distribution comes with a directory setup-examples which contains two example
projects for running the TCK. If you followed the instructions in Installation you find the
directory under jakarta-bean-validation/tck/setup-examples. Both setups are using
Hibernate Validator as Jakarta Bean Validation Provider and Eclipse GlassFish 5.1+ as Jakarta
EE constainer. However, one is using Maven as build tool to run the TCK, the other Ant.
Depending which of the examples you want to use, you need to install the corresponding build
tool.

Each example comes with a readme.md containing the prerequisites for using this setup, how to
run the TCK against Hibernate Validator and Eclipse GlassFish. The readme in setup-examples
itself contains information about what needs to be changed to use a different Jakarta Bean
Validation provider and Jakarta EE container.

The following chapters contain some more information about the general structure of the TCK
which will give you a deeper understanding above the simple readme files.

5.2. Configuring TestNG to execute the TCK
The Jakarta Bean Validation test harness is built atop TestNG, and it is TestNG that is
responsible for selecting the tests to execute, the order of execution, and reporting the results.
Detailed TestNG documentation can be found at testng.org.

The tck-tests.xml artifact provided in the TCK distribution must be run by TestNG (described
by the TestNG documentation as "with a testng.xml file") unmodified for an implementation
to pass the TCK. For testing purposes it is of course ok to modify the file (see also the TestNG
documentation)

16

https://docs.jboss.org/author/display/ARQ/Reference+Guide
http://maven.apache.org/
http://ant.apache.org/
http://testng.org/doc/documentation-main.html
http://testng.org/doc/documentation-main.html#testng-xml

<suite name="Jakarta-Bean-Validation-TCK" verbose="1">
 <test name="Jakarta-Bean-Validation-TCK">

 <method-selectors>
 <method-selector>
 <selector-class name=
"org.hibernate.beanvalidation.tck.util.IntegrationTestsMethodSelector"/>
 </method-selector>
 </method-selectors>

 <packages>
 <package name="org.hibernate.beanvalidation.tck.tests"/>
 </packages>
 </test>
</suite>

TestNG provides extensive reporting information. Depending on the build tool or IDE you use,
the reporting will take a different format. Please consult the TestNG documentation and the tool
documentation for more information.

5.3. Selecting the ValidationProvider
The most important configuration you have make in order to run the Jakarta Bean Validation
TCK is to specify your ValidationProvider you want to run your tests against. To do so you
need to set the Java system property validation.provider to the fully specified class name
of your ValidationProvider. In Maven this is done via the systemProperties configuration
option of the maven-surefire-plugin, whereas sysproperty is used in an Ant testng task. This
system property will be picked up by
org.hibernate.beanvalidation.tck.util.TestUtil which will instantiate the
Validator under test. This means the test harness does not rely on the service provider
mechanism to instantiate the Jakarta Bean Validation provider under test, partly because this
selection mechanism is under test as well.

5.4. Selecting the DeployableContainer
After setting the ValidationProvider you have to make a choice on the right
DeployableContainer. Arquillian picks which container it is going to use to deploy the test
archive and negotiate test execution using Java’s service provider mechanism. Concretely
Arquillian is looking for an implementation of the DeployableContainer SPI on the classpath.
The setup examples use a remote Eclipse GlassFish container adapter, which means that
Arquillian tries to deploy the test artifacts onto a specified remote Eclipse GlassFish instance,
run the tests remotely and report the results back to the current JVM. The installation directory
of the remote container is specified via the container.home property in the example build
files. To make it easier to develop, debug or test the TCK, an in JVM adapter is provided as part
of the distribution (beanvalidation-standalone-container-adapter-2.0.6.jar).
Using this adapter the tests are not executed in a remote Jakarta EE container, but in the

17

current JVM. This allows for easy and fast debugging. Some tests, however, are only runnable in
a Jakarta EE container and will fail in this in JVM execution mode. By setting the property
excludeIntegrationTests to true these tests can be excluded.

The adapter is also available as Maven artifact under the GAV
org.hibernate.beanvalidation.tck:beanvalidation-standalone-container-
adapter:2.0.6. You can refer to pom.xml in the tck-runner module of Hibernate Validator (in
the directory jakarta-bean-validation/ri/tck-runner, if you followed the instruction in
Installation) to see how it is used.

5.5. arquillian.xml
The next piece in the configuration puzzle is arquillian.xml. This xml file needs to be in the
root of the classpath and is used to pass additional options to the selected container. Let’s look
at an example:

<arquillian xmlns="http://jboss.org/schema/arquillian" xmlns:xsi=
"http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://jboss.org/schema/arquillian
 http://jboss.org/schema/arquillian/arquillian_1_0.xsd">
 <defaultProtocol type="Servlet 3.0"/>

 <engine>
 <property name="deploymentExportPath">target/artifacts</property>
 </engine>

 <container qualifier="incontainer" default="true">
 <configuration>
 <property name="glassFishHome">@CONTAINER.HOME@</property>
 <property name="adminHost">localhost</property>
 <property name="adminPort">4848</property>
 <property name="debug">true</property>
 </configuration>
 </container>

</arquillian>

The most important container configuration option is the protocol type which determines how
Arquillian communicates with the selected container. The most popular types are Servlet 3.0
and Local. The former is used when connecting to a remote container whereas the latter is
used for the in JVM mode.

Another interesting property is deploymentExportPath which is optional and instructs
Arquillian to dump the test artifacts to the specified directory on disk. Inspection of the
deployed artifacts can be very useful when debugging test failures.

The Jakarta Bean Validation specification mandates a support of JavaFX if JavaFX is available in
the classpath.

18

While JavaFX is included in the Oracle JDK and some other JDKs include OpenJFX, it might not
be included in all JDKs.

Having JavaFX available in a container environment might also not be straightforward.

For these reasons, the JavaFX tests are disabled when running the TCK with the default options.

It is highly recommended to run the TCK in at least one configuration that allows to test the
support of JavaFX.

Using this configuration, the JavaFX tests can be enabled by passing the
-DincludeJavaFXTests=true option to the TCK.

19

https://wiki.openjdk.java.net/display/OpenJFX/Main

Chapter 6. Running the Signature Test
One of the requirements of an implementation passing the TCK is for it to pass the Jakarta Bean
Validation signature test. This section describes how to run it against your implementation as a
part of a Maven build.

6.1. Executing the signature check
The signature file bundled inside this TCK is created using the SigTest Maven plugin. The same
plugin can be used to run a signature test to check for any incompatibilities. Let’s take a look
how it can be done as a part of a Maven build. Note that there must be no dependency declared
for this project besides the API artifact you wish to test.

Before running an actual test you need to obtain the signature file first. It is packaged inside the
beanvalidation-tck-tests artifact, so we can get it using the unpack goal of the maven-
dependency-plugin as shown below:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-dependency-plugin</artifactId>
 <version>3.0.0</version>
 <executions>
 <execution>
 <id>copy-tck-bv-api-signature-file</id>
 <phase>generate-test-sources</phase>
 <goals>
 <goal>unpack</goal>
 </goals>
 <configuration>
 <artifactItems>
 <artifactItem>
 <groupId>org.hibernate.beanvalidation.tck</groupId>
 <artifactId>beanvalidation-tck-tests</artifactId>
 <version>${beanvalidation-tck-tests.version}</version>
 <type>jar</type>
 <overWrite>false</overWrite>
 </artifactItem>
 </artifactItems>
 <!-- We just need the signature file and nothing else -->
 <includes>**/*.sig</includes>
 <outputDirectory>${project.build.directory}/api-
signature</outputDirectory>
 </configuration>
 </execution>
 </executions>
</plugin>

To actually run a signature test, the check goal of the sigtest-maven-plugin can be used.
The plugin configuration above puts the signature file to the api-signature subdirectory of your
project’s build directory. Having the file there, it can be referenced via the sigfile parameter

20

http://wiki.netbeans.org/SigTest

of the sigtest-maven-plugin plugin like this:

<plugin>
 <groupId>org.netbeans.tools</groupId>
 <artifactId>sigtest-maven-plugin</artifactId>
 <version>1.0</version>
 <executions>
 <execution>
 <goals>
 <goal>check</goal>
 </goals>
 </execution>
 </executions>
 <configuration>

<packages>javax.validation,javax.validation.bootstrap,javax.validation.constra
ints,

javax.validation.constraintvalidation,javax.validation.executable,javax.valida
tion.groups,

javax.validation.metadata,javax.validation.spi,javax.validation.valueextractio
n
 </packages>
 <sigfile>${project.build.directory}/api-signature/validation-api-
java8.sig</sigfile>
 </configuration>
</plugin>

6.2. Forcing a signature test failure
If you would like to verify that the signature test is running correctly, make a copy of the
signature file somewhere on your local file system and modify it. For example let us change the
value() of javax.validation.constraints.Max to val() which should make SigTest fail.

After modifying the signature file, update the sigfile parameter of the sigtest-maven-
plugin to point to the modified file:

<sigfile>${path_to_folder_containing_your_modified_signature_file}/validation-
api-java8.sig</sigfile>

If all is done correctly, while running mvn sigtest:check on your project, you should see an
error similar to next:

21

[INFO] SignatureTest report
Base version: 2.0.0-SNAPSHOT
Tested version: 2.0.0-SNAPSHOT
Check mode: bin [throws removed]
Constant checking: on

Class javax.validation.constraints.Max
 "E2.7 - Removing member from annotation type" : method public abstract long
javax.validation.constraints.Max.val()

22

	TCK Reference Guide for Jakarta Bean Validation
	Table of Contents
	Preface
	Who Should Use This Guide
	Before You Read This Guide
	How This Guide Is Organized

	Chapter 1. Introduction
	1.1. TCK Primer
	1.2. Compatibility Testing
	1.3. About the Jakarta Bean Validation TCK

	Chapter 2. Appeals Process
	2.1. What challenges to the TCK may be submitted?
	2.2. How these challenges are submitted?
	2.3. How and by whom challenges are addressed?
	2.4. How accepted challenges to the TCK are managed?

	Chapter 3. Installation
	3.1. Obtaining the Software
	3.2. The TCK Environment

	Chapter 4. Reports
	4.1. Jakarta Bean Validation TCK Coverage Report
	4.2. The TestNG Report

	Chapter 5. Running the TCK test suite
	5.1. Setup examples
	5.2. Configuring TestNG to execute the TCK
	5.3. Selecting the ValidationProvider
	5.4. Selecting the DeployableContainer
	5.5. arquillian.xml

	Chapter 6. Running the Signature Test
	6.1. Executing the signature check
	6.2. Forcing a signature test failure

