HIBERNATE - Relational
Persistence for Idiomatic Java

Hibernate Reference
Documentation

3.3.2.GA

King Gavin [FAMILY Given], Bauer Christian [FAMILY Given], Andersen Max [FAMILY
Given], Bernard Emmanuel [FAMILY Given], # Ebersole Steve [FAMILY Given]

and thanks to Cobb James [FAMILY Given] (Graphic Design) #
Weaver Cheyenne [FAMILY Given] (Graphic Design)

L. FEEADACK ..ot Xii
I T (0] - PP 1
1.1,] - #HIDErNate B o o 1
N O B T (U] o TP PR PR 1
L . R oo 3

L L S, B o ot 4
R B o 11 o 1Y g F= 1T PP 7
1.1.5. Building With MaVENoiiiiiiii e e 9
L O, R 10
117, B 11

1.2, HHH2 - B o 14
1.2.1. PErSONHHHHHHHHE ..ot 14
1.2.2. HHE SO .o 16

L 2. 3, B et 17

L2 A, R o 19
L2 D, B oo 21
L2 . I 22

1.3. ###3 - EventManager WebB#HHHHHHo 23
1.3, 0. HHHESEIVIOTHHH .. oo 23
< - PP 24
L3 . R 26

T 27
s N 29
2. L i 29
2 B e 30
B T 1Y D= 31
2.4, JCA oo aaa 31
2.5, CONEXIUAI SESSIONSiiiiiiieeiiii ettt e e et e e e et e e e eataeeeeatnaeeeees 31
T - PP 33
B L. I it 33
3.2, SESSIONFACIONYHHHHH .o e 34
3.3, I B I vt iii et 34
B, e e 36
3.4.1. SQL #HHDIAIECHHEieve i e 43
B4 2. B oo 44
S4B B oo 44
344, 2 44
B4 L. I e 44
3.4.6. HIDEINAE oo 44

B D I oo e e a 45
3.6. Nami NQStrat €0 B oo e 45
T Y I PP 46
3.8, J2E e 47

HIBERNATE - Relational Persis...

.81, HHHHHHHHEHHEE o oo 48
3.8.2. SessionFact ory #INDIFRRE ... 49
3.8.3. ITAHHHHHHHHHHHHHHHHEHHHHHHRRE oo 49
.84, IMXHHHHEHIE ..ot 50

A, HHEHHE oo e 53
A1, P OIOMH oo 53
A1 1. HHEHHEHHHEHRT oo 55

4. 1. 2, HH R 55
A.1.3. fINQHHHHHHHHEHEE oo 55
4.1.4. HHEHHHHH R 56

A2, FHHEHHE oo 56
4.3. equal S() # hashCode() HHH ..o 56
A4, FHHEHHE oo e 58
A5, TUPHNZET <. et 60
4.6. EntityNAmMERESOIVEIS ... ccviiiiiii i e e s 61
D B O R .. e e e 65
DL B oo e 65
L0 I T B T Tor 4V o TP PTTPRUPRTI 66
5.1.2. HIbernate-mappingccouuiiiiiiiiii e 67
LR T 1 T P 68

LS 0 S T PP 72
5.1.5. Enhanced identifier generatorscccuuiiiiiiiiiiiiiiiie e 76
5.1.6. Identifier generator Optimizationccccooveiiiiieiiie e 77
B5.1.7. COMPOSILE-IT .oveiieeeiii et 78

Lo R TR I T ETod] 11 =1 (o PP 79
5.1.9. Version (OPLIONAI)uuiiiiiiieiii e 80
5.1.10. Timestamp (OPtioNal)covuiiiiiiii e 81
L0 I T o] o= 1 VPP PPPPP R UPPT 82
51,12, MANY-T0-0NE ..ot 84
L0 0 G O @ T 1= (o o [P PTPT 87

Lo I I S N 18 = | o TR 89
5.1.15. Component and dynamiC-COMPONENTceviuuuieeiiiieeieiie e e 20
LN I G T (o] 0 T= 1 1= 91
5,117, SUBCIASS ..o 92
5.1.18. JOINEA-SUDCIASS ... iieiiiieiiiii e 93
5.1.19. UNION-SUDCIASS ... eeniiiiieiiii et e e e e 95

LS 2 TR o T o I PP 96

L 2 1= VPP 97
5.1.22. Column and formula elementscccoooieiiiiiiiiii e 98
5,123, IMPOIE e 99

LS 2 S N 0 PPN 99

5.2, HIDEINALE LYPES ...ttt 101
D201, HHHHHEHHE oo 101

B 2.2, HHHHE <o 101

B.23 HHHHHE Lo 103

B.3. #EHHHHHHHHHHTTE 104
5.4, tHHHHHHHHHH SQL HHHE oo 105
BB HHHHHHHHHIE o 105
5.5.1. XDOCIet H#HHHHHHEE ... 105
5.5.2. IDK 5.0 H#HHHHHHHHE ... 108

5.6. Generated PrOPEITIESccuuiiiiii i i et e et e e e e e e et e et e e e aaas 109
5.7. Auxiliary database ODJECTScooiiiiiiiii 109
LS Ote] 1T=Toa dTo Y T 4 -1 o o 112 Yo [111
O. 1. HHHHHHHHIE s 111
6.2, HHHHHHHHHHHH (oo 112
6.2. 1. HHHHHHHHHHHE e 114
B.2.2. HHHHHHIH oo 114
6.2.3. HHHHIHHHHHHIE 115
6.2.4. HHHHHHHHHHHHE (o oo 116

B. 2.5, o 118

6.3, HHHHHHHHHHHEE (o oo 120
6.3 1. HHHHHHHHHHHE 120
B.3. 2. I o 121
6.3.3. HHHHHHHHHHHHHHEHHE 123
8.3 4. Bt 124
B.3.5. i A A i it 125

B.4. HHHHHHE .o 125
T HHHHHE e 131
T L HHEHHHE oo e 131
T2, HHHE e 131
T.2.1, MANY-T0-0NE ouitiiiii e e e 131
A © L = (o R o] [PTP 132
T7.2.3. ONE-TO-MANY .ttt ettt e e e e e e 133

7.3, HHHHHHHHHHHT 134
7.3. 1. ONE-TO-MANY .ttt et e e e 134
7.3.2. MANY-T0-0NE ..ottt ettt e 134
S TS T @ T = (0 o [PP 135
7.3.4. MaNY-T0-MANY ..ottt et e e e et e 136

T4, HHHHHE oo e 137
7.4.1. one-to-mMany / ManY-10-0NE€iiiiuiiieiiiii ettt 137
A @ L = (0 o [PP 138

7.5, HHEHHHHHHHHT 139
7.5.1. one-to-many / MaNY-t0-0NEieiuuieeiiieieiieeei e e e e e e e e e e eaes 139
0D, 2, 140
7.5.3. MaNY-TO-IMANY ...oiiiii e e aa e 141

T.6. HEHHHHHEHHE 142
8. HHHHHHHHHIHH <o e 145
8.1, HHHHHHHHE o 145

HIBERNATE - Relational Persis...

8.2, HHHHHHIHHHHEHHHHHEHH (. oo 147
8.3, Map#H#HHHHHHHHHHHHHHHH o 149
8.4, HHHHHHIHHHHHHHE . oo e e 149
B D, I e 151
L I oY o L=T g = Ve LoT I 4 =T o] o X1 o [P 153
9.1. The thre@ SErat@gIESuuiiiiii ettt e eeneas 153
9.1.1. #HHHHHHHHHEHtable-per-class-hierarchy#ccooooi i, 153
9.1.2. #HHHHHHHHHHAtable-per-subclass# ... 154
9.1.3. Table per subclass: using a disCriminatorcccciiieiiieeiiiiecie e, 155
9.1.4. table-per-subclass # table-per-class-hierarchy ###ccccoooeiiiiiiiinnnn. 156
9.1.5. #itHHHHHHHHHHtable-per-concrete-Class#ccvvevivevie i 156
9.1.6. Table per concrete class using implicit polymorphismcccceeeieeene. 157
O.1.7. HHHHHHHHHHHHHHHHEHHERE e 158

LS - - PP 159
LO. HHHHHEEE oo s 161
10.1. Hibernate#HHHHHHHIIE . oo 161
10.2. HHHHHHHHHEHE oo 161
L0, B, R o e e 162
L0.A. e 164
LOA. L. B oo 164
10.4.2. HHHHHHHHHHEHEE (oo 169
10.4. 3. R, oo 169
10.4.4, HHHHHBESQULHHHE ..o 170
L0, S, R i 170
10.6. HEHHEHHHHHH o oo e e 171
L. 7. I e 172
10.8. HHHEHHHHHH o oo e e 173
10.9. HHHHH R 173
L10.00. HHHEHHHHHEE oo 174
LO.LL. B oot 175
LOL2, FHHEHHEHHE oo e e 177
11. Transactions and CONCUITENCY ..ccoouuuiiiiii ettt e et e et e e 179
11.1. SeSSIONHHHHIrANSACHONFHH ...ooove i 179
11.0.0. #HHEAFHUNIE Of WOTKH oo e 179
L1020 BHHEH oo 180
L0 . S, R 181
TLDA B oo 182

L 2. B 183
112,01, BHHHHHEHRE oo 184
L1.2.2, JTAHHHHE oo 185
L11.2.3. B oo 187

10 2.4, R 187
130 HEHHEHHHHE oo e 188
11.3. 1. HHEHHHHHERHHHHHEIR 188

vi

11.3.2. HHHHHHHHHHHHHHE 189

11.3.3. HHHBHHHH I s 190
11.3.4. HHHEHHHHHHEHEHE (oo 191
11.4. PeSSIMISHC I0CKINGuiiiiiiiiiiii e 191
11.5. ConNection release MOUEScoouuuiiiiiiiiieee e 192
L B 195
L2.0. HEHHEHHEE oo e 195
L, e 197
12.3. HIbernate#HHHHHHHHE ..o oo 199
13, BHHEHHBHHEHICHH .oooeoeoee oo 201
13.1. anHanHaHteR A
PPN 201
13.2. AR EHHEHHERH GO oo 202
13.3. StatelessSessiona#oa#3aH ¢, AR VAAHHAHEAHOEHL .. .ooii i 203
13.4. DMLAH#IAH ¢ BHOAHKBHRBRHHEYLH .o eieeii e 203
14. HQL: The Hibernate QUery LanQUAagecccuuuiiiiiiiniiieiiiieeeeii e e et eeai e e 207
LA, HEHHEHHHEH oo 207
I {00 0 2 207
LA, HHHHH oo e e et 208
LA A, R oo 209
14.5. Referring to identifier Propertycocoeueiiiiiiii e 210
TA.B. SEIBCHH ... e 210
TAT. HHRHE oo s 212
LA, 8. B o 212
e T T T PSP 213
14.20. EXPrESSIONS # ..ovuieiiiii ettt ettt ettt 215
I I O o (0 L= g)Y PPt 219
L4022, grOUP DYH oo 220
LA D3, FHHEHHEE oo e 220
I 1 =SSP 221
14.15. #HH#HUPDATEHDELETE ... 224
14.26. TIPS & THCKS ettt 224
14.27. translator-CreditScoouueiieiiiii e 225
14.18. ROW Value CONSIIUCLON SYNTAXcevirineeiiiiieeeiiie e ettt e e e e e 226
T O =T -t PP 229
15.0. Criteria B oo 229
15.2. HEHHEHHHHHH o oo e e 229
TR T = - - PRSPPI 230
LD, H e s 231
LD D, R L o 232
L5.6. HHH oo e e e e 232
LD T B 233
15.8. HHHHHHHHHHHE oo 235
LD O, R i 236

Vii

HIBERNATE - Relational Persis...

L6, HHHHESQL oot 239
16, L. SQLQUET Y oot e 239
L16. 1.0, FHHEHHEHE oo 239
16. 0. 2, I e 240
16.1.3. HHHHHHEHHHFE (oo 240

16. 1.4, HHHHHHHE o 241
16.1.5. HHHHBHHHHEFHHEFHEF-E e 243

16, 0.6, oo e e 243

L1O. 1.7, HHHHHE oo 243
16.2. HHHHESQLAHH ..o e 244
16.2.1. HH#HIHHHHEHHEHHEHHEE return-property #H## ..., 246
16.2.2. HHHHHHHHHHHHHHHHHHEHH o 247
16.3. HIHHHHHIHHFHHHHESQL oo 248
16.4. HHHHHHRRRHESQL ..o e 250
L7, FHHEHHEHHEE oo e 253
17.0. HIDEINAIEHHHHE ..ot 253
18, XML .ot e e et e 257
18,1 XIMLAHHEHHE oottt e e e e e e e ennaanaas 257
18.1.1. XMLBHHHEHHHHEHE oo 257
18.1.2. XMLABBHHHHHHFHHH ..o 258
18.2. XMUHHHEHHEHHR ..o 258
18.3. XIMLAHEEHE ..ottt e e e e et e 261
1O, FHHEHHEHHER oo e 263
1O, 0. B o e 263
LO. L0 FHHEHHR oo 264
19.1.2. HHHHHHHHE L oo 264
19.1.30 FHHEHHEHHHE oo 265
19.1.4. HHHHHHHHHHHHE Lo 268
19,15, FHHEHHEHHR oo 269
19.1.6. HHHHHHHHE 270
19.1.7. HHHHHHHHHHHEE (oo 270
10 . 2 e 271
19.2.10. HHHHHHEHHFHE (o oo 272
19.2.2. r8ad ONIYHH .o 272
19.2.3. TEAAMIIIEEHH ..t e 272
19.2.4. H#HHHHTEAAIWITIEHHE ..o 273
19.2.5. tranSACtONAIFHEoovvviiiii e 273
19.2.6. Cache-provider/concurrency-strategy compatibilityccveiievennnnn. 273
LO.3. HHFHHHHIHE oo 274
L0 A, R e e e 275
19.5. HHHHEHHEHHEFHEFEE (oo 276
105, B e et e aaaeaeaaa 276
19.5.2. #H#HH#H A listEmap#idbag#set ..., 277
19.5.3. inversetHHHHHHHHHHDAgHIIST ..o 277

viii

TO54. B oo 278

10, 6. B 278
19.6.1. SeSSIONFACIONYHHHHHHHE . oovn et 278

19.6.2. B oo 279

20. TOOISet GUIE FHHHHHHHHH . oot e e 281
20, L. R 281
20.1. 1. BHHHHHHEHHE oo 281

20,12, BB oo 284

20. L. 3. I oo 285

20,14, ANBBHE oo 286

20.1.5. BHHHHHHHHHHE oo 286

20.1.6. HHHHHHH R AN 287

20.1.7. Schema validationccooeuiiiiiiiii e 287

20.1.8. HHHHHHHHHEHE AN 288

20, HHHHE oo 289
2 L R 289
202, HHHHHE oo 289
20. 3. HERHHHHIHE 291
214, HHEHHE UNSAVEO- VAl U oottt 293

20 D, e 293

22, H WD O G < oo 295
220 HHHHHE e 295
22.2. HIDEINAEHHHHHHE ..o e e e 296
22.3. HIDE At e .o 299

23 I < e i e et e 305
230 HHHBRE .o 305
23 2. HHHE o 307
233 BB .o 309
234, B e 311
234, L. R 311

2342, HHHHHHE oo 312

234, 3, R 315

23.4.4. disCrimiNatiONBHHHHH ...vv i 316

2345, BB (oo 317
s P 319
25. Database Portability ConSiderationsooviiiiiiiiiiiiiie e 323
25.1. Portability BASICSuuiiiiiieiiiieiiiee e e 323
25.2. DIAIECT ..eiii i e 323
25.3. DialeCt reSOIULION ... ceeiiiiiie e e 323
25.4. |dentifier geNEIatiONcouuu it 324
25.5. Database fUNCHONSuuiiiiiii e e e e 325
25.6. TYPE MAPPINGS -..neeentneeeiiti ettt et e e et e et et et eaa e e eab e e eea e e eeaanas 325

= 1= (=] o = 327

HiH

Working with object-oriented software and a relational database can be cumbersome and time
consuming in today's enterprise environments. Hibernate is an Object/Relational Mapping tool
for Java environments. The term Object/Relational Mapping (ORM) refers to the technique of
mapping a data representation from an object model to a relational data model with a SQL-based
schema.

Hibernate not only takes care of the mapping from Java classes to database tables (and from
Java data types to SQL data types), but also provides data query and retrieval facilities. It can
also significantly reduce development time otherwise spent with manual data handling in SQL
and JDBC.

Hibernate's goal is to relieve the developer from 95 percent of common data persistence related
programming tasks. Hibernate may not be the best solution for data-centric applications that
only use stored-procedures to implement the business logic in the database, it is most useful
with object-oriented domain models and business logic in the Java-based middle-tier. However,
Hibernate can certainly help you to remove or encapsulate vendor-specific SQL code and will help
with the common task of result set translation from a tabular representation to a graph of objects.

Hibernatef#HHHHHHHHIHHIHHIHHE #HH#av ottt HHHHHEH P

1. # 1. Tutorial #HHHIHHIE HHHHHHHEH T S A A doc/ ref er ence/
tut ori al #HHHHHHHHHH

2. # 2. HHHHHE #HHHHIDernateHHHHHHEHHHHHHHEHH

3. View the eg/ directory in the Hibernate distribution. It contains a simple standalone application.
Copy your JDBC driver to the | i b/ directory and edit et ¢/ hi ber nat e. properti es, specifying
correct values for your database. From a command prompt in the distribution directory, type
ant eg (using Ant), or under Windows, type bui | d eg.

4. Use this reference documentation as your primary source of information. Consider reading
[JPwH]if you need more help with application design, or if you prefer a step-by-step tutorial. Also
visit http://caveatemptor.hibernate.org and download the example application from [JPwH].

5. FAQ#Hibernate###HiHHH#H#
6. Links to third party demos, examples, and tutorials are maintained on the Hibernate website.

7. Hibernate#tHtHHHHHHHHHHHHIHHHHI I I . #Tomceat, JBoss AS, Struts,
EJB, #HHHHHHHHHHHHI

If you have questions, use the user forum linked on the Hibernate website. We also provide a
JIRA issue tracking system for bug reports and feature requests. If you are interested in the
development of Hibernate, join the developer mailing list. If you are interested in translating this
documentation into your language, contact us on the developer mailing list.

Xi

http://caveatemptor.hibernate.org

Hi#

HHHHHHE R H I Dernate i ##HH#IBOSS InC.####H#H#HH#E #http://www.hibernate.org/
SupportTraining/####H#H#H#H# Hibernate#Professional Open Source###H#H## ###IBoss Enterprise
Middleware System#IEM SHH#HHHHIHHHHHHHHHHHHHHHH

1. Feedback

Use Hibernate JIRA [http://opensource.atlassian.com/projects/hibernate] to report errors or
request enhacements to this documentation.

Xii

http://opensource.atlassian.com/projects/hibernate
http://opensource.atlassian.com/projects/hibernate

Tutorial

Intended for new users, this chapter provides an step-by-step introduction to Hibernate, starting
with a simple application using an in-memory database. The tutorial is based on an earlier tutorial
developed by Michael Gloegl. All code is contained in the t ut ori al s/ web directory of the project
source.

HiHH

This tutorial expects the user have knowledge of both Java and SQL. If you have

a limited knowledge of JAVA or SQL, it is advised that you start with a good
introduction to that technology prior to attempting to learn Hibernate.

@ .
The distribution contains another example application under the tutori al / eg
project source directory.

1.1. ###1 - #HH#HIDbernat e #H#H##H#H#

For this example, we will set up a small database application that can store events we want to
attend and information about the host(s) of these events.

it

Although you can use whatever database you feel comfortable using, we will use
[http://hsgldb.org/] (an in-memory, Java database) to avoid describing
installation/setup of any particular database servers.

1.1.1. Setup

The first thing we need to do is to set up the development environment. We will be using
the "standard layout" advocated by alot of build tools such as Maven [http://maven.org].
Maven, in particular, has a good resource describing this layout [http://maven.apache.org/guides/
introduction/introduction-to-the-standard-directory-layout.html]. As this tutorial is to be a web
application, we will be creating and making use of src/ mai n/j ava, src/ mai n/ resour ces and
src/ mai n/ webapp directories.

We will be using Maven in this tutorial, taking advantage of its transitive dependency management
capabilities as well as the ability of many IDEs to automatically set up a project for us based on
the maven descriptor.

http://hsqldb.org/
http://hsqldb.org/
http://maven.org
http://maven.org
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html

#1# Tutorial

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal ocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/
maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupld>org.hibernate.tutorials</groupld>
<artifactld>hibernate-tutorial</artifactld>
<version>1.0.0-SNAPSHOT</version>
<name>First Hibernate Tutorial</name>

<build>
<l-- we dont want the version to be part of the generated war file name -->
<finalName>${artifactld}</finalName>

</build>

<dependencies>
<dependency>
<groupld>org.hibernate</groupld>
<artifactld>hibernate-core</artifactld>
</dependency>

<!-- Because this is a web app, we also have a dependency on the servlet api. -->
<dependency>

<groupld>javax.servlet</groupld>

<artifactld>servlet-api</artifactid>
</dependency>

<!-- Hibernate uses slf4j for logging, for our purposes here use the simple backend -->
<dependency>

<groupld>org.slf4j</groupld>

<artifactld>slf4j-simple</artifactid>
</dependency>

<!-- Hibernate gives you a choice of bytecode providers between cglib and javassist -->
<dependency>
<groupld>javassist</groupld>
<artifactld>javassist</artifactld>
</dependency>
</dependencies>

</project>

HHAHHH

i

It is not a requirement to use Maven. If you wish to use something else to build
this tutoial (such as Ant), the layout will remain the same. The only change is
that you will need to manually account for all the needed dependencies. If you
use something like Ivy [http://ant.apache.org/ivy/] providing transitive dependency

management you would still use the dependencies mentioned below. Otherwise,
you'd need to grab all dependencies, both explicit and transitive, and add them
to the project's classpath. If working from the Hibernate distribution bundle, this
would mean hi ber nat e3. j ar, all artifacts in the I i b/ r equi r ed directory and all
files from either the | i b/ byt ecode/ cgli b orli b/ byt ecode/ j avassi st directory;
additionally you will need both the servlet-api jar and one of the slf4j logging
backends.

Save this file as pom xni in the project root directory.

1.1.2. #H###H#

Next, we create a class that represents the event we want to store in the database; it is a simple
JavaBean class with some properties:

package org.hibernate.tutorial.domain;

import java.util.Date;

public class Event {
private Long id;

private String title;
private Date date;

public Event() {}
public Long getld() {

return id;

private void setld(Long id) {
this.id = id;

public Date getDate() {
return date;

http://ant.apache.org/ivy/
http://ant.apache.org/ivy/

#1# Tutorial

public void setDate(Date date) {
this.date = date;

public String getTitle() {
return title;

public void setTitle(String title) {
this.title = title;

This class uses standard JavaBean naming conventions for property getter and setter methods,
as well as private visibility for the fields. Although this is the recommended design, it is not
required. Hibernate can also access fields directly, the benefit of accessor methods is robustness
for refactoring.

The i d property holds a unique identifier value for a particular event. All persistent entity classes
(there are less important dependent classes as well) will need such an identifier property if we want
to use the full feature set of Hibernate. In fact, most applications, especially web applications, need
to distinguish objects by identifier, so you should consider this a feature rather than a limitation.
However, we usually do not manipulate the identity of an object, hence the setter method should
be private. Only Hibernate will assign identifiers when an object is saved. Hibernate can access
public, private, and protected accessor methods, as well as public, private and protected fields
directly. The choice is up to you and you can match it to fit your application design.

The no-argument constructor is a requirement for all persistent classes; Hibernate has to create
objects for you, using Java Reflection. The constructor can be private, however package or public
visibility is required for runtime proxy generation and efficient data retrieval without bytecode
instrumentation.

Save this file to the src/ mai n/ j ava/ or g/ hi ber nat e/ t ut ori al / domai n directory.

1.1.3. #H#HHHAHH

HibernatettHHHHHHHHHHHHHHHHHH HHEH R A HHTHIDernate i HHEHHHE#
i HHHHHH T #H T HIDe rnate #H#H#
#H#

HHHHHHHHHHHHHH AR

<?xml version="1.0"?>

HHHHHHH

<IDOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="org.hibernate.tutorial.domain">

[.]

</hibernate-mapping>

Hibernate DTD is sophisticated. You can use it for auto-completion of XML mapping elements
and attributes in your editor or IDE. Opening up the DTD file in your text editor is the easiest
way to get an overview of all elements and attributes, and to view the defaults, as well as some
comments. Hibernate will not load the DTD file from the web, but first look it up from the classpath
of the application. The DTD file is included in hi ber nate-core.jar (it is also included in the
hi ber nat e3. j ar, if using the distribution bundle).

S W iiiiiii

We will omit the DTD declaration in future examples to shorten the code. It is, of
course, not optional.

Between the two hi ber nat e- mappi ng tags, include a cl ass element. All persistent entity classes
(again, there might be dependent classes later on, which are not first-class entities) need a
mapping to a table in the SQL database:

<hibernate-mapping package="org.hibernate.tutorial.domain">

<class name="Event" table="EVENTS">

</class>

</hibernate-mapping>

So far we have told Hibernate how to persist and load object of class Event to the table EVENTS.
Each instance is now represented by a row in that table. Now we can continue by mapping the
unique identifier property to the tables primary key. As we do not want to care about handling
this identifier, we configure Hibernate's identifier generation strategy for a surrogate primary key
column:

<hibernate-mapping package="org.hibernate.tutorial.domain">

<class name="Event" table="EVENTS">

#1# Tutorial

<id name="id" column="EVENT _ID">
<generator class="native"/>
</id>
</class>

</hibernate-mapping>

The i d element is the declaration of the identifier property. The name="i d" mapping attribute
declares the name of the JavaBean property and tells Hibernate to use the get 1 d() and set 1 d()
methods to access the property. The column attribute tells Hibernate which column of the EVENTS
table holds the primary key value.

The nested gener at or element specifies the identifier generation strategy (aka how are identifier
values generated?). In this case we choose nat i ve, which offers a level of portability depending
on the configured database dialect. Hibernate supports database generated, globally unique, as
well as application assigned, identifiers. Identifier value generation is also one of Hibernate's many
extension points and you can plugin in your own strategy.

HHHT

nati ve is no longer consider the best strategy in terms of portability. for further
discussion, see #25.4. #ldentifier generation#

Lastly, we need to tell Hibernate about the remaining entity class properties. By default, no
properties of the class are considered persistent:

<hibernate-mapping package="org.hibernate.tutorial.domain">

<class hame="Event" table="EVENTS">
<id name="id" column="EVENT _ID">
<generator class="native"/>
<fid>
<property hame="date" type="timestamp" column="EVENT_DATE"/>
<property name="title"/>
</class>

</hibernate-mapping>

Similar to the i d element, the nanme attribute of the property element tells Hibernate which
getter and setter methods to use. In this case, Hibernate will search for get Dat e(), set Dat e(),
getTitle() andset Title() methods.

Hibernate###

The titl e mapping also lacks a t ype attribute. The types declared and used in the mapping files
are not Java data types; they are not SQL database types either. These types are called Hibernate
mapping types, converters which can translate from Java to SQL data types and vice versa. Again,
Hibernate will try to determine the correct conversion and mapping type itself if the t ype attribute
is not present in the mapping. In some cases this automatic detection using Reflection on the
Java class might not have the default you expect or need. This is the case with the dat e property.
Hibernate cannot know if the property, which is of j ava. uti | . Dat e, should map to a SQL dat e,
ti mest anp, orti me column. Full date and time information is preserved by mapping the property
with a ti mest anp converter.

HiHHH

Hibernate makes this mapping type determination using reflection when the
mapping files are processed. This can take time and resources, so if startup
performance is important you should consider explicitly defining the type to use.

Save this mapping file as src/main/resources/org/ hibernate/tutorial/domain/
Event . hbm xnmi .

1.1.4. Hibernate###

At this point, you should have the persistent class and its mapping file in place. It is now time to
configure Hibernate. First let's set up HSQLDB to run in "server mode"

(3

We will utilize the Maven exec plugin to launch the HSQLDB server by running: mvn exec: j ava

- Dexec. mai nCl ass="org. hsql db. Server" -Dexec. args="-database. 0 file:target/datal
tutorial" You will see it start up and bind to a TCP/IP socket; this is where our application will
connect later. If you want to start with a fresh database during this tutorial, shutdown HSQLDB,
delete all files in the t ar get / dat a directory, and start HSQLDB again.

Hibernate will be connecting to the database on behalf of your application, so it needs to know
how to obtain connections. For this tutorial we will be using a standalone connection pool (as

#1# Tutorial

opposed to a j avax. sql . Dat aSour ce). Hibernate comes with support for two third-party open
source JDBC connection pools: c3p0 [https://sourceforge.net/projects/c3p0] and proxool [http://
proxool.sourceforge.net/]. However, we will be using the Hibernate built-in connection pool for
this tutorial.

@ H#

The built-in Hibernate connection pool is in no way intended for production use. It
lacks several features found on any decent connection pool.

For Hibernate's configuration, we can use a simple hibernate. properties file, a more
sophisticated hi ber nat e. cf g. xnl file, or even complete programmatic setup. Most users prefer
the XML configuration file:

<?xml version='1.0' encoding="utf-8'?>

<IDOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>
<session-factory>

<!-- Database connection settings -->

<property name="connection.driver_class">org.hsqldb.jdbcDriver</property>
<property name="connection.url">jdbc:hsqldb:hsql://localhost</property>
<property name="connection.username">sa</property>

<property name="connection.password"></property>

<!-- JDBC connection pool (use the built-in) -->
<property name="connection.pool_size">1</property>

<!-- SQL dialect -->
<property nhame="dialect">org.hibernate.dialect. HSQLDialect</property>

<!-- Enable Hibernate's automatic session context management -->
<property name="current_session_context_class">thread</property>

<l-- Disable the second-level cache -->
<property name="cache.provider_class">org.hibernate.cache.NoCacheProvider</property>

<!I-- Echo all executed SQL to stdout -->
<property name="show_sql">true</property>

https://sourceforge.net/projects/c3p0
https://sourceforge.net/projects/c3p0
http://proxool.sourceforge.net/
http://proxool.sourceforge.net/
http://proxool.sourceforge.net/

Building with Maven

<!-- Drop and re-create the database schema on startup -->
<property name="hbm2ddl|.auto">update</property>

<mapping resource="org/hibernate/tutorial/domain/Event.nbm.xml"/>

</session-factory>

</hibernate-configuration>

(3

You configure Hibernate's Sessi onFact ory. SessionFactory is a global factory responsible for
a particular database. If you have several databases, for easier startup you should use several
<sessi on- f act or y> configurations in several configuration files.

The first four property elements contain the necessary configuration for the JDBC connection.
The dialect pr operty element specifies the particular SQL variant Hibernate generates.

i

Q

In most cases, Hibernate is able to properly determine which dialect to use. See #
25.3. #Dialect resolution# for more information.

Hibernate's automatic session management for persistence contexts is particularly useful in this
context. The hbnddl . aut o option turns on automatic generation of database schemas directly
into the database. This can also be turned off by removing the configuration option, or redirected
to a file with the help of the SchemaExport Ant task. Finally, add the mapping file(s) for persistent
classes to the configuration.

Save this file as hi ber nat e. cf g. xnl into the src/ mai n/ r esour ces directory.

1.1.5. Building with Maven

We will now build the tutorial with Maven. You will need to have Maven installed; it is available
from the Maven download page [http://maven.apache.org/download.html]. Maven will read the /
pom xmi file we created earlier and know how to perform some basic project tasks. First, lets run
the conpi | e goal to make sure we can compile everything so far:

[hibernateTutorial]$ mvn compile
[INFO] Scanning for projects...

http://maven.apache.org/download.html
http://maven.apache.org/download.html

#1# Tutorial

[INFO]
[INFO] Building First Hibernate Tutorial
[INFO] task-segment: [compile]
[INFO]
[INFO] [resources:resources]

[INFO] Using default encoding to copy filtered resources.

[INFQO] [compiler:compile]

[INFO] Compiling 1 source file to /home/steve/projects/sandbox/hibernateTutorial/target/classes
[INFO]
[INFO] BUILD SUCCESSFUL
[INFO]
[INFO] Total time: 2 seconds

[INFO] Finished at: Tue Jun 09 12:25:25 CDT 2009
[INFO] Final Memory: 5M/547M

[INFO]

1.1.6. #HH#HHHABHHAH

It is time to load and store some Event objects, but first you have to complete the
setup with some infrastructure code. You have to startup Hibernate by building a global
or g. hi bernat e. Sessi onFactory object and storing it somewhere for easy access in
application code. A or g. hi ber nat e. Sessi onFact ory is used to obtain or g. hi ber nat e. Sessi on
instances. A org. hi bernate. Sessi on represents a single-threaded unit of work. The
or g. hi ber nat e. Sessi onFact ory is a thread-safe global object that is instantiated once.

We will create a Hi ber nat eUt i | helper class that takes care of startup and makes accessing the
or g. hi ber nat e. Sessi onFact ory more convenient.

package org.hibernate.tutorial. util;

import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;

public class HibernateUtil {

private static final SessionFactory sessionFactory = buildSessionFactory();

private static SessionFactory buildSessionFactory() {
try {
// Create the SessionFactory from hibernate.cfg.xml
return new Configuration().configure().buildSessionFactory();
}
catch (Throwable ex) {
/I Make sure you log the exception, as it might be swallowed

10

HHHHHHHHHH

System.err.printin("Initial SessionFactory creation failed." + ex);
throw new ExceptioninlinitializerError(ex);

public static SessionFactory getSessionFactory() {
return sessionFactory;

Save this code as src/ mai n/ java/ org/ hi bernate/tutorial /util/H bernateltil.java

This class not only produces the global or g. hi ber nat e. Sessi onFact ory reference in its static
initializer; it also hides the fact that it uses a static singleton. We might just as well have looked up
the or g. hi ber nat e. Sessi onFact ory reference from JNDI in an application server or any other
location for that matter.

If you give the or g. hi ber nat e. Sessi onFact ory a name in your configuration, Hibernate will try
to bind it to JNDI under that name after it has been built. Another, better option is to use a JMX
deployment and let the JMX-capable container instantiate and bind a Hi ber nat eSer vi ce to JNDI.
Such advanced options are discussed later.

You now need to configure a logging system. Hibernate uses commons logging and provides two
choices: Log4j and JDK 1.4 logging. Most developers prefer Log4j: copy | og4j . properti es from
the Hibernate distribution in the et c/ directory to your sr ¢ directory, next to hi ber nat e. cf g. xm .
If you prefer to have more verbose output than that provided in the example configuration, you
can change the settings. By default, only the Hibernate startup message is shown on stdout.

The tutorial infrastructure is complete and you are now ready to do some real work with Hibernate.

L.0.7. JHHHEE T

We are now ready to start doing some real worjk with Hibernate. Let's start by writing an
Event Manager class with a mai n() method:

package org.hibernate.tutorial;

import org.hibernate.Session;

import java.util.*;

import org.hibernate.tutorial.domain.Event;
import org.hibernate.tutorial.util.HibernateUtil;

11

#1# Tutorial

public class EventManager {

public static void main(String[] args) {
EventManager mgr = new EventManager();

if (args[0].equals("store™)) {
mgr.createAndStoreEvent("My Event", new Date());

HibernateUtil.getSessionFactory().close();

private void createAndStoreEvent(String title, Date theDate) {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
session.beginTransaction();

Event theEvent = new Event();
theEvent.setTitle(title);
theEvent.setDate(theDate);
session.save(theEvent);

session.getTransaction().commit();

In cr eat eAndSt or eEvent () we created a new Event object and handed it over to Hibernate. At
that point, Hibernate takes care of the SQL and executes an | NSERT on the database.

A org.hibernate.Session is designed to represent a single unit of work (a single atmoic piece of
work to be performed). For now we will keep things simple and assume a one-to-one granularity
between a Hibernate org.hibernate.Session and a database transaction. To shield our code from
the actual underlying transaction system we use the Hibernate or g. hi ber nat e. Transacti on
API. In this particular case we are using JDBC-based transactional semantics, but it could also
run with JTA.

What does sessi onFact ory. get Current Sessi on() do? First, you can call it as many times
and anywhere you like once you get hold of your org. hi bernate. Sessi onFactory. The
get Current Sessi on() method always returns the "current" unit of work. Remember that we
switched the configuration option for this mechanism to "thread" in our src/ mai n/ r esour ces/
hi ber nat e. cf g. xm ? Due to that setting, the context of a current unit of work is bound to the
current Java thread that executes the application.

12

HHHHHHHHHH

i

Hibernate offers three methods of current session tracking. The "thread" based

method is not intended for production use; it is merely useful for prototyping and
tutorials such as this one. Current session tracking is discussed in more detail later
on.

A org.hibernate.Session begins when the first call to get Current Sessi on() is made for the
current thread. It is then bound by Hibernate to the current thread. When the transaction ends,
either through commit or rollback, Hibernate automatically unbinds the org.hibernate.Session
from the thread and closes it for you. If you call get Cur r ent Sessi on() again, you get a new
org.hibernate.Session and can start a new unit of work.

Related to the unit of work scope, should the Hibernate org.hibernate.Session be used to execute
one or several database operations? The above example uses one org.hibernate.Session for one
operation. However this is pure coincidence; the example is just not complex enough to show
any other approach. The scope of a Hibernate org.hibernate.Session is flexible but you should
never design your application to use a new Hibernate org.hibernate.Session for every database
operation. Even though it is used in the following examples, consider session-per-operation an
anti-pattern. A real web application is shown later in the tutorial which will help illustrate this.

See # 11. Transactions and Concurrency for more information about transaction handling and
demarcation. The previous example also skipped any error handling and rollback.

To run this, we will make use of the Maven exec plugin to call
our class with the necessary classpath setup: nwn exec: java -
Dexec. mai nCl ass="org. hi bernate. tutorial . Event Manager" -Dexec.args="store"

o8
You may need to perform mvn conpi | e first.

You should see Hibernate starting up and, depending on your configuration, lots of log output.
Towards the end, the following line will be displayed:

[java] Hibernate: insert into EVENTS (EVENT_DATE, title, EVENT _ID) values (?, ?, ?)

This is the | NSERT executed by Hibernate.

To list stored events an option is added to the main method:

if (args[0].equals("store™)) {

13

#1# Tutorial

mgr.createAndStoreEvent("My Event", new Date());
}
else if (args[0].equals("list")) {
List events = mgr.listEvents();
for (inti = 0; i < events.size(); i++) {
Event theEvent = (Event) events.get(i);
System.out.printin(
"Event: " + theEvent.getTitle() + " Time: " + theEvent.getDate()

AnewlistEvents() nethod is al so added:

private List listEvents() {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
session.beginTransaction();
List result = session.createQuery("from Event").list();
session.getTransaction().commit();
return result;

Here, we are using a Hibernate Query Language (HQL) query to load all existing Event objects
from the database. Hibernate will generate the appropriate SQL, send it to the database and
populate Event objects with the data. You can create more complex queries with HQL. See # 14.
HQL: The Hibernate Query Language for more information.

Now we can call our new functionality, again using the Maven exec plugin: nvn exec:java -

Dexec. mai nCl ass="or g. hi bernate. tutorial . Event Manager" -Dexec.args="list"

1.2. #HH2 - HHHHBHAH

So far we have mapped a single persistent entity class to a table in isolation. Let's expand on that
a bit and add some class associations. We will add people to the application and store a list of
events in which they patrticipate.

1.2.1. Person####H##H#

The first cut of the Per son class looks like this:

package org.hibernate.tutorial.domain;

public class Person {

14

Person#####H#H#

private Long id;
private int age;
private String firstname;
private String lastname;

public Person() {}

/I Accessor methods for all properties, private setter for 'id'

Save this to a file named sr ¢/ mai n/ j ava/ or g/ hi bernat e/ t ut ori al / domai n/ Per son. j ava

Next, create the new mapping file as sr c/ mai n/ r esour ces/ or g/ hi bernat e/ t ut ori al / donai n/
Per son. hbm xni

<hibernate-mapping package="org.hibernate.tutorial.domain™>

<class name="Person" table="PERSON">

<id name="id" column="PERSON_ID">
<generator class="native"/>

</id>
<property name="age"/>
<property name="firstname"/>
<property name="lasthame"/>

</class>

</hibernate-mapping>

#HHHIbernateHHHHHHHHHHHHEH

<mapping resource="events/Event.hbm.xml"/>
<mapping resource="events/Person.hbm.xml"/>

Create an association between these two entities. Persons can participate in events, and events
have participants. The design questions you have to deal with are: directionality, multiplicity, and
collection behavior.

15

#1# Tutorial

1.2.2. #H#Set#H##H#H#

By adding a collection of events to the Per son class, you can easily navigate to the events for a
particular person, without executing an explicit query - by calling Per son#get Event s. Multi-valued
associations are represented in Hibernate by one of the Java Collection Framework contracts;
here we choose aj ava. util . Set because the collection will not contain duplicate elements and
the ordering is not relevant to our examples:

public class Person {
private Set events = new HashSet();

public Set getEvents() {
return events;

public void setEvents(Set events) {
this.events = events;

Before mapping this association, let's consider the other side. We could just keep this
unidirectional or create another collection on the Event , if we wanted to be able to navigate it from
both directions. This is not necessary, from a functional perspective. You can always execute an
explicit query to retrieve the participants for a particular event. This is a design choice left to you,
but what is clear from this discussion is the multiplicity of the association: "many" valued on both
sides is called a many-to-many association. Hence, we use Hibernate's many-to-many mapping:

<class name="Person" table="PERSON">
<id name="id" column="PERSON_ID">
<generator class="native"/>
</id>
<property name="age"/>
<property name="firsthame"/>
<property name="lastname"/>

<set name="events" table="PERSON_EVENT">

<key column="PERSON_ID"/>

<many-to-many column="EVENT_ID" class="Event"/>
</set>

</class>

16

HHHHHHH

Hibernate supports a broad range of collection mappings, a set being most common. For a many-
to-many association, or n:m entity relationship, an association table is required. Each row in this
table represents a link between a person and an event. The table name is decalred using thet abl e
attribute of the set element. The identifier column name in the association, for the person side, is
defined with the key element, the column name for the event's side with the col umm attribute of
the many-t o- many. You also have to tell Hibernate the class of the objects in your collection (the
class on the other side of the collection of references).

B HHHH AR

| | |

| EVENTS | | PERSON_EVENT | | |
|

|

		PERSON		
*EVENT_ID	<-->	*EVENT_ID		
EVENT _DATE		*PERSON_ID	<-->	*PERSON_ID
TITLE				AGE
		FIRSTNAME		
LASTNAME				
I I

1.2.3. #H##HH#HHH#

Now we will bring some people and events together in a new method in Event Manager :

private void addPersonToEvent(Long personld, Long eventld) {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
session.beginTransaction();

Person aPerson = (Person) session.load(Person.class, personld);
Event anEvent = (Event) session.load(Event.class, eventid);
aPerson.getEvents().add(anEvent);

session.getTransaction().commit();

After loading a Person and an Event, simply modify the collection using the normal collection
methods. There is no explicit call to updat e() or save() ; Hibernate automatically detects that the
collection has been modified and needs to be updated. This is called automatic dirty checking. You

17

#1# Tutorial

can also try it by modifying the name or the date property of any of your objects. As long as they are
in persistent state, that is, bound to a particular Hibernate or g. hi ber nat e. Sessi on, Hibernate
monitors any changes and executes SQL in a write-behind fashion. The process of synchronizing
the memory state with the database, usually only at the end of a unit of work, is called flushing. In
our code, the unit of work ends with a commit, or rollback, of the database transaction.

You can load person and event in different units of work. Or you can modify an object outside of
aorg. hi ber nat e. Sessi on, when it is not in persistent state (if it was persistent before, this state
is called detached). You can even modify a collection when it is detached:

private void addPersonToEvent(Long personld, Long eventld) {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
session.beginTransaction();

Person aPerson = (Person) session
.createQuery("select p from Person p left join fetch p.events where p.id = :pid")
.setParameter("pid", personid)
.uniqueResult(); // Eager fetch the collection so we can use it detached

Event anEvent = (Event) session.load(Event.class, eventid);

session.getTransaction().commit();

/I End of first unit of work

aPerson.getEvents().add(anEvent); // aPerson (and its collection) is detached

/I Begin second unit of work

Session session2 = HibernateUtil.getSessionFactory().getCurrentSession();
session2.beginTransaction();
session2.update(aPerson); // Reattachment of aPerson

session2.getTransaction().commit();

The call to updat e makes a detached object persistent again by binding it to a new unit of work,
so any modifications you made to it while detached can be saved to the database. This includes
any modifications (additions/deletions) you made to a collection of that entity object.

This is not much use in our example, but it is an important concept you can incorporate into
your own application. Complete this exercise by adding a new action to the main method of the
Event Manager and call it from the command line. If you need the identifiers of a person and an
event - the save() method returns it (you might have to modify some of the previous methods
to return that identifier):

18

HHHHHHHH

else if (args[0].equals("addpersontoevent™)) {
Long eventld = mgr.createAndStoreEvent("My Event", new Date());
Long personld = mgr.createAndStorePerson("Foo", "Bar");
mgr.addPersonToEvent(personld, eventld);
System.out.printin("Added person " + personld + " to event " + eventld);

This is an example of an association between two equally important classes : two entities. As
mentioned earlier, there are other classes and types in a typical model, usually "less important".
Some you have already seen, like an i nt or ajava. | ang. Stri ng. We call these classes value
types, and their instances depend on a particular entity. Instances of these types do not have
their own identity, nor are they shared between entities. Two persons do not reference the same
fir st name object, even if they have the same first name. Value types cannot only be found in the
JDK , but you can also write dependent classes yourself such as an Addr ess or Monet ar yAnount
class. In fact, in a Hibernate application all JDK classes are considered value types.

You can also design a collection of value types. This is conceptually different from a collection of
references to other entities, but looks almost the same in Java.

1.2.4. #H#H#HHH#AH

Let's add a collection of email addresses to the Person entity. This will be represented as a
java.util.Set ofjava. |l ang. String instances:

private Set emailAddresses = new HashSet();

public Set getEmailAddresses() {
return emailAddresses;

public void setEmailAddresses(Set emailAddresses) {
this.emailAddresses = emailAddresses;

The mapping of this Set is as follows:

<set name="emailAddresses" table="PERSON_EMAIL_ADDR">
<key column="PERSON_ID"/>
<element type="string" column="EMAIL_ADDR"/>

</set>

19

#1# Tutorial

The difference compared with the earlier mapping is the use of the el ement part which tells
Hibernate that the collection does not contain references to another entity, but is rather a collection
whose elements are values types, here specifically of type st ri ng. The lowercase name tells you
it is a Hibernate mapping type/converter. Again the t abl e attribute of the set element determines
the table name for the collection. The key element defines the foreign-key column name in the
collection table. The col um attribute in the el enent element defines the column name where the
email address values will actually be stored.

Here is the updated schema:

| | |

| EVENTS | | PERSON_EVENT | | |
|

|

		PERSON				
			PERSON_EMAIL_ADDR			
*EVENT_ID	<-->	*EVENT_ID				

EVENT_DATE		*PERSON_ID	<-->	*PERSON_ID	<->	*PERSON_ID
TITLE				AGE		*EMAIL_ADDR
		FIRSTNAME				

| LASTNAME |

You can see that the primary key of the collection table is in fact a composite key that uses both
columns. This also implies that there cannot be duplicate email addresses per person, which is
exactly the semantics we need for a set in Java.

You can now try to add elements to this collection, just like we did before by linking persons and
events. It is the same code in Java:

private void addEmailToPerson(Long personld, String emailAddress) {
Session session = HibernateUtil.getSessionFactory().getCurrentSession();
session.beginTransaction();

Person aPerson = (Person) session.load(Person.class, personld);
/[adding to the emailAddress collection might trigger a lazy load of the collection

aPerson.getEmailAddresses().add(emailAddress);

session.getTransaction().commit();

20

HHAHH

This time we did not use a fetch query to initialize the collection. Monitor the SQL log and try to
optimize this with an eager fetch.

1.2.5. #####

Next you will map a bi-directional association. You will make the association between person and
event work from both sides in Java. The database schema does not change, so you will still have
many-to-many multiplicity.

@ .
A relational database is more flexible than a network programming language, in

that it does not need a navigation direction; data can be viewed and retrieved in
any possible way.

First, add a collection of participants to the Event class:

private Set participants = new HashSet();

public Set getParticipants() {
return participants;

public void setParticipants(Set participants) {
this.participants = participants;

Now map this side of the association in Event . hbm xm .

<set name="participants" table="PERSON_EVENT" inverse="true">
<key column="EVENT _ID"/>
<many-to-many column="PERSON_ID" class="events.Person"/>
</set>

These are normal set mappings in both mapping documents. Notice that the column names in
key and many-t o- many swap in both mapping documents. The most important addition here is
the i nver se="true" attribute in the set element of the Event 's collection mapping.

What this means is that Hibernate should take the other side, the Per son class, when it needs to
find out information about the link between the two. This will be a lot easier to understand once
you see how the bi-directional link between our two entities is created.

21

#1# Tutorial

1.2.6. #H##HHAHH

First, keep in mind that Hibernate does not affect normal Java semantics. How did we create
a link between a Person and an Event in the unidirectional example? You add an instance of
Event to the collection of event references, of an instance of Per son. If you want to make this
link bi-directional, you have to do the same on the other side by adding a Per son reference to
the collection in an Event . This process of "setting the link on both sides" is absolutely necessary
with bi-directional links.

Many developers program defensively and create link management methods to correctly set both
sides (for example, in Per son):

protected Set getEvents() {
return events;

protected void setEvents(Set events) {
this.events = events;

public void addToEvent(Event event) {
this.getEvents().add(event);
event.getParticipants().add(this);

public void removeFromEvent(Event event) {
this.getEvents().remove(event);
event.getParticipants().remove(this);

The get and set methods for the collection are now protected. This allows classes in the same
package and subclasses to still access the methods, but prevents everybody else from altering
the collections directly. Repeat the steps for the collection on the other side.

What about the i nver se mapping attribute? For you, and for Java, a bi-directional link is simply
a matter of setting the references on both sides correctly. Hibernate, however, does not have
enough information to correctly arrange SQL | NSERT and UPDATE statements (to avoid constraint
violations). Making one side of the association i nver se tells Hibernate to consider it a mirror
of the other side. That is all that is necessary for Hibernate to resolve any issues that arise
when transforming a directional navigation model to a SQL database schema. The rules are
straightforward: all bi-directional associations need one side as inverse. In a one-to-many
association it has to be the many-side, and in many-to-many association you can select either side.

22

###3 - EventManager Web##H#H#H

1.3. ###3 - EventManager Web########

A Hibernate web application uses Sessi on and Tr ansact i on almost like a standalone application.
However, some common patterns are useful. You can now write an Event Manager Ser vl et . This
servlet can list all events stored in the database, and it provides an HTML form to enter new events.

1.3.1. ####Serviet#t

First we need create our basic processing servlet. Since our servlet only handles HTTP GET
requests, we will only implement the doGet () method:

package org.hibernate.tutorial.web;
/I Imports
public class EventManagerServlet extends HttpServlet {

protected void doGet(
HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

SimpleDateFormat dateFormatter = new SimpleDateFormat("dd.MM.yyyy");

try {
// Begin unit of work

HibernateUtil.getSessionFactory().getCurrentSession().beginTransaction();
/I Process request and render page...

// End unit of work
HibernateUtil.getSessionFactory().getCurrentSession().getTransaction().commit();
}
catch (Exception ex) {
HibernateUtil.getSessionFactory().getCurrentSession().getTransaction().rollback();
if (ServletException.class.islnstance(ex)) {
throw (ServletException) ex;
}
else {
throw new ServletException(ex);

23

#1# Tutorial

Save this servlet as src/ mai n/ j aval or g/ hi bernat e/ t ut ori al / web/
Event Manager Servl et . j ava

The pattern applied here is called session-per-request. When a request hits the servlet, a
new Hibernate Session is opened through the first call to get Current Session() on the
Sessi onFactory. A database transaction is then started. All data access occurs inside a
transaction irrespective of whether the data is read or written. Do not use the auto-commit mode
in applications.

Do not use a new Hibernate Sessi on for every database operation. Use one Hibernate Sessi on
that is scoped to the whole request. Use get Curr ent Sessi on(), so that it is automatically bound
to the current Java thread.

Next, the possible actions of the request are processed and the response HTML is rendered. We
will get to that part soon.

Finally, the unit of work ends when processing and rendering are complete. If any problems
occurred during processing or rendering, an exception will be thrown and the database transaction
rolled back. This completes the sessi on-per-request pattern. Instead of the transaction
demarcation code in every servlet, you could also write a servlet filter. See the Hibernate website
and Wiki for more information about this pattern called Open Session in View. You will need it as
soon as you consider rendering your view in JSP, not in a servlet.

1.3.2. ###H##

Now you can implement the processing of the request and the rendering of the page.

/I Write HTML header
PrintWriter out = response.getWriter();
out.printin("<html><head><title>Event Manager</title></head><body>");

/l Handle actions
if ("store".equals(request.getParameter("action"))) {

String eventTitle = request.getParameter("eventTitle");
String eventDate = request.getParameter("eventDate");

if ("".equals(eventTitle) || "".equals(eventDate)) {
out.printin("<i>Please enter event title and date.</i>");

}

else {
createAndStoreEvent(eventTitle, dateFormatter.parse(eventDate));
out.printin("<i>Added event.</i>");

24

HHAHH

/I Print page
printEventForm(out);
listEvents(out, dateFormatter);

/I Write HTML footer
out.printin("</body></htm[>");
out.flush();

out.close();

This coding style, with a mix of Java and HTML, would not scale in a more complex application-
keep in mind that we are only illustrating basic Hibernate concepts in this tutorial. The code prints
an HTML header and a footer. Inside this page, an HTML form for event entry and a list of all
events in the database are printed. The first method is trivial and only outputs HTML:

private void printEventForm(PrintWriter out) {
out.printin("<h2>Add new event:</h2>");
out.printin("<form>");
out.printin("Title: <input name='eventTitle' length="50"/>
");
out.printin("Date (e.g. 24.12.2009): <input nhame='eventDate' length="10'/>
");
out.printin("<input type='submit’ name="action’ value='store'/>");
out.printin("</form>");

|'i st Event s() ####HHHIH#HIHH##HHH## HiDernate# Sessi on #HHHHAHHHHHHHHHH

private void listEvents(PrintWriter out, SimpleDateFormat dateFormatter) {

List result = HibernateUtil.getSessionFactory()
.getCurrentSession().createCriteria(Event.class).list();
if (result.size() > 0) {
out.printin("<h2>Events in database:</h2>");
out.printin("<table border="1">");
out.printin("<tr>");
out.printin("<th>Event title</th>");
out.printin("<th>Event date</th>");
out.println("</tr>");
Iterator it = result.iterator();
while (it.hasNext()) {
Event event = (Event) it.next();

25

#1# Tutorial

out.printin("<tr>");

out.printin("<td>" + event.getTitle() + "</td>");

out.printin("<td>" + dateFormatter.format(event.getDate()) + "</td>");
out.printin("</tr>");

}

out.printin("</table>");

HHH# st or e #AH#HHH#H creat eAndSt or eEvent () #H#H#HE HHHHHHIHHAHAHHH A Sessi on ##
HitHH

protected void createAndStoreEvent(String title, Date theDate) {
Event theEvent = new Event();
theEvent.setTitle(title);
theEvent.setDate(theDate);

HibernateUltil.getSessionFactory()
.getCurrentSession().save(theEvent);

The servlet is now complete. A request to the servlet will be processed in a single Sessi on and
Transacti on. As earlier in the standalone application, Hibernate can automatically bind these
objects to the current thread of execution. This gives you the freedom to layer your code and
access the Sessi onFact ory in any way you like. Usually you would use a more sophisticated
design and move the data access code into data access objects (the DAO pattern). See the
Hibernate Wiki for more examples.

1.3.3. #HH#H#HHHH

To deploy this application for testing we must create a Web ARchive (WAR). First we must define
the WAR descriptor as sr ¢/ mai n/ webapp/ VEB- | NF/ web. xm

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.4"
xmlins="http://java.sun.com/xml/ns/j2ee"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance”
xsi:schemal.ocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-
app_2_4.xsd">

<servlet>
<servlet-name>Event Manager</servlet-name>

26

H#H#

<servlet-class>org.hibernate.tutorial.web.EventManagerServlet</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>Event Manager</servlet-name>
<url-pattern>/eventmanager</url-pattern>
</servlet-mapping>
</web-app>

To build and deploy call mvn package in your project directory and copy the hi ber nat e-
tutorial . war file into your Tomcat webapps directory.

http://tomcat.apache.org/

HHHHHHHHTomcat###HH#### ht t p: / /| ocal host : 8080/ hi bernat e-t ut ori al / event manager # #
BHHHHARH R AR T omcati#t Hibernatedt s
#HHE # H ber nat eUt | | #HHEHHHHIHHHEHHHHEHHE #HHexception# i HHHHHEHHHE

1.4. ##

This tutorial covered the basics of writing a simple standalone Hibernate application and a small
web application. More tutorials are available from the Hibernate website [http://hibernate.org].

27

http://tomcat.apache.org/
http://hibernate.org
http://hibernate.org

28

HEHHHIH

2.1. ##

The diagram below provides a high-level view of the Hibernate architecture:

We do not have the scope in this document to provide a more detailed view of all the runtime
architectures available; Hibernate is flexible and supports several different approaches. We will,
however, show the two extremes: "minimal” architecture and "comprehensive" architecture.

This next diagram illustrates how Hibernate utilizes database and configuration data to provide
persistence services, and persistent objects, to the application.

The "minimal” architecture has the application provide its own JDBC connections and manage its
own transactions. This approach uses a minimal subset of Hibernate's APIs:

The "comprehensive" architecture abstracts the application away from the underlying JDBC/JTA
APIs and allows Hibernate to manage the details.

Here are some definitions of the objects depicted in the diagrams:

SessionFactory (or g. hi ber nat e. Sessi onFact ory)
A threadsafe, immutable cache of compiled mappings for a single database. A factory
for Sessi on and a client of Connecti onProvi der, Sessi onFactory can hold an optional
(second-level) cache of data that is reusable between transactions at a process, or cluster,
level.

Session (or g. hi ber nat e. Sessi on)
A single-threaded, short-lived object representing a conversation between the application and
the persistent store. It wraps a JDBC connection and is a factory for Tr ansacti on. Sessi on
holds a mandatory first-level cache of persistent objects that are used when navigating the
object graph or looking up objects by identifier.

Persistent objects # Collections
Short-lived, single threaded objects containing persistent state and business function. These
can be ordinary JavaBeans/POJOs. They are associated with exactly one Sessi on. Once the
Sessi on is closed, they will be detached and free to use in any application layer (for example,
directly as data transfer objects to and from presentation).

Transient # detached # objects # Collections
Instances of persistent classes that are not currently associated with a Sessi on. They may
have been instantiated by the application and not yet persisted, or they may have been
instantiated by a closed Sessi on.

29

#2H HHHHHIH

Transaction (or g. hi ber nat e. Tr ansact i on)
(Optional) A single-threaded, short-lived object used by the application to specify atomic
units of work. It abstracts the application from the underlying JDBC, JTA or CORBA
transaction. A Session might span several Transactions in some cases. However,
transaction demarcation, either using the underlying API or Tr ansact i on, is never optional.

ConnectionProvider (or g. hi ber nat e. connect i on. Connect i onPr ovi der)
(Optional) A factory for, and pool of, JDBC connections. It abstracts the application from
underlying Dat asour ce or Dri ver Manager. It is not exposed to application, but it can be
extended and/or implemented by the developer.

TransactionFactory (or g. hi ber nat e. Transact i onFact ory)
(Optional) A factory for Tr ansact i on instances. It is not exposed to the application, but it can
be extended and/or implemented by the developer.

Extension Interfaces
Hibernate offers a range of optional extension interfaces you can implement to customize the
behavior of your persistence layer. See the APl documentation for details.

Given a "minimal” architecture, the application bypasses the Tr ansact i on/Tr ansact i onFact ory
and/or Connect i onProvi der APIs to communicate with JTA or JDBC directly.

2.2. HHHHHAHHAH

An instance of a persistent class can be in one of three different states. These states are defined
in relation to a persistence context. The Hibernate Sessi on object is the persistence context. The
three different states are as follows:

transient
The instance is not associated with any persistence context. It has no persistent identity or
primary key value.

persistent
The instance is currently associated with a persistence context. It has a persistent identity
(primary key value) and can have a corresponding row in the database. For a particular
persistence context, Hibernate guarantees that persistent identity is equivalent to Java identity
in relation to the in-memory location of the object.

detached
The instance was once associated with a persistence context, but that context was closed,
or the instance was serialized to another process. It has a persistent identity and can have
a corresponding row in the database. For detached instances, Hibernate does not guarantee
the relationship between persistent identity and Java identity.

30

IMX##H#HE

2.3. IMX#H#H#

JMX is the J2EE standard for the management of Java components. Hibernate can be
managed via a JMX standard service. AN MBean implementation is provided in the distribution:
or g. hi bernate. j mnx. Hi ber nat eServi ce.

For an example of how to deploy Hibernate as a JMX service on the JBoss Application Server,
please see the JBoss User Guide. JBoss AS also provides these benefits if you deploy using JIMX:

« Session Management: the Hibernate Sessi on's life cycle can be automatically bound to the
scope of a JTA transaction. This means that you no longer have to manually open and close
the Sessi on; this becomes the job of a JBoss EJB interceptor. You also do not have to worry
about transaction demarcation in your code (if you would like to write a portable persistence
layer use the optional Hibernate Transacti on API for this). You call the Hi ber nat eCont ext
to access a Sessi on.

* HAR deployment: the Hibernate JMX service is deployed using a JBoss service deployment
descriptor in an EAR and/or SAR file, as it supports all the usual configuration options of a
Hibernate Sessi onFact ory. However, you still need to name all your mapping files in the
deployment descriptor. If you use the optional HAR deployment, JBoss will automatically detect
all mapping files in your HAR file.

B B OSSHHHHHHHHHHHHHHHHHIT HHHHHHHE

Another feature available as a IMX service is runtime Hibernate statistics. See #3.4.6. #Hibernate
#1## for more information.

2.4. JCA ####

Hibernate can also be configured as a JCA connector. Please see the website for more
information. Please note, however, that at this stage Hibernate JCA support is under development.

2.5. Contextual sessions

Most applications using Hibernate need some form of "contextual” session, where a given session
is in effect throughout the scope of a given context. However, across applications the definition
of what constitutes a context is typically different; different contexts define different scopes to
the notion of current. Applications using Hibernate prior to version 3.0 tended to utilize either
home-grown Thr eadLocal -based contextual sessions, helper classes such as Hi ber nat eUti | , or
utilized third-party frameworks, such as Spring or Pico, which provided proxy/interception-based
contextual sessions.

Starting with version 3.0.1, Hibernate added the SessionFactory. get Current Sessi on()
method. Initially, this assumed usage of JTA transactions, where the JTA transaction defined both
the scope and context of a current session. Given the maturity of the numerous stand-alone
JTA Transacti onManager implementations, most, if not all, applications should be using JTA

31

#2H HHHHHIH

transaction management, whether or not they are deployed into a J2EE container. Based on that,
the JTA-based contextual sessions are all you need to use.

However, as of version 3.1, the processing behind Sessi onFact ory. get Cur r ent Sessi on()
is now pluggable. To that end, a new extension interface,
or g. hi ber nat e. cont ext. Current Sessi onContext, and a new configuration parameter,
hi ber nat e. current _sessi on_cont ext _cl ass, have been added to allow pluggability of the
scope and context of defining current sessions.

See the Javadocs for the org. hi ber nat e. cont ext . Current Sessi onCont ext interface for a
detailed discussion of its contract. It defines a single method, current Sessi on(), by which
the implementation is responsible for tracking the current contextual session. Out-of-the-box,
Hibernate comes with three implementations of this interface:

* org. hi bernat e. cont ext . JTASessi onCont ext : current sessions are tracked and scoped by a
JTA transaction. The processing here is exactly the same as in the older JTA-only approach.
See the Javadocs for details.

e org. hi bernat e. cont ext . Thr eadLocal Sessi onCont ext :current sessions are tracked by
thread of execution. See the Javadocs for details.

e org. hi bernat e. cont ext . ManagedSessi onCont ext : current sessions are tracked by thread of
execution. However, you are responsible to bind and unbind a Sessi on instance with static
methods on this class: it does not open, flush, or close a Sessi on.

The first two implementations provide a "one session - one database transaction" programming
model. This is also also known and used as session-per-request. The beginning and end of a
Hibernate session is defined by the duration of a database transaction. If you use programmatic
transaction demarcation in plain JSE without JTA, you are advised to use the Hibernate
Transaction API to hide the underlying transaction system from your code. If you use JTA,
you can utilize the JTA interfaces to demarcate transactions. If you execute in an EJB container
that supports CMT, transaction boundaries are defined declaratively and you do not need any
transaction or session demarcation operations in your code. Refer to # 11. Transactions and
Concurrency for more information and code examples.

The hibernate. current_sessi on_context_cl ass configuration parameter defines which
or g. hi ber nat e. cont ext . Current Sessi onCont ext implementation should be used. For
backwards compatibility, if this configuration parameter is not set but a
org. hi bernate. transacti on. Transact i onManager Lookup is configured, Hibernate will use the
or g. hi ber nat e. cont ext . JTASessi onCont ext . Typically, the value of this parameter would just
name the implementation class to use. For the three out-of-the-box implementations, however,
there are three corresponding short names: "jta", "thread", and "managed".

32

#it

Hibernate is designed to operate in many different environments and, as such, there is a broad
range of configuration parameters. Fortunately, most have sensible default values and Hibernate
is distributed with an example hi ber nat e. properties file in etc/ that displays the various
options. Simply put the example file in your classpath and customize it to suit your needs.

3. 1. #HHHHBHAHH

An instance of org. hi bernat e. cf g. Confi gur ati on represents an entire set of mappings of
an application's Java types to an SQL database. The org. hi ber nate. cfg. Confi guration is
used to build an immutable or g. hi ber nat e. Sessi onFact ory. The mappings are compiled from
various XML mapping files.

You can obtain a or g. hi ber nat e. cf g. Conf i gur ati on instance by instantiating it directly and
specifying XML mapping documents. If the mapping files are in the classpath, use addResour ce() .
For example:

Configuration cfg = new Configuration()
.addResource("ltem.hbm.xml")
.addResource("Bid.hbm.xml");

An alternative way is to specify the mapped class and allow Hibernate to find the mapping
document for you:

Configuration cfg = new Configuration()
.addClass(org.hibernate.auction.ltem.class)
.addClass(org.hibernate.auction.Bid.class);

Hibernate will then search for mapping files named / or g/ hi ber nat e/ aucti on/ It em hbm xm
and / or g/ hi ber nat e/ aucti on/ Bi d. hbm xnl in the classpath. This approach eliminates any
hardcoded filenames.

A org. hi bernate. cfg. Confi guration also allows you to specify configuration properties. For
example:

Configuration cfg = new Configuration()
.addClass(org.hibernate.auction.ltem.class)
.addClass(org.hibernate.auction.Bid.class)

.setProperty("hibernate.dialect”, "org.hibernate.dialect. MySQLInnoDBDialect")

.setProperty("hibernate.connection.datasource", "java:comp/env/jdbc/test")

33

#3H #H#

.setProperty("hibernate.order_updates", "true");

This is not the only way to pass configuration properties to Hibernate. Some alternative options
include:

1. Pass an instance of j ava. uti | . Properties to Confi guration. set Properties().
2. Place a file named hi ber nat e. properti es in a root directory of the classpath.

3. Syst em####H#HE | ava - Dproper t y=val ue ######H###H#H#

4. Include <pr oper t y> elements in hi ber nat e. cf g. xn (this is discussed later).

If you want to get started quicklyhi ber nat e. properti es is the easiest approach.

The org. hi bernate. cfg. Configuration is intended as a startup-time object that will be
discarded once a Sessi onFact ory is created.

3.2. SessionFactory#####

When all mappings have been parsed by the org. hi bernate.cfg. Configuration, the
application must obtain a factory for or g. hi ber nat e. Sessi on instances. This factory is intended
to be shared by all application threads:

SessionFactory sessions = cfg.buildSessionFactory();

Hibernate does allow your application to instantiate more than one
or g. hi ber nat e. Sessi onFact ory. This is useful if you are using more than one database.

3.3. IDB CH##H###

It is advisable to have the or g. hi ber nat e. Sessi onFact ory create and pool JDBC connections
for you. If you take this approach, opening a or g. hi ber nat e. Sessi on is as simple as:

Session session = sessions.openSession(); // open a new Session

Once you start a task that requires access to the database, a JDBC connection will be obtained
from the pool.

Before you can do this, you first need to pass some JDBC connection properties
to Hibernate. All Hibernate property names and semantics are defined on the class
org. hi bernate. cfg. Environment. The most important settings for JDBC connection
configuration are outlined below.

Hibernate will obtain and pool connections using j ava. sql . Dri ver Manager if you set the
following properties:

34

JDBCH#H#HHH#H

3.1. Hibernate JDB C#####

HHHHH Hit
hibernate.connection.driver_class JDBCH#HHHHHHHE
hibernate.connection.url jdbc URL
hibernate.connection.username database user
hibernate.connection.password database user password
hibernate.connection.pool_size HHHHHHHH

Hibernate's own connection pooling algorithm is, however, quite rudimentary. It is intended to
help you get started and is not intended for use in a production system, or even for performance
testing. You should use a third party pool for best performance and stability. Just replace the
hibernate.connection.pool_size property with connection pool specific settings. This will turn off
Hibernate's internal pool. For example, you might like to use c3p0.

C3PO0 is an open source JDBC connection pool distributed along with Hibernate in the lib
directory. Hibernate will use its org. hi ber nat e. connecti on. C3P0Connect i onPr ovi der for
connection pooling if you set hibernate.c3p0.* properties. If you would like to use Proxool, refer to
the packaged hi ber nat e. properti es and the Hibernate web site for more information.

The following is an example hi ber nat e. properti es file for c3p0:

hibernate.connection.driver_class = org.postgresql.Driver
hibernate.connection.url = jdbc:postgresql://localhost/mydatabase
hibernate.connection.username = myuser
hibernate.connection.password = secret
hibernate.c3p0.min_size=5

hibernate.c3p0.max_size=20

hibernate.c3p0.timeout=1800
hibernate.c3p0.max_statements=50

hibernate.dialect = org.hibernate.dialect.PostgreSQLDialect

For use inside an application server, you should almost always configure Hibernate to obtain
connections from an application server j avax. sql . Dat asour ce registered in JNDI. You will need
to set at least one of the following properties:

3.2. Hibernate #####HH#HH#H

i ##

hibernate.connection.datasource HHHHH#IND I#

hibernate.jndi.url URL of the JNDI provider (optional)

hibernate.jndi.class class of the INDI Initial ContextFactory
(optional)

35

#3H #H#

HitHHtHH #it
hibernate.connection.username database user (optional)
hibernate.connection.password database user password (optional)

Here is an example hi bernate. properties file for an application server provided JNDI
datasource:

hibernate.connection.datasource = java:/comp/env/jdbc/test
hibernate.transaction.factory_class =\
org.hibernate.transaction.JTATransactionFactory
hibernate.transaction.manager_lookup_class =\
org.hibernate.transaction.JBossTransactionManagerLookup
hibernate.dialect = org.hibernate.dialect.PostgreSQLDialect

JIND I##HHH###H###HI D B CHARHHHHHHH T HH

Arbitrary connection properties can be given by prepending "hi ber nat e. connecti on" to the
connection property hame. For example, you can specify a charSet connection property using
hibernate.connection.charSet.

You can define your own plugin strategy for obtaining JDBC connections by implementing
the interface or g. hi ber nat e. connecti on. Connecti onProvi der, and specifying your custom
implementation via the hibernate.connection.provider_class property.

S A LI

There are a number of other properties that control the behavior of Hibernate at runtime. All are
optional and have reasonable default values.

H##

Some of these properties are "system-level" only. System-level properties can be

setonly viaj ava - Dpropert y=val ue or hi ber nat e. pr operti es. They cannot be
set by the other techniques described above.

3.3. Hibernate#####t#

HiHHHH ##t
hibernate.dialect The classname of a Hibernate
org. hi bernate. di al ect. Di al ect which

allows Hibernate to generate SQL optimized
for a particular relational database.

e.g.full.classnane. of. D al ect

36

BHAHHHHHH

HHAHHH

#H

hibernate.show_sq|

hibernate.format_sql

hibernate.default_schema

In most cases Hibernate will
actually be able to choose the
correct org. hi bernate. di al ect. Di al ect
implementation based on the JDBC net adat a
returned by the JDBC driver.

Write all SQL statements to console. This
is an alternative to setting the log category
or g. hi ber nat e. SQL to debug.
eg.true|false

Pretty print the SQL in the log and console.

e.g.true|fal se

Qualify unqualified table names with the given
schemal/tablespace in generated SQL.

e.g. SCHEMA_NANE

hibernate.default_catalog

hibernate.session_factory _name

hibernate.max_fetch_depth

Qualifies unqualified table names with the
given catalog in generated SQL.

e.g. CATALOG_NAME

The or g. hi ber nat e. Sessi onFact ory will be
automatically bound to this name in JNDI after
it has been created.

e.g.j ndi/ conposi t e/ nane

Sets a maximum "depth" for the outer join fetch
tree for single-ended associations (one-to-one,
many-to-one). A 0 disables default outer join
fetching.

e.g. recommended values between 0 and 3

hibernate.default_batch_fetch_size

hibernate.default_entity _mode

hibernate.order_updates

Sets a default size for Hibernate batch fetching
of associations.

e.g. recommended values 4, 8, 16

Sets a default mode for entity representation
for all sessions opened from this
Sessi onFactory

dynani c- map, domdj , poj o

Forces Hibernate to order SQL updates by the
primary key value of the items being updated.

37

#3H #H#

HHAHHH

#H

hibernate.generate_statistics

This will result in fewer transaction deadlocks
in highly concurrent systems.

e.g.true|fal se

If enabled, Hibernate will collect statistics
useful for performance tuning.

e.g.true|fal se

hibernate.use_identifer_rollback

hibernate.use_sql_comments

If enabled, generated identifier properties will
be reset to default values when objects are
deleted.

e.g.true|fal se

If turned on, Hibernate will generate comments
inside the SQL, for easier debugging, defaults
tofal se.

e.g.true|fal se

3.4. Hibernate JDBC ####HH#H#H#H#H#HH#

HHAHHH

#H

hibernate.jdbc.fetch_size

A non-zero value determines the JDBC fetch
size (calls St at ement . set Fet chSi ze()).

hibernate.jdbc.batch_size

A non-zero value enables use of JDBC2 batch
updates by Hibernate.

e.g. recommended values between 5 and 30

hibernate.jdbc.batch_versioned_data

Set this property to true if your JDBC
driver returns correct row counts from
execut eBat ch() . lit is usually safe to turn this
option on. Hibernate will then use batched DML
for automatically versioned data. Defaults to
fal se.

eg.true|false

hibernate.jdbc.factory_class

hibernate.jdbc.use_scrollable_resultset

Select a custom
org. hi bernate. jdbc. Bat cher. Most
applications will not need this configuration

property.

€.g. cl assnane. of . Bat cher Fact ory

Enables use of JDBC2 scrollable resultsets
by Hibernate. This property is only

38

BHAHHHHHH

HHAHHH #H

necessary when using user-supplied JDBC
connections. Hibernate uses connection
metadata otherwise.

e.g.true|fal se

hibernate.jdbc.use_streams_for_binary Use streams when writing/reading bi nary or
seri al i zabl e types to/from JDBC. *system-
level property*

e.g.true|fal se

hibernate.jdbc.use_get_generated_keys Enables use of JDBC3
Pr epar edSt at enent . get Gener at edKeys()
to retrieve natively generated keys after insert.
Requires JDBC3+ driver and JRE1.4+, set
to false if your driver has problems with the
Hibernate identifier generators. By default, it
tries to determine the driver capabilities using
connection metadata.

e.g.true| fal se

hibernate.connection.provider_class The classname of a custom
or g. hi ber nat e. connecti on. Connect i onProvi der
which provides JDBC connections to
Hibernate.

e.g. cl assnane. of . Connect i onPr ovi der

hibernate.connection.isolation Sets the JDBC transaction isolation level.
Check j ava. sqgl . Connecti on for meaningful
values, but note that most databases do not
support all isolation levels and some define
additional, non-standard isolations.

eg.1, 2, 4, 8

hibernate.connection.autocommit Enables autocommit for JDBC pooled
connections (it is not recommended).

e.g.true|fal se

hibernate.connection.release_mode Specifies when Hibernate should release
JDBC connections. By default, a JDBC
connection is held until the session is
explicitly closed or disconnected. For an
application server JTA datasource, use
after_statenent to aggressively release

39

#3H #H#

HHAHHH

#H

hibernate.connection.<propertyName>

connections after every JDBC call. For a
non-JTA connection, it often makes sense to
release the connection at the end of each
transaction, by using after_transaction.
auto will choose after_statement for the
JTA and CMT transaction strategies and
af ter _transacti on for the JDBC transaction
strategy.

e.g. auto (default) | on_close |
after_transaction|after_statenment

This setting only affects Sessions
returned from Sessi onFact ory. openSessi on.
For Sessi ons obtained through
Sessi onFact ory. get Current Sessi on, the
Cur r ent Sessi onCont ext implementation
configured for use controls the connection
release mode for those Sessi ons. See #2.5.
#Contextual sessions#

Pass the JDBC property <propertyName> to
Dri ver Manager . get Connecti on().

hibernate.jndi.<propertyName>

3.5. Hibernate ######H##H

HRARHH

hi ber nat e. cache. provi der _cl ass

hi ber nat e. cache. use_m ni mal _puts

hi ber nat e. cache. use_query_cache

Pass the property <propertyName> to the JNDI
I nitial ContextFactory.

#H#

The classname of a custom CachePr ovi der.

e.g. cl assnane. of . CachePr ovi der

Optimizes second-level cache operation to
minimize writes, at the cost of more frequent
reads. This setting is most useful for clustered
caches and, in Hibernate3, is enabled by
default for clustered cache implementations.

e.g.true| fal se

Enables the query cache. Individual queries
still have to be set cachable.

e.g.true|fal se

40

BHAHHHHHH

B #Ht

hi ber nat e. cache. use_second_I| evel _cache Can be used to completely disable the second
level cache, which is enabled by default for
classes which specify a <cache> mapping.
e.g.true|fal se

hi ber nat e. cache. query_cache_factory The classname of a custom QueryCache
interface, defaults to the built-in
St andar dQuer yCache.
e.g. cl assnane. of . QueryCache

hi ber nat e. cache. regi on_prefi x A prefix to use for second-level cache region
names.
e.g. prefix

hi ber nat e. cache. use_structured_entries Forces Hibernate to store data in the second-

3.6. Hibernate #####H#H#H#H#H#HHH

level cache in a more human-friendly format.

e.g.true| fal se

HRAAHT

#H

hi bernat e. transaction.factory_cl ass

The classname of a Transacti onFactory to
use with Hibernate Tr ansact i on API (defaults
to JDBCTr ansact i onFact ory).

e.g. cl assnane. of . Transacti onFactory

jta. User Transaction

A JNDI name used by
JTATr ansacti onFactory to obtain the JTA
User Tr ansact i on from the application server.

e.g.j ndi / conposi t e/ nanme

hi ber nat e. t ransacti on. manager _| ookup_cl adse

classname of a
Transact i onManager Lookup. It is required
when JVM-level caching is enabled or when
using hilo generator in a JTA environment.

e.g.
cl assnane. of . Transact i onManager Lookup

hi bernat e. transacti on. fl ush_bef or e_conpllttar@abled, the session will be automatically

flushed during the before completion phase of
the transaction. Built-in and automatic session
context management is preferred, see #2.5.
#Contextual sessions#.

41

#3H #H#

HHAHHH #H

e.g.true|fal se

hi bernat e. transacti on. aut o_cl ose_sessi ordf enabled, the session will be automatically
closed during the after completion phase of
the transaction. Built-in and automatic session
context management is preferred, see #2.5.
#Contextual sessions#.

eg.true|false

3.7. HHHHHHHHH

HHAHHH #H

hi ber nat e. current _sessi on_cont ext _cl ass Supply a custom strategy for the scoping of
the "current" Sessi on. See #2.5. #Contextual
sessions# for more information about the built-
in strategies.

e.g.jta|thread | managed | cust om O ass

hi bernat e. query. factory_cl ass Chooses the HQL parser implementation.
e.g.
org. hi bernate. hql . ast. ASTQueryTr ansl at or Fact ory
or

org. hi bernate. hqgl . cl assi c. d assi cQueryTransl at or Fact or

hi ber nat e. query. substitutions Is used to map from tokens in Hibernate
queries to SQL tokens (tokens might be
function or literal names, for example).

e.g. hqgl Li t eral =SQL_LI TERAL,
hgl Funct i on=SQLFUNC

hi ber nat e. hbn2dd! . aut o Automatically validates or exports schema
DDL to the database when the
Sessi onFactory is created. With create-
dr op, the database schema will be dropped
when the Sessi onFact ory is closed explicitly.

e.g. validate | update | create | create-
dr op

hi bernate. cglib.use_reflection_optinizerEnables the use of CGLIB instead of
runtime reflection (System-level property).
Reflection can sometimes be useful
when troubleshooting. Hibernate always
requires CGLIB even if you turn off the

42

SQL ###Dialect#

HHAHHH

optimizer. You cannot set this property in
hi bernate. cfg. xm .

e.g.true|fal se

3.4.1. SQL ###Dialect#

Always set the hi ber nat e. di al ect property to the correct or g. hi bernat e. di al ect. Di al ect
subclass for your database. If you specify a dialect, Hibernate will use sensible defaults for some
of the other properties listed above. This means that you will not have to specify them manually.

3.8. Hibernate SQL Dialects (hi ber nat e. di al ect)

. DB2Di al ect
. DB2400Di al ect

. DB2390Di al ect

. Post greSQLDi al ect

. MySQLDI al ect
. MySQ.I nnoDBDiI al ect
. MySQLMyI SAMDI al ect

.Oracl eDi al ect

.Oracl e9i D al ect

.Oracl el0gDhi al ect
. SybaseDi al ect

. SybaseAnywher eDi al ect

. SQLServer Di al ect

. SAPDBDI al ect

.Inform xDi al ect
. HSQLDi al ect

.IngresDi al ect

. ProgressDi al ect

. Mckoi Di al ect

. I nterbaseD al ect
. Poi nt baseDi al ect

. Front baseDi al ect

RDBMS Dialect

DB2 org. hi bernate.
DB2 AS/400 or g. hi ber nat e.
DB2 OS390 org. hi bernate.
PostgreSQL or g. hi ber nat e.
MySQL org. hi bernat e.
MySQL with InnoDB or g. hi ber nat e.
MySQL with MyISAM org. hi bernate.
Oracle (any version) org. hi bernate.
Oracle 9i or g. hi bernate.
Oracle 10g or g. hi bernate.
Sybase or g. hi bernate.
Sybase Anywhere or g. hi bernate.
Microsoft SQL Server or g. hi ber nat e.
SAP DB org. hi bernat e.
Informix or g. hi ber nat e.
HypersonicSQL or g. hi bernate.
Ingres org. hi bernate.
Progress or g. hi bernat e.
Mckoi SQL or g. hi ber nat e.
Interbase or g. hi ber nat e.
Pointbase or g. hi ber nat e.
FrontBase or g. hi bernate.
Firebird org. hi bernat e.

. FirebirdDi al ect

43

#3H #H#

3.4.2. #HHHHHAHHH

If your database supports ANSI, Oracle or Sybase style outer joins, outer join fetching will often
increase performance by limiting the number of round trips to and from the database. This is,
however, at the cost of possibly more work performed by the database itself. Outer join fetching
allows a whole graph of objects connected by many-to-one, one-to-many, many-to-many and one-
to-one associations to be retrieved in a single SQL SELECT.

Outer join fetching can be disabled globally by setting the property hi ber nat e. max_f et ch_dept h
to 0. A setting of 1 or higher enables outer join fetching for one-to-one and many-to-one
associations that have been mapped with f et ch="j oi n".

See #19.1. #Ht###H## for more information.

3.4.3. #HHHHAHHAH

Oracle limits the size of byte arrays that can be passed to and/or from its JDBC driver.
If you wish to use large instances of binary or serializable type, you should enable
hi ber nat e. j dbc. use_streans_f or _bi nary. This is a system-level setting only.

3. 4.4, 2HHHHBHHHTHATH A

The properties prefixed by hi ber nat e. cache allow you to use a process or cluster scoped second-
level cache system with Hibernate. See the #19.2. ##2########## for more information.

3.4.5. #HHHARHA

You can define new Hibernate query tokens using hi ber nate. query. substitutions. For
example:

hibernate.query.substitutions true=1, false=0

This would cause the tokens t rue and f al se to be translated to integer literals in the generated
SQL.

hibernate.query.substitutions toLowercase=LOWER

This would allow you to rename the SQL LOAER function.

3.4.6. Hibernate ##

If you enable hi ber nat e. generat e_st ati sti cs, Hibernate exposes a number of metrics that
are useful when tuning a running system via Sessi onFact ory. get St ati sti cs() . Hibernate can
even be configured to expose these statistics via JMX. Read the Javadoc of the interfaces in
or g. hi ber nat e. st at s for more information.

44

HHHH

3.5. #H#H#

Hibernate utilizes Simple Logging Facade for Java [http://www.slf4j.org/] (SLF4J) in order to log
various system events. SLF4J can direct your logging output to several logging frameworks (NOP,
Simple, log4j version 1.2, JDK 1.4 logging, JCL or logback) depending on your chosen binding. In
order to setup logging you will need sl f 4j - api . j ar in your classpath together with the jar file for
your preferred binding - s| f 4j -1 0og4j 12. j ar in the case of Log4J. See the SLF4J documentation
[http://lwww.slf4j.org/manual.html] for more detail. To use Log4j you will also need to place a
| og4j . properti es file in your classpath. An example properties file is distributed with Hibernate
in the src/ directory.

It is recommended that you familiarize yourself with Hibernate's log messages. A lot of work has
been put into making the Hibernate log as detailed as possible, without making it unreadable. It
is an essential troubleshooting device. The most interesting log categories are the following:

3.9. Hibernate

HiHH #H#

or g. hi bernate. SQL HHHHHHHH S QLA D DL #HHHHHHHHHHHHHH
org. hi bernate. type #itHH ID B CHARHHH AR R AR
or g. hi ber nat e. t ool . hbn2ae#H#### S QLHD DLHHHHHHHHHHHHHHH

org. hibernate. pretty | SeSSIONHHHHHHHHIHHHHIHHHHHHHHHHHE

or g. hi ber nat e. cache HHAHHHHHHHHHHHH AR R

or g. hi ber nat e. t r ansact i#HHHHHHFHHHHHTHH]
org. hi bernate. jdbc JD BCHHHHHAHHHHH A
or g. hi ber nat e. hql . ast . ASQL#SQLHAAS THHAHHIHHHHIHHHHHHIH

or g. hi bernat e. secur e | ##HH#IAASHEHHHHHHHHE

org. hi bernate Log everything. This is a lot of information but it is useful for
troubleshooting

Hibernate###H#H#HHH#HHHHHHHor g. hi ber nat e. SQL ###H## debug HHHHHHHHHHHEHIHHIHH I #
BN ber nat e. show_sql #HHHHHHIFHHHHH

36 Nam ngSt r at egy ###

HHHA#HAH net . st . hi ber nat e. cf g. Nam ngSt r at eqy ###H# HHAHHHHHHHHHAHAHH R
HitHHHHHHH

You can provide rules for automatically generating database identifiers from Java identifiers or
for processing "logical” column and table names given in the mapping file into "physical” table
and column names. This feature helps reduce the verbosity of the mapping document, eliminating
repetitive noise (TBL_ prefixes, for example). The default strategy used by Hibernate is quite
minimal.

45

http://www.slf4j.org/
http://www.slf4j.org/
http://www.slf4j.org/manual.html
http://www.slf4j.org/manual.html

#3H #H#

You can specify a different strategy by calling Confi gur ati on. set Nami ngStrat egy() before
adding mappings:

SessionFactory sf = new Configuration()
.setNamingStrategy(ImprovedNamingStrategy.INSTANCE)
.addFile("ltem.hbm.xml")

.addFile("Bid.hbm.xml")
.buildSessionFactory();

org. hi bernate. cfg. | nprovedNam ngSt r at eqy #HHHHHHAHHHE HHBHHIHHAHAHHBHIHH
HiHHHHHHHHHHH

3.7. XML###H#H#H

HELHHHHH hi ber nat e. cf g. xni HRAHHHHHHH RHHHHHHH R RAHT HHHHHHH
hi ber nat e. proper ti es #HHH##HHHHHHHE HHHHHHHHHHH R

The XML configuration file is by default expected to be in the root of your CLASSPATH. Here is
an example:

<?xml version='1.0' encoding="utf-8'?>

<IDOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-3.0.dtd">

<hibernate-configuration>

<l-- a SessionFactory instance listed as /jndi/name -->
<session-factory
name="java:hibernate/SessionFactory">

<!-- properties -->

<property nhame="connection.datasource">java:/comp/env/jdbc/MyDB</property>

<property name="dialect">org.hibernate.dialect. MySQLDialect</property>

<property name="show_sql">false</property>

<property nhame="transaction.factory_class">
org.hibernate.transaction.JTATransactionFactory

</property>

<property name="jta.UserTransaction">java:comp/UserTransaction</property>

<!l-- mapping files -->
<mapping resource="org/hibernate/auction/ltem.hbm.xml"/>
<mapping resource="org/hibernate/auction/Bid.hbm.xml"/>

46

J2EEHHHHIHHIHIHHIHHE

<!-- cache settings -->

<class-cache class="org.hibernate.auction.ltem" usage="read-write"/>
<class-cache class="org.hibernate.auction.Bid" usage="read-only"/>
<collection-cache collection="org.hibernate.auction.ltem.bids" usage="read-write"/>

</session-factory>

</hibernate-configuration>

The advantage of this approach is the externalization of the mapping file names to configuration.
The hi ber nat e. cf g. xnl is also more convenient once you have to tune the Hibernate cache. It
is your choice to use either hi ber nat e. properti es or hi ber nat e. cf g. xm . Both are equivalent,
except for the above mentioned benefits of using the XML syntax.

With the XML configuration, starting Hibernate is then as simple as:

SessionFactory sf = new Configuration().configure().buildSessionFactory();

You can select a different XML configuration file using:

SessionFactory sf = new Configuration()
.configure("catdb.cfg.xml")
.buildSessionFactory();

3.8. J2EEHH#HHHHHHHHHAHHHH

Hibernate#J2E Ef#HHHHHHHHHIHHEHHEHHEHT

» Container-managed datasources: Hibernate can use JDBC connections managed by the
container and provided through JNDI. Usually, a JTA compatible Tr ansacti onManager and
a ResourceManager take care of transaction management (CMT), especially distributed
transaction handling across several datasources. You can also demarcate transaction
boundaries programmatically (BMT), or you might want to use the optional Hibernate
Transact i on API for this to keep your code portable.

o #HINDI##H#HHHH#HIbernate# IND [##HH###HH#H Sessi onFact ory ###H#H#HH

« JTA Session binding: the Hibernate Sessi on can be automatically bound to the scope of JTA
transactions. Simply lookup the Sessi onFact ory from JNDI and get the current Sessi on. Let
Hibernate manage flushing and closing the Sessi on when your JTA transaction completes.
Transaction demarcation is either declarative (CMT) or programmatic (BMT/UserTransaction).

47

#3H #H#

« JMX deployment: if you have a JMX capable application server (e.g. JBoss AS), you can choose
to deploy Hibernate as a managed MBean. This saves you the one line startup code to build your
Sessi onFact ory from a Confi gur ati on. The container will startup your H ber nat eSer vi ce
and also take care of service dependencies (datasource has to be available before Hibernate
starts, etc).

B connection containment"#HHHHHEH#HH B
hi ber nat e. connect i on. aggr essi ve_r el ease #true###H###

3.8.1. #HAHHHHAHHHBHHHA

The Hibernate Sessi on API is independent of any transaction demarcation system in your
architecture. If you let Hibernate use JDBC directly through a connection pool, you can begin
and end your transactions by calling the JDBC API. If you run in a J2EE application server, you
might want to use bean-managed transactions and call the JTA APl and User Tr ansact i on when
needed.

DHHHHHHHHHHHHH R i HIDernate Tr ansact i on API
#HHAE Hibernate####HH##H# hi bernate. transaction. factory_cl ass ####HHHH#E HiHHH
Tr ansact i on #HHHHHHHHAAHAH A

There are three standard, or built-in, choices:

org. hi bernate.transacti on. JDBCTr ansact i onFact ory
HHHH (I D B O HHHHHHHHHHHHHH

org. hi bernate.transacti on. JTATransacti onFactory
delegates to container-managed transactions if an existing transaction is underway in this
context (for example, EJB session bean method). Otherwise, a new transaction is started and
bean-managed transactions are used.

org. hi bernate.transacti on. CMITr ansact i onFact ory
HitHHHH I T AHHHHH A

You can also define your own transaction strategies (for a CORBA transaction service, for
example).

Some features in Hibernate (i.e., the second level cache, Contextual Sessions with JTA, etc.)
require access to the JTA Transacti onManager in a managed environment. In an application
server, since J2EE does not standardize a single mechanism, you have to specify how Hibernate
should obtain a reference to the Tr ansact i onManager :

3.10. JTA HHA#HHHHHHHHHHA

Transaction Factory Application Server
org. hi bernate.transacti on. JBossTransacti onManager Lookup JBoss
or g. hi bernate. transacti on. Wbl ogi cTr ansact i onManager Lookup Weblogic

48

Sessi onFact or y #INDI####

Transaction Factory Application Server
org. hi bernate. transacti on. WebSpher eTr ansact i onManager Lookup ~ WebSphere

or g. hi bernat e. transacti on. WebSpher eExt endedJTATr ansact i onLookMgebSphere 6
org. hi bernate.transacti on. Ori onTransact i onManager Lookup Orion

org. hi bernate.transacti on. Resi nTransact i onManager Lookup Resin

org. hi bernate.transacti on. JOTMIr ansact i onManager Lookup JOTM

org. hi bernate.transacti on. JOnASTr ansact i onManager Lookup JONnAS

org. hi bernate.transacti on. JRun4Tr ansact i onManager Lookup JRun4

org. hi bernate. transacti on. BESTr ansact i onManager Lookup Borland ES

3.8.2. sessi onFact ory #IND |[###H##

A JNDI-bound Hibernate Sessi onFact ory can simplify the lookup function of the factory and
create new Sessi ons. This is not, however, related to a JNDI bound Dat asour ce; both simply
use the same registry.

If you wish to have the Sessi onFactory bound to a JNDI namespace, specify a nhame (e.g.
j ava: hi ber nat e/ Sessi onFact ory) using the property hi ber nat e. sessi on_f actory_nane. If
this property is omitted, the Sessi onFact ory will not be bound to JNDI. This is especially useful
in environments with a read-only JNDI default implementation (in Tomcat, for example).

Sessi onFact ory #IND I Hibernate# hi bernate.jndi.url HtH
##hi bernate. j ndi . cl ass BHERHHH R AR R HHERGHHH AR AT
I nitial Context #H##H#H##

Hibernate will automatically place the SessionFactory in JNDI after you call
cf g. bui | dSessi onFact or y() . This means you will have this call in some startup code, or utility
class in your application, unless you use JMX deployment with the Hi ber nat eSer vi ce (this is
discussed later in greater detail).

If you use a JNDI SessionFactory, an EJB or any other class, you can obtain the
Sessi onFact ory using a JNDI lookup.

It is recommended that you bind the Sessi onFact ory to JNDI in a managed environment and
use a st ati c singleton otherwise. To shield your application code from these details, we also
recommend to hide the actual lookup code for a Sessi onFactory in a helper class, such as
Hi bernat elti| . get Sessi onFactory(). Note that such a class is also a convenient way to
startup Hibernatesee chapter 1.

3.8.3. JTA#HHHAHHHBHHAHHHBHHARHH A

The easiest way to handle Sessi ons and transactions is Hibernate's automatic "current" Sessi on
management. For a discussion of contextual sessions see #2.5. #Contextual sessions#. Using
the "jta" session context, if there is no Hibernate Sessi on associated with the current JTA

49

#3H #H#

transaction, one will be started and associated with that JTA transaction the first time you call
sessi onFact ory. get Current Sessi on() . The Sessi ons retrieved via get Cur r ent Sessi on() in
the"jta" context are set to automatically flush before the transaction completes, close after
the transaction completes, and aggressively release JDBC connections after each statement.
This allows the Sessi ons to be managed by the life cycle of the JTA transaction to which it
is associated, keeping user code clean of such management concerns. Your code can either
use JTA programmatically through User Tr ansact i on, or (recommended for portable code) use
the Hibernate Transacti on API to set transaction boundaries. If you run in an EJB container,
declarative transaction demarcation with CMT is preferred.

3.8.4. IMX#HH#HH#H##

The line cfg. buil dSessionFactory() still has to be executed somewhere to get a
Sessi onFact ory into JNDI. You can do this either in a st ati ¢ initializer block, like the one in
Hi bernatelti |, or you can deploy Hibernate as a managed service.

Hibernate is distributed with org. hi ber nat e. j nx. Hi ber nat eSer vi ce for deployment on an
application server with JMX capabilities, such as JBoss AS. The actual deployment and
configuration is vendor-specific. Here is an example j boss- servi ce. xm for JBoss 4.0.x:

<?xml version="1.0"?>
<server>

<mbean code="org.hibernate.jmx.HibernateService"
name="jboss.jca:service=HibernateFactory,name=HibernateFactory">

<l-- Required services -->
<depends>jboss.jca:service=RARDeployer</depends>
<depends>jboss.jca:service=LocalTxCM,name=HsqglDS</depends>

<l-- Bind the Hibernate service to JNDI -->
<attribute name="JndiName">java:/hibernate/SessionFactory</attribute>

<l-- Datasource settings -->
<attribute name="Datasource">java:HsqlDS</attribute>
<attribute name="Dialect">org.hibernate.dialect. HSQLDialect</attribute>

<l-- Transaction integration -->

<attribute name="TransactionStrategy">
org.hibernate.transaction.JTATransactionFactory</attribute>

<attribute name="TransactionManagerLookupStrategy">
org.hibernate.transaction.JBossTransactionManagerLookup</attribute>

<attribute name="FlushBeforeCompletionEnabled">true</attribute>

<attribute name="AutoCloseSessionEnabled">true</attribute>

50

IMXH#HBHH#H

<l-- Fetching options -->
<attribute name="MaximumFetchDepth">5</attribute>

<l-- Second-level caching -->

<attribute name="SecondLevelCacheEnabled">true</attribute>

<attribute name="CacheProviderClass">org.hibernate.cache.EhCacheProvider</attribute>
<attribute name="QueryCacheEnabled">true</attribute>

<l-- Logging -->
<attribute name="ShowSqlEnabled">true</attribute>

<l-- Mapping files -->
<attribute name="MapResources">auction/ltem.hbm.xml,auction/Category.hbm.xmi</
attribute>

</mbean>

</server>

This file is deployed in a directory called META- | NF and packaged in a JAR file with the extension
. sar (service archive). You also need to package Hibernate, its required third-party libraries, your
compiled persistent classes, as well as your mapping files in the same archive. Your enterprise
beans (usually session beans) can be kept in their own JAR file, but you can include this EJB
JAR file in the main service archive to get a single (hot-)deployable unit. Consult the JBoss AS
documentation for more information about JMX service and EJB deployment.

51

52

HHHHH

Persistent classes are classes in an application that implement the entities of the business problem
(e.g. Customer and Order in an E-commerce application). Not all instances of a persistent class
are considered to be in the persistent state. For example, an instance can instead be transient
or detached.

Hibernate works best if these classes follow some simple rules, also known as the Plain Old Java
Object (POJO) programming model. However, none of these rules are hard requirements. Indeed,
Hibernate3 assumes very little about the nature of your persistent objects. You can express a
domain model in other ways (using trees of Map instances, for example).

4.1. ###POJO#H#

Most Java applications require a persistent class representing felines. For example:

package eg;
import java.util.Set;
import java.util.Date;

public class Cat {
private Long id; // identifier

private Date birthdate;
private Color color;
private char sex;
private float weight;
private int litterld;

private Cat mother;
private Set kittens = new HashSet();

private void setld(Long id) {
this.id=id;

}

public Long getld() {
return id;

void setBirthdate(Date date) {
birthdate = date;

}

public Date getBirthdate() {
return birthdate;

53

HAR HHHHH

void setWeight(float weight) {
this.weight = weight;

}

public float getWeight() {
return weight;

public Color getColor() {
return color;

}

void setColor(Color color) {
this.color = color;

void setSex(char sex) {
this.sex=sex;

}

public char getSex() {
return sex;

void setLitterld(int id) {
this.litterld = id;

}

public int getLitterld() {
return litterld;

void setMother(Cat mother) {
this.mother = mother;

}
public Cat getMother() {

return mother;

}
void setKittens(Set kittens) {

this.kittens = kittens;

}
public Set getKittens() {

return kittens;

/l addKitten not needed by Hibernate

54

BRAHHHHHHHH A

public void addKitten(Cat kitten) {
kitten.setMother(this);
kitten.setLitterld(kittens.size());
kittens.add(kitten);

The four main rules of persistent classes are explored in more detail in the following sections.

AL AEHHERER R

Cat has a no-argument constructor. All persistent classes must have a default constructor (which
can be non-public) so that Hibernate can instantiate them using Const r uct or. new nst ance().
It is recommended that you have a default constructor with at least package visibility for runtime
proxy generation in Hibernate.

4. 1.2, #HHHHTT T

Cat has a property called i d. This property maps to the primary key column of a database table.
The property might have been called anything, and its type might have been any primitive type,
any primitive "wrapper" type, j ava.l ang. String or java.util . Date. If your legacy database
table has composite keys, you can use a user-defined class with properties of these types (see
the section on composite identifiers later in the chapter.)

T R HI D ernateHHHIHHIHHIHHEHHEHHEHHEHHEHHEE
Hi#

In fact, some functionality is available only to classes that declare an identifier property:

 Transitive reattachment for detached objects (cascade update or cascade merge) - see #10.11.
S
* Session.saveO Updat e()

e Session. merge()

We recommend that you declare consistently-named identifier properties on persistent classes
and that you use a nullable (i.e., non-primitive) type.

4.1.3. final#HHHH#H#

Hibernatef#HHH HiHH #H T INalHHH T DUD i CHHFHHHHET #HHHHE
BRARHHHHHH

You can persist fi nal classes that do not implement an interface with Hibernate. You will not,
however, be able to use proxies for lazy association fetching which will ultimately limit your options
for performance tuning.

55

HAR HHHHH

final#s#H### publ i c final HHHHHHEHHEFHHEHHHRE publ i ¢ fi nal #HHEHHEHHEHHEHHEHHE
| azy=""1 al se" HHHHHHHHHHHHHHHHHHHHHHH R

4. 1A, B T R R R T T

Cat declares accessor methods for all its persistent fields. Many other ORM tools directly persist
instance variables. It is better to provide an indirection between the relational schema and
internal data structures of the class. By default, Hibernate persists JavaBeans style properties
and recognizes method names of the form get Foo, i sFoo and set Foo. If required, you can switch
to direct field access for particular properties.

HHHRpUDliCHHHHHA A # Hibernatef####HHpr ot ect ed #### pri vat e #get | set#####H#H#
BHARHHHHH AR

4.2. #HitH##

A subclass must also observe the first and second rules. It inherits its identifier property from the
superclass, Cat . For example:

package eg;

public class DomesticCat extends Cat {
private String name;

public String getName() {
return name;

}

protected void setName(String name) {
this.name=name;

4.3. equal s() H# hashcode() HH#H

You have to override the equal s() and hashCode() methods if you:

« intend to put instances of persistent classes in a Set (the recommended way to represent many-
valued associations); and
o HHBHHHIH R

Hibernate guarantees equivalence of persistent identity (database row) and Java identity only
inside a particular session scope. When you mix instances retrieved in different sessions, you
must implement equal s() and hashCode() if you wish to have meaningful semantics for Set s.

56

equal s() # hashCode() ###

The most obvious way is to implement equal s() /hashCode() by comparing the identifier value
of both objects. If the value is the same, both must be the same database row, because they are
equal. If both are added to a Set , you will only have one element in the Set). Unfortunately, you
cannot use that approach with generated identifiers. Hibernate will only assign identifier values to
objects that are persistent; a newly created instance will not have any identifier value. Furthermore,
if an instance is unsaved and currently in a Set , saving it will assign an identifier value to the object.
If equal s() and hashCode() are based on the identifier value, the hash code would change,
breaking the contract of the Set . See the Hibernate website for a full discussion of this problem.
This is not a Hibernate issue, but normal Java semantics of object identity and equality.

It is recommended that you implement equal s() and hashCode() using Business key equality.
Business key equality means that the equal s() method compares only the properties that form
the business key. It is a key that would identify our instance in the real world (a natural candidate
key):

public class Cat {

public boolean equals(Object other) {
if (this == other) return true;
if (!(other instanceof Cat)) return false;

final Cat cat = (Cat) other;

if (!cat.getLitterld().equals(getLitterld())) return false;
if (!cat.getMother().equals(getMother())) return false;

return true;

public int hashCode() {
int result;
result = getMother().hashCode();
result = 29 * result + getLitterld();
return result;

A business key does not have to be as solid as a database primary key candidate (see #11.1.3. ##
HHH). Immutable or unique properties are usually good candidates for a business key.

57

HAR HHHHH

A4 HiHHR

Note

The following features are currently considered experimental and may change in
the near future.

Persistent entities do not necessarily have to be represented as POJO classes or as JavaBean
objects at runtime. Hibernate also supports dynamic models (using Maps of Maps at runtime) and
the representation of entities as DOM4J trees. With this approach, you do not write persistent
classes, only mapping files.

By default, Hibernate works in normal POJO mode. You can set a default entity representation
mode for a particular Sessi onFact ory usingthe def aul t _entity_node configuration option (see
3.3. #Hibernate####H#H#H).

The following examples demonstrate the representation using Maps. First, in the mapping file an
entity-name has to be declared instead of, or in addition to, a class hame:

<hibernate-mapping>
<class entity-name="Customer">

<id name="id"

type="long"

column="ID">

<generator class="sequence"/>
</id>

<property name="name"
column="NAME"
type="string"/>

<property name="address"
column="ADDRESS"
type="string"/>

<many-to-one name="organization"

column="ORGANIZATION_ID"

class="Organization"/>

<bag name="orders"
inverse="true"

58

HHAHH

lazy="false"
cascade="all">

<key column="CUSTOMER_ID"/>
<one-to-many class="Order"/>

</bag>

</class>

</hibernate-mapping>

Even though associations are declared using target class names, the target type of associations

can also be a dynamic entity instead of a POJO.

After setting the default entity mode to dynani c- map for the Sessi onFact or y, you can, at runtime,

work with Maps of Maps:

Session s = openSession();

Transaction tx = s.beginTransaction();

Session s = openSession();

/I Create a customer
Map david = new HashMap();
david.put("name", "David");

/I Create an organization
Map foobar = new HashMap();
foobar.put("name", "Foobar Inc.");

Il Link both
david.put("organization”, foobar);

/I Save both
s.save("Customer", david);
s.save("Organization”, foobar);

tx.commit();
s.close();

One of the main advantages of dynamic mapping is quick turnaround time for prototyping, without
the need for entity class implementation. However, you lose compile-time type checking and
will likely deal with many exceptions at runtime. As a result of the Hibernate mapping, the
database schema can easily be normalized and sound, allowing to add a proper domain model

implementation on top later on.

59

HAR HHHHH

HHAHHHHHHHHE Sessi on #HAHHHHHHHHHH#

Session dynamicSession = pojoSession.getSession(EntityMode.MAP);

/I Create a customer

Map david = new HashMap();
david.put("name", "David");
dynamicSession.save("Customer"”, david);

dynamicSession.flush();
dynamicSession.close()

/I Continue on pojoSession

Please note that the call to get Sessi on() using an EntityMode is on the Sessi on API, not
the SessionFactory. That way, the new Sessi on shares the underlying JDBC connection,
transaction, and other context information. This means you do not have to call fl ush() and
cl ose() on the secondary Sessi on, and also leave the transaction and connection handling to
the primary unit of work.

XMLAHHHBR R 7 18, XMLUHHHHE B

4.5. Tuplizer

org. hi bernate. tuple. Tuplizer, and its sub-interfaces, are responsible for managing
a particular representation of a piece of data given that representation's
or g. hi bernate. Enti t yMbde. If a given piece of data is thought of as a data structure, then a
tuplizer is the thing that knows how to create such a data structure and how to extract values
from and inject values into such a data structure. For example, for the POJO entity mode, the
corresponding tuplizer knows how create the POJO through its constructor. It also knows how to
access the POJO properties using the defined property accessors.

There are two high-level types of Tuplizers, represented by the
org. hibernate.tuple.entity. EntityTuplizer and
or g. hi ber nat e. t upl e. conponent . Conponent Tupl i zer interfaces. EntityTuplizers are
responsible for managing the above mentioned contracts in regards to entities, while
Component Tupl i zer s do the same for components.

Users can also plug in their own tuplizers. Perhaps you require that a java.util.Mp
implementation other than j ava. uti | . HashMap be used while in the dynamic-map entity-mode.
Or perhaps you need to define a different proxy generation strategy than the one used by default.
Both would be achieved by defining a custom tuplizer implementation. Tuplizer definitions are
attached to the entity or component mapping they are meant to manage. Going back to the
example of our customer entity:

60

EntityNameResolvers

<hibernate-mapping>
<class entity-name="Customer">

<I--
Override the dynamic-map entity-mode
tuplizer for the customer entity

-->

<tuplizer entity-mode="dynamic-map"

class="CustomMapTuplizerimpl"/>

<id name="id" type="long" column="ID">
<generator class="sequence"/>
</id>

<!-- other properties -->
</class>
</hibernate-mapping>

public class CustomMapTuplizerimpl
extends org.hibernate.tuple.entity.DynamicMapEntity Tuplizer {
/I override the buildInstantiator() method to plug in our custom map...
protected final Instantiator buildinstantiator(
org.hibernate.mapping.PersistentClass mappinginfo) {
return new CustomMaplnstantiator(mappinginfo);

private static final class CustomMaplnstantiator
extends org.hibernate.tuple.DynamicMaplinstantitor {
/I override the generateMap() method to return our custom map...
protected final Map generateMap() {
return new CustomMap();

4.6. EntityNameResolvers

The org. hi bernat e. Enti t yNameResol ver interface is a contract for resolving the entity name
of a given entity instance. The interface defines a single method r esol veEnt i t yNanme which is
passed the entity instance and is expected to return the appropriate entity name (null is allowed
and would indicate that the resolver does not know how to resolve the entity name of the given
entity instance). Generally speaking, an or g. hi ber nat e. Ent i t yNaneResol ver is going to be

61

HAR HHHHH

most useful in the case of dynamic models. One example might be using proxied interfaces as
your domain model. The hibernate test suite has an example of this exact style of usage under
the org.hibernate.test.dynamicentity.tuplizer2. Here is some of the code from that package for
illustration.

/**

* A very trivial JDK Proxy InvocationHandler implementation where we proxy an interface as
* the domain model and simply store persistent state in an internal Map. This is an extremely
* trivial example meant only for illustration.
*/
public final class DataProxyHandler implements InvocationHandler {

private String entityName;

private HashMap data = new HashMap();

public DataProxyHandler(String entityName, Serializable id) {
this.entityName = entityName;
data.put("1d", id);

public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {

String methodName = method.getName();

if (methodName.startsWith("set")) {
String propertyName = methodName.substring(3);
data.put(propertyName, args[0]);

}

else if (methodName.startsWith("get")) {
String propertyName = methodName.substring(3);
return data.get(propertyName);

}

else if ("toString".equals(methodName)) {
return entityName + "#" + data.get("I1d");

}

else if ("hashCode".equals(methodName)) {
return new Integer(this.hashCode());

}

return null;

public String getEntityName() {
return entityName;

public HashMap getData() {
return data;

62

EntityNameResolvers

/**
*
*/
public class ProxyHelper {
public static String extractEntityName(Object object) {
/I Our custom java.lang.reflect.Proxy instances actually bundle
/Il their appropriate entity name, so we simply extract it from there
/I if this represents one of our proxies; otherwise, we return null
if (Proxy.isProxyClass(object.getClass())) {
InvocationHandler handler = Proxy.getinvocationHandler(object);
if (DataProxyHandler.class.isAssignableFrom(handler.getClass())) {
DataProxyHandler myHandler = (DataProxyHandler) handler;
return myHandler.getEntityName();

}

return null;

// various other utility methods

/**

* The EntityNameResolver implementation.
* IMPL NOTE : An EntityNameResolver really defines a strategy for how entity names should be
* resolved. Since this particular impl can handle resolution for all of our entities we want to
* take advantage of the fact that SessionFactorylmpl keeps these in a Set so that we only ever
* have one instance registered. Why? Well, when it comes time to resolve an entity name,
* Hibernate must iterate over all the registered resolvers. So keeping that number down
* helps that process be as speedy as possible. Hence the equals and hashCode impls
*/
public class MyEntityNameResolver implements EntityNameResolver {
public static final MyEntityNameResolver INSTANCE = new MyEntityNameResolver();

public String resolveEntityName(Object entity) {

return ProxyHelper.extractEntityName(entity);

public boolean equals(Object obj) {
return getClass().equals(obj.getClass());

63

HAR HHHHH

public int hashCode() {
return getClass().hashCode();

public class MyEntityTuplizer extends PojoEntityTuplizer {
public MyEntityTuplizer(EntityMetamodel entityMetamodel, PersistentClass mappedEntity) {
super(entityMetamodel, mappedEntity);

public EntityNameResolver[] getEntityNameResolvers() {
return new EntityNameResolver[] { MyEntityNameResolver.INSTANCE };

public String determineConcreteSubclassEntityName(Object entitylnstance,
SessionFactorylmplementor factory) {
String entityName = ProxyHelper.extractEntityName(entitylnstance);
if (entityName == null) {
entityName = super.determineConcreteSubclassEntityName(entitylnstance, factory);

}

return entityName;

In order to register an or g. hi ber nat e. Enti t yNameResol ver users must either;

1. Implement a custom Tuplizer, implementing the get Enti t yNaneResol ver s method.

2. Register it with the or g. hi ber nat e. i npl . Sessi onFact or yl npl (which is the implementation
class for org. hi bernate. Sessi onFactory) using the registerEntityNaneResol ver
method.

64

H##HOIRHH A

S.1. #HHHHIH

Object/relational mappings are usually defined in an XML document. The mapping document is
designed to be readable and hand-editable. The mapping language is Java-centric, meaning that
mappings are constructed around persistent class declarations and not table declarations.

Please note that even though many Hibernate users choose to write the XML by hand, a number of
tools exist to generate the mapping document. These include XDoclet, Middlegen and AndroMDA.

Here is an example mapping:

<?xml version="1.0"?>
<IDOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="eg">

<class name="Cat"
table="cats"
discriminator-value="C">

<id name="id">
<generator class="native"/>
</id>

<discriminator column="subclass"
type="character"/>

<property name="weight"/>

<property name="birthdate"
type="date"
not-null="true"
update="false"/>

<property name="color"
type="eg.types.ColorUserType"
not-null="true"
update="false"/>

<property name="sex"

65

#5# #HHHHOIRH#HHH

not-null="true"
update="false"/>

<property name="litterld"
column="litterld"
update="false"/>

<many-to-one name="mother"
column="mother_id"
update="false"/>

<set name="kittens"
inverse="true"
order-by="litter_id">
<key column="mother_id"/>
<one-to-many class="Cat"/>
</set>

<subclass name="DomesticCat"
discriminator-value="D">

<property name="name"
type="string"/>

</subclass>
</class>
<class name="Dog">
<!-- mapping for Dog could go here -->

</class>

</hibernate-mapping>

We will now discuss the content of the mapping document. We will only describe, however, the
document elements and attributes that are used by Hibernate at runtime. The mapping document
also contains some extra optional attributes and elements that affect the database schemas
exported by the schema export tool (for example, the not - nul | attribute).

5.1.1. Doctype

All XML mappings should declare the doctype shown. The actual DTD can be found at the
URL above, in the directory hi ber nat e- x. x. x/ src/ org/ hi bernate , orin hi bernate3.jar.

66

Hibernate-mapping

Hibernate will always look for the DTD in its classpath first. If you experience lookups of the DTD
using an Internet connection, check the DTD declaration against the contents of your classpath.

S.1.1.1. #HHHHHBHHHHAH

Hibernate will first attempt to resolve DTDs in its classpath. It does this is by registering a custom
org. xm . sax. Entit yResol ver implementation with the SAXReader it uses to read in the xml
files. This custom Ent i t yResol ver recognizes two different systemld namespaces:

e ahi bernate nanespace is recognized whenever the resolver encounters a systemld starting
with ht t p: // hi ber nat e. sour cef or ge. net/ . The resolver attempts to resolve these entities
via the classloader which loaded the Hibernate classes.

* a user namespace is recognized whenever the resolver encounters a systemld using a
cl asspat h: // URL protocol. The resolver will attempt to resolve these entities via (1) the
current thread context classloader and (2) the classloader which loaded the Hibernate classes.

The following is an example of utilizing user namespacing:

<?xml version="1.0"?>
<IDOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0/EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd" [
<IENTITY types SYSTEM "classpath://your/domain/types.xml">
1>

<hibernate-mapping package="your.domain">
<class name="MyEntity">
<id name="id" type="my-custom-id-type">

<fid>

<class>

&types;
</hibernate-mapping>

#H# types. xm # your. donai n #HHHAHHHAHHHHHHH #HHE#5.2.3. HHHHHHTE HHHHH#

5.1.2. Hibernate-mapping

This element has several optional attributes. The schenma and cat al og attributes specify that
tables referred to in this mapping belong to the named schema and/or catalog. If they are
specified, tablenames will be qualified by the given schema and catalog names. If they are
missing, tablenames will be unqualified. The def aul t - cascade attribute specifies what cascade
style should be assumed for properties and collections that do not specify a cascade attribute.

67

#5# #HHHHOIRH#HHH

By default, the aut o-i nport attribute allows you to use unqualified class names in the query
language.

<hibernate-mapping

schema="schemaName" o
catalog="catalogName" 9
default-cascade="cascade_style" E

default-access="field|property|ClassName" o

default-lazy="true|false" 9
auto-import="true|false" ﬂ
package="package.name" e

/>

€ schenm (optional): the name of a database schema.

@ catal og (optional): the name of a database catalog.

€ defaul t-cascade (optional - defaults to none): a default cascade style.

€ default-access (optional - defaults to property): the strategy Hibernate should use for
accessing all properties. It can be a custom implementation of Pr opert yAccessor.

© default-1azy (optional - defaults to t r ue): the default value for unspecified | azy attributes
of class and collection mappings.

© auto-inport (optional - defaults to t r ue): specifies whether we can use unqualified class
names of classes in this mapping in the query language.

€ package (optional): specifies a package prefix to use for unqualified class names in the

mapping document.

If you have two persistent classes with the same unqualified name, you should set aut o-
i mport ="fal se". An exception will result if you attempt to assign two classes to the same
"imported" name.

The hi ber nat e- mappi ng element allows you to nest several persistent <cl ass> mappings, as
shown above. It is, however, good practice (and expected by some tools) to map only a single
persistent class, or a single class hierarchy, in one mapping file and name it after the persistent
superclass. For example, Cat . hbm xm , Dog. hbm xm , or if using inheritance, Ani mal . hbm xni .

5.1.3. Class

You can declare a persistent class using the cl ass element. For example:

<class

68

Class

/>

name="ClassName"

©e

table="tableName"
discriminator-value="discriminator_value" B
mutable="true|false"
schema="owner"
catalog="catalog"
proxy="ProxylInterface"

dynamic-update="true|false"

@@@@@e

dynamic-insert="true|false"

select-before-update="true|false" ‘EI'
polymorphism="implicit|explicit" m
where="arbitrary sql where condition” @
persister="PersisterClass" iE}
batch-size="N" ‘I’
optimistic-lock="none|version|dirty|all" @
lazy="true|false" (16)
entity-name="EntityName" a7)
check="arbitrary sqgl check condition" (18)
rowid="rowid" (29)
subselect="SQL expression" (20)
abstract="true|false" (21)

node="element-name"

nane (optional): the fully qualified Java class name of the persistent class or interface. If this
attribute is missing, it is assumed that the mapping is for a non-POJO entity.
t abl e (optional - defaults to the unqualified class name): the name of its database table.

di scri m nat or - val ue (optional - defaults to the class name): a value that distinguishes
individual subclasses that is used for polymorphic behavior. Acceptable values include nul |
and not nul | .

mut abl e (optional - defaults to t r ue): specifies that instances of the class are (not) mutable.

schena (optional): overrides the schema name specified by the root <hi ber nat e- mappi ng>
element.

69

#5# #HHHHOIRH#HHH

@

cat al og (optional): overrides the catalog name specified by the root <hi ber nat e- mappi ng>
element.

pr oxy (optional): specifies an interface to use for lazy initializing proxies. You can specify
the name of the class itself.

dynami c- updat e (optional - defaults to fal se): specifies that UPDATE SQL should be
generated at runtime and can contain only those columns whose values have changed.
dynami c-i nsert (optional - defaults to fal se): specifies that | NSERT SQL should be
generated at runtime and contain only the columns whose values are not null.

sel ect - bef or e- updat e (optional - defaults to f al se): specifies that Hibernate should never
perform an SQL UPDATE unless it is certain that an object is actually modified. Only when
a transient object has been associated with a new session using updat e(), will Hibernate
perform an extra SQL SELECT to determine if an UPDATE is actually required.

pol ynor phi sm(optional - defaults to i npl i ci t): determines whether implicit or explicit query
polymorphism is used.

wher e (optional): specifies an arbitrary SQL WHERE condition to be used when retrieving
objects of this class.

per si st er (optional): specifies a custom Cl assPersi ster.

e o 9

e

bat ch-si ze (optional - defaults to 1): specifies a "batch size" for fetching instances of this
class by identifier.
opti m stic-1 ock (optional - defaults to ver si on): determines the optimistic locking strategy.

| azy (optional): lazy fetching can be disabled by setting | azy="f al se".

entity-name (optional - defaults to the class name): Hibernate3 allows a class to be

mapped multiple times, potentially to different tables. It also allows entity mappings that are

represented by Maps or XML at the Java level. In these cases, you should provide an explicit

arbitrary name for the entity. See #4.4. ######## and # 18. XML###### for more information.

check (optional): an SQL expression used to generate a multi-row check constraint for

automatic schema generation.

rowi d (optional): Hibernate can use ROWIDs on databases. On Oracle, for example,
Hibernate can use the row d extra column for fast updates once this option has been set
to rowi d. A ROWID is an implementation detail and represents the physical location of a
stored tuple.

subsel ect (optional): maps an immutable and read-only entity to a database subselect. This
is useful if you want to have a view instead of a base table. See below for more information.

abstract (optional): is used to mark abstract superclasses in <union-subcl ass>

hierarchies.

EE® 66 6 e

B
(o]

It is acceptable for the named persistent class to be an interface. You can declare implementing
classes of that interface using the <subcl ass> element. You can persist any static inner class.
Specify the class name using the standard form i.e. e. g. Foo$Bar .

Immutable classes, nut abl e="f al se", cannot be updated or deleted by the application. This
allows Hibernate to make some minor performance optimizations.

The optional proxy attribute enables lazy initialization of persistent instances of the class.
Hibernate will initially return CGLIB proxies that implement the named interface. The persistent

70

Class

object will load when a method of the proxy is invoked. See "Initializing collections and proxies"
below.

Implicit polymorphism means that instances of the class will be returned by a query that names
any superclass or implemented interface or class, and that instances of any subclass of the class
will be returned by a query that names the class itself. Explicit polymorphism means that class
instances will be returned only by queries that explicitly name that class. Queries that name
the class will return only instances of subclasses mapped inside this <cl ass> declaration as a
<subcl ass> or <j oi ned- subcl ass>. For most purposes, the default pol ynor phi sm="i nplicit"
is appropriate. Explicit polymorphism is useful when two different classes are mapped to the same
table This allows a "lightweight" class that contains a subset of the table columns.

The persister attribute lets you customize the persistence strategy used
for the class. You can, for example, specify your own subclass of
org. hi bernate. persister. EntityPersister, or you can even provide a completely new
implementation of the interface or g. hi ber nat e. persi st er. C assPer si st er that implements,
for example, persistence via stored procedure calls, serialization to flat files or LDAP. See
or g. hi bernat e. t est. Cust onPer si st er for a simple example of "persistence” to a Hasht abl e.

The dynami c- updat e and dynani c-i nsert settings are not inherited by subclasses, so they can
also be specified on the <subcl ass> or <j oi ned- subcl ass> elements. Although these settings
can increase performance in some cases, they can actually decrease performance in others.

Use of sel ect - bef ore-updat e will usually decrease performance. It is useful to prevent a
database update trigger being called unnecessarily if you reattach a graph of detached instances
to a Sessi on.

dynam c- updat e #H#HHHHHHHHHHHHHHHHHHAH AR

 ver si on: check the version/timestamp columns

* al | : check all columns

« dirty: check the changed columns, allowing some concurrent updates
* none: do not use optimistic locking

It is strongly recommended that you use version/timestamp columns for optimistic locking with
Hibernate. This strategy optimizes performance and correctly handles modifications made to
detached instances (i.e. when Sessi on. mer ge() is used).

There is no difference between a view and a base table for a Hibernate mapping. This is
transparent at the database level, although some DBMS do not support views properly, especially
with updates. Sometimes you want to use a view, but you cannot create one in the database (i.e.
with a legacy schema). In this case, you can map an immutable and read-only entity to a given
SQL subselect expression:

<class name="Summary">
<subselect>

71

#5# #HHHHOIRH#HHH

select item.name, max(bid.amount), count(*)
from item

join bid on bid.item_id = item.id

group by item.name

</subselect>

<synchronize table="item"/>
<synchronize table="bid"/>
<id name="name"/>

</class>

Declare the tables to synchronize this entity with, ensuring that auto-flush happens correctly and
that queries against the derived entity do not return stale data. The <subsel ect > is available both
as an attribute and a nested mapping element.

5.14.id

HHHHHHHHHHHHHHH AR R # HHHHHHHHH AR
JavaBeansHH#HHHHHAHHHHHHHE <i 0> BHAHHHHHHHHH R

<id

name="propertyName" 0
type="typename" 9
column="column_name" B’
unsaved-value="null|any|none|undefined|id_value" o
access="field|property|ClassName"> 9

node="element-name|@attribute-name|element/@attribute|."

<generator class="generatorClass"/>

</id>

Q00O

o

name (optional): the name of the identifier property.

t y pettttiHHIbernate# I #

col unm (optional - defaults to the property name): the name of the primary key column.
unsaved- val ue (optional - defaults to a "sensible" value): an identifier property value
that indicates an instance is newly instantiated (unsaved), distinguishing it from detached
instances that were saved or loaded in a previous session.

access (optional - defaults to property): the strategy Hibernate should use for accessing
the property value.

72

nane HHAHHHHHR AR
unsaved- val ue ##t#Hibernate 3#tHHHHHHH A

There is an alternative <conposite-id> declaration that allows access to legacy data with
composite keys. Its use is strongly discouraged for anything else.

5.1.4.1. #H#H#HH#HH

HHAHHH <gener at or > #HHHH HHAHHHHHHHHHHH AT oV o HHHHHHHR #HHHHHH
HHHHHHHHHHH < par ame #HHHH TR

<id name="id" type="long" column="cat_id">
<generator class="org.hibernate.id.TableHiLoGenerator">
<param name="table">uid_table</param>
<param name="column">next_hi_value_column</param>
</generator>
</id>

All generators implement the interface or g. hi bernate. i d. | denti fi er Gener at or. Thisis a very
simple interface. Some applications can choose to provide their own specialized implementations,
however, Hibernate provides a range of built-in implementations. The shortcut names for the built-
in generators are as follows:

i ncrenent
| ong , short |, i nt HAHHAHHFHHHE HHHHHH R R
HEHHHHHEH #

identity
DB2, MySQL, MS SQL Server, Sybase, HypersonicSQL##HHHHHH HitHHHHHHE HHHHHHHH
| ong , short , i nt #HH##H#H#H

sequence
DB2, PostgreSQL, Oracle, SAP DB, McKoi#####H InterbasetHHHHHHHHHHHHE HHHHHHHH
#1ong,short ,int #HHH#A#HE

hilo
long , short , i nt #HAHHHHHHHHHHIN | OHHHHHH I NIt (T
i hi ber nat e_uni que_key # next _hi)# hilloHHHEHHIHHIFHHIHHHHEHHEHHEHHEHHE
HAHHHH

seghil o
| ong , short i nt BN OHHHHHHHHHHHHE HHEHH

73

#5# #HHHHOIRH#HHH

uui d
uses a 128-bit UUID algorithm to generate identifiers of type string that are unique within a
network (the IP address is used). The UUID is encoded as a string of 32 hexadecimal digits
in length.

guid
MS SQLH##HH#MYSQL#HHHHHHIHHHHHH G U | DI

native
selects i dentity, sequence or hil o depending upon the capabilities of the underlying
database.

assi gned
lets the application assign an identifier to the object before save() is called. This is the default
strategy if no <gener at or > element is specified.

sel ect
retrieves a primary key, assigned by a database trigger, by selecting the row by some unique
key and retrieving the primary key value.

foreign
uses the identifier of another associated object. It is usually used in conjunction with a <one-
t 0- one> primary key association.

sequence-identity
a specialized sequence generation strategy that utilizes a database sequence for the actual
value generation, but combines this with JDBC3 getGeneratedKeys to return the generated
identifier value as part of the insert statement execution. This strategy is only supported on
Oracle 10g drivers targeted for JDK 1.4. Comments on these insert statements are disabled
due to a bug in the Oracle drivers.

5.1.4.2. Hillo #####H#

The hi | o and seghi | o generators provide two alternate implementations of the hi/lo algorithm.
The first implementation requires a "special" database table to hold the next available "hi" value.
Where supported, the second uses an Oracle-style sequence.

<id name="id" type="long" column="cat_id">
<generator class="hilo">
<param name="table">hi_value</param>
<param name="column">next_value</param>
<param name="max_lo">100</param>
</generator>
</id>

<id name="id" type="long" column="cat_id">

74

<generator class="seqhilo">
<param name="sequence">hi_value</param>
<param name="max_l0">100</param>
</generator>
</id>

Unfortunately, you cannot use hi | o when supplying your own Connect i on to Hibernate. When
Hibernate uses an application server datasource to obtain connections enlisted with JTA, you
must configure the hi ber nat e. tr ansact i on. manager _| ookup_cl ass.

5.1.4.3. UUID ######

The UUID contains: IP address, startup time of the JVM that is accurate to a quarter second,
system time and a counter value that is unique within the JVM. It is not possible to obtain a MAC
address or memory address from Java code, so this is the best option without using JNI.

S5.1.4.4. #HHHHHABHHHHH

For databases that support identity columns (DB2, MySQL, Sybase, MS SQL), you can use
i dentity key generation. For databases that support sequences (DB2, Oracle, PostgreSQL,
Interbase, McKoi, SAP DB) you can use sequence style key generation. Both of these strategies
require two SQL queries to insert a new object. For example:

<id name="id" type="long" column="person_id">
<generator class="sequence">
<param name="sequence">person_id_sequence</param>
</generator>
</id>

<id name="id" type="long" column="person_id" unsaved-value="0">
<generator class="identity"/>
</id>

For cross-platform development, the nati ve strategy will, depending on the capabilities of the
underlying database, choose from the i denti ty, sequence and hi | o strategies.

5.1.4.5. #HHHHHHHAH#H

If you want the application to assign identifiers, as opposed to having Hibernate generate them,
you can use the assi gned generator. This special generator uses the identifier value already
assigned to the object's identifier property. The generator is used when the primary key is a natural
key instead of a surrogate key. This is the default behavior if you do not specify a <gener at or >
element.

75

#5# #HHHHOIRH#HHH

The assi gned generator makes Hibernate use unsaved-val ue="undefi ned". This forces
Hibernate to go to the database to determine if an instance is transient or detached, unless there
is a version or timestamp property, or you define I nt er cept or . i sUnsaved().

5.1.4.6. #HHHHHAARHRHTHAR

Hibernate does not generate DDL with triggers. It is for legacy schemas only.

<id name="id" type="long" column="person_id">
<generator class="select">
<param name="key">socialSecurityNumber</param>
</generator>
</id>

In the above example, there is a unique valued property named soci al Securi t yNunber. It is
defined by the class, as a natural key and a surrogate key named per son_i d, whose value is
generated by a trigger.

5.1.5. Enhanced identifier generators

Starting with release 3.2.3, there are 2 new generators which represent a re-thinking of 2 different
aspects of identifier generation. The first aspect is database portability; the second is optimization
Optimization means that you do not have to query the database for every request for a new
identifier value. These two new generators are intended to take the place of some of the named
generators described above, starting in 3.3.x. However, they are included in the current releases
and can be referenced by FQN.

The first of these new generators is or g. hi ber nat e. i d. enhanced. SequenceSt yl eGener at or
which is intended, firstly, as a replacement for the sequence generator and, secondly, as a better
portability generator than nat i ve. This is because nat i ve generally chooses between i dentity
and sequence which have largely different semantics that can cause subtle issues in applications
eyeing portability. or g. hi ber nat e. i d. enhanced. SequenceSt yl eGener at or , however, achieves
portability in a different manner. It chooses between a table or a sequence in the database to store
its incrementing values, depending on the capabilities of the dialect being used. The difference
between this and nat i ve is that table-based and sequence-based storage have the same exact
semantic. In fact, sequences are exactly what Hibernate tries to emulate with its table-based
generators. This generator has a number of configuration parameters:

« sequence_nane (optional, defaults to hi ber nat e_sequence): the name of the sequence or table
to be used.

e initial_val ue (optional, defaults to 1): the initial value to be retrieved from the sequence/table.
In sequence creation terms, this is analogous to the clause typically named "STARTS WITH".

e increnment _si ze (optional - defaults to 1): the value by which subsequent calls to the sequence/
table should differ. In sequence creation terms, this is analogous to the clause typically named
"INCREMENT BY™".

76

Identifier generator optimization

« force_tabl e_use (optional - defaults to f al se): should we force the use of a table as the
backing structure even though the dialect might support sequence?

« val ue_col umm (optional - defaults to next _val): only relevant for table structures, it is the name
of the column on the table which is used to hold the value.

e optimi zer (optional - defaults to none): See #5.1.6. #ldentifier generator optimization#

The second of these new generators is or g. hi ber nat e. i d. enhanced. Tabl eGener at or, which
is intended, firstly, as a replacement for the t abl e generator, even though it actually functions
much more like or g. hi bernate. i d. Mil ti pl eHi LoPer Tabl eGener at or, and secondly, as a re-
implementation of or g. hi ber nate. i d. Mul ti pl eHi LoPer Tabl eGener at or that utilizes the notion
of pluggable optimizers. Essentially this generator defines a table capable of holding a number of
different increment values simultaneously by using multiple distinctly keyed rows. This generator
has a number of configuration parameters:

* tabl e_nane (optional - defaults to hi ber nat e_sequences): the name of the table to be used.

e val ue_col um_nane (optional - defaults to next _val): the name of the column on the table that
is used to hold the value.

* segnent _col utm_nane (optional - defaults to sequence_nane): the name of the column on the
table that is used to hold the "segment key". This is the value which identifies which increment
value to use.

» segnent _val ue (optional - defaults to def aul t): The "segment key" value for the segment from
which we want to pull increment values for this generator.

e segment _val ue_| engt h (optional - defaults to 255): Used for schema generation; the column
size to create this segment key column.

e initial_val ue (optional - defaults to 1): The initial value to be retrieved from the table.

e increment_size (optional - defaults to 1): The value by which subsequent calls to the table
should differ.

» optim zer (optional - defaults to): See #5.1.6. #ldentifier generator optimization#

5.1.6. Identifier generator optimization

For identifier generators that store values in the database, it is inefficient for them to hit the
database on each and every call to generate a new identifier value. Instead, you can group a bunch
of them in memory and only hit the database when you have exhausted your in-memory value
group. This is the role of the pluggable optimizers. Currently only the two enhanced generators (#
5.1.5. #Enhanced identifier generators# support this operation.

* none (generally this is the default if no optimizer was specified): this will not perform any
optimizations and hit the database for each and every request.

* hilo: applies a hi/lo algorithm around the database retrieved values. The values from the
database for this optimizer are expected to be sequential. The values retrieved from the
database structure for this optimizer indicates the "group number". The i ncrenent _si ze is
multiplied by that value in memory to define a group "hi value".

77

#5# #HHHHOIRH#HHH

« pool ed: as with the case of hi | o, this optimizer attempts to minimize the number of hits to
the database. Here, however, we simply store the starting value for the "next group” into the
database structure rather than a sequential value in combination with an in-memory grouping
algorithm. Here, i ncr enent _si ze refers to the values coming from the database.

5.1.7. composite-id

<composite-id
name="propertyName"
class="ClassName"
mapped="true|false"
access="field|property|ClassName">
node="element-name|."

<key-property name="propertyName" type="typename" column="column_name"/>
<key-many-to-one name="propertyName class="ClassName" column="column_name"/>

</composite-id>

A table with a composite key can be mapped with multiple properties of the class as identifier
properties. The <conposite-id> element accepts <key-property> property mappings and
<key- many-t 0- one> mappings as child elements.

<composite-id>
<key-property name="medicareNumber"/>
<key-property name="dependent"/>
</composite-id>

The persistent class must override equal s() and hashCode() to implement composite identifier
equality. It must also implement Seri al i zabl e.

Unfortunately, this approach means that a persistent object is its own identifier. There is no
convenient "handle" other than the object itself. You must instantiate an instance of the persistent
class itself and populate its identifier properties before you can | oad() the persistent state
associated with a composite key. We call this approach an embedded composite identifier, and
discourage it for serious applications.

2 HHHHH HHHHHHHT <conposi t e- | d>HHHHHAHHAHHHHHHHHHHAHH HHHHHHHH T
BRI AT

<composite-id class="Medicareld" mapped="true">
<key-property name="medicareNumber"/>

78

Discriminator

<key-property name="dependent"/>
</composite-id>

In this example, both the composite identifier class, Medi car el d, and the entity class itself have
properties named nedi car eNunber and dependent . The identifier class must override equal s()
and hashCode() and implement Seri al i zabl e. The main disadvantage of this approach is code
duplication.

BR R R R R

« mapped (optional - defaults to f al se): indicates that a mapped composite identifier is used, and
that the contained property mappings refer to both the entity class and the composite identifier
class.

 cl ass (optional - but required for a mapped composite identifier): the class used as a composite
identifier.

We will describe a third, even more convenient approach, where the composite identifier is
implemented as a component class in #8.4. #iHHHHHHHHHHHHHAH##. The attributes described
below apply only to this alternative approach:

* nane (optional - required for this approach): a property of component type that holds the
composite identifier. Please see chapter 9 for more information.

* access (optional - defaults to pr oper t y): the strategy Hibernate uses for accessing the property
value.

* cl ass (optional - defaults to the property type determined by reflection): the component class
used as a composite identifier. Please see the next section for more information.

The third approach, an identifier component, is recommended for almost all applications.

5.1.8. Discriminator

The <di scri ni nat or > element is required for polymorphic persistence using the table-per-class-
hierarchy mapping strategy. It declares a discriminator column of the table. The discriminator
column contains marker values that tell the persistence layer what subclass to instantiate for a
particular row. A restricted set of types can be used: stri ng, character, i nt eger, byte, short,

bool ean, yes_no, true_fal se.

<discriminator
column="discriminator_column" o
type="discriminator_type" 9

force="true|false"

3
insert="true|false" 9

79

#5# #HHHHOIRH#HHH

formula="arbitrary sqgl expression" 9
/>
€ col um (optional - defaults to cl ass): the name of the discriminator column.
€ type (optional - defaults to st ri ng): a name that indicates the Hibernate type
€ force (optional - defaults to f al se): "forces" Hibernate to specify the allowed discriminator

values, even when retrieving all instances of the root class.
@ insert (optional - defaults to t r ue): set this to f al se if your discriminator column is also part
of a mapped composite identifier. It tells Hibernate not to include the column in SQL | NSERTs.
© formul a (optional): an arbitrary SQL expression that is executed when a type has to be
evaluated. It allows content-based discrimination.

HHHHHHARA <cl ass> # <subcl ass> ### di scri m nat or - val ue #H#HHHHHHHHE

The f or ce attribute is only useful if the table contains rows with "extra" discriminator values that
are not mapped to a persistent class. This will not usually be the case.

The for mul a attribute allows you to declare an arbitrary SQL expression that will be used to
evaluate the type of a row. For example:

<discriminator
formula="case when CLASS_TYPE in (‘a', 'b', 'c') then 0 else 1 end"
type="integer"/>

5.1.9. Version (optional)

The <ver si on> element is optional and indicates that the table contains versioned data. This is
particularly useful if you plan to use long transactions. See below for more information:

<version
column="version_column" 0
name="propertyName" 9
type="typename" El'
access="field|property|ClassName" 9
unsaved-value="null|negative|undefined" 9
generated="never|always" ﬂ

insert="true|false" ﬂ
node="element-name|@attribute-name|element/@attribute|."

80

Timestamp (optional)

® 000 ©

col unm (optional - defaults to the property name): the name of the column holding the version
number.
name: the name of a property of the persistent class.

t ype (optional - defaults to i nt eger): the type of the version number.

access (optional - defaults to pr opert y): the strategy Hibernate uses to access the property
value.

unsaved- val ue (optional - defaults to undef i ned): a version property value that indicates
that an instance is newly instantiated (unsaved), distinguishing it from detached instances
that were saved or loaded in a previous session. Undefi ned specifies that the identifier
property value should be used.

gener at ed (optional - defaults to never): specifies that this version property value is
generated by the database. See the discussion of generated properties for more information.
i nsert (optional - defaults to t r ue): specifies whether the version column should be included
in SQL insert statements. It can be set to f al se if the database column is defined with a
default value of 0.

Version numbers can be of Hibernate type | ong, i nt eger, short, ti mest anp or cal endar.

A version or timestamp property should never be null for a detached instance. Hibernate will detect
any instance with a null version or timestamp as transient, irrespective of what other unsaved-
val ue strategies are specified. Declaring a nullable version or timestamp property is an easy way
to avoid problems with transitive reattachment in Hibernate. It is especially useful for people using
assigned identifiers or composite keys.

5.1.10. Timestamp (optional)

The optional <ti mestanp> element indicates that the table contains timestamped data. This
provides an alternative to versioning. Timestamps are a less safe implementation of optimistic
locking. However, sometimes the application might use the timestamps in other ways.

<timestamp
column="timestamp_column" ﬂ
name="propertyName" 9
access="field|property|ClassName" E"

unsaved-value="nulljundefined"
source="vm|db" 9

generated="never|always" G
node="element-name|@attribute-name|element/@attribute|."

81

#5# #HHHHOIRH#HHH

/>

col um (optional - defaults to the property name): the name of a column holding the
timestamp.

name: the name of a JavaBeans style property of Java type Date or Ti nestanp of the
persistent class.

access (optional - defaults to property): the strategy Hibernate uses for accessing the
property value.

unsaved- val ue (optional - defaults to nul |): a version property value that indicates that an
instance is newly instantiated (unsaved), distinguishing it from detached instances that were
saved or loaded in a previous session. Undef i ned specifies that the identifier property value
should be used.

sour ce (optional - defaults to vm): Where should Hibernate retrieve the timestamp value
from? From the database, or from the current JVM? Database-based timestamps incur an
overhead because Hibernate must hit the database in order to determine the "next value". It
is safer to use in clustered environments. Not all Di al ect s are known to support the retrieval
of the database's current timestamp. Others may also be unsafe for usage in locking due to
lack of precision (Oracle 8, for example).

gener at ed (optional - defaults to never): specifies that this timestamp property value is
actually generated by the database. See the discussion of generated properties for more
information.

@ Note

<Ti mest anp> is equivalent to <versi on type="ti mestanp">. And <ti nest anp
sour ce="db" > is equivalent to <ver si on type="dbti nest anp" >

5.1.11. Property

The <pr opert y> element declares a persistent JavaBean style property of the class.

<property
name="propertyName" o
column="column_name" 9

type="typename"

update="true|false"

insert="true|false"

formula="arbitrary SQL expression" 9

82

Property

o0 oo

© 0

680 0 @9

o

access="field|property|ClassName" ﬂ
lazy="true|false" ﬂ
unique="truelfalse" @
not-null="true|false" g
optimistic-lock="true|false" ‘EI'
generated="never|insert|always" m’

node="element-name|@attribute-name|element/@attribute|."
index="index_name"

unique_key="unique_key_id"

length="L"

precision="P"

scale="S"

nanmeHHHHHHHHEHEH

col um (optional - defaults to the property name): the name of the mapped database table
column. This can also be specified by nested <col unn> element(s).
t y pettitHHHHIbernate##H i #

updat e, insert (optional - defaults to t r ue): specifies that the mapped columns should
be included in SQL UPDATE and/or | NSERT statements. Setting both to f al se allows a pure
"derived" property whose value is initialized from some other property that maps to the same
column(s), or by a trigger or other application.

f or mul aftHH##HHI ## HHHHEHHHHHH S Q L HHHHHIHHHEH I

access (optional - defaults to property): the strategy Hibernate uses for accessing the
property value.

| azy (optional - defaults to f al se): specifies that this property should be fetched lazily when
the instance variable is first accessed. It requires build-time bytecode instrumentation.

uni que (optional): enables the DDL generation of a unique constraint for the columns. Also,
allow this to be the target of a property-ref.

not - nul I (optional): enables the DDL generation of a nullability constraint for the columns.

optim stic-1lock (optional - defaults to t r ue): specifies that updates to this property do or
do not require acquisition of the optimistic lock. In other words, it determines if a version
increment should occur when this property is dirty.

gener at ed (optional - defaults to never): specifies that this property value is actually
generated by the database. See the discussion of generated properties for more information.

typename ##HH#HAHHHH#

1. The name of a Hibernate basic type: i nteger, string, character, date, tinestanp,

float, binary, serializable, object, blob etc.

83

#5# #HHHHOIRH#HHH

2. The name of a Java class with a default basic type: i nt, float, char, java.lang. String,
java.util.Date, java.lang.|nteger, java.sql.d ob etc.

3. HHHHHHHEH Javattitit

4. The class name of a custom type: com i | | fI ow. t ype. MyCust oniType etc.

If you do not specify a type, Hibernate will use reflection upon the named property and guess
the correct Hibernate type. Hibernate will attempt to interpret the name of the return class of the
property getter using, in order, rules 2, 3, and 4. In certain cases you will need the t ype attribute.
For example, to distinguish between Hi ber nat e. DATE and Hi ber nat e. TI MESTAMP, or to specify
a custom type.

The access attribute allows you to control how Hibernate accesses the property at runtime. By
default, Hibernate will call the property get/set pair. If you specify access="fi el d", Hibernate
will bypass the get/set pair and access the field directly using reflection. You can specify
your own strategy for property access by naming a class that implements the interface
org. hi bernate. property. PropertyAccessor.

A powerful feature is derived properties. These properties are by definition read-only. The property
value is computed at load time. You declare the computation as an SQL expression. This then
translates to a SELECT clause subquery in the SQL query that loads an instance:

<property name="totalPrice"
formula="(SELECT SUM (li.quantity*p.price) FROM Lineltem li, Product p
WHERE li.productld = p.productld
AND li.customerld = customerld
AND li.orderNumber = orderNumber)"/>

You can reference the entity table by not declaring an alias on a particular column. This would be
cust oner 1 d in the given example. You can also use the nested <f or mul a> mapping element if
you do not want to use the attribute.

5.1.12. Many-to-one

An ordinary association to another persistent class is declared using a many- t o- one element. The
relational model is a many-to-one association; a foreign key in one table is referencing the primary
key column(s) of the target table.

<many-to-one

name="propertyName" n'
column="column_name" 9
class="ClassName" ﬂ

84

Many-to-one

/>

e

o

@ o ©

cascade="cascade_style" 9
fetch="join|select" 9
update="true|false" ﬂ
insert="true|false" @
property-ref="propertyNameFromAssociatedClass" a
access="field|property|ClassName" @
unique="truelfalse" g
not-null="true|false" ‘E"
optimistic-lock="true|false" m’
lazy="proxy|no-proxy|false" @'
not-found="ignore|exception" {E}
entity-name="EntityName" @
formula="arbitrary SQL expression" @

node="element-name|@attribute-name|element/@attribute|."
embed-xml="true|false"

index="index_name"

unique_key="unique_key_id"
foreign-key="foreign_key name"

name: the name of the property.

col unm (optional): the name of the foreign key column. This can also be specified by nested
<col um> element(s).

cl ass (optional - defaults to the property type determined by reflection): the name of the
associated class.

cascade (optional): specifies which operations should be cascaded from the parent object
to the associated object.

fetch (optional - defaults to sel ect): chooses between outer-join fetching or sequential
select fetching.

update, insert (optional - defaults to t r ue): specifies that the mapped columns should
be included in SQL UPDATE and/or | NSERT statements. Setting both to f al se allows a pure
"derived" association whose value is initialized from another property that maps to the same
column(s), or by a trigger or other application.

property-ref (optional): the name of a property of the associated class that is joined to this
foreign key. If not specified, the primary key of the associated class is used.

85

#5# #HHHHOIRH#HHH

€) access (optional - defaults to property): the strategy Hibernate uses for accessing the
property value.

€ uni que (optional): enables the DDL generation of a unique constraint for the foreign-key
column. By allowing this to be the target of a pr operty-ref, you can make the association
multiplicity one-to-one.

i not-null (optional): enables the DDL generation of a nullability constraint for the foreign
key columns.

(D optinistic-1ock (optional - defaults to t r ue): specifies that updates to this property do or
do not require acquisition of the optimistic lock. In other words, it determines if a version
increment should occur when this property is dirty.

i |azy (optional - defaults to proxy): by default, single point associations are proxied.
| azy="no- proxy" specifies that the property should be fetched lazily when the instance
variable is first accessed. This requires build-time bytecode instrumentation. | azy="f al se"
specifies that the association will always be eagerly fetched.

{® not-found (optional - defaults to excepti on): specifies how foreign keys that reference
missing rows will be handled. i gnor e will treat a missing row as a null association.

i entity-nane (optional): the entity name of the associated class.

B fornul a (). HHHHI #HHHHAH-#SQLH

Setting a value of the cascade attribute to any meaningful value other than none will propagate
certain operations to the associated object. The meaningful values are divided into three
categories. First, basic operations, which include: persi st, merge, delete, save-update,
evict, replicate, lock and refresh; second, special values: del et e- or phan; and third,al |
comma-separated combinations of operation names: cascade="persist, nerge, evict" or
cascade="al |, del et e- or phan". See #10.11. ######### for a full explanation. Note that single
valued, many-to-one and one-to-one, associations do not support orphan delete.

Here is an example of a typical many-t o- one declaration:

<many-to-one name="product" class="Product" column="PRODUCT _ID"/>

The property-ref attribute should only be used for mapping legacy data where a foreign key
refers to a unique key of the associated table other than the primary key. This is a complicated
and confusing relational model. For example, if the Pr oduct class had a unique serial number
that is not the primary key. The uni que attribute controls Hibernate's DDL generation with the
SchemaExport tool.

<property name="serialNumber" unique="true" type="string" column="SERIAL_NUMBER"/>

HHHH#H O der | t emBHHHHHHHHHHIRH

86

One-to-one

<many-to-one name="product" property-ref="serialNumber"
column="PRODUCT_SERIAL_NUMBER"/>

This is not encouraged, however.

HHHHHHHHHHHHHHHH AR HHE#E <prooper t | es> HHHHHHHHAHAHHHHHHHE
BHAHHHHH

If the referenced unique key is the property of a component, you can specify a property path:

<many-to-one name="owner" property-ref="identity.ssn" column="OWNER_SSN'"/>

5.1.13. One-to-one

HHHHHHHHHH I HONe- t 0- one HHHHHHHHH

<one-to-one
name="propertyName" ﬁ
class="ClassName" 9
cascade="cascade_style" E"
constrained="true|false" @
fetch="join|select" 9
property-ref="propertyNameFromAssociatedClass" @
access="field|property|ClassName" ﬂ
formula="any SQL expression" ﬂ
lazy="proxy|no-proxy|false" 9
entity-name="EntityName" ‘E’

node="element-name|@attribute-name|element/@attribute|."
embed-xml="true|false"
foreign-key="foreign_key_name"

/>

€ nane: the name of the property.

87

#5# #HHHHOIRH#HHH

©

cl ass (optional - defaults to the property type determined by reflection): the name of the
associated class.

cascade (optional): specifies which operations should be cascaded from the parent object
to the associated object.

const rai ned (optional): specifies that a foreign key constraint on the primary key of the
mapped table and references the table of the associated class. This option affects the order
in which save() and del et e() are cascaded, and determines whether the association can
be proxied. It is also used by the schema export tool.

fetch (optional - defaults to sel ect): chooses between outer-join fetching or sequential
select fetching.

property-ref (optional): the name of a property of the associated class that is joined to the
primary key of this class. If not specified, the primary key of the associated class is used.
access (optional - defaults to property): the strategy Hibernate uses for accessing the
property value.

f or mul a (optional): almost all one-to-one associations map to the primary key of the owning
entity. If this is not the case, you can specify another column, columns or expression to join
on using an SQL formula. See or g. hi ber nat e. t est . onet oonef or nul a for an example.

| azy (optional - defaults to proxy): by default, single point associations are proxied.
| azy="no- proxy" specifies that the property should be fetched lazily when the
instance variable is first accessed. It requires build-time bytecode instrumentation.
| azy="f al se" specifies that the association will always be eagerly fetched. Note that
if constrained="fal se", proxying is impossible and Hibernate will eagerly fetch the
association.

entity-name (optional): the entity name of the associated class.

There are two varieties of one-to-one associations:

o HiHHAH

o HHHHHHAAAR

Primary key associations do not need an extra table column. If two rows are related by the
association, then the two table rows share the same primary key value. To relate two objects by
a primary key association, ensure that they are assigned the same identifier value.

For a primary key association, add the following mappings to Enpl oyee and Per son respectively:

<one-to-one name="person" class="Person"/>

<one-to-one name="employee" class="Employee" constrained="true"/>

Ensure that the primary keys of the related rows in the PERSON and EMPLOYEE tables are
equal. You use a special Hibernate identifier generation strategy called f or ei gn:

88

Natural-id

<class name="person" table="PERSON">
<id name="id" column="PERSON_ID">
<generator class="foreign">
<param name="property">employee</param>
</generator>
</id>

<one-to-one name="employee"
class="Employee"
constrained="true"/>
</class>

A newly saved instance of Person is assigned the same primary key value as the Enpl oyee
instance referred with the enpl oyee property of that Per son.

Alternatively, a foreign key with a unique constraint, from Enpl oyee to Per son, can be expressed
as:

<many-to-one name="person" class="Person" column="PERSON_ID" unique="true"/>

This association can be made bidirectional by adding the following to the Per son mapping:

<one-to-one name="employee" class="Employee" property-ref="person"/>

5.1.14. Natural-id

<natural-id mutable="true|false"/>
<property ... />
<many-to-one ... />

</natural-id>

Although we recommend the use of surrogate keys as primary keys, you should try to identify
natural keys for all entities. A natural key is a property or combination of properties that is unique
and non-null. It is also immutable. Map the properties of the natural key inside the <nat ural - i d>
element. Hibernate will generate the necessary unique key and nullability constraints and, as a
result, your mapping will be more self-documenting.

89

#5# #HHHHOIRH#HHH

It is recommended that you implement equal s() and hashCode() to compare the natural key
properties of the entity.

This mapping is not intended for use with entities that have natural primary keys.

e nut abl e (optional - defaults to f al se): by default, natural identifier properties are assumed to
be immutable (constant).

5.1.15. Component and dynamic-component

The <conponent > element maps properties of a child object to columns of the table of a parent
class. Components can, in turn, declare their own properties, components or collections. See the
"Component" examples below:

<component
name="propertyName" 0
class="className" 9
insert="true|false" E"
update="true|false" ﬂ

access="field|property|ClassName" g

lazy="true|false" ﬂ
optimistic-lock="true|false" e'
unique="true|false" @
node="element-name|."
>
<property/>
<many-to-one />
</component>
€ nane: the name of the property.
@ cl ass (optional - defaults to the property type determined by reflection): the name of the
component (child) class.
© insert:dothe mapped columns appear in SQL | NSERTs?
@) update: do the mapped columns appear in SQL UPDATEs?
© access (optional - defaults to property): the strategy Hibernate uses for accessing the

property value.

Properties

0

6]

| azy (optional - defaults to f al se): specifies that this component should be fetched lazily
when the instance variable is first accessed. It requires build-time bytecode instrumentation.
optim stic-1ock (optional - defaults to true): specifies that updates to this component
either do or do not require acquisition of the optimistic lock. It determines if a version
increment should occur when this property is dirty.

uni que (optional - defaults to f al se): specifies that a unique constraint exists upon all
mapped columns of the component.

#H# <pr oper t y> #HH #HHHHHHHHRHHHH

<conponent > HHHHHHHHHHHHHHHHHHHE HHHHHHHHHHHHH AR <par ent > I

The <dynani c- conponent > element allows a Map to be mapped as a component, where the
property names refer to keys of the map. See #8.5. #######H#HH## for more information.

5.1.16. Properties

The <properti es> element allows the definition of a named, logical grouping of the properties
of a class. The most important use of the construct is that it allows a combination of properties
to be the target of a property-ref. It is also a convenient way to define a multi-column unique
constraint. For example:

<properties

name="logicalName" 0
insert="true|false" 9
update="true|false" E’

optimistic-lock="true|false

unique="true|false" 9
>
<property[>
<many-to-one />
</properties>
© nane: the logical name of the grouping. It is not an actual property name.
@ insert: dothe mapped columns appear in SQL | NSERTs?
€ updat e: do the mapped columns appear in SQL UPDATEs?
@ optinistic-lock (optional - defaults to t r ue): specifies that updates to these properties

either do or do not require acquisition of the optimistic lock. It determines if a version
increment should occur when these properties are dirty.

91

#5# #HHHHOIRH#HHH

© uni que (optional - defaults to f al se): specifies that a unique constraint exists upon all
mapped columns of the component.

HHAHHHHHHHHE <pr oper t i es> HHHHHHHHHHH#

<class name="Person">
<id name="personNumber"/>

<properties name="name"
unigue="true" update="false">
<property name="firstName"/>
<property name="initial"/>
<property name="lastName"/>
</properties>
</class>

You might have some legacy data association that refers to this unique key of the Per son table,
instead of to the primary key:

<many-to-one name="person"
class="Person" property-ref="name">
<column name="firstName"/>
<column name="initial"/>
<column name="lastName"/>
</many-to-one>

The use of this outside the context of mapping legacy data is not recommended.

5.1.17. Subclass

Polymorphic persistence requires the declaration of each subclass of the root persistent class. For
the table-per-class-hierarchy mapping strategy, the <subcl ass> declaration is used. For example:

<subclass
name="ClassName" n'
discriminator-value="discriminator_value" 9
proxy="ProxylInterface" ﬂ'

lazy="true|false" 9

92

Joined-subclass

dynamic-update="true|false"
dynamic-insert="true|false"
entity-name="EntityName"
node="element-name"
extends="SuperclassName">

<property />

</subclass>

[1]
2]

3]
4]

namne: the fully qualified class name of the subclass.

di scrimi nat or - val ue (optional - defaults to the class name): a value that distinguishes
individual subclasses.
pr oxy (optional): specifies a class or interface used for lazy initializing proxies.

| azy (optional - defaults to t r ue): setting | azy="f al se" disables the use of lazy fetching.

Each subclass declares its own persistent properties and subclasses. <versi on> and <i d>
properties are assumed to be inherited from the root class. Each subclass in a hierarchy must
define a unique di scri m nat or - val ue. If this is not specified, the fully qualified Java class name
is used.

For information about inheritance mappings see # 9. Inheritance mapping.

5.1.18. Joined-subclass

Each subclass can also be mapped to its own table. This is called the table-per-subclass mapping
strategy. An inherited state is retrieved by joining with the table of the superclass. To do this you
use the <j oi ned- subcl ass> element. For example:

<joined-subclass

name="ClassName" 0
table="tablename" 9
proxy="ProxylInterface" E"
lazy="true|false" 9

dynamic-update="true|false"
dynamic-insert="true|false"
schema="schema"
catalog="catalog"
extends="SuperclassName"
persister="ClassName"
subselect="SQL expression"

93

#5# #HHHHOIRH#HHH

entity-name="EntityName
node="element-name">

<key>

<property />

</joined-subclass>

@0 e

4

name: the fully qualified class name of the subclass.
t abl e: the name of the subclass table.
pr oxy (optional): specifies a class or interface to use for lazy initializing proxies.

| azy (optional, defaults to t r ue): setting | azy="f al se" disables the use of lazy fetching.

A discriminator column is not required for this mapping strategy. Each subclass must, however,
declare a table column holding the object identifier using the <key> element. The mapping at the
start of the chapter would then be re-written as:

<?xml version="1.0"?>
<IDOCTYPE hibernate-mapping PUBLIC

"-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="eg">

<class name="Cat" table="CATS">
<id name="id" column="uid" type="long">
<generator class="hilo"/>
</id>
<property name="birthdate" type="date"/>
<property name="color" not-null="true"/>
<property name="sex" not-null="true"/>
<property name="weight"/>
<many-to-one name="mate"/>
<set name="kittens">
<key column="MOTHER"/>
<one-to-many class="Cat"/>
</set>
<joined-subclass hame="DomesticCat" table="DOMESTIC_CATS">
<key column="CAT"/>
<property name="name" type="string"/>
</joined-subclass>
</class>

94

Union-subclass

<class name="eg.Dog">

<!-- mapping for Dog could go here -->

</class>

</hibernate-mapping>

For information about inheritance mappings see # 9. Inheritance mapping.

5.1.19. Union-subclass

A third option is to map only the concrete classes of an inheritance hierarchy to tables. This is
called the table-per-concrete-class strategy. Each table defines all persistent states of the class,
including the inherited state. In Hibernate, it is not necessary to explicitly map such inheritance
hierarchies. You can map each class with a separate <cl ass> declaration. However, if you wish
use polymorphic associations (e.g. an association to the superclass of your hierarchy), you need

to use the <uni on- subcl ass> mapping. For example:

<union-subclass

name="ClassName"
table="tablename"

proxy="ProxylInterface"

lazy="true|false" o

dynamic-update="true|false"
dynamic-insert="true|false"
schema="schema"
catalog="catalog"
extends="SuperclassName"
abstract="true|false"
persister="ClassName"
subselect="SQL expression
entity-name="EntityName"
node="element-name">

<property />

</union-subclass>

1]
2]

nane: the fully qualified class name of the subclass.

t abl e: the name of the subclass table.

95

#5# #HHHHOIRH#HHH

© proxy (optional): specifies a class or interface to use for lazy initializing proxies.

O | azy (optional, defaults to t r ue): setting | azy="f al se" disables the use of lazy fetching.

BRAHHHHH AR R

For information about inheritance mappings see # 9. Inheritance mapping.

5.1.20. Join

Using the <j oi n> element, it is possible to map properties of one class to several tables that have
a one-to-one relationship. For example:

<join
table="tablename"
schema="owner"

1
2]
catalog="catalog" e
fetch="join|select" 4
5
6

inverse="true|false"

optional="true|false">
<key ... />
<property ... />

</join>

€ tabl e: the name of the joined table.

€ schenm (optional): overrides the schema name specified by the root <hi ber nat e- mappi ng>
element.

€ catal og (optional): overrides the catalog name specified by the root <hi ber nat e- mappi ng>
element.

@) fetch (optional - defaults to j oi n): if set to j oi n, the default, Hibernate will use an inner
join to retrieve a <j oi n> defined by a class or its superclasses. It will use an outer join for
a <j oi n> defined by a subclass. If set to sel ect then Hibernate will use a sequential select
for a <j oi n> defined on a subclass. This will be issued only if a row represents an instance
of the subclass. Inner joins will still be used to retrieve a <j oi n> defined by the class and
its superclasses.

© inverse (optional - defaults to f al se): if enabled, Hibernate will not insert or update the
properties defined by this join.

96

Key

€ optional (optional - defaults to f al se): if enabled, Hibernate will insert a row only if the
properties defined by this join are non-null. It will always use an outer join to retrieve the
properties.

For example, address information for a person can be mapped to a separate table while preserving
value type semantics for all properties:

<class name="Person"
table="PERSON">

<id name="id" column="PERSON_ID">...</id>

<join table="ADDRESS">
<key column="ADDRESS_ID"/>
<property name="address"/>
<property name="zip"/>
<property name="country"/>
</join>

This feature is often only useful for legacy data models. We recommend fewer tables than classes
and a fine-grained domain model. However, it is useful for switching between inheritance mapping
strategies in a single hierarchy, as explained later.

5.1.21. Key

The <key> element has featured a few times within this guide. It appears anywhere the parent
mapping element defines a join to a new table that references the primary key of the original table.
It also defines the foreign key in the joined table:

<key
column="columnname" o
on-delete="noaction|cascade" 9
property-ref="propertyName" ﬂ'
not-null="true|false" 0
update="true|false" 9
6

unique="truelfalse"
/>

97

#5# #HHHHOIRH#HHH

col unm (optional): the name of the foreign key column. This can also be specified by nested
<col um> element(s).

on- del et e (optional - defaults to noact i on): specifies whether the foreign key constraint has
database-level cascade delete enabled.

property-ref (optional): specifies that the foreign key refers to columns that are not the
primary key of the original table. It is provided for legacy data.

not - nul I (optional): specifies that the foreign key columns are not nullable. This is implied
whenever the foreign key is also part of the primary key.

updat e (optional): specifies that the foreign key should never be updated. This is implied
whenever the foreign key is also part of the primary key.

uni que (optional): specifies that the foreign key should have a unique constraint. This is
implied whenever the foreign key is also the primary key.

For systems where delete performance is important, we recommend that all keys should be
defined on- del et e="cascade" . Hibernate uses a database-level ON CASCADE DELETE constraint,
instead of many individual DELETE statements. Be aware that this feature bypasses Hibernate's
usual optimistic locking strategy for versioned data.

The not-nul | and updat e attributes are useful when mapping a unidirectional one-to-many
association. If you map a unidirectional one-to-many association to a non-nullable foreign key,
you must declare the key column using <key not-nul | ="true">.

5.1.22. Column and formula elements

Mapping elements which accept a col uim attribute will alternatively accept a <col urm>
subelement. Likewise, <f or nul a> is an alternative to the f or mul a attribute. For example:

<column

name="column_name"
length="N"

precision="N"

scale="N"
not-null="true|false"
unique="true|false"
unigue-key="multicolumn_unique_key name
index="index_name"
sql-type="sqgl_type name"
check="SQL expression"
default="SQL expression"/>

<formula>SQL expression</formula>

98

Import

col um and f or nul a attributes can even be combined within the same property or association
mapping to express, for example, exotic join conditions.

<many-to-one name="homeAddress" class="Address"
insert="false" update="false">
<column name="person_id" not-null="true" length="10"/>
<formula>'MAILING'</formula>
</many-to-one>

5.1.23. Import

If your application has two persistent classes with the same name, and you do not want to specify
the fully qualified package name in Hibernate queries, classes can be "imported" explicitly, rather
than relying upon aut o-i nport="true". You can also import classes and interfaces that are not
explicitly mapped:

<import class="java.lang.Object" rename="Universe"/>

<import
class="ClassName" o
rename="ShortName" 9
/>

€ cl ass: the fully qualified class name of any Java class.

€ renane (optional - defaults to the unqualified class nhame): a hame that can be used in the
guery language.

5.1.24. Any

There is one more type of property mapping. The <any> mapping element defines a polymorphic
association to classes from multiple tables. This type of mapping requires more than one column.
The first column contains the type of the associated entity. The remaining columns contain the
identifier. It is impossible to specify a foreign key constraint for this kind of association. This is not
the usual way of mapping polymorphic associations and you should use this only in special cases.
For example, for audit logs, user session data, etc.

The net a-t ype attribute allows the application to specify a custom type that maps database
column values to persistent classes that have identifier properties of the type specified by i d-
t ype. You must specify the mapping from values of the meta-type to class names.

99

#5# #HHHHOIRH#HHH

<any name="being" id-type="long" meta-type="string">
<meta-value value="TBL_ANIMAL" class="Animal"/>
<meta-value value="TBL_HUMAN" class="Human"/>
<meta-value value="TBL_ALIEN" class="Alien"/>
<column name="table_name"/>
<column name="id"/>

</any>

<any
name="propertyName" 0
id-type="idtypename" 9
meta-type="metatypename" B’
cascade="cascade_style" 0
access="field|property|ClassName" 9

optimistic-lock="true|false" @

<meta-value ... />
<meta-value ... />

<column />
<column />

naneHHHHEH
i d- ty et

@00

nmet a-type (optional - defaults to string): any type that is allowed for a discriminator
mapping.

cascade##HH - #HHHHE none ## HHHHHHIEHHH

access (optional - defaults to property): the strategy Hibernate uses for accessing the
property value.

optimistic-1ock (optional - defaults to t r ue): specifies that updates to this property either
do or do not require acquisition of the optimistic lock. It defines whether a version increment
should occur if this property is dirty.

@ 09

100

Hibernate types

5.2. Hibernate types

5.2.1. #HHHHHHHAHH

In relation to the persistence service, Java language-level objects are classified into two groups:

An entity exists independently of any other objects holding references to the entity. Contrast this
with the usual Java model, where an unreferenced object is garbage collected. Entities must be
explicitly saved and deleted. Saves and deletions, however, can be cascaded from a parent entity
to its children. This is different from the ODMG model of object persistence by reachability and
corresponds more closely to how application objects are usually used in large systems. Entities
support circular and shared references. They can also be versioned.

An entity's persistent state consists of references to other entities and instances of value types.
Values are primitives: collections (not what is inside a collection), components and certain
immutable objects. Unlike entities, values in particular collections and components, are persisted
and deleted by reachability. Since value objects and primitives are persisted and deleted along
with their containing entity, they cannot be independently versioned. Values have no independent
identity, so they cannot be shared by two entities or collections.

Until now, we have been using the term "persistent class" to refer to entities. We will continue to
do that. Not all user-defined classes with a persistent state, however, are entities. A component is
a user-defined class with value semantics. A Java property of type j ava. | ang. Stri ng also has
value semantics. Given this definition, all types (classes) provided by the JDK have value type
semantics in Java, while user-defined types can be mapped with entity or value type semantics.
This decision is up to the application developer. An entity class in a domain model will normally
have shared references to a single instance of that class, while composition or aggregation usually
translates to a value type.

We will revisit both concepts throughout this reference guide.

The challenge is to map the Java type system, and the developers' definition of entities and
value types, to the SQL/database type system. The bridge between both systems is provided
by Hibernate. For entities, <cl ass>, <subcl ass> and so on are used. For value types we use
<pr oper t y>, <conponent >etc., that usually have a t ype attribute. The value of this attribute is
the name of a Hibernate mapping type. Hibernate provides a range of mappings for standard
JDK value types out of the box. You can write your own mapping types and implement your own
custom conversion strategies.

With the exception of collections, all built-in Hibernate types support null semantics.
5.2.2. ####
The built-in basic mapping types can be roughly categorized into the following:

i nteger, long, short, float, double, character, byte, bool ean, yes_no, true_fal se
JavarH#HHHHH#HHHHH T SQLAHH##HH#H#A### bool ean, yes_no #
true_f al se ## ###Java# bool ean ### | ava. | ang. Bool ean #####HHH#H##HE

101

#5# #HHHHOIRH#HHH

string
java. |l ang. Stri ng ## VARCHAR ####Oracle# VARCHAR2 ###H#HHHHHHH

date, tine, tinmestanp
java. util . Dat e ###HHH#H##AH#SQLIH DATE, TI ME , TI MESTANP #HHHHHHHIHHHHE HHHHHHHIHY

cal endar, cal endar_date
java. util. Cal endar ##SQL# ## TI NESTAVP , DATE (HHHHHHHHHHHHHHHHHHHEHH

bi g_deci nal, bi g_integer
j ava. mat h. Bi gDeci mal #j ava. mat h. Bi gl nt eger ## NUVERI CH####Oracle# NUVBER ###H#HH
i

| ocal e, tinezone, currency
java.util.Local e,java.util.TimeZone,java. util.Currency ## VARCHAR ####Oracle#
VARCHAR? ##H#HHH##HHE Local e # Cur r ency #HH##HHIH#H H#H#HH SO #HHEH##HH#H Ti neZone
HHHHAHIHH #HHEE | D #AHHH AR

cl ass
java. |l ang. d ass ## VARCHAR ####Oracle# VARCHAR ###H#H#HHHHHE C ass HHHHHHHHHHHHE
HEH R

bi nary
HHHHHHHHHHH S Q LHHHHHHHHHHHH AR

t ext
#HJavaHHH##SQLHE CLOB ### TEXT #HHHHHHHHHH

serializable
Maps serializable Java types to an appropriate SQL binary type. You can also indicate the
Hibernate type seri al i zabl e with the name of a serializable Java class or interface that does
not default to a basic type.

cl ob, bl ob
Type mappings for the JDBC classes j ava. sql . O ob and j ava. sql . Bl ob. These types can
be inconvenient for some applications, since the blob or clob object cannot be reused outside
of a transaction. Driver support is patchy and inconsistent.

i mm dat e, immtine, i mm_tinestanp, i mm_cal endar, i mm_cal endar _dat e,
imm serializable, inmmbinary
Type mappings for what are considered mutable Java types. This is where Hibernate makes
certain optimizations appropriate only for immutable Java types, and the application treats
the object as immutable. For example, you should not call Dat e. set Ti me() for an instance
mapped asi nm ti mest anp. To change the value of the property, and have that change made
persistent, the application must assign a new, nonidentical, object to the property.

Unique identifiers of entities and collections can be of any basic type except bi nary, bl ob and
cl ob. Composite identifiers are also allowed. See below for more information.

102

HHAHH

HiH###HIF#HOr g. hi ber nat e. Hi ber nat e ###### Type #HHHH#H##HHHH#H# #H###H ber nat e. STRING#
st ri ng #AHHHHHAHHHE

5.2.3. #HH#H#H

It is relatively easy for developers to create their own value types. For example, you might want
to persist properties of type j ava. | ang. Bi gl nt eger to VARCHAR columns. Hibernate does not
provide a built-in type for this. Custom types are not limited to mapping a property, or collection
element, to a single table column. So, for example, you might have a Java property get Name() /
set Name() of type java. |l ang. String that is persisted to the columns FI RST_NAME, | NI Tl AL,
SURNAME.

To implement a custom type, implement either org.hibernate.UserType oOr
or g. hi ber nat e. Conposi t eUser Type and declare properties using the fully qualified classname
of the type. View or g. hi bernat e. t est. Doubl eStri ngType to see the kind of things that are
possible.

<property name="twoStrings" type="org.hibernate.test.DoubleStringType">
<column name="first_string"/>
<column name="second_string"/>

</property>

<col umm> #### HHHHHHHHHHHH R

Conposi t eUser Type , EnhancedUser Type , User Col | ecti onType , User Ver si onType #####H#H#
B R

You can even supply parameters to a User Type in the mapping file. To do this, your User Type must
implement the or g. hi ber nat e. usertype. Par anet eri zedType interface. To supply parameters
to your custom type, you can use the <t ype> element in your mapping files.

<property hame="priority">
<type name="com.mycompany.usertypes.DefaultValuelntegerType">
<param name="default">0</param>

</type>
</property>

User Type ## #H######H# Proper t i es #H##H#HHHHH# def aul t HHHHHHHHHHHHHHHHHHHH

If you regularly use a certain User Type, it is useful to define a shorter name for it. You can do this
using the <t ypedef > element. Typedefs assign a name to a custom type, and can also contain a
list of default parameter values if the type is parameterized.

103

#5# #HHHHOIRH#HHH

<typedef class="com.mycompany.usertypes.DefaultValuelntegerType" name="default_zero">
<param name="default">0</param>
</typedef>

<property name="priority" type="default_zero"/>

HHHH T (Y pedeTHHHHHHHHIHHIHH I

Even though Hibernate's rich range of built-in types and support for components means you will
rarely need to use a custom type, it is considered good practice to use custom types for non-
entity classes that occur frequently in your application. For example, a Monet ar yAnount class is a
good candidate for a Conposi t eUser Type, even though it could be mapped as a component. One
reason for this is abstraction. With a custom type, your mapping documents would be protected
against changes to the way monetary values are represented.

5. 3. HHAHHBHHAHHIHHIH AT

It is possible to provide more than one mapping for a particular persistent class. In this case, you
must specify an entity name to disambiguate between instances of the two mapped entities. By
default, the entity name is the same as the class name. Hibernate lets you specify the entity name
when working with persistent objects, when writing queries, or when mapping associations to the
named entity.

<class name="Contract" table="Contracts"
entity-name="CurrentContract">

<set name="history" inverse="true"
order-by="effectiveEndDate desc">
<key column="currentContractld"/>
<one-to-many entity-name="HistoricalContract"/>
</set>
</class>

<class name="Contract" table="ContractHistory"
entity-name="HistoricalContract">

<many-to-one name="currentContract"
column="currentContractld"
entity-name="CurrentContract"/>
</class>

104

HHHHRHHHE SQL #7#

Associations are now specified using enti t y- nane instead of cl ass.

S.4. #HHH#H#HHHIHAH SQL #HH#

You can force Hibernate to quote an identifier in the generated SQL by enclosing the table or
column name in backticks in the mapping document. Hibernate will use the correct quotation style
forthe SQL Di al ect . This is usually double quotes, but the SQL Server uses brackets and MySQL
uses backticks.

<class name="Lineltem" table=""Line Item™>
<id name="id" column=""ltem Id™"/><generator class="assigned"/></id>
<property name="itemNumber" column=""Item #"/>

</class>

O.0. HURHIHTHIH

XML does not suit all users so there are some alternative ways to define O/R mapping metadata
in Hibernate.

5.5.1. XDoclet ###H#H#H####

Many Hibernate users prefer to embed mapping information directly in sourcecode using XDoclet
@i ber nat e. t ags. We do not cover this approach in this reference guide since it is considered part
of XDoclet. However, we include the following example of the Cat class with XDoclet mappings:

package eg;
import java.util.Set;
import java.util.Date;

/**

* @hibernate.class

* table="CATS"

*/

public class Cat {
private Long id; // identifier
private Date birthdate;
private Cat mother;
private Set kittens
private Color color;
private char sex;
private float weight;

105

#5# #HHHHOIRH#HHH

/*

* @hibernate.id

* generator-class="native"

* column="CAT_ID"

*/

public Long getld() {
return id;

}

private void setld(Long id) {
this.id=id;

/**

* @hibernate.many-to-one

* column="PARENT _ID"

*/

public Cat getMother() {
return mother;

}

void setMother(Cat mother) {
this.mother = mother;

/**

* @hibernate.property

* column="BIRTH_DATE"

*/

public Date getBirthdate() {
return birthdate;

}

void setBirthdate(Date date) {
birthdate = date;

}

/**

* @hibernate.property

* column="WEIGHT"

*/

public float getWeight() {
return weight;

}

void setWeight(float weight) {
this.weight = weight;

106

XDoclet #t#t#HH#

/**

* @hibernate.property

* column="COLOR"

* not-null="true"

*/

public Color getColor() {
return color;

}

void setColor(Color color) {
this.color = color;

}

/**

* @hibernate.set

* inverse="true"

* order-by="BIRTH_DATE"

* @hibernate.collection-key

* column="PARENT _ID"

* @hibernate.collection-one-to-many

*/

public Set getKittens() {
return kittens;

}

void setKittens(Set kittens) {
this.kittens = kittens;

}

/l addKitten not needed by Hibernate

public void addKitten(Cat kitten) {
kittens.add(kitten);

/**

* @hibernate.property

* column="SEX"

* not-null="true"

* update="false"

*/

public char getSex() {
return sex;

}

void setSex(char sex) {
this.sex=sex;

107

#5# #HHHHOIRH#HHH

See the Hibernate website for more examples of XDoclet and Hibernate.

5.5.2. IDK 5.0 ###H##H#HHHHH#

JDK 5.0 introduced XDaoclet-style annotations at the language level that are type-safe and checked
at compile time. This mechanism is more powerful than XDoclet annotations and better supported
by tools and IDEs. IntelliJ IDEA, for example, supports auto-completion and syntax highlighting
of JDK 5.0 annotations. The new revision of the EJB specification (JSR-220) uses JDK 5.0
annotations as the primary metadata mechanism for entity beans. Hibernate3 implements the
Entit yManager of JSR-220 (the persistence API). Support for mapping metadata is available
via the Hibernate Annotations package as a separate download. Both EJB3 (JSR-220) and
Hibernate3 metadata is supported.

HAREIBHHHAHHHHHHHHHHAAHP O JOHHHHHHHE

@Entity(access = AccessType.FIELD)
public class Customer implements Serializable {

@Id;
Long id;

String firstName;
String lastName;
Date birthday;

@Transient
Integer age;

@Embedded
private Address homeAddress;

@OneToMany(cascade=CascadeType.ALL)
@JoinColumn(name="CUSTOMER_ID")

Set<Order> orders;

/I Getter/setter and business methods

@ Note

Support for JDK 5.0 Annotations (and JSR-220) is currently under development.
Please refer to the Hibernate Annotations module for more detalils.

108

Generated properties

5.6. Generated properties

Generated properties are properties that have their values generated by the database. Typically,
Hibernate applications needed to refresh objects that contain any properties for which the
database was generating values. Marking properties as generated, however, lets the application
delegate this responsibility to Hibernate. When Hibernate issues an SQL INSERT or UPDATE
for an entity that has defined generated properties, it immediately issues a select afterwards to
retrieve the generated values.

Properties marked as generated must additionally be non-insertable and non-updateable. Only
versions, timestamps, and simple properties, can be marked as generated.

never (the default): the given property value is not generated within the database.

i nsert: the given property value is generated on insert, but is not regenerated on subsequent
updates. Properties like created-date fall into this category. Even though version and timestamp
properties can be marked as generated, this option is not available.

al ways: the property value is generated both on insert and on update.

5.7. Auxiliary database objects

Auxiliary database objects allow for the CREATE and DROP of arbitrary database objects.
In conjunction with Hibernate's schema evolution tools, they have the ability to fully define a
user schema within the Hibernate mapping files. Although designed specifically for creating and
dropping things like triggers or stored procedures, any SQL command that can be run via a
java. sgl . St at enent . execut e() method is valid (for example, ALTERS, INSERTS, etc.). There
are essentially two modes for defining auxiliary database objects:

The first mode is to explicitly list the CREATE and DROP commands in the mapping file:

<hibernate-mapping>

<database-object>
<create>CREATE TRIGGER my_trigger ...</create>
<drop>DROP TRIGGER my_trigger</drop>
</database-object>
</hibernate-mapping>

The second mode is to supply a custom class that constructs the CREATE and DROP commands.
This custom class must implement the or g. hi ber nat e. mappi ng. Auxi | i ar yDat abaseQbj ect
interface.

<hibernate-mapping>

109

#5# #HHHHOIRH#HHH

<database-object>
<definition class="MyTriggerDefinition"/>

</database-object>

</hibernate-mapping>

Additionally, these database objects can be optionally scoped so that they only apply when certain
dialects are used.

<hibernate-mapping>

<database-object>
<definition class="MyTriggerDefinition"/>
<dialect-scope name="org.hibernate.dialect.Oracle9iDialect"/>
<dialect-scope name="org.hibernate.dialect.Oracle10gDialect"/>
</database-object>
</hibernate-mapping>

110

Collection mapping

6.1. HHHHHHHAHH

Hibernate requires that persistent collection-valued fields be declared as an interface type. For
example:

public class Product {
private String serialNumber;
private Set parts = new HashSet();

public Set getParts() { return parts; }

void setParts(Set parts) { this.parts = parts; }

public String getSerialNumber() { return serialNumber; }
void setSerialNumber(String sn) { serialNumber = sn; }

The actual interface might be java.util.Set, java.util.Collection, java.util.List,
java.util.Map, java.util.SortedSet, java.util.SortedMap or anything you like
("anything you like" means you will have to write an implementation of
or g. hi bernat e. usert ype. User Col | ecti onType.)

Notice how the instance variable was initialized with an instance of HashSet . This is the best way
to initialize collection valued properties of newly instantiated (non-persistent) instances. When you
make the instance persistent, by calling per si st () for example, Hibernate will actually replace
the HashSet with an instance of Hibernate's own implementation of Set . Be aware of the following
errors:

Cat cat = new DomesticCat();
Cat kitten = new DomesticCat();

Set kittens = new HashSet();

kittens.add(kitten);

cat.setKittens(kittens);

session.persist(cat);

kittens = cat.getKittens(); // Okay, kittens collection is a Set
(HashSet) cat.getKittens(); // Error!

The persistent collections injected by Hibernate behave like HashMap, HashSet , Tr eeMap, Tr eeSet
or Arrayli st, depending on the interface type.

111

#6# Collection mapping

Collections instances have the usual behavior of value types. They are automatically persisted
when referenced by a persistent object and are automatically deleted when unreferenced. If a
collection is passed from one persistent object to another, its elements might be moved from one
table to another. Two entities cannot share a reference to the same collection instance. Due to
the underlying relational model, collection-valued properties do not support null value semantics.
Hibernate does not distinguish between a null collection reference and an empty collection.

Use persistent collections the same way you use ordinary Java collections. However, please
ensure you understand the semantics of bidirectional associations (these are discussed later).

0.2, HIHMLHIHLE

HiHH

There are quite a range of mappings that can be generated for collections that

cover many common relational models. We suggest you experiment with the
schema generation tool so that you understand how various mapping declarations
translate to database tables.

The Hibernate mapping element used for mapping a collection depends upon the type of interface.
For example, a <set > element is used for mapping properties of type Set .

<class name="Product">
<id name="serialNumber" column="productSerialNumber"/>
<set name="parts">
<key column="productSerialNumber" not-null="true"/>
<one-to-many class="Part"/>
</set>
</class>

B <set > ### <l i st ># <map>#<bag># <array>#H<prinitive-array> #i##H #Hi
H#Hit<map> #HHHHHHHHE

<map
name="propertyName" n
table="table_name" 'E
schema="schema_name" 9

lazy="true|extra|false"

©0

inverse="true|false"

112

BHAHHHHHH

cascade:"all|none|save-update|deIetelaII—deIete—orphan|deletﬂe-orphan"

sort="unsorted|natural|comparatorClass" ﬂ
order-by="column_name asc|desc" @
where="arbitrary sql where condition" g
fetch="join|select|subselect" ‘E"
batch-size="N" 'iI'
access="field|property|ClassName" @
optimistic-lock="true|false" iE
mutable="true|false" "B

node="element-name|."
embed-xml="true|false"

<key />

<map-key />

<element />
</map>

€ nane: the collection property name

@ tabl e (optional - defaults to property name): the name of the collection table. It is not used
for one-to-many associations.

© schenn (optional): the name of a table schema to override the schema declared on the root
element

O | azy (optional - defaults to t r ue): disables lazy fetching and specifies that the association

is always eagerly fetched. It can also be used to enable "extra-lazy" fetching where most

operations do not initialize the collection. This is suitable for large collections.

i nverse (optional - defaults to fal se): marks this collection as the "inverse" end of a

bidirectional association.

cascade (optional - defaults to none): enables operations to cascade to child entities.

sort (optional): specifies a sorted collection with nat ur al sort order or a given comparator
class.

or der - by (optional, JDK1.4 only): specifies a table column or columns that define the
iteration order of the Map, Set or bag, together with an optional asc or desc.

wher e (optional): specifies an arbitrary SQL WHERE condition that is used when retrieving or
removing the collection. This is useful if the collection needs to contain only a subset of the
available data.

e © 90 o

113

#6# Collection mapping

fetch (optional, defaults to sel ect): chooses between outer-join fetching, fetching by
sequential select, and fetching by sequential subselect.

bat ch- si ze (optional, defaults to 1): specifies a "batch size" for lazily fetching instances of
this collection.

access (optional - defaults to property): the strategy Hibernate uses for accessing the
collection property value.

optim stic-1ock (optional - defaults to true): specifies that changes to the state of the
collection results in increments of the owning entity's version. For one-to-many associations
you may want to disable this setting.

{ nutabl e (optional - defaults to t rue): a value of f al se specifies that the elements of the
collection never change. This allows for minor performance optimization in some cases.

® ® © 6

6.2.1. #HHHHHABHHHHH

Collection instances are distinguished in the database by the foreign key of the entity that owns the
collection. This foreign key is referred to as the collection key column, or columns, of the collection
table. The collection key column is mapped by the <key> element.

There can be a nullability constraint on the foreign key column. For most collections, this is implied.
For unidirectional one-to-many associations, the foreign key column is nullable by default, so you
may need to specify not - nul | ="true".

<key column="productSerialNumber" not-null="true"/>

The foreign key constraint can use ON DELETE CASCADE.

<key column="productSerialNumber" on-delete="cascade"/>

<key> HHHHHHHHHHHHHHHHHH A

0.2.2. HHtHHHAHHHHH

Collections can contain almost any other Hibernate type, including: basic types, custom types,
components and references to other entities. This is an important distinction. An object in a
collection might be handled with "value" semantics (its life cycle fully depends on the collection
owner), or it might be a reference to another entity with its own life cycle. In the latter case, only
the "link" between the two objects is considered to be a state held by the collection.

HHHHHHE HHHHH I A R <e| ement > ### <conposi t e- el enent > #HHAHH#HFHHH
HHAHHEHAHAFHE <one- t 0- many > ### <many - t 0- many > #HAAAHHHHEFHHE R
BRI R AT

114

HHHHHHHHH A

0.2.3. #ennHEaanaHy

All collection mappings, except those with set and bag semantics, need an index column in the
collection table. An index column is a column that maps to an array index, or Li st index, or Map
key. The index of a Map may be of any basic type, mapped with <map- key>. It can be an entity
reference mapped with <map- key- many-t o- many>, or it can be a composite type mapped with
<conposi t e- map- key>. The index of an array or list is always of type i nt eger and is mapped
using the <l i st-index> element. The mapped column contains sequential integers that are
numbered from zero by default.

<list-index
column="column_name" 0
base="0|1|..."/>

€ col um_nane (required): the name of the column holding the collection index values.

€ base (optional - defaults to 0): the value of the index column that corresponds to the first
element of the list or array.

<map-key
column="column_name" o
formula="any SQL expression" 9

type="type_name" B
node="@attribute-name"
length="N"/>

€ col um (optional): the name of the column holding the collection index values.

f or mul a (optional): a SQL formula used to evaluate the key of the map.

©

© type (required): the type of the map keys.

<map-key-many-to-many
column="column_name" o

formula="any SQL expression" eﬂ'
class="ClassName"
/>

€ col um (optional): the name of the foreign key column for the collection index values.

115

#6# Collection mapping

€ formul a (optional): a SQ formula used to evaluate the foreign key of the map key.

© cl ass (required): the entity class used as the map key.

If your table does not have an index column, and you still wish to use Li st as the property type,
you can map the property as a Hibernate <bag>. A bag does not retain its order when it is retrieved
from the database, but it can be optionally sorted or ordered.

6.2.4. BHHHHHHHHAT

Any collection of values or many-to-many associations requires a dedicated collection table with
a foreign key column or columns, collection element column or columns, and possibly an index
column or columns.

For a collection of values use the <el enent > tag. For example:

<element
column="column_name" o
formula="any SQL expression" 9

type="typename" ﬂ
length="L"
precision="P"
scale="S"
not-null="true|false"
unique="true|false"
node="element-name"

/>

€ col um (optional): the name of the column holding the collection element values.
@ formul a (optional): an SQL formula used to evaluate the element.

© type (required): the type of the collection element.

A many-to-many association is specified using the <many- t o- many> element.

<many-to-many

column="column_name" 0
formula="any SQL expression" 9
class="ClassName" E’
fetch="select|join" 9

116

HHHHHHH R

unique="true|false" 9
not-found="ignore|exception” @
entity-name="EntityName" ﬂ

property-ref="propertyNameFromAssociatedClass" @
node="element-name"

embed-xml="true|false"

/>

col umm (optional): the name of the element foreign key column.
f or mul a (optional): an SQL formula used to evaluate the element foreign key value.

cl ass (required): the name of the associated class.

o0

f et ch (optional - defaults to j oi n): enables outer-join or sequential select fetching for this

association. This is a special case; for full eager fetching in a single SELECT of an entity and

its many-to-many relationships to other entities, you would enable j oi n fetching,not only of

the collection itself, but also with this attribute on the <many- t o- many> nested element.

© uni que (optional): enables the DDL generation of a unique constraint for the foreign-key
column. This makes the association multiplicity effectively one-to-many.

© not-found (optional - defaults to excepti on): specifies how foreign keys that reference
missing rows will be handled: i gnor e will treat a missing row as a null association.

€ entity-nane (optional): the entity name of the associated class, as an alternative to cl ass.

€ property-ref (optional): the name of a property of the associated class that is joined to this
foreign key. If not specified, the primary key of the associated class is used.

Here are some examples.

A set of strings:

<set name="names" table="person_names">

<key column="person_id"/>

<element column="person_name" type="string"/>
</set>

A bag containing integers with an iteration order determined by the or der - by attribute:

<bag name="sizes"
table="item_sizes"
order-by="size asc">
<key column="item_id"/>
<element column="size" type="integer"/>

117

#6# Collection mapping

</bag>

An array of entities, in this case, a many-to-many association:

<array name="addresses"
table="PersonAddress"
cascade="persist">
<key column="personld"/>
<list-index column="sortOrder"/>
<many-to-many column="addressld" class="Address"/>
</array>

HiHHHHHFMAP

<map name="holidays"
table="holidays"
schema="dbo"
order-by="hol_name asc">
<key column="id"/>
<map-key column="hol_name" type="string"/>
<element column="hol_date" type="date"/>
</map>

A list of components (this is discussed in the next chapter):

<list name="carComponents"
table="CarComponents">
<key column="carld"/>
<list-index column="sortOrder"/>
<composite-element class="CarComponent">
<property name="price"/>
<property name="type"/>
<property nhame="serialNumber" column="serialNum"/>
</composite-element>
</list>

6.2.5. #H#H#H#

A one-to-many association links the tables of two classes via a foreign key with no intervening
collection table. This mapping loses certain semantics of normal Java collections:

118

HHAHH

« An instance of the contained entity class cannot belong to more than one instance of the
collection.

« An instance of the contained entity class cannot appear at more than one value of the collection
index.

An association from Pr oduct to Part requires the existence of a foreign key column and possibly
an index column to the Part table. A <one-to- many> tag indicates that this is a one-to-many
association.

<one-to-many
class="ClassName" °
not-found="ignore|exception" 9

entity-name="EntityName"
node="element-name"
embed-xml="true|false"

>

€ cl ass (required): the name of the associated class.

@ not-found (optional - defaults to except i on): specifies how cached identifiers that reference
missing rows will be handled. i gnor e will treat a missing row as a null association.
€ entity-nane (optional): the entity name of the associated class, as an alternative to cl ass.

The <one- t o- many> element does not need to declare any columns. Nor is it necessary to specify
the t abl e name anywhere.

#it

If the foreign key column of a <one-t o- many> association is declared NOT NULL,

you must declare the <key> mapping not - nul | ="true" or use a bidirectional
association with the collection mapping marked inverse="true". See the
discussion of bidirectional associations later in this chapter for more information.

The following example shows a map of Part entities by nhame, where part Narre is a persistent
property of Part . Notice the use of a formula-based index:

<map name="parts"
cascade="all">
<key column="productld" not-null="true"/>
<map-key formula="partName"/>
<one-to-many class="Part"/>

119

#6# Collection mapping

</map>

0.3. HHHHAHHAHHBHH I

0.3.1. #HHHHHAHHHBHHHA

Hibernate#j ava. uti| . Sort edMap #j ava. uti | . Sort edSet H#HHHHHHHHIHHIHHIHH I T
BRAHHHHH AR

<set name="aliases"
table="person_aliases"
sort="natural">
<key column="person"/>
<element column="name" type="string"/>
</set>

<map name="holidays" sort="my.custom.HolidayComparator">
<key column="year_id"/>
<map-key column="hol_name" type="string"/>
<element column="hol_date" type="date"/>

</map>

sort #A#HHH#HH##HHAE unsort ed # nat ur al #####j ava. uti | . Conpar at or #HHHHHBHHIHHHHE
HHHH B H T | ava. uti | . TreeSet #j ava. uti | . Tr eeMap #HH#H##AHIHH

If you want the database itself to order the collection elements, use the or der - by attribute of set ,
bag or map mappings. This solution is only available under JDK 1.4 or higher and is implemented
using Li nkedHashSet or Li nkedHashMap. This performs the ordering in the SQL query and not
in the memory.

<set name="aliases" table="person_aliases" order-by="lower(name) asc">
<key column="person"/>
<element column="name" type="string"/>

</set>

<map name="holidays" order-by="hol_date, hol_name">
<key column="year_id"/>
<map-key column="hol_name" type="string"/>
<element column="hol_date type="date"/>

</map>

120

HHAHH

@ Note

The value of the or der - by attribute is an SQL ordering, not an HQL ordering.

Associations can even be sorted by arbitrary criteria at runtime using a collection fil ter():

sortedUsers = s.createFilter(group.getUsers(), "order by this.name").list();

6.3.2. #HHH#H#H

A bidirectional association allows navigation from both "ends" of the association. Two kinds of
bidirectional association are supported:

one-to-many
set or bag valued at one end and single-valued at the other

many-to-many
#i#tsetitbag#it

You can specify a bidirectional many-to-many association by mapping two many-to-many
associations to the same database table and declaring one end as inverse. You cannot select
an indexed collection.

Here is an example of a bidirectional many-to-many association that illustrates how each category
can have many items and each item can be in many categories:

<class nhame="Category">
<id name="id" column="CATEGORY_ID"/>

<bag name="items" table="CATEGORY_ITEM">
<key column="CATEGORY_ID"/>
<many-to-many class="Item" column="ITEM_ID"/>
</bag>
</class>

<class name="ltem">
<id name="id" column="ITEM_ID"/>

<l-- inverse end -->

<bag name="categories" table="CATEGORY_ITEM" inverse="true">
<key column="ITEM_ID"/>
<many-to-many class="Category" column="CATEGORY_ID"/>

121

#6# Collection mapping

</bag>
</class>

Changes made only to the inverse end of the association are not persisted. This means that
Hibernate has two representations in memory for every bidirectional association: one link from A
to B and another link from B to A. This is easier to understand if you think about the Java object
model and how a many-to-many relationship in Javais created:

category.getltems().add(item); /I The category now "knows" about the relationship
item.getCategories().add(category); // The item now "knows" about the relationship

session.persist(item); /I The relationship won't be saved!
session.persist(category); /I The relationship will be saved

HHHINVErSetHHHHHHHHHHHHHHHEHH

You can define a bidirectional one-to-many association by mapping a one-to-many association
to the same table column(s) as a many-to-one association and declaring the many-valued end

i nverse="true".

<class name="Parent">
<id name="id" column="parent_id"/>

<set name="children" inverse="true">
<key column="parent_id"/>
<one-to-many class="Child"/>
</set>
</class>

<class name="Child">
<id name="id" column="child_id"/>

<many-to-one name="parent"
class="Parent"
column="parent_id"
not-null="true"/>
</class>

Mapping one end of an association with i nverse="true" does not affect the operation of
cascades as these are orthogonal concepts.

122

HHHHHHHH A

0.3.3. #eHnRHEan e

A bidirectional association where one end is represented as a <l i st > or <map>, requires special
consideration. If there is a property of the child class that maps to the index column you can use
i nverse="true" on the collection mapping:

<class nhame="Parent">
<id name="id" column="parent_id"/>

<map name="children" inverse="true">
<key column="parent_id"/>
<map-key column="name"
type="string"/>
<one-to-many class="Child"/>
</map>
</class>

<class name="Child">
<id name="id" column="child_id"/>

<property name="name"
not-null="true"/>
<many-to-one name="parent"
class="Parent"
column="parent_id"
not-null="true"/>
</class>

If there is no such property on the child class, the association cannot be considered truly
bidirectional. That is, there is information available at one end of the association that is not
available at the other end. In this case, you cannot map the collection i nver se="true" . Instead,
you could use the following mapping:

<class name="Parent">
<id name="id" column="parent_id"/>

<map name="children">
<key column="parent_id"
not-null="true"/>
<map-key column="name"
type="string"/>
<one-to-many class="Child"/>

123

#6# Collection mapping

</map>
</class>

<class name="Child">
<id name="id" column="child_id"/>

<many-to-one name="parent"
class="Parent"
column="parent_id"
insert="false"
update="false"
not-null="true"/>
</class>

Note that in this mapping, the collection-valued end of the association is responsible for updates
to the foreign key.

6.3.4. 3#H##

There are three possible approaches to mapping a ternary association. One approach is to use
a Map with an association as its index:

<map name="contracts">
<key column="employer_id" not-null="true"/>
<map-key-many-to-many column="employee_id" class="Employee"/>
<one-to-many class="Contract"/>

</map>

<map name="connections">
<key column="incoming_node_id"/>
<map-key-many-to-many column="outgoing_node_id" class="Node"/>
<many-to-many column="connection_id" class="Connection"/>
</map>

A second approach is to remodel the association as an entity class. This is the most common
approach.

A final alternative is to use composite elements, which will be discussed later.

124

<i dbag>###

6.3.5. < dbag>###

The majority of the many-to-many associations and collections of values shown previously all map
to tables with composite keys, even though it has been have suggested that entities should have
synthetic identifiers (surrogate keys). A pure association table does not seem to benefit much
from a surrogate key, although a collection of composite values might. It is for this reason that
Hibernate provides a feature that allows you to map many-to-many associations and collections
of values to a table with a surrogate key.

The <i dbag> element lets you map a Li st (or Col | ecti on) with bag semantics. For example:

<idbag name="lovers" table="LOVERS">
<collection-id column="ID" type="long">
<generator class="sequence"/>
</collection-id>
<key column="PERSON1"/>
<many-to-many column="PERSONZ2" class="Person" fetch="join"/>
</idbag>

An <i dbag> has a synthetic id generator, just like an entity class. A different surrogate key
is assigned to each collection row. Hibernate does not, however, provide any mechanism for
discovering the surrogate key value of a particular row.

The update performance of an <i dbag> supersedes a regular <bag>. Hibernate can locate
individual rows efficiently and update or delete them individually, similar to a list, map or set.

HHHH N At | ve BHHIAHHHHE <i dbag> #HHHHIHHHHHHH]

6.4, HHHAHHH

This section covers collection examples.

The following class has a collection of Chi | d instances:

package eg;
import java.util.Set;

public class Parent {
private long id;

private Set children;

public long getld() { return id; }
private void setld(long id) { this.id=id; }

private Set getChildren() { return children; }

125

#6# Collection mapping

private void setChildren(Set children) { this.children=children; }

If each child has, at most, one parent, the most natural mapping is a one-to-many association:

<hibernate-mapping>

<class name="Parent">
<id name="id">
<generator class="sequence"/>
</id>
<set name="children">
<key column="parent_id"/>
<one-to-many class="Child"/>
</set>
</class>

<class name="Child">
<id name="id">
<generator class="sequence"/>
</id>
<property name="name"/>

</class>

</hibernate-mapping>

HHHHHHHHHHHHHHHHH R

create table parent (id bigint not null primary key)
create table child (id bigint not null primary key, name varchar(255), parent_id bigint)
alter table child add constraint childfkO (parent_id) references parent

HHparentt# #i HHHHHHHHHHHH

<hibernate-mapping>

<class name="Parent">

126

HHHHHHHH

<id name="id">
<generator class="sequence"/>

</id>

<set name="children" inverse="true">
<key column="parent_id"/>
<one-to-many class="Child"/>

</set>

</class>

<class name="Child">
<id name="id">
<generator class="sequence"/>
</id>
<property nhame="name"/>
<many-to-one name="parent" class="Parent" column="parent_id" not-null="true"/>
</class>

</hibernate-mapping>

NOT NULL #HHHHHHHHHHH

create table parent (id bigint not null primary key)
create table child (id bigint not null
primary key,
name varchar(255),
parent_id bigint not null)
alter table child add constraint childfkO (parent_id) references parent

Alternatively, if this association must be unidirectional you can declare the NOT NULL constraint
on the <key> mapping:

<hibernate-mapping>

<class name="Parent">
<id name="id">
<generator class="sequence"/>
</id>
<set name="children">
<key column="parent_id" not-null="true"/>
<one-to-many class="Child"/>
</set>
</class>

127

#6# Collection mapping

<class name="Child">
<id name="id">
<generator class="sequence"/>
<fid>
<property name="name"/>
</class>

</hibernate-mapping>

On the other hand, if a child has multiple parents, a many-to-many association is appropriate:

<hibernate-mapping>

<class name="Parent">
<id name="id">
<generator class="sequence"/>
</id>
<set name="children" table="childset">
<key column="parent_id"/>
<many-to-many class="Child" column="child_id"/>
</set>
</class>

<class name="Child">
<id name="id">
<generator class="sequence"/>
</id>
<property name="name"/>
</class>

</hibernate-mapping>

HHHHHHHHHHHHH R R

create table parent (id bigint not null primary key)
create table child (id bigint not null primary key, name varchar(255))
create table childset (parent_id bigint not null,
child_id bigint not null,
primary key (parent_id, child_id))
alter table childset add constraint childsetfkO (parent_id) references parent

128

HHHHHHHH

alter table childset add constraint childsetfkl (child_id) references child

For more examples and a complete explanation of a parent/child relationship mapping, see # 21.
###/## for more information.

Even more complex association mappings are covered in the next chapter.

129

130

HEHHHIH

1.1, HHHHAHHIH

Association mappings are often the most difficult thing to implement correctly. In this section
we examine some canonical cases one by one, starting with unidirectional mappings and then
bidirectional cases. We will use Per son and Addr ess in all the examples.

Associations will be classified by multiplicity and whether or not they map to an intervening join
table.

Nullable foreign keys are not considered to be good practice in traditional data modelling, so
our examples do not use nullable foreign keys. This is not a requirement of Hibernate, and the
mappings will work if you drop the nullability constraints.

1.2, HHH#HHH

7.2.1. Many-to-one

HHHHHHHHH HHHHHH R

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
<many-to-one name="address"
column="addressld"
not-null="true"/>
</class>

<class name="Address">
<id name="id" column="addressld">
<generator class="native"/>
</id>
</class>

create table Person (personld bigint not null primary key, addressld bigint not null)
create table Address (addressld bigint not null primary key)

131

HT# HitHHHH

7.2.2. One-to-one

HHHHHHHHHHHHH R SRR

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
<fid>
<many-to-one name="address"
column="addressld"

unigue="true"
not-null="true"/>
</class>

<class name="Address">
<id name="id" column="addressld">
<generator class="native"/>
</id>

</class>

create table Person (personld bigint not null primary key, addressld bigint not null unique)
create table Address (addressld bigint not null primary key)

A unidirectional one-to-one association on a primary key usually uses a special id generator In
this example, however, we have reversed the direction of the association:

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
</class>

<class name="Address">
<id name="id" column="personld">
<generator class="foreign">
<param name="property">person</param>
</generator>
<fid>
<one-to-one name="person" constrained="true"/>

132

One-to-many

</class>

create table Person (personld bigint not null primary key)
create table Address (personld bigint not null primary key)

7.2.3. One-to-many

A unidirectional one-to-many association on a foreign key is an unusual case, and is not
recommended.

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
<set name="addresses">
<key column="personld"
not-null="true"/>
<one-to-many class="Address"/>
</set>
</class>

<class name="Address">
<id name="id" column="addressld">
<generator class="native"/>
</id>
</class>

create table Person (personld bigint not null primary key)
create table Address (addressld bigint not null primary key, personld bigint not null)

You should instead use a join table for this kind of association.

133

HT# HitHHHH

(.3

7.3.1. One-to-many

A unidirectional one-to-many association on a join table is the preferred option. Specifying
uni que="true", changes the multiplicity from many-to-many to one-to-many.

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
<set name="addresses" table="PersonAddress">
<key column="personld"/>
<many-to-many column="addressld"

unigue="true"
class="Address"/>
</set>
</class>

<class name="Address">
<id name="id" column="addressld">
<generator class="native"/>
<fid>
</class>

create table Person (personld bigint not null primary key)
create table PersonAddress (personld not null, addressld bigint not null primary key)
create table Address (addressld bigint not null primary key)

7.3.2. Many-to-one

A unidirectional many-to-one association on a join table is common when the association is
optional. For example:

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
<join table="PersonAddress"

134

One-to-one

optional="true">
<key column="personld" unique="true"/>
<many-to-one name="address"
column="addressld"
not-null="true"/>
</join>
</class>

<class name="Address">
<id name="id" column="addressld">
<generator class="native"/>
<fid>

</class>

create table Person (personld bigint not null primary key)
create table PersonAddress (personld bigint not null primary key, addressld bigint not null)
create table Address (‘addressld bigint not null primary key)

7.3.3. One-to-one

A unidirectional one-to-one association on a join table is possible, but extremely unusual.

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
<join table="PersonAddress"
optional="true">
<key column="personid"
unigue="true"/>
<many-to-one name="address"
column="addressId"
not-null="true"
unigue="true"/>
</join>
</class>

<class name="Address">
<id name="id" column="addressld">
<generator class="native"/>

135

HT# HitHHHH

</id>
</class>

create table Person (personld bigint not null primary key)
create table PersonAddress (personid bigint not null primary key, addressld bigint not null unique)
create table Address (addressld bigint not null primary key)

7.3.4. Many-to-many

Finally, here is an example of a unidirectional many-to-many association.

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
<set name="addresses" table="PersonAddress">
<key column="personld"/>
<many-to-many column="addressld"
class="Address"/>
</set>
</class>

<class name="Address">
<id name="id" column="addressld">
<generator class="native"/>
</id>

</class>

create table Person (personld bigint not null primary key)

create table PersonAddress (personld bigint not null, addressid bigint not null, primary key
(personld, addressld))

create table Address (addressld bigint not null primary key)

136

HHAHH

1.4, HHH#H#H

7.4.1. one-to-many / many-to-one

A bidirectional many-to-one association is the most common kind of association. The following
example illustrates the standard parent/child relationship.

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
<many-to-one name="address"
column="addressl|d"
not-null="true"/>
</class>

<class name="Address">
<id name="id" column="addressld">
<generator class="native"/>
</id>
<set name="people" inverse="true">
<key column="addressld"/>
<one-to-many class="Person"/>
</set>
</class>

create table Person (personld bigint not null primary key, addressld bigint not null)
create table Address (addressld bigint not null primary key)

If you use a Li st , or other indexed collection, set the key column of the foreign key to not nul I .
Hibernate will manage the association from the collections side to maintain the index of each
element, making the other side virtually inverse by setting updat e="f al se" andi nsert="fal se":

<class name="Person">
<id name="id"/>

<many-to-one name="address"
column="addressld"
not-null="true"

137

HT# HitHHHH

insert="false"
update="false"/>
</class>

<class name="Address">
<id name="id"/>

<list name="people">
<key column="addressld" not-null="true"/>
<list-index column="peopleldx"/>
<one-to-many class="Person"/>
</list>
</class>

If the underlying foreign key column is NOT NULL, it is important that you define not - nul | ="t r ue"
on the <key> element of the collection mapping. Do not only declare not-nul | ="true" on a
possible nested <col utm> element, but on the <key> element.

7.4.2. One-to-one

A bidirectional one-to-one association on a foreign key is common:

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
<many-to-one name="address"
column="addressld"

unigue="true"
not-null="true"/>
</class>

<class name="Address">
<id name="id" column="addressld">
<generator class="native"/>
</id>
<one-to-one name="person"
property-ref="address"/>
</class>

create table Person (personld bigint not null primary key, addressld bigint not null unique)

138

HHHHHHHHH A

create table Address (addressld bigint not null primary key)

A bidirectional one-to-one association on a primary key uses the special id generator:

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
<one-to-one name="address"/>
</class>

<class name="Address">
<id name="id" column="personld">
<generator class="foreign">
<param name="property">person</param>
</generator>
</id>
<one-to-one name="person"
constrained="true"/>
</class>

create table Person (personld bigint not null primary key)
create table Address (personld bigint not null primary key)

(D0 LR

7.5.1. one-to-many / many-to-one

The following is an example of a bidirectional one-to-many association on a join table. The
i nver se="true" can go on either end of the association, on the collection, or on the join.

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
<set name="addresses"
table="PersonAddress">

139

HT# HitHHHH

<key column="personld"/>
<many-to-many column="addressld"
unigue="true"
class="Address"/>
</set>
</class>

<class name="Address">
<id name="id" column="addressld">
<generator class="native"/>
</id>
<join table="PersonAddress"
inverse="true"
optional="true">
<key column="addressld"/>
<many-to-one name="person
column="personld"
not-null="true"/>
</join>
</class>

create table Person (personld bigint not null primary key)
create table PersonAddress (personld bigint not null, addressld bigint not null primary key)
create table Address (addressld bigint not null primary key)

1.5.2. ###

A bidirectional one-to-one association on a join table is possible, but extremely unusual.

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
<join table="PersonAddress"
optional="true">
<key column="personld"
unigue="true"/>
<many-to-one name="address"
column="addressld"
not-null="true"

140

Many-to-many

unigue="true"/>
</join>
</class>

<class name="Address">
<id name="id" column="addressld">
<generator class="native"/>
</id>
<join table="PersonAddress"
optional="true"
inverse="true">
<key column="addressld"
unigue="true"/>
<many-to-one name="person"
column="personld"
not-null="true"
unigue="true"/>
</join>
</class>

create table Person (personld bigint not null primary key)

create table PersonAddress (personld bigint not null primary key, addressld bigint not null unique)

create table Address (‘addressld bigint not null primary key)

7.5.3. Many-to-many

Here is an example of a bidirectional many-to-many association.

<class name="Person">
<id name="id" column="personld">
<generator class="native"/>
</id>
<set name="addresses" table="PersonAddress">
<key column="personld"/>
<many-to-many column="addressld"
class="Address"/>
</set>
</class>

<class name="Address">

141

HT# HitHHHH

<id name="id" column="addressld">
<generator class="native"/>
</id>
<set name="people" inverse="true" table="PersonAddress">
<key column="addressld"/>
<many-to-many column="personld"
class="Person"/>
</set>
</class>

create table Person (personld bigint not null primary key)

create table PersonAddress (personld bigint not null, addressid bigint not null, primary key
(personld, addressld))

create table Address (addressld bigint not null primary key)

1.0, HHHHHAHHHAHHHH

More complex association joins are extremely rare. Hibernate handles more complex situations
by using SQL fragments embedded in the mapping document. For example, if a table
with historical account information data defines account Nunber, effectiveEndDate and
ef fecti veSt ar t Dat ecolumns, it would be mapped as follows:

<properties name="currentAccountKey">
<property name="accountNumber" type="string" not-null="true"/>
<property name="currentAccount" type="boolean">
<formula>case when effectiveEndDate is null then 1 else 0 end</formula>
</property>
</properties>
<property name="effectiveEndDate" type="date"/>
<property name="effectiveStateDate" type="date" not-null="true"/>

You can then map an association to the current instance, the one with null ef f ect i veEndDat e,
by using:

<many-to-one name="currentAccountinfo"
property-ref="currentAccountKey"
class="AccountInfo">
<column name="accountNumber"/>

142

BHAHHHHHH

<formula>'1'</formula>
</many-to-one>

In a more complex example, imagine that the association between Enpl oyee and Or gani zat i on
is maintained in an Enpl oynent table full of historical employment data. An association to the
employee's most recent employer, the one with the most recent st art Dat e, could be mapped in
the following way:

<join>
<key column="employeeld"/>
<subselect>
select employeeld, orgld
from Employments
group by orgld
having startDate = max(startDate)
</subselect>
<many-to-one name="mostRecentEmployer"
class="Organization"
column="orgld"/>
</join>

This functionality allows a degree of creativity and flexibility, but it is more practical to handle these
kinds of cases using HQL or a criteria query.

143

144

HEHHH IR

The notion of a component is re-used in several different contexts and purposes throughout

Hibernate.

8.1. #HHHHHHAH

A component is a contained object that is persisted as a value type and not an entity reference.
The term "component" refers to the object-oriented notion of composition and not to architecture-

level components. For example, you can model a person like this:

public class Person {

private java.util.Date birthday;

private Name name;

private String key;

public String getKey() {
return key;

}

private void setKey(String key) {
this.key=key;

}

public java.util.Date getBirthday() {
return birthday;

}

public void setBirthday(java.util.Date birthday) {
this.birthday = birthday;

}

public Name getName() {
return name;

}

public void setName(Name name) {
this.name = name;

public class Name {
char initial;
String first;
String last;
public String getFirst() {

145

HOH HHHHHHHHIHH I

return first;

}

void setFirst(String first) {
this.first = first;

}

public String getLast() {
return last;

}

void setLast(String last) {
this.last = last;

}

public char getlinitial() {
return initial;

}

void setlnitial(char initial) {
this.initial = initial;

Now Nare can be persisted as a component of Per son. Nane defines getter and setter methods
for its persistent properties, but it does not need to declare any interfaces or identifier properties.

Our Hibernate mapping would look like this:

<class name="eg.Person" table="person">
<id name="Key" column="pid" type="string">
<generator class="uuid"/>
</id>
<property name="birthday" type="date"/>
<component name="Name" class="eg.Name"> <!-- class attribute optional -->
<property name="initial"/>
<property name="first"/>
<property name="Ilast"/>
</component>
</class>

Person##### pi d# bi rt hday# i ni ti al #first#| ast #H#H#HHHHH

Like value types, components do not support shared references. In other words, two persons
could have the same name, but the two person objects would contain two independent name
objects that were only "the same" by value. The null value semantics of a component are ad hoc.
When reloading the containing object, Hibernate will assume that if all component columns are
null, then the entire component is null. This is suitable for most purposes.

146

BRAHHHHHHHH A

The properties of a component can be of any Hibernate type (collections, many-to-one
associations, other components, etc). Nested components should not be considered an exotic
usage. Hibernate is intended to support a fine-grained object model.

<CONPONEeNt > HHHHHHHHHAHHAHHHHHHHHHHHHHHH HHRHH <par ent > HHEHH#AHH

<class name="eg.Person" table="person">
<id name="Key" column="pid" type="string">
<generator class="uuid"/>
</id>
<property name="birthday" type="date"/>
<component name="Name" class="eg.Name" unique="true">
<parent name="namedPerson"/> <!-- reference back to the Person -->
<property name="initial"/>
<property name="first"/>
<property name="Ilast"/>
</component>
</class>

8.2. HHHHHHHHHHAHHIH AT

Collections of components are supported (e.g. an array of type Name). Declare your component
collection by replacing the <el enent > tag with a <conposi t e- el enent > tag:

<set name="someNames" table="some_names" lazy="true">
<key column="id"/>
<composite-element class="eg.Name"> <!-- class attribute required -->
<property name="initial"/>
<property name="first"/>
<property name="last"/>
</composite-element>
</set>

S W iiiiiia

If you define a Set of composite elements, it is important to implement equal s()
and hashCode() correctly.

Composite elements can contain components but not collections. If your composite element
contains components, use the <nest ed- conposi t e- el enent > tag. This case is a collection of
components which themselves have components. You may want to consider if a one-to-many

147

HOH HHHHHHHHIHH I

association is more appropriate. Remodel the composite element as an entity, but be aware that
even though the Java model is the same, the relational model and persistence semantics are still
slightly different.

A composite element mapping does not support null-able properties if you are using a <set >.
There is no separate primary key column in the composite element table. Hibernate uses each
column's value to identify a record when deleting objects, which is not possible with null values.
You have to either use only not-null properties in a composite-element or choose a <l i st >, <map>,
<bag> or <i dbag>.

A special case of a composite element is a composite element with a nested <many-t o- one>
element. This mapping allows you to map extra columns of a many-to-many association table to
the composite element class. The following is a many-to-many association from Order to Item
where pur chaseDat e, pri ce and quanti ty are properties of the association:

<class name="eg.Order" >

<set name="purchasedltems" table="purchase_items" lazy="true">
<key column="order_id">
<composite-element class="eg.Purchase">
<property name="purchaseDate"/>
<property name="price"/>
<property name="quantity"/>
<many-to-one name="item" class="eg.Iltem"/> <!-- class attribute is optional -->
</composite-element>
</set>
</class>

There cannot be a reference to the purchase on the other side for bidirectional association
navigation. Components are value types and do not allow shared references. A single Pur chase
can be in the set of an Or der, but it cannot be referenced by the | t emat the same time.

SHHHHHHHHAHHHHH T

<class name="eg.Order" >

<set name="purchasedltems" table="purchase_items" lazy="true">
<key column="order_id">
<composite-element class="eg.OrderLine">
<many-to-one name="purchaseDetails class="eg.Purchase"/>
<many-to-one name="item" class="eg.Iltem"/>
</composite-element>
</set>

148

MapHHHHHHHHHHHHHHHH

</class>

Composite elements can appear in queries using the same syntax as associations to other entities.

8.3. Map#H#HHHHHHHHHHHHIHAHH

The <conposi t e- map- key> element allows you to map a component class as the key of a Map.
Ensure that you override hashCode() and equal s() correctly on the component class.

B4 FLH LR

You can use a component as an identifier of an entity class. Your component class must satisfy
certain requirements:

e java.io. Seri al i zabl e #H#H#HH#FHHAHHH
e It must re-implement equal s() and hashCode() consistently with the database's notion of
composite key equality.

@ Note

In Hibernate3, although the second requirement is not an absolutely hard
requirement of Hibernate, it is recommended.

You cannot use an | denti fi er Gener at or to generate composite keys. Instead the application
must assign its own identifiers.

Use the <conposite-id> tag, with nested <key- property> elements, in place of the usual
<i d> declaration. For example, the O der Li ne class has a primary key that depends upon the
(composite) primary key of Or der .

<class name="OrderLine">

<composite-id name="id" class="OrderLineld">
<key-property name="lineld"/>
<key-property name="orderld"/>
<key-property name="customerld"/>
</composite-id>

<property name="name"/>

<many-to-one name="order" class="Order"
insert="false" update="false">
<column name="orderld"/>
<column name="customerld"/>

149

HOH HHHHHHHIHHIHE

</many-to-one>

</class>

Any foreign keys referencing the OrderLi ne table are now composite. Declare this in your
mappings for other classes. An association to Or der Li ne is mapped like this:

<many-to-one name="orderLine" class="OrderLine">
<!-- the "class" attribute is optional, as usual -->
<column name="lineld"/>
<column name="orderld"/>
<column name="customerld"/>
</many-to-one>

HiHH

The col um element is an alternative to the col um attribute everywhere. Using
the col unm element just gives more declaration options, which are mostly useful
when utilizing hon2ddl

Or der Li ne ## many- t o- many ### #HHHHHERHIHHE

<set name="undeliveredOrderLines">
<key column name="warehouseld"/>
<many-to-many class="OrderLine">
<column name="lineld"/>
<column name="orderld"/>
<column name="customerld"/>
</many-to-many>
</set>

O der ### O der Li ne ###HHHHE tHHHHHHHHHH

<set name="orderLines" inverse="true">
<key>
<column name="orderld"/>
<column name="customerld"/>
</key>

150

HHHHHHH

<one-to-many class="OrderLine"/>
</set>

The <one-t o- many> element declares no columns.

O der Li ne #HHHHHHHHHHHHHHHHE A

<class name="OrderLine">

<list name="deliveryAttempts">

<key> <!-- a collection inherits the composite key type -->
<column name="lineld"/>
<column name="orderld"/>
<column name="customerld"/>

</key>

<list-index column="attemptld" base="1"/>

<composite-element class="DeliveryAttempt">

</composite-element>
</set>
</class>

8.5. #HHHHHAHAHH

You can also map a property of type Map:

<dynamic-component name="userAttributes">
<property name="foo" column="FOQ" type="string"/>
<property name="bar" column="BAR" type="integer"/>
<many-to-one name="baz" class="Baz" column="BAZ_ID"/>
</dynamic-component>

The semantics of a <dynani c- conponent > mapping are identical to <conponent >. The advantage
of this kind of mapping is the ability to determine the actual properties of the bean at deployment
time just by editing the mapping document. Runtime manipulation of the mapping document is
also possible, using a DOM parser. You can also access, and change, Hibernate's configuration-
time metamodel via the Confi gur ati on object.

151

152

Inheritance mapping

9.1. The three strategies

Hibernate# 3t HHHHHHHHIHHHEHHHHHEHH

o HHHHHHHHHHAH#able-per-class-hierarchy#
« table per subclass
o R Htable-per-concrete-class#

At HIDernatettHHHHEHHEHHEHHEHHHHHHHEHH T HE

o HERRAHHHH

It is possible to use different mapping strategies for different branches of the same inheritance
hierarchy. You can then make use of implicit polymorphism to achieve polymorphism across the
whole hierarchy. However, Hibernate does not support mixing <subcl ass>, <j oi ned- subcl ass>
and <uni on- subcl ass> mappings under the same root <cl ass> element. It is possible to mix
together the table per hierarchy and table per subclass strategies under the the same <cl ass>
element, by combining the <subcl ass> and <j oi n> elements (see below for an example).

It is possible to define subcl ass, uni on- subcl ass, and j oi ned- subcl ass mappings in separate
mapping documents directly beneath hi ber nat e- mappi ng. This allows you to extend a class
hierarchy by adding a new mapping file. You must specify an ext ends attribute in the subclass
mapping, naming a previously mapped superclass. Previously this feature made the ordering of
the mapping documents important. Since Hibernate3, the ordering of mapping files is irrelevant
when using the extends keyword. The ordering inside a single mapping file still needs to be defined
as superclasses before subclasses.

<hibernate-mapping>
<subclass name="DomesticCat" extends="Cat" discriminator-value="D">
<property name="name" type="string"/>
</subclass>
</hibernate-mapping>

O.1.1. #H###HHAH###HItable-per-class-hierarchy#

Suppose we have an interface Paynment with the implementors Credit CardPaynent,
CashPaynent , and ChequePaynent . The table per hierarchy mapping would display in the following
way:

153

#9# Inheritance mapping

<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT _ID">
<generator class="native"/>
<fid>
<discriminator column="PAYMENT_TYPE" type="string"/>
<property name="amount" column="AMOUNT"/>

<subclass name="CreditCardPayment" discriminator-value="CREDIT">
<property name="creditCardType" column="CCTYPE"/>

</subclass>
<subclass name="CashPayment" discriminator-value="CASH">

</subclass>
<subclass hame="ChequePayment" discriminator-value="CHEQUE">

</subclass>
</class>

Exactly one table is required. There is a limitation of this mapping strategy: columns declared by
the subclasses, such as CCTYPE, cannot have NOT NULL constraints.

0.1.2. ##H##HHHH#HIH##table-per-subclass#

A table per subclass mapping looks like this:

<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="native"/>
</id>
<property name="amount" column="AMOUNT"/>

<joined-subclass nhame="CreditCardPayment" table="CREDIT_PAYMENT">
<key column="PAYMENT_ID"/>
<property name="creditCardType" column="CCTYPE"/>

</joined-subclass>
<joined-subclass name="CashPayment" table="CASH_PAYMENT">
<key column="PAYMENT_ID"/>

</joined-subclass>
<joined-subclass name="ChequePayment" table="CHEQUE_PAYMENT">
<key column="PAYMENT_ID"/>

154

Table per subclass: using a discriminator

</joined-subclass>
</class>

Four tables are required. The three subclass tables have primary key associations to the
superclass table so the relational model is actually a one-to-one association.

9.1.3. Table per subclass: using a discriminator

Hibernate's implementation of table per subclass does not require a discriminator column. Other
object/relational mappers use a different implementation of table per subclass that requires a type
discriminator column in the superclass table. The approach taken by Hibernate is much more
difficult to implement, but arguably more correct from a relational point of view. If you want to use a
discriminator column with the table per subclass strategy, you can combine the use of <subcl ass>
and <j oi n>, as follows:

<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="native"/>
<fid>
<discriminator column="PAYMENT_TYPE" type="string"/>
<property name="amount" column="AMOUNT"/>

<subclass hame="CreditCardPayment" discriminator-value="CREDIT">
<join table="CREDIT_PAYMENT">
<key column="PAYMENT_ID"/>
<property name="creditCardType" column="CCTYPE"/>

</join>
</subclass>
<subclass hame="CashPayment" discriminator-value="CASH">
<join table="CASH_PAYMENT">
<key column="PAYMENT_ID"/>

</join>
</subclass>
<subclass hame="ChequePayment" discriminator-value="CHEQUE">
<join table="CHEQUE_PAYMENT" fetch="select">
<key column="PAYMENT_ID"/>

</join>
</subclass>
</class>

155

#9# Inheritance mapping

B f et ch="sel ect " #HH HHHHHHHHHHHAHHHH AR A ChequePay ment #H##H#H#H#
HHHHHHHHHH

9.1.4. table-per-subclass # table-per-class-hierarchy ###

You can even mix the table per hierarchy and table per subclass strategies using the following
approach:

<class name="Payment" table="PAYMENT">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="native"/>
</id>
<discriminator column="PAYMENT_TYPE" type="string"/>
<property name="amount" column="AMOUNT"/>

<subclass hame="CreditCardPayment" discriminator-value="CREDIT">
<join table="CREDIT_PAYMENT">
<property name="creditCardType" column="CCTYPE"/>

</join>
</subclass>
<subclass hame="CashPayment" discriminator-value="CASH">

</subclass>
<subclass name="ChequePayment" discriminator-value="CHEQUE">

</subclass>
</class>

HHHHHHHHHHHHHHH R Pay ment #HHHH HHHHHH---A7HH# <many - t 0- one> #HHHHHHHHHH##H#

<many-to-one name="payment" column="PAYMENT_ID" class="Payment"/>

O.1.5. #H###HHH##HH##table-per-concrete-class#

There are two ways we can map the table per concrete class strategy. First, you can use <uni on-

subcl ass>.

<class name="Payment">
<id name="id" type="long" column="PAYMENT_ID">
<generator class="sequence"/>
<fid>

156

Table per concrete class using implicit polymorphism

<property name="amount" column="AMOUNT"/>

<union-subclass name="CreditCardPayment" table="CREDIT_PAYMENT">
<property name="creditCardType" column="CCTYPE"/>

</union-subclass>
<union-subclass name="CashPayment" table="CASH_PAYMENT">

</union-subclass>
<union-subclass name="ChequePayment" table="CHEQUE_PAYMENT">

</union-subclass>
</class>

BHAHHHHH SHH AR AR B R

The limitation of this approach is that if a property is mapped on the superclass, the column name
must be the same on all subclass tables. The identity generator strategy is not allowed in union
subclass inheritance. The primary key seed has to be shared across all unioned subclasses of
a hierarchy.

If your superclass is abstract, map it with abst r act ="t r ue" . If it is not abstract, an additional table
(it defaults to PAYMENT in the example above), is needed to hold instances of the superclass.

9.1.6. Table per concrete class using implicit polymorphism

BRI TR R T

<class name="CreditCardPayment" table="CREDIT_PAYMENT">
<id name="id" type="long" column="CREDIT_PAYMENT_ID">
<generator class="native"/>
<fid>
<property name="amount" column="CREDIT_AMOUNT"/>

</class>

<class name="CashPayment" table="CASH_PAYMENT">
<id name="id" type="long" column="CASH_PAYMENT_ID">
<generator class="native"/>
<fid>
<property name="amount" column="CASH_AMOUNT"/>

</class>

157

#9# Inheritance mapping

<class name="ChequePayment" table="CHEQUE_PAYMENT">
<id name="id" type="long" column="CHEQUE_PAYMENT_|D">
<generator class="native"/>
</id>

<property name="amount" column="CHEQUE_AMOUNT"/>
</class>

Notice that the Paynent interface is not mentioned explicitly. Also notice that properties of Paynment
are mapped in each of the subclasses. If you want to avoid duplication, consider using XML entities
(for example, [<! ENTITY all properties SYSTEM "al | properties.xm ">] in the DOCTYPE
declaration and &al | properti es; in the mapping).

HHH R HIDe rnate#HHHHEH IS QL UNI ON #H#HHEHHHHH

BB Pay Ment #HHHHHHEHHHHE BH<any > HHEHHE

<any name="payment" meta-type="string" id-type="long">
<meta-value value="CREDIT" class="CreditCardPayment"/>
<meta-value value="CASH" class="CashPayment"/>
<meta-value value="CHEQUE" class="ChequePayment"/>
<column name="PAYMENT_ CLASS"/>
<column name="PAYMENT_ID"/>

</any>

O. 1.7, AR R e a R e e

Since the subclasses are each mapped in their own <cl ass> element, and since Paynent is just
an interface), each of the subclasses could easily be part of another inheritance hierarchy. You
can still use polymorphic queries against the Paynent interface.

<class name="CreditCardPayment" table="CREDIT_PAYMENT">
<id name="id" type="long" column="CREDIT_PAYMENT_ID">
<generator class="native"/>
<fid>
<discriminator column="CREDIT_CARD" type="string"/>
<property name="amount" column="CREDIT_AMOUNT"/>

<subclass hame="MasterCardPayment" discriminator-value="MDC"/>
<subclass name="VisaPayment" discriminator-value="VISA"/>

</class>

<class name="NonelectronicTransaction" table="NONELECTRONIC_TXN">

158

H#H#

<id name="id" type="long" column="TXN_ID">
<generator class="native"/>
</id>

<joined-subclass name="CashPayment" table="CASH_PAYMENT">
<key column="PAYMENT _ID"/>
<property name="amount" column="CASH_AMOUNT"/>

</joined-subclass>

<joined-subclass name="ChequePayment" table="CHEQUE_PAYMENT">
<key column="PAYMENT _ID"/>
<property nhame="amount" column="CHEQUE_AMOUNT"/>

</joined-subclass>
</class>

Once again, Payment is not mentioned explicitly. If we execute a query against the
Paynent interface, for example from Paynent, Hibernate automatically returns instances of
Credi t Car dPaynent (and its subclasses, since they also implement Paynent), CashPaynent and
ChequePaynent , but not instances of Nonel ect r oni cTransact i on.

0.2. ##

There are limitations to the "implicit polymorphism" approach to the table per concrete-
class mapping strategy. There are somewhat less restrictive limitations to <uni on- subcl ass>
mappings.

#HHHHA HIbernate##table-per-concrete-classH#titt HtHHHHHHHHHHHHHHHHHHET

O.1. #HHHHHHHAH

HtHHE B | R R | Polymory #iHERE HHEEHEHE S
HHHHHHE AR | R R | oad()] B BHHEEHEE S
get () HHH
table per <many- <one- <one- <many- | s. get (Payiheom. cl afs,om HitHH
class- t o-one> to-one> to- to- id) Paynent Order
hierarchy many> many> p o0 join
0. paynent
p
table per <many- <one- <one- <many- | s. get (Payfheoi. cl afs,om B
subclass to-one> to-one> |to- to- i d) Payment Order
many> many> p o join
0. payment
p

159

#9# Inheritance mapping

T HHHHHE AR | R Polymorg #HHHE HHERHHE SR

HHHHEHR fHEHEE | HEEEE | R | oad()] #HAHEHEE HEHAHEE B

get () HH#
table per <many- <one- <one- <many- | s. get (Payiheom. cl ads,om HtH
concrete- to-one> to-one> |to- to- id) Payment Order
class many> many> p ojoin
(union- (for 0. payment
subclass) i nverse="true" p
only)

table per <any> R | B | <many- | s, creat eCrii o@r | a(PEyIEIE ciHagadttd(Restrictions.
concrete HitH HiH t o-any> Paynment ### HiH
class p
(implicit
polymorphism)

160

HEHHH A

Hibernate is a full object/relational mapping solution that not only shields the developer from
the details of the underlying database management system, but also offers state management
of objects. This is, contrary to the management of SQL st atenents in common JDBC/SQL
persistence layers, a natural object-oriented view of persistence in Java applications.

HH T HIDernateHHHHHHHHHHIHHHHIHHHHHHHE #H HHE AR SQ LI HHEHHHHEH#
HHH T i HIDernateHHHHHHHHHHIHHIHHH I

10.1. Hibernate###H#H###HHHHHH

Hibernate###HHHHHHHHHHIHHIHHHHHH

« Transient - an object is transient if it has just been instantiated using the new operator, and it
is not associated with a Hibernate Sessi on. It has no persistent representation in the database
and no identifier value has been assigned. Transient instances will be destroyed by the garbage
collector if the application does not hold a reference anymore. Use the Hibernate Sessi on to
make an object persistent (and let Hibernate take care of the SQL statements that need to be
executed for this transition).

» Persistent - a persistent instance has a representation in the database and an identifier value.
It might just have been saved or loaded, however, it is by definition in the scope of a Sessi on.
Hibernate will detect any changes made to an object in persistent state and synchronize the
state with the database when the unit of work completes. Developers do not execute manual
UPDATE statements, or DELETE statements when an object should be made transient.

» Detached - a detached instance is an object that has been persistent, but its Sessi on has been
closed. The reference to the object is still valid, of course, and the detached instance might
even be modified in this state. A detached instance can be reattached to a new Sessi on at a
later point in time, making it (and all the modifications) persistent again. This feature enables
a programming model for long running units of work that require user think-time. We call them
application transactions, i.e., a unit of work from the point of view of the user.

We will now discuss the states and state transitions (and the Hibernate methods that trigger a
transition) in more detalil.

10.2. #HHH#HHHBHHHBHH

TR A A HiDernate#t# #t#(transient) #HHHHHHH# HHHHHERHHE
HHHHHHHHHIHH I #HH#(persistent) #H#H#HHH

DomesticCat fritz = new DomesticCat();
fritz.setColor(Color.GINGER);
fritz.setSex('M");

fritz.setName("Fritz");

161

#10# HHHHHHHH

Long generatedld = (Long) sess.save(fritz);

If Cat has a generated identifier, the identifier is generated and assigned to the cat when save()
is called. If Cat has an assi gned identifier, or a composite key, the identifier should be assigned
to the cat instance before calling save(). You can also use per si st () instead of save(), with
the semantics defined in the EJB3 early draft.

» persist() makes a transient instance persistent. However, it does not guarantee that the
identifier value will be assigned to the persistent instance immediately, the assignment might
happen at flush time. per si st () also guarantees that it will not execute an | NSERT statement
if it is called outside of transaction boundaries. This is useful in long-running conversations with
an extended Session/persistence context.

« save() does guarantee to return an identifier. If an INSERT has to be executed to get the
identifier (e.g. "identity" generator, not "sequence"), this INSERT happens immediately, no
matter if you are inside or outside of a transaction. This is problematic in a long-running
conversation with an extended Session/persistence context.

Alternatively, you can assign the identifier using an overloaded version of save() .

DomesticCat pk = new DomesticCat();
pk.setColor(Color. TABBY);
pk.setSex('F");

pk.setName("PK");

pk.setKittens(new HashSet());
pk.addKitten(fritz);

sess.save(pk, new Long(1234));

If the object you make persistent has associated objects (e.g. the ki ttens collection in the
previous example), these objects can be made persistent in any order you like unless you have
a NOT NULL constraint upon a foreign key column. There is never a risk of violating foreign key
constraints. However, you might violate a NOT NULL constraint if you save() the objects in the
wrong order.

Usually you do not bother with this detail, as you will normally use Hibernate's transitive
persistence feature to save the associated objects automatically. Then, even NOT NULL constraint
violations do not occur - Hibernate will take care of everything. Transitive persistence is discussed
later in this chapter.

10.3. #HHHHHHHAHH

The | oad() methods of Sessi on provide a way of retrieving a persistent instance if you know its
identifier. | oad() takes a class object and loads the state into a newly instantiated instance of
that class in a persistent state.

162

BHAHHHHHHH

Cat fritz = (Cat) sess.load(Cat.class, generatedId);

/I 'you need to wrap primitive identifiers
long id = 1234;
DomesticCat pk = (DomesticCat) sess.load(DomesticCat.class, new Long(id));

BRI R R R

Cat cat = new DomesticCat();

/' load pk's state into cat
sess.load(cat, new Long(pkld));
Set kittens = cat.getKittens();

Be aware that | oad() will throw an unrecoverable exception if there is no matching database
row. If the class is mapped with a proxy, | oad() just returns an uninitialized proxy and does not
actually hit the database until you invoke a method of the proxy. This is useful if you wish to create
an association to an object without actually loading it from the database. It also allows multiple
instances to be loaded as a batch if bat ch- si ze is defined for the class mapping.

If you are not certain that a matching row exists, you should use the get () method which hits the
database immediately and returns null if there is no matching row.

Cat cat = (Cat) sess.get(Cat.class, id);
if (cat==null) {

cat = new Cat();

sess.save(cat, id);

}

return cat;

You can even load an object using an SQL SELECT ... FOR UPDATE, using a LockMbde. See
the API documentation for more information.

Cat cat = (Cat) sess.get(Cat.class, id, LockMode.UPGRADE);

Any associated instances or contained collections will not be selected FOR UPDATE, unless you
decide to specify | ock or al | as a cascade style for the association.

163

#10# HHHHHHHH

ref resh() HHHHHBHHHHHHHHHHHHHHHHHHH T FHAHHHHH R B
HHHHHH HHH R

sess.save(cat);
sess.flush(); //force the SQL INSERT
sess.refresh(cat); //re-read the state (after the trigger executes)

How much does Hibernate load from the database and how many SQL SELECTs will it use? This
depends on the fetching strategy. This is explained in #19.1. ########.

10.4. ###

If you do not know the identifiers of the objects you are looking for, you need a query. Hibernate
supports an easy-to-use but powerful object oriented query language (HQL). For programmatic
query creation, Hibernate supports a sophisticated Criteria and Example query feature (QBC and
QBE). You can also express your query in the native SQL of your database, with optional support
from Hibernate for result set conversion into objects.

10.4.1. #H#H#HHH#

HQL#######SQLIH#HH#H or g. hi ber nat e. Query HHHHHHHHHHHHHHHH HHHHHHHHHHHHHTT
HHHHHReSURS etiHHHHHHHI HIHHHHIHHHHHHHHHH I #HH Quer y HHHHHIFHHIHHIHE #H#HHE Sessi on
HHHHHHHHH

List cats = session.createQuery(
"from Cat as cat where cat.birthdate < ?")
.setDate(0, date)
dist();

List mothers = session.createQuery(
"select mother from Cat as cat join cat.mother as mother where cat.name = ?")
.setString(0, name)
dist();

List kittens = session.createQuery(
"from Cat as cat where cat.mother = ?")
.setEntity(0, pk)
dist();

Cat mother = (Cat) session.createQuery(
"select cat.mother from Cat as cat where cat = ?")
.setEntity(O0, izi)
.uniqueResult();]]

164

HHAHHH

Query mothersWithKittens = (Cat) session.createQuery(
"select mother from Cat as mother left join fetch mother .kittens");
Set uniqueMothers = new HashSet(mothersWithKittens.list());

A query is usually executed by invoking | i st () . The result of the query will be loaded completely
into a collection in memory. Entity instances retrieved by a query are in a persistent state. The
uni queResul t () method offers a shortcut if you know your query will only return a single object.
Queries that make use of eager fetching of collections usually return duplicates of the root objects,
but with their collections initialized. You can filter these duplicates through a Set .

10.4.1.1. #H##HHHABHHH

Occasionally, you might be able to achieve better performance by executing the query using the
i terate() method. This will usually be the case if you expect that the actual entity instances
returned by the query will already be in the session or second-level cache. If they are not already
cached, it erat e() will be slower than i st () and might require many database hits for a simple
query, usually 1 for the initial select which only returns identifiers, and n additional selects to
initialize the actual instances.

/I fetch ids
Iterator iter = sess.createQuery("from eg.Qux q order by g.likeliness").iterate();
while (iter.hasNext()) {
Qux qux = (Qux) iter.next(); // fetch the object
/I something we couldnt express in the query
if (qux.calculateComplicatedAlgorithm()) {
/I delete the current instance
iter.remove();
/I dont need to process the rest
break;

10.4.1.2. ####HHH### U D | et HH#AH#H

Hibernate queries sometimes return tuples of objects. Each tuple is returned as an array:

Iterator kittensAndMothers = sess.createQuery(
"select kitten, mother from Cat kitten join kitten.mother mother")
Jdist()
.iterator();

165

#10# HHHHHHHH

while (kittensAndMothers.hasNext()) {
Obiject[] tuple = (Object][]) kittensAndMothers.next();
Cat kitten = (Cat) tuple[0];
Cat mother = (Cat) tuple[1];

10.4.1.3. ####H#HH#

Queries can specify a property of a class in the sel ect clause. They can even call SQL aggregate
functions. Properties or aggregates are considered "scalar" results and not entities in persistent
state.

Iterator results = sess.createQuery(
"select cat.color, min(cat.birthdate), count(cat) from Cat cat " +
"group by cat.color")
Jdist()
.iterator();

while (results.hasNext()) {
Object[] row = (Object[]) results.next();
Color type = (Color) row[0];
Date oldest = (Date) row[1];
Integer count = (Integer) row[2];

10.4.1.4. #HAH##HHHHHHHAH

Methods on Query are provided for binding values to named parameters or JDBC-style ?
parameters. Contrary to JDBC, Hibernate numbers parameters from zero. Named parameters
are identifiers of the form : name in the query string. The advantages of named parameters are
as follows:

o M
« they can occur multiple times in the same query
o HHHHHHHIHHA

/Inamed parameter (preferred)
Query g = sess.createQuery("from DomesticCat cat where cat.name = :name");
g.setString("name", "Fritz");

166

HHAHHH

Iterator cats = g.iterate();

//positional parameter

Query q = sess.createQuery("from DomesticCat cat where cat.name = ?");
g.setString(0, "1zi");

Iterator cats = g.iterate();

/Inamed parameter list

List names = new ArrayList();

names.add("1zi");

names.add("Fritz");

Query g = sess.createQuery("from DomesticCat cat where cat.name in (:namesList)");
g.setParameterList("namesList", names);

List cats = q.list();

10.4.1.5. #####

If you need to specify bounds upon your result set, that is, the maximum number of rows you want
to retrieve and/or the first row you want to retrieve, you can use methods of the Query interface:

Query g = sess.createQuery("from DomesticCat cat");
g.setFirstResult(20);

g.setMaxResults(10);

List cats = q.list();

HHHHHHH D BM SH#HEH#HH S Q LittHHHHHIH# HIbernate

10.4.1.6. #HAHHHHHHAHHIHHH

If your JDBC driver supports scrollable Resul t Set s, the Query interface can be used to obtain a
Scrol | abl eResul t s object that allows flexible navigation of the query results.

Query g = sess.createQuery("select cat.name, cat from DomesticCat cat " +
"order by cat.name");

ScrollableResults cats = g.scroll();

if (cats.first()) {

/I find the first name on each page of an alphabetical list of cats by name
firstNamesOfPages = new ArrayList();

167

#10# HHHHHHHH

do {
String name = cats.getString(0);
firstNamesOfPages.add(name);

}
while (cats.scroll(PAGE_SIZE));

/I Now get the first page of cats

pageOfCats = new ArrayList();

cats.beforeFirst();

int i=0;

while((PAGE_SIZE > i++) && cats.next()) pageOfCats.add(cats.get(1));

}

cats.close()

Note that an open database connection and cursor is required for this functionality. Use
set MaxResul t () /set Fi r st Resul t () if you need offline pagination functionality.

10.4.1.7. #H#HHHHHAHHE

You can also define named queries in the mapping document. Remember to use a CDATA section
if your query contains characters that could be interpreted as markup.

<query name="ByNameAndMaximumWeight"><I[CDATA[
from eg.DomesticCat as cat
where cat.name = ?
and cat.weight > ?
] 1></query>

HR R R R R R R

Query g = sess.getNamedQuery("ByNameAndMaximumWeight");
g.setString(0, name);

g.setint(1, minWeight);

List cats = q.list();

The actual program code is independent of the query language that is used. You can also define
native SQL queries in metadata, or migrate existing queries to Hibernate by placing them in
mapping files.

Also note that a query declaration inside a <hi ber nat e- mappi ng> element requires a global
uniqgue name for the query, while a query declaration inside a <cl ass> element is made

168

HHHHHHH R

unigue automatically by prepending the fully qualified name of the class. For example
eg. Cat . ByNanmeAndMaxi numiéi ght .

10.4.2. #HHHHABHHHHABHH

A collection filter is a special type of query that can be applied to a persistent collection or array.
The query string can refer to t hi s, meaning the current collection element.

Collection blackKittens = session.createFilter(
pk.getKittens(),
"where this.color = ?"
.setParameter(Color.BLACK, Hibernate.custom(ColorUserType.class))
dist()

);

The returned collection is considered a bag that is a copy of the given collection. The original
collection is not modified. This is contrary to the implication of the name "filter", but consistent
with expected behavior.

Observe that filters do not require a f r omclause, although they can have one if required. Filters
are not limited to returning the collection elements themselves.

Collection blackKittenMates = session.createFilter(
pk.getKittens(),
"select this.mate where this.color = eg.Color.BLACK.intValue")
dist();

Even an empty filter query is useful, e.g. to load a subset of elements in a large collection:

Collection tenKittens = session.createFilter(
mother.getKittens(), ")
.setFirstResult(0).setMaxResults(10)
list();

10.4.3. #H##H#H#HHHAH

HQL is extremely powerful, but some developers prefer to build queries dynamically using an
object-oriented API, rather than building query strings. Hibernate provides an intuitive Criteria
query API for these cases:

Criteria crit = session.createCriteria(Cat.class);

169

#10# HHHHHHHH

crit.add(Restrictions.eq("color", eg.Color.BLACK)));
crit.setMaxResults(10);
List cats = crit.list();

Criteria# Exanpl e API##### # 15. Criteria### #HH##HHHHH

10.4.4. ##HHH#HSQLHH#H##

You can express a query in SQL, using createSQ.Query() and let Hibernate manage the
mapping from result sets to objects. You can at any time call sessi on. connection() and use
the JDBC Connect i on directly. If you choose to use the Hibernate API, you must enclose SQL
aliases in braces:

List cats = session.createSQLQuery("SELECT {cat.*} FROM CAT {cat} WHERE ROWNUM<10")
.addEntity("cat", Cat.class)
dist();

List cats = session.createSQLQuery(
"SELECT {cat}.ID AS {cat.id}, {cat}.SEX AS {cat.sex}, " +
"{cat}.MATE AS {cat.mate}, {cat}. SUBCLASS AS {cat.class}, ... " +
"FROM CAT {cat} WHERE ROWNUM<10")
.addEntity("cat", Cat.class)
Jdist()

SQL queries can contain named and positional parameters, just like Hibernate queries. More
information about native SQL queries in Hibernate can be found in # 16. #####SQL.

10.5. #H#HHAHHHAHH#

Transactional persistent instances (i.e. objects loaded, saved, created or queried by the Sessi on)
can be manipulated by the application, and any changes to persistent state will be persisted when
the Sessi on is flushed. This is discussed later in this chapter. There is no need to call a particular
method (like updat e() , which has a different purpose) to make your modifications persistent. The
most straightforward way to update the state of an object is to | oad() it and then manipulate it
directly while the Sessi on is open:

DomesticCat cat = (DomesticCat) sess.load(Cat.class, new Long(69));
cat.setName("PK");
sess.flush(); // changes to cat are automatically detected and persisted

170

BRAHHHHHH

Sometimes this programming model is inefficient, as it requires in the same session both an SQL
SELECT to load an object and an SQL UPDATE to persist its updated state. Hibernate offers an
alternate approach by using detached instances.

HiHH

Hibernate does not offer its own API for direct execution of UPDATE or DELETE
statements. Hibernate is a state management service, you do not have to think
in statements to use it. JDBC is a perfect API for executing SQL statements,

you can get a JDBC Connect i on at any time by calling sessi on. connecti on().
Furthermore, the notion of mass operations conflicts with object/relational
mapping for online transaction processing-oriented applications. Future versions
of Hibernate can, however, provide special mass operation functions. See # 13.
anHan#atar o for some possible batch operation tricks.

10.0. #H#HH#HHHBHHH

BRI A R R R R R A T U (B BT AT
BHHH T T A
BRI AR

Hibernate## Sessi on. updat e() # Sessi on. mer ge() #HHH HIHHHHHHHHEHHHH
frizicicias:

/' in the first session

Cat cat = (Cat) firstSession.load(Cat.class, catld);
Cat potentialMate = new Cat();
firstSession.save(potentialMate);

/l in a higher layer of the application
cat.setMate(potentialMate);

/I later, in a new session
secondSession.update(cat); // update cat
secondSession.update(mate); // update mate

#ittcat | d ### Cat ###H## secondSessi on #HHHHHHHHHHHHHHHHHHHHH A

Use updat e() if you are certain that the session does not contain an already persistent instance
with the same identifier. Use ner ge() if you want to merge your modifications at any time without
consideration of the state of the session. In other words, updat e() is usually the first method you
would call in a fresh session, ensuring that the reattachment of your detached instances is the
first operation that is executed.

171

#10# HHHHHHHH

The application should individually updat e() detached instances that are reachable from the given
detached instance only if it wants their state to be updated. This can be automated using transitive
persistence. See #10.11. ####H#H#### for more information.

The 1 ock() method also allows an application to reassociate an object with a new session.
However, the detached instance has to be unmodified.

/ljust reassociate:

sess.lock(fritz, LockMode.NONE);

//do a version check, then reassociate:

sess.lock(izi, LockMode.READ);

/ldo a version check, using SELECT ... FOR UPDATE, then reassociate:
sess.lock(pk, LockMode.UPGRADE);

Note that | ock() can be used with various LockMbdes. See the APl documentation and the
chapter on transaction handling for more information. Reattachment is not the only usecase for
I ock() .

HHHHHHHHHH R 2?77 R

10.7. #HH#HHHHH

Hibernatef i 2HHHHHHHHHIHHHHIHHH . A
HHHHHHHE T A saveOr Updat e() #HHHHHIHHH
HHHHHHHHHHH

/I in the first session
Cat cat = (Cat) firstSession.load(Cat.class, catID);

/l'in a higher tier of the application
Cat mate = new Cat();
cat.setMate(mate);

/I later, in a new session
secondSession.saveOrUpdate(cat); // update existing state (cat has a non-null id)
secondSession.saveOrUpdate(mate); // save the new instance (mate has a null id)

saveOr Updat e() HHHHHHHHHE HHHHHHHHHHHHHHHHHE
AR updat e() # saveOr Updat e() # mer ge() HHHHHHHEHHEHE Y
B

H### updat () # saveOr Updat e() HHHHHEHE HHEEHHE

o HHHHHHHHHHHHHHHHHHHHHH

172

BRAHHHHHH

HHAHHHHU R

BHAHHHHH R

BHHHHHHH

BHAHHHHHH 2BH#HHHHHH updat e() HHAHHHHHHHHHHHHHHH

saveOr Updat e() #H#####HHHHHHE

o HHHHIHHHH

o HHHHHHHEHHEHHEHHEHHEHEHHHHTHHHH T T

o HHHHHHHHHAHHIH R save () #HHH#

o HHHHHHHH A R R R R save () #H#H#

« if the object is versioned by a <ver si on> or <t i nest anp>, and the version property value is the
same value assigned to a newly instantiated object, save() it

o HHHHHHHEHHEHHEHHEE updat e() #HH

HitHE mer ge() HHHHHHHHHHHH-H-EH7

BHHHHHHHHHHHHHHHH R AT AR
#H

HHHHHHHHHHHHHHH AR SRR AR R
HHAHHHHHHHHHAR

BRAHHHHHH AR AR AR

10.8. #H#H#HHHHHHHHH

Sessi on. del et e() will remove an object's state from the database. Your application, however,
can still hold a reference to a deleted object. It is best to think of del et e() as making a persistent
instance, transient.

sess.delete(cat);

You can delete objects in any order, without risk of foreign key constraint violations. It is still
possible to violate a NOT NULL constraint on a foreign key column by deleting objects in the wrong
order, e.g. if you delete the parent, but forget to delete the children.

10.9. #HHHAHHBHHBHHHHAHHAHH AT

It is sometimes useful to be able to take a graph of persistent instances and make them persistent
in a different datastore, without regenerating identifier values.

/Iretrieve a cat from one database
Session sessionl = factoryl.openSession();

173

#10# HHHHHHHH

Transaction tx1 = sessionl.beginTransaction();
Cat cat = sessionl.get(Cat.class, catld);
tx1.commit();

sessionl.close();

/Ireconcile with a second database

Session session2 = factory2.openSession();

Transaction tx2 = session2.beginTransaction();
session2.replicate(cat, ReplicationMode.LATEST VERSION);
tx2.commit();

session2.close();

The Repl i cati onMode determines how r epl i cat e() will deal with conflicts with existing rows in
the database:

* ReplicationMde. | GNORE: ignores the object when there is an existing database row with the
same identifier

* ReplicationMbde. OVERWRI TE: overwrites any existing database row with the same identifier

e Replicati onMbde. EXCEPTI ON: throws an exception if there is an existing database row with
the same identifier

* ReplicationMde. LATEST VERSI ON: overwrites the row if its version number is earlier than the
version number of the object, or ignore the object otherwise

HHHHHHHHH T R R ACID
BRAHHHHH AR AR

10.10. ##HH#HHHAHHHH

Sometimes the Sessi on will execute the SQL statements needed to synchronize the JDBC
connection's state with the state of objects held in memory. This process, called flush, occurs by
default at the following points:

o BRI
e org. hibernate. Transaction. conm t () ##H#H###
e Session. flush() ###HH#H##

The SQL statements are issued in the following order:

1. all entity insertions in the same order the corresponding objects were saved using
Sessi on. save()

2. HHHHHHRRRRR

3. HHTHIH R

4. HHHHHHHHH

174

HHHHHHH

5. HHHHHHHHHEHH
6. all entity deletions in the same order the corresponding objects were deleted using
Sessi on. del et e()

An exception is that objects using nat i ve ID generation are inserted when they are saved.

Except when you explicitly f | ush() , there are absolutely no guarantees about when the Sessi on
executes the JDBC calls, only the order in which they are executed. However, Hibernate does
guarantee that the Query. I'i st (..) will never return stale or incorrect data.

It is possible to change the default behavior so that flush occurs less frequently. The FI ushivbde
class defines three different modes: only flush at commit time when the Hibernate Tr ansacti on
API is used, flush automatically using the explained routine, or never flush unless f1 ush() is
called explicitly. The last mode is useful for long running units of work, where a Sessi on is kept
open and disconnected for a long time (see #11.3.2. #H#H#HHHHHHHHHHIHHHHE).

sess = sf.openSession();
Transaction tx = sess.beginTransaction();
sess.setFlushMode(FlushMode.COMMIT); // allow queries to return stale state

Cat izi = (Cat) sess.load(Cat.class, id);
izi.setName(iznizi);

/I might return stale data
sess.find("from Cat as cat left outer join cat.kittens kitten");

/I change to izi is not flushed!

tx.commit(); // flush occurs
sess.close();

HHHHHHHHH T HHHD MU A HIDernate##
P A # 11, Transactions and Concurrency ###HtH#

10.11. ##H#H#HH#H

BHAHHHHHHHH A AR 3
HHHHHHHHHHH T R

If the children in a parent/child relationship would be value typed (e.g. a collection of addresses
or strings), their life cycle would depend on the parent and no further action would be required
for convenient "cascading" of state changes. When the parent is saved, the value-typed child
objects are saved and when the parent is deleted, the children will be deleted, etc. This works for
operations such as the removal of a child from the collection. Since value-typed objects cannot
have shared references, Hibernate will detect this and delete the child from the database.

175

#10# HHHHHHHH

Now consider the same scenario with parent and child objects being entities, not value-types (e.g.
categories and items, or parent and child cats). Entities have their own life cycle and support
shared references. Removing an entity from the collection does not mean it can be deleted), and
there is by default no cascading of state from one entity to any other associated entities. Hibernate
does not implement persistence by reachability by default.

Hibernate#Session##t#### persist(), merge(), saveO Update(), delete(), |ock(),
refresh(), evict(), replicate() #HHHHAHHHHHHI HHHHHHHHHHHHHHHHHHEE
HHH#HAH#H creat e, nerge, save-update, delete, lock, refresh, evict, replicate ###
BHEHHHHHHHT R R HH R

<one-to-one name="person" cascade="persist"/>

B HHHHH

<one-to-one name="person" cascade="persist,delete,lock"/>

You can even use cascade="al | " to specify that all operations should be cascaded along the
association. The default cascade="none" specifies that no operations are to be cascaded.

HiHHHHHHHHE del et e- or phan HHHHHARHHE BHHHHHE HHHHHHHHHHHH R
del et e() #HHHHHHHHHHHHHHIH

HHAHH

« It does not usually make sense to enable cascade on a <nmany-t o- one> Or <many-t o- many>
association. Cascade is often useful for <one- t 0- one> and <one-t o- many> associations.

o HHHHIHHHHHHHHEHHHHE R cascade="al | , del et e- or phan" #HH#H ST
HH AR SR

o | HEHHHHHHH R R R R R R R
HHHHEHEHH A HH AR cascade="per si st, mer ge, save- updat e" HHHH#AHHHH I

cascade="al | " HHHHHHIHHIHHHHHEHHEHHEHHEE $HE A R
B [HHH

Furthermore, a mere reference to a child from a persistent parent will result in save/update of the
child. This metaphor is incomplete, however. A child which becomes unreferenced by its parent
is not automatically deleted, except in the case of a <one-t o- many> association mapped with
cascade="del et e- or phan". The precise semantics of cascading operations for a parent/child
relationship are as follows:

o ##t persi st () HHHAHHHHHA HHHHAH per si st () HHHAHHH
o nerge() #HEHHHHAHHE HHAHHT mer ge() #HAHHHHHA

176

HHHHHHHH

o ## save() #update() # saveO Updat e() ##H#H#H#A#HHH#H##AH#HH saveOr Updat e() #AH#HHHHH#HHE
BT R AR saveOr Updat e() #H#H#H##H#

B del et e() #HEHHAIH

BHAFHHHHH TR HH T § S R T #3
cascade="del et e- or phan" ###H#HHHH#AH HHHHAHHHHHFHEHHH I

Finally, note that cascading of operations can be applied to an object graph at call time or at flush
time. All operations, if enabled, are cascaded to associated entities reachable when the operation
is executed. However, save- updat e and del et e- or phan are transitive for all associated entities
reachable during flush of the Sessi on.

10.12. #H#H#H#HHH#

Hibernate requires a rich meta-level model of all entity and value types. This model can be useful to
the application itself. For example, the application might use Hibernate's metadata to implement a
"smart" deep-copy algorithm that understands which objects should be copied (eg. mutable value
types) and which objects that should not (e.g. immutable value types and, possibly, associated
entities).

Hibernate exposes metadata via the C assMetadata and Col | ecti onMet adat a interfaces
and the Type hierarchy. Instances of the metadata interfaces can be obtained from the
Sessi onFact ory.

Catfritz=...... :
ClassMetadata catMeta = sessionfactory.getClassMetadata(Cat.class);

Object[] propertyValues = catMeta.getPropertyValues(fritz);
String[] propertyNames = catMeta.getPropertyNames();
Type[] propertyTypes = catMeta.getPropertyTypes();

/I get a Map of all properties which are not collections or associations
Map namedValues = new HashMap();
for (int i=0; i<propertyNames.length; i++) {
if (!propertyTypes]i].isEntityType() && !propertyTypesJi].isCollectionType()) {
namedValues.put(propertyNames]i], propertyValues]i]);

177

178

Transactions and Concurrency

The most important point about Hibernate and concurrency control is that it is easy to understand.
Hibernate directly uses JDBC connections and JTA resources without adding any additional
locking behavior. It is recommended that you spend some time with the JDBC, ANSI, and
transaction isolation specification of your database management system.

Hibernate does not lock objects in memory. Your application can expect the behavior as defined
by the isolation level of your database transactions. Through Sessi on, which is also a transaction-
scoped cache, Hibernate provides repeatable reads for lookup by identifier and entity queries and
not reporting queries that return scalar values.

In addition to versioning for automatic optimistic concurrency control, Hibernate also offers,
using the SELECT FOR UPDATE syntax, a (minor) API for pessimistic locking of rows. Optimistic
concurrency control and this API are discussed later in this chapter.

The discussion of concurrency control in Hibernate begins with the granularity of Conf i gur ati on,
Sessi onFact ory, and Sessi on, as well as database transactions and long conversations.

11.1. session#####transaction####

A Sessi onFact ory is an expensive-to-create, threadsafe object, intended to be shared by all
application threads. It is created once, usually on application startup, from a Confi guration
instance.

A Sessi on is an inexpensive, non-threadsafe object that should be used once and then discarded
for: a single request, a conversation or a single unit of work. A Sessi on will not obtain a JDBC
Connect i on, or a Dat asour ce, unless it is needed. It will not consume any resources until used.

In order to reduce lock contention in the database, a database transaction has to be as short
as possible. Long database transactions will prevent your application from scaling to a highly
concurrent load. It is not recommended that you hold a database transaction open during user
think time until the unit of work is complete.

What is the scope of a unit of work? Can a single Hibernate Sessi on span several database
transactions, or is this a one-to-one relationship of scopes? When should you open and close a
Sessi on and how do you demarcate the database transaction boundaries? These questions are
addressed in the following sections.

11.1.1. #####UNit of work#

First, let's define a unit of work. A unit of work is a design pattern described by Martin Fowler as
[maintaining] a list of objects affected by a business transaction and coordinates the writing out
of changes and the resolution of concurrency problems. #[PoEAA] In other words, its a series of
operations we wish to carry out against the database together. Basically, it is a transaction, though
fulfilling a unit of work will often span multiple physical database transactions (see #11.1.2. ###
###). So really we are talking about a more abstract notion of a transaction. The term "business
transaction” is also sometimes used in lieu of unit of work.

179

#11# Transactions and Concurrency

Do not use the session-per-operation antipattern: do not open and close a Sessi on for every
simple database call in a single thread. The same is true for database transactions. Database calls
in an application are made using a planned sequence; they are grouped into atomic units of work.
This also means that auto-commit after every single SQL statement is useless in an application as
this mode is intended for ad-hoc SQL console work. Hibernate disables, or expects the application
server to disable, auto-commit mode immediately. Database transactions are never optional.
All communication with a database has to occur inside a transaction. Auto-commit behavior for
reading data should be avoided, as many small transactions are unlikely to perform better than
one clearly defined unit of work. The latter is also more maintainable and extensible.

The most common pattern in a multi-user client/server application is session-per-request. In this
model, a request from the client is sent to the server, where the Hibernate persistence layer runs.
A new Hibernate Sessi on is opened, and all database operations are executed in this unit of work.
On completion of the work, and once the response for the client has been prepared, the session
is flushed and closed. Use a single database transaction to serve the clients request, starting and
committing it when you open and close the Sessi on. The relationship between the two is one-to-
one and this model is a perfect fit for many applications.

The challenge lies in the implementation. Hibernate provides built-in management of the "current
session" to simplify this pattern. Start a transaction when a server request has to be processed,
and end the transaction before the response is sent to the client. Common solutions are
Servl et Fi | t er, AOP interceptor with a pointcut on the service methods, or a proxy/interception
container. An EJB container is a standardized way to implement cross-cutting aspects such as
transaction demarcation on EJB session beans, declaratively with CMT. If you use programmatic
transaction demarcation, for ease of use and code portability use the Hibernate Tr ansact i on API
shown later in this chapter.

Your application code can access a "current session” to process the request by calling
sessi onFact ory. get Current Sessi on() . You will always get a Sessi on scoped to the current
database transaction. This has to be configured for either resource-local or JTA environments,
see #2.5. #Contextual sessions#.

You can extend the scope of a Sessi on and database transaction until the "view has been
rendered". This is especially useful in servlet applications that utilize a separate rendering phase
after the request has been processed. Extending the database transaction until view rendering,
is achieved by implementing your own interceptor. However, this will be difficult if you rely on
EJBs with container-managed transactions. A transaction will be completed when an EJB method
returns, before rendering of any view can start. See the Hibernate website and forum for tips and
examples relating to this Open Session in View pattern.

11.1.2. ####

The session-per-request pattern is not the only way of designing units of work. Many business
processes require a whole series of interactions with the user that are interleaved with database
accesses. In web and enterprise applications, it is not acceptable for a database transaction to
span a user interaction. Consider the following example:

180

HHHHHHHHHH

« The first screen of a dialog opens. The data seen by the user has been loaded in a particular
Sessi on and database transaction. The user is free to modify the objects.

» The user clicks "Save" after 5 minutes and expects their modifications to be made persistent.
The user also expects that they were the only person editing this information and that no
conflicting modification has occurred.

From the point of view of the user, we call this unit of work a long-running conversation or
application transaction. There are many ways to implement this in your application.

A first naive implementation might keep the Sessi on and database transaction open during user
think time, with locks held in the database to prevent concurrent modification and to guarantee
isolation and atomicity. This is an anti-pattern, since lock contention would not allow the application
to scale with the number of concurrent users.

You have to use several database transactions to implement the conversation. In this case,
maintaining isolation of business processes becomes the partial responsibility of the application
tier. A single conversation usually spans several database transactions. It will be atomic if only one
of these database transactions (the last one) stores the updated data. All others simply read data
(for example, in a wizard-style dialog spanning several request/response cycles). This is easier
to implement than it might sound, especially if you utilize some of Hibernate's features:

« Automatic Versioning: Hibernate can perform automatic optimistic concurrency control for you.
It can automatically detect if a concurrent modification occurred during user think time. Check
for this at the end of the conversation.

» Detached Obijects: if you decide to use the session-per-request pattern, all loaded instances
will be in the detached state during user think time. Hibernate allows you to reattach the objects
and persist the modifications. The pattern is called session-per-request-with-detached-objects.
Automatic versioning is used to isolate concurrent modifications.

« Extended (or Long) Session: the Hibernate Sessi on can be disconnected from the underlying
JDBC connection after the database transaction has been committed and reconnected when a
new client request occurs. This pattern is known as session-per-conversation and makes even
reattachment unnecessary. Automatic versioning is used to isolate concurrent modifications
and the Sessi on will not be allowed to be flushed automatically, but explicitly.

Both session-per-request-with-detached-objects and session-per-conversation have advantages
and disadvantages. These disadvantages are discussed later in this chapter in the context of
optimistic concurrency control.

11.1.3. #H##HHBHHHABHHH

An application can concurrently access the same persistent state in two different Sessi ons.
However, an instance of a persistent class is never shared between two Sessi on instances. It is
for this reason that there are two different notions of identity:

181

#11# Transactions and Concurrency

HHH I
foo.getld().equal s(bar.getld())

JVM##H
f oo==bar

For objects attached to a particular Sessi on (i.e., in the scope of a Sessi on), the two notions
are equivalent and JVM identity for database identity is guaranteed by Hibernate. While the
application might concurrently access the "same" (persistent identity) business object in two
different sessions, the two instances will actually be "different" (JVM identity). Conflicts are
resolved using an optimistic approach and automatic versioning at flush/commit time.

This approach leaves Hibernate and the database to worry about concurrency. It also provides
the best scalability, since guaranteeing identity in single-threaded units of work means that it does
not need expensive locking or other means of synchronization. The application does not need to
synchronize on any business object, as long as it maintains a single thread per Sessi on. Within
a Sessi on the application can safely use == to compare objects.

However, an application that uses == outside of a Sessi on might produce unexpected results. This
might occur even in some unexpected places. For example, if you put two detached instances into
the same Set , both might have the same database identity (i.e., they represent the same row). JVM
identity, however, is by definition not guaranteed for instances in a detached state. The developer
has to override the equal s() and hashCode() methods in persistent classes and implement their
own notion of object equality. There is one caveat: never use the database identifier to implement
equality. Use a business key that is a combination of unique, usually immutable, attributes. The
database identifier will change if a transient object is made persistent. If the transient instance
(usually together with detached instances) is held in a Set, changing the hashcode breaks the
contract of the Set . Attributes for business keys do not have to be as stable as database primary
keys; you only have to guarantee stability as long as the objects are in the same Set. See the
Hibernate website for a more thorough discussion of this issue. Please note that this is not a
Hibernate issue, but simply how Java object identity and equality has to be implemented.

11.1.4. #H#H#H#H#

Do not use the anti-patterns session-per-user-session or session-per-application (there are,
however, rare exceptions to this rule). Some of the following issues might also arise within the
recommended patterns, so ensure that you understand the implications before making a design
decision:

* ASessi on is not thread-safe. Things that work concurrently, like HTTP requests, session beans,
or Swing workers, will cause race conditions if a Sessi on instance is shared. If you keep your
Hibernate Sessi on in your Ht t pSessi on (this is discussed later in the chapter), you should
consider synchronizing access to your Http session. Otherwise, a user that clicks reload fast
enough can use the same Sessi on in two concurrently running threads.

« An exception thrown by Hibernate means you have to rollback your database transaction and
close the Sessi on immediately (this is discussed in more detail later in the chapter). If your

182

BRAHHHHHHHR A

Sessi on is bound to the application, you have to stop the application. Rolling back the database
transaction does not put your business objects back into the state they were at the start of the
transaction. This means that the database state and the business objects will be out of sync.
Usually this is not a problem, because exceptions are not recoverable and you will have to start
over after rollback anyway.

« The Sessi on caches every object that is in a persistent state (watched and checked for dirty
state by Hibernate). If you keep it open for a long time or simply load too much data, it will
grow endlessly until you get an OutOfMemoryException. One solution is to call cl ear () and
evi ct () to manage the Sessi on cache, but you should consider a Stored Procedure if you
need mass data operations. Some solutions are shown in # 13. a##a##a##an|cH#. Keeping a
Sessi on open for the duration of a user session also means a higher probability of stale data.

11.2. B

Database, or system, transaction boundaries are always necessary. No communication with the
database can occur outside of a database transaction (this seems to confuse many developers
who are used to the auto-commit mode). Always use clear transaction boundaries, even for read-
only operations. Depending on your isolation level and database capabilities this might not be
required, but there is no downside if you always demarcate transactions explicitly. Certainly, a
single database transaction is going to perform better than many small transactions, even for
reading data.

A Hibernate application can run in non-managed (i.e., standalone, simple Web- or Swing
applications) and managed J2EE environments. In a non-managed environment, Hibernate
is usually responsible for its own database connection pool. The application developer has
to manually set transaction boundaries (begin, commit, or rollback database transactions)
themselves. A managed environment usually provides container-managed transactions (CMT),
with the transaction assembly defined declaratively (in deployment descriptors of EJB session
beans, for example). Programmatic transaction demarcation is then no longer necessary.

However, it is often desirable to keep your persistence layer portable between non-managed
resource-local environments, and systems that can rely on JTA but use BMT instead of CMT.
In both cases use programmatic transaction demarcation. Hibernate offers a wrapper API called
Tr ansact i on that translates into the native transaction system of your deployment environment.
This API is actually optional, but we strongly encourage its use unless you are in a CMT session
bean.

Ending a Sessi on usually involves four distinct phases:

HHHAHHHHH
BRAHHPRR
BHAHHHHHHH
BRI

We discussed Flushing the session earlier, so we will now have a closer look at transaction
demarcation and exception handling in both managed and non-managed environments.

183

#11# Transactions and Concurrency

11.2.1. #H##H#BHHAH

If a Hibernate persistence layer runs in a non-managed environment, database connections are
usually handled by simple (i.e., non-DataSource) connection pools from which Hibernate obtains
connections as needed. The session/transaction handling idiom looks like this:

/I Non-managed environment idiom
Session sess = factory.openSession();
Transaction tx = null;

try {
tx = sess.beginTransaction();

/l do some work

tx.commit();
}
catch (RuntimeException e) {
if (tx = null) tx.rollback();
throw e; // or display error message
}
finally {
sess.close();

You do not have to f | ush() the Sessi on explicitly: the call to conmi t () automatically triggers the
synchronization depending on the FlushMode for the session. A call to cl ose() marks the end of
a session. The main implication of cl ose() is that the JDBC connection will be relinquished by
the session. This Java code is portable and runs in both non-managed and JTA environments.

As outlined earlier, a much more flexible solution is Hibernate's built-in "current session" context
management:

/I Non-managed environment idiom with getCurrentSession()

try {
factory.getCurrentSession().beginTransaction();

/I do some work

factory.getCurrentSession().getTransaction().commit();

}

catch (RuntimeException e) {

184

JTAHHHH#

factory.getCurrentSession().getTransaction().rollback();
throw e; // or display error message

You will not see these code snippets in a regular application; fatal (system) exceptions should
always be caught at the "top". In other words, the code that executes Hibernate calls in the
persistence layer, and the code that handles Runt i meExcept i on (and usually can only clean up
and exit), are in different layers. The current context management by Hibernate can significantly
simplify this design by accessing a Sessi onFact or y. Exception handling is discussed later in this
chapter.

You should select org. hibernate.transaction.JDBCTransactionFactory, which s
the default, and for the second example select "thread" as your
hi ber nat e. current _sessi on_cont ext _cl ass.

11.2.2. ITA##H#HH

If your persistence layer runs in an application server (for example, behind EJB session beans),
every datasource connection obtained by Hibernate will automatically be part of the global JTA
transaction. You can also install a standalone JTA implementation and use it without EJB.
Hibernate offers two strategies for JTA integration.

If you use bean-managed transactions (BMT), Hibernate will tell the application server to start and
end a BMT transaction if you use the Transacti on API. The transaction management code is
identical to the non-managed environment.

// BMT idiom
Session sess = factory.openSession();
Transaction tx = null;

try {
tx = sess.beginTransaction();

/l do some work

tx.commit();
}
catch (RuntimeException e) {
if (tx != null) tx.rollback();
throw e; // or display error message
}
finally {
sess.close();

185

#11# Transactions and Concurrency

If you want to use a transaction-bound Sessi on, that is, the get Current Sessi on() functionality
for easy context propagation, use the JTA User Tr ansact i on API directly:

// BMT idiom with getCurrentSession()
try {
UserTransaction tx = (UserTransaction)new InitialContext()
.lookup("java:comp/UserTransaction");

tx.begin();

/I Do some work on Session bound to transaction
factory.getCurrentSession().load(...);
factory.getCurrentSession().persist(...);

tx.commit();

}

catch (RuntimeException e) {
tx.rollback();
throw e; // or display error message

With CMT, transaction demarcation is completed in session bean deployment descriptors, not
programmatically. The code is reduced to:

/[CMT idiom
Session sess = factory.getCurrentSession();

/l do some work

In a CMT/EJB, even rollback happens automatically. An unhandled Runt i neExcept i on thrown
by a session bean method tells the container to set the global transaction to rollback. You do
not need to use the Hibernate Tr ansacti on API at all with BMT or CMT, and you get automatic
propagation of the "current" Session bound to the transaction.

When configuring Hibernate's transaction factory, choose
org. hi bernate. transacti on. JTATransacti onFactory if you use JTA directly (BMT),
and org. hibernate.transacti on. CMI'Transacti onFactory in a CMT session bean.
Remember to also set hi bernate. transacti on. manager _| ookup_cl ass. Ensure that your
hi ber nat e. current _sessi on_cont ext _cl ass is either unset (backwards compatibility), or is set
to"jta".

186

HHHHHHHH

The get Current Sessi on() operation has one downside in a JTA environment. There is one
caveat to the use of af t er _st at enent connection release mode, which is then used by default.
Due to a limitation of the JTA spec, it is not possible for Hibernate to automatically clean up
any unclosed Scrol | abl eResul ts or | terat or instances returned by scrol | () oriterate().
You must release the underlying database cursor by calling Scrol | abl eResul ts. cl ose() or
Hi bernat e. cl ose(lterator) explicitly fromafi nal | y block. Most applications can easily avoid
using scrol I () oriterate() fromthe JTA or CMT code.)

11.2.3. #H##HHHHH

If the Session throws an exception, including any SQLExcepti on, immediately rollback the
database transaction, call Sessi on. cl ose() and discard the Sessi on instance. Certain methods
of Sessi on will not leave the session in a consistent state. No exception thrown by Hibernate
can be treated as recoverable. Ensure that the Sessi on will be closed by calling cl ose() in a
final |y block.

The Hi ber nat eExcepti on, which wraps most of the errors that can occur in a Hibernate
persistence layer, is an unchecked exception. It was not in older versions of Hibernate. In our
opinion, we should not force the application developer to catch an unrecoverable exception at a
low layer. In most systems, unchecked and fatal exceptions are handled in one of the first frames
of the method call stack (i.e., in higher layers) and either an error message is presented to the
application user or some other appropriate action is taken. Note that Hibernate might also throw
other unchecked exceptions that are not a Hi ber nat eExcept i on. These are not recoverable and
appropriate action should be taken.

Hibernate wraps SQ.Exceptions thrown while interacting with the database in a
JDBCException. In fact, Hibernate will attempt to convert the exception into a more
meaningful subclass of JDBCExcepti on. The underlying SQLExcepti on is always available
via JDBCExcept i on. get Cause(). Hibernate converts the SQLExcepti on into an appropriate
JDBCExcept i on subclass using the SQLExcept i onConverter attached to the Sessi onFact ory.
By default, the SQLExceptionConverter is defined by the configured dialect. However,
it is also possible to plug in a custom implementation. See the javadocs for the
SQLExcept i onConvert er Fact or y class for details. The standard JDBCExcept i on subtypes are:

« JDBCConnect i onExcept i on: indicates an error with the underlying JDBC communication.

* SQLG anmar Except i on: indicates a grammar or syntax problem with the issued SQL.

e ConstraintViol ati onExcepti on: indicates some form of integrity constraint violation.

e LockAcqui siti onExcepti on:indicates an error acquiring a lock level necessary to perform the
requested operation.

* Generi cJDBCExcepti on: a generic exception which did not fall into any of the other categories.

11.2.4. #HHHAAHIHHRH

An important feature provided by a managed environment like EJB, that is never provided for
non-managed code, is transaction timeout. Transaction timeouts ensure that no misbehaving

187

#11# Transactions and Concurrency

transaction can indefinitely tie up resources while returning no response to the user. Outside a
managed (JTA) environment, Hibernate cannot fully provide this functionality. However, Hibernate
can at least control data access operations, ensuring that database level deadlocks and queries
with huge result sets are limited by a defined timeout. In a managed environment, Hibernate can
delegate transaction timeout to JTA. This functionality is abstracted by the Hibernate Tr ansact i on
object.

Session sess = factory.openSession();
try {
/Iset transaction timeout to 3 seconds
sess.getTransaction().setTimeout(3);
sess.getTransaction().begin();

/I do some work

sess.getTransaction().commit()
}
catch (RuntimeException e) {
sess.getTransaction().rollback();
throw e; // or display error message
}
finally {
sess.close();

set Ti meout () cannot be called in a CMT bean, where transaction timeouts must be defined
declaratively.

11.3. #HH#HHHHIH

The only approach that is consistent with high concurrency and high scalability, is optimistic
concurrency control with versioning. Version checking uses version numbers, or timestamps,
to detect conflicting updates and to prevent lost updates. Hibernate provides three possible
approaches to writing application code that uses optimistic concurrency. The use cases we
discuss are in the context of long conversations, but version checking also has the benefit of
preventing lost updates in single database transactions.

11.3. 1. s st e i iy

In an implementation without much help from Hibernate, each interaction with the database occurs
in a new Sessi on and the developer is responsible for reloading all persistent instances from
the database before manipulating them. The application is forced to carry out its own version

188

BRAHHHHHHHH A

checking to ensure conversation transaction isolation. This approach is the least efficient in terms
of database access. It is the approach most similar to entity EJBs.

/Il foo is an instance loaded by a previous Session
session = factory.openSession();
Transaction t = session.beginTransaction();

int oldVersion = foo.getVersion();

session.load(foo, foo.getKey()); // load the current state

if (oldVersion != foo.getVersion()) throw new StaleObjectStateException();
foo.setProperty("bar");

t.commit();
session.close();

<versi on> ###HHiver si on #H#HHHHHHHH# HIDernate i HHHHHHHIHH R HHH
VEr Si on #HHHHHHHHHHHHHHHHHHH

If you are operating in a low-data-concurrency environment, and do not require version checking,
you can use this approach and skip the version check. In this case, last commit wins is the default
strategy for long conversations. Be aware that this might confuse the users of the application,
as they might experience lost updates without error messages or a chance to merge conflicting
changes.

Manual version checking is only feasible in trivial circumstances and not practical for most
applications. Often not only single instances, but complete graphs of modified objects, have to
be checked. Hibernate offers automatic version checking with either an extended Sessi on or
detached instances as the design paradigm.

11.3.2. HHAHHHABHHA B

A single Sessi on instance and its persistent instances that are used for the whole conversation are
known as session-per-conversation. Hibernate checks instance versions at flush time, throwing
an exception if concurrent modification is detected. It is up to the developer to catch and handle
this exception. Common options are the opportunity for the user to merge changes or to restart
the business conversation with non-stale data.

The Session is disconnected from any underlying JDBC connection when waiting for user
interaction. This approach is the most efficient in terms of database access. The application does
not version check or reattach detached instances, nor does it have to reload instances in every
database transaction.

/I foo is an instance loaded earlier by the old session
Transaction t = session.beginTransaction(); // Obtain a new JDBC connection, start transaction

189

#11# Transactions and Concurrency

foo.setProperty("bar");

session.flush(); // Only for last transaction in conversation
t.commit(); /I Also return JDBC connection
session.close(); // Only for last transaction in conversation

The f oo object knows which Sessi on it was loaded in. Beginning a new database transaction
on an old session obtains a new connection and resumes the session. Committing a database
transaction disconnects a session from the JDBC connection and returns the connection to
the pool. After reconnection, to force a version check on data you are not updating, you can
call Session.|ock() with LockMbde. READ on any objects that might have been updated by
another transaction. You do not need to lock any data that you are updating. Usually you would
set Fl ushMbde. MANUAL on an extended Sessi on, so that only the last database transaction
cycle is allowed to actually persist all modifications made in this conversation. Only this last
database transaction will include the f1 ush() operation, and then cl ose() the session to end
the conversation.

This pattern is problematic if the Sessi on is too big to be stored during user think time (for example,
an Ht t pSessi on should be kept as small as possible). As the Sessi on is also the first-level cache
and contains all loaded objects, we can probably use this strategy only for a few request/response
cycles. Use a Sessi on only for a single conversation as it will soon have stale data.

@ Note

Earlier versions of Hibernate required explicit disconnection and reconnection of a
Sessi on. These methods are deprecated, as beginning and ending a transaction
has the same effect.

Keep the disconnected Sessi on close to the persistence layer. Use an EJB stateful session bean
to hold the Sessi on in a three-tier environment. Do not transfer it to the web layer, or even serialize
it to a separate tier, to store it in the Ht t pSessi on.

The extended session pattern, or session-per-conversation, is more difficult to implement with
automatic current session context management. You need to supply your own implementation of
the Cur r ent Sessi onCont ext for this. See the Hibernate Wiki for examples.

11.3.3. S s i

it Sessi OnNHHHHHHHHHHHHHHH AT HHHH R R
B HHHH A Sessi on HHHHHHHH BHHHHHHHH T ###Sessi on. updat e()
#HH##Sessi on. saveOr Updat e() # Sessi on. ner ge() #HAHHHHHBHHHHAHIHHHRHIH

// foo is an instance loaded by a previous Session

190

BRAHHHHHHHR A

foo.setProperty("bar");

session = factory.openSession();

Transaction t = session.beginTransaction();

session.saveOrUpdate(foo); // Use merge() if "foo" might have been loaded already
t.commit();

session.close();

Again, Hibernate will check instance versions during flush, throwing an exception if conflicting
updates occurred.

You can also call | ock() instead of updat e(), and use LockMode. READ (performing a version
check and bypassing all caches) if you are sure that the object has not been modified.

11.3.4. AT TR

You can disable Hibernate's automatic version increment for particular properties and collections
by setting the optimistic-1ock mapping attribute to fal se. Hibernate will then no longer
increment versions if the property is dirty.

Legacy database schemas are often static and cannot be modified. Or, other applications might
access the same database and will not know how to handle version numbers or even timestamps.
In both cases, versioning cannot rely on a particular column in a table. To force a version check
with a comparison of the state of all fields in a row but without a version or timestamp property
mapping, turn onopt i m sti c-1 ock="al | " inthe <cl ass> mapping. This conceptually only works
if Hibernate can compare the old and the new state (i.e., if you use a single long Sessi on and not
session-per-request-with-detached-objects).

Concurrent modification can be permitted in instances where the changes that have been made
do not overlap. If you set opt i mi sti c- 1 ock="di rty" when mapping the <cl ass>, Hibernate will
only compare dirty fields during flush.

In both cases, with dedicated version/timestamp columns or with a full/dirty field comparison,
Hibernate uses a single UPDATE statement, with an appropriate WHERE clause, per entity to execute
the version check and update the information. If you use transitive persistence to cascade
reattachment to associated entities, Hibernate may execute unnecessary updates. This is usually
not a problem, but on update triggers in the database might be executed even when no changes
have been made to detached instances. You can customize this behavior by setting sel ect -
bef ore-updat e="true" in the <cl ass> mapping, forcing Hibernate to SELECT the instance to
ensure that changes did occur before updating the row.

11.4. Pessimistic locking

Itis not intended that users spend much time worrying about locking strategies. Itis usually enough
to specify an isolation level for the JDBC connections and then simply let the database do all the
work. However, advanced users may wish to obtain exclusive pessimistic locks or re-obtain locks
at the start of a new transaction.

191

#11# Transactions and Concurrency

Hibernate will always use the locking mechanism of the database; it never lock objects in memory.

The LockMode class defines the different lock levels that can be acquired by Hibernate. A lock is
obtained by the following mechanisms:

* LockMode. WRI TE ## Hibernatet#HHtHHHHHHHHHHHEHH

» LockMode. UPGRADE can be acquired upon explicit user request using SELECT ... FOR UPDATE
on databases which support that syntax.

e LockMode. UPGRADE_NOWAI T can be acquired upon explicit user request using a SELECT ...
FOR UPDATE NOWAI T under Oracle.

» LockMode. READ is acquired automatically when Hibernate reads data under Repeatable Read
or Serializable isolation level. It can be re-acquired by explicit user request.

o LockMode. NONE #HHHHHHHIHHHHHIHH#E Tr ansact | on #HHHHE HHHEHHHHHHHHHEHHE
updat e() # saveOr Updat e() HHHHHHHHHHHI HHHHHEHHHE

BRI R

e LockMode ##### Sessi on. | oad() #H#H#H#A#
e Session. | ock() #H#H#H#H#H
e Query. setLockMode() ####H#H#

UPGRADE #### UPGRADE_NOWAI T ###### Sessi on. | oad() #HHHHHE HHHHHHHHHHHHHHHHHH
HHHHHHH AR SELECT . .. FOR UPDATE #####H#H##HHHHHHHHHHHH | 0ad() #H###HHHHHHE
HHHHE HHEHHEHHEH A HIDernate i HEHHEHHIH ock () #HH#HIH#HIH

Sessi on. | ock() performs a version number check if the specified lock mode is READ, UPGRADE or
UPGRADE_NOWAI T. In the case of UPGRADE or UPGRADE_NOWAI T, SELECT ... FOR UPDATEis used.

If the requested lock mode is not supported by the database, Hibernate uses an appropriate
alternate mode instead of throwing an exception. This ensures that applications are portable.

11.5. Connection release modes

One of the legacies of Hibernate 2.x JDBC connection management meant that a Sessi on would
obtain a connection when it was first required and then maintain that connection until the session
was closed. Hibernate 3.x introduced the notion of connection release modes that would instruct
a session how to handle its JDBC connections. The following discussion is pertinent only to
connections provided through a configured Connecti onProvi der. User-supplied connections
are outside the breadth of this discussion. The different release modes are identified by the
enumerated values of or g. hi ber nat e. Connect i onRel easeMode:

e ON_CLOsE: is the legacy behavior described above. The Hibernate session obtains a connection
when it first needs to perform some JDBC access and maintains that connection until the session
is closed.

e AFTER TRANSACTI ON: releases connections after a or g. hi ber nat e. Transacti on has been
completed.

192

Connection release modes

e AFTER STATEMENT (also referred to as aggressive release): releases connections after every
statement execution. This aggressive releasing is skipped if that statement leaves open
resources associated with the given session. Currently the only situation where this occurs is
through the use of or g. hi bernat e. Scrol | abl eResul ts.

The configuration parameter hi ber nat e. connecti on. r el ease_node is used to specify which
release mode to use. The possible values are as follows:

e auto (the default): this choice delegates to the release mode returned by the
org. hi bernate. transaction. Transacti onFact ory. get Def aul t Rel easeMbde() method.
For JTATransactionFactory, this returns ConnectionReleaseMode. AFTER_STATEMENT,; for
JDBCTransactionFactory, this returns ConnectionReleaseMode. AFTER_TRANSACTION. Do
not change this default behavior as failures due to the value of this setting tend to indicate bugs
and/or invalid assumptions in user code.

e on_cl ose: uses ConnectionReleaseMode.ON_CLOSE. This setting is left for backwards
compatibility, but its use is discouraged.

e after_transaction: uses ConnectionReleaseMode.AFTER_TRANSACTION. This setting
should not be used in JTA environments. Also note that with
ConnectionReleaseMode. AFTER_TRANSACTION, if a session is considered to be in auto-
commit mode, connections will be released as if the release mode were AFTER_STATEMENT.

e after_statenent: uses ConnectionReleaseMode.AFTER_STATEMENT. Additionally,
the configured ConnectionProvider is consulted to see if it supports this
setting (support sAggressi veRel ease()). If not, the release mode is reset to
ConnectionReleaseMode. AFTER_TRANSACTION. This setting is only safe in environments
where we can either re-acquire the same underlying JDBC connection each time you make
a call into Connect i onProvi der . get Connect i on() or in auto-commit environments where it
does not matter if we re-establish the same connection.

193

194

HEHHH AR H

It is useful for the application to react to certain events that occur inside Hibernate. This allows for
the implementation of generic functionality and the extension of Hibernate functionality.

12.1. #HH#HHHH

The I nt er cept or interface provides callbacks from the session to the application, allowing the
application to inspect and/or manipulate properties of a persistent object before it is saved,
updated, deleted or loaded. One possible use for this is to track auditing information. For example,
the following | nt ercept or automatically sets the creat eTi nestanp when an Auditabl e is
created and updates the | ast Updat eTi mest anp property when an Audi t abl e is updated.

You can either implement I nt er cept or directly or extend Enpt yI nt er cept or .

package org.hibernate.test;

import java.io.Serializable;
import java.util.Date;
import java.util.lterator;

import org.hibernate.Emptylnterceptor;
import org.hibernate.Transaction;
import org.hibernate.type.Type;

public class Auditinterceptor extends Emptylnterceptor {

private int updates;
private int creates;
private int loads;

public void onDelete(Object entity,
Serializable id,
Object[] state,
String[] propertyNames,
Typef[] types) {
/[do nothing

public boolean onFlushDirty(Object entity,
Serializable id,
Object|] currentState,
Object[] previousState,
String[] propertyNames,

195

H12# HHHHHHHIHH

Type[] types) {

if (entity instanceof Auditable) {
updates++;
for (int i=0; i < propertyNames.length; i++) {
if ("lastUpdateTimestamp".equals(propertyNamesJi])) {
currentState[i] = new Date();
return true;

}

return false;

public boolean onLoad(Object entity,
Serializable id,
Object(] state,
String[] propertyNames,
Typef] types) {
if (entity instanceof Auditable) {
loads++;

}

return false;

public boolean onSave(Object entity,
Serializable id,
Object]] state,
String[] propertyNames,

Type[] types) {

if (entity instanceof Auditable) {
creates++;
for (int i=0; i<propertyNames.length; i++) {
if ("createTimestamp".equals(propertyNamesi])) {
state[i] = new Date();
return true;

}

return false;

public void afterTransactionCompletion(Transaction tx) {

196

HHHHHHHH

if (tx.wasCommitted()) {
System.out.printin("Creations: " + creates + ", Updates: " + updates, "Loads: " + loads);
}
updates=0;
creates=0;
loads=0;

There are two kinds of inteceptors: Sessi on-scoped and Sessi onFact or y-scoped.

Sessi on HH HH B I nt er cept or HHHHEH
SessionFactory.openSession() #HHHHHHHHHHHHHHEHH T

Session session = sf.openSession(new Auditinterceptor());

A Sessi onFact or y-scoped interceptor is registered with the Confi gurati on object prior to
building the Sessi onFact ory. Unless a session is opened explicitly specifying the interceptor to
use, the supplied interceptor will be applied to all sessions opened from that Sessi onFact ory.
Sessi onFact or y-scoped interceptors must be thread safe. Ensure that you do not store session-
specific states, since multiple sessions will use this interceptor potentially concurrently.

new Configuration().setinterceptor(new Auditinterceptor());

12.2. #HH#HHHHH

If you have to react to particular events in your persistence layer, you can also use the Hibernate3
event architecture. The event system can be used in addition, or as a replacement, for interceptors.

All the methods of the Sessi on interface correlate to an event. You have a LoadEvent, a
Fl ushEvent, etc. Consult the XML configuration-file DTD or the or g. hi ber nat e. event package
for the full list of defined event types. When a request is made of one of these methods, the
Hibernate Sessi on generates an appropriate event and passes it to the configured event listeners
for that type. Out-of-the-box, these listeners implement the same processing in which those
methods always resulted. However, you are free to implement a customization of one of the
listener interfaces (i.e., the LoadEvent is processed by the registered implementation of the
LoadEvent Li st ener interface), in which case their implementation would be responsible for
processing any | oad() requests made of the Sessi on.

The listeners should be considered singletons. This means they are shared between requests,
and should not save any state as instance variables.

197

H12# HHHHHHHIHH

A custom listener implements the appropriate interface for the event it wants to process and/or
extend one of the convenience base classes (or even the default event listeners used by Hibernate
out-of-the-box as these are declared non-final for this purpose). Custom listeners can either be
registered programmatically through the Confi gurati on object, or specified in the Hibernate
configuration XML. Declarative configuration through the properties file is not supported. Here is
an example of a custom load event listener:

public class MyLoadListener implements LoadEventListener {
/I this is the single method defined by the LoadEventListener interface
public void onLoad(LoadEvent event, LoadEventListener.LoadType loadType)
throws HibernateException {
if (IMySecurity.isAuthorized(event.getEntityClassName(), event.getEntityld())) {
throw MySecurityException("Unauthorized access");

P H I Dernate A

<hibernate-configuration>
<session-factory>

<event type="load">
<listener class="com.eg.MyLoadListener"/>
<listener class="org.hibernate.event.def.DefaultLoadEventListener"/>
</event>
</session-factory>
</hibernate-configuration>

Instead, you can register it programmatically:

Configuration cfg = new Configuration();
LoadEventListener[] stack = { new MyLoadListener(), new DefaultLoadEventListener() };
cfg.EventListeners().setLoadEventListeners(stack);

Listeners registered declaratively cannot share instances. If the same class name is used in
multiple <l i st ener/ > elements, each reference will result in a separate instance of that class.
If you need to share listener instances between listener types you must use the programmatic
registration approach.

198

Hibernate#### i

Why implement an interface and define the specific type during configuration? A listener
implementation could implement multiple event listener interfaces. Having the type additionally
defined during registration makes it easier to turn custom listeners on or off during configuration.

12.3. Hibernate#####H#HHHt

Usually, declarative security in Hibernate applications is managed in a session facade layer.
Hibernate3 allows certain actions to be permissioned via JACC, and authorized via JAAS. This is
an optional functionality that is built on top of the event architecture.

BHAHHHHHH AR) AASHHAHHH AR

<listener type="pre-delete" class="org.hibernate.secure.JACCPreDeleteEventListener"/>
<listener type="pre-update" class="org.hibernate.secure.JACCPreUpdateEventListener"/>
<listener type="pre-insert" class="org.hibernate.secure.JACCPrelnsertEventListener"/>
<listener type="pre-load" class="org.hibernate.secure.JACCPreLoadEventListener"/>

Note that <listener type="..." class="..."/> is shorthand for <event
type="..."><listener class="..."/></event> when there is exactly one listener for a
particular event type.

Next, while still in hi ber nat e. cf g. xm , bind the permissions to roles:

<grant role="admin" entity-name="User" actions="insert,update,read"/>
<grant role="su" entity-name="User" actions="*"/>

HiHHHHHHHH) AC CHEHHHHHH A

199

200

SHHEHHAHHAR CHHYE

A naive approach to inserting 100,000 rows in the database using Hibernate might look like this:

Session session = sessionFactory.openSession();

Transaction tx = session.beginTransaction();

for ((int i=0; i<100000; i++) {
Customer customer = new Customer(.....);
session.save(customer);

}

tx.commit();

session.close();

This would fall over with an Qut Of Menor yExcept i on somewhere around the 50,000th row. That is
because Hibernate caches all the newly inserted Cust oner instances in the session-level cache.
In this chapter we will show you how to avoid this problem.

If you are undertaking batch processing you will need to enable the use of JDBC batching. This
is absolutely essential if you want to achieve optimal performance. Set the JDBC batch size to a
reasonable number (10-50, for example):

hibernate.jdbc.batch_size 20

Hibernate disables insert batching at the JDBC level transparently if you use ani dent i t y identifier
generator.

You can also do this kind of work in a process where interaction with the second-level cache is
completely disabled:

hibernate.cache.use_second_level cache false

SHH A A AR ARHAH CUTE Vel

SIHAH BHHBHHAHHAHAHS AN DHHAHHAHY AHHAHIAHT SHOSHHEHR St toeHICROCHAH« CacheMbde
B AU AHHAH At BOHae AHAHEHHEH Gl
YAH SHOCH, ACHAYHCH BHHCH| At B« BHHBHHAHHAH St aH S atH A BHHAHHAH S St At

13.1. a##tafiatttteetts a
¥

When making new objects persistent f | ush() and then cl ear () the session regularly in order to
control the size of the first-level cache.

201

H13# BHHBHHBHHAH CHH

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

for (int i=0; i<100000; i++) {
Customer customer = new Customer(.....);
session.save(customer);
if (1% 20 ==0) {//20, same as the JDBC batch size
/[flush a batch of inserts and release memory:
session.flush();
session.clear();

tx.commit();
session.close();

13.2. a##aHHaH#ReH e#’

For retrieving and updating data, the same ideas apply. In addition, you need to use scrol | () to
take advantage of server-side cursors for queries that return many rows of data.

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

ScrollableResults customers = session.getNamedQuery("GetCustomers")
.setCacheMode(CacheMode.IGNORE)
.scroll(ScrollMode.FORWARD_ONLY);

int count=0;

while (customers.next()) {

Customer customer = (Customer) customers.get(0);
customer.updateStuff(...);
if (++count% 20==0){
/fflush a batch of updates and release memory:
session.flush();
session.clear();

tx.commit();
session.close();

202

StatelessSessiona#oa#3a# ¢ aHvaafttansastoat!

13.3. StatelessSessiona#ad#3a#t; atV.at#an8asaa!

Alternatively, Hibernate provides a command-oriented API that can be used for streaming data to
and from the database in the form of detached objects. A St at el essSessi on has no persistence
context associated with it and does not provide many of the higher-level life cycle semantics.
In particular, a stateless session does not implement a first-level cache nor interact with any
second-level or query cache. It does not implement transactional write-behind or automatic dirty
checking. Operations performed using a stateless session never cascade to associated instances.
Collections are ignored by a stateless session. Operations performed via a stateless session
bypass Hibernate's event model and interceptors. Due to the lack of a first-level cache, Stateless
sessions are vulnerable to data aliasing effects. A stateless session is a lower-level abstraction
that is much closer to the underlying JDBC.

StatelessSession session = sessionFactory.openStatelessSession();
Transaction tx = session.beginTransaction();

ScrollableResults customers = session.getNamedQuery("GetCustomers")
.scroll(ScrollMode.FORWARD_ONLY);

while (customers.next()) {
Customer customer = (Customer) customers.get(0);
customer.updateStuff(...);
session.update(customer);

tx.commit();
session.close();

In this code example, the Cust omer instances returned by the query are immediately detached.
They are never associated with any persistence context.

Theinsert(), update() anddel et e() operations defined by the St at el essSessi on interface
are considered to be direct database row-level operations. They result in the immediate execution
of a SQL | NSERT, UPDATE or DELETE respectively. They have different semantics to the save(),
saveOr Updat e() and del et e() operations defined by the Sessi on interface.

13.4. DMLa#'a# ¢ ataa#«a#H®aseH#ayot

As already discussed, automatic and transparent object/relational mapping is concerned with
the management of the object state. The object state is available in memory. This means that
manipulating data directly in the database (using the SQL Dat a Mani pul ati on Language (DML)
the statements: | NSERT, UPDATE, DELETE) will not affect in-memory state. However, Hibernate
provides methods for bulk SQL-style DML statement execution that is performed through the
Hibernate Query Language (HQL).

203

H13# BHHBHHBHHAH CHH

The pseudo-syntax for UPDATE and DELETE statements is: (UPDATE | DELETE) FROW?
EntityName (WHERE where_conditions)?.

Some points to note:

« from¢ #a#t«attatiat | atttFROMaHARY.AY atfvaaitial aftatan - atsansansattatt

» There can only be a single entity named in the from-clause. It can, however, be aliased. If the
entity name is aliased, then any property references must be qualified using that alias. If the
entity name is not aliased, then it is illegal for any property references to be qualified.

* No joins, either implicit or explicit, can be specified in a bulk HQL query. Sub-queries can be
used in the where-clause, where the subqueries themselves may contain joins.

o Whereg #a# at2atHan -ansatsansamtatt

As an example, to execute an HQL UPDATE, use the Query. execut eUpdat e() method. The
method is named for those familiar with JDBC's Pr epar edSt at ement . execut eUpdat e() :

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hglUpdate = "update Customer c set c.name = :newName where c.name = :oldName";
/I or String hglUpdate = "update Customer set name = :newName where name = :oldName";
int updatedEntities = s.createQuery(hglUpdate)

.setString("newName", newName)

.setString("oldName", oldName)

.executeUpdate();
tx.commit();
session.close();

In keeping with the EJB3 specification, HQL UPDATE statements, by default, do not effect the
version or the timestamp property values for the affected entities. However, you can force
Hibernate to reset the versi on or ti mest anp property values through the use of a ver si oned
updat e. This is achieved by adding the VERSI ONED keyword after the UPDATE keyword.

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();
String hglVersionedUpdate = "update versioned Customer set name = :newName where name
= :0ldName";
int updatedEntities = s.createQuery(hglUpdate)
.setString("newName", newName)
.setString("oldName", oldName)
.executeUpdate();
tx.commit();
session.close();

204

DMLa# a# ¢ aftnd# «aH®a##HaYH

Custom version types, org. hi bernate. usertype. User Versi onType, are not allowed in
conjunction with a updat e ver si oned statement.

HQL&#® DELETE S#H#a@#C|HARHARHARAH Gt a##a## Query. execut eUpdat e()
A AHHAHHARREY ¢ AREAH | AHHAH AHHEHHY

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hqglDelete = "delete Customer ¢ where c.name = :oldName";
/I or String hglDelete = "delete Customer where name = :oldName";
int deletedEntities = s.createQuery(hglDelete)

.setString("oldName", oldName)

.executeUpdate();
tx.commit();
session.close();

The i nt value returned by the Query. execut eUpdat e() method indicates the number of entities
effected by the operation. This may or may not correlate to the number of rows effected in the
database. An HQL bulk operation might result in multiple actual SQL statements being executed
(for joined-subclass, for example). The returned number indicates the number of actual entities
affected by the statement. Going back to the example of joined-subclass, a delete against one
of the subclasses may actually result in deletes against not just the table to which that subclass
is mapped, but also the "root" table and potentially joined-subclass tables further down the
inheritance hierarchy.

I NSERT se##a#®cH#aAYsYaceSHaet#taH TWatt | NSERT I NTO a#” ans antanLannanLantt
a#HaHaHHaHHaAHLAH? AL AHH sel ect agt# G#HEAHHEHH oo ceHHaHHAH AHHCH BHHARHEHHEH
QAHH AR EHH AR AAHHTY st

* INSERT INTO SELECT aH®aYs
CAVaHEH auntantanantany.annantantan attanyv.antast INSERT INTO ... VALUES ..
HRAY2CAVMAH BHUSHHEHY .EHHEHHEHHEH | BHIAHY LEHHEHHEHH

The properties_list is analogous to the col um speci fi cati on in the SQL | NSERT statement.
For entities involved in mapped inheritance, only properties directly defined on that given
class-level can be used in the properties_list. Superclass properties are not allowed and
subclass properties do not make sense. In other words, | NSERT statements are inherently non-
polymorphic.

« select_statement can be any valid HQL select query, with the caveat that the return types must
match the types expected by the insert. Currently, this is checked during query compilation
rather than allowing the check to relegate to the database. This might, however, cause problems
between Hibernate Types which are equivalent as opposed to equal. This might cause issues
with mismatches between a property defined as a org. hi bernate. type. Dat eType and a

205

H13# BHHBHHBHHAH CHH

property defined as a or g. hi ber nat e. t ype. Ti mest anpType, even though the database might
not make a distinction or might be able to handle the conversion.

« For the id property, the insert statement gives you two options. You can either explicitly specify
the id property in the properties_list, in which case its value is taken from the corresponding
select expression, or omit it from the properties_list, in which case a generated value is used.
This latter option is only available when using id generators that operate in the database;
attempting to use this option with any "in memory" type generators will cause an exception
during parsing. For the purposes of this discussion, in-database generators are considered
to be org. hi bernate. i d. SequenceGener at or (and its subclasses) and any implementers of
org. hibernate.id.PostlnsertldentifierGenerator. The most notable exception here is
org. hi bernate.id. Tabl eH LoGener at or , which cannot be used because it does not expose
a selectable way to get its values.

» For properties mapped as either ver si on or ti nest anp, the insert statement gives you two
options. You can either specify the property in the properties_list, in which case its value is
taken from the corresponding select expressions, or omit it from the properties_list, in which
case the seed val ue defined by the or g. hi ber nat e. t ype. Ver si onType is used.

The following is an example of an HQL | NSERT statement execution:

Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();

String hglinsert = "insert into DelinquentAccount (id, name) select c.id, c.name from Customer ¢
where ...";
int createdEntities = s.createQuery(hglinsert)
.executeUpdate();
tx.commit();
session.close();

206

HQL: The Hibernate Query Language

Hibernate uses a powerful query language (HQL) that is similar in appearance to SQL. Compared
with SQL, however, HQL is fully object-oriented and understands notions like inheritance,
polymorphism and association.

V4.1, st

With the exception of names of Java classes and properties, queries are case-insensitive. So
SeLeCT is the same as sELEct is the same as SELECT, but org. hi ber nat e. eg. FOO is not
or g. hi ber nat e. eg. Foo, and f oo. bar Set is not f oo. BARSET.

This manual uses lowercase HQL keywords. Some users find queries with uppercase keywords
more readable, but this convention is unsuitable for queries embedded in Java code.

14.2. from#

T HIbernatefHHHHHEHHHET
from eg.Cat

This returns all instances of the class eg. Cat . You do not usually need to qualify the class name,
since aut o- i nport is the default. For example:

from Cat
In order to refer to the Cat in other parts of the query, you will need to assign an alias. For example:
from Cat as cat

This query assigns the alias cat to Cat instances, so you can use that alias later in the query.
The as keyword is optional. You could also write:

from Cat cat
Multiple classes can appear, resulting in a cartesian product or "cross" join.

from Formula, Parameter

207

#14# HQL: The Hibernate Query...

from Formula as form, Parameter as param

It is good practice to name query aliases using an initial lowercase as this is consistent with Java
naming standards for local variables (e.g. donest i cCat).

14.3. ##H#H#

You can also assign aliases to associated entities or to elements of a collection of values using
aj oi n. For example:

from Cat as cat
inner join cat.mate as mate
left outer join cat.kittens as kitten

from Cat as cat left join cat.mate.kittens as kittens

from Formula form full join form.parameter param

The supported join types are borrowed from ANSI SQL.:

e inner join

e |eft outer join

e right outer join

o full join (HHHHHHHHHT)

i nner join# eft outer join#right outer |joi n#A#HHHARHIHHAHIH

from Cat as cat
join cat.mate as mate
left join cat.kittens as kitten

HOQL# Wi t h #HHHHHHHHHHHHH

from Cat as cat
left join cat.kittens as kitten
with kitten.bodyWeight > 10.0

208

HHHHHHH

A "fetch" join allows associations or collections of values to be initialized along with their parent
objects using a single select. This is particularly useful in the case of a collection. It effectively
overrides the outer join and lazy declarations of the mapping file for associations and collections.
See #19.1. #H#H#H#HH## for more information.

from Cat as cat
inner join fetch cat.mate
left join fetch cat.kittens

A fetch join does not usually need to assign an alias, because the associated objects should not
be used in the wher e clause (or any other clause). The associated objects are also not returned
directly in the query results. Instead, they may be accessed via the parent object. The only reason
you might need an alias is if you are recursively join fetching a further collection:

from Cat as cat
inner join fetch cat.mate
left join fetch cat.kittens child
left join fetch child.kittens

The f et ch construct cannot be used in queries called using i terate() (though scroll () can
be used). Fet ch should be used together with set MaxResul t s() or set Fi rst Resul t (), as these
operations are based on the result rows which usually contain duplicates for eager collection
fetching, hence, the number of rows is not what you would expect. Fet ch should also not be
used together with impromptu wi t h condition. It is possible to create a cartesian product by join
fetching more than one collection in a query, so take care in this case. Join fetching multiple
collection roles can produce unexpected results for bag mappings, so user discretion is advised
when formulating queries in this case. Finally, note thatful | join fetchandright join fetch
are not meaningful.

If you are using property-level lazy fetching (with bytecode instrumentation), it is possible to force
Hibernate to fetch the lazy properties in the first query immediately using f et ch al | properti es.

from Document fetch all properties order by name

from Document doc fetch all properties where lower(doc.name) like '%cats%'

144 HHHEHE

HQLAHHHHHHHHHRHHHHHH T #

209

#14# HQL: The Hibernate Query...

The queries shown in the previous section all use the explicit form, that is, where the join
keyword is explicitly used in the from clause. This is the recommended form.

HHHE HEHHEHH | OINHHHHEHHHHHIHHHHHHHHEHH I A R H QLI #it Hit
HHHH# SQLAHHHHIHHIHHHH I

from Cat as cat where cat.mate.name like '%s%'

14.5. Referring to identifier property
There are 2 ways to refer to an entity's identifier property:

» The special property (lowercase) i d may be used to reference the identifier property of an entity
provided that the entity does not define a non-identifier property named id.
« If the entity defines a named identifier property, you can use that property name.

References to composite identifier properties follow the same naming rules. If the entity has a non-
identifier property named id, the composite identifier property can only be referenced by its defined
named. Otherwise, the special i d property can be used to reference the identifier property.

i

Please note that, starting in version 3.2.2, this has changed significantly. In
previous versions, i d always referred to the identifier property regardless of its
actual name. A ramification of that decision was that non-identifier properties

named i d could never be referenced in Hibernate queries.

14.6. Select#

The sel ect clause picks which objects and properties to return in the query result set. Consider
the following:

select mate
from Cat as cat
inner join cat.mate as mate

The query will select mat es of other Cat s. You can express this query more compactly as:

select cat.mate from Cat cat

Queries can return properties of any value type including properties of component type:

210

Select#

select cat.name from DomesticCat cat
where cat.name like 'fri%o’

select cust.name.firstName from Customer as cust

Queries can return multiple objects and/or properties as an array of type Coj ect[] :

select mother, offspr, mate.name
from DomesticCat as mother
inner join mother.mate as mate
left outer join mother.kittens as offspr

Orasalist:

select new list(mother, offspr, mate.name)
from DomesticCat as mother

inner join mother.mate as mate

left outer join mother.kittens as offspr

Or - assuming that the class Fani | y has an appropriate constructor - as an actual typesafe Java
object:

select new Family(mother, mate, offspr)
from DomesticCat as mother

join mother.mate as mate

left join mother.kittens as offspr

You can assign aliases to selected expressions using as:

select max(bodyWeight) as max, min(bodyWeight) as min, count(*) as n
from Cat cat

sel ect new nap #HHHHHHHHHHHHHHHH

select new map(max(bodyWeight) as max, min(bodyWeight) as min, count(*) as n)

211

#14# HQL: The Hibernate Query...

from Cat cat

HHHHH IS eleCtiHHH Map #HitH

14.7. ####

HQL queries can even return the results of aggregate functions on properties:

select avg(cat.weight), sum(cat.weight), max(cat.weight), count(cat)
from Cat cat

The supported aggregate functions are:
e avg(...), sum...), mn(...), max(...)

e count (*)
e count(...), count(distinct ...), count(all...)

You can use arithmetic operators, concatenation, and recognized SQL functions in the select
clause:

select cat.weight + sum(kitten.weight)
from Cat cat

join cat.kittens kitten
group by cat.id, cat.weight

select firstName||" ‘|[initial||' '|Jupper(lastName) from Person

The di stinct and al | keywords can be used and have the same semantics as in SQL.

select distinct cat.name from Cat cat

select count(distinct cat.name), count(cat) from Cat cat

14.8. #HHHHAHHAHH

HHAHIHAT

from Cat as cat

212

where#

returns instances not only of Cat, but also of subclasses like Donmest i cCat . Hibernate queries
can name any Java class or interface in the f romclause. The query will return instances of all
persistent classes that extend that class or implement the interface. The following query would
return all persistent objects:

from java.lang.Object o

Nared #HHHHHHHHHHHHHH PR

from Named n, Named m where n.name = m.name

These last two queries will require more than one SQL SELECT. This means that the order by
clause does not correctly order the whole result set. It also means you cannot call these queries
using Query. scrol | ().

14.9. where#

The wher e clause allows you to refine the list of instances returned. If no alias exists, you can
refer to properties by name:

from Cat where name="Fritz'

HHHHHHHHHHHHHHHH AR

from Cat as cat where cat.name="Fritz'

This returns instances of Cat named 'Fritz'.

The following query:

select foo
from Foo foo, Bar bar
where foo.startDate = bar.date

returns all instances of Foo with an instance of bar with a dat e property equal to the st art Dat e
property of the Foo. Compound path expressions make the wher e clause extremely powerful.
Consider the following:

213

#14# HQL: The Hibernate Query...

from Cat cat where cat.mate.name is not null

This query translates to an SQL query with a table (inner) join. For example:

from Foo foo
where foo.bar.baz.customer.address.city is not null

would result in a query that would require four table joins in SQL.

The = operator can be used to compare not only properties, but also instances:

from Cat cat, Cat rival where cat.mate = rival.mate

select cat, mate
from Cat cat, Cat mate
where cat.mate = mate

The special property (lowercase) i d can be used to reference the unique identifier of an object.
See #14.5. #Referring to identifier property# for more information.

from Cat as cat where cat.id = 123

from Cat as cat where cat.mate.id = 69

The second query is efficient and does not require a table join.

Properties of composite identifiers can also be used. Consider the following example where
Per son has composite identifiers consisting of count ry and nedi car eNunber ;

from bank.Person person
where person.id.country = ‘AU’
and person.id.medicareNumber = 123456

from bank.Account account
where account.owner.id.country = ‘AU’

214

Expressions #

and account.owner.id.medicareNumber = 123456

Once again, the second query does not require a table join.

See #14.5. #Referring to identifier property# for more information regarding referencing identifier
properties)

The special property cl ass accesses the discriminator value of an instance in the case of
polymorphic persistence. A Java class nhame embedded in the where clause will be translated to
its discriminator value.

from Cat cat where cat.class = DomesticCat

You can also use components or composite user types, or properties of said component types.
See #14.17. #translator-credits# for more information.

An "any" type has the special properties i d and cl ass that allows you to express a join in the
following way (where Audi t Log. i t emis a property mapped with <any>):

from AuditLog log, Payment payment
where log.item.class = 'Payment’ and log.item.id = payment.id

The 1 og.itemclass and paynent.cl ass would refer to the values of completely different
database columns in the above query.

14.10. Expressions #

Expressions used in the wher e clause include the following:

« mathematical operators: +, -, *, /

e binary comparison operators: =, >=, <=, <>, = |ike

o #it###and, or, not

» Parentheses () that indicates grouping

e in,not in, between,is null,is not null,is enpty,is not enpty, menber of and
not nenber of

o "Hf#H#'"Hcase case ... when ... then ... else ... end# "###"#case case when ...
then ... else ... end
o HEHHHHHAR ... ||... #H#H concat(...,...)

e current_date(),current_tine(),andcurrent _ti mestanp()

e second(...),minute(...),hour(...),day(...),nonth(...),andyear(...)

o EJB-QL 3.0###HHHHHHH#H#H####. substring(), trin(), lower(), upper(), length(),
|l ocate(), abs(), sqgrt(), bit_length()

e coal esce() #nullif()

215

#14# HQL: The Hibernate Query...

o HHHHHHHSUINgHEHEHHE str () #

o 2#HHHHHIbernate#t####H# cast (... as ...) #extract (... from...)# AR
#ANSI cast () # extract () HHHHHHHHHH T

o HEHHEHHHHIHHHHHHHHHHHHHHQLE | ndex () ###

« HQL functions that take collection-valued path expressions: size(), minelenent(),
maxel enent (), m ni ndex(), naxindex(), along with the special el ements() and i ndi ces
functions that can be quantified using sone, all, exists, any, in.

« Any database-supported SQL scalar function like si gn(), trunc(),rtrin(), and si n()

o JDBCHAHHHHH#H#HHIHHE ?

e named parameters : nane, : start_date, and : x1

o SQL##HH## fo0', 69, 6. 66E+2,' 1970-01-01 10: 00: 01.0'

e Java# public static final ###eg. Col or. TABBY

i n and bet ween can be used as follows:

from DomesticCat cat where cat.name between 'A' and 'B'

from DomesticCat cat where cat.name in ('Foo’, 'Bar’, 'Baz')

The negated forms can be written as follows:

from DomesticCat cat where cat.name not between 'A’ and 'B’

from DomesticCat cat where cat.name not in ('Foo', 'Bar', 'Baz')

Similarly,is null andis not null can be used to test for null values.

Booleans can be easily used in expressions by declaring HQL query substitutions in Hibernate

configuration:

<property name="hibernate.query.substitutions">true 1, false 0</property>

HHHHHHHHHHHQLAS QLAHHHAH#H# t r ue |, f al se #HAHHH 1 | O HHHHHHHIHHE

from Cat cat where cat.alive = true

You can test the size of a collection with the special property si ze or the special si ze() function.

216

Expressions #

from Cat cat where cat.kittens.size > 0

from Cat cat where size(cat.kittens) > 0

For indexed collections, you can refer to the minimum and maximum indices using mi ni ndex
and nmaxi ndex functions. Similarly, you can refer to the minimum and maximum elements of a
collection of basic type using the ni nel ement and naxel ement functions. For example:

from Calendar cal where maxelement(cal.holidays) > current_date

from Order order where maxindex(order.items) > 100

from Order order where minelement(order.items) > 10000

The SQL functions any, some, all, exists, in aresupported when passed the element or
index set of a collection (el ement s and i ndi ces functions) or the result of a subquery (see below):

select mother from Cat as mother, Cat as kit
where kit in elements(foo.kittens)

select p from NameList list, Person p
where p.name = some elements(list.names)

from Cat cat where exists elements(cat.kittens)

from Player p where 3 > all elements(p.scores)

from Show show where ‘fizard' in indices(show.acts)

217

#14# HQL: The Hibernate Query...

Note that these constructs - si ze, el ements, indices, m ni ndex, maxi ndex, ni nel ement,
maxel enment - can only be used in the where clause in Hibernate3.

Elements of indexed collections (arrays, lists, and maps) can be referred to by index in a where
clause only:

from Order order where order.items[0].id = 1234

select person from Person person, Calendar calendar
where calendar.holidays['national day'] = person.birthDay
and person.nationality.calendar = calendar

select item from Item item, Order order
where order.items| order.delivereditemindices[0]] = item and order.id = 11

select item from Item item, Order order
where order.items[maxindex(order.items)] = item and order.id = 11

The expression inside [] can even be an arithmetic expression:

select item from Item item, Order order
where order.items[size(order.items) - 1] = item

HQL also provides the built-in i ndex() function for elements of a one-to-many association or
collection of values.

select item, index(item) from Order order
join order.items item
where index(item) <5

Scalar SQL functions supported by the underlying database can be used:

from DomesticCat cat where upper(cat.name) like 'FRI%'

Consider how much longer and less readable the following query would be in SQL:

218

order by#

select cust
from Product prod,
Store store
inner join store.customers cust
where prod.name = 'widget'
and store.location.name in ('Melbourne', 'Sydney")
and prod = all elements(cust.currentOrder.lineltems)

it HHHHHHHHAH AR

SELECT cust.name, cust.address, cust.phone, cust.id, cust.current_order
FROM customers cust,
stores store,
locations loc,
store_customers sc,
product prod
WHERE prod.name = 'widget'
AND store.loc_id = loc.id
AND loc.name IN ('Melbourne’, 'Sydney')
AND sc.store_id = store.id
AND sc.cust_id = cust.id
AND prod.id = ALL(
SELECT item.prod_id
FROM line_items item, orders o
WHERE item.order_id = o.id
AND cust.current_order = o.id

14.11. order by#

The list returned by a query can be ordered by any property of a returned class or components:

from DomesticCat cat
order by cat.name asc, cat.weight desc, cat.birthdate

HHAHHH asc # desc HHHHHAAHHHHHHHHRH

219

#14# HQL: The Hibernate Query...

14.12. group by#

A query that returns aggregate values can be grouped by any property of a returned class or
components:

select cat.color, sum(cat.weight), count(cat)
from Cat cat
group by cat.color

select foo.id, avg(name), max(name)
from Foo foo join foo.names name
group by foo.id

havi ng #####H

select cat.color, sum(cat.weight), count(cat)

from Cat cat

group by cat.color

having cat.color in (eg.Color.TABBY, eg.Color.BLACK)

SQL functions and aggregate functions are allowed in the havi ng and or der by clauses if they
are supported by the underlying database (i.e., not in MySQL).

select cat
from Cat cat
join cat.kittens kitten
group by cat.id, cat.name, cat.other, cat.properties
having avg(kitten.weight) > 100
order by count(kitten) asc, sum(kitten.weight) desc

Neither the group by clause nor the order by clause can contain arithmetic expressions.
Hibernate also does not currently expand a grouped entity, so you cannot write gr oup by cat if
all properties of cat are non-aggregated. You have to list all non-aggregated properties explicitly.

14.13. #H#H#H#H

HHHH T HIDernate #HHHHHHHHHHHHHHHIHIHHE T T S QL
T S (R

220

HQL##

from Cat as fatcat
where fatcat.weight > (
select avg(cat.weight) from DomesticCat cat

from DomesticCat as cat
where cat.name = some (
select name.nickName from Name as name

from Cat as cat
where not exists (
from Cat as mate where mate.mate = cat

from DomesticCat as cat
where cat.name not in (
select name.nickName from Name as name

select cat.id, (select max(kit.weight) from cat.kitten kit)

from Cat as cat

Note that HQL subqueries can occur only in the select or where clauses.

Note that subqueries can also utilize row val ue construct or syntax. See #14.18. #Row value

constructor syntax# for more information.

14.14. HQL##

Hibernate queries can be quite powerful and complex. In fact, the power of the query language is
one of Hibernate's main strengths. The following example queries are similar to queries that have
been used on recent projects. Please note that most queries you will write will be much simpler

than the following examples.

The following query returns the order id, number of items, the given minimum total value and the
total value of the order for all unpaid orders for a particular customer. The results are ordered
by total value. In determining the prices, it uses the current catalog. The resulting SQL query,

221

#14# HQL: The Hibernate Query...

against the ORDER, ORDER_LI NE, PRODUCT, CATALOG and PRI CE tables has four inner joins and an
(uncorrelated) subselect.

select order.id, sum(price.amount), count(item)
from Order as order
join order.lineltems as item
join item.product as product,
Catalog as catalog
join catalog.prices as price
where order.paid = false
and order.customer = :customer
and price.product = product
and catalog.effectiveDate < sysdate
and catalog.effectiveDate >= all (
select cat.effectiveDate
from Catalog as cat
where cat.effectiveDate < sysdate
)
group by order
having sum(price.amount) > :minAmount
order by sum(price.amount) desc

BRARFHHHHHH R B R R R R R

select order.id, sum(price.amount), count(item)
from Order as order

join order.lineltems as item

join item.product as product,

Catalog as catalog

join catalog.prices as price
where order.paid = false

and order.customer = :customer

and price.product = product

and catalog = :currentCatalog
group by order
having sum(price.amount) > :minAmount
order by sum(price.amount) desc

HHAHHHHHH R R AWAL TI NG_APPROVAL ##
HHHHHHHH HHHH 2 #HHHHHH PAYMVENT, PAYMENT _STATUS ### PAYMENT _STATUS_CHANGE ####H##H
HHAHHHHHHHHR S Q L HHHHH

222

HQL##

select count(payment), status.name
from Payment as payment
join payment.currentStatus as status
join payment.statusChanges as statusChange
where payment.status.name <> PaymentStatus. AWAITING_APPROVAL
or (
statusChange.timeStamp = (
select max(change.timeStamp)
from PaymentStatusChange change
where change.payment = payment

)

and statusChange.user <> :currentUser
)
group by status.name, status.sortOrder
order by status.sortOrder

If the st at usChanges collection was mapped as a list, instead of a set, the query would have
been much simpler to write.

select count(payment), status.name
from Payment as payment
join payment.currentStatus as status
where payment.status.name <> PaymentStatus. AWAITING_APPROVAL
or payment.statusChanges[maxindex(payment.statusChanges)].user <> :currentUser
group by status.name, status.sortOrder
order by status.sortOrder

HHAHHHHHHH R #HHHMS SQL Server # i sNul | () ###H####
HtHE B SHHHHHHH L T # ### ACCOUNT, PAYMENT, PAYMENT_STATUS, ACCOUNT_TYPE,
ORGANI ZATI ON ### ORG_USER #H#####HHHHHHHHHHH S Q LAHHHHHHH

select account, payment
from Account as account
left outer join account.payments as payment
where :currentUser in elements(account.holder.users)
and PaymentStatus.UNPAID = isNull(payment.currentStatus.name, PaymentStatus.UNPAID)
order by account.type.sortOrder, account.accountNumber, payment.dueDate

P (B

223

#14# HQL: The Hibernate Query...

select account, payment
from Account as account
join account.holder.users as user
left outer join account.payments as payment
where :currentUser = user
and PaymentStatus.UNPAID = isNull(payment.currentStatus.name, PaymentStatus.UNPAID)
order by account.type.sortOrder, account.accountNumber, payment.dueDate

14.15. ##UPDATE#DELETE

HQL now supports update, delete and insert ... select ... statements. See #13.4.
#DMLa# a#; attoat«a#®@azet#ayL## for more information.

14.16. Tips & Tricks

You can count the number of query results without returning them:
((Integer) session.createQuery("select count(*) from").iterate().next()).intValue()
T HE

select usr.id, usr.name
from User as usr
left join usr.messages as msg
group by usr.id, usr.name
order by count(msg)

T R W h e re tHHHHHHEHHHHEHH
from User usr where size(usr.messages) >= 1
If your database does not support subselects, use the following query:

select usr.id, usr.name
from User usr.name

join usr.messages msg
group by usr.id, usr.name
having count(msg) >= 1

224

translator-credits

As this solution cannot return a User with zero messages because of the inner join, the following
form is also useful:

select usr.id, usr.name
from User as usr

left join usr.messages as msg
group by usr.id, usr.name
having count(msg) =0

JavaBeantHHHHHHHHHHHHHHHHHHHHHHHHH

Query g = s.createQuery("from foo Foo as foo where foo.name=:name and foo.size=:size");
g.setProperties(fooBean); // fooBean has getName() and getSize()
List foos = q.list();

HHHHHHHHHHHHIT Quer y BHHHHHHIHHHHHHHHHH A

Query g = s.createFilter(collection, "); // the trivial filter
g.setMaxResults(PAGE_SIZE);
g.setFirstResult(PAGE_SIZE * pageNumber);

List page = q.list();

Collection elements can be ordered or grouped using a query filter:

Collection orderedCollection = s.filter(collection, "order by this.amount");
Collection counts = s.filter(collection, "select this.type, count(this) group by this.type");

BHAHHHHHAHH A

((Integer) session.createQuery("select count(*) from").iterate().next()).intValue();

14.17. translator-credits

Components can be used similarly to the simple value types that are used in HQL queries. They
can appear in the sel ect clause as follows:

225

#14# HQL: The Hibernate Query...

select p.name from Person p

select p.name.first from Person p

where the Person's name property is a component. Components can also be used in the wher e
clause:

from Person p where p.name = :name

from Person p where p.name.first = :firstName
Components can also be used in the or der by clause:

from Person p order by p.name

from Person p order by p.name.first

Another common use of components is in row value constructors.

14.18. Row value constructor syntax

HQL supports the use of ANSI SQL r ow val ue constructor syntax, sometimes referred to AS
t upl e syntax, even though the underlying database may not support that notion. Here, we are
generally referring to multi-valued comparisons, typically associated with components. Consider
an entity Person which defines a name component:

from Person p where p.name.first="John' and p.name.last='Jingleheimer-Schmidt'

That is valid syntax although it is a little verbose. You can make this more concise by using r ow
val ue constructor syntax:

from Person p where p.name=('John’, ‘Jingleheimer-Schmidt')

226

Row value constructor syntax

It can also be useful to specify this in the sel ect clause:

select p.name from Person p

Using row val ue construct or syntax can also be beneficial when using subqueries that need
to compare against multiple values:

from Cat as cat
where not (cat.name, cat.color) in (
select cat.name, cat.color from DomesticCat cat

One thing to consider when deciding if you want to use this syntax, is that the query will be
dependent upon the ordering of the component sub-properties in the metadata.

227

228

Criteria#t#t#

Hibernate## i criteriatttt AP [#HHH#H I

15.1. oiteria HHHHHAHHHH

or g. hi bernat e. Crit eri a #HHAHHHHAHHHHHHHHHFHHHH AR Session # Cri teri a ###HHH#
HHHHBHHHT

Criteria crit = sess.createCriteria(Cat.class);
crit.setMaxResults(50);
List cats = crit.list();

15.2. #HHHHAHHHAHHH

org. hibernate.criterion. Criterion #HHH##AHHHAHAHHHIHE HHHHHHHHHHHHHHHHHHHHHTTT
#H#H## or g. hi bernate. criterion. Restricti ons ####HH#H#H#AHHH O i t er i on HHHHAHHFHHAHH
HHARHHHHH R

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("name", "Fritz%"))
.add(Restrictions.between("weight", minWeight, maxWeight))
dist();

Restrictions can be grouped logically.

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("name", "Fritz%"))
.add(Restrictions.or(

Restrictions.eq("age", new Integer(0)),
Restrictions.isNull("age")

))
list():

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.in("name", new String[] { "Fritz", "1zi", "Pk" }))
.add(Restrictions.disjunction()
.add(Restrictions.isNull("age™))
.add(Restrictions.eq("age", new Integer(0)))

229

#15# Criteria#t##

.add(Restrictions.eq("age", new Integer(1)))
.add(Restrictions.eq("age”, new Integer(2)))

))
list();

There are a range of built-in criterion types (Rest ri cti ons subclasses). One of the most useful
allows you to specify SQL directly.

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.sqlRestriction("lower({alias}.name) like lower(?)", "Fritz%",
Hibernate.STRING))
dist();

{al | as} HHHHHHHHIHHH HHHHHHHHHHHHHHHH AR

You can also obtain a criterion from a Proper ty instance. You can create a Property by calling
Property. for Nanme():

Property age = Property.forName("age");
List cats = sess.createCriteria(Cat.class)
.add(Restrictions.disjunction()
.add(age.isNull())
.add(age.eq(new Integer(0)))
.add(age.eq(new Integer(1)))
.add(age.eq(new Integer(2)))
))
.add(Property.forName("name").in(new String[] { "Fritz", "Izi", "Pk" }))
dist();

15.3. ##H#H#H

You can order the results using or g. hi bernate. criterion. Order.

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("name”, "F%")
.addOrder(Order.asc("name"))
.addOrder(Order.desc("age"))
.setMaxResults(50)
dist();

230

H#H#

List cats = sess.createCriteria(Cat.class)
.add(Property.forName("name").like("F%"))
.addOrder(Property.forName("name").asc())
.addOrder(Property.forName("age").desc())
.setMaxResults(50)
dist();

15.4. ##

By navigating associations using creat eCriteri a() you can specify constraints upon related
entities:

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("name", "F%"))
.createCriteria("kittens")

.add(Restrictions.like("name", "F%"))
dist();

The second createCriteria() returns a new instance of Cri t eri a that refers to the elements
of the ki t t ens collection.

There is also an alternate form that is useful in certain circumstances:

List cats = sess.createCriteria(Cat.class)
.createAlias("kittens", "kt")
.createAlias("mate", "mt")
.add(Restrictions.eqProperty("kt.name", "mt.name"))
Aist();

Hereat eAl i as() #### Crit eri a HHHFHHHHRHIFHHE

The kittens collections held by the Cat instances returned by the previous two queries are not
pre-filtered by the criteria. If you want to retrieve just the kittens that match the criteria, you must
use a Resul t Tr ansf or ner.

List cats = sess.createCriteria(Cat.class)
.createCriteria("kittens", "kt")
.add(Restrictions.eq("name", "F%"))
.setResultTransformer(Criteria.ALIAS_TO_ENTITY_MAP)
dist();

231

#15# Criteria#t##

Iterator iter = cats.iterator();

while (iter.hasNext()) {
Map map = (Map) iter.next();
Cat cat = (Cat) map.get(Criteria.ROOT_ALIAS);
Cat kitten = (Cat) map.get("kt");

15.5. #HHHHHIHHH

You can specify association fetching semantics at runtime using set Fet chibde() .

List cats = sess.createCriteria(Cat.class)
.add(Restrictions.like("name", "Fritz%"))
.setFetchMode("mate", FetchMode.EAGER)
.setFetchMode("kittens", FetchMode.EAGER)
dist();

HHAHHHHHHHHE mat e # Ki tt ens HHHHHHHHHH #1101 A fHEHH

15.6. #H##H#H#

org. hi bernate. criterion. Exanpl e ###H# #HHHHHFHIHHHTHHIHHHIHH T HE

Cat cat = new Cat();

cat.setSex('F";

cat.setColor(Color.BLACK);

List results = session.createCriteria(Cat.class)
.add(Example.create(cat))
list();

T U

HitHHH Exanp| e HHHHHH HHHHHHHHIH

Example example = Example.create(cat)

.excludeZeroes() /lexclude zero valued properties
.excludeProperty("color") //exclude the property named "color"
.ignoreCase() /Iperform case insensitive string comparisons
.enableLike(); /luse like for string comparisons

List results = session.createCriteria(Cat.class)
.add(example)

232

BRAHHHHHH

list();

A CriteriatttHHHHHHHHIE XampletHHHHHHHEHHE

List results = session.createCriteria(Cat.class)
.add(Example.create(cat))
.createCriteria("mate™)

.add(Example.create(cat.getMate()))
dist();

15.7. HHHHHHHHAHHH

The class or g. hi bernate. criterion. Projections is a factory for Pr oj ect i on instances. You
can apply a projection to a query by calling set Pr oj ecti on().

List results = session.createCriteria(Cat.class)
.setProjection(Projections.rowCount())
.add(Restrictions.eq("color", Color.BLACK))
dist();

List results = session.createCriteria(Cat.class)
.setProjection(Projections.projectionList()
.add(Projections.rowCount())
.add(Projections.avg("weight"))
.add(Projections.max("weight"))
.add(Projections.groupProperty(“color"))

)
Aist();

HHHHHAR CriteriattHHHEgroup by ##H#HHHHHHHHHHHH #HHEProjection## #iHHHHHE tHHHHHHH SQL#
group by #HHAHIHH

An alias can be assigned to a projection so that the projected value can be referred to in restrictions
or orderings. Here are two different ways to do this:

List results = session.createCriteria(Cat.class)
.setProjection(Projections.alias(Projections.groupProperty(“color"), "colr"))
.addOrder(Order.asc("colr"))

233

#15# Criteria#t##

list();

List results = session.createCriteria(Cat.class)
.setProjection(Projections.groupProperty("color").as("colr"))
.addOrder(Order.asc("colr"))
dist();

al i as() # as() ###H#H#H# ProjeClion#HHHHHHHHE Pr o] ect i on #HHHHHH HHHHIHHHHHIH HHHHHHH
HHHHHHHHHHHHH AR

List results = session.createCriteria(Cat.class)

.setProjection(Projections.projectionList()
.add(Projections.rowCount(), "catCountByColor")
.add(Projections.avg("weight"), "avgWeight")
.add(Projections.max("weight"), "maxWeight")
.add(Projections.groupProperty(“color"), "color")

)

.addOrder(Order.desc("catCountByColor"))

.addOrder(Order.desc("avgWeight"))

dist();

List results = session.createCriteria(Domestic.class, "cat")

.createAlias("kittens", "kit")

.setProjection(Projections.projectionList()
.add(Projections.property(“cat.name"), "catName")
.add(Projections.property("kit.name"), "kitName")

)

.addOrder(Order.asc("catName"))

.addOrder(Order.asc("kitName"))

dist();

H##HA Property. f or Name() ##H##HH#H#

List results = session.createCriteria(Cat.class)
.setProjection(Property.forName("name"))
.add(Property.forName("color").eq(Color.BLACK))
Aist();

234

HHHHHHH R

List results = session.createCriteria(Cat.class)

.setProjection(Projections.projectionList()
.add(Projections.rowCount().as("catCountByColor"))
.add(Property.forName("weight").avg().as("avgWeight"))
.add(Property.forName("weight").max().as("maxWeight"))
.add(Property.forName("color").group().as("color")

)

.addOrder(Order.desc("catCountByColor"))

.addOrder(Order.desc("avgWeight"))

dist();

15.8. #HHHHHHAHHIHHH

The Det achedCri teri a class allows you to create a query outside the scope of a session and
then execute it using an arbitrary Sessi on.

DetachedCriteria query = DetachedCriteria.forClass(Cat.class)
.add(Property.forName("sex").eq('F"));

Session session =;

Transaction txn = session.beginTransaction();

List results = query.getExecutableCriteria(session).setMaxResults(100).list();
txn.commit();

session.close();

A DetachedCriteria can also be used to express a subquery. Criterion instances involving
subqueries can be obtained via Subqueri es or Property.

DetachedCriteria avgWeight = DetachedCriteria.forClass(Cat.class)
.setProjection(Property.forName("weight").avg());
session.createCriteria(Cat.class)
.add(Property.forName("weight").gt(avgWeight))
dist();

DetachedCriteria weights = DetachedCriteria.forClass(Cat.class)
.setProjection(Property.forName("weight"));
session.createCriteria(Cat.class)
.add(Subqueries.geAll("weight", weights))

235

#15# Criteria#t##

list();

Correlated subqueries are also possible:

DetachedCriteria avgWeightForSex = DetachedCriteria.forClass(Cat.class, "cat2")
.setProjection(Property.forName("weight").avg())
.add(Property.forName("cat2.sex").eqProperty("cat.sex"));
session.createCriteria(Cat.class, "cat")
.add(Property.forName("weight").gt(avgWeightForSex))
dist();

15.9. #H#HHAHHHAHHH

For most queries, including criteria queries, the query cache is not efficient because query cache
invalidation occurs too frequently. However, there is a special kind of query where you can optimize
the cache invalidation algorithm: lookups by a constant natural key. In some applications, this kind
of query occurs frequently. The criteria API provides special provision for this use case.

First, map the natural key of your entity using <nat ur al -i d> and enable use of the second-level
cache.

<class name="User">
<cache usage="read-write"/>
<id name="id">
<generator class="increment"/>
<fid>
<natural-id>
<property name="name"/>
<property name="org"/>
</natural-id>
<property name="password"/>
</class>

This functionality is not intended for use with entities with mutable natural keys.

Once you have enabled the Hibernate query cache, the Restri cti ons. natural I d() allows you
to make use of the more efficient cache algorithm.

session.createCriteria(User.class)
.add(Restrictions.naturalld()

.set("name”, "gavin")

236

BRAHHHHHH

.set("org", "hb")
).setCacheable(true)
.unigueResult();

237

238

HHHHHS QL

You can also express queries in the native SQL dialect of your database. This is useful if you want
to utilize database-specific features such as query hints or the CONNECT keyword in Oracle. It also
provides a clean migration path from a direct SQL/JDBC based application to Hibernate.

Hibernate3 allows you to specify handwritten SQL, including stored procedures, for all create,
update, delete, and load operations.

161 SQLQuery ###

Execution of native SQL queries is controlled via the SQLQuery interface, which is obtained by
calling Sessi on. creat eSQLQuery(). The following sections describe how to use this API for

querying.
16.1.1. #H#H#H#HIH

HHHHHHS Q LHHHHHHHHHHHHHHHHH

sess.createSQLQuery("SELECT * FROM CATS").list();
sess.createSQLQuery("SELECT ID, NAME, BIRTHDATE FROM CATS").list();

These will return a List of Object arrays (Object[]) with scalar values for each column in the CATS
table. Hibernate will use ResultSetMetadata to deduce the actual order and types of the returned
scalar values.

To avoid the overhead of using Resul t Set Met adat a, or simply to be more explicit in what is
returned, one can use addScal ar () :

sess.createSQLQuery("SELECT * FROM CATS")
.addScalar("ID", Hibernate.LONG)
.addScalar("NAME", Hibernate.STRING)
.addScalar("BIRTHDATE", Hibernate.DATE)

HHHHHHHHHH

o SQL#HHHIH
o HERAAHHHH

This will return Object arrays, but now it will not use Resul t Set Met adat a but will instead explicitly
get the ID, NAME and BIRTHDATE column as respectively a Long, String and a Short from the
underlying resultset. This also means that only these three columns will be returned, even though
the query is using * and could return more than the three listed columns.

239

#16# #HHH#SQL

BHAHHHHHHH AR

sess.createSQLQuery("SELECT * FROM CATS")
.addScalar("ID", Hibernate.LONG)
.addScalar("NAME")

.addScalar("BIRTHDATE")

This is essentially the same query as before, but now Resul t Set Met aDat a is used to determine
the type of NAME and BIRTHDATE, where as the type of ID is explicitly specified.

How the java.sqgl.Types returned from ResultSetMetaData is mapped to Hibernate types is
controlled by the Dialect. If a specific type is not mapped, or does not result in the expected type,
it is possible to customize it via calls to r egi st er H ber nat eType in the Dialect.

16.1.2. #H##HHBHHHAH

BHAHHHHHHH AR HHH R AR R HHaddEnt (| ty () #HHHHH
HHAHS QLA HHH R

sess.createSQLQuery("SELECT * FROM CATS").addEntity(Cat.class);
sess.createSQLQuery("SELECT ID, NAME, BIRTHDATE FROM CATS").addEntity(Cat.class);

HHHHHHHHHHH

o SQL#HHHHE
o HHAHHHHHHHHHHH S QLI

Cat#ID, NAME, BIRTHDATE##HHHHHHHHHHHHHHHHHHHHT A C At
HAHHH

BHAHHHHHHHHRRAT S R AR AR HH
HHH A coluMn NOt fouNd (HHHHHHEHHTHHE) HEHHIHHIHHHE * ST
B HHHHHHHHDOQ # #itH HHHHHE HHHHHH R

sess.createSQLQuery("SELECT ID, NAME, BIRTHDATE, DOG_ID FROM
CATS").addEntity(Cat.class);

#HiHH# cat.getDog() #HHiHHIHH

16.1.3. #H#HHHABHHAHHH

HHAHHHHHHH AR Dog #HHHHHHHHAH #H# addJoi n() #HHHRAHHHHHT BHRHHHHE
B

240

BRAHHHHHH

sess.createSQLQuery("SELECT c.ID, NAME, BIRTHDATE, DOG_ID, D_ID, D_NAME FROM
CATS ¢, DOGS d WHERE ¢.DOG_ID =d.D_ID")

.addEntity("cat", Cat.class)

.addJoin("cat.dog");

In this example, the returned Cat 's will have their dog property fully initialized without any extra
roundtrip to the database. Notice that you added an alias name ("cat") to be able to specify the
target property path of the join. It is possible to do the same eager joining for collections, e.g. if
the Cat had a one-to-many to Dog instead.

sess.createSQLQuery("SELECT ID, NAME, BIRTHDATE, D_ID, D_NAME, CAT_ID FROM CATS
¢, DOGS d WHERE c.ID = d.CAT_ID")

.addEntity("cat", Cat.class)

.addJoin("cat.dogs");

At this stage you are reaching the limits of what is possible with native queries, without starting to
enhance the sgl queries to make them usable in Hibernate. Problems can arise when returning
multiple entities of the same type or when the default alias/column names are not enough.

16.1.4. #HHAHHHA#HHAHH

Until now, the result set column names are assumed to be the same as the column names
specified in the mapping document. This can be problematic for SQL queries that join multiple
tables, since the same column names can appear in more than one table.

HHHHHHHH I #HH A column alias injection###H#H###

sess.createSQLQuery("SELECT c.*, m.* FROM CATS ¢, CATS m WHERE c.MOTHER_ID =
c.ID")

.addEntity("cat", Cat.class)

.addEntity("mother", Cat.class)

The query was intended to return two Cat instances per row: a cat and its mother. The query will,
however, fail because there is a conflict of names; the instances are mapped to the same column
names. Also, on some databases the returned column aliases will most likely be on the form "c.ID",
"c.NAME", etc. which are not equal to the columns specified in the mappings ("ID" and "NAME").

BRABH R R

sess.createSQLQuery("SELECT {cat.*}, {mother.*} FROM CATS c¢, CATS m WHERE
c.MOTHER_ID = c.ID")

241

#16# #HHH#SQL

.addEntity("cat", Cat.class)
.addEntity("mother"”, Cat.class)

B HHHHHHHHH R

o SQL##H#H#H#H #HIbernateft i HIHHEHHIHHEHHEHHE
o HRHBRREHHERRA

The {cat.*} and {mother.*} notation used above is a shorthand for "all properties". Alternatively,
you can list the columns explicitly, but even in this case Hibernate injects the SQL column aliases
for each property. The placeholder for a column alias is just the property name qualified by the
table alias. In the following example, you retrieve Cats and their mothers from a different table
(cat_log) to the one declared in the mapping metadata. You can even use the property aliases
in the where clause.

String sqgl = "SELECT ID as {c.id}, NAME as {c.name}, " +
"BIRTHDATE as {c.birthDate}, MOTHER_ID as {c.mother}, {mother.*} " +
"FROM CAT_LOG ¢, CAT_LOG m WHERE {c.mother} = c.ID";

List loggedCats = sess.createSQLQuery(sql)
.addEntity("cat", Cat.class)
.addEntity("mother", Cat.class).list()

16.1.4.1. #HAHHHAHHHHAHHHAHR

In most cases the above alias injection is needed. For queries relating to more complex mappings,
like composite properties, inheritance discriminators, collections etc., you can use specific aliases
that allow Hibernate to inject the proper aliases.

The following table shows the different ways you can use the alias injection. Please note that the
alias names in the result are simply examples; each alias will have a unique and probably different
name when used.

16.1. tHHHHHHHHAH

#

HHHHHHHHE {[aliasname]. A _NAME as {item nane}
[propertynane] }

i {[al i asnane]. CURRENCY as {item anount.currency}, VALUE
[conponent nane] . |as {item anmount. val ue}
[propertynane] }

HHHH#HAHHAHH {[al i asnanme] . cl asdl SC as {item cl ass}
#

242

BRAHHHHHHHH A

#H #H #

B {[al i asname] . *} | {item *}

HHAHHHHHR {[aliasnane] . key} ORGA D as {coll.key}
HHHHFRHID {[aliasnane].id} EMPID as {coll.id}
HHHH I {[al iasnane]. el enefitD as {coll.el enment}

property of the {[aliasnane].el em@ANE as {col |. el ement. nane}
element in the [propertynane]}
collection

HHHEHHEREEE ([al | asnane] . el emgraali). el enent . *}
Hit

HHHH IR H {[aliasnanme].*} |{coll.*}

16.1.5. #HAHHHABHHBHHHBHHAH

It is possible to apply a ResultTransformer to native SQL queries, allowing it to return non-
managed entities.

sess.createSQLQuery("SELECT NAME, BIRTHDATE FROM CATS")
.setResultTransformer(Transformers.aliasToBean(CatDTO.class))

BHAHHHHHHHH

o SQL#HHHHH
o HERAAHHHH

HHAHHHHAHHAAHHNAME # BIRTHDATE #8# #H##HHHHHHHHHHHHA Cat DT O B
##

16.1.6. ####H#

Native SQL queries which query for entities that are mapped as part of an inheritance must include
all properties for the baseclass and all its subclasses.

16.1.7. #H#H#H##

Native SQL queries support positional as well as named parameters:
Query query = sess.createSQLQuery("SELECT * FROM CATS WHERE NAME

like ?").addEntity(Cat.class);
List pusList = query.setString(0, "Pus%").list();

243

#16# #HHH#SQL

query = sess.createSQLQuery("SELECT * FROM CATS WHERE NAME
like :name").addEntity(Cat.class);
List pusList = query.setString("name”, "Pus%").list();

16.2. ###H#HSQLHA#H#

Named SQL queries can be defined in the mapping document and called in exactly the same way
as a named HQL query. In this case, you do not need to call addEntity().

<sgl-query name="persons">
<return alias="person" class="eg.Person"/>
SELECT person.NAME AS {person.name},
person.AGE AS {person.age},
person.SEX AS {person.sex}
FROM PERSON person
WHERE person.NAME LIKE :namePattern
</sqgl-query>

List people = sess.getNamedQuery("persons")
.setString("namePattern”, namePattern)
.setMaxResults(50)
dist();

The <r et ur n-j oi n> element is use to join associations and the <| oad- col | ecti on> element is
used to define queries which initialize collections,

<sql-query name="personsWith">

<return alias="person" class="eg.Person"/>
<return-join alias="address" property="person.mailingAddress"/>
SELECT person.NAME AS {person.name},

person.AGE AS {person.age},

person.SEX AS {person.sex},

address.STREET AS {address.street},

address.CITY AS {address.city},

address.STATE AS {address.state},

address.ZIP AS {address.zip}
FROM PERSON person
JOIN ADDRESS address

ON person.ID = address.PERSON_ID AND address.TYPE="MAILING'

WHERE person.NAME LIKE :namePattern

244

HHH#SQLAHH

</sql-query>

S Q LIHHHIHIHHEHHEHHEHHEHE <r et ur n- scal ar > #HHHHHE HHHHEHIDernate i HEHHEHHEH
##

<sgl-query name="mySqlQuery">
<return-scalar column="name" type="string"/>
<return-scalar column="age" type="long"/>
SELECT p.NAME AS name,
p.AGE AS age,
FROM PERSON p WHERE p.NAME LIKE ‘Hiber%'
</sql-query>

You can externalize the resultset mapping information in a <r esul t set > element which will allow
you to either reuse them across several named queries or through the set Resul t Set Mappi ng()
API.

<resultset name="personAddress">

<return alias="person" class="eg.Person"/>

<return-join alias="address" property="person.mailingAddress"/>
</resultset>

<sqgl-query name="personsWith" resultset-ref="personAddress">
SELECT person.NAME AS {person.name},
person.AGE AS {person.age},
person.SEX AS {person.sex},
address.STREET AS {address.street},
address.CITY AS {address.city},
address.STATE AS {address.state},
address.ZIP AS {address.zip}
FROM PERSON person
JOIN ADDRESS address
ON person.ID = address.PERSON_ID AND address.TYPE="MAILING'
WHERE person.NAME LIKE :namePattern
</sql-query>

You can, alternatively, use the resultset mapping information in your hbm files directly in java code.

List cats = sess.createSQLQuery(
"select {cat.*}, {kitten.*} from cats cat, cats kitten where kitten.mother = cat.id"

245

#16# #HHH#SQL

)
.setResultSetMapping("catAndKitten")

list();

16.2.1. ###HHAHAHHAHAHH## return-property ###

You can explicitly tell Hibernate what column aliases to use with <r et ur n- pr oper t y>, instead of
using the {} -syntax to let Hibernate inject its own aliases.For example:

<sgl-query name="mySqlQuery">
<return alias="person" class="eg.Person">
<return-property name="name" column="myName"/>
<return-property hame="age" column="myAge"/>
<return-property name="sex" column="mySex"/>
</return>
SELECT person.NAME AS myName,
person.AGE AS myAge,
person.SEX AS mySex,
FROM PERSON person WHERE person.NAME LIKE :name
</sqgl-query>

<r et ur n- pr oper t y> also works with multiple columns. This solves a limitation with the {} -syntax
which cannot allow fine grained control of multi-column properties.

<sgl-query name="organizationCurrentEmployments">
<return alias="emp" class="Employment">
<return-property name="salary">
<return-column name="VALUE"/>
<return-column name="CURRENCY"/>
</return-property>
<return-property hame="endDate" column="myEndDate"/>
<[return>
SELECT EMPLOYEE AS {emp.employee}, EMPLOYER AS {emp.employer},
STARTDATE AS {emp.startDate}, ENDDATE AS {emp.endDate},
REGIONCODE as {emp.regionCode}, EID AS {emp.id}, VALUE, CURRENCY
FROM EMPLOYMENT
WHERE EMPLOYER = :id AND ENDDATE IS NULL
ORDER BY STARTDATE ASC
</sql-query>

246

BRAHHHHHHH A

In this example <r et ur n- property> was used in combination with the {}-syntax for injection.

This allows users to choose how they want to refer column and properties.

HiHH#AE discriminator #####HHH#HAR discriminator ####HH###<return-discriminator> #HH##HHH

HitiH

16.2.2. #efiatianniiainniidaais

Hibernate3 provides support for queries via stored procedures and functions. Most of the following
documentation is equivalent for both. The stored procedure/function must return a resultset as
the first out-parameter to be able to work with Hibernate. An example of such a stored function

in Oracle 9 and higher is as follows:

CREATE OR REPLACE FUNCTION selectAllIEmployments
RETURN SYS_REFCURSOR
AS
st_cursor SYS_REFCURSOR,;
BEGIN
OPEN st_cursor FOR
SELECT EMPLOYEE, EMPLOYER,
STARTDATE, ENDDATE,
REGIONCODE, EID, VALUE, CURRENCY
FROM EMPLOYMENT;
RETURN st_cursor,
END;

Hibernatet i HHHH

<sql-query name="selectAllEmployees_SP" callable="true">
<return alias="emp" class="Employment">
<return-property hame="employee" column="EMPLOYEE"/>
<return-property hame="employer" column="EMPLOYER"/>
<return-property hame="startDate" column="STARTDATE"/>
<return-property name="endDate" column="ENDDATE"/>
<return-property hame="regionCode" column="REGIONCODE"/>
<return-property hame="id" column="EID"/>
<return-property name="salary">
<return-column name="VALUE"/>
<return-column name="CURRENCY"/>
</return-property>
</return>
{ ? = call selectAllEmployments() }

247

#16# #HHH#SQL

</sql-query>

Stored procedures currently only return scalars and entities. <return-joi n> and <l oad-
col | ecti on> are not supported.

16.2.2. 1. #Hfaisaaa it i

You cannot use stored procedures with Hibernate unless you follow some procedure/function
rules. If they do not follow those rules they are not usable with Hibernate. If you still want to use
these procedures you have to execute them via sessi on. connect i on() . The rules are different
for each database, since database vendors have different stored procedure semantics/syntax.

Stored procedure queries cannot be paged with set Fi r st Resul t () / set MaxResul ts() .

The recommended call form is standard SQL92: { ? = cal| functi onNanme(<paraneters>) }
or{ ? = call procedureName(<paranet er s>}. Native call syntax is not supported.

Oraclet#HHiHHHHHHHH

« A function must return a result set. The first parameter of a procedure must be an QUT that
returns a result set. This is done by using a SYS_REFCURSCR type in Oracle 9 or 10. In Oracle
you need to define a REF CURSOR type. See Oracle literature for further information.

Sybase#MS SQLHHHIHHHIHHIHHIHHEHHIHHE

» The procedure must return a result set. Note that since these servers can return multiple result
sets and update counts, Hibernate will iterate the results and take the first result that is a result
set as its return value. Everything else will be discarded.

o HiHHHHHAH SET NOCOUNT ON #HHHHIHHHH HHHAHIHHH AR HHH AR

16.3. #HHHHAHHAHHAHHAHFHS QL

Hibernate 3t####H#HHHHHHHHAHHHHHH SQLHHHHH T T HHHHH
##Ht #insertsql#deletesql#updatesqIHHHHHHHHHHHHHEHE HEHHAR#HHE <sql - i nsert ># <sql -
del et e># <sql - updat e> HHHHHHHHHHHHHHHHHE

<class name="Person">
<id name="id">
<generator class="increment"/>
<fid>
<property name="name" not-null="true"/>
<sgl-insert>INSERT INTO PERSON (NAME, ID) VALUES (UPPER(?), ?)</sql-insert>
<sql-update>UPDATE PERSON SET NAME=UPPER(?) WHERE ID=?</sql-update>
<sgl-delete>DELETE FROM PERSON WHERE ID=?</sql-delete>

248

HHHHHHHH S QL

</class>

The SQL is directly executed in your database, so you can use any dialect you like. This will
reduce the portability of your mapping if you use database specific SQL.

cal | abl e #HHHHHHHHH HHHHHIHAHHHHHHHE

<class name="Person">

<id name="id">

<generator class="increment"/>

</id>

<property name="name" not-null="true"/>

<sql-insert callable="true">{call createPerson (?, ?)}</sql-insert>

<sqgl-delete callable="true">{? = call deletePerson (?)}</sql-delete>

<sql-update callable="true">{? = call updatePerson (?, ?)}</sql-update>
</class>

The order of the positional parameters is vital, as they must be in the same sequence as Hibernate
expects them.

You <can view the expected order by enabling debug logging for the
org. hi bernate. persister.entity level. With this level enabled, Hibernate will print out the
static SQL that is used to create, update, delete etc. entities. To view the expected sequence, do
not include your custom SQL in the mapping files, as this will override the Hibernate generated
static SQL.

The stored procedures are in most cases required to return the number of rows inserted, updated
and deleted, as Hibernate has some runtime checks for the success of the statement. Hibernate
always registers the first statement parameter as a numeric output parameter for the CUD
operations:

CREATE OR REPLACE FUNCTION updatePerson (uid IN NUMBER, uname IN VARCHAR?2)
RETURN NUMBER IS
BEGIN

update PERSON
set

NAME = uname,
where

ID = uid;

return SQL%ROWCOUNT;

249

#16# #HHH#SQL

END updatePerson;

16.4. ###H##HHAHHASQL

You can also declare your own SQL (or HQL) queries for entity loading:

<sgl-query name="person">
<return alias="pers" class="Person" lock-mode="upgrade"/>
SELECT NAME AS {pers.name}, ID AS {pers.id}
FROM PERSON
WHERE ID=?
FOR UPDATE
</sqgl-query>

This is just a named query declaration, as discussed earlier. You can reference this named query
in a class mapping:

<class name="Person">
<id name="id">
<generator class="increment"/>
</id>
<property name="name" not-null="true"/>
<loader query-ref="person"/>
</class>

HHHHHHHHHHHHHHHHH AR

You can even define a query for collection loading:

<set name="employments" inverse="true">
<key/>
<one-to-many class="Employment"/>
<loader query-ref="employments"/>
</set>

<sqgl-query name="employments">
<load-collection alias="emp" role="Person.employments"/>
SELECT {emp.*}
FROM EMPLOYMENT emp

250

HHHHHHHFHSQL

WHERE EMPLOYER = :id
ORDER BY STARTDATE ASC, EMPLOYEE ASC
</sql-query>

You can also define an entity loader that loads a collection by join fetching:

<sgl-query name="person">
<return alias="pers" class="Person"/>
<return-join alias="emp" property="pers.employments"/>
SELECT NAME AS {pers.*}, {emp.*}
FROM PERSON pers
LEFT OUTER JOIN EMPLOYMENT emp
ON pers.ID = emp.PERSON_ID
WHERE ID=?
</sqgl-query>

251

252

HHHHH I

Hibernate3 provides an innovative new approach to handling data with "visibility" rules. A
Hibernate filter is a global, named, parameterized filter that can be enabled or disabled for a
particular Hibernate session.

17.1. Hibernate#####

Hibernate3 has the ability to pre-define filter criteria and attach those filters at both a class level
and a collection level. A filter criteria allows you to define a restriction clause similar to the existing
"where" attribute available on the class and various collection elements. These filter conditions,
however, can be parameterized. The application can then decide at runtime whether certain filters
should be enabled and what their parameter values should be. Filters can be used like database
views, but they are parameterized inside the application.

B SRR <hi ber nat e- mappi ng/ > #
#H#E <fi | t er - def | > #H#HHHHHHAH

<filter-def name="mypFilter">
<filter-param name="myFilterParam" type="string"/>
<[filter-def>

This filter can then be attached to a class:

<class name="myClass" ...>

<filter name="myFilter" condition=":myFilterParam = MY_FILTERED_COLUMN"/>
</class>

Or, to a collection:

<set..>
<filter name="myFilter" condition=":myFilterParam = MY_FILTERED_COLUMN"/>
</set>

Or, to both or multiples of each at the same time.

The methods on Sessi on are: enabl eFilter(String filterName),
getEnabl edFilter(String filterNane), and disableFilter(String filterName). By
default, filters are not enabled for a given session. Filters must be enabled through use of the

253

BLTH HHHHHHHHHRH

Sessi on. enabl eFi | t er () method, which returns an instance of the Fi | t er interface. If you used
the simple filter defined above, it would look like this:

session.enableFilter("myFilter").setParameter("myFilterParam", "some-value");

Methods on the org.hibernate.Filter interface do allow the method-chaining common to much of
Hibernate.

The following is a full example, using temporal data with an effective record date pattern:

<filter-def name="effectiveDate">
<filter-param name="asOfDate" type="date"/>
<ffilter-def>

<class name="Employee" ...>

<many-to-one name="department" column="dept_id" class="Department"/>
<property name="effectiveStartDate" type="date" column="eff_start_dt"/>
<property name="effectiveEndDate" type="date" column="eff_end_dt"/>

<l--
Note that this assumes non-terminal records have an eff_end_dt set to
a max db date for simplicity-sake
-—->
<filter name="effectiveDate"
condition=";asOfDate BETWEEN eff_start_dt and eff_end_dt"/>
</class>

<class name="Department" ...>

<set name="employees" lazy="true">
<key column="dept_id"/>
<one-to-many class="Employee"/>
<filter name="effectiveDate"
condition=":asOfDate BETWEEN eff_start_dt and eff_end_dt"/>
</set>
</class>

In order to ensure that you are provided with currently effective records, enable the filter on the
session prior to retrieving employee data:

254

Hibernate#####

Session session = ...;

session.enableFilter("effectiveDate").setParameter("asOfDate", new Date());

List results = session.createQuery(“from Employee as e where e.salary > :targetSalary")
.setLong("targetSalary", new Long(1000000))
dist();

Even though a salary constraint was mentioned explicitly on the results in the above HQL, because
of the enabled filter, the query will return only currently active employees who have a salary greater
than one million dollars.

If you want to use filters with outer joining, either through HQL or load fetching, be careful of
the direction of the condition expression. It is safest to set this up for left outer joining. Place the
parameter first followed by the column name(s) after the operator.

After being defined, a filter might be attached to multiple entities and/or collections each with
its own condition. This can be problematic when the conditions are the same each time. Using
<filter-def/> allows you to definine a default condition, either as an attribute or CDATA:

<filter-def name="mygFilter" condition="abc > xyz">...</filter-def>
<filter-def name="myOtherFilter">abc=xyz</ffilter-def>

This default condition will be used whenever the filter is attached to something without specifying
a condition. This means you can give a specific condition as part of the attachment of the filter
that overrides the default condition in that particular case.

255

256

XML ##H#H#

XML Mapping is an experimental feature in Hibernate 3.0 and is currently under active
development.

18.1. XML###H#H#HH#

Hibernate allows you to work with persistent XML data in much the same way you work with
persistent POJOs. A parsed XML tree can be thought of as another way of representing the
relational data at the object level, instead of POJOs.

Hibernate# X ML AP [AOMA A HHHHHHHHdOMAJHHHEHHHHHHHE
T HHHHHHHH T R XM U T d oM A i HHHEHH
#1 HibernatefHHHHHHHHHHHHHHHHAR AR #Hpersist (), saveOr Update(),
merge(), delete(), replicate() #HHH(HHHHHHHHHHHHHHHHT)]

HHHH T [IMSHHHH T SO APH X SLT HHIHHTHHIHHHE HHHIHH

A single mapping can be used to simultaneously map properties of a class and nodes of an XML
document to the database, or, if there is no class to map, it can be used to map just the XML.

18.1.1. XMLAHH#HHHHHABHHHHAHHHH

#HHP OJO#XMLAHHHHIHHHHHEHHHHHHH

<class name="Account"
table="ACCOUNTS"
node="account">

<id name="accountld"
column="ACCOUNT _ID"
node="@id"/>

<many-to-one name="customer"
column="CUSTOMER_ID"
node="customer/@id"
embed-xm|="false"/>

<property name="balance"

column="BALANCE"
node="balance"/>

</class>

257

#18# XML##HH#

18.1.2. XML #A#H#HHHAHHHHHH

#HHP O JOHHHHHHHHHHHHHHHHHH

<class entity-name="Account"
table="ACCOUNTS"
node="account">

<id name="id"
column="ACCOUNT_ID"
node="@id"
type="string"/>

<many-to-one name="customerld"
column="CUSTOMER_ID"
node="customer/@id"
embed-xml="false"
entity-name="Customer"/>

<property name="balance"
column="BALANCE"
node="balance"
type="big_decimal'/>

</class>

This mapping allows you to access the data as a dom4j tree, or as a graph of property name/
value pairs or java Maps. The property names are purely logical constructs that can be referred
to in HQL queries.

18.2. XML ##HH#HHHHHHH#H#

A range of Hibernate mapping elements accept the node attribute. This lets you specify the name
of an XML attribute or element that holds the property or entity data. The format of the node
attribute must be one of the following:

e "el ement - nane" : map to the named XML element

"@uttribute-name": map to the named XML attribute
e ".":map to the parent element

e "el ement - nane/ @t tri but e- nanme": map to the named attribute of the named element

258

XML

For collections and single valued associations, there is an additional enbed- xnl attribute. If
enmbed- xm ="t rue", the default, the XML tree for the associated entity (or collection of value type)
will be embedded directly in the XML tree for the entity that owns the association. Otherwise, if
enbed- xm ="f al se", then only the referenced identifier value will appear in the XML for single
point associations and collections will not appear at all.

Do not leave enbed- xm ="true" for too many associations, since XML does not deal well with
circularity.

<class name="Customer"
table="CUSTOMER"
node="customer">

<id name="id"
column="CUST_ID"
node="@id"/>

<map name="accounts"
node="."
embed-xml="true">
<key column="CUSTOMER_ID"
not-null="true"/>
<map-key column="SHORT_DESC"
node="@short-desc"
type="string"/>
<one-to-many entity-name="Account
embed-xml="false"
node="account"/>

</map>

<component name="name"
node="name">

<property name="firstName
node="first-name"/>

<property name="initial"
node="initial"/>

<property name="lastName"
node="last-name"/>

</component>

</class>

259

#18# XML##HH#

In this case, the collection of account ids is embedded, but not the actual account data. The
following HQL query:

from Customer c left join fetch c.accounts where c.lastName like :lastName
would return datasets such as this:

<customer id="123456789">
<account short-desc="Savings">987632567</account>
<account short-desc="Credit Card">985612323</account>
<name>
<first-name>Gavin</first-name>
<initial>A</initial>
<last-name>King</last-name>
</name>

</customer>
<one-t o- many> ####HH enbed- x ="t r ue" HHHHHHHHE HIHEHHHHHHEHER

<customer id="123456789">

<account id="987632567" short-desc="Savings">
<customer id="123456789"/>
<balance>100.29</balance>

</account>

<account id="985612323" short-desc="Credit Card">
<customer id="123456789"/>
<balance>-2370.34</balance>

</account>

<name>
<first-name>Gavin</first-name>
<initial>A</initial>
<last-name>King</last-name>

</name>

</customer>

260

XML

18.3. XML####H##

You can also re-read and update XML documents in the application. You can do this by obtaining
a dom4j session:

Document doc =;

Session session = factory.openSession();
Session dom4jSession = session.getSession(EntityMode.DOM4J);
Transaction tx = session.beginTransaction();

List results = dom4jSession
.createQuery("from Customer c left join fetch c.accounts where c.lastName like :lastName")
dist();
for (int i=0; i<results.size(); i++) {
/ladd the customer data to the XML document
Element customer = (Element) results.get(i);
doc.add(customer);

tx.commit();
session.close();

Session session = factory.openSession();
Session dom4jSession = session.getSession(EntityMode.DOMA4J);
Transaction tx = session.beginTransaction();

Element cust = (Element) dom4jSession.get("Customer”, customerld);
for (int i=0; i<results.size(); i++) {
Element customer = (Element) results.get(i);
/lchange the customer name in the XML and database
Element name = customer.element("name");
name.element("first-name").setText(firstName);
name.element("initial").setText(initial);
name.element("last-name").setText(lastName);

tx.commit();
session.close();

261

#18# XML##HH#

When implementing XML-based data import/export, it is useful to combine this feature with
Hibernate's repl i cat e() operation.

262

HEHHH IR

19.1. ###HHH

Hibernate uses a fetching strategy to retrieve associated objects if the application needs to
navigate the association. Fetch strategies can be declared in the O/R mapping metadata, or over-
ridden by a particular HQL or Cri t eri a query.

Hibernate 3t HHHHHHHHEHHHHIHH

« Join fetching: Hibernate retrieves the associated instance or collection in the same SELECT,
using an OQUTER JO N.

» Select fetching: a second SELECT is used to retrieve the associated entity or collection. Unless
you explicitly disable lazy fetching by specifying | azy="f al se", this second select will only be
executed when you access the association.

» Subselect fetching: a second SELECT is used to retrieve the associated collections for all entities
retrieved in a previous query or fetch. Unless you explicitly disable lazy fetching by specifying
| azy="f al se", this second select will only be executed when you access the association.

 Batch fetching: an optimization strategy for select fetching. Hibernate retrieves a batch of entity
instances or collections in a single SELECT by specifying a list of primary or foreign keys.

Hibernate###HH##HHHHHHHHH

« Immediate fetching: an association, collection or attribute is fetched immediately when the
owner is loaded.

» Lazy collection fetching: a collection is fetched when the application invokes an operation upon
that collection. This is the default for collections.

« "Extra-lazy" collection fetching: individual elements of the collection are accessed from the
database as needed. Hibernate tries not to fetch the whole collection into memory unless
absolutely needed. It is suitable for large collections.

» Proxy fetching: a single-valued association is fetched when a method other than the identifier
getter is invoked upon the associated object.

« "No-proxy" fetching: a single-valued association is fetched when the instance variable is
accessed. Compared to proxy fetching, this approach is less lazy; the association is fetched
even when only the identifier is accessed. It is also more transparent, since no proxy is visible
to the application. This approach requires buildtime bytecode instrumentation and is rarely
necessary.

« Lazy attribute fetching: an attribute or single valued association is fetched when the instance
variable is accessed. This approach requires buildtime bytecode instrumentation and is rarely
necessary.

263

#1O# HHHHIHIHE

We have two orthogonal notions here: when is the association fetched and how is it fetched. It is
important that you do not confuse them. We use f et ch to tune performance. We can use | azy to
define a contract for what data is always available in any detached instance of a particular class.

19.1.1. #H##HHHH

By default, Hibernate3 uses lazy select fetching for collections and lazy proxy fetching for
single-valued associations. These defaults make sense for most associations in the majority of
applications.

If you set hibernate.default_batch fetch_size, Hibernate will use the batch fetch
optimization for lazy fetching. This optimization can also be enabled at a more granular level.

Please be aware that access to a lazy association outside of the context of an open Hibernate
session will result in an exception. For example:

S = sessions.openSession();
Transaction tx = s.beginTransaction();

User u = (User) s.createQuery("from User u where u.name=:userName")
.setString("userName", userName).uniqueResult();
Map permissions = u.getPermissions();

tx.commit();
s.close();

Integer accessLevel = (Integer) permissions.get("accounts"); // Error!

Since the permissions collection was not initialized when the Sessi on was closed, the collection
will not be able to load its state. Hibernate does not support lazy initialization for detached objects.
This can be fixed by moving the code that reads from the collection to just before the transaction
is committed.

Alternatively, you can use a non-lazy collection or association, by specifying | azy="f al se" for
the association mapping. However, it is intended that lazy initialization be used for almost all
collections and associations. If you define too many non-lazy associations in your object model,
Hibernate will fetch the entire database into memory in every transaction.

On the other hand, you can use join fetching, which is non-lazy by nature, instead of select
fetching in a particular transaction. We will now explain how to customize the fetching strategy.
In Hibernate3, the mechanisms for choosing a fetch strategy are identical for single-valued
associations and collections.

19.1.2. #H##HHBHHHABHHHA

HHHHHHHHHHHHHHHHRN + LA

264

HHHHHHH

<set hame="permissions"
fetch="join">
<key column="userld"/>
<one-to-many class="Permission"/>
</set

<many-to-one name="mother" class="Cat" fetch="join"/>

BHEFHHHEAA it FREHHTREA

get () #1 oad() #iHHH#

B HHHHH AR

e Criteria###

#Hit#H HHHHHHAHQLAHH

Irrespective of the fetching strategy you use, the defined non-lazy graph is guaranteed to be loaded
into memory. This might, however, result in several immediate selects being used to execute a
particular HQL query.

Usually, the mapping document is not used to customize fetching. Instead, we keep the default
behavior, and override it for a particular transaction, using | eft join fetch in HQL. This tells
Hibernate to fetch the association eagerly in the first select, using an outer join. Inthe Criteri a
query API, you would use set Fet chMbde(Fet chMbde. JO N) .

If you want to change the fetching strategy used by get () orl oad(), you canuse a Criteria
query. For example:

User user = (User) session.createCriteria(User.class)
.setFetchMode("permissions"”, FetchMode.JOIN)
.add(Restrictions.idEq(userld))
.uniqueResult();

This is Hibernate's equivalent of what some ORM solutions call a "fetch plan”.

A completely different approach to problems with N+1 selects is to use the second-level cache.
19.1.3. ###HHH#HH#HAH

Lazy fetching for collections is implemented using Hibernate's own implementation of persistent
collections. However, a different mechanism is needed for lazy behavior in single-ended

265

#1O# HHHHIHIHE

associations. The target entity of the association must be proxied. Hibernate implements lazy
initializing proxies for persistent objects using runtime bytecode enhancement which is accessed
via the CGLIB library.

At startup, Hibernate3 generates proxies by default for all persistent classes and uses them to
enable lazy fetching of many-t o- one and one- t o- one associations.

The mapping file may declare an interface to use as the proxy interface for that class, with
the proxy attribute. By default, Hibernate uses a subclass of the class. The proxied class must
implement a default constructor with at least package visibility. This constructor is recommended
for all persistent classes.

There are potential problems to note when extending this approach to polymorphic classes.For
example:

<class name="Cat" proxy="Cat">

</subclass>
</class>

it Cat ##HHHHHE Doest | cCat #H#HHHHHHHHHHAHHHHHHA##HH# Domest | cCat #H#HHHHHH 7

Cat cat = (Cat) session.load(Cat.class, id); // instantiate a proxy (does not hit the db)
if (cat.isDomesticCat()) { /I hit the db to initialize the proxy
DomesticCat dc = (DomesticCat) cat; /I Error!

Secondly, it is possible to break proxy ==:

Cat cat = (Cat) session.load(Cat.class, id); [/l instantiate a Cat proxy
DomesticCat dc =

(DomesticCat) session.load(DomesticCat.class, id); // acquire new DomesticCat proxy!
System.out.printin(cat==dc); /I false

BRI R R R T R SRR R R T AT
HAHHHHHHH

cat.setWeight(11.0); // hit the db to initialize the proxy

266

HHHHHHH

System.out.printin(dc.getWeight()); // 11.0

Third, you cannot use a CGLIB proxy for afi nal class or a class with any fi nal methods.

Finally, if your persistent object acquires any resources upon instantiation (e.g. in initializers or
default constructor), then those resources will also be acquired by the proxy. The proxy class is
an actual subclass of the persistent class.

These problems are all due to fundamental limitations in Java's single inheritance model. To
avoid these problems your persistent classes must each implement an interface that declares
its business methods. You should specify these interfaces in the mapping file where Cat | npl
implements the interface Cat and Donest i cCat | npl implements the interface Donest i cCat . For
example:

<class name="Catlmpl" proxy="Cat">

</subclass>
</class>

Then proxies for instances of Cat and Donest i cCat can be returned by | oad() oriterate().

Cat cat = (Cat) session.load(Catimpl.class, catid);
Iterator iter = session.createQuery("from Catlmpl as cat where cat.name="fritz").iterate();
Cat fritz = (Cat) iter.next();

@ Note

li st() does not usually return proxies.

BHARHHHHHHHHH R Cat HHHHHHHIH AR Cat | npl #HHHHHE

Certain operations do not require proxy initialization:

* equal s() : if the persistent class does not override equal s()
» hashCode() : if the persistent class does not override hashCode()
o HHHHgetteri#HHH

Hibernate# equal s() # hashCode() HHHHHHHHHE HHHHHHHHHHHE

267

#1O# HHHHIHIHE

By choosing | azy="no- proxy" instead of the default | azy="proxy", you can avoid problems
associated with typecasting. However, buildtime bytecode instrumentation is required, and all
operations will result in immediate proxy initialization.

19.0.4. Ht T i

A LazylnitializationException will be thrown by Hibernate if an uninitialized collection or
proxy is accessed outside of the scope of the Sessi on, i.e., when the entity owning the collection
or having the reference to the proxy is in the detached state.

Sometimes a proxy or collection needs to be initialized before closing the Sessi on. You can force
initialization by calling cat . get Sex() orcat. getKittens(). si ze(), for example. However, this
can be confusing to readers of the code and it is not convenient for generic code.

The static methods Hi bernate.initialize() and Hi bernate.islnitialized(), provide the
application with a convenient way of working with lazily initialized collections or proxies.
Hi bernate.initialize(cat) will force the initialization of a proxy, cat , as long as its Sessi on is
still open. Hi bernate.initialize(cat.getKittens()) has a similar effect for the collection
of kittens.

Another option is to keep the Sessi on open until all required collections and proxies have
been loaded. In some application architectures, particularly where the code that accesses data
using Hibernate, and the code that uses it are in different application layers or different physical
processes, it can be a problem to ensure that the Sessi on is open when a collection is initialized.
There are two basic ways to deal with this issue:

* In a web-based application, a servlet filter can be used to close the Sessi on only at the end of
a user request, once the rendering of the view is complete (the Open Session in View pattern).
Of course, this places heavy demands on the correctness of the exception handling of your
application infrastructure. It is vitally important that the Sessi on is closed and the transaction
ended before returning to the user, even when an exception occurs during rendering of the view.
See the Hibernate Wiki for examples of this "Open Session in View" pattern.

* In an application with a separate business tier, the business logic must "prepare" all collections
that the web tier needs before returning. This means that the business tier should load all the
data and return all the data already initialized to the presentation/web tier that is required for a
particular use case. Usually, the application calls Hi bernate. i ni ti al i ze() for each collection
that will be needed in the web tier (this call must occur before the session is closed) or retrieves
the collection eagerly using a Hibernate query with a FETCH clause or a Fet chMbde. JO N in
Cri teri a. Thisis usually easier if you adopt the Command pattern instead of a Session Facade.

* You can also attach a previously loaded object to a new Sessi on with mer ge() orl ock() before
accessing uninitialized collections or other proxies. Hibernate does not, and certainly should
not, do this automatically since it would introduce impromptu transaction semantics.

Sometimes you do not want to initialize a large collection, but still need some information about
it, like its size, for example, or a subset of the data.

268

BHAHHHHHHH

BHAHHHHH A AR

((Integer) s.createFilter(collection, "select count(*)").list().get(0)).intValue()

creat eFi | t er () HHHHHHHHHHHHHHHHHHHHHHHHHHH T G

s.createFilter(lazyCollection, ").setFirstResult(0).setMaxResults(10).list();

19.1.5. #H##HHHAHHHAH

Using batch fetching, Hibernate can load several uninitialized proxies if one proxy is accessed.
Batch fetching is an optimization of the lazy select fetching strategy. There are two ways you can
configure batch fetching: on the class level and the collection level.

Batch fetching for classes/entities is easier to understand. Consider the following example: at
runtime you have 25 Cat instances loaded in a Sessi on, and each Cat has areference to its owner,
a Person. The Person class is mapped with a proxy, | azy="true". If you now iterate through
all cats and call get Oaner () on each, Hibernate will, by default, execute 25 SELECT statements
to retrieve the proxied owners. You can tune this behavior by specifying a bat ch- si ze in the
mapping of Per son:

<class name="Person" batch-size="10">...</class>

Hibernate will now execute only three queries: the pattern is 10, 10, 5.

You can also enable batch fetching of collections. For example, if each Per son has alazy collection
of Cat's, and 10 persons are currently loaded in the Sessi on, iterating through all persons will
generate 10 SELECTS, one for every call to get Cat s() . If you enable batch fetching for the cat s
collection in the mapping of Per son, Hibernate can pre-fetch collections:

<class name="Person">
<set name="cats" batch-size="3">

</set>
</class>

bat ch- si ze #3##t##HIbernate#td##t SELECT #3##3##H 3HH LiHIHIHHIHIHHHEHHEHHEHHIHHIE Sessi on
HHHHHHHHHH

269

#1O# HHHHIHIHE

Batch fetching of collections is particularly useful if you have a nested tree of items, i.e. the typical
bill-of-materials pattern. However, a nested set or a materialized path might be a better option
for read-mostly trees.

19.1.0. #HHHHABHHHHHAH

If one lazy collection or single-valued proxy has to be fetched, Hibernate will load all of them,
re-running the original query in a subselect. This works in the same way as batch-fetching but
without the piecemeal loading.

19.1.7. #HAHHHAHHHAHHAHH

Hibernate3 supports the lazy fetching of individual properties. This optimization technique is also
known as fetch groups. Please note that this is mostly a marketing feature; optimizing row reads is
much more important than optimization of column reads. However, only loading some properties
of a class could be useful in extreme cases. For example, when legacy tables have hundreds of
columns and the data model cannot be improved.

HHHHHHHHHHHHHH AR | azy HEHHHHH

<class name="Document">
<id name="id">
<generator class="native"/>
</id>
<property name="name" not-null="true" length="50"/>
<property name="summary" not-null="true" length="200" lazy="true"/>
<property name="text" not-null="true" length="2000" lazy="true"/>
</class>

Lazy property loading requires buildtime bytecode instrumentation. If your persistent classes are
not enhanced, Hibernate will ignore lazy property settings and return to immediate fetching.

BRI R AN TR

<target name="instrument" depends="compile">
<taskdef name="instrument" classname="org.hibernate.tool.instrument.InstrumentTask">
<classpath path="${jar.path}"/>
<classpath path="${classes.dir}"/>
<classpath refid="lib.class.path"/>
</taskdef>

<instrument verbose="true">
<fileset dir="${testclasses.dir}/org/hibernate/auction/model">
<include name="*.class"/>

270

H2HHHHHHHH?

<[fileset>
</instrument>
</target>

A different way of avoiding unnecessary column reads, at least for read-only transactions, is to
use the projection features of HQL or Criteria queries. This avoids the need for buildtime bytecode
processing and is certainly a preferred solution.

You can force the usual eager fetching of properties using fetch al | properties in HQL.

19.2. #2HHH#HHHHH

A Hibernate Sessi on is a transaction-level cache of persistent data. It is possible to configure
a cluster or JVM-level (Sessi onFact ory-level) cache on a class-by-class and collection-by-
collection basis. You can even plug in a clustered cache. Be aware that caches are not aware of
changes made to the persistent store by another application. They can, however, be configured
to regularly expire cached data.

You have the option to tell Hibernate which caching implementation to use by specifying the
name of a class that implements or g. hi ber nat e. cache. CachePr ovi der using the property
hi ber nat e. cache. provi der _cl ass. Hibernate is bundled with a number of built-in integrations
with the open-source cache providers that are listed below. You can also implement your own
and plug it in as outlined above. Note that versions prior to 3.2 use EhCache as the default cache
provider.

19.1. #HHHHAARRHH

B fiziziciciosarns #H# R BT
HHHHE
Hashtable## or g. hi ber nat e. cache. Hasht abl eCachef##vi der yes
HHHHEAHT
B
EHCache or g. hi ber nat e. cache. EnCachePr ovi de###H#### yes
OSCache org. hi bernat e. cache. GSCachePr ovi dett#####H#H# yes
SwarmCacheor g. hi ber nat e. cache. Swar nCachePr oviH##ipHH# | yesHiH#HHE
i it
JBoss or g. hi bernat e. cache. Tr eeCachePr ovj #é###HipHiHt | yesttitt yesHHHHH#H
Cache 1.x HHEHHHH HH
R
JBoss or g. hi ber nat e. cache. j bc2. JBoss CachhRegiipifat yeg yes#H#A##HH
Cache 2 A | (replication | ###
HHHH or
invalidation)

271

#1O# HHHHIHIHE

19.2.1. #A#HHABHHAHH

BHHHHERHH T <cache> I

<cache
usage="transactional|read-write|nonstrict-read-write|read-only" ﬂ'
region="RegionName" 9

include="all|non-lazy" E’
/>

€ usage (required) specifies the caching strategy: t ransacti onal , read-wite, nonstrict-
read-witeorread-only

€ regi on (optional: defaults to the class or collection role name): specifies the name of the
second level cache region

€ incl ude (optional: defaults to al |) non- | azy: specifies that properties of the entity mapped
with | azy="true" cannot be cached when attribute-level lazy fetching is enabled

Alternatively, you can specify <class-cache> and <collection-cache> elements in
hi bernat e. cfg. xm .

usage H#H#H HHHHHHHHHIH HHHHH

19.2.2. read only##

If your application needs to read, but not modify, instances of a persistent class, a read-onl y
cache can be used. This is the simplest and optimal performing strategy. It is even safe for use
in a cluster.

<class name="eg.Immutable" mutable="false">
<cache usage="read-only"/>

</class>

19.2.3. read/writett#

If the application needs to update data, a read-wite cache might be appropriate.
This cache strategy should never be used if serializable transaction isolation level is
required. If the cache is used in a JTA environment, you must specify the property
hi ber nat e. transacti on. manager _| ookup_cl ass and naming a strategy for obtaining the JTA
Tr ansact i onManager . In other environments, you should ensure that the transaction is completed
when Sessi on. cl ose() or Sessi on. di sconnect () is called. If you want to use this strategy in a

272

H#ittH##read/write##

cluster, you should ensure that the underlying cache implementation supports locking. The built-
in cache providers do not support locking.

<class name="eg.Cat" >
<cache usage="read-write"/>

<set name="kittens" ... >
<cache usage="read-write"/>
</set>
</class>

19.2.4. #####tHread/writett#

If the application only occasionally needs to update data (i.e. if it is extremely unlikely that two
transactions would try to update the same item simultaneously), and strict transaction isolation
is not required, a nonstrict-read-wite cache might be appropriate. If the cache is used in a
JTA environment, you must specify hi ber nat e. t ransact i on. manager _| ookup_cl ass. In other
environments, you should ensure that the transaction is completed when Sessi on. cl ose() or
Sessi on. di sconnect () is called.

19.2.5. transactional##

The t ransacti onal cache strategy provides support for fully transactional cache providers such
as JBoss TreeCache. Such a cache can only be used in a JTA environment and you must specify
hi ber nat e. t ransacti on. manager _| ookup_cl ass.

19.2.6. Cache-provider/concurrency-strategy compatibility

S W iiiiiiii

None of the cache providers support all of the cache concurrency strategies.

The following table shows which providers are compatible with which concurrency strategies.

10.2. tHHHHHHHHHHHHHAHH

HitHHH read-only H#HHHHread- read-write transactional
write

Hashtable##### | yes yes yes

HHHE

EHCache yes yes yes

OSCache yes yes yes

273

#1O# HHHHIHIHE

Bt read-only #HHHHHread- read-write transactional
write

SwarmCache yes yes

JBoss Cache 1.x | yes yes

JBoss Cache 2 | yes yes

19.3. #HH#HHHHH

Whenever you pass an object to save(), update() or saveO Update(), and whenever you
retrieve an object using | oad(), get(),list(),iterate() orscroll (), that object is added to
the internal cache of the Sessi on.

When flush() is subsequently called, the state of that object will be synchronized with the
database. If you do not want this synchronization to occur, or if you are processing a huge number
of objects and need to manage memory efficiently, the evi ct () method can be used to remove
the object and its collections from the first-level cache.

ScrollableResult cats = sess.createQuery('from Cat as cat").scroll(); //a huge result set
while (cats.next()) {

Cat cat = (Cat) cats.get(0);

doSomethingWithACat(cat);

sess.evict(cat);

Sessi on HHHHHHTHHHHHHHHHHHHHHHHEHHEHHEE cont ai ns() #HHHHHIHHEHHE
To evict all objects from the session cache, call Sessi on. cl ear ()

HEHHHHHHHH Sessi onFact or y ## HHHHHHHHHHHHHHH A
BHAHHHHHHH AR

sessionFactory.evict(Cat.class, catld); //evict a particular Cat
sessionFactory.evict(Cat.class); //evict all Cats
sessionFactory.evictCollection("Cat.kittens", catld); //evict a particular collection of kittens
sessionFactory.evictCollection("Cat.kittens"); //evict all kitten collections

The CacheMbde controls how a particular session interacts with the second-level cache:

e CacheMode. NORMVAL: will read items from and write items to the second-level cache

e CacheMode. GET: will read items from the second-level cache. Do not write to the second-level
cache except when updating data

274

HHHHHHHH

» CacheMde. PUT: will write items to the second-level cache. Do not read from the second-level
cache

* CacheMdde. REFRESH: will write items to the second-level cache. Do not read from the second-
level cache. Bypass the effect of hi ber nat e. cache. use_ni ni nmal _put s forcing a refresh of the
second-level cache for all items read from the database

HHAHHHHHHH R St at i sti cs API# #a#####H#

Map cacheEntries = sessionFactory.getStatistics()
.getSecondLevelCacheStatistics(regionName)
.getEntries();

You will need to enable statistics and, optionally, force Hibernate to keep the cache entries in a
more readable format:

hibernate.generate_statistics true
hibernate.cache.use_structured_entries true

19.4. #HH#HHAHHH

Query result sets can also be cached. This is only useful for queries that are run frequently with
the same parameters. You will first need to enable the query cache:

hibernate.cache.use_query_cache true

This setting creates two new cache regions: one holding cached query result sets
(or g. hi ber nat e. cache. St andar dQuer yCache), the other holding timestamps of the most recent
updates to queryable tables (or g. hi ber nat e. cache. Updat eTi nest anpsCache). Note that the
query cache does not cache the state of the actual entities in the result set; it caches only identifier
values and results of value type. The query cache should always be used in conjunction with the
second-level cache.

Most queries do not benefit from caching, so by default, queries are not cached. To enable
caching, call Query. set Cacheabl e(true). This call allows the query to look for existing cache
results or add its results to the cache when it is executed.

If you require fine-grained control over query cache expiration policies, you can specify a named
cache region for a particular query by calling Query. set CacheRegi on() .

List blogs = sess.createQuery("from Blog blog where blog.blogger = :blogger")

275

#1O# HHHHIHIHE

.setEntity("blogger", blogger)
.setMaxResults(15)
.setCacheable(true)
.setCacheRegion("frontpages")
dist();

BRI Query. set CacheMbde(CacheMbde. REFRESH)
THEHH T A HI D e rnate HHHHHHHHEHHTHE #HHHHHE
BHAHHHHHHHHHHH A R Sessi onFact ory. evi ct Queri es()
HHHHHHHHHHHHHHHH AR

19.5. HAHHAHHAHHBHH R

In the previous sections we have covered collections and their applications. In this section we
explore some more issues in relation to collections at runtime.

19.5.1. ##

Hibernate# 3#HHHHHHIHHIHHIHHIHH

o I
e one-to-many associations
* many-to-many associations

BHAHHHHHH AR R
T I Dernate HHHHHHHHHHHHHHHEHHHEHH HEE A
HHAHH

o HHHHHHHHH
e set
* bag

All indexed collections (maps, lists, and arrays) have a primary key consisting of the <key> and
<i ndex> columns. In this case, collection updates are extremely efficient. The primary key can be
efficiently indexed and a particular row can be efficiently located when Hibernate tries to update
or delete it.

Sets have a primary key consisting of <key> and element columns. This can be less efficient for
some types of collection element, particularly composite elements or large text or binary fields, as
the database may not be able to index a complex primary key as efficiently. However, for one-to-
many or many-to-many associations, particularly in the case of synthetic identifiers, it is likely to

276

A lIst#map#idbag#set

be just as efficient. If you want SchemaExport to actually create the primary key of a <set >, you
must declare all columns as not - nul | ="t rue".

<i dbag> mappings define a surrogate key, so they are efficient to update. In fact, they are the
best case.

Bags are the worst case since they permit duplicate element values and, as they have no index
column, no primary key can be defined. Hibernate has no way of distinguishing between duplicate
rows. Hibernate resolves this problem by completely removing in a single DELETE and recreating
the collection whenever it changes. This can be inefficient.

For a one-to-many association, the "primary key" may not be the physical primary key of the
database table. Even in this case, the above classification is still useful. It reflects how Hibernate
"locates" individual rows of the collection.

19.5.2. #H#H##HH#H#H#H## list#map#idbag#set

From the discussion above, it should be clear that indexed collections and sets allow the most
efficient operation in terms of adding, removing and updating elements.

There is, arguably, one more advantage that indexed collections have over sets for many-to-many
associations or collections of values. Because of the structure of a Set , Hibernate does not UPDATE
a row when an element is "changed". Changes to a Set always work via | NSERT and DELETE of
individual rows. Once again, this consideration does not apply to one-to-many associations.

After observing that arrays cannot be lazy, you can conclude that lists, maps and idbags are the
most performant (non-inverse) collection types, with sets not far behind. You can expect sets to be
the most common kind of collection in Hibernate applications. This is because the "set" semantics
are most natural in the relational model.

However, in well-designed Hibernate domain models, most collections are in fact one-to-many
associations with i nver se="true". For these associations, the update is handled by the many-
to-one end of the association, and so considerations of collection update performance simply do
not apply.

19.5.3. inverse######HH#HH#bag#list

There is a particular case, however, in which bags, and also lists, are much more performant than
sets. For a collection with i nver se="tr ue", the standard bidirectional one-to-many relationship
idiom, for example, we can add elements to a bag or list without needing to initialize (fetch) the
bag elements. This is because, unlike a set, Col | ecti on. add() or Col | ecti on. addAl | () must
always return true for a bag or Li st . This can make the following common code much faster:

Parent p = (Parent) sess.load(Parent.class, id);

Child ¢ = new Child();

c.setParent(p);

p.getChildren().add(c); //no need to fetch the collection!

277

#1O# HHHHIHIHE

sess.flush();

19.5.4. ####

Deleting collection elements one by one can sometimes be extremely inefficient. Hibernate knows
not to do that in the case of an newly-empty collection (if you called | i st . cl ear (), for example).
In this case, Hibernate will issue a single DELETE.

Suppose you added a single element to a collection of size twenty and then remove two elements.
Hibernate will issue one | NSERT statement and two DELETE statements, unless the collection is
a bag. This is certainly desirable.

HHHHHE L SHHHHHHHHE 2HHHHH R SHHHHHHHHHHHHHHT HHH

o | BH#HHHHHHHIHIH SR
« remove the whole collection in one SQL DELETE and insert all five current elements one by one

Hibernate cannot know that the second option is probably quicker. It would probably be
undesirable for Hibernate to be that intuitive as such behavior might confuse database triggers,
etc.

Fortunately, you can force this behavior (i.e. the second strategy) at any time by discarding (i.e.
dereferencing) the original collection and returning a newly instantiated collection with all the
current elements.

One-shot-delete does not apply to collections mapped i nver se="true".

19.6. #HHHHAHHHHHAHAH

B HiDernated it HHHHHHH AR HHHHHHE Hibernate#
HiH## Sessi onFact or y #H#H##H#HHHE

19.6.1. SessionFactory#######H

Sessi onFact ory HHAH R 2R HHHHHHHY
sessi onFactory. get Stati stics() #H#H#H## #HH# St at | st i cs #HHHHHAHHHH A

Hibernate can also use JMX to publish metrics if you enable the St ati sti csServi ce MBean.
You can enable a single MBean for all your Sessi onFact or y or one per factory. See the following
code for minimalistic configuration examples:

/I MBean service registration for a specific SessionFactory
Hashtable tb = new Hashtable();

tb.put("type", "statistics");

tb.put("sessionFactory”, "myFinancialApp");

278

HHAHH

ObjectName on = new ObjectName("hibernate", tb); // MBean object name

StatisticsService stats = new StatisticsService(); // MBean implementation
stats.setSessionFactory(sessionFactory); // Bind the stats to a SessionFactory
server.registerMBean(stats, on); // Register the Mbean on the server

/ MBean service registration for all SessionFactory's
Hashtable tb = new Hashtable();

tb.put(“type", "statistics");

tb.put("sessionFactory", "all");

ObjectName on = new ObjectName("hibernate", tb); // MBean object name

StatisticsService stats = new StatisticsService(); // MBean implementation
server.registerMBean(stats, on); // Register the MBean on the server

You can activate and deactivate the monitoring for a Sessi onFact ory:
o H#H#HH#H hi bernate. generate_statistics #fal se ####
o HHHH sf.getStatistics().setStatisticsEnabl ed(true) Ht

hi ber nat eSt at sBean. set St ati sti csEnabl ed(true) ###H####

Statistics can be reset programmatically using the cl ear () method. A summary can be sent to
a logger (info level) using the | ogSunmar y() method.

19.6.2. ####H#

Hibernate provides a number of metrics, from basic information to more specialized information
that is only relevant in certain scenarios. All available counters are described in the St ati sti cs
interface API, in three categories:

o HHHHHHHIHE Sessi on HHHHHHHIHIHHIHIT) D B CHAHHHEHHEHHEHHHHHHHHE
» Metrics related to the entities, collections, queries, and caches as a whole (aka global metrics).

o HRRRAHHHHHH AR AR

For example, you can check the cache hit, miss, and put ratio of entities, collections and queries,
and the average time a query needs. Be aware that the number of milliseconds is subject to
approximation in Java. Hibernate is tied to the JVM precision and on some platforms this might
only be accurate to 10 seconds.

Simple getters are used to access the global metrics (i.e. not tied to a particular entity, collection,
cache region, etc.). You can access the metrics of a particular entity, collection or cache region

279

#1O# HHHHIHIHE

through its name, and through its HQL or SQL representation for queries. Please refer to the
Statistics,EntityStatistics,CollectionStatistics,SecondLevel CacheStati stics,and
QueryStati stics API Javadoc for more information. The following code is a simple example:

Statistics stats = HibernateUtil.sessionFactory.getStatistics();

double queryCacheHitCount = stats.getQueryCacheHitCount();
double queryCacheMissCount = stats.getQueryCacheMissCount();
double queryCacheHitRatio =

queryCacheHitCount / (queryCacheHitCount + queryCacheMissCount);

log.info("Query Hit ratio:" + queryCacheHitRatio);

EntityStatistics entityStats =
stats.getEntityStatistics(Cat.class.getName());
long changes =
entityStats.getinsertCount()
+ entityStats.getUpdateCount()
+ entityStats.getDeleteCount();
log.info(Cat.class.getName() + " changed " + changes + "times");

You can work on all entities, collections, queries and region caches, by retrieving the list of names
of entities, collections, queries and region caches using the following methods: get Queri es(),
get EntityNames(), get Col | ecti onRol eNanmes(), and get SecondLevel CacheRegi onNames() .

280

Toolset Guide ##HHHHHHHHH

Roundtrip engineering with Hibernate is possible using a set of Eclipse plugins, commandline
tools, and Ant tasks.

Hibernate Tools currently include plugins for the Eclipse IDE as well as Ant tasks for reverse
engineering of existing databases:

* Mapping Editor: an editor for Hibernate XML mapping files that supports auto-completion and
syntax highlighting. It also supports semantic auto-completion for class names and property/
field names, making it more versatile than a normal XML editor.

» Console: the console is a new view in Eclipse. In addition to a tree overview of your console
configurations, you are also provided with an interactive view of your persistent classes and
their relationships. The console allows you to execute HQL queries against your database and
browse the result directly in Eclipse.

» Development Wizards: several wizards are provided with the Hibernate Eclipse tools. You can
use a wizard to quickly generate Hibernate configuration (cfg.xml) files, or to reverse engineer
an existing database schema into POJO source files and Hibernate mapping files. The reverse
engineering wizard supports customizable templates.

Please refer to the Hibernate Tools package documentation for more information.

However, the Hibernate main package comes bundled with an integrated tool : SchemaExport
aka hbn2ddl .1t can even be used from "“inside" Hibernate.

20.1. #HHHHHHHHH

DDL can be generated from your mapping files by a Hibernate utility. The generated schema
includes referential integrity constraints, primary and foreign keys, for entity and collection tables.
Tables and sequences are also created for mapped identifier generators.

You must specify a SQL Di al ect via the hi ber nat e. di al ect property when using this tool, as
DDL is highly vendor-specific.

First, you must customize your mapping files to improve the generated schema. The next section
covers schema customization.

20.1.1. #HHAHHHHHAH

Many Hibernate mapping elements define optional attributes named | engt h, preci si on and
scal e. You can set the length, precision and scale of a column with this attribute.

<property name="zip" length="5"/>

281

#20# Toolset Guide #iHH#HHH

<property name="balance" precision="12" scale="2"/>

Some tags also accept a not-nul | attribute for generating a NOT NULL constraint on table
columns, and a uni que attribute for generating UNI QUE constraint on table columns.

<many-to-one name="bar" column="barld" not-null="true"/>

<element column="serialNumber" type="long" not-null="true" unique="true"/>

Auni que- key attribute can be used to group columns in a single, unique key constraint. Currently,
the specified value of the uni que- key attribute is not used to name the constraint in the generated
DDL. It is only used to group the columns in the mapping file.

<many-to-one name="org" column="orgld" unique-key="OrgEmployeeld"/>
<property name="employeeld" unique-key="OrgEmployee"/>

An i ndex attribute specifies the name of an index that will be created using the mapped column
or columns. Multiple columns can be grouped into the same index by simply specifying the same
index name.

<property name="lastName" index="CustName"/>
<property name="firstName" index="CustName"/>

Af orei gn- key attribute can be used to override the name of any generated foreign key constraint.

<many-to-one name="bar" column="barld" foreign-key="FKFooBar"/>

HHAHHHHHHHHHE <Ol Um> HHHHHHHHHHHHHHHH

<property name="name" type="my.customtypes.Name"/>
<column name="last" not-null="true" index="bar_idx" length="30"/>
<column name="first" not-null="true" index="bar_idx" length="20"/>
<column name="initial"/>

</property>

282

BRAHHHHHH

The def aul t attribute allows you to specify a default value for a column.You should assign the
same value to the mapped property before saving a new instance of the mapped class.

<property name="credits" type="integer" insert="false">
<column name="credits" default="10"/>
</property>

<version hame="version" type="integer" insert="false">
<column name="version" default="0"/>
</property>

sql - t ype ####H#H#HH#HHIDernate### SQLAHHHIHHHHHHHIHHIHIHHIHHHHHE

<property name="balance" type="float">
<column name="balance" sql-type="decimal(13,3)"/>
</property>

check #HHHARHHHHHHHHHHAHHHHH

<property name="foo" type="integer">
<column name="foo" check="foo > 10"/>
</property>

<class name="Foo0" table="foos" check="bar < 100.0">

<property name="bar" type="float"/>
</class>

The following table summarizes these optional attributes.

20.1.

##

I ength H#it HHHHAH

preci si on #H# ####DECIMAL###H##precision#

scal e ## #HH##DECIMAL#HHH#HHHscale#

not - nul | true| fal se specifies that the column should be non-nullable

283

#20# Toolset Guide #iHH#HHH

#it # #i

uni que true| fal se HHHHH AR

i ndex HHHHHH (HHHHHHH) T

uni que- key HUH R HH BT R

f or ei gn- key HH specifies the name of the foreign key constraint
generated for an association, for a <one-to-
one>, <mmny-t o- one>, <key>, Or <many-t o- many>
mapping element. Note that i nver se="true" sides
will not be considered by SchemaExport .

sgl -type SQLH#H#HH# overrides the default column type (attribute of
<col um> element only)

defaul t SQL# HHBRHH SR

check SQL# HH B SQLIHHIHHEHHIH

<COMTENt > HHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

<class name="Customer" table="CurCust">

<comment>Current customers only</comment>

</class>

<property name="balance">
<column name="bal">
<comment>Balance in USD</comment>

</column>
</property>

This results in a conment
where supported.

20.1.2. #HHH##H#

on table or conment on col um statement in the generated DDL

SchenaExpor t #H#HHHHA#HD DUAHHHHHHHHH D D LHHHHHHHHHHHH

The following table displays the SchemaExport command line options

j ava -cp
mapping_files

hibernate_classpaths org. hi ber nat e. t ool . hbn2ddl . SchemaExport options

284

HHAHH

20.2. schemabxport Command Line Options SchemaExpor t H#HHHHHH##HHAHHE

HHHHHH #it

--qui et do not output the script to stdout
--drop HHHHH AR

--create HHBHH TR

--text do not export to the database

- - out put =ny_schena. ddl D DL##HH I

- - nam ng=eg. MyNam ngSt r at egy select a Nami ngSt r at egy

--confi g=hi bernate. cfg. xm XML HIbernate#HHHHHHHHHEH
-- read database properties from a file
properti es=hi bernate. properties

--fornat B S Q U AHH T H T
--deliniter=x HHBHH R

You can even embed SchemaExport in your application:

Configuration cfg =;
new SchemaExport(cfg).create(false, true);

20.1.3. #H#HH##

Database properties can be specified:

o - Dproperty> #HHHHHHHHHHHHHEH
e hi bernate. properties #####H#
o --properties #HHHHHAHIHHAHEHHHAHE

HHHHHHHHHHHH AR R

20.3. SchemaExport###HHHiiiititt

HHAHHH HH#

hi ber nat e. connecti on. dri ver _cl ass| jdbc#####HHHHE

hi ber nat e. connecti on. ur| jdbc#turl

hi ber nat e. connecti on. user name HHHHH AR
hi ber nat e. connect i on. passwor d HHHHHR

hi ber nat e. di al ect BB

285

#20# Toolset Guide #iHH#HHH

20.1.4. Ant#####

AntHH#H##H#HHH#H## SchemaExpor t #HHHHHHAHHHAH

<target name="schemaexport">
<taskdef name="schemaexport"
classname="org.hibernate.tool.hbm2ddl.SchemaExportTask"
classpathref="class.path"/>

<schemaexport
properties="hibernate.properties"
quiet="no"
text="no"
drop="no"
delimiter=";"
output="schema-export.sql">
<fileset dir="src">

<include name="**/* hbm.xml"/>

<[fileset>

</schemaexport>

</target>

20.1.5. #HHAHIHHHABHIHHH

The SchemaUpdate tool will update an existing schema with "incremental® changes. The
SchemaUpdat e depends upon the JDBC metadata APl and, as such, will not work with all JDBC
drivers.

java -cp hibernate_classpaths org. hi bernate. tool . hbn2ddl . SchemaUpdat e options
mapping_files

20.4. schemaUpdat e #HHHHHHHHHHHH

HHHHH #it

--qui et do not output the script to stdout
--text do not export the script to the database
- - nam ng=eg. MyNami ngSt r at egy select a Nami ngSt r at egy

-- read database properties from a file

properti es=hi bernate. properties

--confi g=hi bernate. cfg. xn specify a. cfg. xm file

You can embed SchenmaUpdat e in your application:

286

HHHHHHHHHHH R AN

Configuration cfg =;
new SchemaUpdate(cfg).execute(false);

20.1.6. #HHHBHHAHHHBHHARHHHAAN B

Ant###### SchemaUpdat e ###HHHHHHHHH

<target name="schemaupdate">
<taskdef name="schemaupdate"
classname="org.hibernate.tool.hbm2ddl.SchemaUpdateTask"
classpathref="class.path"/>

<schemaupdate
properties="hibernate.properties"
quiet="no">
<fileset dir="src">

<include name="*** hbm.xml"/>

<ffileset>

</schemaupdate>

</target>

20.1.7. Schema validation

The SchemaVal i dat or tool will validate that the existing database schema "matches" your
mapping documents. The SchenmaVal i dat or depends heavily upon the JDBC metadata APl and,
as such, will not work with all JDBC drivers. This tool is extremely useful for testing.

java -cp hibernate_classpaths org. hi bernate. t ool . hbn2ddl . SchemaVal i dat or options
mapping_files

20.5. schemaval i dat or HHHHHHHHHHHHHH

HtHH ##
- - nam ng=eg. MyNami ngSt r at egy select a Nani ngSt r at egy

-- read database properties from a file

properties=hi bernate. properties

- -confi g=hi ber nat e. cf g. xni specify a . cfg. xnm file

You can embed SchenaVal i dat or in your application:

Configuration cfg =;

287

#20# Toolset Guide #iHH#HHH

new SchemaValidator(cfg).validate();

20.1.8. #HHH#HHHBHHARHFANHHBHHH

Anti##HH#H# SchemaVal | dat or ###H#H#HE:

<target name="schemavalidate">
<taskdef name="schemavalidator"
classname="org.hibernate.tool.hbm2ddl.SchemaValidatorTask"
classpathref="class.path"/>

<schemavalidator
properties="hibernate.properties">
<fileset dir="src">
<include name="**/* hbm.xml"/>
<[fileset>
</schemavalidator>
</target>

288

HHH[HH

One of the first things that new users want to do with Hibernate is to model a parent/child
type relationship. There are two different approaches to this. The most convenient approach,
especially for new users, is to model both Par ent and Chi | d as entity classes with a <one-t o-
many> association from Parent to Chi | d. The alternative approach is to declare the Child as
a <conposi t e- el enent >. The default semantics of a one-to-many association in Hibernate are
much less close to the usual semantics of a parent/child relationship than those of a composite
element mapping. We will explain how to use a bidirectional one-to-many association with
cascades to model a parent/child relationship efficiently and elegantly.

21.1. HHHHHHAHH A

Hibernate collections are considered to be a logical part of their owning entity and not of the
contained entities. Be aware that this is a critical distinction that has the following consequences:

« When you remove/add an object from/to a collection, the version number of the collection owner
is incremented.

« If an object that was removed from a collection is an instance of a value type (e.g. a composite
element), that object will cease to be persistent and its state will be completely removed from
the database. Likewise, adding a value type instance to the collection will cause its state to be
immediately persistent.

» Conversely, if an entity is removed from a collection (a one-to-many or many-to-many
association), it will not be deleted by default. This behavior is completely consistent; a change
to the internal state of another entity should not cause the associated entity to vanish. Likewise,
adding an entity to a collection does not cause that entity to become persistent, by default.

Adding an entity to a collection, by default, merely creates a link between the two entities.
Removing the entity will remove the link. This is appropriate for all sorts of cases. However, it is
not appropriate in the case of a parent/child relationship. In this case, the life of the child is bound
to the life cycle of the parent.

21.2. HH#H#HH#H

Par ent ## Chi | d ##### <one- t 0- many> #HHHHAHHHA#

<set name="children">
<key column="parent_id"/>
<one-to-many class="Child"/>
</set>

If we were to execute the following code:

289

H21# HitHtH

Parentp = ;

Child ¢ = new Child();
p.getChildren().add(c);
session.save(c);
session.flush();

Hibernate#### S QLiHHHHHH:

o CHHEHHHHHHHHHH NSERT
o pHHCHHHHHHHHHHUPDATE

This is not only inefficient, but also violates any NOT NULL constraint on the parent _i d column.
You can fix the nullability constraint violation by specifying not - nul | ="t rue" in the collection

mapping:

<set name="children">
<key column="parent_id" not-null="true"/>
<one-to-many class="Child"/>

</set>

HHHHHHHHHHHH AR R

The underlying cause of this behavior is that the link (the foreign key parent i d) from p to c is
not considered part of the state of the Chi | d object and is therefore not created in the | NSERT.
The solution is to make the link part of the Chi | d mapping.

<many-to-one name="parent" column="parent_id" not-null="true"/>

You also need to add the par ent property to the Chi | d class.

Now that the Chi | d entity is managing the state of the link, we tell the collection not to update the
link. We use the i nver se attribute to do this:

<set name="children" inverse="true">
<key column="parent_id"/>
<one-to-many class="Child"/>
</set>

The following code would be used to add a new Chi | d:

290

HHHHHHHHHH

Parent p = (Parent) session.load(Parent.class, pid);
Child ¢ = new Child();

c.setParent(p);

p.getChildren().add(c);

session.save(c);

session.flush();

Only one SQL | NSERT would now be issued.

You could also create an addChi | d() method of Par ent .

public void addChild(Child c) {
c.setParent(this);
children.add(c);

The code to add a Chi | d looks like this:

Parent p = (Parent) session.load(Parent.class, pid);
Child ¢ = new Child();

p.addChild(c);

session.save(c);

session.flush();

21.3. #HHHHAHHAHH A

You can address the frustrations of the explicit call to save() by using cascades.

<set name="children" inverse="true" cascade="all">
<key column="parent_id"/>
<one-to-many class="Child"/>

</set>

This simplifies the code above to:

Parent p = (Parent) session.load(Parent.class, pid);
Child ¢ = new Child();
p.addChild(c);

291

H21# HitHtH

session.flush();

Similarly, we do not need to iterate over the children when saving or deleting a Parent. The
following removes p and all its children from the database.

Parent p = (Parent) session.load(Parent.class, pid);
session.delete(p);
session.flush();

However, the following code:

Parent p = (Parent) session.load(Parent.class, pid);
Child ¢ = (Child) p.getChildren().iterator().next();
p.getChildren().remove(c);

c.setParent(null);

session.flush();

will not remove c from the database. In this case, it will only remove the link to p and cause a NOT
NULL constraint violation. You need to explicitly del et e() the Chi | d.

Parent p = (Parent) session.load(Parent.class, pid);
Child ¢ = (Child) p.getChildren().iterator().next();
p.getChildren().remove(c);

session.delete(c);

session.flush();

In our case, a Chi | d cannot exist without its parent. So if we remove a Chi | d from the collection,
we do want it to be deleted. To do this, we must use cascade="al | - del et e- or phan".

<set name="children" inverse="true" cascade="all-delete-orphan">
<key column="parent_id"/>
<one-to-many class="Child"/>

</set>

Even though the collection mapping specifies i nver se="t rue", cascades are still processed by
iterating the collection elements. If you need an object be saved, deleted or updated by cascade,
you must add it to the collection. It is not enough to simply call set Parent ().

292

HH#H#H#H unsaved- val ue

214 ###### unsaved- val ue

Suppose we loaded up a Par ent in one Sessi on, made some changes in a Ul action and wanted
to persist these changes in a new session by calling updat e() . The Par ent will contain a collection
of children and, since the cascading update is enabled, Hibernate needs to know which children
are newly instantiated and which represent existing rows in the database. We will also assume
that both Par ent and Chi | d have generated identifier properties of type Long. Hibernate will use
the identifier and version/timestamp property value to determine which of the children are new.
(See #10.7. #H#####H#####.) In Hibernate3, it is no longer necessary to specify an unsaved- val ue
explicitly.

The following code will update par ent and chi | d and insert newChi | d:

/Iparent and child were both loaded in a previous session
parent.addChild(child);

Child newChild = new Child();
parent.addChild(newChild);

session.update(parent);

session.flush();

This may be suitable for the case of a generated identifier, but what about assigned identifiers
and composite identifiers? This is more difficult, since Hibernate cannot use the identifier property
to distinguish between a newly instantiated object, with an identifier assigned by the user, and
an object loaded in a previous session. In this case, Hibernate will either use the timestamp or
version property, or will actually query the second-level cache or, worst case, the database, to
see if the row exists.

21.5. ##

The sections we have just covered can be a bit confusing. However, in practice, it all works out
nicely. Most Hibernate applications use the parent/child pattern in many places.

We mentioned an alternative in the first paragraph. None of the above issues exist in the case of
<conposi t e- el ement > mappings, which have exactly the semantics of a parent/child relationship.
Unfortunately, there are two big limitations with composite element classes: composite elements
cannot own collections and they should not be the child of any entity other than the unique parent.

293

294

#: Weblog######H#

22.1. #HitH#HH

The persistent classes here represent a weblog and an item posted in a weblog. They are to be
modelled as a standard parent/child relationship, but we will use an ordered bag, instead of a set:

package eg;

import java.util.List;

public class Blog {
private Long _id;
private String _name;
private List _items;

public Long getld() {
return _id;

}

public List getltems() {
return _items;

}

public String getName() {
return _name;

}

public void setld(Long long1) {
_id =long1,;

}

public void setltems(List list) {
_items = list;

}

public void setName(String string) {

_hame = string;

package eg;

import java.text.DateFormat;
import java.util.Calendar;

public class Blogltem {

295

#22# #. Weblog#HiHiHHt

private Long _id;

private Calendar _datetime;
private String _text;

private String _title;

private Blog _blog;

public Blog getBlog() {
return _blog;

}

public Calendar getDatetime() {
return _datetime;

}

public Long getld() {
return _id;

}

public String getText() {
return _text;

}

public String getTitle() {
return _title;

}

public void setBlog(Blog blog) {
_blog = blog;

}

public void setDatetime(Calendar calendar) {
_datetime = calendar;

}

public void setld(Long long1) {
_id = long1;

}

public void setText(String string) {
_text = string;

}

public void setTitle(String string) {
_title = string;

}

22.2. Hibernate##

The XML mappings are now straightforward. For example:

<?xml version="1.0"?>

296

Hibernate####

<IDOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 3.0/EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="eg">

<class
name="Blog"
table="BLOGS">

<id
name="id"
column="BLOG_ID">

<generator class="native"/>

<fid>

<property
name="name"
column="NAME"
not-null="true"
unigue="true"/>

<bag
name="items"
inverse="true"
order-by="DATE_TIME"
cascade="all">

<key column="BLOG_ID"/>
<one-to-many class="Blogltem"/>

</bag>

</class>

</hibernate-mapping>

<?xml version="1.0"?>

<IDOCTYPE hibernate-mapping PUBLIC
"-/[Hibernate/Hibernate Mapping DTD 3.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd">

297

#22# #. Weblog#HiHiHHt

<hibernate-mapping package="eg">

<class
name="Blogltem"
table="BLOG_ITEMS"
dynamic-update="true">

<id
name="id"
column="BLOG_ITEM_ID">

<generator class="native"/>

<fid>

<property
name="title"
column="TITLE"
not-null="true"/>

<property
name="text"
column="TEXT"
not-null="true"/>

<property
name="datetime"
column="DATE_TIME"
not-null="true"/>

<many-to-one
name="blog"
column="BLOG_|D"
not-null="true"/>

</class>

</hibernate-mapping>

298

Hibernate####

22.3. Hibernate#t#

The following class demonstrates some of the kinds of things we can do with these classes using
Hibernate:

package eg;

import java.util. ArrayList;
import java.util.Calendar;
import java.util.lterator;
import java.util.List;

import org.hibernate.HibernateException;

import org.hibernate.Query;

import org.hibernate.Session;

import org.hibernate.SessionFactory;

import org.hibernate.Transaction;

import org.hibernate.cfg.Configuration;

import org.hibernate.tool.hbm2ddl.SchemaExport;

public class BlogMain {
private SessionFactory _sessions;

public void configure() throws HibernateException {
_sessions = new Configuration()
.addClass(Blog.class)
.addClass(Blogltem.class)
.buildSessionFactory();

public void exportTables() throws HibernateException {
Configuration cfg = new Configuration()
.addClass(Blog.class)
.addClass(Blogltem.class);
new SchemaExport(cfg).create(true, true);

public Blog createBlog(String name) throws HibernateException {
Blog blog = new Blog();

blog.setName(name);
blog.setltems(new ArrayList());

299

#22# #. Weblog#HiHiHHt

Session session = _sessions.openSession();
Transaction tx = null;
try {
tx = session.beginTransaction();
session.persist(blog);
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();

}

return blog;

public Blogltem createBlogltem(Blog blog, String title, String text)
throws HibernateException {

Blogltem item = new Blogltem();
item.setTitle(title);

item.setText(text);

item.setBlog(blog);

item.setDatetime(Calendar.getinstance());
blog.getltems().add(item);

Session session = _sessions.openSession();
Transaction tx = null;
try {
tx = session.beginTransaction();
session.update(blog);
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();

}

return item;

300

Hibernate####

public Blogltem createBlogltem(Long blogid, String title, String text)
throws HibernateException {

Blogltem item = new Blogltem();
item.setTitle(title);

item.setText(text);

item.setDatetime(Calendar.getinstance());

Session session = _sessions.openSession();
Transaction tx = null;
try {
tx = session.beginTransaction();
Blog blog = (Blog) session.load(Blog.class, blogid);
item.setBlog(blog);
blog.getltems().add(item);
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();

}

return item;

public void updateBlogltem(Blogltem item, String text)
throws HibernateException {

item.setText(text);

Session session = _sessions.openSession();
Transaction tx = null;
try {
tx = session.beginTransaction();
session.update(item);
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;

301

#22# #. Weblog#HiHiHHt

finally {
session.close();

public void updateBlogltem(Long itemid, String text)
throws HibernateException {

Session session = _sessions.openSession();
Transaction tx = null;
try {
tx = session.beginTransaction();
Blogltem item = (Blogltem) session.load(Blogltem.class, itemid);
item.setText(text);
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();

public List listAllIBlogNamesAndltemCounts(int max)
throws HibernateException {

Session session = _sessions.openSession();
Transaction tx = null;
List result = null;
try {
tx = session.beginTransaction();
Query g = session.createQuery(
"select blog.id, blog.name, count(blogltem) " +
"from Blog as blog " +
"left outer join blog.items as blogltem " +
"group by blog.name, blog.id " +
"order by max(blogltem.datetime)"
)i
g.setMaxResults(max);
result = g.list();
tx.commit();

302

Hibernate####

catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;

}

finally {
session.close();

}

return result;

public Blog getBlogAndAllltems(Long blogid)
throws HibernateException {

Session session = _sessions.openSession();
Transaction tx = null;
Blog blog = null;
try {
tx = session.beginTransaction();
Query g = session.createQuery(
"from Blog as blog " +
"left outer join fetch blog.items " +
"where blog.id = :blogid"
)i
g.setParameter("blogid”, blogid);
blog = (Blog) g.uniqueResult();
tx.commit();
}
catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;
}
finally {
session.close();

}

return blog;

public List listBlogsAndRecentltems() throws HibernateException {

Session session = _sessions.openSession();
Transaction tx = null;
List result = null;

try {
tx = session.beginTransaction();

303

#22# #. Weblog#HiHiHHt

Query g = session.createQuery(
"from Blog as blog " +
"inner join blog.items as blogltem " +
"where blogltem.datetime > :minDate"

);

Calendar cal = Calendar.getinstance();
cal.roll(Calendar. MONTH, false);
g.setCalendar("minDate", cal);

result = g.list();
tx.commit();

}

catch (HibernateException he) {
if (tx!=null) tx.rollback();
throw he;

}

finally {
session.close();

}

return result;

304

HEHHH AR H

This chapters explores some more complex association mappings.

23.1. #H#HH#

The following model of the relationship between Enpl oyer and Enpl oyee uses an entity class
(Enpl oynent) to represent the association. You can do this when there might be more than one
period of employment for the same two parties. Components are used to model monetary values
and employee names.

Here is a possible mapping document:

<hibernate-mapping>

<class name="Employer" table="employers">
<id name="id">
<generator class="sequence">
<param name="sequence">employer_id_seqg</param>
</generator>
</id>
<property nhame="name"/>
</class>

<class name="Employment" table="employment_periods">

<id name="id">
<generator class="sequence">
<param name="sequence">employment_id_seq</param>
</generator>
</id>
<property name="startDate" column="start_date"/>
<property name="endDate" column="end_date"/>

<component name="hourlyRate" class="MonetaryAmount">
<property name="amount">
<column name="hourly_rate" sqgl-type="NUMERIC(12, 2)"/>
</property>
<property name="currency" length="12"/>
</component>

<many-to-one name="employer" column="employer_id" not-null="true"/>
<many-to-one name="employee" column="employee_id" not-null="true"/>

305

H#23H# HHHHHHHIHH

</class>

<class name="Employee" table="employees">
<id name="id">
<generator class="sequence">
<param name="sequence">employee id_seq</param>
</generator>
</id>
<property name="taxfileNumber"/>
<component name="name" class="Name">
<property name="firstName"/>
<property name="initial"/>
<property name="lastName"/>
</component>
</class>

</hibernate-mapping>

Here is the table schema generated by SchenmaExport .

create table employers (
id BIGINT not null,
name VARCHAR(255),
primary key (id)

create table employment_periods (
id BIGINT not null,
hourly_rate NUMERIC(12, 2),
currency VARCHAR(12),
employee_id BIGINT not null,
employer_id BIGINT not null,
end_date TIMESTAMP,
start_date TIMESTAMP,
primary key (id)

create table employees (
id BIGINT not null,
firstName VARCHAR(255),
initial CHAR(1),
lastName VARCHAR(255),

306

Hit 1

taxfileNumber VARCHAR(255),
primary key (id)

alter table employment_periods

add constraint employment_periodsFKO foreign key (employer_id) references employers
alter table employment_periods

add constraint employment_periodsFK1 foreign key (employee_id) references employees
create sequence employee_id_seq
create sequence employment_id_seq
create sequence employer_id_seq

23.2. #itlH#

Consider the following model of the relationships between Work, Author and Person. In
the example, the relationship between Work and Aut hor is represented as a many-to-many
association and the relationship between Aut hor and Person is represented as one-to-one
association. Another possibility would be to have Aut hor extend Per son.

B HHHHHHH AR

<hibernate-mapping>
<class name="Work" table="works" discriminator-value="W">

<id name="id" column="id">
<generator class="native"/>
</id>

<discriminator column="type" type="character"/>

<property name="title"/>
<set name="authors" table="author_work">

<key column name="work_id"/>

<many-to-many class="Author" column name="author_id"/>
</set>

<subclass name="Book" discriminator-value="B">
<property name="text"/>
</subclass>

<subclass name="Song" discriminator-value="S">
<property name="tempo"/>

307

H#23H# HHHHHHHIHH

<property name="genre"/>
</subclass>

</class>
<class name="Author" table="authors">

<id name="id" column="id">
<!-- The Author must have the same identifier as the Person -->
<generator class="assigned"/>

</id>

<property name="alias"/>
<one-to-one name="person" constrained="true"/>

<set name="works" table="author_work" inverse="true">
<key column="author_id"/>
<many-to-many class="Work" column="work_id"/>
</set>

</class>

<class name="Person" table="persons">
<id name="id" column="id">
<generator class="native"/>
</id>
<property name="name"/>
</class>

</hibernate-mapping>

There are four tables in this mapping: wor ks, aut hor s and per sons hold work, author and person
data respectively. aut hor _wor k is an association table linking authors to works. Here is the table
schema, as generated by SchemaExport :

create table works (
id BIGINT not null generated by default as identity,
tempo FLOAT,
genre VARCHAR(255),
text INTEGER,
titte VARCHAR(255),
type CHAR(1) not null,
primary key (id)

308

HH I

create table author_work (
author_id BIGINT not null,
work_id BIGINT not null,
primary key (work_id, author_id)

create table authors (
id BIGINT not null generated by default as identity,
alias VARCHAR(255),
primary key (id)

create table persons (
id BIGINT not null generated by default as identity,
name VARCHAR(255),
primary key (id)

alter table authors

add constraint authorsFKO foreign key (id) references persons

alter table author_work

add constraint author_workFKO foreign key (author_id) references authors

alter table author_work

add constraint author_workFK1 foreign key (work_id) references works

23.3. #tlHHH#

In this section we consider a model of the relationships between Cust omer, Order, Line Item
and Pr oduct . There is a one-to-many association between Cust oner and O der , but how can you
represent Or der / Li nel t em/ Product ? In the example, Li nel t emis mapped as an association
class representing the many-to-many association between Or der and Pr oduct . In Hibernate this

is called a composite element.

The mapping document will look like this:

<hibernate-mapping>

<class name="Customer" table="customers">
<id name="id">
<generator class="native"/>

309

H#23H# HHHHHHHIHH

</id>
<property nhame="name"/>
<set name="orders" inverse="true">
<key column="customer_id"/>
<one-to-many class="Order"/>
</set>
</class>

<class name="Order" table="orders">
<id name="id">
<generator class="native"/>
</id>
<property name="date"/>
<many-to-one name="customer" column="customer_id"/>
<list name="lineltems" table="line_items">
<key column="order_id"/>
<list-index column="line_number"/>
<composite-element class="Lineltem">
<property name="quantity"/>
<many-to-one name="product" column="product_id"/>
</composite-element>
</list>
</class>

<class name="Product" table="products">
<id name="id">
<generator class="native"/>
</id>
<property name="serialNumber"/>
</class>

</hibernate-mapping>

custoners ,orders,line_itens, product s #HHHABHHHAHHHHHAHEHHABHAFHA#HAE] | ne_i tens
HHHHHHHHHHHHHHH AR

create table customers (
id BIGINT not null generated by default as identity,
name VARCHAR(255),
primary key (id)

create table orders (

310

BRAHHHHHH

id BIGINT not null generated by default as identity,
customer_id BIGINT,

date TIMESTAMP,

primary key (id)

create table line_items (
line_number INTEGER not null,
order_id BIGINT not null,
product_id BIGINT,
quantity INTEGER,
primary key (order_id, line_number)

create table products (
id BIGINT not null generated by default as identity,
serialNumber VARCHAR(255),
primary key (id)

alter table orders

add constraint ordersFKO foreign key (customer_id) references customers
alter table line_items

add constraint line_itemsFKO foreign key (product_id) references products
alter table line_items

add constraint line_itemsFK1 foreign key (order_id) references orders

23.4. HHHHHHHAHHIH

These examples are available from the Hibernate test suite. You will find many other useful
example mappings there by searching in the t est folder of the Hibernate distribution.

23.4.1. HHHHHHARHHAHH

<class name="Person">
<id name="name"/>
<one-to-one name="address"
cascade="all">
<formula>name</formula>
<formula>'HOME'</formula>
</one-to-one>
<one-to-one name="mailingAddress
cascade="all">

311

H#23H# HHHHHHHIHH

<formula>name</formula>
<formula>'MAILING'</formula>
</one-to-one>
</class>

<class name="Address" batch-size="2"
check="addressType in (MAILING', ' HOME', 'BUSINESS')">
<composite-id>
<key-many-to-one name="person"
column="personName"/>
<key-property name="type"
column="addressType"/>
</composite-id>
<property name="street" type="text"/>
<property name="state"/>
<property name="zip"/>
</class>

23.4.2. #HH#HH

<class name="Customer">

<id name="customerld"
length="10">
<generator class="assigned"/>
</id>

<property name="name" not-null="true" length="100"/>
<property name="address" not-null="true" length="200"/>

<list name="orders"
inverse="true"
cascade="save-update">
<key column="customerld"/>
<index column="orderNumber"/>
<one-to-many class="Order"/>
</list>

</class>
<class name="Order" table="CustomerOrder" lazy="true">

<synchronize table="Lineltem"/>
<synchronize table="Product"/>

312

HHAHHH

<composite-id name="id"
class="Order$ld">
<key-property name="customerld" length="10"/>
<key-property name="orderNumber"/>
</composite-id>

<property name="orderDate"
type="calendar_date"
not-null="true"/>

<property nhame="total">
<formula>
(select sum(li.quantity*p.price)
from Lineltem li, Product p
where li.productld = p.productid
and li.customerld = customerld
and li.orderNumber = orderNumber)
</formula>
</property>

<many-to-one name="customer"
column="customerld"
insert="false"
update="false"
not-null="true"/>

<bag name="lineltems"
fetch="join"
inverse="true"
cascade="save-update">
<key>
<column name="customerld"/>
<column name="orderNumber"/>
</key>
<one-to-many class="Lineltem"/>
</bag>

</class>

<class name="Lineltem">

<composite-id name="id"
class="Lineltem$ld">

313

H#23H# HHHHHHHIHH

<key-property name="customerld" length="10"/>

<key-property name="orderNumber"/>

<key-property name="productld" length="10"/>
</composite-id>

<property name="quantity"/>

<many-to-one name="order"
insert="false"
update="false"
not-null="true">
<column name="customerld"/>
<column name="orderNumber"/>
</many-to-one>

<many-to-one name="product"
insert="false"
update="false"
not-null="true"
column="productld"/>

</class>

<class name="Product">
<synchronize table="Lineltem"/>

<id name="productld"
length="10">
<generator class="assigned"/>
</id>

<property nhame="description"
not-null="true"
length="200"/>
<property name="price" length="3"/>
<property name="numberAvailable"/>

<property name="numberOrdered">
<formula>
(select sum(li.quantity)
from Lineltem li
where li.productld = productld)
</formula>
</property>

314

HHHHHHH R

</class>

23.4.3. HHHARHHHATHHHA

<class name="User" table=""User™ ">
<composite-id>
<key-property name="name"/>
<key-property name="org"/>
</composite-id>
<set name="groups" table="UserGroup">
<key>
<column name="userName"/>
<column name="org"/>
</key>
<many-to-many class="Group">
<column name="groupName"/>
<formula>org</formula>
</many-to-many>
</set>
</class>

<class name="Group" table=""Group™">
<composite-id>
<key-property name="name"/>
<key-property name="org"/>
</composite-id>
<property name="description"/>

<set name="users" table="UserGroup" inverse="true">

<key>
<column name="groupName"/>
<column name="org"/>
</key>
<many-to-many class="User">
<column name="userName"/>
<formula>org</formula>
</many-to-many>
</set>
</class>

315

H#23H# HHHHHHHIHH

23.4.4. discrimination######

<class name="Person"
discriminator-value="p">

<id name="id"
column="person_id"
unsaved-value="0">
<generator class="native"/>
</id>

<discriminator
type="character">
<formula>
case
when title is not null then 'E'
when salesperson is not null then 'C'
else 'P'
end
</formula>
</discriminator>

<property nhame="name"
not-null="true"
length="80"/>

<property name="sex"
not-null="true"
update="false"/>

<component name="address">
<property name="address"/>
<property name="zip"/>
<property name="country"/>
</component>

<subclass name="Employee"
discriminator-value="E">
<property name="title"
length="20"/>
<property name="salary"/>
<many-to-one name="manager"/>

316

HHHHHHH

</subclass>

<subclass name="Customer"
discriminator-value="C">
<property name="comments"/>
<many-to-one name="salesperson"/>
</subclass>

</class>

23.4.5. #HHH#HHHH

<class name="Person">

<id name="id">
<generator class="hilo"/>
</id>

<property name="name" length="100"/>

<one-to-one name="address"
property-ref="person"
cascade="all"
fetch="join"/>

<set name="accounts"
inverse="true">
<key column="userld"
property-ref="userld"/>
<one-to-many class="Account"/>
</set>

<property name="userld" length="8"/>
</class>
<class name="Address">
<id name="id">
<generator class="hilo"/>

<fid>

<property name="address" length="300"/>

317

H#23H# HHHHHHHIHH

<property name="zip" length="5"/>
<property name="country" length="25"/>
<many-to-one name="person" unique="true" not-null="true"/>

</class>
<class name="Account">
<id name="accountld" length="32">
<generator class="uuid"/>
</id>
<many-to-one name="user"
column="userld"
property-ref="userld"/>

<property name="type" not-null="true"/>

</class>

318

HEHHH A

Write fine-grained classes and map them using <conponent >:
st r eet ####H#, subur b ####, st at e###, post code #HHFHH#HAHHAHH#HE Addr es sHHAHH R HH#H
Hit HHHHHHHHHH

Declare identifier properties on persistent classes:
Hibernate makes identifier properties optional. There are a range of reasons why you should
use them. We recommend that identifiers be 'synthetic', that is, generated with no business
meaning.

Identify natural keys:
HEHHH R <nat ur al - | d> ST
equal s() # hashCode() ##H#H##AH#HH

Place each class mapping in its own file:
Do not use a single monolithic mapping document. Map com eg. Foo in the file conl eg/
Foo. hbm xm . This makes sense, particularly in a team environment.

Load mappings as resources:
HH AR R R R

Consider externalizing query strings:
This is recommended if your queries call non-ANSI-standard SQL functions. Externalizing the
query strings to mapping files will make the application more portable.

HHHH B HH B
As in JDBC, always replace non-constant values by "?". Do not use string manipulation to
bind a non-constant value in a query. You should also consider using named parameters in
queries.

Do not manage your own JDBC connections:
Hibernate allows the application to manage JDBC connections, but his approach should be
considered a last-resort. If you cannot use the built-in connection providers, consider providing
your own implementation of or g. hi ber nat e. connect i on. Connect i onPr ovi der.

Consider using a custom type:
Suppose you have a Java type from a library that needs to be persisted but does not
provide the accessors needed to map it as a component. You should consider implementing
or g. hi bernat e. User Type. This approach frees the application code from implementing
transformations to/from a Hibernate type.

Use hand-coded JDBC in bottlenecks:
In performance-critical areas of the system, some kinds of operations might benefit from direct
JDBC. Do not assume, however, that JDBC is necessarily faster. Please wait until you know
something is a bottleneck. If you need to use direct JDBC, you can open a Hibernate Sessi on

319

H24% HHHHHHH

and usingfile://lusr/share/doc/HTML/en-US/index.html that JDBC connection. This way you
can still use the same transaction strategy and underlying connection provider.

Understand Sessi on flushing:
Sometimes the Session synchronizes its persistent state with the database. Performance
will be affected if this process occurs too often. You can sometimes minimize unnecessary
flushing by disabling automatic flushing, or even by changing the order of queries and other
operations within a particular transaction.

In a three tiered architecture, consider using detached objects:
When using a servlet/session bean architecture, you can pass persistent objects loaded in
the session bean to and from the servlet/JSP layer. Use a new session to service each
request. Use Sessi on. mer ge() or Sessi on. saveOr Updat e() to synchronize objects with the
database.

In a two tiered architecture, consider using long persistence contexts:

Database Transactions have to be as short as possible for best scalability. However, it is
often necessary to implement long running application transactions, a single unit-of-work from
the point of view of a user. An application transaction might span several client request/
response cycles. Itis common to use detached objects to implement application transactions.
An appropriate alternative in a two tiered architecture, is to maintain a single open persistence
contact session for the whole life cycle of the application transaction. Then simply disconnect
from the JDBC connection at the end of each request and reconnect at the beginning of
the subsequent request. Never share a single session across more than one application
transaction or you will be working with stale data.

Do not treat exceptions as recoverable:
This is more of a necessary practice than a "best" practice. When an exception occurs,
roll back the Transacti on and close the Sessi on. If you do not do this, Hibernate cannot
guarantee that in-memory state accurately represents the persistent state. For example, do
not use Sessi on. | oad() to determine if an instance with the given identifier exists on the
database; use Sessi on. get () or a query instead.

Prefer lazy fetching for associations:
Use eager fetching sparingly. Use proxies and lazy collections for most associations to classes
that are not likely to be completely held in the second-level cache. For associations to cached
classes, where there is an a extremely high probability of a cache hit, explicitly disable eager
fetching using | azy="f al se". When join fetching is appropriate to a particular use case, use
aquerywithaleft join fetch.

Use the open session in view pattern, or a disciplined assembly phase to avoid problems with
unfetched data:
Hibernate frees the developer from writing tedious Data Transfer Objects (DTO). In a
traditional EJB architecture, DTOs serve dual purposes: first, they work around the problem
that entity beans are not serializable; second, they implicitly define an assembly phase where
all data to be used by the view is fetched and marshalled into the DTOs before returning control
to the presentation tier. Hibernate eliminates the first purpose. Unless you are prepared to

320

hold the persistence context (the session) open across the view rendering process, you will
still need an assembly phase. Think of your business methods as having a strict contract
with the presentation tier about what data is available in the detached objects. This is not a
limitation of Hibernate. It is a fundamental requirement of safe transactional data access.

Consider abstracting your business logic from Hibernate:
Hide Hibernate data-access code behind an interface. Combine the DAO and Thread Local
Session patterns. You can even have some classes persisted by handcoded JDBC associated
to Hibernate via a User Type. This advice is, however, intended for "sufficiently large"
applications. It is not appropriate for an application with five tables.

Do not use exotic association mappings:
Practical test cases for real many-to-many associations are rare. Most of the time you need
additional information stored in the "link table". In this case, it is much better to use two one-
to-many associations to an intermediate link class. In fact, most associations are one-to-
many and many-to-one. For this reason, you should proceed cautiously when using any other
association style.

Prefer bidirectional associations:
B T

321

322

Database Portability Considerations

25.1. Portability Basics

One of the selling points of Hibernate (and really Object/Relational Mapping as a whole) is the
notion of database portability. This could mean an internal IT user migrating from one database
vendor to another, or it could mean a framework or deployable application consuming Hibernate to
simultaneously target multiple database products by their users. Regardless of the exact scenario,
the basic idea is that you want Hibernate to help you run against any number of databases without
changes to your code, and ideally without any changes to the mapping metadata.

25.2. Dialect

The first line of portability for Hibernate is the dialect, which is a specialization of the
org. hi bernate. di al ect. Di al ect contract. A dialect encapsulates all the differences in how
Hibernate must communicate with a particular database to accomplish some task like getting a
sequence value or structuring a SELECT query. Hibernate bundles a wide range of dialects for
many of the most popular databases. If you find that your particular database is not among them,
it is not terribly difficult to write your own.

25.3. Dialect resolution

Originally, Hibernate would always require that users specify which dialect to use. In the case of
users looking to simultaneously target multiple databases with their build that was problematic.
Generally this required their users to configure the Hibernate dialect or defining their own method
of setting that value.

Starting with version 3.2, Hibernate introduced the notion of automatically detecting the dialect to
use based on the j ava. sql . Dat abaseMet aDat a obtained from a j ava. sql . Connect i on to that
database. This was much better, expect that this resolution was limited to databases Hibernate
know about ahead of time and was in no way configurable or overrideable.

Starting with version 3.3, Hibernate has a fare more powerful way to automatically determine
which dialect to should be used by relying on a series of delegates which implement the
or g. hi bernate. di al ect. resol ver. Di al ect Resol ver which defines only a single method:

public Dialect resolveDialect(DatabaseMetaData metaData) throws JDBCConnectionException

. The basic contract here is that if the resolver 'understands' the given database metadata then
it returns the corresponding Dialect; if not it returns null and the process continues to the next
resolver. The signature also identifies or g. hi ber nat e. except i on. JDBCConnect i onExcept i on
as possibly being thrown. A JDBCConnectionException here is interpreted to imply a "non
transient" (aka non-recoverable) connection problem and is used to indicate an immediate stop to
resolution attempts. All other exceptions result in a warning and continuing on to the next resolver.

323

#25# Database Portability Con...

The cool part about these resolvers is that users can also register their own custom resolvers
which will be processed ahead of the built-in Hibernate ones. This might be useful in a number
of different situations: it allows easy integration for auto-detection of dialects beyond those
shipped with Hlbernate itself; it allows you to specify to use a custom dialect when a particular
database is recognized; etc. To register one or more resolvers, simply specify them (seperated
by commas, tabs or spaces) using the 'hibernate.dialect_resolvers' configuration setting (see the
DI ALECT_RESOLVERS constant on or g. hi ber nat e. cf g. Envi r onnent).

25.4. ldentifier generation

When considering portability between databases, another important decision is selecting the
identifier generation stratagy you want to use. Originally Hibernate provided the native generator
for this purpose, which was intended to select between a sequence, identity, or table strategy
depending on the capability of the underlying database. However, an insidious implication of this
approach comes about when targtetting some databases which support identity generation and
some which do not. identity generation relies on the SQL definition of an IDENTITY (or auto-
increment) column to manage the identifier value; it is what is known as a post-insert generation
strategy becauase the insert must actually happen before we can know the identifier value.
Because Hibernate relies on this identifier value to uniquely reference entities within a persistence
context it must then issue the insert immediately when the users requests the entitiy be associated
with the session (like via save() e.g.) regardless of current transactional semantics.

@ .
Hibernate was changed slightly once the implication of this was better understood
so that the insert is delayed in cases where that is feasible.

The underlying issue is that the actual semanctics of the application itself changes in these cases.

Starting with version 3.2.3, Hibernate comes with a set of enhanced [http://in.relation.to/2082.lace]
identifier generators targetting portability in a much different way.

@ "

There are specifically 2 bundled enhancedgenerators:

e org. hi bernate.id. enhanced. SequenceSt yl eGener at or

* org. hi bernate.id. enhanced. Tabl eGener at or

The idea behind these generators is to port the actual semantics of
the identifer value generation to the different databases. For example, the
or g. hi bernate. i d. enhanced. SequenceSt yl eGener at or mimics the behavior of a sequence on
databases which do not support sequences by using a table.

324

http://in.relation.to/2082.lace
http://in.relation.to/2082.lace

Database functions

25.5. Database functions

Hit

This is an area in Hibernate in need of improvement. In terms of portability

concerns, this function handling currently works pretty well from HQL; however, it
is quite lacking in all other aspects.

SQL functions can be referenced in many ways by users. However, not all databases support the
same set of functions. Hibernate, provides a means of mapping a logical function name to a a
delegate which knows how to render that particular function, perhaps even using a totally different
physical function call.

HHHH

Technically this function registration is handled through the
or g. hi bernate. di al ect. functi on. SQLFuncti onRegi stry class which s
intended to allow users to provide custom function definitions without having to

provide a custom dialect. This specific behavior is not fully completed as of yet.

It is sort of implemented such that users can programatically register functions with
the or g. hi ber nat e. cf g. Confi gur ati on and those functions will be recognized
for HQL.

25.6. Type mappings

This section scheduled for completion at a later date...

325

326

References

[POEAA] Patterns of Enterprise Application Architecture. 0-321-12742-0. # Fowler Martin [FAMILY
Given]. #### © 2003 Pearson Education, Inc.. Addison-Wesley Publishing Company.

[JPwH] Java Persistence with Hibernate. Second Edition of Hibernate in Action. 1-932394-88-5.
http://www.manning.com/bauer2 . # Bauer Christian [FAMILY Given] # King Gavin
[FAMILY Given]. #### © 2007 Manning Publications Co.. Manning Publications Co..

327

http://www.manning.com/bauer2

328

	HIBERNATE - Relational Persistence for Idiomatic Java
	目次
	前書き
	1. Feedback

	第1章 Tutorial
	1.1. パート1 - 初めてのHibernateアプリケーション
	1.1.1. Setup
	1.1.2. 最初のクラス
	1.1.3. マッピングファイル
	1.1.4. Hibernateの設定
	1.1.5. Building with Maven
	1.1.6. スタートアップとヘルパ
	1.1.7. オブジェクトのロードと格納

	1.2. パート2 - 関連のマッピング
	1.2.1. Personクラスのマッピング
	1.2.2. 単方向Setベース関連
	1.2.3. 関連を働かせる
	1.2.4. 値のコレクション
	1.2.5. 双方向関連
	1.2.6. 双方向リンクの動作

	1.3. パート3 - EventManager Webアプリケーション
	1.3.1. 基本的なServletの記述
	1.3.2. 処理と描画
	1.3.3. デプロイとテスト

	1.4. 要約

	第2章 アーキテクチャ
	2.1. 概観
	2.2. インスタンスの状態
	2.3. JMXとの統合
	2.4. JCA サポート
	2.5. Contextual sessions

	第3章 設定
	3.1. プログラム上の設定
	3.2. SessionFactoryを取得する
	3.3. JDBCコネクション
	3.4. オプション設定プロパティ
	3.4.1. SQL 方言（Dialect）
	3.4.2. 外部結合フェッチ
	3.4.3. バイナリストリーム
	3.4.4. 2次キャッシュとクエリーキャッシュ
	3.4.5. クエリー言語の置き換え
	3.4.6. Hibernate 統計

	3.5. ロギング
	3.6. NamingStrategy の実装
	3.7. XML設定ファイル
	3.8. J2EEアプリケーションサーバとの統合
	3.8.1. トランザクション戦略設定
	3.8.2. SessionFactory のJNDIへの登録
	3.8.3. JTAによる現在のセッションコンテキストマネージメント
	3.8.4. JMXデプロイメント

	第4章 永続クラス
	4.1. 単純なPOJOの例
	4.1.1. 引数のないコンストラクタを実装する
	4.1.2. 識別子プロパティを用意する（オプション）
	4.1.3. finalクラスにしない（オプション）
	4.1.4. 永続フィールドに対するアクセサとミューテータを定義する（オプション）

	4.2. 継承の実装
	4.3. equals() と hashCode() の実装
	4.4. 動的モデル
	4.5. Tuplizer
	4.6. EntityNameResolvers

	第5章 基本的なO/Rマッピング
	5.1. マッピング定義
	5.1.1. Doctype
	5.1.1.1. エンティティ・リゾルバ

	5.1.2. Hibernate-mapping
	5.1.3. Class
	5.1.4. id
	5.1.4.1. ジェネレータ
	5.1.4.2. Hi/lo アルゴリズム
	5.1.4.3. UUID アルゴリズム
	5.1.4.4. 識別子カラムとシーケンス
	5.1.4.5. 識別子の割り当て
	5.1.4.6. トリガにより割り当てられた主キー

	5.1.5. Enhanced identifier generators
	5.1.6. Identifier generator optimization
	5.1.7. composite-id
	5.1.8. Discriminator
	5.1.9. Version (optional)
	5.1.10. Timestamp (optional)
	5.1.11. Property
	5.1.12. Many-to-one
	5.1.13. One-to-one
	5.1.14. Natural-id
	5.1.15. Component and dynamic-component
	5.1.16. Properties
	5.1.17. Subclass
	5.1.18. Joined-subclass
	5.1.19. Union-subclass
	5.1.20. Join
	5.1.21. Key
	5.1.22. Column and formula elements
	5.1.23. Import
	5.1.24. Any

	5.2. Hibernate types
	5.2.1. エンティティと値
	5.2.2. 基本的な型
	5.2.3. カスタム型

	5.3. １つのクラスに１つ以上のマッピング
	5.4. バッククォートで囲んだ SQL 識別子
	5.5. メタデータの代替手段
	5.5.1. XDoclet マークアップの使用
	5.5.2. JDK 5.0 アノテーションの使用

	5.6. Generated properties
	5.7. Auxiliary database objects

	第6章 Collection mapping
	6.1. コレクションの永続化
	6.2. コレクションのマッピング
	6.2.1. コレクションの外部キー
	6.2.2. コレクションの要素
	6.2.3. インデックス付きのコレクション
	6.2.4. 値のコレクションと多対多関連
	6.2.5. 一対多関連

	6.3. 高度なコレクション･マッピング
	6.3.1. ソートされたコレクション
	6.3.2. 双方向関連
	6.3.3. インデックス付きコレクションと双方向関連
	6.3.4. 3項関連
	6.3.5. <idbag>の使用

	6.4. コレクションの例

	第7章 関連マッピング
	7.1. イントロダクション
	7.2. 単方向関連
	7.2.1. Many-to-one
	7.2.2. One-to-one
	7.2.3. One-to-many

	7.3. 結合テーブルを使った単方向関連
	7.3.1. One-to-many
	7.3.2. Many-to-one
	7.3.3. One-to-one
	7.3.4. Many-to-many

	7.4. 双方向関連
	7.4.1. one-to-many / many-to-one
	7.4.2. One-to-one

	7.5. 結合テーブルを使った双方向関連
	7.5.1. one-to-many / many-to-one
	7.5.2. 一対一
	7.5.3. Many-to-many

	7.6. より複雑な関連マッピング

	第8章 コンポーネントのマッピング
	8.1. 依存オブジェクト
	8.2. 従属するオブジェクトのコレクション
	8.3. Mapのインデックスとしてのコンポーネント
	8.4. 複合識別子としてのコンポーネント
	8.5. 動的コンポーネント

	第9章 Inheritance mapping
	9.1. The three strategies
	9.1.1. クラス階層ごとのテーブル（table-per-class-hierarchy）
	9.1.2. サブクラスごとのテーブル（table-per-subclass）
	9.1.3. Table per subclass: using a discriminator
	9.1.4. table-per-subclass と table-per-class-hierarchy の混合
	9.1.5. 具象クラスごとのテーブル（table-per-concrete-class）
	9.1.6. Table per concrete class using implicit polymorphism
	9.1.7. 他の継承マッピングと暗黙的ポリモーフィズムの組み合わせ

	9.2. 制限

	第10章 オブジェクトを扱う
	10.1. Hibernateにおけるオブジェクトの状態
	10.2. オブジェクトを永続状態にする
	10.3. オブジェクトのロード
	10.4. クエリ
	10.4.1. クエリの実行
	10.4.1.1. 結果をイテレートする
	10.4.1.2. オブジェクトの組（tuple）を返すクエリ
	10.4.1.3. スカラーの結果
	10.4.1.4. パラメータのバインド
	10.4.1.5. ページ分け
	10.4.1.6. スクロール可能なイテレーション
	10.4.1.7. 名前付きクエリの外出し

	10.4.2. コレクションのフィルタリング
	10.4.3. クライテリアのクエリ
	10.4.4. ネイティブSQLのクエリ

	10.5. 永続オブジェクトの修正
	10.6. 分離オブジェクトの修正
	10.7. 自動的な状態検出
	10.8. 永続オブジェクトの削除
	10.9. 異なる二つのデータストア間でのオブジェクトのレプリケーション
	10.10. セッションのフラッシュ
	10.11. 連鎖的な永続化
	10.12. メタデータの使用

	第11章 Transactions and Concurrency
	11.1. sessionスコープとtransactionスコープ
	11.1.1. 作業単位（Unit of work）
	11.1.2. 長い対話
	11.1.3. オブジェクト識別子を考える
	11.1.4. 一般的な問題

	11.2. データベーストランザクション境界
	11.2.1. 管理されていない環境
	11.2.2. JTAを使用する
	11.2.3. 例外ハンドリング
	11.2.4. トランザクションのタイムアウト

	11.3. 楽観的同時実行制御
	11.3.1. アプリケーションによるバージョンチェック
	11.3.2. 拡張セッションと自動バージョニング
	11.3.3. デタッチされたオブジェクトと自動バージョニング
	11.3.4. 自動バージョニングのカスタマイズ

	11.4. Pessimistic locking
	11.5. Connection release modes

	第12章 インターセプタとイベント
	12.1. インターセプタ
	12.2. イベントシステム
	12.3. Hibernateの宣言的なセキュリティ

	第13章 ã��ã��ã��å�¦ç��
	13.1. ã��ã��ã��æ�¿å�¥
	13.2. ã��ã��ã��æ�´æ�°
	13.3. StatelessSessionã�¤ã�³ã�¿ã�¼ã��ã�§ã�¤ã�¹
	13.4. DMLã�¹ã�¿ã�¤ã�«ã�®æ��ä½�

	第14章 HQL: The Hibernate Query Language
	14.1. 大文字と小文字の区別
	14.2. from節
	14.3. 関連と結合
	14.4. 結合構文の形式
	14.5. Referring to identifier property
	14.6. Select節
	14.7. 集約関数
	14.8. ポリモーフィックなクエリ
	14.9. where節
	14.10. Expressions 式
	14.11. order by節
	14.12. group by節
	14.13. 副問い合わせ
	14.14. HQLの例
	14.15. 大量のUPDATEとDELETE
	14.16. Tips & Tricks
	14.17. translator-credits
	14.18. Row value constructor syntax

	第15章 Criteriaクエリ
	15.1. Criteria インスタンスの作成
	15.2. リザルトセットの絞込み
	15.3. 結果の整列
	15.4. 関連
	15.5. 関連の動的フェッチ
	15.6. クエリの例
	15.7. 射影、集約、グループ化
	15.8. クエリおよびサブクエリの分離
	15.9. 自然識別子によるクエリ

	第16章 ネイティブSQL
	16.1. SQLQuery の使用
	16.1.1. スカラーのクエリ
	16.1.2. エンティティのクエリ
	16.1.3. 関連とコレクションの操作
	16.1.4. 複数エンティティの取得
	16.1.4.1. 別名とプロパティのリファレンス

	16.1.5. 管理されていないエンティティの取得
	16.1.6. 継承の制御
	16.1.7. パラメータ

	16.2. 名前付きSQLクエリ
	16.2.1. 列と列の別名を明示的に指定するために return-property を使う
	16.2.2. 問い合わせするためにストアドプロシージャを使う
	16.2.2.1. ストアドプロシージャを使う上でのルールと制限

	16.3. 作成、更新、削除のためのカスタムSQL
	16.4. ロードのためのカスタムSQL

	第17章 データのフィルタリング
	17.1. Hibernateのフィルタ

	第18章 XMLマッピング
	18.1. XMLデータでの作業
	18.1.1. XMLとクラスのマッピングを同時に指定する
	18.1.2. XMLマッピングだけを指定する

	18.2. XMLマッピングのメタデータ
	18.3. XMLデータを扱う

	第19章 パフォーマンスの改善
	19.1. フェッチ戦略
	19.1.1. 遅延関連の働き
	19.1.2. フェッチ戦略のチューニング
	19.1.3. 単一端関連プロキシ
	19.1.4. コレクションとプロキシの初期化
	19.1.5. バッチフェッチの使用
	19.1.6. サブセレクトフェッチの使用
	19.1.7. 遅延プロパティフェッチの使用

	19.2. 第2レベルキャッシュ
	19.2.1. キャッシュのマッピング
	19.2.2. read only戦略
	19.2.3. read/write戦略
	19.2.4. 厳密ではないread/write戦略
	19.2.5. transactional戦略
	19.2.6. Cache-provider/concurrency-strategy compatibility

	19.3. キャッシュの管理
	19.4. クエリキャッシュ
	19.5. コレクションのパフォーマンスの理解
	19.5.1. 分類
	19.5.2. 更新にもっとも効率的なコレクション list、map、idbag、set
	19.5.3. inverseコレクションにもっとも最適なbagとlist
	19.5.4. 一括削除

	19.6. パフォーマンスのモニタリング
	19.6.1. SessionFactoryのモニタリング
	19.6.2. メトリクス

	第20章 Toolset Guide ツールセットガイド
	20.1. スキーマの自動生成
	20.1.1. スキーマのカスタマイズ
	20.1.2. ツールの実行
	20.1.3. プロパティ
	20.1.4. Antを使用する
	20.1.5. インクリメンタルなスキーマ更新
	20.1.6. インクリメンタルなスキーマ更新に対するAntの使用
	20.1.7. Schema validation
	20.1.8. スキーマのバリデーションにAntを使用します

	第21章 例：親/子供
	21.1. コレクションに関する注意
	21.2. 双方向一対多
	21.3. ライフサイクルのカスケード
	21.4. カスケードと unsaved-value
	21.5. 結論

	第22章 例: Weblogアプリケーション
	22.1. 永続クラス
	22.2. Hibernateのマッピング
	22.3. Hibernateのコード

	第23章 例：いろいろなマッピング
	23.1. 雇用者/従業員
	23.2. 作者/作品
	23.3. 顧客/注文/製品
	23.4. 種々雑多なマッピング例
	23.4.1. 「型付けされた」一対一関連
	23.4.2. 複合キーの例
	23.4.3. 複合キー属性を共有する多対多
	23.4.4. discriminationに基づく内容
	23.4.5. 代替キーの関連

	第24章 ベストプラクティス
	第25章 Database Portability Considerations
	25.1. Portability Basics
	25.2. Dialect
	25.3. Dialect resolution
	25.4. Identifier generation
	25.5. Database functions
	25.6. Type mappings

	References

