Hibernate.orgCommunity Documentation

Chapter 26. Database Portability Considerations

26.1. Portability Basics
26.2. Dialect
26.3. Dialect resolution
26.4. Identifier generation
26.5. Database functions
26.6. Type mappings

One of the selling points of Hibernate (and really Object/Relational Mapping as a whole) is the notion of database portability. This could mean an internal IT user migrating from one database vendor to another, or it could mean a framework or deployable application consuming Hibernate to simultaneously target multiple database products by their users. Regardless of the exact scenario, the basic idea is that you want Hibernate to help you run against any number of databases without changes to your code, and ideally without any changes to the mapping metadata.

The first line of portability for Hibernate is the dialect, which is a specialization of the org.hibernate.dialect.Dialect contract. A dialect encapsulates all the differences in how Hibernate must communicate with a particular database to accomplish some task like getting a sequence value or structuring a SELECT query. Hibernate bundles a wide range of dialects for many of the most popular databases. If you find that your particular database is not among them, it is not terribly difficult to write your own.

Originally, Hibernate would always require that users specify which dialect to use. In the case of users looking to simultaneously target multiple databases with their build that was problematic. Generally this required their users to configure the Hibernate dialect or defining their own method of setting that value.

Starting with version 3.2, Hibernate introduced the notion of automatically detecting the dialect to use based on the java.sql.DatabaseMetaData obtained from a java.sql.Connection to that database. This was much better, expect that this resolution was limited to databases Hibernate know about ahead of time and was in no way configurable or overrideable.

Starting with version 3.3, Hibernate has a fare more powerful way to automatically determine which dialect to should be used by relying on a series of delegates which implement the org.hibernate.dialect.resolver.DialectResolver which defines only a single method:

<!-- <br/> --><span class="java_keyword">public</span><!-- <br/> --><span class="java_plain">&nbsp;</span><!-- <br/> --><span class="java_type">Dialect</span><!-- <br/> --><span class="java_plain">&nbsp;resolveDialect</span><!-- <br/> --><span class="java_separator">(</span><!-- <br/> --><span class="java_type">DatabaseMetaData</span><!-- <br/> --><span class="java_plain">&nbsp;metaData</span><!-- <br/> --><span class="java_separator">)</span><!-- <br/> --><span class="java_plain">&nbsp;</span><!-- <br/> --><span class="java_keyword">throws</span><!-- <br/> --><span class="java_plain">&nbsp;</span><!-- <br/> --><span class="java_type">JDBCConnectionException</span>

. The basic contract here is that if the resolver 'understands' the given database metadata then it returns the corresponding Dialect; if not it returns null and the process continues to the next resolver. The signature also identifies org.hibernate.exception.JDBCConnectionException as possibly being thrown. A JDBCConnectionException here is interpreted to imply a "non transient" (aka non-recoverable) connection problem and is used to indicate an immediate stop to resolution attempts. All other exceptions result in a warning and continuing on to the next resolver.

The cool part about these resolvers is that users can also register their own custom resolvers which will be processed ahead of the built-in Hibernate ones. This might be useful in a number of different situations: it allows easy integration for auto-detection of dialects beyond those shipped with HIbernate itself; it allows you to specify to use a custom dialect when a particular database is recognized; etc. To register one or more resolvers, simply specify them (seperated by commas, tabs or spaces) using the 'hibernate.dialect_resolvers' configuration setting (see the DIALECT_RESOLVERS constant on org.hibernate.cfg.Environment).

When considering portability between databases, another important decision is selecting the identifier generation stratagy you want to use. Originally Hibernate provided the native generator for this purpose, which was intended to select between a sequence, identity, or table strategy depending on the capability of the underlying database. However, an insidious implication of this approach comes about when targtetting some databases which support identity generation and some which do not. identity generation relies on the SQL definition of an IDENTITY (or auto-increment) column to manage the identifier value; it is what is known as a post-insert generation strategy becauase the insert must actually happen before we can know the identifier value. Because Hibernate relies on this identifier value to uniquely reference entities within a persistence context it must then issue the insert immediately when the users requests the entitiy be associated with the session (like via save() e.g.) regardless of current transactional semantics.

The underlying issue is that the actual semanctics of the application itself changes in these cases.

Starting with version 3.2.3, Hibernate comes with a set of enhanced identifier generators targetting portability in a much different way.


There are specifically 2 bundled enhancedgenerators:

  • org.hibernate.id.enhanced.SequenceStyleGenerator

  • org.hibernate.id.enhanced.TableGenerator

The idea behind these generators is to port the actual semantics of the identifer value generation to the different databases. For example, the org.hibernate.id.enhanced.SequenceStyleGenerator mimics the behavior of a sequence on databases which do not support sequences by using a table.

SQL functions can be referenced in many ways by users. However, not all databases support the same set of functions. Hibernate, provides a means of mapping a logical function name to a delegate which knows how to render that particular function, perhaps even using a totally different physical function call.

This section scheduled for completion at a later date...