Hibernate.orgCommunity Documentation

HIBERNATE - Persistencia relacional para Java idiomático

Documentación de referencia de Hibernate

3.6.10.Final

Advertencia legal

February 8, 2012


Prefacio
1. Tutorial
1.1. Parte 1 - La primera aplicación Hibernate
1.1.1. Configuración
1.1.2. La primera clase
1.1.3. El archivo de mapeo
1.1.4. Configuración de Hibernate
1.1.5. Construcción con Maven
1.1.6. Inicio y ayudantes
1.1.7. Carga y almacenamiento de objetos
1.2. Part 2 - Mapeo de asociaciones
1.2.1. Mapeo de la clase Person
1.2.2. Una asociación unidireccional basada en Set
1.2.3. Trabajo de la asociación
1.2.4. Colección de valores
1.2.5. Asociaciones bidireccionales
1.2.6. Trabajo con enlaces bidireccionales
1.3. Part 3 - La aplicación web EventManager
1.3.1. Escritura de un servlet básico
1.3.2. Procesamiento y entrega
1.3.3. Despliegue y prueba
1.4. Resumen
2. Arquitectura
2.1. Sinopsis
2.1.1. Minimal architecture
2.1.2. Comprehensive architecture
2.1.3. Basic APIs
2.2. Integración JMX
2.3. Sesiones contextuales
3. Configuración
3.1. Configuración programática
3.2. Obtención de una SessionFactory
3.3. Conexiones JDBC
3.4. Parámetros de configuración opcionales
3.4.1. Dialectos de SQL
3.4.2. Recuperación por Unión Externa - Outer Join Fetching
3.4.3. Flujos Binarios
3.4.4. Caché de segundo nivel y de lectura
3.4.5. Sustitución de Lenguaje de Consulta
3.4.6. Estadísticas de Hibernate
3.5. Registros de mensajes (Logging)
3.6. Implementación de una NamingStrategy
3.7. Implementing a PersisterClassProvider
3.8. Archivo de configuración XML
3.9. Java EE Application Server integration
3.9.1. Configuración de la estrategia de transacción
3.9.2. SessionFactory enlazado a JNDI
3.9.3. Administración de contexto de Sesión Actual con JTA
3.9.4. Despliegue JMX
4. Clases persistentes
4.1. Ejemplo simple de POJO
4.1.1. Implemente un constructor sin argumentos
4.1.2. Provide an identifier property
4.1.3. Prefer non-final classes (semi-optional)
4.1.4. Declare métodos de acceso y de modificación para los campos persistentes (opcional)
4.2. Implementación de herencia
4.3. Implementando equals() y hashCode()
4.4. Modelos dinámicos
4.5. Tuplizers
4.6. EntityNameResolvers
5. Mapeo O/R Básico
5.1. Declaración de mapeo
5.1.1. Entity
5.1.2. Identifiers
5.1.3. Optimistic locking properties (optional)
5.1.4. Propiedad
5.1.5. Embedded objects (aka components)
5.1.6. Inheritance strategy
5.1.7. Mapping one to one and one to many associations
5.1.8. Natural-id
5.1.9. Any
5.1.10. Propiedades
5.1.11. Some hbm.xml specificities
5.2. Tipos de Hibernate
5.2.1. Entidades y Valores
5.2.2. Tipos de valores básicos
5.2.3. Tipos de valor personalizados
5.3. Mapeo de una clase más de una vez
5.4. Identificadores SQL en comillas
5.5. Propiedades generadas
5.6. Column transformers: read and write expressions
5.7. Objetos de bases de datos auxiliares
6. Types
6.1. Value types
6.1.1. Basic value types
6.1.2. Composite types
6.1.3. Collection types
6.2. Entity types
6.3. Significance of type categories
6.4. Custom types
6.4.1. Custom types using org.hibernate.type.Type
6.4.2. Custom types using org.hibernate.usertype.UserType
6.4.3. Custom types using org.hibernate.usertype.CompositeUserType
6.5. Type registry
7. Mapeos de colección
7.1. Colecciones persistentes
7.2. How to map collections
7.2.1. Claves foráneas de colección
7.2.2. Colecciones indexadas
7.2.3. Collections of basic types and embeddable objects
7.3. Mapeos de colección avanzados
7.3.1. Colecciones ordenadas
7.3.2. Asociaciones bidireccionales
7.3.3. Asociaciones bidireccionales con colecciones indexadas
7.3.4. Asociaciones ternarias
7.3.5. Using an <idbag>
7.4. Ejemplos de colección
8. Mapeos de asociación
8.1. Introducción
8.2. Asociaciones Unidireccionales
8.2.1. Many-to-one
8.2.2. Uno-a-uno
8.2.3. Uno-a-muchos
8.3. Asociaciones unidireccionales con tablas de unión
8.3.1. Uno-a-muchos
8.3.2. Many-to-one
8.3.3. Uno-a-uno
8.3.4. Muchos-a-muchos
8.4. Asociaciones bidireccionales
8.4.1. uno-a-muchos / muchos-a-uno
8.4.2. Uno-a-uno
8.5. Asociaciones bidireccionales con tablas de unión
8.5.1. uno-a-muchos / muchos-a-uno
8.5.2. uno a uno
8.5.3. Muchos-a-muchos
8.6. Mapeos de asociación más complejos
9. Mapeo de componentes
9.1. Objetos dependientes
9.2. Colecciones de objetos dependientes
9.3. Componentes como índices de Mapeo
9.4. Componentes como identificadores compuestos
9.5. Componentes dinámicos
10. Mapeo de herencias
10.1. Las tres estrategias
10.1.1. Tabla por jerarquía de clases
10.1.2. Tabla por subclase
10.1.3. Tabla por subclase: utilizando un discriminador
10.1.4. Mezcla de tabla por jerarquía de clases con tabla por subclase
10.1.5. Tabla por clase concreta
10.1.6. Tabla por clase concreta utilizando polimorfismo implícito
10.1.7. Mezcla de polimorfismo implícito con otros mapeos de herencia
10.2. Limitaciones
11. Trabajo con objetos
11.1. Estados de objeto de Hibernate
11.2. Haciendo los objetos persistentes
11.3. Cargando un objeto
11.4. Consultas
11.4.1. Ejecución de consultas
11.4.2. Filtración de colecciones
11.4.3. Consultas de criterios
11.4.4. Consultas en SQL nativo
11.5. Modificación de objetos persistentes
11.6. Modificación de objetos separados
11.7. Detección automática de estado
11.8. Borrado de objetos persistentes
11.9. Replicación de objetos entre dos almacenamientos de datos diferentes
11.10. Limpieza (flushing) de la sesión
11.11. Persistencia transitiva
11.12. Utilización de metadatos
12. Read-only entities
12.1. Making persistent entities read-only
12.1.1. Entities of immutable classes
12.1.2. Loading persistent entities as read-only
12.1.3. Loading read-only entities from an HQL query/criteria
12.1.4. Making a persistent entity read-only
12.2. Read-only affect on property type
12.2.1. Simple properties
12.2.2. Unidirectional associations
12.2.3. Bidirectional associations
13. Transacciones y concurrencia
13.1. Ámbitos de sesión y de transacción
13.1.1. Unidad de trabajo
13.1.2. Conversaciones largas
13.1.3. Consideración de la identidad del objeto
13.1.4. Temas comúnes
13.2. Demarcación de la transacción de la base de datos
13.2.1. Entorno no administrado
13.2.2. Utilización de JTA
13.2.3. Manejo de excepciones
13.2.4. Tiempo de espera de la transacción
13.3. Control de concurrencia optimista
13.3.1. Chequeo de versiones de la aplicación
13.3.2. Sesión extendida y versionado automático
13.3.3. Objetos separados y versionado automático
13.3.4. Personalización del versionado automático
13.4. Bloqueo pesimista
13.5. Modos de liberación de la conexión
14. Interceptores y eventos
14.1. Interceptores
14.2. Sistema de eventos
14.3. Seguridad declarativa de Hibernate
15. Procesamiento por lotes
15.1. Inserciones de lotes
15.2. Actualizaciones de lotes
15.3. La interfaz de Sesión sin Estado
15.4. Operaciones de estilo DML
16. HQL: El lenguaje de consulta de Hibernate
16.1. Sensibilidad a mayúsculas
16.2. La cláusula from
16.3. Asociaciones y uniones (joins)
16.4. Formas de sintaxis unida
16.5. Referencia a la propiedad identificadora
16.6. La cláusula select
16.7. Funciones de agregación
16.8. Consultas polimórficas
16.9. La cláusula where
16.10. Expresiones
16.11. La cláusula order by
16.12. La cláusula group by
16.13. Subconsultas
16.14. Ejemplos de HQL
16.15. Declaraciones UPDATE y DELETE masivas
16.16. Consejos y Trucos
16.17. Componentes
16.18. Sintaxis del constructor de valores por fila
17. Consultas por criterios
17.1. Creación de una instancia Criteria
17.2. Límitando el conjunto de resultados
17.3. Orden de los resultados
17.4. Asociaciones
17.5. Recuperación dinámica de asociaciones
17.6. Consultas ejemplo
17.7. Proyecciones, agregación y agrupamiento
17.8. Consultas y subconsultas separadas
17.9. Consultas por identificador natural
18. SQL Nativo
18.1. Uso de una SQLQuery
18.1.1. Consultas escalares
18.1.2. Consultas de entidades
18.1.3. Manejo de asociaciones y colecciones
18.1.4. Devolución de entidades múltiples
18.1.5. Devolución de entidades no-administradas
18.1.6. Manejo de herencias
18.1.7. Parámetros
18.2. Consultas SQL nombradas
18.2.1. Utilización de la propiedad return para especificar explícitamente los nombres de columnas/alias
18.2.2. Utilización de procedimientos para consultas
18.3. Personalice SQL para crear, actualizar y borrar
18.4. Personalice SQL para cargar
19. Filtración de datos
19.1. Filtros de Hibernate
20. Mapeo XML
20.1. Trabajo con datos XML
20.1.1. Especificación de los mapeos de XML y de clase en conjunto
20.1.2. Especificación de sólo un mapeo XML
20.2. Mapeo de metadatos XML
20.3. Manipulación de datos XML
21. Mejoramiento del rendimiento
21.1. Estrategias de recuperación
21.1.1. Trabajo con asociaciones perezosas
21.1.2. Afinación de las estrategias de recuperación
21.1.3. Proxies de asociaciones de un sólo extremo
21.1.4. Inicialización de colecciones y proxies
21.1.5. Utilización de recuperación de lotes
21.1.6. Utilización de la recuperación por subselección
21.1.7. Perfiles de recuperación
21.1.8. Utilización de la recuperación perezosa de propiedades
21.2. El Caché de Segundo Nivel
21.2.1. Mapeos de caché
21.2.2. Estrategia: sólo lectura
21.2.3. Estrategia: lectura/escritura (read/write)
21.2.4. Estrategia: lectura/escritura no estricta
21.2.5. Estrategia: transaccional
21.2.6. Compatibilidad de proveedor de caché/estrategia de concurrencia
21.3. Gestión de cachés
21.4. El Caché de Consultas
21.4.1. Habilitación del caché de peticiones
21.4.2. Regiones de caché de consultas
21.5. Comprensión del rendimiento de Colecciones
21.5.1. Taxonomía
21.5.2. Las listas, mapas, idbags y conjuntos son las colecciones más eficientes de actualizar
21.5.3. Los Bags y las listas son las colecciones inversas más eficientes
21.5.4. Borrado de un sólo tiro
21.6. Control del rendimiento
21.6.1. Control de una SessionFactory
21.6.2. Métricas
22. Manual del conjunto de herramientas
22.1. Generación automática de esquemas
22.1.1. Personalización del esquema
22.1.2. Ejecución de la herramienta
22.1.3. Propiedades
22.1.4. Utilización de Ant
22.1.5. Actualizaciones incrementales de esquema
22.1.6. Utilización de Ant para actualizaciones incrementales de esquema
22.1.7. Validación de Esquema
22.1.8. Utilización de Ant para la validación de esquema
23. Additional modules
23.1. Bean Validation
23.1.1. Adding Bean Validation
23.1.2. Configuration
23.1.3. Catching violations
23.1.4. Database schema
23.2. Hibernate Search
23.2.1. Description
23.2.2. Integration with Hibernate Annotations
24. Ejemplo: Padre/Hijo
24.1. Nota sobre las colecciones
24.2. Uno-a-muchos bidireccional
24.3. Ciclo de vida en cascada
24.4. Cascadas y unsaved-value
24.5. Conclusión
25. Ejemplo: Aplicación de Weblog
25.1. Clases Persistentes
25.2. Mapeos de Hibernate
25.3. Código Hibernate
26. Ejemplo: mapeos varios
26.1. Empleador/Empleado
26.2. Autor/Obra
26.3. Cliente/Orden/Producto
26.4. Mapeos varios de ejemplo
26.4.1. Asociación uno-a-uno "Tipificada"
26.4.2. Ejemplo de clave compuesta
26.4.3. Muchos-a-muchos con atributo compartido de clave compuesta
26.4.4. Discriminación basada en contenido
26.4.5. Asociaciones sobre claves alternativas
27. Prácticas recomendadas
28. Consideraciones de la portabilidad de la base de datos
28.1. Aspectos básicos de la portabilidad
28.2. Dialecto
28.3. Resolución del dialecto
28.4. Generación del identificador
28.5. Funciones de la base de datos
28.6. Mapeos de tipo
Referencias

Working with both Object-Oriented software and Relational Databases can be cumbersome and time consuming. Development costs are significantly higher due to a paradigm mismatch between how data is represented in objects versus relational databases. Hibernate is an Object/Relational Mapping solution for Java environments. The term Object/Relational Mapping refers to the technique of mapping data from an object model representation to a relational data model representation (and visa versa). See http://en.wikipedia.org/wiki/Object-relational_mapping for a good high-level discussion.

Nota

While having a strong background in SQL is not required to use Hibernate, having a basic understanding of the concepts can greatly help you understand Hibernate more fully and quickly. Probably the single best background is an understanding of data modeling principles. You might want to consider these resources as a good starting point:

Hibernate not only takes care of the mapping from Java classes to database tables (and from Java data types to SQL data types), but also provides data query and retrieval facilities. It can significantly reduce development time otherwise spent with manual data handling in SQL and JDBC. Hibernate’s design goal is to relieve the developer from 95% of common data persistence-related programming tasks by eliminating the need for manual, hand-crafted data processing using SQL and JDBC. However, unlike many other persistence solutions, Hibernate does not hide the power of SQL from you and guarantees that your investment in relational technology and knowledge is as valid as always.

Hibernate may not be the best solution for data-centric applications that only use stored-procedures to implement the business logic in the database, it is most useful with object-oriented domain models and business logic in the Java-based middle-tier. However, Hibernate can certainly help you to remove or encapsulate vendor-specific SQL code and will help with the common task of result set translation from a tabular representation to a graph of objects.

Si usted es nuevo en el tema de Hibernate y del Mapeo Objeto/Relacional o inclusive en Java por favor siga los siguientes pasos:

  1. Read Capítulo 1, Tutorial for a tutorial with step-by-step instructions. The source code for the tutorial is included in the distribution in the doc/reference/tutorial/ directory.

  2. Read Capítulo 2, Arquitectura to understand the environments where Hibernate can be used.

  3. Déle un vistazo al directorio eg/ en la distribución de Hibernate. Este comprende una aplicación autónoma simple. Copie su compilador JDBC al directorio lib/ y edite etc/hibernate.properties, especificando los valores correctos para su base de datos. Desde un intérprete de comandos en el directorio de la distribución, escriba ant eg (utilizando Ant), o bajo Windows, escriba build eg.

  4. Use this reference documentation as your primary source of information. Consider reading [JPwH] if you need more help with application design, or if you prefer a step-by-step tutorial. Also visit http://caveatemptor.hibernate.org and download the example application from [JPwH].

  5. En el sitio web de Hibernate encontrará las respuestas a las preguntas más frecuentes.

  6. En el sitio web de Hibernate encontrará los enlaces a las demostraciones de terceros, ejemplos y tutoriales.

  7. El área de la comunidad en el sitio web de Hibernate es un buen recurso para encontrar patrones de diseño y varias soluciones de integración (Tomcat, JBoss AS, Struts, EJB, etc).

There are a number of ways to become involved in the Hibernate community, including

  • Trying stuff out and reporting bugs. See http://hibernate.org/issuetracker.html details.

  • Trying your hand at fixing some bugs or implementing enhancements. Again, see http://hibernate.org/issuetracker.html details.

  • http://hibernate.org/community.html list a few ways to engage in the community.

    • There are forums for users to ask questions and receive help from the community.

    • There are also IRC channels for both user and developer discussions.

  • Helping improve or translate this documentation. Contact us on the developer mailing list if you have interest.

  • Evangelizing Hibernate within your organization.

Dirigido a los nuevos usuarios, este capítulo brinda una introducción a Hibernate paso por paso, empezando con una aplicación simple usando una base de datos en memoria. Este tutorial se basa en un tutorial anterior que Michael Gloegl desarrolló. Todo el código se encuentra en el directorio tutorials/web de la fuente del proyecto.

Importante

Este tutorial se basa en que el usuario tenga conocimiento de Java y SQL. Si tiene un conocimiento muy limitado de JAVA o SQL, le aconsejamos que empiece con una buena introducción a esta tecnología antes de tratar de aprender sobre Hibernate.

Nota

La distribución contiene otra aplicación de ejemplo bajo el directorio fuente del proyecto tutorial/eg.

Para este ejemplo, vamos a configurar una aplicación base de datos pequeña que pueda almacenar eventos a los que queremos asistir e información sobre los anfitriones de estos eventos.

Nota

Aunque puede utilizar cualquier base de datos con la que se sienta bien, vamos a usar HSQLDB (una base de datos Java en-memoria) para evitar describir la instalación/configuración de cualquier servidor de base de datos en particular.

Lo primero que tenemos que hacer es configurar el entorno de desarrollo. Vamos a utilizar el "diseño estándar" apoyado por muchas herramientas de construcción tal como Maven. Maven, en particular, tiene un buen recurso que describe este diseño. Como este tutorial va a ser una aplicación web, vamos a crear y a utilizar los directorios src/main/java, src/main/resources y src/main/webapp.

Vamos a usar Maven en este tutorial, sacando ventaja de sus funcionalidades de administración de dependencias transitivas así como la habilidad de muchos IDEs para configurar automáticamente un proyecto para nosotros con base en el descriptor maven.


<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

    <modelVersion>4.0.0</modelVersion>

    <groupId>org.hibernate.tutorials</groupId>
    <artifactId>hibernate-tutorial</artifactId>
    <version>1.0.0-SNAPSHOT</version>
    <name>First Hibernate Tutorial</name>

    <build>
         <!-- we dont want the version to be part of the generated war file name -->
         <finalName>${artifactId}</finalName>
    </build>

    <dependencies>
        <dependency>
            <groupId>org.hibernate</groupId>
            <artifactId>hibernate-core</artifactId>
        </dependency>

        <!-- Because this is a web app, we also have a dependency on the servlet api. -->
        <dependency>
            <groupId>javax.servlet</groupId>
            <artifactId>servlet-api</artifactId>
        </dependency>

        <!-- Hibernate uses slf4j for logging, for our purposes here use the simple backend -->
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-simple</artifactId>
        </dependency>

        <!-- Hibernate gives you a choice of bytecode providers between cglib and javassist -->
        <dependency>
            <groupId>javassist</groupId>
            <artifactId>javassist</artifactId>
        </dependency>
    </dependencies>

</project>

Sugerencia

It is not a requirement to use Maven. If you wish to use something else to build this tutorial (such as Ant), the layout will remain the same. The only change is that you will need to manually account for all the needed dependencies. If you use something like Ivy providing transitive dependency management you would still use the dependencies mentioned below. Otherwise, you'd need to grab all dependencies, both explicit and transitive, and add them to the project's classpath. If working from the Hibernate distribution bundle, this would mean hibernate3.jar, all artifacts in the lib/required directory and all files from either the lib/bytecode/cglib or lib/bytecode/javassist directory; additionally you will need both the servlet-api jar and one of the slf4j logging backends.

Guarde este archivo como pom.xml en el directorio raíz del proyecto.

Luego creamos una clase que representa el evento que queremos almacenar en la base de datos, es una clase JavaBean simple con algunas propiedades:

package org.hibernate.tutorial.domain;


import java.util.Date;
public class Event {
    private Long id;
    private String title;
    private Date date;
    public Event() {}
    public Long getId() {
        return id;
    }
    private void setId(Long id) {
        this.id = id;
    }
    public Date getDate() {
        return date;
    }
    public void setDate(Date date) {
        this.date = date;
    }
    public String getTitle() {
        return title;
    }
    public void setTitle(String title) {
        this.title = title;
    }
}

Esta clase utiliza convenciones de nombrado estándares de JavaBean para los métodos de propiedades getter y setter así como también visibilidad privada para los campos. Se recomienda este diseño, pero no se exige. Hibernate también puede acceder a los campos directamente, los métodos de acceso benefician la robustez de la refactorización.

La propiedad id tiene un valor identificador único para un evento en particular. Todas las clases de entidad persistentes necesitarán tal propiedad identificadora si queremos utilizar el grupo completo de funcionalidades de Hibernate (también algunas clases dependientes menos importantes). De hecho, la mayoría de las aplicaciones (en especial las aplicaciones web) necesitan distinguir los objetos por identificador, así que usted debe tomar esto como una funcionalidad más que una limitación. Sin embargo, usualmente no manipulamos la identidad de un objeto, por lo tanto, el método setter debe ser privado. Sólamente Hibernate asignará identificadores cuando se guarde un objeto. Como se puede ver, Hibernate puede acceder a métodos de acceso públicos, privados y protegidos, así como también a campos directamente públicos, privados y protegidos. Puede escoger y hacer que se ajuste a su diseño de su aplicación.

El constructor sin argumentos es un requerimiento para todas las clases persistentes, Hibernate tiene que crear objetos por usted utilizando Java Reflection. El constructor puede ser privado; sin embargo, se necesita la visibilidad del paquete para generar proxies en tiempo de ejecución y para la recuperación de datos de manera efectiva sin la instrumentación del código byte.

Duarde este archivo en el directorio src/main/java/org/hibernate/tutorial/domain.

Hibernate necesita saber cómo cargar y almacenar objetos de la clase persistente. En este punto es donde entra en juego el archivo de mapeo de Hibernate. Este archivo le dice a Hibernate a que tabla tiene que acceder en la base de datos, y que columnas debe utilizar en esta tabla.

La estructura básica de un archivo de mapeo se ve así:


<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
        "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
        "http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="org.hibernate.tutorial.domain">
[...]
</hibernate-mapping
>

El DTD de Hibernate es sofisticado. Puede utilizarlo para autocompletar los elementos y atributos XML de mapeo en su editor o IDE. Abrir el archivo DTD en su editor de texto es la manera más fácil para obtener una sinopsis de todos los elementos y atributos y para ver los valores por defecto, así como algunos de los comentarios. Note que Hibernate no cargará el fichero DTD de la web, sino que primero lo buscará en la ruta de clase de la aplicación. El archivo DTD se encuentra incluido en hibernate-core.jar (también en hibernate3.jar si está usando el paquete de la distribución).

Entre las dos etiquetas hibernate-mapping, incluya un elemento class. Todas las clases de entidad persistentes (de nuevo, podrían haber clases dependientes más adelante, las cuales no son entidades de primera clase) necesitan de dicho mapeo en una tabla en la base de datos SQL:


<hibernate-mapping package="org.hibernate.tutorial.domain">

    <class name="Event" table="EVENTS">

    </class>

</hibernate-mapping>

Hasta ahora le hemos dicho a Hibernate cómo persistir y cargar el objeto de clase Event a la tabla EVENTS. Cada instancia se encuentra representada por una fila en esa tabla. Ahora podemos continuar mapeando la propiedad identificadora única a la clave primaria de la tabla. Ya que no queremos preocuparnos por el manejo de este identificador, configuramos la estrategia de generación del identificador de Hibernate para una columna clave primaria sustituta:


<hibernate-mapping package="org.hibernate.tutorial.domain">

    <class name="Event" table="EVENTS">
        <id name="id" column="EVENT_ID">
            <generator class="native"/>
        </id>
    </class>

</hibernate-mapping>

El elemento id es la declaración de la propiedad identificadora. El atributo de mapeo name="id" declara el nombre de la propiedad JavaBean y le dice a Hibernate que utilice los métodos getId() y setId() para acceder a la propiedad. El atributo columna le dice a Hibernate qué columna de la tabla EVENTS tiene el valor de la llave principal.

El elemento anidado generator especifica la estrategia de generación del identificador (también conocidos como ¿cómo se generan los valores del identificador?). En este caso escogimos native, el cual ofrece un nivel de qué tan portátil es dependiendo del dialecto configurado de la base de datos. Hibernate soporta identificadores generados por la base de datos, globalmente únicos así como asignados por la aplicación. La generación del valor del identificador también es uno de los muchos puntos de extensión de Hibernate y puede conectar su propia estrategia.

Por último es necesario decirle a Hibernate sobre las porpiedades de clase de entidad que quedan. Por defecto, ninguna propiedad de la clase se considera persistente:



<hibernate-mapping package="org.hibernate.tutorial.domain">

    <class name="Event" table="EVENTS">
        <id name="id" column="EVENT_ID">
            <generator class="native"/>
        </id>
        <property name="date" type="timestamp" column="EVENT_DATE"/>
        <property name="title"/>
    </class>

</hibernate-mapping>

Al igual que con el elemento id, el atributo name del elemento property le dice a Hibernate que métodos getter y setter utilizar. Así que en este caso, Hibernate buscará los métodos getDate(), setDate(), getTitle() y setTitle().

Nota

¿Por qué el mapeo de la propiedad date incluye el atributo column, pero el de title no? Sin el atributo column Hibernate utiliza, por defecto, el nombre de propiedad como nombre de la columna. Esto funciona bien para title. Sin embargo, date es una palabra clave reservada en la mayoría de las bases de datos, así que es mejor que la mapeamos a un nombre diferente.

El mapeo de title carece de un atributo type. Los tipos que declaramos y utilizamos en los archivos de mapeo no son tipos de datos Java. Tampoco son tipos de base de datos SQL. Estos tipos se llaman tipos de mapeo Hibernate , convertidores que pueden traducir de tipos de datos de Java a SQL y viceversa. De nuevo, Hibernate tratará de determinar el tipo correcto de conversión y de mapeo por sí mismo si el atributo type no se encuentra presente en el mapeo. En algunos casos esta detección automática (utilizando Reflection en la clase Java) puede que no tenga lo que usted espera o necesita. Este es el caso de la propiedad date. Hibernate no puede saber is la propiedad, la cual es de java.util.Date, debe mapear a una columna date, timestamp o time de SQL. Por medio de un convertidor timestamp, mapeamos la propiedad y mantenemos la información completa sobre la hora y fecha.

Sugerencia

Hibernate realiza esta determinación de tipo de mapeo usando reflection cuando se procesan los archivos de mapeo. Esto puede tomar tiempo y recursos así que el rendimiento al arrancar es importante entonces debe considerar el definir explícitamente el tipo a usar.

Guarde este archivo de mapeo como src/main/resources/org/hibernate/tutorial/domain/Event.hbm.xml.

En este momento debe tener la clase persistente y su archivo de mapeo. Ahora debe configurar Hibernate. Primero vamos a configurar HSQLDB para que ejecute en "modo de servidor"

Vamos a utilizar el plugin de ejecución Maven para lanzar el servidor HSQLDB ejecutando: mvn exec:java -Dexec.mainClass="org.hsqldb.Server" -Dexec.args="-database.0 file:target/data/tutorial".Lo verá iniciando y vinculandose a un enchufe TCP/IP, allí es donde nuestra aplicación se conectará más adelante. Si quiere dar inicio con una base de datos fresca durante este tutorial, apague HSQLDB, borre todos los archivos en el directorio target/data e inicie HSQLDB de nuevo.

Hibernate se conectará a la base de datos de parte de su aplicación así que necesita saber cómo obtener conexiones. Para este tutorial vamos a utilizar un pool de conexiones autónomo (opuesto a javax.sql.DataSource). Hibernate viene con soporte para dos pools de conexiones JDBC de código abierto de terceros: c3p0 y proxool. Sin embargo, vamos a utilizar el pool de conexiones incluido de Hibernate para este tutorial.

Atención

El pool de conexiones de Hibernate no está diseñado para utilizarse en producción. Le faltan varias funcionalidades que se encuentran en cualquier pool de conexiones decente.

Para la configuración de Hibernate, podemos utilizar un archivo hibernate.properties simple, un archivo hibernate.cfg.xml un poco más sofisticado, o incluso una configuración completamente programática. La mayoría de los usuarios prefieren el archivo de configuración XML:


<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
        "-//Hibernate/Hibernate Configuration DTD 3.0//EN"
        "http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">

<hibernate-configuration>

    <session-factory>

        <!-- Database connection settings -->
        <property name="connection.driver_class"
>org.hsqldb.jdbcDriver</property>
        <property name="connection.url"
>jdbc:hsqldb:hsql://localhost</property>
        <property name="connection.username"
>sa</property>
        <property name="connection.password"
></property>

        <!-- JDBC connection pool (use the built-in) -->
        <property name="connection.pool_size"
>1</property>

        <!-- SQL dialect -->
        <property name="dialect"
>org.hibernate.dialect.HSQLDialect</property>

        <!-- Enable Hibernate's automatic session context management -->
        <property name="current_session_context_class"
>thread</property>

        <!-- Disable the second-level cache  -->
        <property name="cache.provider_class"
>org.hibernate.cache.NoCacheProvider</property>

        <!-- Echo all executed SQL to stdout -->
        <property name="show_sql"
>true</property>

        <!-- Drop and re-create the database schema on startup -->
        <property name="hbm2ddl.auto"
>update</property>

        <mapping resource="org/hibernate/tutorial/domain/Event.hbm.xml"/>

    </session-factory>

</hibernate-configuration
>

Nota

Observe que este archivo de configuración especifica un DTD diferente

Configure la SessionFactory de Hibernate. SessionFactory es una fábrica global responsable de una base de datos en particular. Si usted tiene varias bases de datos, para un inicio más fácil utilice varias configuraciones <session-factory> en varios archivos de configuración.

Los primeros cuatro elementos property contienen la configuración necesaria para la conexión JDBC. El elemento property dialecto especifica la variante SQL en particular que Hibernate genera.

Sugerencia

In most cases, Hibernate is able to properly determine which dialect to use. See Sección 28.3, “Resolución del dialecto” for more information.

La administración de la sesión automática de Hibernate para contextos de persistencia es particularmente útil en este contexto. La opción hbm2ddl.auto activa la generación automática de los esquemas de la base de datos directamente en la base de datos. Esto se puede desactivar, eliminando la opción de configuración o redirigiéndolo a un archivo con la ayuda de la tarea de Ant SchemaExport. Finalmente, agregue a la configuración el/los fichero(s) de mapeo para clases persistentes.

Guarde este archivo como hibernate.cfg.xml en el directorio src/main/resources.

Ahora vamos a construir el tutorial con Maven. Es necesario que tenga instalado Maven; se encuentra disponible en la página de descargas Maven. Maven leerá el archivo /pom.xml que creamos anteriormente y sabrá cómo realizar algunas tareas de proyectos básicos. Primero, vamos a ejecutar la meta compile para asegurarnos de que podemos compilar todo hasta el momento:

[hibernateTutorial]$ mvn compile
[INFO] Scanning for projects...
[INFO] ------------------------------------------------------------------------
[INFO] Building First Hibernate Tutorial
[INFO]    task-segment: [compile]
[INFO] ------------------------------------------------------------------------
[INFO] [resources:resources]
[INFO] Using default encoding to copy filtered resources.
[INFO] [compiler:compile]
[INFO] Compiling 1 source file to /home/steve/projects/sandbox/hibernateTutorial/target/classes
[INFO] ------------------------------------------------------------------------
[INFO] BUILD SUCCESSFUL
[INFO] ------------------------------------------------------------------------
[INFO] Total time: 2 seconds
[INFO] Finished at: Tue Jun 09 12:25:25 CDT 2009
[INFO] Final Memory: 5M/547M
[INFO] ------------------------------------------------------------------------

Es el momento de cargar y almacenar algunos objetos Event, pero primero tiene que completar la configuración con algo de código de infraestructura. Tiene que iniciar Hibernate construyendo un objeto org.hibernate.SessionFactory global y almacenarlo en algún lugar de fácil acceso en el código de la aplicación. Una org.hibernate.SessionFactory se utiliza para obtener instancias org.hibernate.Session. Una org.hibernate.Session representa una unidad de trabajo mono-hilo. La org.hibernate.SessionFactory es un objeto global seguro entre hilos que se instancia una sóla vez.

Vamos a crear una clase de ayuda HibernateUtil que se encargue del inicio y haga más práctico el acceso a org.hibernate.SessionFactory.

package org.hibernate.tutorial.util;


import org.hibernate.SessionFactory;
import org.hibernate.cfg.Configuration;
public class HibernateUtil {
    private static final SessionFactory sessionFactory = buildSessionFactory();
    private static SessionFactory buildSessionFactory() {
        try {
            // Create the SessionFactory from hibernate.cfg.xml
            return new Configuration().configure().buildSessionFactory();
        }
        catch (Throwable ex) {
            // Make sure you log the exception, as it might be swallowed
            System.err.println("Initial SessionFactory creation failed." + ex);
            throw new ExceptionInInitializerError(ex);
        }
    }
    public static SessionFactory getSessionFactory() {
        return sessionFactory;
    }
}

Guarde este código como src/main/java/org/hibernate/tutorial/util/HibernateUtil.java

Esta clase no sólamente produce la referencia org.hibernate.SessionFactory global en su inicializador estático, sino que también esconde el hecho de que utiliza un singleton estático. También puede que busque la referencia org.hibernate.SessionFactory desde JNDI en un servidor de aplicaciones en cualquier otro lugar.

Si usted le da un nombre a org.hibernate.SessionFactory en su archivo de configuración, de hecho, Hibernate tratará de vincularlo a JNDI bajo ese nombre después de que ha sido construido. Otra mejor opción es utilizar el despliegue JMX y dejar que el contenedor con capacidad JMX instancie y vincule un HibernateService a JNDI. Más adelante discutiremos estas opciones avanzadas.

Ahora necesita configurar un sistema de registro. Hibernate utiliza registros comunes le da dos opciones: Log4J y registros de JDK 1.4. La mayoría de los desarrolladores prefieren Log4J: copie log4j.properties de la distribución de Hibernate, se encuentra en el directorio etc/) a su directorio src, junto a hibernate.cfg.xml. Si desea tener una salida más verbosa que la que se proporcionó en la configuración del ejemplo entonces puede cambiar su configuración. Por defecto, sólo se muestra el mensaje de inicio de Hibernate en la salida estándar.

La infraestructura del tutorial está completa y estamos listos para hacer un poco de trabajo real con Hibernate.

We are now ready to start doing some real work with Hibernate. Let's start by writing an EventManager class with a main() method:

package org.hibernate.tutorial;


import org.hibernate.Session;
import java.util.*;
import org.hibernate.tutorial.domain.Event;
import org.hibernate.tutorial.util.HibernateUtil;
public class EventManager {
    public static void main(String[] args) {
        EventManager mgr = new EventManager();
        if (args[0].equals("store")) {
            mgr.createAndStoreEvent("My Event", new Date());
        }
        HibernateUtil.getSessionFactory().close();
    }
    private void createAndStoreEvent(String title, Date theDate) {
        Session session = HibernateUtil.getSessionFactory().getCurrentSession();
        session.beginTransaction();
        Event theEvent = new Event();
        theEvent.setTitle(title);
        theEvent.setDate(theDate);
        session.save(theEvent);
        session.getTransaction().commit();
    }
}

En createAndStoreEvent() creamos un nuevo objeto Event y se lo entregamos a Hibernate. En ese momento, Hibernate se encarga de SQL y ejecuta un INSERT en la base de datos.

A org.hibernate.Session is designed to represent a single unit of work (a single atomic piece of work to be performed). For now we will keep things simple and assume a one-to-one granularity between a Hibernate org.hibernate.Session and a database transaction. To shield our code from the actual underlying transaction system we use the Hibernate org.hibernate.Transaction API. In this particular case we are using JDBC-based transactional semantics, but it could also run with JTA.

¿Qué hace sessionFactory.getCurrentSession()? Primero, la puede llamar tantas veces como desee y en donde quiera, una vez consiga su org.hibernate.SessionFactory. El método getCurrentSession() siempre retorna la unidad de trabajo "actual". ¿Recuerda que cambiamos la opción de la configuración de este mecanismo a "thread" en src/main/resources/hibernate.cfg.xml? Por lo tanto, el contexto de una unidad de trabajo actual se encuentra vinculada al hilo de Java actual que ejecuta nuestra aplicación.

Una org.hibernate.Session se inicia cuando se realiza la primera llamada a getCurrentSession() para el hilo actual. Luego Hibernate la vincula al hilo actual. Cuando termina la transacción, ya sea por medio de guardar o deshacer los cambios, Hibernate desvincula automáticamente la org.hibernate.Session del hilo y la cierra por usted. Si llama a getCurrentSession() de nuevo, obtiene una org.hibernate.Session nueva y obtiene una nueva org.hibernate.Session unidad de trabajo.

En relación con la unidad del campo de trabajo, ¿Se debería utilizar org.hibernate.Session de Hibernate para ejecutar una o varias operaciones de la base de datos? El ejemplo anterior utiliza una org.hibernate.Session para una operación. Sin embargo, esto es pura coincidencia; el ejemplo simplemente no es lo suficientemente complicado para mostrar cualquier otro enfoque. El ámbito de una org.hibernate.Session de Hibernate es flexible pero nunca debe diseñar su aplicación para que utilice una nueva org.hibernate.Session de Hibernate para cada operación de la base de datos. Aunque lo utilizamos en los siguientes ejemplos, considere la sesión-por-operación como un anti-patrón. Más adelante en este tutorial, se muestra una aplicación web real, lo cual le ayudará a ilustrar esto.

See Capítulo 13, Transacciones y concurrencia for more information about transaction handling and demarcation. The previous example also skipped any error handling and rollback.

Para ejecutar esto, utilizaremos el plugin de ejecución Maven para llamar nuestra clase con la configuración de ruta de clase necesaria: mvn exec:java -Dexec.mainClass="org.hibernate.tutorial.EventManager" -Dexec.args="store"

Nota

Es posible que primero necesite realizar mvn compile.

Debe ver que Hibernate inicia y dependiendo de su configuración, también verá bastantes salidas de registro. Al final, verá la siguiente línea:

[java] Hibernate: insert into EVENTS (EVENT_DATE, title, EVENT_ID) values (?, ?, ?)

Este es el INSERT que Hibernate ejecuta.

Para listar los eventos almacenados se agrega una opción al método principal:

        if (args[0].equals("store")) {

            mgr.createAndStoreEvent("My Event", new Date());
        }
        else if (args[0].equals("list")) {
            List events = mgr.listEvents();
            for (int i = 0; i < events.size(); i++) {
                Event theEvent = (Event) events.get(i);
                System.out.println(
                        "Event: " + theEvent.getTitle() + " Time: " + theEvent.getDate()
                );
            }
        }

También agregamos un método listEvents():

    private List listEvents() {

        Session session = HibernateUtil.getSessionFactory().getCurrentSession();
        session.beginTransaction();
        List result = session.createQuery("from Event").list();
        session.getTransaction().commit();
        return result;
    }

Here, we are using a Hibernate Query Language (HQL) query to load all existing Event objects from the database. Hibernate will generate the appropriate SQL, send it to the database and populate Event objects with the data. You can create more complex queries with HQL. See Capítulo 16, HQL: El lenguaje de consulta de Hibernate for more information.

Ahora podemos llamar nuestra nueva funcionalidad, de nuevo usando el plugin de ejecución Maven: mvn exec:java -Dexec.mainClass="org.hibernate.tutorial.EventManager" -Dexec.args="list"

Hasta ahora hemos mapeado una clase de entidad persistente a una tabla aislada. Vamos a construir sobre esto y agregaremos algunas asociaciones de clase. Vamos a agregar personas a la aplicación y vamos a almacenar una lista de eventos en las que participan.

Al agregar una colección de eventos a la clase Person, puede navegar fácilmente a los eventos de una persona en particular, sin ejecutar una petición explícita - llamando a Person#getEvents. En Hibernate, las asociaciones multi-valores se representan por medio de uno de los contratos del marco de colecciones Java; aquí escogimos un java.util.Set ya que la colección no contendrá elementos duplicados y el orden no es relevante para nuestros ejemplos.

public class Person {


    private Set events = new HashSet();
    public Set getEvents() {
        return events;
    }
    public void setEvents(Set events) {
        this.events = events;
    }
}

Antes de mapear esta asociación, considere el otro lado. Podriamos mantener esto unidireccional o podríamos crear otra colección en el Event, si queremos tener la habilidad de navegarlo desde ambas direcciones. Esto no es necesario desde un punto de vista funcional. Siempre puede ejeutar un pedido explícito para recuperar los participantes de un evento en particular. Esta es una elección de diseño que depende de usted, pero lo que queda claro de esta discusión es la multiplicidad de la asociación: "muchos" valuada en ambos lados, denominamos esto como una asociación muchos-a-muchos. Por lo tanto, utilizamos un mapeo muchos-a-muchos de Hibernate:


<class name="Person" table="PERSON">
    <id name="id" column="PERSON_ID">
        <generator class="native"/>
    </id>
    <property name="age"/>
    <property name="firstname"/>
    <property name="lastname"/>

    <set name="events" table="PERSON_EVENT">
        <key column="PERSON_ID"/>
        <many-to-many column="EVENT_ID" class="Event"/>
    </set>

</class>

Hibernate soporta un amplio rango de mapeos de colección, el más común set. Para una asociación muchos-a-muchos o la relación de entidad n:m, se necesita una tabla de asociación. Cada fila en esta tabla representa un enlace entre una persona y un evento. El nombre de esta tabla se declara con el atributo table del elemento set. El nombre de la columna identificadora en la asociación, del lado de la persona, se define con el elemento key, el nombre de columna para el lado del evento se define con el atributo column del many-to-many. También tiene que informarle a Hibernate la clase de los objetos en su colección (la clase del otro lado de la colección de referencias).

Por consiguiente, el esquema de base de datos para este mapeo es:

    _____________        __________________
   |             |      |                  |       _____________
   |   EVENTS    |      |   PERSON_EVENT   |      |             |
   |_____________|      |__________________|      |    PERSON   |
   |             |      |                  |      |_____________|
   | *EVENT_ID   | <--> | *EVENT_ID        |      |             |
   |  EVENT_DATE |      | *PERSON_ID       | <--> | *PERSON_ID  |
   |  TITLE      |      |__________________|      |  AGE        |
   |_____________|                                |  FIRSTNAME  |
                                                  |  LASTNAME   |
                                                  |_____________|
 

Vamos a reunir a algunas personas y eventos en un nuevo método en EventManager:

    private void addPersonToEvent(Long personId, Long eventId) {

        Session session = HibernateUtil.getSessionFactory().getCurrentSession();
        session.beginTransaction();
        Person aPerson = (Person) session.load(Person.class, personId);
        Event anEvent = (Event) session.load(Event.class, eventId);
        aPerson.getEvents().add(anEvent);
        session.getTransaction().commit();
    }

Después de cargar una Person y un Event, simplemente modifique la colección utilizando los métodos normales de colección. No hay una llamada explícita a update() o save(); Hibernate detecta automáticamente que se ha modificado la colección y que se necesita actualizarla. Esto se denomina chequeo automático de desactualizaciones y también puede probarlo modificando el nombre o la propiedad de fecha de cualquiera de sus objetos. Mientras se encuentran en estado persistente, es decir, enlazado a una org.hibernate.Session de Hibernate en particular, Hibernate monitorea cualquier cambio y ejecuta SQL de un modo escribe-detrás. El proceso de sincronización del estado de la memoria con la base de datos, usualmente sólo al final de una unidad de trabajo, se denomina vaciado. En nuestro código la unidad de trabajo termina con guardar o deshacer los cambios de la transacción de la base de datos.

Puede cargar una persona y un evento en diferentes unidades de trabajo. También puede modificar un objeto fuera de una org.hibernate.Session, cuando no se encuentra en estado persistente (si antes era persistente denominamos a este estado separado ). Inclusive, puede modificar una colección cuando se encuentre separada:

    private void addPersonToEvent(Long personId, Long eventId) {

        Session session = HibernateUtil.getSessionFactory().getCurrentSession();
        session.beginTransaction();
        Person aPerson = (Person) session
                .createQuery("select p from Person p left join fetch p.events where p.id = :pid")
                .setParameter("pid", personId)
                .uniqueResult(); // Eager fetch the collection so we can use it detached
        Event anEvent = (Event) session.load(Event.class, eventId);
        session.getTransaction().commit();
        // End of first unit of work
        aPerson.getEvents().add(anEvent); // aPerson (and its collection) is detached
        // Begin second unit of work
        Session session2 = HibernateUtil.getSessionFactory().getCurrentSession();
        session2.beginTransaction();
        session2.update(aPerson); // Reattachment of aPerson
        session2.getTransaction().commit();
    }

La llamada a update hace que un objeto separado sea persistente de nuevo enlazándolo a una nueva unidad de trabajo, así que cualquier modificación que le realizó mientras estaba separado se puede guardar en la base de datos. Esto incluye cualquier modificación (adiciones o eliminaciones) que le hizo a una colección de ese objeto entidad.

Esto no se utiliza mucho en nuestro ejemplo, pero es un concepto importante que puede incorporar en su propia aplicación. Complete este ejercicio agregando una nueva acción al método main de EventManager y llámela desde la línea de comandos. Si necesita los identificadores de una persona y de un evento - el método save() los retorna (pueda que necesite modificar algunos de los métodos anteriores para retornar ese identificador):

        else if (args[0].equals("addpersontoevent")) {

            Long eventId = mgr.createAndStoreEvent("My Event", new Date());
            Long personId = mgr.createAndStorePerson("Foo", "Bar");
            mgr.addPersonToEvent(personId, eventId);
            System.out.println("Added person " + personId + " to event " + eventId);
        }

Esto fue un ejemplo de una asociación entre dos clases igualmente importantes: dos entidades. Como se mencionó anteriormente, hay otras clases y tipos en un modelo típico, usualmente "menos importantes". Algunos de ustedes las habrán visto, como un int o un java.lang.String. Denominamos a estas clases tipos de valor y sus instancias dependen de una entidad en particular. Las instancias de estos tipos no tienen su propia identidad, ni son compartidas entre entidades. Dos personas no referencian el mismo objeto firstname, incluso si tienen el mismo nombre. Los tipos de valor no sólo pueden encontrarse en el JDK, sino que también puede escribir por sí mismo clases dependientes como por ejemplo, Address o MonetaryAmount. De hecho, en una aplicación Hibernate todas las clases JDK se consideran como tipos de valor.

También puede diseñar una colección de tipos de valor. Esto es conceptualmente diferente de una colección de referencias a otras entidades, pero se ve casi igual en Java.

Vamos a agregar una colección de direcciones de correo electrónico a la entidad Person. Esto se representará como un java.util.Set de las instnaicas java.lang.String:

    private Set emailAddresses = new HashSet();


    public Set getEmailAddresses() {
        return emailAddresses;
    }
    public void setEmailAddresses(Set emailAddresses) {
        this.emailAddresses = emailAddresses;
    }

El mapeo de este Set es así:


        <set name="emailAddresses" table="PERSON_EMAIL_ADDR">
            <key column="PERSON_ID"/>
            <element type="string" column="EMAIL_ADDR"/>
        </set>

La diferencia comparado con el mapeo anterior es el uso de la parte element, que le dice a Hibernate que la colección no contiene referencias a otra entidad, sino que es una colección de elementos que son tipos de valores, aquí especificamente de tipo String. El nombre en minúsculas le dice que es un tipo/conversor de mapeo de Hibernate. Una vez más, el atributo table del elemento set determina el nombre de la tabla para la colección. El elemento key define el nombre de la columna clave foránea en la tabla de colección. El atributo column en el elemento element define el nombre de la columna donde realmente se almacenarán los valores de la dirección de correo electrónico.

Este es el esquema actualizado:

  _____________        __________________
 |             |      |                  |       _____________
 |   EVENTS    |      |   PERSON_EVENT   |      |             |       ___________________
 |_____________|      |__________________|      |    PERSON   |      |                   |
 |             |      |                  |      |_____________|      | PERSON_EMAIL_ADDR |
 | *EVENT_ID   | <--> | *EVENT_ID        |      |             |      |___________________|
 |  EVENT_DATE |      | *PERSON_ID       | <--> | *PERSON_ID  | <--> |  *PERSON_ID       |
 |  TITLE      |      |__________________|      |  AGE        |      |  *EMAIL_ADDR      |
 |_____________|                                |  FIRSTNAME  |      |___________________|
                                                |  LASTNAME   |
                                                |_____________|
 

Puede ver que la clave principal de la tabla de colección es, de hecho, una clave compuesta que utiliza ambas columnas. Esto también implica que no pueden haber direcciones de correo electrónico duplicadas por persona, la cual es exactamente la semántica que necesitamos para un conjunto en Java.

Ahora, puede tratar de agregar elementos a esta colección, al igual que lo hicimos antes vinculando personas y eventos. Es el mismo código en Java.

    private void addEmailToPerson(Long personId, String emailAddress) {

        Session session = HibernateUtil.getSessionFactory().getCurrentSession();
        session.beginTransaction();
        Person aPerson = (Person) session.load(Person.class, personId);
        // adding to the emailAddress collection might trigger a lazy load of the collection
        aPerson.getEmailAddresses().add(emailAddress);
        session.getTransaction().commit();
    }

Esta vez no utilizamos una petición de búqueda - fetch - para dar inicio a la colección. Monitoree su registro SQL e intente de optimizar esto con una recuperación temprana.

A continuacion vamos a mapear una asociación bidireccional. Vamos a hacer que la asociación entre persona y evento funcione desde ambos lados en Java. El esquema de la base de datos no cambia así que todavía tendremos una multiplicidad muchos-a-muchos.

Primero, agregue una colección de participantes a la clase Event:

    private Set participants = new HashSet();


    public Set getParticipants() {
        return participants;
    }
    public void setParticipants(Set participants) {
        this.participants = participants;
    }

Ahora mapee este lado de la asociación en Event.hbm.xml.


        <set name="participants" table="PERSON_EVENT" inverse="true">
            <key column="EVENT_ID"/>
            <many-to-many column="PERSON_ID" class="Person"/>
        </set
>

Estos son mapeos normales de set en ambos documentos de mapeo. Note que los nombres de las columnas en key y many-to-many se intercambiaron en ambos documentos de mapeo. La adición más importante aquí es el atributo inverse="true" en el elemento set del mapeo de colección de Event.

Esto significa que Hibernate debe tomar el otro lado, la clase Person, cuando necesite encontrar información sobre el enlace entre las dos. Esto será mucho más fácil de entender una vez que vea como se crea el enlace bidireccional entre nuestras dos entidades.

Primero, recuerde que Hibernate no afecta la semántica normal de Java. ¿Cómo creamos un enlace entre Person y un Event en el ejemplo unidireccional? Agregue una instancia de Event a la colección de referencias de eventos de una instancia de Person. Si quiere que este enlace funcione bidireccionalmente, tiene que hacer lo mismo del otro lado, añadiendo una referencia Person a la colección en un Event. Este proceso de "establecer el enlace en ambos lados" es absolutamente necesario con enlaces bidireccionales.

Muchos desarrolladores programan a la defensiva y crean métodos de administración de enlaces para establecer correctamente ambos lados, (por ejemplo, en Person):

    protected Set getEvents() {

        return events;
    }
    protected void setEvents(Set events) {
        this.events = events;
    }
    public void addToEvent(Event event) {
        this.getEvents().add(event);
        event.getParticipants().add(this);
    }
    public void removeFromEvent(Event event) {
        this.getEvents().remove(event);
        event.getParticipants().remove(this);
    }

Los métodos get y set para la colección ahora se encuentran protegidos. Esto le permite a las clases en el mismo paquete y a las subclases acceder aún a los métodos, pero impide a cualquier otro que desordene las colecciones directamente. Repita los pasos para la colección del otro lado.

¿Y el atributo de mapeo inverse? Para usted y para Java, un enlace bidireccional es simplemente cuestión de establecer correctamente las referencias en ambos lados. Sin embargo, Hibernate no tiene suficiente información para organizar correctamente declaraciones INSERT y UPDATE de SQL (para evitar violaciones de restricciones). El hacer un lado de la asociación inverse le dice a Hibernate que lo considere un espejo del otro lado. Eso es todo lo necesario para que Hibernate resuelva todos los asuntos que surgen al transformar un modelo de navegación direccional a un esquema de base de datos SQL. Las reglas son muy simples: todas las asociaciones bidireccionales necesitan que uno de los lados sea inverse. En una asociación uno-a-muchos debe ser el lado-de-muchos; y en una asociación muchos-a-muchos, puede escoger cualquier lado.

Una aplicación web de Hibernate utiliza Session y Transaction casi como una aplicación autónoma. Sin embargo, algunos patrones comunes son útiles. Ahora puede escribir un EventManagerServlet. Este servlet puede enumerar todos los eventos almacenados en la base de datos y proporciona una forma HTML para ingresar eventos nuevos.

Primero necesitamos crear nuestro servlet de procesamiento básico. Ya que nuestro servlet solo maneja pedidos GET HTTP sólamente, solo implementaremos el método doGet():

package org.hibernate.tutorial.web;


// Imports
public class EventManagerServlet extends HttpServlet {
    protected void doGet(
            HttpServletRequest request,
            HttpServletResponse response) throws ServletException, IOException {
        SimpleDateFormat dateFormatter = new SimpleDateFormat( "dd.MM.yyyy" );
        try {
            // Begin unit of work
            HibernateUtil.getSessionFactory().getCurrentSession().beginTransaction();
            // Process request and render page...
            // End unit of work
            HibernateUtil.getSessionFactory().getCurrentSession().getTransaction().commit();
        }
        catch (Exception ex) {
            HibernateUtil.getSessionFactory().getCurrentSession().getTransaction().rollback();
            if ( ServletException.class.isInstance( ex ) ) {
                throw ( ServletException ) ex;
            }
            else {
                throw new ServletException( ex );
            }
        }
    }
}

Guarde este servlet como src/main/java/org/hibernate/tutorial/web/EventManagerServlet.java

El patrón aplicado aquí se llama sesión-por-petición. Cuando una petición llega al servlet, se abre una nueva Session de Hibernate por medio de la primera llamada a getCurrentSession() en el SessionFactory. Entonces se inicia una transacción de la base de datos. Todo acceso a los datos tiene que suceder dentro de una transacción, sin importar que los datos sean leídos o escritos . No utilice el modo auto-commit en las aplicaciones.

No utilice una nueva Session de Hibernate para cada operación de base de datos. Utilice una Session Hibernate que cubra el campo de todo el pedido. Utilice getCurrentSession() para vincularlo automáticamente al hilo de Java actual.

Después, se procesan las acciones posibles del pedido y se entrega la respuesta HTML. Llegaremos a esa parte muy pronto.

Finalmente, la unidad de trabajo termina cuando se completa el procesamiento y la entrega. Si surgió algún problema durante el procesamiento o la entrega , se presentará una excepción y la transacción de la base de datos se deshará. Esto completa el patrón session-per-request. En vez del código de demarcación de la transacción en todo servlet, también podría escribir un filtro de servlet. Véa el sitio web de Hibernate y el Wiki para obtener más información sobre este patrón llamado sesión abierta en vista. Lo necesitará tan pronto como considere representar su vista en JSP, no en un servlet.

Ahora puede implementar el procesamiento del pedido y la representación de la página.

        // Write HTML header

        PrintWriter out = response.getWriter();
        out.println("<html><head><title>Event Manager</title></head><body>");
        // Handle actions
        if ( "store".equals(request.getParameter("action")) ) {
            String eventTitle = request.getParameter("eventTitle");
            String eventDate = request.getParameter("eventDate");
            if ( "".equals(eventTitle) || "".equals(eventDate) ) {
                out.println("<b><i>Please enter event title and date.</i></b>");
            }
            else {
                createAndStoreEvent(eventTitle, dateFormatter.parse(eventDate));
                out.println("<b><i>Added event.</i></b>");
            }
        }
        // Print page
       printEventForm(out);
       listEvents(out, dateFormatter);
       // Write HTML footer
       out.println("</body></html>");
       out.flush();
       out.close();

Dado que este estilo de codificación con una mezcla de Java y HTML no escalaría en una aplicación más compleja - tenga en cuenta que sólo estamos ilustrando los conceptos básicos de Hibernate en este tutorial. El código imprime una cabecera y un pie de página HTML. Dentro de esta página se imprime una forma HTML para entrada de eventos y se imprime una lista de todos los eventos en la base de datos. El primer método es trivial y su salida se realiza únicamente en HTML:

    private void printEventForm(PrintWriter out) {

        out.println("<h2>Add new event:</h2>");
        out.println("<form>");
        out.println("Title: <input name='eventTitle' length='50'/><br/>");
        out.println("Date (e.g. 24.12.2009): <input name='eventDate' length='10'/><br/>");
        out.println("<input type='submit' name='action' value='store'/>");
        out.println("</form>");
    }

El método listEvents() utiliza Hibernate Session vinculado al hilo actual para ejecutar una petición:

    private void listEvents(PrintWriter out, SimpleDateFormat dateFormatter) {


        List result = HibernateUtil.getSessionFactory()
                .getCurrentSession().createCriteria(Event.class).list();
        if (result.size() > 0) {
            out.println("<h2>Events in database:</h2>");
            out.println("<table border='1'>");
            out.println("<tr>");
            out.println("<th>Event title</th>");
            out.println("<th>Event date</th>");
            out.println("</tr>");
            Iterator it = result.iterator();
            while (it.hasNext()) {
                Event event = (Event) it.next();
                out.println("<tr>");
                out.println("<td>" + event.getTitle() + "</td>");
                out.println("<td>" + dateFormatter.format(event.getDate()) + "</td>");
                out.println("</tr>");
            }
            out.println("</table>");
        }
    }

Finalmente, la acción store se despacha al método createAndStoreEvent(), el cual también utiliza la Session del hilo actual:

    protected void createAndStoreEvent(String title, Date theDate) {

        Event theEvent = new Event();
        theEvent.setTitle(title);
        theEvent.setDate(theDate);
        HibernateUtil.getSessionFactory()
                .getCurrentSession().save(theEvent);
    }

El servlet se encuentra completo. Un pedido al servlet será procesado en una sola Session y Transaction. Como lo vimos antes en la aplicación autónoma, Hibernate puede enlazar automáticamente estos objetos al hilo actual de ejecución. Esto le da la libertad de utilizar capas en su código y acceder a la SessionFactory de cualquier manera que lo desee. Usualmente, usted utilizaría un diseño más sofisticado y movería el código de acceso de datos a los objetos de acceso de datos (el patrón DAO). Refiérase al Wiki de Hibernate para ver más ejemplos.

Para implementar esta aplicación para prueba debemos crear una Web ARchive (WAR). Primero debemos definir el descriptor WAR como src/main/webapp/WEB-INF/web.xml


<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.4"
    xmlns="http://java.sun.com/xml/ns/j2ee"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd">

    <servlet>
        <servlet-name>Event Manager</servlet-name>
        <servlet-class>org.hibernate.tutorial.web.EventManagerServlet</servlet-class>
    </servlet>

    <servlet-mapping>
        <servlet-name>Event Manager</servlet-name>
        <url-pattern>/eventmanager</url-pattern>
    </servlet-mapping>
</web-app>

Para construir y desplegar llame a mvn package en su directorio de proyecto y copie el archivo hibernate-tutorial.war en su directorio webapp Tomcat.

Nota

If you do not have Tomcat installed, download it from http://tomcat.apache.org/ and follow the installation instructions. Our application requires no changes to the standard Tomcat configuration.

Una vez que se encuentre desplegado y que Tomcat esté ejecutando, acceda la aplicación en http://localhost:8080/hibernate-tutorial/eventmanager. Asegúrese de ver el registro de Tomcat para ver a Hibernate iniciar cuando llegue el primer pedido a su servlet (se llama al inicializador estático en HibernateUtil) y para obetener la salida detallada si ocurre alguna excepción.

El diagrama a continuación brinda una perspectiva a alto nivel de la arquitectura de Hibernate:

Unfortunately we cannot provide a detailed view of all possible runtime architectures. Hibernate is sufficiently flexible to be used in a number of ways in many, many architectures. We will, however, illustrate 2 specifically since they are extremes.

Here are quick discussions about some of the API objects depicted in the preceding diagrams (you will see them again in more detail in later chapters).

SessionFactory (org.hibernate.SessionFactory)

A thread-safe, immutable cache of compiled mappings for a single database. A factory for org.hibernate.Session instances. A client of org.hibernate.connection.ConnectionProvider. Optionally maintains a second level cache of data that is reusable between transactions at a process or cluster level.

Session (org.hibernate.Session)

A single-threaded, short-lived object representing a conversation between the application and the persistent store. Wraps a JDBC java.sql.Connection. Factory for org.hibernate.Transaction. Maintains a first level cache of persistent the application's persistent objects and collections; this cache is used when navigating the object graph or looking up objects by identifier.

Objetos y colecciones persistentes

Short-lived, single threaded objects containing persistent state and business function. These can be ordinary JavaBeans/POJOs. They are associated with exactly one org.hibernate.Session. Once the org.hibernate.Session is closed, they will be detached and free to use in any application layer (for example, directly as data transfer objects to and from presentation). Capítulo 11, Trabajo con objetos discusses transient, persistent and detached object states.

Objetos y colecciones transitorios y separados

Instances of persistent classes that are not currently associated with a org.hibernate.Session. They may have been instantiated by the application and not yet persisted, or they may have been instantiated by a closed org.hibernate.Session. Capítulo 11, Trabajo con objetos discusses transient, persistent and detached object states.

Transaction (org.hibernate.Transaction)

(Optional) A single-threaded, short-lived object used by the application to specify atomic units of work. It abstracts the application from the underlying JDBC, JTA or CORBA transaction. A org.hibernate.Session might span several org.hibernate.Transactions in some cases. However, transaction demarcation, either using the underlying API or org.hibernate.Transaction, is never optional.

ConnectionProvider (org.hibernate.connection.ConnectionProvider)

(Optional) A factory for, and pool of, JDBC connections. It abstracts the application from underlying javax.sql.DataSource or java.sql.DriverManager. It is not exposed to application, but it can be extended and/or implemented by the developer.

TransactionFactory (org.hibernate.TransactionFactory)

(Optional) A factory for org.hibernate.Transaction instances. It is not exposed to the application, but it can be extended and/or implemented by the developer.

Extension Interfaces

Hibernate ofrece un rango de interfaces de extensión opcionales que puede implementar para personalizar el comportamiento de su capa de persistencia. Para obtener más detalles, vea la documentación de la API.

La mayoría de las aplicaciones que utilizan Hibernate necesitan alguna forma de sesiones "contextuales", en donde una sesión dada se encuentra en efecto en todo el campo de acción de un contexto dado. Sin embargo, a través de las aplicaciones la definición de lo que constituye un contexto es usualmente diferente y diferentes contextos definen diferentes campos de acción para la noción de actual. Las aplicaciones que utiliza Hibernate antes de la version 3.0 tienden a utilizar ya sea sesiones contextuales con base ThreadLocal desarrollados en casa, las clases ayudantes tales como HibernateUtil, o enfoques de terceros utilizados, como Spring o Pico, los cuales brindaban sesiones contextuales con base proxy/intercepción.

Comenzando con la version 3.0.1, Hibernate agregó el método SessionFactory.getCurrentSession(). Inicialmente, este asumió la utilización de las transacciones JTA, en donde la transacción JTA definia tanto el contexto como el campo de acción de una sesión actual. Dada la madurez de númerosas implementaciones JTA TransactionManager autónomas existentes, la mayoría, si no es que todas, las aplicaciones deberían utilizar la administración de transacciones JTA en el caso de que se deplieguen o no en un contenedor J2EE. Con base en esto, las sesiones contextuales basadas en JTA es todo lo que usted necesita utilizar.

Sin embargo, desde la versión 3.1, el procesamiento detrás de SessionFactory.getCurrentSession() ahora es conectable. Para ese fin, se ha añadido una nueva interfaz de extensión, org.hibernate.context.CurrentSessionContext, y un nuevo parámetro de configuración, hibernate.current_session_context_class para permitir la conexión del campo de acción y el contexto de definición de las sesiones actuales.

Refiérase a los Javadocs para la interfaz org.hibernate.context.CurrentSessionContext para poder ver una discusión detallada de su contrato. Define un método único, currentSession(), por medio del cual la implementación es responsable de rastrear la sesión contextual actual. Tal como viene empacada, Hibernate incluye tres implementaciones de esta interfaz:

The first two implementations provide a "one session - one database transaction" programming model. This is also known and used as session-per-request. The beginning and end of a Hibernate session is defined by the duration of a database transaction. If you use programmatic transaction demarcation in plain JSE without JTA, you are advised to use the Hibernate Transaction API to hide the underlying transaction system from your code. If you use JTA, you can utilize the JTA interfaces to demarcate transactions. If you execute in an EJB container that supports CMT, transaction boundaries are defined declaratively and you do not need any transaction or session demarcation operations in your code. Refer to Capítulo 13, Transacciones y concurrencia for more information and code examples.

El parámetro de configuración hibernate.current_session_context_class define cuales implementaciones org.hibernate.context.CurrentSessionContext deben utilizarse. Para compatibilidad con versiones anteriores, si este parámetro de configuración no está establecido pero si tiene configurado un org.hibernate.transaction.TransactionManagerLookup, Hibernate utilizará el org.hibernate.context.JTASessionContext. Usualmente el valor de este parámetro sólamente nombraría la clase de implementación a utilizar. Sin embargo, para las tres implementaciones incluídas existen tress nombres cortos: "jta", "thread" y "managed".

Hibernate está diseñado para operar en muchos entornos diferentes y por lo tanto hay un gran número de parámetros de configuración. Afortunadamente, la mayoría tiene valores predeterminados sensibles y Hibernate se distribuye con un archivo hibernate.properties de ejemplo en etc/ que muestra las diversas opciones. Simplemente ponga el fichero de ejemplo en su ruta de clase y personalícelo de acuerdo a sus necesidades.

Una instancia de org.hibernate.cfg.Configuration representa un conjunto entero de mapeos de los tipos Java de una aplicación a una base de datos SQL. La org.hibernate.cfg.Configuration se utiliza para construir una org.hibernate.SessionFactory inmutable. Los mapeos se compilan desde varios archivos de mapeo XML.

Puede obtener una instancia de org.hibernate.cfg.Configuration instanciándola directamente y especificando los documentos de mapeo XML. Si los archivos de mapeo están en la ruta de clase, utilice addResource(). Por ejemplo:

Configuration cfg = new Configuration()

    .addResource("Item.hbm.xml")
    .addResource("Bid.hbm.xml");

Una manera opcional es especificar la clase mapeada y dejar que Hibernate encuentre el documento de mapeo por usted:

Configuration cfg = new Configuration()

    .addClass(org.hibernate.auction.Item.class)
    .addClass(org.hibernate.auction.Bid.class);

Luego Hibernate buscará los archivos de mapeo llamados /org/hibernate/auction/Item.hbm.xml y /org/hibernate/auction/Bid.hbm.xml en la ruta de clase. Este enfoque elimina cualquier nombre de archivo establecido manualmente.

Una org.hibernate.cfg.Configuration también le permite especificar las propiedades de configuración. Por ejemplo:

Configuration cfg = new Configuration()

    .addClass(org.hibernate.auction.Item.class)
    .addClass(org.hibernate.auction.Bid.class)
    .setProperty("hibernate.dialect", "org.hibernate.dialect.MySQLInnoDBDialect")
    .setProperty("hibernate.connection.datasource", "java:comp/env/jdbc/test")
    .setProperty("hibernate.order_updates", "true");

Esta no es la única manera de pasar propiedades de configuración a Hibernate. Algunas opciones incluyen:

Si quiere empezar rápidamente hibernate.properties es el enfoque más fácil.

La org.hibernate.cfg.Configuration está concebida como un objeto de tiempo de inicio que se va a descartar una vez se crea una SessionFactory.

Se aconseja que la org.hibernate.SessionFactory cree y almacene en pool conexiones JDBC por usted Si adopta este enfoque, el abrir una org.hibernate.Session es tan simple como:

Session session = sessions.openSession(); // open a new Session

En el momento en que inicie una tarea que requiera acceso a la base de datos, se obtendrá una conexión JDBC del pool.

Para que esto funcione, primero necesita pasar algunas las propiedades de conexión JDBC a Hibernate. Todos los nombres de las propiedades de Hibernate y su semántica están definidas en la clase org.hibernate.cfg.Environment. Ahora describiremos las configuraciones más importantes para la conexión JDBC.

Hibernate obtendrá y tendrá en pool las conexiones utilizando java.sql.DriverManager si configura las siguientes propiedades:


Sin embargo, el algoritmo de pooling de la conexión propia de Hibernate es algo rudimentario. Está concebido para ayudarle a comenzar y no para utilizarse en un sistema de producción ni siquiera para pruebas de rendimiento. Para alcanzar un mejor rendimiento y estabilidad debe utilizar un pool de terceros. Sólo remplace la propiedad hibernate.connection.pool_size con configuraciones específicas del pool de conexiones. Esto desactivará el pool interno de Hibernate. Por ejemplo, es posible utilizar C3P0.

C3P0 es un pool de conexiones JDBC de código abierto distribuido junto con Hibernate en el directorio lib. Hibernate utilizará su org.hibernate.connection.C3P0ConnectionProvider para pooling de conexiones si establece propiedades hibernate.c3p0.*. Si quiere utilizar Proxool refiérase a hibernate.properties incluído en el paquete y al sitio web de Hibernate para obtener más información.

Aquí hay un archivo hibernate.properties de ejemplo para c3p0:

hibernate.connection.driver_class = org.postgresql.Driver
hibernate.connection.url = jdbc:postgresql://localhost/mydatabase
hibernate.connection.username = myuser
hibernate.connection.password = secret
hibernate.c3p0.min_size=5
hibernate.c3p0.max_size=20
hibernate.c3p0.timeout=1800
hibernate.c3p0.max_statements=50
hibernate.dialect = org.hibernate.dialect.PostgreSQLDialect

Para su utilización dentro de un servidor de aplicaciones, casi siempre usted debe configurar Hibernate para obtener conexiones de un javax.sql.Datasource del servidor de aplicaciones registrado en JNDI. Necesitará establecer al menos una de las siguientes propiedades:


He aquí un archivo hibernate.properties de ejemplo para una fuente de datos JNDI provisto por un servidor de aplicaciones:

hibernate.connection.datasource = java:/comp/env/jdbc/test
hibernate.transaction.factory_class = \
    org.hibernate.transaction.JTATransactionFactory
hibernate.transaction.manager_lookup_class = \
    org.hibernate.transaction.JBossTransactionManagerLookup
hibernate.dialect = org.hibernate.dialect.PostgreSQLDialect

Las conexiones JDBC obtenidas de una fuente de datos JNDI participarán automáticamente en las transacciones del servidor de aplicaciones administradas por el contenedor.

Pueden darse propiedades de conexión arbitrarias anteponiendo "hibernate.connnection" al nombre de propiedad de la conexión. Por ejemplo, puede especificar una propiedad de conexión charSet usando hibernate.connection.charSet.

Puede definir su propia estrategia plugin para obtener conexiones JDBC implementando la interfaz org.hibernate.connection.ConnectionProvider y especificando su propia implementación personalizada por medio de la propiedad hibernate.connection.provider_class.

Hay otras propiedades que controlan el comportamiento de Hibernate en tiempo de ejecución. Todas son opcionales y tienen valores razonables por defecto.

Tabla 3.3. Propiedades de Configuración de Hibernate

Nombre de la propiedadPropósito
hibernate.dialectEl nombre de clase de un org.hibernate.dialect.Dialect de Hibernate, el cual le permite que genere un SQL optimizado para una base de datos relacional en particular.

e.g. full.classname.of.Dialect

En la mayoría de los casos Hibernate podrá de hecho seleccionar la implementación org.hibernate.dialect.Dialect correcta con base en los JDBC metadata que el controlador JDBC retorna.

hibernate.show_sqlEscribe todas las declaraciones SQL a la consola. Esta es una alternativa para establecer la categoria de registro org.hibernate.SQL a debug.

e.g. true | false

hibernate.format_sqlImprime el SQL en el registro y la consola.

e.g. true | false

hibernate.default_schemaCalifica los nombres de tabla sin calificar con el esquema/espacio de tabla dado en el SQL generado.

e.g. SCHEMA_NAME

hibernate.default_catalogCalifica los nombres de tabla sin calificar con el catálogo dado en el SQL generado.

e.g. CATALOG_NAME

hibernate.session_factory_nameAutomáticamente se vinculará el org.hibernate.SessionFactory a este nombre en JNDI después de que se ha creado.

e.g. jndi/composite/name

hibernate.max_fetch_depthEstablece una "profundidad" máxima del árbol de recuperación por unión externa (outer join) para asociaciones de un sólo extremo (uno-a-uno, muchos-a-uno). Un 0 deshabilita la recuperación por unión externa predeterminada.

ej. los valores recomendados entre 0 y 3

hibernate.default_batch_fetch_sizeEstablece un tamaño por defecto para la recuperación en lote de asociaciones de Hibernate.

ej. valores recomendados 4, 8, 16

hibernate.default_entity_modeEstablece un modo predeterminado de representación de entidades para todas las sesiones abiertas desde esta SessionFactory

dynamic-map, dom4j, pojo

hibernate.order_updatesObliga a Hibernate a ordenar las actualizaciones SQL por el valor de la clave principal de los items a actualizar. Esto resultará en menos bloqueos de transacción en sistemas altamente concurrentes.

e.g. true | false

hibernate.generate_statisticsDe habilitarse, Hibernate colectará estadísticas útiles para la afinación de rendimiento.

e.g. true | false

hibernate.use_identifier_rollbackDe habilitarse, cuando se borren los objetos las propiedades identificadoras generadas se resetearán a losvalores establecidos por defecto.

e.g. true | false

hibernate.use_sql_commentsDe activarse, Hibernate generará comentarios dentro del SQL, para una depuración más fácil, por defecto es false.

e.g. true | false

hibernate.id.new_generator_mappingsSetting is relevant when using @GeneratedValue. It indicates whether or not the new IdentifierGenerator implementations are used for javax.persistence.GenerationType.AUTO, javax.persistence.GenerationType.TABLE and javax.persistence.GenerationType.SEQUENCE. Default to false to keep backward compatibility.

e.g. true | false


Nota

We recommend all new projects which make use of to use @GeneratedValue to also set hibernate.id.new_generator_mappings=true as the new generators are more efficient and closer to the JPA 2 specification semantic. However they are not backward compatible with existing databases (if a sequence or a table is used for id generation).

Tabla 3.4. Propiedades de JDBC y Conexiones de Hibernate

Nombre de la propiedadPropósito
hibernate.jdbc.fetch_sizeUn valor distinto de cero que determina el tamaño de recuperación de JDBC (llama a Statement.setFetchSize()).
hibernate.jdbc.batch_sizeUn valor distinto de cero habilita que Hibernate utilice las actualizaciones en lote de JDBC2.

ej. valores recomendados entre 5 y 30

hibernate.jdbc.batch_versioned_dataSet this property to true if your JDBC driver returns correct row counts from executeBatch(). It is usually safe to turn this option on. Hibernate will then use batched DML for automatically versioned data. Defaults to false.

e.g. true | false

hibernate.jdbc.factory_classSelecciona un org.hibernate.jdbc.Batcher personalizado. La mayoría de las aplicaciones no necesitarán esta propiedad de configuración.

eg. classname.of.BatcherFactory

hibernate.jdbc.use_scrollable_resultsetHabilita a Hibernate para utilizar los grupos de resultados deslizables de JDBC2. Esta propiedad sólamente es necesaria cuando se utilizan conexiones JDBC provistas por el usuario. En el caso contrario Hibernate utiliza los metadatos de conexión.

e.g. true | false

hibernate.jdbc.use_streams_for_binaryUtiliza flujos (streams) al escribir/leer tipos binary o serializable a/desde JDBC. Propiedad a nivel de sistema

e.g. true | false

hibernate.jdbc.use_get_generated_keysHabilita el uso de PreparedStatement.getGeneratedKeys() de JDBC3 para recuperar claves generadas nativamente después de insertar. Requiere un controlador JDBC3+ y un JRE1.4+. Establézcalo como falso si su controlador tiene problemas con los generadores del identificador de Hibernate. Por defecto, se intenta determinar las capacidades del controlador utilizando los metadatos de conexión.

e.g. true|false

hibernate.connection.provider_classEL nombre de clase de un org.hibernate.connection.ConnectionProvider personalizado que proporcione conexiones JDBC a Hibernate.

e.g. classname.of.ConnectionProvider

hibernate.connection.isolationEstablece el nivel de aislamiento de la transacción JDBC. Comprueba java.sql.Connection para valores significativos pero observe que la mayoría de las bases de datos no soportan todos los niveles de aislamiento y algunos definen nivekes de aislamiento adicionales y no estándares.

e.g. 1, 2, 4, 8

hibernate.connection.autocommitHabilita un guardado automático (autocommit) para las conexiones JDBC en pool (no se recomienda).

e.g. true | false

hibernate.connection.release_modeEspecifica el momento en que Hibernate debe liberar las conexiones JDBC. Por defecto, una conexión JDBC es retenida hasta que la sesión se cierra o se desconecta explícitamente. Para una fuente de datos JTA del servidor de aplicaciones, debe utilizar after_statement para liberar agresivamente las conexiones después de cada llamada JDBC. Para una conexión no JTA, frecuentemente tiene sentido el liberar la conexión al final de cada transacción, el utilizarafter_transaction. auto escogerá after_statement para las estrategias de transacción JTA y CMT y after_transaction para la estrategia JDBC de transacción.

e.g. auto (default) | on_close | after_transaction | after_statement

This setting only affects Sessions returned from SessionFactory.openSession. For Sessions obtained through SessionFactory.getCurrentSession, the CurrentSessionContext implementation configured for use controls the connection release mode for those Sessions. See Sección 2.3, “Sesiones contextuales”

hibernate.connection.<propertyName>Pasar la propiedad JDBC <propertyName> a DriverManager.getConnection().
hibernate.jndi.<propertyName>Pasar la propiedad <propertyName> al InitialContextFactory JNDI.

Tabla 3.5. Propiedades de Caché de Hibernate

Nombre de la propiedadPropósito
hibernate.cache.provider_classEl nombre de clase de un CacheProvider personalizado.

e.g. classname.of.CacheProvider

hibernate.cache.use_minimal_putsOptimiza la operación del caché de segundo nivel para minimizar escrituras, con el costo de lecturas más frecuentes. Esta configuración es más útil para cachés en clúster y en Hibernate3, está habilitado por defecto para implementaciones de caché en clúster.

e.g. true|false

hibernate.cache.use_query_cacheHabilita el caché de consultas. Las consultas individuales todavía tienen que establecerse con cachés.

e.g. true|false

hibernate.cache.use_second_level_cacheSe puede utilizar para deshabilitar por completo el caché de segundo nivel, que está habilitado por defecto para clases que especifican un mapeo <cache>.

e.g. true|false

hibernate.cache.query_cache_factoryEl nombre de clase de una interfaz QueryCache personalizada, por defecto al StandardQueryCache incorporado.

e.g. classname.of.QueryCache

hibernate.cache.region_prefixUn prefijo que se debe utilizar para los nombres de región del caché de segundo nivel.

e.g. prefix

hibernate.cache.use_structured_entriesObliga a Hibernate a almacenar los datos en el caché de segundo nivel en un formato más amigable para personas.

e.g. true|false

hibernate.cache.default_cache_concurrency_strategySetting used to give the name of the default org.hibernate.annotations.CacheConcurrencyStrategy to use when either @Cacheable or @Cache is used. @Cache(strategy="..") is used to override this default.


Tabla 3.7. Propiedades Misceláneas

Nombre de la propiedadPropósito
hibernate.current_session_context_classSupply a custom strategy for the scoping of the "current" Session. See Sección 2.3, “Sesiones contextuales” for more information about the built-in strategies.

e.g. jta | thread | managed | custom.Class

hibernate.query.factory_classElige la implementación de análisis sintáctico HQL.

ej. org.hibernate.hql.ast.ASTQueryTranslatorFactory o org.hibernate.hql.classic.ClassicQueryTranslatorFactory

hibernate.query.substitutionsSe utiliza para mapear desde tokens en consultas Hibernate a tokens SQL. (por ejemplo, los tokens pueden ser nombres de función o literales).

e.g. hqlLiteral=SQL_LITERAL, hqlFunction=SQLFUNC

hibernate.hbm2ddl.autoExporta o valida automáticamente DDL de esquema a la base de datos cuando se crea la SessionFactory. Con create-drop se desechará el esquema de la base de datos cuando la SessionFactory se cierre explícitamente.

e.g. validate | update | create | create-drop

hibernate.hbm2ddl.import_files

Comma-separated names of the optional files containing SQL DML statements executed during the SessionFactory creation. This is useful for testing or demoing: by adding INSERT statements for example you can populate your database with a minimal set of data when it is deployed.

File order matters, the statements of a give file are executed before the statements of the following files. These statements are only executed if the schema is created ie if hibernate.hbm2ddl.auto is set to create or create-drop.

e.g. /humans.sql,/dogs.sql

hibernate.bytecode.use_reflection_optimizer

Enables the use of bytecode manipulation instead of runtime reflection. This is a System-level property and cannot be set in hibernate.cfg.xml. Reflection can sometimes be useful when troubleshooting. Hibernate always requires either CGLIB or javassist even if you turn off the optimizer.

e.g. true | false

hibernate.bytecode.provider

Both javassist or cglib can be used as byte manipulation engines; the default is javassist.

e.g. javassist | cglib


Siempre configure la propiedad hibernate.dialect a la subclase correcta org.hibernate.dialect.Dialect para su base de datos. Si especifica un dialecto, Hibernate utilizará valores predeterminados de manera sensible para algunas de las otras propiedades enumeradas anteriormente, ahorrándole el esfuerzo de especificarlas manualmente.


Hibernate utiliza Simple Logging Facade for Java (SLF4J) con el fin de registrar varios eventos del sistema. SLF4J puede direccionar su salida de registro a varios marcos de trabajo de registro (NOP, Simple, log4j versión 1.2, JDK 1.4 logging, JCL o logback) dependiendo de su enlace escogido. Con el fin de configurar el registro necesitará slf4j-api.jar en su ruta de clase junto con el archivo jar para su enlace preferido - slf4j-log4j12.jar en el caso de Log4J. Consulte la documentación SLF4J para obtener mayores detalles. Para usar Log4j también necesitará poner un archivo log4j.properties en su ruta de clase. Un archivo de propiedades de ejemplo se distribuye junto con Hibernate en el directorio src/.

Le recomendamos bastante que se familiarice con los mensajes de registro de Hibernate. Se ha trabajado bastante para hacer que los registros de Hibernate sean tan detallados como sea posible, sin hacerlos ilegibles. Es un dispositivo esencial en la resolución de problemas. Las categorías de registro más interesantes son las siguientes:


Al desarrollar aplicaciones con Hibernate, casi siempre debe trabajar con debug habilitado para la categoría org.hibernate.SQL o, alternativamente, la propiedad hibernate.show_sql habilitada.

Un enfoque alternativo de configuración es especificar una configuración completa en un archivo llamado hibernate.cfg.xml. Este archivo se puede utilizar como un remplazo del archivo hibernate.properties o en el caso de que ambos se encuentren presentes, para sobrescribir propiedades.

El archivo de configuración XML por defecto se espera en la raíz de su CLASSPATH. Este es un ejemplo:


<?xml version='1.0' encoding='utf-8'?>
<!DOCTYPE hibernate-configuration PUBLIC
    "-//Hibernate/Hibernate Configuration DTD//EN"
    "http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">

<hibernate-configuration>

    <!-- a SessionFactory instance listed as /jndi/name -->
    <session-factory
        name="java:hibernate/SessionFactory">

        <!-- properties -->
        <property name="connection.datasource">java:/comp/env/jdbc/MyDB</property>
        <property name="dialect">org.hibernate.dialect.MySQLDialect</property>
        <property name="show_sql">false</property>
        <property name="transaction.factory_class">
            org.hibernate.transaction.JTATransactionFactory
        </property>
        <property name="jta.UserTransaction">java:comp/UserTransaction</property>

        <!-- mapping files -->
        <mapping resource="org/hibernate/auction/Item.hbm.xml"/>
        <mapping resource="org/hibernate/auction/Bid.hbm.xml"/>

        <!-- cache settings -->
        <class-cache class="org.hibernate.auction.Item" usage="read-write"/>
        <class-cache class="org.hibernate.auction.Bid" usage="read-only"/>
        <collection-cache collection="org.hibernate.auction.Item.bids" usage="read-write"/>

    </session-factory>

</hibernate-configuration>

La ventaja de este enfoque es la externalización de los nombres de los archivos de mapeo a la configuración. El hibernate.cfg.xml también es más práctico una vez que haya afinado el caché de Hibernate. Puede escoger ya sea hibernate.properties o hibernate.cfg.xml. Ambos son equivalentes, excepto por los beneficios de utilizar la sintaxis XML que mencionados anteriormente.

Con la configuración XML, iniciar Hibernate es tan simple como:

SessionFactory sf = new Configuration().configure().buildSessionFactory();

Puede seleccionar un fichero de configuración XML diferente utilizando:

SessionFactory sf = new Configuration()

    .configure("catdb.cfg.xml")
    .buildSessionFactory();

Hibernate tiene los siguientes puntos de integración con la infraestructura J2EE:

Dependiendo de su entorno, podría tener que establecer la opción de configuración hibernate.connection.aggressive_release como true si su servidor de aplicaciones muestra excepciones "contención de conexión".

La API de Session de Hibernate es independiente de cualquier demarcación de transacción en su arquitectura. Si deja que Hibernate utilice JDBC directamente, a través de un pool de conexiones, puede comenzar y acabar sus transacciones llamando la API de JDBC. Si ejecuta en un servidor de aplicaciones J2EE, puede que quiera utilizar transacciones administradas por bean y llamar la API de JTA y UserTransaction cuando sea necesario.

Para mantener su código portable entre estos dos (y otros) entornos le recomendamos la API de Transaction de Hibernate, que envuelve y oculta el sistema subyacente. Tiene que especificar una clase fábrica para las instancias de Transaction estableciendo la propiedad de configuración hibernate.transaction.factory_class de Hibernate.

Existen tres opciones estándares o incorporadas:

También puede definir sus propias estrategias de transacción (por ejemplo, para un servicio de transacción CORBA).

Algunas funcionalidades en Hibernate (por ejemplo, el caché de segundo nivel, las sesiones contextuales, etc.) requieren acceso al TransactionManager de JTA en un entorno administrado. En un servidor de aplicaciones tiene que especificar cómo Hibernate debe obtener una referencia al TransactionManager, ya que J2EE no estandariza un sólo mecanismo:


Una SessionFactory de Hibernate vinculada a JNDI puede simplificar la búsqueda de la fábrica y la creación de nuevas Sessiones. Sin embargo, esto no se relaciona con un Datasource vinculado a JNDI; simplemente que ambos utilizan el mismo registro.

Si desea tener la SessionFactory vinculada a un espacio de nombres de JNDI, especifique un nombre (por ejemplo, java:hibernate/SessionFactory) utilizando la propiedad hibernate.session_factory_name. Si se omite esta propiedad, la SessionFactory no será vinculada a JNDI. Esto es particularmente útil en entornos con una implementación JNDI de sólo lectura por defecto (por ejemplo, en Tomcat).

Al vincular la SessionFactory a JNDI, Hibernate utilizará los valores de hibernate.jndi.url, hibernate.jndi.class para instanciar un contexto inicial. Si éstos no se especifican, se utilizará el InitialContext por defecto.

Hibernate colocará automáticamente la SessionFactory en JNDI después de que llame a cfg.buildSessionFactory(). Esto significa que tendrá al menos esta llamada en algún código de inicio o clase de utilidad en su aplicación, a menos de que utilice el despliegue JMX con el HibernateService (esto se discute más adelante en mayor detalle).

Si utiliza una SessionFactory JNDI, un EJB or cualquier otra clase puede llegar a obtener el SessionFactory utilizando una búsqueda JNDI.

It is recommended that you bind the SessionFactory to JNDI in a managed environment and use a static singleton otherwise. To shield your application code from these details, we also recommend to hide the actual lookup code for a SessionFactory in a helper class, such as HibernateUtil.getSessionFactory(). Note that such a class is also a convenient way to startup Hibernate—see chapter 1.

The easiest way to handle Sessions and transactions is Hibernate's automatic "current" Session management. For a discussion of contextual sessions see Sección 2.3, “Sesiones contextuales”. Using the "jta" session context, if there is no Hibernate Session associated with the current JTA transaction, one will be started and associated with that JTA transaction the first time you call sessionFactory.getCurrentSession(). The Sessions retrieved via getCurrentSession() in the "jta" context are set to automatically flush before the transaction completes, close after the transaction completes, and aggressively release JDBC connections after each statement. This allows the Sessions to be managed by the life cycle of the JTA transaction to which it is associated, keeping user code clean of such management concerns. Your code can either use JTA programmatically through UserTransaction, or (recommended for portable code) use the Hibernate Transaction API to set transaction boundaries. If you run in an EJB container, declarative transaction demarcation with CMT is preferred.

La línea cfg.buildSessionFactory() todavía se tiene que ejecutar en algún sitio para obtener una SessionFactory en JNDI. Puede hacer esto ya sea en un bloque inicializador static (como aquel en HibernateUtil) o bien puede desplegar Hibernate como un servicio administrado.

Hibernate se distribuye con org.hibernate.jmx.HibernateService para desplegar en un servidor de aplicaciones con capacidades JMX, como JBoss AS. El despliegue y la configuracón reales son específicos del vendedor. He aquí un ejemplo de jboss-service.xml para JBoss 4.0.x:


<?xml version="1.0"?>
<server>

<mbean code="org.hibernate.jmx.HibernateService"
    name="jboss.jca:service=HibernateFactory,name=HibernateFactory">

    <!-- Required services -->
    <depends>jboss.jca:service=RARDeployer</depends>
    <depends>jboss.jca:service=LocalTxCM,name=HsqlDS</depends>

    <!-- Bind the Hibernate service to JNDI -->
    <attribute name="JndiName">java:/hibernate/SessionFactory</attribute>

    <!-- Datasource settings -->
    <attribute name="Datasource">java:HsqlDS</attribute>
    <attribute name="Dialect">org.hibernate.dialect.HSQLDialect</attribute>

    <!-- Transaction integration -->
    <attribute name="TransactionStrategy">
        org.hibernate.transaction.JTATransactionFactory</attribute>
    <attribute name="TransactionManagerLookupStrategy">
        org.hibernate.transaction.JBossTransactionManagerLookup</attribute>
    <attribute name="FlushBeforeCompletionEnabled">true</attribute>
    <attribute name="AutoCloseSessionEnabled">true</attribute>

    <!-- Fetching options -->
    <attribute name="MaximumFetchDepth">5</attribute>

    <!-- Second-level caching -->
    <attribute name="SecondLevelCacheEnabled">true</attribute>
    <attribute name="CacheProviderClass">org.hibernate.cache.EhCacheProvider</attribute>
    <attribute name="QueryCacheEnabled">true</attribute>

    <!-- Logging -->
    <attribute name="ShowSqlEnabled">true</attribute>

    <!-- Mapping files -->
    <attribute name="MapResources">auction/Item.hbm.xml,auction/Category.hbm.xml</attribute>

</mbean>

</server>

Este archivo se implementa en un directorio llamado META-INF y se encuentra empacado en un archivo JAR con la extensión .sar (archivo de servicio). También necesita empacar Hibernate, sus bibliotecas de terceros requeridas, sus clases persistentes compiladas, así como sus archivos de mapeo en el mismo archivo. Sus beans empresariales (usualmente beans de sesión) se pueden dejar en su propio archivo JAR, pero puede incluir este archivo EJB JAR en el archivo de servicio principal para obtener una unidad desplegable en vivo (sin apagarlo). Consulte la documentación de JBoss AS para obtener más información sobre el servicio JMX y la implementación de EJB.

Persistent classes are classes in an application that implement the entities of the business problem (e.g. Customer and Order in an E-commerce application). The term "persistent" here means that the classes are able to be persisted, not that they are in the persistent state (see Sección 11.1, “Estados de objeto de Hibernate” for discussion).

Hibernate works best if these classes follow some simple rules, also known as the Plain Old Java Object (POJO) programming model. However, none of these rules are hard requirements. Indeed, Hibernate assumes very little about the nature of your persistent objects. You can express a domain model in other ways (using trees of java.util.Map instances, for example).

Ejemplo 4.1. Simple POJO representing a cat

package eg;

import java.util.Set;
import java.util.Date;
public class Cat {
private Long id; // identifier
private Date birthdate;
private Color color;
private char sex;
private float weight;
    private int litterId;
    private Cat mother;
    private Set kittens = new HashSet();
    private void setId(Long id) {
        this.id=id;
    }
    public Long getId() {
        return id;
    }
    void setBirthdate(Date date) {
        birthdate = date;
    }
    public Date getBirthdate() {
        return birthdate;
    }
    void setWeight(float weight) {
        this.weight = weight;
    }
    public float getWeight() {
        return weight;
    }
    public Color getColor() {
        return color;
    }
    void setColor(Color color) {
        this.color = color;
    }
    void setSex(char sex) {
        this.sex=sex;
    }
    public char getSex() {
        return sex;
    }
    void setLitterId(int id) {
        this.litterId = id;
    }
    public int getLitterId() {
        return litterId;
    }
    void setMother(Cat mother) {
        this.mother = mother;
    }
    public Cat getMother() {
        return mother;
    }
    void setKittens(Set kittens) {
        this.kittens = kittens;
    }
    public Set getKittens() {
        return kittens;
    }
    // addKitten not needed by Hibernate
    public void addKitten(Cat kitten) {
        kitten.setMother(this);
    kitten.setLitterId( kittens.size() );
        kittens.add(kitten);
    }
}

En las siguientes secciones vamos a explorar en mayor detalle las cuatro reglas principales de las clases persistentes.

Cat has a property named id. This property maps to the primary key column(s) of the underlying database table. The type of the identifier property can be any "basic" type (see ???). See Sección 9.4, “Componentes como identificadores compuestos” for information on mapping composite (multi-column) identifiers.

Nota

Identifiers do not necessarily need to identify column(s) in the database physically defined as a primary key. They should just identify columns that can be used to uniquely identify rows in the underlying table.

Le recomendamos que declare propiedades identificadoras nombradas-consistentemente en clases persistentes. y que utilice un tipo nulable (por ejemplo, no primitivo).

A central feature of Hibernate, proxies (lazy loading), depends upon the persistent class being either non-final, or the implementation of an interface that declares all public methods. You can persist final classes that do not implement an interface with Hibernate; you will not, however, be able to use proxies for lazy association fetching which will ultimately limit your options for performance tuning. To persist a final class which does not implement a "full" interface you must disable proxy generation. See Ejemplo 4.2, “Disabling proxies in hbm.xml” and Ejemplo 4.3, “Disabling proxies in annotations”.



If the final class does implement a proper interface, you could alternatively tell Hibernate to use the interface instead when generating the proxies. See Ejemplo 4.4, “Proxying an interface in hbm.xml” and Ejemplo 4.5, “Proxying an interface in annotations”.



You should also avoid declaring public final methods as this will again limit the ability to generate proxies from this class. If you want to use a class with public final methods, you must explicitly disable proxying. Again, see Ejemplo 4.2, “Disabling proxies in hbm.xml” and Ejemplo 4.3, “Disabling proxies in annotations”.

Tiene que sobrescribir los métodos equals() y hashCode() si:

Hibernate garantiza la equivalencia de identidad persistente (fila de base de datos) y de identidad Java sólamente dentro del ámbito de una sesión en particular. De modo que en el momento en que mezcla instancias recuperadas en sesiones diferentes, tiene que implementar equals() y hashCode() si desea tener una semántica significativa para Sets.

La forma más obvia es implementar equals()/hashCode() comparando el valor identificador de ambos objetos. Si el valor es el mismo, ambos deben ser la misma fila de la base de datos ya que son iguales. Si ambos son agregados a un Set, sólo tendremos un elemento en el Set). Desafortunadamente, no puede utilizar este enfoque con identificadores generados. Hibernate sólo asignará valores identificadores a objetos que son persistentes; una instancia recién creada no tendrá ningún valor identificador. Además, si una instancia no se encuentra guardada y está actualmente en un Set, al guardarla se asignará un valor identificador al objeto. Si equals() y hashCode() están basados en el valor identificador, el código hash podría cambiar, rompiendo el contrato del Set. Consulte el sitio web de Hibernate y allí encontrará una discusión completa sobre este problema. Este no es un problema de Hibernate, sino de la semántica normal de Java de identidad de objeto e igualdad.

Le recomendamos implementar equals() y hashCode() utilizando igualdad de clave empresarial (Business key equality). Igualdad de clave empresarial significa que el método equals() sólamente compara las propiedades que forman la clave empresarial. Esta es una clave que podría identificar nuestra instancia en el mundo real (una clave candidata natural):

public class Cat {


    ...
    public boolean equals(Object other) {
        if (this == other) return true;
        if ( !(other instanceof Cat) ) return false;
        final Cat cat = (Cat) other;
        if ( !cat.getLitterId().equals( getLitterId() ) ) return false;
        if ( !cat.getMother().equals( getMother() ) ) return false;
        return true;
    }
    public int hashCode() {
        int result;
        result = getMother().hashCode();
        result = 29 * result + getLitterId();
        return result;
    }
}

A business key does not have to be as solid as a database primary key candidate (see Sección 13.1.3, “Consideración de la identidad del objeto”). Immutable or unique properties are usually good candidates for a business key.

Las entidades persistentes no necesariamente tienen que estar representadas como clases POJO o como objetos JavaBean en tiempo de ejecución. Hibernate también soporta modelos dinámicos (utilizando Mapeos de Mapeos en tiempo de ejecución) y la representación de entidades como árboles de DOM4J. No escriba clases persistentes con este enfoque, sólamente archivos de mapeo.

By default, Hibernate works in normal POJO mode. You can set a default entity representation mode for a particular SessionFactory using the default_entity_mode configuration option (see Tabla 3.3, “Propiedades de Configuración de Hibernate”).

Los siguientes ejemplos demuestran la representación utilizando Mapeos. Primero, en el archivo de mapeo tiene que declararse un entity-name en lugar de, o además de un nombre de clase:


<hibernate-mapping>

    <class entity-name="Customer">

        <id name="id"
            type="long"
            column="ID">
            <generator class="sequence"/>
        </id>

        <property name="name"
            column="NAME"
            type="string"/>

        <property name="address"
            column="ADDRESS"
            type="string"/>

        <many-to-one name="organization"
            column="ORGANIZATION_ID"
            class="Organization"/>

        <bag name="orders"
            inverse="true"
            lazy="false"
            cascade="all">
            <key column="CUSTOMER_ID"/>
            <one-to-many class="Order"/>
        </bag>

    </class>
    
</hibernate-mapping>

Aunque las asociaciones se declaran utilizando nombres de clase destino, el tipo destino de una asociación puede ser además una entidad dinámica en lugar de un POJO.

Después de establecer el modo de entidad predeterminado como dynamic-map para la SessionFactory, puede trabajar en tiempo de ejecución con Mapeos de Mapeos:

Session s = openSession();

Transaction tx = s.beginTransaction();
// Create a customer
Map david = new HashMap();
david.put("name", "David");
// Create an organization
Map foobar = new HashMap();
foobar.put("name", "Foobar Inc.");
// Link both
david.put("organization", foobar);
// Save both
s.save("Customer", david);
s.save("Organization", foobar);
tx.commit();
s.close();

Una de las ventajas principales de un mapeo dinámico es el rápido tiempo de entrega del prototipado sin la necesidad de implementar clases de entidad. Sin embargo, pierde el chequeo de tipos en tiempo de compilación y muy probablemente tendrá que tratar con muchas excepciones en tiempo de ejecución. Gracias al mapeo de Hibernate, el esquema de base de datos se puede normalizar y volver sólido, permitiendo añadir una implementación apropiada del modelo de dominio más adelante.

Los modos de representación de entidad se pueden establecer por Session:

Session dynamicSession = pojoSession.getSession(EntityMode.MAP);


// Create a customer
Map david = new HashMap();
david.put("name", "David");
dynamicSession.save("Customer", david);
...
dynamicSession.flush();
dynamicSession.close()
...
// Continue on pojoSession

Tenga en cuenta que la llamada a getSession() utilizando un EntityMode está en la API de Session, no en la de SessionFactory. De esta forma, la nueva Session comparte la conexión JDBC, la transacción y otra información de contexto. Esto significa que no tiene que llamar a flush() ni a close() en la Session secundaria, y también tiene que dejar el manejo de la transacción y de la conexión a la unidad de trabajo primaria.

More information about the XML representation capabilities can be found in Capítulo 20, Mapeo XML.

org.hibernate.tuple.Tuplizer and its sub-interfaces are responsible for managing a particular representation of a piece of data given that representation's org.hibernate.EntityMode. If a given piece of data is thought of as a data structure, then a tuplizer is the thing that knows how to create such a data structure, how to extract values from such a data structure and how to inject values into such a data structure. For example, for the POJO entity mode, the corresponding tuplizer knows how create the POJO through its constructor. It also knows how to access the POJO properties using the defined property accessors.

There are two (high-level) types of Tuplizers:

Users can also plug in their own tuplizers. Perhaps you require that java.util.Map implementation other than java.util.HashMap be used while in the dynamic-map entity-mode. Or perhaps you need to define a different proxy generation strategy than the one used by default. Both would be achieved by defining a custom tuplizer implementation. Tuplizer definitions are attached to the entity or component mapping they are meant to manage. Going back to the example of our Customer entity, Ejemplo 4.6, “Specify custom tuplizers in annotations” shows how to specify a custom org.hibernate.tuple.entity.EntityTuplizer using annotations while Ejemplo 4.7, “Specify custom tuplizers in hbm.xml” shows how to do the same in hbm.xml



org.hibernate.EntityNameResolver is a contract for resolving the entity name of a given entity instance. The interface defines a single method resolveEntityName which is passed the entity instance and is expected to return the appropriate entity name (null is allowed and would indicate that the resolver does not know how to resolve the entity name of the given entity instance). Generally speaking, an org.hibernate.EntityNameResolver is going to be most useful in the case of dynamic models. One example might be using proxied interfaces as your domain model. The hibernate test suite has an example of this exact style of usage under the org.hibernate.test.dynamicentity.tuplizer2. Here is some of the code from that package for illustration.

/**

 * A very trivial JDK Proxy InvocationHandler implementation where we proxy an
 * interface as the domain model and simply store persistent state in an internal
 * Map.  This is an extremely trivial example meant only for illustration.
 */
public final class DataProxyHandler implements InvocationHandler {
        private String entityName;
        private HashMap data = new HashMap();
        public DataProxyHandler(String entityName, Serializable id) {
                this.entityName = entityName;
                data.put( "Id", id );
        }
        public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
                String methodName = method.getName();
                if ( methodName.startsWith( "set" ) ) {
                        String propertyName = methodName.substring( 3 );
                        data.put( propertyName, args[0] );
                }
                else if ( methodName.startsWith( "get" ) ) {
                        String propertyName = methodName.substring( 3 );
                        return data.get( propertyName );
                }
                else if ( "toString".equals( methodName ) ) {
                        return entityName + "#" + data.get( "Id" );
                }
                else if ( "hashCode".equals( methodName ) ) {
                        return new Integer( this.hashCode() );
                }
                return null;
        }
        public String getEntityName() {
                return entityName;
        }
        public HashMap getData() {
                return data;
        }
}
public class ProxyHelper {
    public static String extractEntityName(Object object) {
        // Our custom java.lang.reflect.Proxy instances actually bundle
        // their appropriate entity name, so we simply extract it from there
        // if this represents one of our proxies; otherwise, we return null
        if ( Proxy.isProxyClass( object.getClass() ) ) {
            InvocationHandler handler = Proxy.getInvocationHandler( object );
            if ( DataProxyHandler.class.isAssignableFrom( handler.getClass() ) ) {
                DataProxyHandler myHandler = ( DataProxyHandler ) handler;
                return myHandler.getEntityName();
            }
        }
        return null;
    }
    // various other utility methods ....
}
/**
 * The EntityNameResolver implementation.
 *
 * IMPL NOTE : An EntityNameResolver really defines a strategy for how entity names
 * should be resolved.  Since this particular impl can handle resolution for all of our
 * entities we want to take advantage of the fact that SessionFactoryImpl keeps these
 * in a Set so that we only ever have one instance registered.  Why?  Well, when it
 * comes time to resolve an entity name, Hibernate must iterate over all the registered
 * resolvers.  So keeping that number down helps that process be as speedy as possible.
 * Hence the equals and hashCode implementations as is
 */
public class MyEntityNameResolver implements EntityNameResolver {
    public static final MyEntityNameResolver INSTANCE = new MyEntityNameResolver();
    public String resolveEntityName(Object entity) {
        return ProxyHelper.extractEntityName( entity );
    }
    public boolean equals(Object obj) {
        return getClass().equals( obj.getClass() );
    }
    public int hashCode() {
        return getClass().hashCode();
    }
}
public class MyEntityTuplizer extends PojoEntityTuplizer {
        public MyEntityTuplizer(EntityMetamodel entityMetamodel, PersistentClass mappedEntity) {
                super( entityMetamodel, mappedEntity );
        }
        public EntityNameResolver[] getEntityNameResolvers() {
                return new EntityNameResolver[] { MyEntityNameResolver.INSTANCE };
        }
    public String determineConcreteSubclassEntityName(Object entityInstance, SessionFactoryImplementor factory) {
        String entityName = ProxyHelper.extractEntityName( entityInstance );
        if ( entityName == null ) {
            entityName = super.determineConcreteSubclassEntityName( entityInstance, factory );
        }
        return entityName;
    }
    ...

Con el fin de registrar un org.hibernate.EntityNameResolver los usuarios deben:

  1. Implement a custom tuplizer (see Sección 4.5, “Tuplizers”), implementing the getEntityNameResolvers method

  2. Registrarlo con el org.hibernate.impl.SessionFactoryImpl (el cual es la clase de implementación para org.hibernate.SessionFactory) usando el método registerEntityNameResolver.

Object/relational mappings can be defined in three approaches:

Annotations are split in two categories, the logical mapping annotations (describing the object model, the association between two entities etc.) and the physical mapping annotations (describing the physical schema, tables, columns, indexes, etc). We will mix annotations from both categories in the following code examples.

JPA annotations are in the javax.persistence.* package. Hibernate specific extensions are in org.hibernate.annotations.*. You favorite IDE can auto-complete annotations and their attributes for you (even without a specific "JPA" plugin, since JPA annotations are plain Java 5 annotations).

Here is an example of mapping

package eg;


@Entity 
@Table(name="cats") @Inheritance(strategy=SINGLE_TABLE)
@DiscriminatorValue("C") @DiscriminatorColumn(name="subclass", discriminatorType=CHAR)
public class Cat {
   
   @Id @GeneratedValue
   public Integer getId() { return id; }
   public void setId(Integer id) { this.id = id; }
   private Integer id;
   public BigDecimal getWeight() { return weight; }
   public void setWeight(BigDecimal weight) { this.weight = weight; }
   private BigDecimal weight;
   @Temporal(DATE) @NotNull @Column(updatable=false)
   public Date getBirthdate() { return birthdate; }
   public void setBirthdate(Date birthdate) { this.birthdate = birthdate; }
   private Date birthdate;
   @org.hibernate.annotations.Type(type="eg.types.ColorUserType")
   @NotNull @Column(updatable=false)
   public ColorType getColor() { return color; }
   public void setColor(ColorType color) { this.color = color; }
   private ColorType color;
   @NotNull @Column(updatable=false)
   public String getSex() { return sex; }
   public void setSex(String sex) { this.sex = sex; }
   private String sex;
   @NotNull @Column(updatable=false)
   public Integer getLitterId() { return litterId; }
   public void setLitterId(Integer litterId) { this.litterId = litterId; }
   private Integer litterId;
   @ManyToOne @JoinColumn(name="mother_id", updatable=false)
   public Cat getMother() { return mother; }
   public void setMother(Cat mother) { this.mother = mother; }
   private Cat mother;
   @OneToMany(mappedBy="mother") @OrderBy("litterId")
   public Set<Cat> getKittens() { return kittens; }
   public void setKittens(Set<Cat> kittens) { this.kittens = kittens; }
   private Set<Cat> kittens = new HashSet<Cat>();
}
@Entity @DiscriminatorValue("D")
public class DomesticCat extends Cat {
   public String getName() { return name; }
   public void setName(String name) { this.name = name }
   private String name;
}
@Entity
public class Dog { ... }

The legacy hbm.xml approach uses an XML schema designed to be readable and hand-editable. The mapping language is Java-centric, meaning that mappings are constructed around persistent class declarations and not table declarations.

Observe que, incluso aunque muchos de los usuarios de Hibernate eligen escribir el XML a mano, existe un número de herramientas para generar el documento de mapeo, incluyendo XDoclet, Middlegen y AndroMDA.

Este es un ejemplo de mapeo:


<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
      "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
          "http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="eg">

        <class name="Cat"
            table="cats"
            discriminator-value="C">

                <id name="id">
                        <generator class="native"/>
                </id>

                <discriminator column="subclass"
                     type="character"/>

                <property name="weight"/>

                <property name="birthdate"
                    type="date"
                    not-null="true"
                    update="false"/>

                <property name="color"
                    type="eg.types.ColorUserType"
                    not-null="true"
                    update="false"/>

                <property name="sex"
                    not-null="true"
                    update="false"/>

                <property name="litterId"
                    column="litterId"
                    update="false"/>

                <many-to-one name="mother"
                    column="mother_id"
                    update="false"/>

                <set name="kittens"
                    inverse="true"
                    order-by="litter_id">
                        <key column="mother_id"/>
                        <one-to-many class="Cat"/>
                </set>

                <subclass name="DomesticCat"
                    discriminator-value="D">

                        <property name="name"
                            type="string"/>

                </subclass>

        </class>

        <class name="Dog">
                <!-- mapping for Dog could go here -->
        </class>

</hibernate-mapping>

We will now discuss the concepts of the mapping documents (both annotations and XML). We will only describe, however, the document elements and attributes that are used by Hibernate at runtime. The mapping document also contains some extra optional attributes and elements that affect the database schemas exported by the schema export tool (for example, the not-null attribute).

An entity is a regular Java object (aka POJO) which will be persisted by Hibernate.

To mark an object as an entity in annotations, use the @Entity annotation.

@Entity

public class Flight implements Serializable {
    Long id;
    @Id
    public Long getId() { return id; }
    public void setId(Long id) { this.id = id; }
}         

That's pretty much it, the rest is optional. There are however any options to tweak your entity mapping, let's explore them.

@Table lets you define the table the entity will be persisted into. If undefined, the table name is the unqualified class name of the entity. You can also optionally define the catalog, the schema as well as unique constraints on the table.

@Entity

@Table(name="TBL_FLIGHT", 
       schema="AIR_COMMAND", 
       uniqueConstraints=
           @UniqueConstraint(
               name="flight_number", 
               columnNames={"comp_prefix", "flight_number"} ) )
public class Flight implements Serializable {
    @Column(name="comp_prefix")
    public String getCompagnyPrefix() { return companyPrefix; }
    @Column(name="flight_number")
    public String getNumber() { return number; }
}

The constraint name is optional (generated if left undefined). The column names composing the constraint correspond to the column names as defined before the Hibernate NamingStrategy is applied.

@Entity.name lets you define the shortcut name of the entity you can used in JP-QL and HQL queries. It defaults to the unqualified class name of the class.

Hibernate goes beyond the JPA specification and provide additional configurations. Some of them are hosted on @org.hibernate.annotations.Entity:

Some entities are not mutable. They cannot be updated or deleted by the application. This allows Hibernate to make some minor performance optimizations.. Use the @Immutable annotation.

You can also alter how Hibernate deals with lazy initialization for this class. On @Proxy, use lazy=false to disable lazy fetching (not recommended). You can also specify an interface to use for lazy initializing proxies (defaults to the class itself): use proxyClass on @Proxy. Hibernate will initially return proxies (Javassist or CGLIB) that implement the named interface. The persistent object will load when a method of the proxy is invoked. See "Initializing collections and proxies" below.

@BatchSize specifies a "batch size" for fetching instances of this class by identifier. Not yet loaded instances are loaded batch-size at a time (default 1).

You can specific an arbitrary SQL WHERE condition to be used when retrieving objects of this class. Use @Where for that.

In the same vein, @Check lets you define an SQL expression used to generate a multi-row check constraint for automatic schema generation.

There is no difference between a view and a base table for a Hibernate mapping. This is transparent at the database level, although some DBMS do not support views properly, especially with updates. Sometimes you want to use a view, but you cannot create one in the database (i.e. with a legacy schema). In this case, you can map an immutable and read-only entity to a given SQL subselect expression using @org.hibernate.annotations.Subselect:

@Entity

@Subselect("select item.name, max(bid.amount), count(*) "
        + "from item "
        + "join bid on bid.item_id = item.id "
        + "group by item.name")
@Synchronize( {"item", "bid"} ) //tables impacted
public class Summary {
    @Id
    public String getId() { return id; }
    ...
}

Declara las tablas con las cuales se debe sincronizar esta entidad, asegurándose de que el auto-vaciado ocurra correctamente y que las consultas frente a la entidad derivada no devuelvan datos desactualizados. El <subselect> se encuentra disponible tanto como un atributo y como un elemento anidado de mapeo.

We will now explore the same options using the hbm.xml structure. You can declare a persistent class using the class element. For example:

<class
        name="(1)ClassName"
        table=(2)"tableName"
        discri(3)minator-value="discriminator_value"
        mutabl(4)e="true|false"
        schema(5)="owner"
        catalo(6)g="catalog"
        proxy=(7)"ProxyInterface"
        dynami(8)c-update="true|false"
        dynami(9)c-insert="true|false"
        select(10)-before-update="true|false"
        polymo(11)rphism="implicit|explicit"
        where=(12)"arbitrary sql where condition"
        persis(13)ter="PersisterClass"
        batch-(14)size="N"
        optimi(15)stic-lock="none|version|dirty|all"
        lazy="(16)true|false"
        entity(17)-name="EntityName"
        check=(18)"arbitrary sql check condition"
        rowid=(19)"rowid"
        subsel(20)ect="SQL expression"
        abstra(21)ct="true|false"
        node="element-name"
/>

1

name (opcional): El nombre completamente calificado de la clase Java persistente (o interfaz). Si se omite este atributo, se asume que el mapeo es para una entidad que no es POJO.

2

table (opcional - por defecto es el nombre de la clase no calificado): El nombre de su tabla en la base de datos.

3

discriminator-value (opcional - predeterminado al nombre de la clase): Un valor que distingue subclases individuales, usado para el comportamiento polimórfico. Los valores aceptables incluyen null y not null.

4

mutable (opcional, por defecto es true): Especifica que las instancias de la clase (no) son mutables.

5

schema (opcional): Sobrescribe el nombre del esquema especificado por el elemento raíz <hibernate-mapping>.

6

catalog (opcional): Sobrescribe el nombre del catálogo especificado por el elemento raíz <hibernate-mapping>.

7

proxy (opcional): Especifica una interfaz a utilizar para los proxies de inicialización perezosa. Puede especificar el nombre mismo de la clase.

8

dynamic-update (opcional, por defecto es false): Especifica que el SQL UPDATE debe ser generado en tiempo de ejecución y puede contener sólamente aquellas columnas cuyos valores hayan cambiado.

9

dynamic-insert (opcional, por defecto es false): Especifica que el SQL INSERT debe ser generado en tiempo de ejecución y debe contener sólamente aquellas columnas cuyos valores no son nulos.

10

select-before-update (opcional, por defecto es false): Especifica que Hibernate nunca debe realizar un UPDATE SQL a menos de que se tenga certeza de que realmente se haya modificado un objeto. Sólo cuando un objeto transitorio ha sido asociado con una sesión nueva utilizando update()), Hibernate realizará una SQL SELECT extra para determinar si realmente se necesita un UPDATE.

11

polymorphisms (optional - defaults to implicit): determines whether implicit or explicit query polymorphisms is used.

12

where (opcional) especifica una condición SQL WHERE arbitraria para utilizarla en la recuperación de objetos de esta clase.

13

persister (opcional): Especifica un ClassPersister personalizado.

14

batch-size (opcional, por defecto es 1) especifica un "tamaño de lote" para buscar instancias de esta clase por identificador.

15

optimistic-lock (opcional, por defecto es version): Determina la estrategia optimista de bloqueo.

(16)

lazy (opcional): La recuperación perezosa se puede deshabilitar por completo al establecer lazy="false".

(17)

entity-name (optional - defaults to the class name): Hibernate3 allows a class to be mapped multiple times, potentially to different tables. It also allows entity mappings that are represented by Maps or XML at the Java level. In these cases, you should provide an explicit arbitrary name for the entity. See Sección 4.4, “Modelos dinámicos” and Capítulo 20, Mapeo XML for more information.

(18)

check (opcional): Una expresión SQL utilizada para generar una restricción check multi-filas para la generación automática de esquemas.

(19)

rowid (opcional): Hibernate puede utilizar los llamados ROWIDs en las bases de datos. Por ejemplo, en Oracle, Hibernate puede utilizar la columna extra rowid para actualizaciones rápidas si usted establece esta opción como rowid. Un ROWID es un detalle de implementación y representa la posición física de la tupla almacenada.

(20)

subselect (opcional): Mapea una entidad inmutable y de sólo lectura a una subselección de base de datos. Es útil si quiere tener una vista en vez de una tabla base. Vea a continuación para obtener más información.

(21)

abstract (opcional): Utilizado para marcar superclases abstractas en las jerarquías <union-subclass>.

Es perfectamente aceptable que la clase persistente mencionada sea una interfaz. Puede declarar clases que implementan esa interfaz utilizando el elemento <subclass>. Puede persistir cualquier clase interna estática. Debe especificar el nombre de la clase utilizando la forma estándar, por ejemplo, e.g.Foo$Bar.

Here is how to do a virtual view (subselect) in XML:


<class name="Summary">
    <subselect>
        select item.name, max(bid.amount), count(*)
        from item
        join bid on bid.item_id = item.id
        group by item.name
    </subselect>
    <synchronize table="item"/>
    <synchronize table="bid"/>
    <id name="name"/>
    ...
</class>

The <subselect> is available both as an attribute and a nested mapping element.

Mapped classes must declare the primary key column of the database table. Most classes will also have a JavaBeans-style property holding the unique identifier of an instance.

Mark the identifier property with @Id.

@Entity

public class Person {
   @Id Integer getId() { ... }
   ...
}

In hbm.xml, use the <id> element which defines the mapping from that property to the primary key column.

<id
        name="(1)propertyName"
        type="(2)typename"
        column(3)="column_name"
        unsave(4)d-value="null|any|none|undefined|id_value"
        access(5)="field|property|ClassName">
        node="element-name|@attribute-name|element/@attribute|."

        <generator class="generatorClass"/>
</id>

1

name (opcional): El nombre de la propiedad del identificador. s

2

type (opcional): un nombre que indica el tipo de Hibernate.

3

column (opcional - por defecto es el nombre de la propiedad): El nombre de la columna de la clave principal.

4

unsaved-value (opcional - por defecto es un valor "sensible"): Un valor de la propiedad identificadora que indica que una instancia está recién instanciada (sin guardar), distinguiéndola de las instancias separadas que fueron guardadas o cargadas en una sesión previa.

5

access (opcional - por defecto es property): La estrategia que Hibernate debe utilizar para acceder al valor de la propiedad.

Si se omite el atributo name, se asume que la clase no tiene propiedad identificadora.

The unsaved-value attribute is almost never needed in Hibernate3 and indeed has no corresponding element in annotations.

You can also declare the identifier as a composite identifier. This allows access to legacy data with composite keys. Its use is strongly discouraged for anything else.

You can define a composite primary key through several syntaxes:

As you can see the last case is far from obvious. It has been inherited from the dark ages of EJB 2 for backward compatibilities and we recommend you not to use it (for simplicity sake).

Let's explore all three cases using examples.

Here is a simple example of @EmbeddedId.

@Entity

class User {
   @EmbeddedId
   @AttributeOverride(name="firstName", column=@Column(name="fld_firstname")
   UserId id;
   Integer age;
}
@Embeddable
class UserId implements Serializable {
   String firstName;
   String lastName;
}

You can notice that the UserId class is serializable. To override the column mapping, use @AttributeOverride.

An embedded id can itself contains the primary key of an associated entity.

@Entity

class Customer {
   @EmbeddedId CustomerId id;
   boolean preferredCustomer;
   @MapsId("userId")
   @JoinColumns({
      @JoinColumn(name="userfirstname_fk", referencedColumnName="firstName"),
      @JoinColumn(name="userlastname_fk", referencedColumnName="lastName")
   })
   @OneToOne User user;
}
@Embeddable
class CustomerId implements Serializable {
   UserId userId;
   String customerNumber;
   //implements equals and hashCode
}
@Entity 
class User {
   @EmbeddedId UserId id;
   Integer age;
}
@Embeddable
class UserId implements Serializable {
   String firstName;
   String lastName;
   //implements equals and hashCode
}

In the embedded id object, the association is represented as the identifier of the associated entity. But you can link its value to a regular association in the entity via the @MapsId annotation. The @MapsId value correspond to the property name of the embedded id object containing the associated entity's identifier. In the database, it means that the Customer.user and the CustomerId.userId properties share the same underlying column (user_fk in this case).

In practice, your code only sets the Customer.user property and the user id value is copied by Hibernate into the CustomerId.userId property.

While not supported in JPA, Hibernate lets you place your association directly in the embedded id component (instead of having to use the @MapsId annotation).

@Entity

class Customer {
   @EmbeddedId CustomerId id;
   boolean preferredCustomer;
}
@Embeddable
class CustomerId implements Serializable {
   @OneToOne
   @JoinColumns({
      @JoinColumn(name="userfirstname_fk", referencedColumnName="firstName"),
      @JoinColumn(name="userlastname_fk", referencedColumnName="lastName")
   }) 
   User user;
   String customerNumber;
   //implements equals and hashCode
}
@Entity 
class User {
   @EmbeddedId UserId id;
   Integer age;
}
@Embeddable
class UserId implements Serializable {
   String firstName;
   String lastName;
   //implements equals and hashCode
}

Let's now rewrite these examples using the hbm.xml syntax.


<composite-id
        name="propertyName"
        class="ClassName"
        mapped="true|false"
        access="field|property|ClassName"
        node="element-name|.">

        <key-property name="propertyName" type="typename" column="column_name"/>
        <key-many-to-one name="propertyName" class="ClassName" column="column_name"/>
        ......
</composite-id>

First a simple example:


<class name="User">
   <composite-id name="id" class="UserId">
      <key-property name="firstName" column="fld_firstname"/>
      <key-property name="lastName"/>
   </composite-id>
</class>

Then an example showing how an association can be mapped.


<class name="Customer">
   <composite-id name="id" class="CustomerId">
      <key-property name="firstName" column="userfirstname_fk"/>
      <key-property name="lastName" column="userfirstname_fk"/>
      <key-property name="customerNumber"/>
   </composite-id>

   <property name="preferredCustomer"/>

   <many-to-one name="user">
      <column name="userfirstname_fk" updatable="false" insertable="false"/>
      <column name="userlastname_fk" updatable="false" insertable="false"/>
   </many-to-one>
</class>

<class name="User">
   <composite-id name="id" class="UserId">
      <key-property name="firstName"/>
      <key-property name="lastName"/>
   </composite-id>

   <property name="age"/>
</class>

Notice a few things in the previous example:

The last example shows how to map association directly in the embedded id component.


<class name="Customer">
   <composite-id name="id" class="CustomerId">
      <key-many-to-one name="user">
         <column name="userfirstname_fk"/>
         <column name="userlastname_fk"/>
      </key-many-to-one>
      <key-property name="customerNumber"/>
   </composite-id>

   <property name="preferredCustomer"/>
</class>

<class name="User">
   <composite-id name="id" class="UserId">
      <key-property name="firstName"/>
      <key-property name="lastName"/>
   </composite-id>

   <property name="age"/>
</class>

This is the recommended approach to map composite identifier. The following options should not be considered unless some constraint are present.

Another, arguably more natural, approach is to place @Id on multiple properties of your entity. This approach is only supported by Hibernate (not JPA compliant) but does not require an extra embeddable component.

@Entity

class Customer implements Serializable {
   @Id @OneToOne
   @JoinColumns({
      @JoinColumn(name="userfirstname_fk", referencedColumnName="firstName"),
      @JoinColumn(name="userlastname_fk", referencedColumnName="lastName")
   })
   User user;
  
   @Id String customerNumber;
   boolean preferredCustomer;
   //implements equals and hashCode
}
@Entity 
class User {
   @EmbeddedId UserId id;
   Integer age;
}
@Embeddable
class UserId implements Serializable {
   String firstName;
   String lastName;
   //implements equals and hashCode
}

In this case Customer is its own identifier representation: it must implement Serializable and must implement equals() and hashCode().

In hbm.xml, the same mapping is:


<class name="Customer">
   <composite-id>
      <key-many-to-one name="user">
         <column name="userfirstname_fk"/>
         <column name="userlastname_fk"/>
      </key-many-to-one>
      <key-property name="customerNumber"/>
   </composite-id>

   <property name="preferredCustomer"/>
</class>

<class name="User">
   <composite-id name="id" class="UserId">
      <key-property name="firstName"/>
      <key-property name="lastName"/>
   </composite-id>

   <property name="age"/>
</class>

@IdClass on an entity points to the class (component) representing the identifier of the class. The properties marked @Id on the entity must have their corresponding property on the @IdClass. The return type of search twin property must be either identical for basic properties or must correspond to the identifier class of the associated entity for an association.

@Entity

@IdClass(CustomerId.class)
class Customer implements Serializable {
   @Id @OneToOne
   @JoinColumns({
      @JoinColumn(name="userfirstname_fk", referencedColumnName="firstName"),
      @JoinColumn(name="userlastname_fk", referencedColumnName="lastName")
   }) 
   User user;
  
   @Id String customerNumber;
   boolean preferredCustomer;
}
class CustomerId implements Serializable {
   UserId user;
   String customerNumber;
   //implements equals and hashCode
}
@Entity 
class User {
   @EmbeddedId UserId id;
   Integer age;
   //implements equals and hashCode
}
@Embeddable
class UserId implements Serializable {
   String firstName;
   String lastName;
   //implements equals and hashCode
}

Customer and CustomerId do have the same properties customerNumber as well as user. CustomerId must be Serializable and implement equals() and hashCode().

While not JPA standard, Hibernate let's you declare the vanilla associated property in the @IdClass.

@Entity

@IdClass(CustomerId.class)
class Customer implements Serializable {
   @Id @OneToOne
   @JoinColumns({
      @JoinColumn(name="userfirstname_fk", referencedColumnName="firstName"),
      @JoinColumn(name="userlastname_fk", referencedColumnName="lastName")
   }) 
   User user;
  
   @Id String customerNumber;
   boolean preferredCustomer;
}
class CustomerId implements Serializable {
   @OneToOne User user;
   String customerNumber;
   //implements equals and hashCode
}
@Entity 
class User {
   @EmbeddedId UserId id;
   Integer age;
   //implements equals and hashCode
}
@Embeddable
class UserId implements Serializable {
  String firstName;
  String lastName;
}

This feature is of limited interest though as you are likely to have chosen the @IdClass approach to stay JPA compliant or you have a quite twisted mind.

Here are the equivalent on hbm.xml files:


<class name="Customer">
   <composite-id class="CustomerId" mapped="true">
      <key-many-to-one name="user">
         <column name="userfirstname_fk"/>
         <column name="userlastname_fk"/>
      </key-many-to-one>
      <key-property name="customerNumber"/>
   </composite-id>

   <property name="preferredCustomer"/>
</class>

<class name="User">
   <composite-id name="id" class="UserId">
      <key-property name="firstName"/>
      <key-property name="lastName"/>
   </composite-id>

   <property name="age"/>
</class>

Hibernate can generate and populate identifier values for you automatically. This is the recommended approach over "business" or "natural" id (especially composite ids).

Hibernate offers various generation strategies, let's explore the most common ones first that happens to be standardized by JPA:

To mark an id property as generated, use the @GeneratedValue annotation. You can specify the strategy used (default to AUTO) by setting strategy.

@Entity

public class Customer {
   @Id @GeneratedValue
   Integer getId() { ... };
}
@Entity 
public class Invoice {
   @Id @GeneratedValue(strategy=GenerationType.IDENTITY)
   Integer getId() { ... };
}

SEQUENCE and TABLE require additional configurations that you can set using @SequenceGenerator and @TableGenerator:

  • name: name of the generator

  • table / sequenceName: name of the table or the sequence (defaulting respectively to hibernate_sequences and hibernate_sequence)

  • catalog / schema:

  • initialValue: the value from which the id is to start generating

  • allocationSize: the amount to increment by when allocating id numbers from the generator

In addition, the TABLE strategy also let you customize:

  • pkColumnName: the column name containing the entity identifier

  • valueColumnName: the column name containing the identifier value

  • pkColumnValue: the entity identifier

  • uniqueConstraints: any potential column constraint on the table containing the ids

To link a table or sequence generator definition with an actual generated property, use the same name in both the definition name and the generator value generator as shown below.

@Id 

@GeneratedValue(
    strategy=GenerationType.SEQUENCE, 
    generator="SEQ_GEN")
@javax.persistence.SequenceGenerator(
    name="SEQ_GEN",
    sequenceName="my_sequence",
    allocationSize=20
)
public Integer getId() { ... }        

The scope of a generator definition can be the application or the class. Class-defined generators are not visible outside the class and can override application level generators. Application level generators are defined in JPA's XML deployment descriptors (see XXXXXX ???):

<table-generator name="EMP_GEN"

            table="GENERATOR_TABLE"
            pk-column-name="key"
            value-column-name="hi"
            pk-column-value="EMP"
            allocation-size="20"/>
//and the annotation equivalent
@javax.persistence.TableGenerator(
    name="EMP_GEN",
    table="GENERATOR_TABLE",
    pkColumnName = "key",
    valueColumnName = "hi"
    pkColumnValue="EMP",
    allocationSize=20
)
<sequence-generator name="SEQ_GEN" 
    sequence-name="my_sequence"
    allocation-size="20"/>
//and the annotation equivalent
@javax.persistence.SequenceGenerator(
    name="SEQ_GEN",
    sequenceName="my_sequence",
    allocationSize=20
)
         

If a JPA XML descriptor (like META-INF/orm.xml) is used to define the generators, EMP_GEN and SEQ_GEN are application level generators.

Nota

Package level definition is not supported by the JPA specification. However, you can use the @GenericGenerator at the package level (see ???).

These are the four standard JPA generators. Hibernate goes beyond that and provide additional generators or additional options as we will see below. You can also write your own custom identifier generator by implementing org.hibernate.id.IdentifierGenerator.

To define a custom generator, use the @GenericGenerator annotation (and its plural counter part @GenericGenerators) that describes the class of the identifier generator or its short cut name (as described below) and a list of key/value parameters. When using @GenericGenerator and assigning it via @GeneratedValue.generator, the @GeneratedValue.strategy is ignored: leave it blank.

@Id @GeneratedValue(generator="system-uuid")

@GenericGenerator(name="system-uuid", strategy = "uuid")
public String getId() {
@Id @GeneratedValue(generator="trigger-generated")
@GenericGenerator(
    name="trigger-generated", 
    strategy = "select",
    parameters = @Parameter(name="key", value = "socialSecurityNumber")
)
public String getId() {

The hbm.xml approach uses the optional <generator> child element inside <id>. If any parameters are required to configure or initialize the generator instance, they are passed using the <param> element.


<id name="id" type="long" column="cat_id">
        <generator class="org.hibernate.id.TableHiLoGenerator">
                <param name="table">uid_table</param>
                <param name="column">next_hi_value_column</param>
        </generator>
</id>

Todos los generadores implementan la interfaz org.hibernate.id.IdentifierGenerator. Esta es una interfaz muy simple. Algunas aplicaciones pueden decidir brindar sus propias implementaciones especializadas. Sin embargo, Hibernate provee un rango de implementaciones ya incorporadas. Los nombres de atajo para los generadores incorporados son los siguientes:

increment

genera indentificadores de tipo long, short o int que sólamente son únicos cuando ningún otro proceso está insertando datos en la misma tabla. No lo utilice en un clúster.

identity

soporta columnas de identidad en DB2, MySQL, MS SQL Server, Sybase y HypersonicSQL. El identificador devuelto es de tipo long, short o int.

sequence

usa una secuencia en DB2, PostgreSQL, Oracle, SAP DB, McKoi o un generador en Interbase. El identificador devuelto es de tipo long, short o int.

hilo

utiliza un algoritmo alto/bajo para generar eficientemente identificadores de tipo long, short o int, dada una tabla y columna como fuente de valores altos (por defecto hibernate_unique_key y next_hi respectivamente). El algoritmo alto/bajo genera identificadores que son únicos sólamente para una base de datos particular.

seqhilo

utiliza un algoritmo alto/bajo para generar eficientemente identificadores de tipo long, short o int, dada una secuencia de base de datos.

uuid

Generates a 128-bit UUID based on a custom algorithm. The value generated is represented as a string of 32 hexidecimal digits. Users can also configure it to use a separator (config parameter "separator") which separates the hexidecimal digits into 8{sep}8{sep}4{sep}8{sep}4. Note specifically that this is different than the IETF RFC 4122 representation of 8-4-4-4-12. If you need RFC 4122 compliant UUIDs, consider using "uuid2" generator discussed below.

uuid2

Generates a IETF RFC 4122 compliant (variant 2) 128-bit UUID. The exact "version" (the RFC term) generated depends on the pluggable "generation strategy" used (see below). Capable of generating values as java.util.UUID, java.lang.String or as a byte array of length 16 (byte[16]). The "generation strategy" is defined by the interface org.hibernate.id.UUIDGenerationStrategy. The generator defines 2 configuration parameters for defining which generation strategy to use:

Out of the box, comes with the following strategies:

guid

utiliza una cadena GUID generada por base de datos en MS SQL Server y MySQL.

native

selecciona identity, sequence o hilo dependiendo de las capacidades de la base de datos subyacente.

assigned

deja a la aplicación asignar un identificador al objeto antes de que se llame a save(). Esta es la estrategia por defecto si no se especifica un elemento <generator>.

select

recupera una clave principal asignada por un disparador de base de datos seleccionando la fila por alguna clave única y recuperando el valor de la clave principal.

foreign

utiliza el identificador de otro objeto asociado. Generalmente se usa en conjunto cón a una asociación de clave principal <one-to-one>.

sequence-identity

una estrategia de generación de secuencias especilizadas que utiliza una secuencia de base de datos para el valor real de la generación, pero combina esto junto con JDBC3 getGeneratedKeys para devolver el valor del identificador generado como parte de la ejecución de la declaración de inserción. Esta estrategia está soportada sólamente en los controladores 10g de Oracle destinados para JDK1.4. Los comentarios en estas declaraciones de inserción están desactivados debido a un error en los controladores de Oracle.

Desde el lanzamiento 3.2.3, hay 2 nuevos generadores, los cuales representan una nueva reflexión sobre dos aspectos diferentes de la generación del identificador. El primer aspecto es qúe tan portátil es la base de datos; el segudno es la optimización. La optimización significa que no tiene que preguntarle a la base de datos por toda petición de un nuevo valor identificador. Estos dos nuevos generadores tienen el propósito de tomar el lugar de algunos de los generadores nombrados que describimos anteriormente, empezando por 3.3.x. Sin embargo, están incluídos en los lanzamientos actuales y puede ser referenciados por FQN.

El primero de estos nuevos generadores es org.hibernate.id.enhanced.SequenceStyleGenerator, el cual tiene el propósito, primero, de ser el reemplazo para el generador sequence y segundo, de ser un generador de portabilidad mejor que native. Esto se debe a que native generalmente escoge entre identity y sequence, los cuales tienen una gran diferencia semántica que puede crear problemas sutiles en las aplicaciones mirando la portabilidad. Sin embargo, org.hibernate.id.enhanced.SequenceStyleGenerator, logra la portabilidad de una manera diferente. Escoge entre una tabla o una secuencia en la base de datos para almacenar sus valores en subida, dependiendo de las capacidades del dialecto que se está utilizando. La diferencia enter esto y native es que el almacenamiento basado en tablas y secuencias tienen la misma semántica. De hecho, las secuencias son exactamente lo que Hibernate trata de emular con sus generadores basados en tablas. Este generador tiene un número de parámetros de configuración:

El segundo de estos nuevos generadores es org.hibernate.id.enhanced.TableGenerator, el cual tiene el propósito, primero, de reemplazar el generador table, auqnue de hecho funciona como org.hibernate.id.MultipleHiLoPerTableGenerator, y segundo, como una re-implementación de org.hibernate.id.MultipleHiLoPerTableGenerator que utiliza la noción de los optimizadores enchufables. Esencialmente, este generador define una tabla capaz de mantener un número de valores de incremento diferentes de manera simultánea usando múltiples filas tecleadas claramente. Este generador tiene un número de parámetros de configuración:

  • table_name (opcional - por defecto es hibernate_sequences): el nombre de la tabla a utilizar.

  • value_column_name (opcional - por defecto es next_val): el nombre de la columna en la tabla que se utiliza para mantener el valor.

  • segment_column_name (opcional - por defecto es sequence_name): el nombre de la columna en la tabla que se utiliza para mantener la "llave segmento". Este es el valor que identifica que valor de incremento utilizar.

  • segment_value (opcional - por defecto es default): El valor "llave segmento" para el segmento desde el cual queremos sacar los valores de incremento para este generador.

  • segment_value_length (opcional - por defecto es 255): Se utiliza para la generación de esquemas; el tamaño de la columna a crear esta columna de llave de segmento.

  • initial_value (opcional - por defecto es 1): El valor inicial a recuperar de la tabla.

  • increment_size (opcional - por defecto es 1): El valor por el cual deben diferir las llamadas subsecuentes a la tabla.

  • optimizer (optional - defaults to ??): See Sección 5.1.2.3.1, “Optimización del generador del identificador”.

For identifier generators that store values in the database, it is inefficient for them to hit the database on each and every call to generate a new identifier value. Instead, you can group a bunch of them in memory and only hit the database when you have exhausted your in-memory value group. This is the role of the pluggable optimizers. Currently only the two enhanced generators (Sección 5.1.2.3, “Generadores mejorados del identificador” support this operation.

  • none (generalmente este el es valor predeterminado si no se especifica un optimizador): esto no realizará ninguna optimización y accederá a la base de datos para toda petición.

  • hilo: aplica un algoritmo hi/lo a los valores recuperados de la base de datos. Se espera que los valores de la base de datos para este optimizador sean secuenciales. Los valores recuperados de la estructura de la base de datos para este optimizador indican el "número del grupo". El increment_size se multiplica por ese valor en la memoria para definir un grupo "hi value".

  • pooled: como en el caso de hilo, este optimizador trata de minimizar el número de hits a la base de datos. Sin embargo, aquí simplemente almacenamos el valor inicial para el "siguiente grupo" en la estructura de la base de datos en lugar de un valor secuencial en combinación con un algoritmo de agrupamiento en-memoria. Aquí, increment_size ser refiere a los valores que provienen de la base de datos.

When using long transactions or conversations that span several database transactions, it is useful to store versioning data to ensure that if the same entity is updated by two conversations, the last to commit changes will be informed and not override the other conversation's work. It guarantees some isolation while still allowing for good scalability and works particularly well in read-often write-sometimes situations.

You can use two approaches: a dedicated version number or a timestamp.

Una propiedad de versión o de sello de fecha nunca debe ser nula para una instancia separada. Hibernate detectará cualquier instancia con una versión o sello de fecha nulo como transitoria, sin importar qué otras estrategias unsaved-value se hayan especificado. El declarar una propiedad de versión o sello de fecha nulable es una forma fácil de evitar cualquier problema con la re-unión transitiva en Hibernate. Es especialmente útil para la gente que utiliza identificadores asignados o claves compuestas.

You can add optimistic locking capability to an entity using the @Version annotation:

@Entity

public class Flight implements Serializable {
...
    @Version
    @Column(name="OPTLOCK")
    public Integer getVersion() { ... }
}           

The version property will be mapped to the OPTLOCK column, and the entity manager will use it to detect conflicting updates (preventing lost updates you might otherwise see with the last-commit-wins strategy).

The version column may be a numeric. Hibernate supports any kind of type provided that you define and implement the appropriate UserVersionType.

The application must not alter the version number set up by Hibernate in any way. To artificially increase the version number, check in Hibernate Entity Manager's reference documentation LockModeType.OPTIMISTIC_FORCE_INCREMENT or LockModeType.PESSIMISTIC_FORCE_INCREMENT.

If the version number is generated by the database (via a trigger for example), make sure to use @org.hibernate.annotations.Generated(GenerationTime.ALWAYS).

To declare a version property in hbm.xml, use:

<version
        column(1)="version_column"
        name="(2)propertyName"
        type="(3)typename"
        access(4)="field|property|ClassName"
        unsave(5)d-value="null|negative|undefined"
        genera(6)ted="never|always"
        insert(7)="true|false"
        node="element-name|@attribute-name|element/@attribute|."
/>

1

column (opcional - por defecto es el nombre de la propiedad): El nombre de la columna que tiene el número de la versión.

2

name: El nombre de una propiedad de la clase persistente.

3

type (opcional - por defecto es integer): El tipo del número de la versión.

4

access (opcional - por defecto es property): La estrategia que Hibernate utiliza para acceder al valor de la propiedad.

5

unsaved-value (opcional - por defecto es undefined): Un valor de la propiedad de versión que indica que una instancia se encuentra recién instanciada (sin guardar), distinguiéndola de las instancias separadas que se guardaron o se cargaron en una sesión previa. undefined especifica que se debe utilizar el valor de la propiedad identificadora.

6

generated (opcional - por defecto es never): Especifica que este valor de la propiedad de la versión es generado por la base de datos. Vea la discusión de las propiedades generadas para obtener mayor información.

7

insert (opcional - por defectos es true): Especifica si la columna de la versión debe incluirse en las declaraciones de inserción SQL. Se puede configurar como false si la columna de la base de datos se define con un valor predeterminado de 0.

Alternatively, you can use a timestamp. Timestamps are a less safe implementation of optimistic locking. However, sometimes an application might use the timestamps in other ways as well.

Simply mark a property of type Date or Calendar as @Version.

@Entity

public class Flight implements Serializable {
...
    @Version
    public Date getLastUpdate() { ... }
}           

When using timestamp versioning you can tell Hibernate where to retrieve the timestamp value from - database or JVM - by optionally adding the @org.hibernate.annotations.Source annotation to the property. Possible values for the value attribute of the annotation are org.hibernate.annotations.SourceType.VM and org.hibernate.annotations.SourceType.DB. The default is SourceType.DB which is also used in case there is no @Source annotation at all.

Like in the case of version numbers, the timestamp can also be generated by the database instead of Hibernate. To do that, use @org.hibernate.annotations.Generated(GenerationTime.ALWAYS).

In hbm.xml, use the <timestamp> element:

<timestamp
        column(1)="timestamp_column"
        name="(2)propertyName"
        access(3)="field|property|ClassName"
        unsave(4)d-value="null|undefined"
        source(5)="vm|db"
        genera(6)ted="never|always"
        node="element-name|@attribute-name|element/@attribute|."
/>

1

column (opcional - por defecto es el nombre de la propiedad): El nombre de una columna que tiene el sello de fecha.

2

name: El nombre de una propiedad del estilo JavaBeans de tipo Java Date o Timestamp de la clase persistente.

3

access (opcional - por defecto es property): La estrategia que Hibernate utiliza para acceder al valor de la propiedad.

4

unsaved-value (opcional - por defecto es null): Un valor de propiedad de versión que indica que una instancia está recién instanciada (sin guardar), distinguiéndola de instancias separadas que hayan sido guardadas o cargadas en una sesión previa. Undefined especifica que debe utilizarse el valor de la propiedad identificadora.

5

source (opcional - por defecto es vm): ¿Desde dónde debe recuperar Hibernate el valor del sello de fecha? ¿Desde la base de datos o desde la MVJ actual? Los sellos de fecha con base en la base de datos provocan un gasto general debido a que Hibernate tiene que llegar hasta la base de datos para poder determinar el "siguiente valor". Es más seguro utilizarlo en entornos con clústers. No todos los Dialects soportan la recuperación del sello de fecha actual de la base de datos. Los otros pueden ser poco seguros para utilizarlos como bloqueo debido a la falta de precisión (por ejemplo, Oracle 8).

6

generated (opcional - por defecto es never): Especifica que este valor de la propiedad del sello de fecha en realidad es generado por la base de datos. Consulte la discusión de las propiedades generadas para obtener mayor información.

You need to decide which property needs to be made persistent in a given entity. This differs slightly between the annotation driven metadata and the hbm.xml files.

In the annotations world, every non static non transient property (field or method depending on the access type) of an entity is considered persistent, unless you annotate it as @Transient. Not having an annotation for your property is equivalent to the appropriate @Basic annotation.

The @Basic annotation allows you to declare the fetching strategy for a property. If set to LAZY, specifies that this property should be fetched lazily when the instance variable is first accessed. It requires build-time bytecode instrumentation, if your classes are not instrumented, property level lazy loading is silently ignored. The default is EAGER. You can also mark a property as not optional thanks to the @Basic.optional attribute. This will ensure that the underlying column are not nullable (if possible). Note that a better approach is to use the @NotNull annotation of the Bean Validation specification.

Let's look at a few examples:

public transient int counter; //transient property


private String firstname; //persistent property
@Transient
String getLengthInMeter() { ... } //transient property
String getName() {... } // persistent property
@Basic
int getLength() { ... } // persistent property
@Basic(fetch = FetchType.LAZY)
String getDetailedComment() { ... } // persistent property
@Temporal(TemporalType.TIME)
java.util.Date getDepartureTime() { ... } // persistent property           
@Enumerated(EnumType.STRING)
Starred getNote() { ... } //enum persisted as String in database

counter, a transient field, and lengthInMeter, a method annotated as @Transient, and will be ignored by the Hibernate. name, length, and firstname properties are mapped persistent and eagerly fetched (the default for simple properties). The detailedComment property value will be lazily fetched from the database once a lazy property of the entity is accessed for the first time. Usually you don't need to lazy simple properties (not to be confused with lazy association fetching). The recommended alternative is to use the projection capability of JP-QL (Java Persistence Query Language) or Criteria queries.

JPA support property mapping of all basic types supported by Hibernate (all basic Java types , their respective wrappers and serializable classes). Hibernate Annotations supports out of the box enum type mapping either into a ordinal column (saving the enum ordinal) or a string based column (saving the enum string representation): the persistence representation, defaulted to ordinal, can be overridden through the @Enumerated annotation as shown in the note property example.

In plain Java APIs, the temporal precision of time is not defined. When dealing with temporal data you might want to describe the expected precision in database. Temporal data can have DATE, TIME, or TIMESTAMP precision (ie the actual date, only the time, or both). Use the @Temporal annotation to fine tune that.

@Lob indicates that the property should be persisted in a Blob or a Clob depending on the property type: java.sql.Clob, Character[], char[] and java.lang.String will be persisted in a Clob. java.sql.Blob, Byte[], byte[] and Serializable type will be persisted in a Blob.

@Lob

public String getFullText() {
    return fullText;
}
@Lob
public byte[] getFullCode() {
    return fullCode;
}

If the property type implements java.io.Serializable and is not a basic type, and if the property is not annotated with @Lob, then the Hibernate serializable type is used.

You can also manually specify a type using the @org.hibernate.annotations.Type and some parameters if needed. @Type.type could be:

If you do not specify a type, Hibernate will use reflection upon the named property and guess the correct Hibernate type. Hibernate will attempt to interpret the name of the return class of the property getter using, in order, rules 2, 3, and 4.

@org.hibernate.annotations.TypeDef and @org.hibernate.annotations.TypeDefs allows you to declare type definitions. These annotations can be placed at the class or package level. Note that these definitions are global for the session factory (even when defined at the class level). If the type is used on a single entity, you can place the definition on the entity itself. Otherwise, it is recommended to place the definition at the package level. In the example below, when Hibernate encounters a property of class PhoneNumer, it delegates the persistence strategy to the custom mapping type PhoneNumberType. However, properties belonging to other classes, too, can delegate their persistence strategy to PhoneNumberType, by explicitly using the @Type annotation.

@TypeDef(

   name = "phoneNumber",
   defaultForType = PhoneNumber.class,
   typeClass = PhoneNumberType.class
)
@Entity
public class ContactDetails {
   [...]
   private PhoneNumber localPhoneNumber;
   @Type(type="phoneNumber")
   private OverseasPhoneNumber overseasPhoneNumber;
   [...]
}

The following example shows the usage of the parameters attribute to customize the TypeDef.

//in org/hibernate/test/annotations/entity/package-info.java

@TypeDefs(
    {
    @TypeDef(
        name="caster",
        typeClass = CasterStringType.class,
        parameters = {
            @Parameter(name="cast", value="lower")
        }
    )
    }
)
package org.hibernate.test.annotations.entity;
//in org/hibernate/test/annotations/entity/Forest.java
public class Forest {
    @Type(type="caster")
    public String getSmallText() {
    ...
}      

When using composite user type, you will have to express column definitions. The @Columns has been introduced for that purpose.

@Type(type="org.hibernate.test.annotations.entity.MonetaryAmountUserType")

@Columns(columns = {
    @Column(name="r_amount"),
    @Column(name="r_currency")
})
public MonetaryAmount getAmount() {
    return amount;
}
public class MonetaryAmount implements Serializable {
    private BigDecimal amount;
    private Currency currency;
    ...
}

By default the access type of a class hierarchy is defined by the position of the @Id or @EmbeddedId annotations. If these annotations are on a field, then only fields are considered for persistence and the state is accessed via the field. If there annotations are on a getter, then only the getters are considered for persistence and the state is accessed via the getter/setter. That works well in practice and is the recommended approach.

However in some situations, you need to:

The best use case is an embeddable class used by several entities that might not use the same access type. In this case it is better to force the access type at the embeddable class level.

To force the access type on a given class, use the @Access annotation as showed below:

@Entity

public class Order {
   @Id private Long id;
   public Long getId() { return id; }
   public void setId(Long id) { this.id = id; }
   @Embedded private Address address;
   public Address getAddress() { return address; }
   public void setAddress() { this.address = address; }
}
@Entity
public class User {
   private Long id;
   @Id public Long getId() { return id; }
   public void setId(Long id) { this.id = id; }
   private Address address;
   @Embedded public Address getAddress() { return address; }
   public void setAddress() { this.address = address; }
}
@Embeddable
@Access(AcessType.PROPERTY)
public class Address {
   private String street1;
   public String getStreet1() { return street1; }
   public void setStreet1() { this.street1 = street1; }
   private hashCode; //not persistent
}

You can also override the access type of a single property while keeping the other properties standard.

@Entity

public class Order {
   @Id private Long id;
   public Long getId() { return id; }
   public void setId(Long id) { this.id = id; }
   @Transient private String userId;
   @Transient private String orderId;
   @Access(AccessType.PROPERTY)
   public String getOrderNumber() { return userId + ":" + orderId; }
   public void setOrderNumber() { this.userId = ...; this.orderId = ...; }
}

In this example, the default access type is FIELD except for the orderNumber property. Note that the corresponding field, if any must be marked as @Transient or transient.

The column(s) used for a property mapping can be defined using the @Column annotation. Use it to override default values (see the JPA specification for more information on the defaults). You can use this annotation at the property level for properties that are:

@Entity

public class Flight implements Serializable {
...
@Column(updatable = false, name = "flight_name", nullable = false, length=50)
public String getName() { ... }
            

The name property is mapped to the flight_name column, which is not nullable, has a length of 50 and is not updatable (making the property immutable).

This annotation can be applied to regular properties as well as @Id or @Version properties.

@Column(
    name="colu(1)mnName";
    boolean un(2)ique() default false;
    boolean nu(3)llable() default true;
    boolean in(4)sertable() default true;
    boolean up(5)datable() default true;
    String col(6)umnDefinition() default "";
    String tab(7)le() default "";
    int length(8)() default 255;
    int precis(9)ion() default 0; // decimal precision
    int scale((10)) default 0; // decimal scale

1

name (optional): the column name (default to the property name)

2

unique (optional): set a unique constraint on this column or not (default false)

3

nullable (optional): set the column as nullable (default true).

4

insertable (optional): whether or not the column will be part of the insert statement (default true)

5

updatable (optional): whether or not the column will be part of the update statement (default true)

6

columnDefinition (optional): override the sql DDL fragment for this particular column (non portable)

7

table (optional): define the targeted table (default primary table)

8

length (optional): column length (default 255)

8

precision (optional): column decimal precision (default 0)

10

scale (optional): column decimal scale if useful (default 0)

El elemento <property> declara una propiedad persistente estilo JavaBean de la clase.

<property
        name="(1)propertyName"
        column(2)="column_name"
        type="(3)typename"
        update(4)="true|false"
        insert(4)="true|false"
        formul(5)a="arbitrary SQL expression"
        access(6)="field|property|ClassName"
        lazy="(7)true|false"
        unique(8)="true|false"
        not-nu(9)ll="true|false"
        optimi(10)stic-lock="true|false"
        genera(11)ted="never|insert|always"
        node="element-name|@attribute-name|element/@attribute|."
        index="index_name"
        unique_key="unique_key_id"
        length="L"
        precision="P"
        scale="S"
/>

1

name: el nombre de la propiedad, con la letra inicial en minúscula.

2

column (opcional - por defecto es el nombre de la propiedad): El nombre de la columna de la tabla de base de datos mapeada. Esto se puede especificar también con los elemento(s) anidado(s) <column>.

3

type (opcional): un nombre que indica el tipo de Hibernate.

4

update, insert (opcional - por defecto es true): Especifica que las columnas mapeadas deben ser incluídas en las declaraciones SQL UPDATE y/o INSERT . Especificando ambas como false permite una propiedad "derivada", cuyo valor se inicia desde alguna otra propiedad que mapee a la misma columna (o columnas) o por un disparador u otra aplicación.

5

formula (opcional): una expresión SQL que define el valor para una propiedad computada. Las propiedades computadas no tienen una columna mapeada propia.

6

access (opcional - por defecto es property): La estrategia que Hibernate utiliza para acceder al valor de la propiedad.

7

lazy (opcional - por defecto es false): Especifica que se debe recuperar perezosamente esta propiedad cuando se acceda por primera vez la variable de instancia. Requiere instrumentación de código byte en tiempo de compilación.

8

unique (opcional): Activa la generación DDL de una restricción de unicidad para las columnas. Además, permite que ésta sea el objetivo de una property-ref.

9

not-null (opcional): Activa la generación DDL de una restricción de nulabilidad para las columnas.

10

optimistic-lock (opcional - por defecto es true): Especifica que las actualizaciones a esta propiedad requieren o no de la obtención de un bloqueo optimista. En otras palabras, determina si debe ocurrir un incremento de versión cuando la propiedad se encuentre desactualizada.

11

generated (opcional - por defecto es never): Especifica que este valor de la propiedad es de hecho generado por la base de datos. Consulte discusión sobre las propiedades generadas para obtener mayor información.

escribanombre puede ser:

Si no especifica un tipo, Hibernate utilizará reflección sobre la propiedad mencionada para deducir el tipo Hibernate correcto. Hibernate intentará interpretar el nombre de la clase de retorno del getter de la propiedad utilizando las reglas 2, 3 y 4 en ese mismo orden. En algunos casos necesitará el atributo type. Por ejemplo, para distinguir entre Hibernate.DATE y Hibernate.TIMESTAMP, o especificar un tipo personalizado.

El atributo access le permite controlar el cómo Hibernate accederá a la propiedad en tiempo de ejecución. Por defecto, Hibernate llamará al par de getter/setter de la propiedad. Si usted especifica access="field", Hibernate se saltará el par get/set y accederá al campo directamente utilizando reflección. Puede especificar su propia estrategia de acceso a la propiedad mencionando una clase que implemente la interfaz org.hibernate.property.PropertyAccessor.

Una funcionalidad especialmente poderosa son las propiedades derivadas. Estas propiedades son, por definición, de sólo lectura. El valor de la propiedad se computa en tiempo de carga. Usted declara la computación como una expresión SQL y ésta se traduce como una cláusula de subconsulta SELECT en la consulta SQL que carga una instancia:


<property name="totalPrice"
    formula="( SELECT SUM (li.quantity*p.price) FROM LineItem li, Product p
                WHERE li.productId = p.productId
                AND li.customerId = customerId
                AND li.orderNumber = orderNumber )"/>

Puede referenciar la tabla de las entidades sin declarar un alias o una columna particular. En el ejemplo dado sería customerId. También puede utilizar el elemento anidado de mapeo <formula> si no quiere utilizar el atributo.

Embeddable objects (or components) are objects whose properties are mapped to the same table as the owning entity's table. Components can, in turn, declare their own properties, components or collections

It is possible to declare an embedded component inside an entity and even override its column mapping. Component classes have to be annotated at the class level with the @Embeddable annotation. It is possible to override the column mapping of an embedded object for a particular entity using the @Embedded and @AttributeOverride annotation in the associated property:

@Entity

public class Person implements Serializable {
    // Persistent component using defaults
    Address homeAddress;
    @Embedded
    @AttributeOverrides( {
            @AttributeOverride(name="iso2", column = @Column(name="bornIso2") ),
            @AttributeOverride(name="name", column = @Column(name="bornCountryName") )
    } )
    Country bornIn;
    ...
}          
@Embeddable

public class Address implements Serializable {
    String city;
    Country nationality; //no overriding here
}            
@Embeddable

public class Country implements Serializable {
    private String iso2;
    @Column(name="countryName") private String name;
    public String getIso2() { return iso2; }
    public void setIso2(String iso2) { this.iso2 = iso2; }
    
    public String getName() { return name; }
    public void setName(String name) { this.name = name; }
    ...
}            

An embeddable object inherits the access type of its owning entity (note that you can override that using the @Access annotation).

The Person entity has two component properties, homeAddress and bornIn. homeAddress property has not been annotated, but Hibernate will guess that it is a persistent component by looking for the @Embeddable annotation in the Address class. We also override the mapping of a column name (to bornCountryName) with the @Embedded and @AttributeOverride annotations for each mapped attribute of Country. As you can see, Country is also a nested component of Address, again using auto-detection by Hibernate and JPA defaults. Overriding columns of embedded objects of embedded objects is through dotted expressions.

@Embedded

    @AttributeOverrides( {
            @AttributeOverride(name="city", column = @Column(name="fld_city") ),
            @AttributeOverride(name="nationality.iso2", column = @Column(name="nat_Iso2") ),
            @AttributeOverride(name="nationality.name", column = @Column(name="nat_CountryName") )
            //nationality columns in homeAddress are overridden
    } )
    Address homeAddress;

Hibernate Annotations supports something that is not explicitly supported by the JPA specification. You can annotate a embedded object with the @MappedSuperclass annotation to make the superclass properties persistent (see @MappedSuperclass for more informations).

You can also use association annotations in an embeddable object (ie @OneToOne, @ManyToOne, @OneToMany or @ManyToMany). To override the association columns you can use @AssociationOverride.

If you want to have the same embeddable object type twice in the same entity, the column name defaulting will not work as several embedded objects would share the same set of columns. In plain JPA, you need to override at least one set of columns. Hibernate, however, allows you to enhance the default naming mechanism through the NamingStrategy interface. You can write a strategy that prevent name clashing in such a situation. DefaultComponentSafeNamingStrategy is an example of this.

If a property of the embedded object points back to the owning entity, annotate it with the @Parent annotation. Hibernate will make sure this property is properly loaded with the entity reference.

In XML, use the <component> element.

<component
        name="(1)propertyName"
        class=(2)"className"
        insert(3)="true|false"
        update(4)="true|false"
        access(5)="field|property|ClassName"
        lazy="(6)true|false"
        optimi(7)stic-lock="true|false"
        unique(8)="true|false"
        node="element-name|."
>

        <property ...../>
        <many-to-one .... />
        ........
</component>

1

name: El nombre de la propiedad.

2

class (opcional - por defecto es el tipo de la propiedad determinado por reflección): El nombre de la clase del componente (hijo).

3

insert: ¿Las columnas mapeadas aparacen en INSERTs SQL?

4

update: ¿Las columnas mapeadas aparacen en UPDATEs SQL?

5

access (opcional - por defecto es property): La estrategia que Hibernate utiliza para acceder al valor de la propiedad.

6

lazy (opcional - por defecto es false): Especifica que este componente debe ser recuperado perezosamente cuando se acceda a la variable de instancia por primera vez. Requiere instrumentación de código byte en tiempo de compilación.

7

optimistic-lock (opcional - por defecto es true): Especifica que las actualizaciones de este componente requieren o no la adquisición de un bloqueo optimista. Determina si debe ocurrir un incremento de versión cuando esta propiedad se encuentra desactualizada.

8

unique (opcional - por defecto es false): Especifica que existe una restricción de unicidad sobre todas las columnas mapeadas del componente.

Las etiquetas hijas <property> mapean propiedades de la clase hija a las columnas de la tabla.

El elemento <component> permite un subelemento <parent> que mapea una propiedad de la clase del componente como una referencia a la entidad contenedora.

The <dynamic-component> element allows a Map to be mapped as a component, where the property names refer to keys of the map. See Sección 9.5, “Componentes dinámicos” for more information. This feature is not supported in annotations.

Java is a language supporting polymorphism: a class can inherit from another. Several strategies are possible to persist a class hierarchy:

With this approach the properties of all the subclasses in a given mapped class hierarchy are stored in a single table.

Each subclass declares its own persistent properties and subclasses. Version and id properties are assumed to be inherited from the root class. Each subclass in a hierarchy must define a unique discriminator value. If this is not specified, the fully qualified Java class name is used.

@Entity

@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(
    name="planetype",
    discriminatorType=DiscriminatorType.STRING
)
@DiscriminatorValue("Plane")
public class Plane { ... }
@Entity
@DiscriminatorValue("A320")
public class A320 extends Plane { ... }          

In hbm.xml, for the table-per-class-hierarchy mapping strategy, the <subclass> declaration is used. For example:

<subclass
        name="(1)ClassName"
        discri(2)minator-value="discriminator_value"
        proxy=(3)"ProxyInterface"
        lazy="(4)true|false"
        dynamic-update="true|false"
        dynamic-insert="true|false"
        entity-name="EntityName"
        node="element-name"
        extends="SuperclassName">

        <property .... />
        .....
</subclass>

1

name: El nombre de clase completamente calificado de la subclase.

2

discriminator-value (opcional - por defecto es el nombre de la clase): Un valor que distingue subclases individuales.

3

proxy (opcional): Especifica una clase o interfaz que se utiliza para proxies de inicialización perezosa.

4

lazy (opcional, por defecto es true): El establecer lazy="false" desactiva el uso de la recuperación perezosa.

For information about inheritance mappings see Capítulo 10, Mapeo de herencias.

Discriminators are required for polymorphic persistence using the table-per-class-hierarchy mapping strategy. It declares a discriminator column of the table. The discriminator column contains marker values that tell the persistence layer what subclass to instantiate for a particular row. Hibernate Core supports the follwoing restricted set of types as discriminator column: string, character, integer, byte, short, boolean, yes_no, true_false.

Use the @DiscriminatorColumn to define the discriminator column as well as the discriminator type.

You can also use @DiscriminatorFormula to express in SQL a virtual discriminator column. This is particularly useful when the discriminator value can be extracted from one or more columns of the table. Both @DiscriminatorColumn and @DiscriminatorFormula are to be set on the root entity (once per persisted hierarchy).

@org.hibernate.annotations.DiscriminatorOptions allows to optionally specify Hibernate specific discriminator options which are not standardized in JPA. The available options are force and insert. The force attribute is useful if the table contains rows with "extra" discriminator values that are not mapped to a persistent class. This could for example occur when working with a legacy database. If force is set to true Hibernate will specify the allowed discriminator values in the SELECT query, even when retrieving all instances of the root class. The second option - insert - tells Hibernate whether or not to include the discriminator column in SQL INSERTs. Usually the column should be part of the INSERT statement, but if your discriminator column is also part of a mapped composite identifier you have to set this option to false.

Finally, use @DiscriminatorValue on each class of the hierarchy to specify the value stored in the discriminator column for a given entity. If you do not set @DiscriminatorValue on a class, the fully qualified class name is used.

@Entity

@Inheritance(strategy=InheritanceType.SINGLE_TABLE)
@DiscriminatorColumn(
    name="planetype",
    discriminatorType=DiscriminatorType.STRING
)
@DiscriminatorValue("Plane")
public class Plane { ... }
@Entity
@DiscriminatorValue("A320")
public class A320 extends Plane { ... }          

In hbm.xml, the <discriminator> element is used to define the discriminator column or formula:

<discriminator
        column(1)="discriminator_column"
        type="(2)discriminator_type"
        force=(3)"true|false"
        insert(4)="true|false"
        formul(5)a="arbitrary sql expression"
/>

1

column (opcional - por defecto es class) el nombre de la columna discriminadora.

2

type (opcional - por defecto es string) un nombre que indica el tipo Hibernate.

3

force (opcional - por defecto es false) "fuerza" a Hibernate para especificar los valores discriminadores permitidos incluso cuando se recuperan todas las instancias de la clase raíz.

4

insert (opcional - por defecto es true): establecido como false si su columna discriminadora también es parte de un identificador mapeado compuesto. Lle dice a Hibernate que no incluya la columna en los SQLs INSERT.

5

formula (opcional): una expresión SQL arbitraria que se ejecuta cuando se tenga que evaluar un tipo. Permite la discriminación con base en el contenido.

Los valores reales de la columna discriminadora están especificados por el atributo discriminator-value de los elementos <class> y <subclass>.

El atributo formula le permite declarar una expresión SQL arbitraria que será utilizada para evaluar el tipo de una fila. Por ejemplo:


<discriminator
    formula="case when CLASS_TYPE in ('a', 'b', 'c') then 0 else 1 end"
    type="integer"/>

Each subclass can also be mapped to its own table. This is called the table-per-subclass mapping strategy. An inherited state is retrieved by joining with the table of the superclass. A discriminator column is not required for this mapping strategy. Each subclass must, however, declare a table column holding the object identifier. The primary key of this table is also a foreign key to the superclass table and described by the @PrimaryKeyJoinColumns or the <key> element.

@Entity @Table(name="CATS")

@Inheritance(strategy=InheritanceType.JOINED)
public class Cat implements Serializable { 
    @Id @GeneratedValue(generator="cat-uuid") 
    @GenericGenerator(name="cat-uuid", strategy="uuid")
    String getId() { return id; }
    ...
}
@Entity @Table(name="DOMESTIC_CATS")
@PrimaryKeyJoinColumn(name="CAT")
public class DomesticCat extends Cat { 
    public String getName() { return name; }
}            

In hbm.xml, use the <joined-subclass> element. For example:

<joined-subclass
        name="(1)ClassName"
        table=(2)"tablename"
        proxy=(3)"ProxyInterface"
        lazy="(4)true|false"
        dynamic-update="true|false"
        dynamic-insert="true|false"
        schema="schema"
        catalog="catalog"
        extends="SuperclassName"
        persister="ClassName"
        subselect="SQL expression"
        entity-name="EntityName"
        node="element-name">

        <key .... >

        <property .... />
        .....
</joined-subclass>

1

name: El nombre de clase completamente calificado de la subclase.

2

table: El nombre de tabla de la subclase.

3

proxy (opcional): Especifica una clase o interfaz que se debe utilizar para proxies de inicialización perezosa.

4

lazy (opcional, por defecto es true): El establecer lazy="false" desactiva el uso de la recuperación perezosa.

Use the <key> element to declare the primary key / foreign key column. The mapping at the start of the chapter would then be re-written as:


<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
        "-//Hibernate/Hibernate Mapping DTD//EN"
        "http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">

<hibernate-mapping package="eg">

        <class name="Cat" table="CATS">
                <id name="id" column="uid" type="long">
                        <generator class="hilo"/>
                </id>
                <property name="birthdate" type="date"/>
                <property name="color" not-null="true"/>
                <property name="sex" not-null="true"/>
                <property name="weight"/>
                <many-to-one name="mate"/>
                <set name="kittens">
                        <key column="MOTHER"/>
                        <one-to-many class="Cat"/>
                </set>
                <joined-subclass name="DomesticCat" table="DOMESTIC_CATS">
                    <key column="CAT"/>
                    <property name="name" type="string"/>
                </joined-subclass>
        </class>

        <class name="eg.Dog">
                <!-- mapping for Dog could go here -->
        </class>

</hibernate-mapping>

For information about inheritance mappings see Capítulo 10, Mapeo de herencias.

A third option is to map only the concrete classes of an inheritance hierarchy to tables. This is called the table-per-concrete-class strategy. Each table defines all persistent states of the class, including the inherited state. In Hibernate, it is not necessary to explicitly map such inheritance hierarchies. You can map each class as a separate entity root. However, if you wish use polymorphic associations (e.g. an association to the superclass of your hierarchy), you need to use the union subclass mapping.

@Entity

@Inheritance(strategy = InheritanceType.TABLE_PER_CLASS)
public class Flight implements Serializable { ... }            

Or in hbm.xml:

<union-subclass
        name="(1)ClassName"
        table=(2)"tablename"
        proxy=(3)"ProxyInterface"
        lazy="(4)true|false"
        dynamic-update="true|false"
        dynamic-insert="true|false"
        schema="schema"
        catalog="catalog"
        extends="SuperclassName"
        abstract="true|false"
        persister="ClassName"
        subselect="SQL expression"
        entity-name="EntityName"
        node="element-name">

        <property .... />
        .....
</union-subclass>

1

name: El nombre de clase completamente calificado de la subclase.

2

table: El nombre de tabla de la subclase.

3

proxy (opcional): Especifica una clase o interfaz que se debe utilizar para proxies de inicialización perezosa.

4

lazy (opcional, por defecto es true): El establecer lazy="false" desactiva el uso de la recuperación perezosa.

No se necesita una columna o una columna clave discriminadora para esta estrategia de mapeo.

For information about inheritance mappings see Capítulo 10, Mapeo de herencias.

This is sometimes useful to share common properties through a technical or a business superclass without including it as a regular mapped entity (ie no specific table for this entity). For that purpose you can map them as @MappedSuperclass.

@MappedSuperclass

public class BaseEntity {
    @Basic
    @Temporal(TemporalType.TIMESTAMP)
    public Date getLastUpdate() { ... }
    public String getLastUpdater() { ... }
    ...
}
@Entity class Order extends BaseEntity {
    @Id public Integer getId() { ... }
    ...
}

In database, this hierarchy will be represented as an Order table having the id, lastUpdate and lastUpdater columns. The embedded superclass property mappings are copied into their entity subclasses. Remember that the embeddable superclass is not the root of the hierarchy though.

You can override columns defined in entity superclasses at the root entity level using the @AttributeOverride annotation.

@MappedSuperclass

public class FlyingObject implements Serializable {
    public int getAltitude() {
        return altitude;
    }
    @Transient
    public int getMetricAltitude() {
        return metricAltitude;
    }
    @ManyToOne
    public PropulsionType getPropulsion() {
        return metricAltitude;
    }
    ...
}
@Entity
@AttributeOverride( name="altitude", column = @Column(name="fld_altitude") )
@AssociationOverride( 
   name="propulsion", 
   joinColumns = @JoinColumn(name="fld_propulsion_fk") 
)
public class Plane extends FlyingObject {
    ...
}

The altitude property will be persisted in an fld_altitude column of table Plane and the propulsion association will be materialized in a fld_propulsion_fk foreign key column.

You can define @AttributeOverride(s) and @AssociationOverride(s) on @Entity classes, @MappedSuperclass classes and properties pointing to an @Embeddable object.

In hbm.xml, simply map the properties of the superclass in the <class> element of the entity that needs to inherit them.

While not recommended for a fresh schema, some legacy databases force your to map a single entity on several tables.

Using the @SecondaryTable or @SecondaryTables class level annotations. To express that a column is in a particular table, use the table parameter of @Column or @JoinColumn.

@Entity

@Table(name="MainCat")
@SecondaryTables({
    @SecondaryTable(name="Cat1", pkJoinColumns={
        @PrimaryKeyJoinColumn(name="cat_id", referencedColumnName="id")
    ),
    @SecondaryTable(name="Cat2", uniqueConstraints={@UniqueConstraint(columnNames={"storyPart2"})})
})
public class Cat implements Serializable {
    private Integer id;
    private String name;
    private String storyPart1;
    private String storyPart2;
    @Id @GeneratedValue
    public Integer getId() {
        return id;
    }
    public String getName() {
        return name;
    }
    
    @Column(table="Cat1")
    public String getStoryPart1() {
        return storyPart1;
    }
    @Column(table="Cat2")
    public String getStoryPart2() {
        return storyPart2;
    }
}

In this example, name will be in MainCat. storyPart1 will be in Cat1 and storyPart2 will be in Cat2. Cat1 will be joined to MainCat using the cat_id as a foreign key, and Cat2 using id (ie the same column name, the MainCat id column has). Plus a unique constraint on storyPart2 has been set.

There is also additional tuning accessible via the @org.hibernate.annotations.Table annotation:

Make sure to use the secondary table name in the appliesto property

@Entity

@Table(name="MainCat")
@SecondaryTable(name="Cat1")
@org.hibernate.annotations.Table(
   appliesTo="Cat1",
   fetch=FetchMode.SELECT,
   optional=true)
public class Cat implements Serializable {
    private Integer id;
    private String name;
    private String storyPart1;
    private String storyPart2;
    @Id @GeneratedValue
    public Integer getId() {
        return id;
    }
    public String getName() {
        return name;
    }
    
    @Column(table="Cat1")
    public String getStoryPart1() {
        return storyPart1;
    }
    @Column(table="Cat2")
    public String getStoryPart2() {
        return storyPart2;
    }
}

In hbm.xml, use the <join> element.

<join
        table=(1)"tablename"
        schema(2)="owner"
        catalo(3)g="catalog"
        fetch=(4)"join|select"
        invers(5)e="true|false"
        option(6)al="true|false">

        <key ... />

        <property ... />
        ...
</join>

1

table: El nombre de la tabla unida.

2

schema (opcional): Sobrescribe el nombre del esquema especificado por el elemento raíz <hibernate-mapping>.

3

catalog (opcional): Sobrescribe el nombre del catálogo especificado por el elemento raíz <hibernate-mapping>.

4

fetch (opcional - por defecto es join): Si se establece como join, por defecto, Hibernate utilizará una unión interior (inner join) para recuperar un <join> definido por una clase o sus superclases. Utilizará una unión externa (outer join) para un <join> definido por una subclase. Si se establece como select, entonces Hibernate utilizará una selección secuencial para un <join> definido en una subclase. Esto se publicará sólamente si una fila representa una instancia de la subclase. Las uniones interiores todavía serán utilizadas para recuperar un <join> definido por la clase y sus superclases.

5

inverse (opcional - por defecto es false): De activarse, Hibernate no tratará de insertar o actualizar las propiedades definidas por esta unión.

6

optional (opcional - por defecto es false): De activarse, Hibernate insertará una fila sólo si las propiedades definidas por esta unión son no-nulas. Siempre utilizará una unión externa para recuperar las propiedades.

Por ejemplo, la información domiciliaria de una persona se puede mapear a una tabla separada, preservando a la vez la semántica de tipo de valor para todas las propiedades:


<class name="Person"
    table="PERSON">

    <id name="id" column="PERSON_ID">...</id>

    <join table="ADDRESS">
        <key column="ADDRESS_ID"/>
        <property name="address"/>
        <property name="zip"/>
        <property name="country"/>
    </join>
    ...

Con frecuencia, esta funcionalidad sólamente es útil para los modelos de datos heredados. Recomendamos menos tablas que clases y un modelo de dominio más detallado. Sin embargo, es útil para cambiar entre estrategias de mapeo de herencias en una misma jerarquía, como se explica más adelante.

To link one entity to an other, you need to map the association property as a to one association. In the relational model, you can either use a foreign key or an association table, or (a bit less common) share the same primary key value between the two entities.

To mark an association, use either @ManyToOne or @OnetoOne.

@ManyToOne and @OneToOne have a parameter named targetEntity which describes the target entity name. You usually don't need this parameter since the default value (the type of the property that stores the association) is good in almost all cases. However this is useful when you want to use interfaces as the return type instead of the regular entity.

Setting a value of the cascade attribute to any meaningful value other than nothing will propagate certain operations to the associated object. The meaningful values are divided into three categories.

By default, single point associations are eagerly fetched in JPA 2. You can mark it as lazily fetched by using @ManyToOne(fetch=FetchType.LAZY) in which case Hibernate will proxy the association and load it when the state of the associated entity is reached. You can force Hibernate not to use a proxy by using @LazyToOne(NO_PROXY). In this case, the property is fetched lazily when the instance variable is first accessed. This requires build-time bytecode instrumentation. lazy="false" specifies that the association will always be eagerly fetched.

With the default JPA options, single-ended associations are loaded with a subsequent select if set to LAZY, or a SQL JOIN is used for EAGER associations. You can however adjust the fetching strategy, ie how data is fetched by using @Fetch. FetchMode can be SELECT (a select is triggered when the association needs to be loaded) or JOIN (use a SQL JOIN to load the association while loading the owner entity). JOIN overrides any lazy attribute (an association loaded through a JOIN strategy cannot be lazy).

An ordinary association to another persistent class is declared using a

and a foreign key in one table is referencing the primary key column(s) of the target table.

@Entity

public class Flight implements Serializable {
    @ManyToOne( cascade = {CascadeType.PERSIST, CascadeType.MERGE} )
    @JoinColumn(name="COMP_ID")
    public Company getCompany() {
        return company;
    }
    ...
}            

The @JoinColumn attribute is optional, the default value(s) is the concatenation of the name of the relationship in the owner side, _ (underscore), and the name of the primary key column in the owned side. In this example company_id because the property name is company and the column id of Company is id.

@Entity

public class Flight implements Serializable {
    @ManyToOne( cascade = {CascadeType.PERSIST, CascadeType.MERGE}, targetEntity=CompanyImpl.class )
    @JoinColumn(name="COMP_ID")
    public Company getCompany() {
        return company;
    }
    ...
}
public interface Company {
    ...
}

You can also map a to one association through an association table. This association table described by the @JoinTable annotation will contains a foreign key referencing back the entity table (through @JoinTable.joinColumns) and a a foreign key referencing the target entity table (through @JoinTable.inverseJoinColumns).

@Entity

public class Flight implements Serializable {
    @ManyToOne( cascade = {CascadeType.PERSIST, CascadeType.MERGE} )
    @JoinTable(name="Flight_Company",
        joinColumns = @JoinColumn(name="FLIGHT_ID"),
        inverseJoinColumns = @JoinColumn(name="COMP_ID")
    )
    public Company getCompany() {
        return company;
    }
    ...
}       

You can mark an association as mandatory by using the optional=false attribute. We recommend to use Bean Validation's @NotNull annotation as a better alternative however. As a consequence, the foreign key column(s) will be marked as not nullable (if possible).

When Hibernate cannot resolve the association because the expected associated element is not in database (wrong id on the association column), an exception is raised. This might be inconvenient for legacy and badly maintained schemas. You can ask Hibernate to ignore such elements instead of raising an exception using the @NotFound annotation.


Sometimes you want to delegate to your database the deletion of cascade when a given entity is deleted. In this case Hibernate generates a cascade delete constraint at the database level.


Foreign key constraints, while generated by Hibernate, have a fairly unreadable name. You can override the constraint name using @ForeignKey.


Sometimes, you want to link one entity to an other not by the target entity primary key but by a different unique key. You can achieve that by referencing the unique key column(s) in @JoinColumn.referenceColumnName.

@Entity

class Person {
   @Id Integer personNumber;
   String firstName;
   @Column(name="I")
   String initial;
   String lastName;
}
@Entity
class Home {
   @ManyToOne
   @JoinColumns({
      @JoinColumn(name="first_name", referencedColumnName="firstName"),
      @JoinColumn(name="init", referencedColumnName="I"),
      @JoinColumn(name="last_name", referencedColumnName="lastName"),
   })
   Person owner
}

This is not encouraged however and should be reserved to legacy mappings.

In hbm.xml, mapping an association is similar. The main difference is that a @OneToOne is mapped as <many-to-one unique="true"/>, let's dive into the subject.

<many-to-one
        name="(1)propertyName"
        column(2)="column_name"
        class=(3)"ClassName"
        cascad(4)e="cascade_style"
        fetch=(5)"join|select"
        update(6)="true|false"
        insert(6)="true|false"
        proper(7)ty-ref="propertyNameFromAssociatedClass"
        access(8)="field|property|ClassName"
        unique(9)="true|false"
        not-nu(10)ll="true|false"
        optimi(11)stic-lock="true|false"
        lazy="(12)proxy|no-proxy|false"
        not-fo(13)und="ignore|exception"
        entity(14)-name="EntityName"
        formul(15)a="arbitrary SQL expression"
        node="element-name|@attribute-name|element/@attribute|."
        embed-xml="true|false"
        index="index_name"
        unique_key="unique_key_id"
        foreign-key="foreign_key_name"
/>

1

name: El nombre de la propiedad.

2

column (opcional): El nombre de la columna de la clave foránea. Esto también se puede especificar por medio de uno o varios elementos anidados <column>.

3

class (opcional - por defecto es el tipo de la propiedad determinado por reflección): El nombre de la clase asociada.

4

cascade (opcional) especifica qué operaciones deben ir en cascada desde el objeto padre hasta el objeto asociado.

5

fetch (opcional - por defecto es select): Escoge entre la recuperación de unión exterior (outer-join) o la recuperación por selección secuencial.

6

update, insert (opcional - por defecto es true) especifica que las columnas mapeadas deben ser incluídas en las declaraciones SQL UPDATE y/o INSERT. El establecer ambas como false permite una asociación puramente "derivada" cuyo valor es inicializado desde alguna otra propiedad que mapea a la misma columna (o columnas), por un disparador o por otra aplicación.

7

property-ref: (opcional): El nombre de una propiedad de la clase asociada que se encuentra unida a su llave foránea. Si no se especifica, se utiliza la llave principal de la clase asociada.

8

access (opcional - por defecto es property): La estrategia que Hibernate utiliza para acceder al valor de la propiedad.

9

unique (opcional): Activa la generación DDL de una restricción de unicidad para la columna de clave foránea. Además, permite que éste sea el objetivo de una property-ref. puede hacer que la asociación sea de multiplicidad uno-a-uno.

10

not-null (opcional): Activa la generación DDL de una restricción de nulabilidad para las columnas de clave foránea.

11

optimistic-lock (opcional - por defecto es true): Especifica que las actualizaciones a esta propiedad requieren o no de la obtención de un bloqueo optimista. En otras palabras, determina si debe ocurrir un incremento de versión cuando la propiedad se encuentre desactualizada.

12

lazy (opcional - por defecto es proxy): Por defecto, las asociaciones de punto único van con proxies. lazy="no-proxy" especifica que esta propiedad debe ser recuperada perezosamente cuando se acceda por primera vez a la variable de instancia. Requiere instrumentación del código byte en tiempo de compilación. lazy="false" especifica que la asociación siempre será recuperada tempranamente.

13

not-found (opcional - por defecto es exception): Especifica cómo se manejarán las claves foráneas que referencian las filas que hacen falta. ignore tratará una fila perdida como una asociación nula.

14

entity-name (opcional): El nombre de entidad de la clase asociada.

15

formula (opcional): una expresión SQL que define el valor para una clave foránea computada.

Setting a value of the cascade attribute to any meaningful value other than none will propagate certain operations to the associated object. The meaningful values are divided into three categories. First, basic operations, which include: persist, merge, delete, save-update, evict, replicate, lock and refresh; second, special values: delete-orphan; and third,all comma-separated combinations of operation names: cascade="persist,merge,evict" or cascade="all,delete-orphan". See Sección 11.11, “Persistencia transitiva” for a full explanation. Note that single valued, many-to-one and one-to-one, associations do not support orphan delete.

Este es un ejemplo de una declaración típica muchos-a-uno:


<many-to-one name="product" class="Product" column="PRODUCT_ID"/>

El atributo property-ref se debe utilizar sólamente para el mapeo de datos heredados donde una clave foránea referencia una clave única de la tabla asociada, distinta de la clave principal. Este es un modelo relacional complicado y confuso. Por ejemplo, si la clase Product tuviera un número único serial que no es la clave principal, el atributo unique controla la generación de DDL de Hibernate con la herramienta SchemaExport.


<property name="serialNumber" unique="true" type="string" column="SERIAL_NUMBER"/>

Entonces el mapeo para OrderItem puede utilizar:


<many-to-one name="product" property-ref="serialNumber" column="PRODUCT_SERIAL_NUMBER"/>

Sin embargo, esto ciertamente no se aconseja.

Si la clave única referenciada abarca múltiples propiedades de la entidad asociada, debe mapear las propiedades dentro de un elemento nombrado <properties>.

Si la clave única referenciada es propiedad de un componente, usted puede especificar una ruta de propiedad:


<many-to-one name="owner" property-ref="identity.ssn" column="OWNER_SSN"/>

The second approach is to ensure an entity and its associated entity share the same primary key. In this case the primary key column is also a foreign key and there is no extra column. These associations are always one to one.


Nota

Many people got confused by these primary key based one to one associations. They can only be lazily loaded if Hibernate knows that the other side of the association is always present. To indicate to Hibernate that it is the case, use @OneToOne(optional=false).

In hbm.xml, use the following mapping.

<one-to-one
        name="(1)propertyName"
        class=(2)"ClassName"
        cascad(3)e="cascade_style"
        constr(4)ained="true|false"
        fetch=(5)"join|select"
        proper(6)ty-ref="propertyNameFromAssociatedClass"
        access(7)="field|property|ClassName"
        formul(8)a="any SQL expression"
        lazy="(9)proxy|no-proxy|false"
        entity(10)-name="EntityName"
        node="element-name|@attribute-name|element/@attribute|."
        embed-xml="true|false"
        foreign-key="foreign_key_name"
/>

1

name: El nombre de la propiedad.

2

class (opcional - por defecto es el tipo de la propiedad determinado por reflección): El nombre de la clase asociada.

3

cascade (opcional) especifica qué operaciones deben ir en cascada desde el objeto padre hasta el objeto asociado.

4

constrained (opcional): especifica que una restricción de clave foránea en la clave principal de la tabla mapeada referencia la tabla de la clase asociada. Esta opción afecta el orden en que van en la cascada save() y delete() y determina si la asociación puede ser virtualizada por proxies. La herramienta de exportación de esquemas también lo utiliza.

5

fetch (opcional - por defecto es select): Escoge entre la recuperación de unión exterior (outer-join) o la recuperación por selección secuencial.

6

property-ref (opcional): El nombre de una propiedad de la clase asociada que esté unida a la clave principal de esta clase. Si no se especifica, se utiliza la clave principal de la clase asociada.

7

access (opcional - por defecto es property): La estrategia que Hibernate utiliza para acceder al valor de la propiedad.

8

formula (opcional): Casi todas las asociaciones uno-a-uno mapean a la clave principal de la entidad propietaria. Si este no es el caso, puede especificar otra columna, o columnas, o una expresión para unir utilizando una fórmula SQL. Para un obtener un ejemplo consulte org.hibernate.test.onetooneformula.

9

lazy (opcional - por defecto es proxy): Por defecto, las asociaciones de punto único van con proxies. lazy="no-proxy" especifica que esta propiedad debe ser traída perezosamente cuando se acceda por primera vez la variable de instancia. Requiere instrumentación del código byte en tiempo de compilación. lazy="false" especifica que la asociación siempre será recuperada tempranamente. Observe que si constrained="false", la aplicación de proxies es imposible e Hibernate recuperará tempranamente la asociación.

10

entity-name (opcional): El nombre de entidad de la clase asociada.

Las asociaciones de claves principales no necesitan una columna extra de la tabla. Si dos filas están relacionadas por la asociación entonces las dos filas de tablas comparten el mismo valor de clave principal. Para que dos objetos estén relacionados por una asociación de clave principal, asegúrese de que se les asigne el mismo valor de identificador.

Para una asociación de clave principal, agregue los siguientes mapeos a Employee y Person respectivamente:


<one-to-one name="person" class="Person"/>

<one-to-one name="employee" class="Employee" constrained="true"/>

Asegúrese de que las claves principales de las filas relacionadas en las tablas PERSON y EMPLOYEE sean iguales. Utilizamos una estrategia especial de generación de identificador de Hibernate denominada foreign:


<class name="person" table="PERSON">
    <id name="id" column="PERSON_ID">
        <generator class="foreign">
            <param name="property">employee</param>
        </generator>
    </id>
    ...
    <one-to-one name="employee"
        class="Employee"
        constrained="true"/>
</class>

A una instancia recién guardada de Person se le asigna el mismo valor de clave principal que se le asignó a la instancia Employee referida por la propiedad employee de esa Person.

Although we recommend the use of surrogate keys as primary keys, you should try to identify natural keys for all entities. A natural key is a property or combination of properties that is unique and non-null. It is also immutable. Map the properties of the natural key as @NaturalId or map them inside the <natural-id> element. Hibernate will generate the necessary unique key and nullability constraints and, as a result, your mapping will be more self-documenting.

@Entity

public class Citizen {
    @Id
    @GeneratedValue
    private Integer id;
    private String firstname;
    private String lastname;
    
    @NaturalId
    @ManyToOne
    private State state;
    @NaturalId
    private String ssn;
    ...
}
//and later on query
List results = s.createCriteria( Citizen.class )
                .add( Restrictions.naturalId().set( "ssn", "1234" ).set( "state", ste ) )
                .list();

Or in XML,


<natural-id mutable="true|false"/>
        <property ... />
        <many-to-one ... />
        ......
</natural-id>

Le recomendamos bastante que implemente equals() y hashCode() para comparar las propiedades de clave natural de la entidad.

Este mapeo no está concebido para la utilización con entidades que tienen claves principales naturales.

There is one more type of property mapping. The @Any mapping defines a polymorphic association to classes from multiple tables. This type of mapping requires more than one column. The first column contains the type of the associated entity. The remaining columns contain the identifier. It is impossible to specify a foreign key constraint for this kind of association. This is not the usual way of mapping polymorphic associations and you should use this only in special cases. For example, for audit logs, user session data, etc.

The @Any annotation describes the column holding the metadata information. To link the value of the metadata information and an actual entity type, The @AnyDef and @AnyDefs annotations are used. The metaType attribute allows the application to specify a custom type that maps database column values to persistent classes that have identifier properties of the type specified by idType. You must specify the mapping from values of the metaType to class names.

@Any( metaColumn = @Column( name = "property_type" ), fetch=FetchType.EAGER )

@AnyMetaDef( 
    idType = "integer", 
    metaType = "string", 
    metaValues = {
        @MetaValue( value = "S", targetEntity = StringProperty.class ),
        @MetaValue( value = "I", targetEntity = IntegerProperty.class )
    } )
@JoinColumn( name = "property_id" )
public Property getMainProperty() {
    return mainProperty;
}

Note that @AnyDef can be mutualized and reused. It is recommended to place it as a package metadata in this case.

//on a package

@AnyMetaDef( name="property" 
    idType = "integer", 
    metaType = "string", 
    metaValues = {
        @MetaValue( value = "S", targetEntity = StringProperty.class ),
        @MetaValue( value = "I", targetEntity = IntegerProperty.class )
    } )
package org.hibernate.test.annotations.any;
//in a class
    @Any( metaDef="property", metaColumn = @Column( name = "property_type" ), fetch=FetchType.EAGER )
    @JoinColumn( name = "property_id" )
    public Property getMainProperty() {
        return mainProperty;
    }

The hbm.xml equivalent is:


<any name="being" id-type="long" meta-type="string">
    <meta-value value="TBL_ANIMAL" class="Animal"/>
    <meta-value value="TBL_HUMAN" class="Human"/>
    <meta-value value="TBL_ALIEN" class="Alien"/>
    <column name="table_name"/>
    <column name="id"/>
</any>
<any
        name="(1)propertyName"
        id-typ(2)e="idtypename"
        meta-t(3)ype="metatypename"
        cascad(4)e="cascade_style"
        access(5)="field|property|ClassName"
        optimi(6)stic-lock="true|false"
>
        <meta-value ... />
        <meta-value ... />
        .....
        <column .... />
        <column .... />
        .....
</any>

1

name: el nombre de la propiedad.

2

id-type: el tipo del identificador.

3

meta-type (opcional - por defecto es string): Cualquier tipo que se permita para un mapeo discriminador.

4

cascade (opcional- por defecto es none): el estilo de cascada.

5

access (opcional - por defecto es property): La estrategia que Hibernate utiliza para acceder al valor de la propiedad.

6

optimistic-lock (opcional - por defecto es true): Especifica si las actualizaciones de esta propiedad requieren o no de la adquisición del bloqueo optimista. Define si debe ocurrir un incremento de versión cuando esta propiedad está desactualizada.

El elemento <properties> permite la definición de un grupo de propiedades lógico con nombre de una clase. El uso más importante de la contrucción es que permite que una combinación de propiedades sea el objetivo de una property-ref. También es una forma práctica de definir una restricción de unicidad multicolumna. Por ejemplo:

<properties
        name="(1)logicalName"
        insert(2)="true|false"
        update(3)="true|false"
        optimi(4)stic-lock="true|false"
        unique(5)="true|false"
>

        <property ...../>
        <many-to-one .... />
        ........
</properties>

1

name: El nombre lógico del agrupamiento. No es un nombre de propiedad.

2

insert: ¿Las columnas mapeadas aparacen en INSERTs SQL?

3

update: ¿Las columnas mapeadas aparacen en UPDATEs SQL?

4

optimistic-lock (opcional - por defecto es true): Especifica que las actualizaciones de estas propiedades requieren o no de la adquisición de un bloqueo optimista. Determina si debe ocurrir un incremento de versión cuando estas propiedades están desactualizadas.

5

unique (opcional - por defecto es false): Especifica que existe una restricción de unicidad sobre todas las columnas mapeadas del componente.

Por ejemplo, si tenemos el siguiente mapeo de <properties>:


<class name="Person">
    <id name="personNumber"/>

    ...
    <properties name="name"
            unique="true" update="false">
        <property name="firstName"/>
        <property name="initial"/>
        <property name="lastName"/>
    </properties>
</class>

Puede que tenga alguna asociación de datos heredados que se refiera a esta clave única de la tabla de Person, en lugar de la clave principal:


<many-to-one name="owner"
         class="Person" property-ref="name">
    <column name="firstName"/>
    <column name="initial"/>
    <column name="lastName"/>
</many-to-one>

No recomendamos el uso de este tipo de cosas fuera del contexto del mapeo de datos heredados.

The hbm.xml structure has some specificities naturally not present when using annotations, let's describe them briefly.

Todos los mapeos XML deben declarar el tipo de documento que se muestra. El DTD en sí se puede encontrar en la URL mencionada anteriormente, en el directorio hibernate-x.x.x/src/org/hibernate , o en hibernate3.jar. Hibernate siempre buscará el DTD primero en la ruta de clase. Si el DTD realiza búsquedas utilizando una conexión de Internet, verifique que su declaración DTD frente al contenido de su ruta de clase.

Hibernate tratará primero de resolver los DTDs en su ruta de clase. La manera en que lo hace es registrando una implementación org.xml.sax.EntityResolver personalizada con el SAXReader que utiliza para leer los archivos xml. Este EntityResolver personalizado reconoce dos diferentes espacios de nombre del identificador del sistema.

Este es un ejemplo de la utilización de los espacios de nombre del usuario:


<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC
        "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
        "http://hibernate.sourceforge.net/hibernate-mapping-3.0.dtd" [
    <!ENTITY types SYSTEM "classpath://your/domain/types.xml">
]>

<hibernate-mapping package="your.domain">
    <class name="MyEntity">
        <id name="id" type="my-custom-id-type">
            ...
        </id>
    <class>
    &types;
</hibernate-mapping>

En donde types.xml es un recurso en el paquete your.domain y comprende un typedef personalizado.

Este elemento tiene varios atributos opcionales. Los atributos schema y catalog especifican que las tablas a las que se refiere en este mapeo pertenecen al esquema y/o catálogo mencionado(s). De especificarse, los nombres de tablas serán calificados por el nombre del esquema y del catálogo dados. De omitirse, los nombres de las tablas no serán calificados. El atributo default-cascade especifica qué estilo de cascada se debe asumir para las propiedades y colecciones que no especifican un atributo cascade. Por defecto, el atributo auto-import nos permite utilizar nombres de clase sin calificar en el lenguaje de consulta.

<hibernate-mapping
         schem(1)a="schemaName"
         catal(2)og="catalogName"
         defau(3)lt-cascade="cascade_style"
         defau(4)lt-access="field|property|ClassName"
         defau(5)lt-lazy="true|false"
         auto-(6)import="true|false"
         packa(7)ge="package.name"
 />

1

schema (opcional): El nombre de un esquema de la base de datos.

2

catalog (opcional): El nombre de un catálogo de la base de datos.

3

default-cascade (opcional - por defecto es none): Un estilo de cascada por defecto.

4

default-access (opcional - por defecto es property): La estrategia que Hibernate debe utilizar para acceder a todas las propiedades. Puede ser una implementación personalizada de PropertyAccessor.

5

default-lazy (opcional - por defecto es true): El valor por defecto para los atributos lazy no especificados de mapeos de clase y de colección.

6

auto-import (opcional - por defecto es true): Especifica si podemos utilizar nombres de clases no calificados de clases en este mapeo en el lenguaje de consulta.

7

package (opcional): Especifica un prefijo de paquete que se debe utilizar para los nombres de clase no calificados en el documento de mapeo.

Si tiene dos clases persistentes con el mismo nombre (sin calificar), debe establecer auto-import="false". Se presentará una excepción si usted intenta asignar dos clases al mismo nombre "importado".

El elemento hibernate-mapping le permite anidar varios mapeos <class> persistentes, como se mostró anteriormente. Sin embargo, es una buena práctica (y algunas herramientas esperan) que mapee sólamente una clase persistente, o a una sóla jerarquía de clases, en un archivo de mapeo y nombrarlo como la superclase persistente. Por ejemplo, Cat.hbm.xml, Dog.hbm.xml, o si utiliza herencia, Animal.hbm.xml.

The <key> element is featured a few times within this guide. It appears anywhere the parent mapping element defines a join to a new table that references the primary key of the original table. It also defines the foreign key in the joined table:

<key
        column(1)="columnname"
        on-del(2)ete="noaction|cascade"
        proper(3)ty-ref="propertyName"
        not-nu(4)ll="true|false"
        update(5)="true|false"
        unique(6)="true|false"
/>

1

column (opcional): El nombre de la columna de la clave foránea. Esto también se puede especificar por medio de uno o varios elementos anidados <column>.

2

on-delete (opcional - por defecto es noaction): Especifica si la restricción de clave foránea tiene el borrado en cascada activado a nivel de base de datos.

3

property-ref (opcional): Especifica que la clave foránea referencia columnas que no son la clave principal de la tabla original. Se proporciona para los datos heredados.

4

not-null (opcional): Especifica que las columnas de la clave foránea son no nulables. Esto se implica cuando la clave foránea también es parte de la clave principal.

5

update (opcional): Especifica que la clave foránea nunca se debe actualizar. Esto se implica cuando la clave foránea también es parte de la clave principal.

6

unique (opcional): Especifica que la clave foránea debe tener una restricción de . Esto se implica cuando la clave foránea también es la clave principal.

Para los sistemas en donde el rendimiento es importante, todas las claves deben ser definidas on-delete="cascade". Hibernate utiliza una restricción ON CASCADE DELETE a nivel de base de datos, en vez de muchas declaraciones DELETE individuales. Tenga en cuenta que esta funcionalidad evita la estrategia de bloqueo optimista normal de Hibernate para datos versionados.

Los atributos not-null y update son útiles al mapear una asociación uno a muchos unidireccional. Si mapea una unidireccional uno a muchos a una clave foránea no nulable, tiene que declarar la columna clave utilizando <key not-null="true">.

Los elementos de mapeo que acepten un atributo column aceptarán opcionalmente un subelemento <column>. De manera similar, <formula> es una alternativa al atributo formula. Por ejemplo:


<column
        name="column_name"
        length="N"
        precision="N"
        scale="N"
        not-null="true|false"
        unique="true|false"
        unique-key="multicolumn_unique_key_name"
        index="index_name"
        sql-type="sql_type_name"
        check="SQL expression"
        default="SQL expression"
        read="SQL expression"
        write="SQL expression"/>

<formula>SQL expression</formula>

La mayoría de los atributos en column proporcionan una manera de personalizar el DDL durante la generación del esquema automático. Los atributos read y write le permiten especificar SQL personalizado que Hibernate utilizará para acceder el valor de la columna. Para obtener mayor información sobre esto, consulte la discusión sobre expresiones de lectura y escritura de columnas.

Los elementos column y formula incluso se pueden combinar dentro del mismo mapeo de propiedad o asociación para expresar, por ejemplo, condiciones de unión exóticas.


<many-to-one name="homeAddress" class="Address"
        insert="false" update="false">
    <column name="person_id" not-null="true" length="10"/>
    <formula>'MAILING'</formula>
</many-to-one>

En relación con el servicio de persistencia, los objetos a nivel de lenguaje Java se clasifican en dos grupos:

Una entidad existe independientemente de cualquier otro objeto que referencie a la entidad. Compare esto con el modelo habitual de Java en donde un objeto no referenciado es recolectado como basura. Las entidades deben ser guardadas y borradas explícitamente. Sin embargo, los grabados y borrados se pueden tratar en cascada desde una entidad padre a sus hijos. Esto es diferente al modelo de persistencia de objetos por alcance (ODMG) y corresponde más a cómo se utilizan habitualmente los objetos de aplicación en sistemas grandes. Las entidades soportan referencias circulares y compartidas, que también pueden ser versionadas.

El estado persistente de una entidad consta de las referencias a otras entidades e instancias de tipo valor. Los valores son primitivos: colecciones (no lo que está dentro de la colección), componentes y ciertos objetos inmutables. A diferencia de las entidades, los valores en particular las colecciones y los componentes, son persistidos y borrados por alcance. Como los objetos valor y primitivos son persistidos y borrados junto con sus entidades contenedoras, no se pueden versionar independientemente. Los valores no tienen identidad independiente, por lo que dos entidades o colleciones no los pueden compartir.

Hasta ahora, hemos estado utilizando el término "clase persistente" para referirnos a entidades. Continuaremos haciéndolo así. Sin embargo, no todas la clases con estado persistente definidas por el usuario son entidades. Un componente es una clase definida por el usuario con semántica de valor. Una propiedad Java de tipo java.lang.String también tiene semántica de valor. Dada esta definición, podemos decir que todos los tipo (clases) provistos por el JDK tienen una semántica de tipo valor en Java, mientras que los tipos definidos por el usuario se pueden mapear con semántica de tipo valor o de entidad. La desición corre por cuenta del desarrollador de la aplicación. Una clase entidad en un modelo de dominio son las referencias compartidas a una sola instancia de esa clase, mientras que la composición o agregación usualmente se traducen a un tipo de valor.

Volveremos a revisar ambos conceptos a lo largo de este manual de referencia.

EL desafío es mapear el sistema de tipos de Java ( la definición de entidades y tipos de valor de los desarrolladores al sistema de tipos de SQL/la base de datos. El puente entre ambos sistemas lo brinda Hibernate. Para las entidades utilizamos <class>, <subclass>, etc. Para los tipos de valor utilizamos <property>, <component>, etc, usualmente con un atributo type. El valor de este atributo es el nombre de un tipo de mapeo de Hibernate. Hibernate proporciona un rango de mapeos para tipos de valores del JDK estándar. Puede escribir sus propios mapeos de tipo e implementar sus estrategias de conversión personalizadas.

Todos los tipos incorporados de Hibernate soportan la semántica de nulos, a excepción de las colecciones.

Los tipos de mapeo básicos incorporados se pueden categorizar así:

integer, long, short, float, double, character, byte, boolean, yes_no, true_false

Mapeos de tipos de primitivos de Java o de clases de envoltura a los tipos de columna SQL (específica del vendedor). boolean, yes_no y true_false son codificaciones alternativas a boolean de Java o java.lang.Boolean.

string

Un mapeo del tipo java.lang.String a VARCHAR (u Oracle VAARCHAR2).

date, time, timestamp

Mapeos de tipo desde java.util.Date y sus subclases a tipos SQL DATE, TIME y TIMESTAMP (o equivalente).

calendar, calendar_date

Mapeos de tipo desde java.util.Date y tipos SQL TIMESTAMP y DATE (o equivalente).

big_decimal, big_integer

Mapeos de tipo desde java.math.BigDecimal y java.math.BigInteger a NUMERIC (o NUMBER de Oracle).

locale, timezone, currency

Mapeos de tipo desde java.util.Locale, java.util.TimeZone y java.util.Currency a VARCHAR (o VARCHAR2 de Oracle). Las instancias de Locale y Currency son mapeadas a sus códigos ISO. Las instancias de TimeZone son mapeadas a sus ID.

class

Un mapeo de tipo java.lang.Class a VARCHAR (o VARCHAR2 de Oracle). Una Class es mapeada a su nombre completamente calificado.

binary

Mapea arreglos de bytes a un tipo binario SQL apropiado.

text

Maps long Java strings to a SQL LONGVARCHAR or TEXT type.

image

Maps long byte arrays to a SQL LONGVARBINARY.

serializable

Mapea tipos serializables Java a un tipo binario SQL apropiado. También puede indicar el tipo serializable de Hibernate con el nombre de una clase o interfaz serializable Java que no sea por defecto un tipo básico.

clob, blob

Mapeos de tipo para las clases JDBC java.sql.Clob y java.sql.Blob. Estos tipos pueden ser inconvenientes para algunas aplicaciones, pues el objeto blob o clob no pueden ser reusados fuera de una transacción. Además, el soporte del controlador suele ser malo e inconsistente.

materialized_clob

Maps long Java strings to a SQL CLOB type. When read, the CLOB value is immediately materialized into a Java string. Some drivers require the CLOB value to be read within a transaction. Once materialized, the Java string is available outside of the transaction.

materialized_blob

Maps long Java byte arrays to a SQL BLOB type. When read, the BLOB value is immediately materialized into a byte array. Some drivers require the BLOB value to be read within a transaction. Once materialized, the byte array is available outside of the transaction.

imm_date, imm_time, imm_timestamp, imm_calendar, imm_calendar_date, imm_serializable, imm_binary

Los mapeos de tipo para lo que usualmente se considera tipos Java mutables. Aquí es donde Hibernate realiza ciertas optimizaciones apropiadas sólamente para tipos Java inmutables y la aplicación trata el objeto como inmutable. Por ejemplo, no debe llamar Date.setTime() para una instancia mapeada como imm_timestamp. Para cambiar el valor de la propiedad y hacer que ese cambio sea persistente, la aplicación tiene que asignar un objeto nuevo, no idéntico, a la propiedad.

Los identificadores únicos de entidades y colecciones pueden ser de cualquier tipo básico excepto binary, blob y clob. Los identificadores compuestos también están permitidos, a continuación encontrará mayor información.

Los tipos de valor básicos tienen sus constantes Type correspondientes definidas en org.hibernate.Hibernate. Por ejemplo, Hibernate.STRING representa el tipo string.

Es relativamente fácil para los desarrolladores crear sus propios tipos de valor. Por ejemplo, puede que quiera persistir propiedades del tipo java.lang.BigInteger a columnas VARCHAR. Hibernate no provee un tipo incorporado para esto. Los tipos personalizados no están limitados a mapear una propiedad o elemento de colección a una sola columna de tabla. Así, por ejemplo, podría tener una propiedad Java getName()/setName() de tipo java.lang.String que es persistida a las columnas FIRST_NAME, INITIAL, SURNAME.

Para implementar un tipo personalizado, implemente org.hibernate.UserType o org.hibernate.CompositeUserType y declare las propiedades utilizando el nombre de clase completamente calificado del tipo. Revise org.hibernate.test.DoubleStringType para ver qué clases de cosas son posibles.


<property name="twoStrings" type="org.hibernate.test.DoubleStringType">
    <column name="first_string"/>
    <column name="second_string"/>
</property>

Observe el uso de etiquetas <column> para mapear una propiedad a múltiples columnas.

Las interfaces CompositeUserType, EnhancedUserType, UserCollectionType, y UserVersionType brindan soporte para usos más especializados.

Incluso usted puede proporcionar parámetros a un UserType en el archivo de mapeo. Para hacer esto, su UserType tiene que implementar la interfaz org.hibernate.usertype.ParameterizedType. Para brindar parámetros a su tipo personalizado, puede utilizar el elemento <type> en sus archivos de mapeo.


<property name="priority">
    <type name="com.mycompany.usertypes.DefaultValueIntegerType">
        <param name="default">0</param>
    </type>
</property>

Ahora el UserType puede recuperar el valor del parámetro denominado default del objeto Properties que se le pasa.

Si utiliza cierto UserType muy frecuentemente, puede ser útil el definir un nombre más corto para este. Puede hacer esto utilizando el elemento <typedef>. Los typedefs asignan un nombre a un tipo personalizado y también pueden contener una lista de valores predeterminados de parámetros si el tipo se encuentra parametrizado.


<typedef class="com.mycompany.usertypes.DefaultValueIntegerType" name="default_zero">
    <param name="default">0</param>
</typedef>

<property name="priority" type="default_zero"/>

También es posible sobrescribir los parámetros provistos en un typedef sobre una base de caso por caso utilizando parámetros de tipo en el mapeo de la propiedad.

Aunque el amplio espectro de tipos incorporados y de soporte para los componentes de Hibernate significa que necesitará usar un tipo personalizado muy raramente, se considera como una buena práctica el utilizar tipos personalizados para clases no-entidades que aparezcan frecuentemente en su aplicación. Por ejemplo, una clase MonetaryAmount es una buena candidata para un CompositeUserType, incluso cuando puede ser fácilmente mapeada como un componente. Un razón para esto es la abstracción. Con un tipo personalizado, sus documentos de mapeo estarán protegidos contra posibles cambios futuros en la forma de representar valores monetarios.

Las propiedades generadas son propiedades cuyos valores son generados por la base de datos. Usualmente, las aplicaciones de Hibernate necesitaban refrescar los objetos que contenian cualquier propiedad para la cual la base de datos generará valores. Sin embargo, el marcar propiedades como generadas deja que la aplicación delegue esta responsabilidad a Hibernate. Cuando Hibernate emite un INSERT or UPDATE SQL para una entidad la cual ha definido propiedades generadas, inmediatamente emite un select para recuperar los valores generados.

Las propiedades marcadas como generadas tienen que ser además no insertables y no actualizables. Sólamente las versiones, sellos de fecha, y propiedades simples se pueden marcar como generadas.

never (por defecto): el valor dado de la propiedad no es generado dentro de la base de datos.

insert: el valor dado de la propiedad es generado en insert, pero no es regenerado en las actualizaciones posteriores. Las propiedades como fecha-creada (created-date) se encuentran dentro de esta categoría. Aunque las propiedades versión y sello de fecha se pueden marcar como generadas, esta opción no se encuentra disponible.

always: el valor de la propiedad es generado tanto en insert como en update.

To mark a property as generated, use @Generated.

Hibernate allows you to customize the SQL it uses to read and write the values of columns mapped to simple properties. For example, if your database provides a set of data encryption functions, you can invoke them for individual columns like this:

@Entity

class CreditCard {
   @Column(name="credit_card_num")
   @ColumnTransformer(
      read="decrypt(credit_card_num)", 
      write="encrypt(?)")
   public String getCreditCardNumber() { return creditCardNumber; }
   public void setCreditCardNumber(String number) { this.creditCardNumber = number; }
   private String creditCardNumber;
}

or in XML


<property name="creditCardNumber">
        <column 
          name="credit_card_num"
          read="decrypt(credit_card_num)"
          write="encrypt(?)"/>
</property>

Nota

You can use the plural form @ColumnTransformers if more than one columns need to define either of these rules.

If a property uses more that one column, you must use the forColumn attribute to specify which column, the expressions are targeting.

@Entity

class User {
   @Type(type="com.acme.type.CreditCardType")
   @Columns( {
      @Column(name="credit_card_num"),
      @Column(name="exp_date") } )
   @ColumnTransformer(
      forColumn="credit_card_num", 
      read="decrypt(credit_card_num)", 
      write="encrypt(?)")
   public CreditCard getCreditCard() { return creditCard; }
   public void setCreditCard(CreditCard card) { this.creditCard = card; }
   private CreditCard creditCard;
}

Hibernate aplica las expresiones personalizadas de manera automática cuando la propiedad se referencia en una petición. Esta funcionalidad es similar a una propiedad derivada formula con dos diferencias:

  • Esta propiedad está respaldada por una o más columnas que se exportan como parte de la generación automática del esquema.

  • La propiedad es de lectura y escritura no de sólo lectura.

Si se especifica la expresión write debe contener exactamente un parémetro de sustitución '?' para el valor.