
Hibernate OGM

Reference Guide
4.0.0.Beta4

by Emmanuel Bernard (Red Hat) and Sanne Grinovero (Red Hat)

iii

Preface ... v

1. Goals .. v

2. What we have today ... vi

3. Use cases ... vii

1. How to get help and contribute on Hibernate OGM ... 1

1.1. How to get help .. 1

1.2. How to contribute ... 1

1.2.1. How to build Hibernate OGM .. 1

1.2.2. How to contribute code effectively ... 2

2. Getting started with Hibernate OGM .. 5

3. Architecture ... 9

3.1. General architecture .. 9

3.2. How is data persisted ... 11

3.3. How is data queried .. 16

4. Configure and start Hibernate OGM .. 21

4.1. Bootstrapping Hibernate OGM ... 21

4.1.1. Using JPA ... 21

4.1.2. Using Hibernate ORM native APIs .. 22

4.2. Environments .. 23

4.2.1. In a Java EE container ... 23

4.2.2. In a standalone JTA environment .. 24

4.2.3. Without JTA ... 25

4.3. Configuration options .. 26

4.4. Configuring Hibernate Search .. 26

4.5. How to package Hibernate OGM applications for JBoss AS 7.2 26

5. Datastores .. 29

5.1. Infinispan .. 30

5.1.1. Configure Infinispan .. 30

5.1.2. Manage data size .. 32

5.1.3. Clustering: deploy multiple Infinispan nodes ... 34

5.1.4. Transactions .. 36

5.1.5. Storing a Lucene index in Infinispan .. 37

5.2. Ehcache ... 38

5.2.1. Configure Ehcache ... 39

5.2.2. Transactions .. 40

5.3. MongoDB ... 40

5.3.1. Configuring MongoDB .. 40

5.3.2. Storage principles .. 41

5.3.3. Transactions .. 45

5.3.4. Queries .. 45

5.4. Neo4j ... 46

5.4.1. How to add Neo4j integration .. 46

5.4.2. Configuring Neo4j .. 46

5.4.3. Storage principles .. 47

Hibernate OGM Reference Guide

iv

5.4.4. Transactions .. 48

6. Map your entities ... 49

6.1. Supported entity mapping .. 49

6.2. Supported Types .. 50

6.2.1. Types mapped as native Java Types .. 50

6.2.2. Types mapped as Strings ... 50

6.3. Supported association mapping ... 51

7. Query your entities .. 53

7.1. Using JP-QL ... 53

7.2. Using Hibernate Search .. 54

7.3. Using the Criteria API ... 55

v

Preface

Hibernate Object/Grid Mapper (OGM) is a persistence engine providing Java Persistence (JPA)

support for NoSQL datastores. It reuses Hibernate ORM’s object life cycle management and

(de)hydration engine but persists entities into a NoSQL store (key/value, document, column-

oriented, etc) instead of a relational database. It reuses the Java Persistence Query Language

(JP-QL) as an interface to querying stored data.

The project is still very young and very ambitious at the same time. Many things are on the roadmap

(more NoSQL, query, denormalization engine, etc). If you wish to help, please check Chapter 1,

How to get help and contribute on Hibernate OGM.

Hibernate OGM is released under the LGPL open source license.

Warning

This documentation and this project are work in progress. Please give us feedback

on

• what you like

• what you don’t like

• what is confusing

Check Section 1.2, “How to contribute” on how to contact us.

1. Goals

Hibernate OGM:

• offers a familiar programming paradigm to deal with NoSQL stores

• moves model denormalization from a manual imperative work to a declarative approach handled

by the engine

• encourages new data usage patterns and NoSQL exploration in more "traditional" enterprises

• helps scale existing applications with a NoSQL front end to a traditional database

NoSQL can be very disconcerting as it is composed of many disparate solutions with different

benefits and drawbacks. Speaking only of the main ones, NoSQL is at least categorized in four

families:

• graph oriented databases

Preface

vi

• key/value stores: essentially Maps but with different behaviors and ideas behind various

products (data grids, persistent with strong or eventual consistency, etc)

• document based datastores: contains as value semi-structured documents (think JSON)

• column based datastores

Figure 1. Various NoSQL families

Each have different benefits and drawbacks and one solution might fit a use case better than an

other. However access patterns and APIs are different from one product to the other.

Hibernate OGM is not expected to be the Rosetta stone used to interact with all NoSQL solution

in all use cases. But for people modeling their data as a domain model, it provides distinctive

advantages over raw APIs and has the benefit of providing an API and semantic known to Java

developers. Reusing the same programmatic model and trying different (No)SQL engines will

hopefully help people to explore alternative datastores.

Hibernate OGM also aims at helping people scale traditional relational databases by providing a

NoSQL front-end and keeping the same JPA APIs and domain model.

2. What we have today

Today, Hibernate OGM does not support all of these goals. Here is a list of what we have:

Use cases

vii

• store data in key/value stores (Infinispan’s datagrid and Ehcache)

• store data in document stores (MongoDB)

• Create, Read, Update and Delete operations (CRUD) for entities

• polymorphic entities (support for superclasses, subclasses etc).

• embeddable objects (aka components)

• support for basic types (numbers, String, URL, Date, enums, etc)

• support for associations

• support for collections (Set, List, Map, etc)

• support for Hibernate Search’s full-text queries

• JPA and native Hibernate ORM API support

3. Use cases

Here are a few areas where Hibernate OGM can be beneficial:

• need to scale your data store up and down rapidly (via the underlying NoSQL datastore

capability)

• keep your domain model independent of the underlying datastore technology (RDBMS,

Infinispan, NoSQL)

• explore the best tool for the use case while using a familiar programming model

• use a familiar JPA front end to datagrids (in particular Infinispan)

• use Hibernate Search full-text search / text analysis capabilities and store the data set in an

elastic grid

These are a few ideas and the list will grow as we add more capabilities to Hibernate OGM.

viii

Chapter 1.

1

How to get help and contribute on

Hibernate OGM
Hibernate OGM is a young project. The code, the direction and the documentation are all in flux

and being built by the community. Join and help us shape it!

1.1. How to get help

First of all, make sure to read this reference documentation. This is the most comprehensive formal

source of information. Of course, it is not perfect: feel free to come and ask for help, comment or

propose improvements in our Hibernate OGM forum [https://forum.hibernate.org/viewforum.php?

f=31].

You can also:

• open bug reports in JIRA [https://hibernate.atlassian.net/browse/OGM]

• propose improvements on the development mailing list [http://www.hibernate.org/community/

mailinglists]

• join us on IRC to discuss developments and improvements (#hibernate-dev on

freenode.net; you need to be registered on freenode: the room does not accept "anonymous"

users).

1.2. How to contribute

Welcome!

There are many ways to contribute:

• report bugs in JIRA [https://hibernate.atlassian.net/browse/OGM]

• give feedback in the forum, IRC or the development mailing list

• improve the documentation

• fix bugs or contribute new features

• propose and code a datastore dialect for your favorite NoSQL engine

Hibernate OGM’s code is available on GitHub at https://github.com/hibernate/hibernate-ogm.

1.2.1. How to build Hibernate OGM

Hibernate OGM uses Git and Maven 3, make sure to have both installed on your system.

https://forum.hibernate.org/viewforum.php?f=31
https://forum.hibernate.org/viewforum.php?f=31
https://forum.hibernate.org/viewforum.php?f=31
https://hibernate.atlassian.net/browse/OGM
https://hibernate.atlassian.net/browse/OGM
http://www.hibernate.org/community/mailinglists
http://www.hibernate.org/community/mailinglists
http://www.hibernate.org/community/mailinglists
https://hibernate.atlassian.net/browse/OGM
https://hibernate.atlassian.net/browse/OGM
https://github.com/hibernate/hibernate-ogm

Chapter 1. How to get help an...

2

Clone the git repository from GitHub:

#get the sources

git clone https://github.com/hibernate/hibernate-ogm

cd hibernate-ogm

Run maven

#build project

mvn clean install -s settings-example.xml

Note

Note that Hibernate OGM uses artifacts from the Maven repository hosted by

JBoss. Make sure to either use the -s settings-example.xml option or adjust

your ~/.m2/settings.xml according to the descriptions available on this jboss.org

wiki page [http://community.jboss.org/wiki/MavenGettingStarted-Users].

To build the documentation, set the buildDocs property to true:

mvn clean install -DbuildDocs=true -s settings-example.xml

Tip

If you just want to build the documentation only, run it from the hibernate-ogm-

documentation/manual subdirectory.

1.2.2. How to contribute code effectively

The best way to share code is to fork the Hibernate OGM repository on GitHub, create a branch

and open a pull request when you are ready. Make sure to rebase your pull request on the latest

version of the master branch before offering it.

Here are a couple of approaches the team follows:

• We do small independent commits for each code change. In particular, we do not mix stylistic

code changes (import, typos, etc) and new features in the same commit.

• Commit messages follow this convention: the JIRA issue number, a short commit summary, an

empty line, a longer description if needed. Make sure to limit line length to 80 characters, even

at this day and age it makes for more readable commit comments.

OGM-123 Summary of commit operation

http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users

How to contribute code effectively

3

Optional details on the commit

and a longer description can be

added here.

• A pull request can contain several commits but should be self contained: include the

implementation, its unit tests, its documentation and javadoc changes if needed.

• All commits are proposed via pull requests and reviewed by another member of the team

before being pushed to the reference repository. That’s right, we never commit directly upstream

without code review.

4

Chapter 2.

5

Getting started with Hibernate OGM
If you are familiar with JPA, you are almost good to go :-) We will nevertheless walk you through

the first few steps of persisting and retrieving an entity using Hibernate OGM.

Before we can start, make sure you have the following tools configured:

• Java JDK 6 or above

• Maven 3.x

Hibernate OGM is published in the JBoss hosted Maven repository. Adjust your ~/.m2/

settings.xml file according to the guidelines found on this webpage [http://community.jboss.org/

wiki/MavenGettingStarted-Users]. In this example we will use Infinispan as the targeted datastore.

Add org.hibernate.ogm:hibernate-ogm-infinispan:4.0.0.Beta4 to your project

dependencies.

<dependency>

 <groupId>org.hibernate.ogm</groupId>

 <artifactId>hibernate-ogm-infinispan</artifactId>

 <version>4.0.0.Beta4</version>

</dependency>

<dependency>

 <groupId>org.hibernate.javax.persistence</groupId>

 <artifactId>hibernate-jpa-2.0-api</artifactId>

 <version>1.0.1.Final</version>

</dependency>

Note

While Hibernate OGM depends on JPA 2.0, it is marked as provided in the Maven

POM file. If you run outside a Java EE container, make sure to explicitly add the

dependency.

We will use the JPA APIs in this tutorial.

Let’s now map our first Hibernate OGM entity.

@Entity

public class Dog {

 @Id @GeneratedValue(strategy = GenerationType.TABLE, generator = "dog")

 @TableGenerator(

 name = "dog",

 table = "sequences",

 pkColumnName = "key",

 pkColumnValue = "dog",

 valueColumnName = "seed"

http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users
http://community.jboss.org/wiki/MavenGettingStarted-Users

Chapter 2. Getting started wi...

6

)

 public Long getId() { return id; }

 public void setId(Long id) { this.id = id; }

 private Long id;

 public String getName() { return name; }

 public void setName(String name) { this.name = name; }

 private String name;

 @ManyToOne

 public Breed getBreed() { return breed; }

 public void setBreed(Breed breed) { this.breed = breed; }

 private Breed breed;

}

@Entity

public class Breed {

 @Id @GeneratedValue(generator = "uuid")

 @GenericGenerator(name="uuid", strategy="uuid2")

 public String getId() { return id; }

 public void setId(String id) { this.id = id; }

 private String id;

 public String getName() { return name; }

 public void setName(String name) { this.name = name; }

 private String name;

}

I lied to you, we have already mapped two entities! If you are familiar with JPA, you can see that

there is nothing specific to Hibernate OGM in our mapping.

In this tutorial, we will use JBoss Transactions for our JTA transaction manager. The final list of

dependencies should look like this:

<dependencies>

 <!-- Hibernate OGM dependency -->

 <dependency>

 <groupId>org.hibernate.ogm</groupId>

 <artifactId>hibernate-ogm-core</artifactId>

 <version>4.0.0.Beta4</version>

 </dependency>

 <!-- standard APIs dependencies - provided in a Java EE container -->

 <dependency>

 <groupId>org.hibernate.javax.persistence</groupId>

 <artifactId>hibernate-jpa-2.0-api</artifactId>

 <version>1.0.1.Final</version>

 </dependency>

 <dependency>

 <groupId>org.jboss.spec.javax.transaction</groupId>

 <artifactId>jboss-transaction-api_1.1_spec</artifactId>

 <version>1.0.0.Final</version>

 <scope>provided</scope>

 </dependency>

7

 <!-- JBoss Transactions dependency -->

 <dependency>

 <groupId>org.jboss.jbossts</groupId>

 <artifactId>jbossjta</artifactId>

 <version>4.16.4.Final</version>

 </dependency>

</dependencies>

Next we need to define the persistence unit. Create a META-INF/persistence.xml file.

<?xml version="1.0"?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/

xml/ns/persistence/persistence_2_0.xsd"

 version="2.0">

 <persistence-unit name="ogm-jpa-tutorial" transaction-type="JTA">

 <!-- Use Hibernate OGM provider: configuration will be transparent -->

 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>

 <properties>

 <!-- property optional if you plan and use Infinispan, otherwise adjust to your favorite

 NoSQL Datastore provider.

 <property name="hibernate.ogm.datastore.provider"

 value="org.hibernate.ogm.datastore.infinispan.impl.InfinispanDatastoreProvider"/>

 -->

 <!-- defines which JTA Transaction we plan to use -->

 <property name="hibernate.transaction.jta.platform"

 value="org.hibernate.service.jta.platform.internal.JBossStandAloneJtaPlatform"/

>

 </properties>

 </persistence-unit>

</persistence>

Let’s now persist a set of entities and retrieve them.

//accessing JBoss's Transaction can be done differently but this one works nicely

TransactionManager tm = getTransactionManager();

//build the EntityManagerFactory as you would build in in Hibernate ORM

EntityManagerFactory emf = Persistence.createEntityManagerFactory(

 "ogm-jpa-tutorial");

final Logger logger = LoggerFactory.getLogger(DogBreedRunner.class);

[..]

//Persist entities the way you are used to in plain JPA

tm.begin();

logger.infof("About to store dog and breed");

EntityManager em = emf.createEntityManager();

Breed collie = new Breed();

collie.setName("Collie");

Chapter 2. Getting started wi...

8

em.persist(collie);

Dog dina = new Dog();

dina.setName("Dina");

dina.setBreed(collie);

em.persist(dina);

Long dinaId = dina.getId();

em.flush();

em.close();

tm.commit();

[..]

//Retrieve your entities the way you are used to in plain JPA

tm.begin();

logger.infof("About to retrieve dog and breed");

em = emf.createEntityManager();

dina = em.find(Dog.class, dinaId);

logger.infof("Found dog %s of breed %s", dina.getName(), dina.getBreed().getName());

em.flush();

em.close();

tm.commit();

[..]

emf.close();

public static TransactionManager getTransactionManager() throws Exception

 Class<?> tmClass = Main.class.getClassLoader().loadClass(JBOSS_TM_CLASS_NAME);

 return (TransactionManager) tmClass.getMethod("transactionManager").invoke(null);

}

Note

Some JVM do not handle mixed IPv4/IPv6 stacks properly (older Mac OS X JDK

in particular [http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7144274]), if

you experience trouble starting the Infinispan cluster, pass the following property:

-Djava.net.preferIPv4Stack=true to your JVM or upgrade to a recent JDK

version. jdk7u6 (b22) is known to work on Max OS X.

A working example can be found in Hibernate OGM’s distribution under hibernate-ogm-

documentation/examples/gettingstarted.

What have we seen?

• Hibernate OGM is a JPA implementation and is used as such both for mapping and in API usage

• It is configured as a specific JPA provider:

org.hibernate.ogm.jpa.HibernateOgmPersistence

Let’s explore more in the next chapters.

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7144274
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7144274
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=7144274

Chapter 3.

9

Architecture

Note

Hibernate OGM defines an abstraction layer represented by DatastoreProvider

and GridDialect to separate the OGM engine from the datastores interaction.

It has successfully abstracted various key/value stores and MongoDB. We are

working on testing it on other NoSQL families.

In this chapter we will will explore:

• the general architecture

• how the data is persisted in the NoSQL datastore

• how we support JP-QL queries

Let’s start with the general architecture.

3.1. General architecture

Hibernate OGM is really made possible by the reuse of a few key components:

• Hibernate ORM for JPA support

• Hibernate Search for indexing and query purposes

• the NoSQL drivers to interact with the underlying datastore

• Infinispan’s Lucene Directory to store indexes in Infinispan itself, or in many other NoSQL using

Infinispan’s write-through cachestores

• Hibernate OGM itself

Chapter 3. Architecture

10

Figure 3.1. General architecture

Hibernate OGM reuses as much as possible from the Hibernate ORM infrastructure. There

is no need to rewrite an entirely new JPA engine. The Persisters and the Loaders (two

interfaces used by Hibernate ORM) have been rewritten to persist data in the NoSQL store.

These implementations are the core of Hibernate OGM. We will see in Section 3.2, “How is data

persisted” how the data is structured.

How is data persisted

11

The particularities between NoSQL stores are abstracted by the notion of a DatastoreProvider

and a GridDialect.

• DatastoreProvider abstracts how to start and maintain a connection between Hibernate OGM

and the datastore.

• GridDialect abstracts how data itself including association is persisted.

Think of them as the JDBC layer for our NoSQL stores.

Other than these, all the Create/Read/Update/Delete (CRUD) operations are implemented by the

Hibernate ORM engine (object hydration and dehydration, cascading, lifecycle etc).

As of today, we have implemented four datastore providers:

• a Map based datastore provider (for testing)

• an Infinispan based datastore provider to persist your entities in Infinispan

• a Ehcache based datastore provider to persist your entities in Ehcache

• a MongoDB based datastore provider to persist data in a MongoDB database

To implement JP-QL queries, Hibernate OGM parses the JP-QL string and calls the appropriate

translator functions to build a native query. If the query is too complex for the native capabilities

of the NoSQL store, the Teiid query engine is used as an intermediary engine to implement the

missing features (typically joins between entities, aggregation). Finally, if the underlying engine

does not have any query support, we use Hibernate Search as an external query engine.

Reality is a bit more nuanced, we will discuss the subject of querying in more details in Section 3.3,

“How is data queried”.

Hibernate OGM best works in a JTA environment. The easiest solution is to deploy it on a Java EE

container. Alternatively, you can use a standalone JTA TransactionManager. We explain how to

in Section 4.2.2, “In a standalone JTA environment”.

Let’s now see how and in which structure data is persisted in the NoSQL data store.

3.2. How is data persisted

Hibernate OGM tries to reuse as much as possible the relational model concepts, at least when

they are practical and make sense in OGM’s case. For very good reasons, the relational model

brought peace in the database landscape over 30 years ago. In particular, Hibernate OGM inherits

the following traits:

• abstraction between the application object model and the persistent data model

• persist data as basic types

• keep the notion of primary key to address an entity

Chapter 3. Architecture

12

• keep the notion of foreign key to link two entities (not enforced)

If the application data model is too tightly coupled with your persistent data model, a few issues

arise including:

• any change in the application object hierarchy / composition must be reflected in the persistent

data

• any change in the application object model will require a migration at the data level

• any access to the data by another application ties both applications losing flexibility

• any access to the data from another platform become somewhat more challenging

• serializing entities leads to many additional problems (see note below)

Why aren’t entities serialized in the key/value entry

There are a couple of reasons why serializing the entity directly in the datastore

can lead to problems:

• When entities are pointing to other entities are you storing the whole graph? Hint:

this can be quite big!

• If doing so, how do you guarantee object identity or even consistency amongst

duplicated objects? It might make sense to store the same object graph from

different root objects.

• What happens in case of class schema change? If you add or remove a property

or include a superclass, you must migrate all entities in your datastore to avoid

deserialization issues.

Entities are stored as tuples of values by Hibernate OGM. More specifically, each entity is

conceptually represented by a Map<String,Object> where the key represents the column name

(often the property name but not always) and the value represents the column value as a basic

type. We favor basic types over complex ones to increase portability (across platforms and across

type / class schema evolution over time). For example a URL object is stored as its String

representation.

The key identifying a given entity instance is composed of:

• the table name

• the primary key column name(s)

• the primary key column value(s)

How is data persisted

13

Figure 3.2. Storing entities

The GridDialect specific to the NoSQL datastore you target is then responsible to convert this

map into the most natural model:

• for a key/value store or a data grid, we use the logical key as the key in the grid and we store

the map as the value. Note that it’s an approximation and some key/value providers will use

more tailored approaches.

Chapter 3. Architecture

14

• for a document oriented store, the map is represented by a document and each entry in the

map corresponds to a property in a document.

Associations are also stored as tuple as well or more specifically as a set of tuples. Hibernate OGM

stores the information necessary to navigate from an entity to its associations. This is a departure

from the pure relational model but it ensures that association data is reachable via key lookups

based on the information contained in the entity tuple we want to navigate from. Note that this

leads to some level of duplication as information has to be stored for both sides of the association.

The key in which association data are stored is composed of:

• the table name

• the column name(s) representing the foreign key to the entity we come from

• the column value(s) representing the foreign key to the entity we come from

Using this approach, we favor fast read and (slightly) slower writes.

How is data persisted

15

Figure 3.3. Storing associations

Note that this approach has benefits and drawbacks:

• it ensures that all CRUD operations are doable via key lookups

• it favors reads over writes (for associations)

• but it duplicates data

Note

We might offer alternative association data persistence options in the future based

on feedback.

Again, there are specificities in how data is inherently stored in the specific NoSQL store. For

example, in document oriented stores, the association information including the identifier to the

Chapter 3. Architecture

16

associated entities can be stored in the entity owning the association. This is a more natural model

for documents.

TODO: this sentence might be worth a diagram to show the difference with the key/value store.

Some identifiers require to store a seed in the datastore (like sequences for examples). The seed

is stored in the value whose key is composed of:

• the table name

• the column name representing the segment

• the column value representing the segment

Make sure to check the chapter dedicated to the NoSQL store you target to find the specificities.

Many NoSQL stores have no notion of schema. Likewise, the tuple stored by Hibernate OGM is

not tied to a particular schema: the tuple is represented by a Map, not a typed Map specific to a

given entity type. Nevertheless, JPA does describe a schema thanks to:

• the class schema

• the JPA physical annotations like @Table and @Column.

While tied to the application, it offers some robustness and explicit understanding when the

schema is changed as the schema is right in front of the developers' eyes. This is an intermediary

model between the strictly typed relational model and the totally schema-less approach pushed

by some NoSQL families.

3.3. How is data queried

Note

Query support is in active development. This section describes where the project

is going.

Since Hibernate OGM wants to offer all of JPA, it needs to support JP-QL queries. Hibernate OGM

parses the JP-QL query string and extracts its meaning. From there, several options are available

depending of the capabilities of the NoSQL store you target:

• it directly delegates the native query generation to the datastore specific query translator

implementation

How is data queried

17

• it uses Teiid as an intermediary engine, Teiid delegating parts of the query to the datastore

specific query translator implementation

• it uses Hibernate Search as a query engine to execute the query

If the NoSQL datastore has some query capabilities and if the JP-QL query is simple enough

to be executed by the datastore, then the JP-QL parser directly pushes the query generation to

the NoSQL specific query translator. The query returns the list of matching identifiers snd uses

Hibernate OGM to return managed objects.

Some of the JP-QL features are not supported by NoSQL solutions. Two typical examples are joins

between entities - which you should limit anyways in a NoSQL environment - and aggregations

like average, max, min etc. When the NoSQL store does not support the query, we use Teiid - a

database federation engine - to build simpler queries executed to the datastore and perform the

join or aggregation operations in Teiid itself.

Finally some NoSQL stores have poor query support, or none at all. In this case Hibernate OGM

can use Hibernate Search as its indexing and query engine. Hibernate Search is able to index and

query objects - entities - and run full-text queries. It uses the well known Apache Lucene to do that

but adds a few interesting characteristics like clustering support and an object oriented abstraction

including an object oriented query DSL. Let’s have a look at the architecture of Hibernate OGM

when using Hibernate Search:

Chapter 3. Architecture

18

Figure 3.4. Using Hibernate Search as query engine - greyed areas are

blocks already present in Hibernate OGM’s architecture

In this situation, Hibernate ORM Core pushes change events to Hibernate Search which will

index entities accordingly and keep the index and the datastore in sync. The JP-QL query parser

How is data queried

19

delegates the query translation to the Hibernate Search query translator and executes the query

on top of the Lucene indexes. Indexes can be stored in various fashions:

• on a file system (the default in Lucene)

• in Infinispan via the Infinispan Lucene directory implementation: the index is then distributed

across several servers transparently

• in NoSQL stores like Voldemort that can natively store Lucene indexes

• in NoSQL stores that can be used as overflow to Infinispan: in this case Infinispan is used as an

intermediary layer to serve the index efficiently but persists the index in another NoSQL store.

Note that for complex queries involving joins or aggregation, Hibernate OGM can use Teiid as an

intermediary query engine that will delegate to Hibernate Search.

Note that you can use Hibernate Search even if you do plan to use the NoSQL datastore query

capabilities. Hibernate Search offers a few interesting options:

• clusterability

• full-text queries - ie Google for your entities

• geospatial queries

• query faceting (ie dynamic categorization of the query results by price, brand etc)

What’s the progress status on queries?

Well… now is a good time to remind you that Hibernate OGM is open source and

that contributing to such cutting edge project is a lot of fun. Check out Chapter 1,

How to get help and contribute on Hibernate OGM for more details.

But to answer your question, we have finished the skeleton of the architecture as

well as the JP-QL parser implementation. The Hibernate Search query translator

can execute simple queries already. However, we do not yet have a NoSQL

specific query translator but the approach is quite clear to us. Teiid for complex

queries is also not integrated but work is being done to facilitate that integration

soon. Native Hibernate Search queries are fully supported.

20

Chapter 4.

21

Configure and start Hibernate OGM
Hibernate OGM favors ease of use and convention over configuration. This makes its configuration

quite simple by default.

4.1. Bootstrapping Hibernate OGM

Hibernate OGM can be used via the Hibernate native APIs (Session) or via the JPA APIs

(EntityManager). Depending of your choice, the bootstrapping strategy is slightly different.

4.1.1. Using JPA

The good news is that if you use JPA as your primary API, the configuration

is extremely simple. Hibernate OGM is seen as a persistence provider which

you need to configure in your persistence.xml. That’s it! The provider name is

org.hibernate.ogm.jpa.HibernateOgmPersistence.

Example 4.1. persistence.xml file

<?xml version="1.0"?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/

xml/ns/persistence/persistence_2_0.xsd"

 version="2.0">

 <persistence-unit name="org.hibernate.ogm.tutorial.jpa" transaction-type="JTA">

 <!-- Use Hibernate OGM provider: configuration will be transparent -->

 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>

 <properties>

 <property name="hibernate.transaction.jta.platform"

 value="org.hibernate.service.jta.platform.internal.JBossStandAloneJtaPlatform" /

>

 <property name="hibernate.ogm.datastore.provider"

 value="infinispan" />

 </properties>

 </persistence-unit>

</persistence>

There are a couple of things to notice:

• there is no JDBC dialect setting

• there is no JDBC setting except sometimes a jta-data-source (check Section 4.2.1, “In a

Java EE container” for more info)

• there is no DDL scheme generation options (hbm2ddl) as NoSQL generally do not require

schemas

Chapter 4. Configure and star...

22

• if you use JTA (which we recommend), you will need to set the JTA platform

You also need to configure which NoSQL datastore you want to use and how to connect to it. We

will detail how to do that later in Chapter 5, Datastores. In this case, we have used the defaults

settings for Infinispan.

From there, simply bootstrap JPA the way you are used to with Hibernate ORM:

• via Persistence.createEntityManagerFactory

• by injecting the EntityManager / EntityManagerFactory in a Java EE container

• by using your favorite injection framework (CDI - Weld, Spring, Guice)

4.1.2. Using Hibernate ORM native APIs

If you want to bootstrap Hibernate OGM using the native Hibernate APIs, use the class

org.hibernate.ogm.cfg.OgmConfiguration.

Example 4.2. Bootstrap Hibernate OGM with Hibernate ORM native APIs

Configuration cfg = new OgmConfiguration();

//assuming you are using JTA in a non contained environment

cfg.setProperty(environment.TRANSACTION_STRATEGY,

 "org.hibernate.transaction.JTATransactionFactory");

//assuming JBoss TransactionManager in standalone mode

cfg.setProperty(Environment.JTA_PLATFORM,

 "org.hibernate.service.jta.platform.internal.JBossStandAloneJtaPlatform");

//assuming the default infinispan settings

cfg.setProperty("hibernate.ogm.datastore.provider",

 "infinispan");

//add your annotated classes

cfg.addAnnotatedClass(Order.class)

 .addAnnotatedClass(Item.class)

//build the SessionFactory

SessionFactory sf = cfg.buildSessionFactory();

There are a couple of things to notice:

• there is no DDL schema generation options (hbm2ddl) as Infinispan does not require schemas

• you need to set the right transaction strategy and the right transaction manager lookup strategy

if you use a JTA based transaction strategy (see Section 4.2, “Environments”)

You also need to configure which NoSQL datastore you want to use and how to connect to it. We

will detail how to do that later in Chapter 5, Datastores. In this case, we have used the defaults

settings for Infinispan.

Environments

23

4.2. Environments

Hibernate OGM runs in various environments, pretty much what you are used to with Hibernate

ORM. There are however environments where it works better and has been more thoroughly

tested.

4.2.1. In a Java EE container

You don’t have to do much in this case. You need three specific settings:

• the transaction factory

• the JTA platform

• a JTA datasource

If you use JPA, simply set the transaction-type to JTA and the transaction factory will be set

for you.

If you use Hibernate ORM native APIs only, then set hibernate.transaction.factory_class

to either:

• org.hibernate.transaction.CMTTransactionFactory if you use declarative transaction

demarcation.

• or org.hibernate.transaction.JTATransactionFactory if you manually demarcate

transaction boundaries

Set the JTA platform to the right Java EE container. The property is

hibernate.transaction.transaction.jta.platform and must contain the fully qualified

class name of the lookup implementation. The list of available values are

listed in Hibernate ORM’s configuration section [http://docs.jboss.org/hibernate/orm/4.1/

devguide/en-US/html_single/#services-JtaPlatform]. For example, in JBoss AS, use

org.hibernate.service.jta.platform.internal.JBossAppServerJtaPlatform.

In your persistence.xml, you also need to define an existing datasource. It is not needed by

Hibernate OGM and won’t be used but the JPA specification mandates this setting.

Example 4.3. persistence.xml file

<?xml version="1.0"?>

<persistence xmlns="http://java.sun.com/xml/ns/persistence"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://java.sun.com/xml/ns/persistence http://java.sun.com/

xml/ns/persistence/persistence_2_0.xsd"

 version="2.0">

 <persistence-unit name="org.hibernate.ogm.tutorial.jpa" transaction-type="JTA">

 <!-- Use Hibernate OGM provider: configuration will be transparent -->

http://docs.jboss.org/hibernate/orm/4.1/devguide/en-US/html_single/#services-JtaPlatform
http://docs.jboss.org/hibernate/orm/4.1/devguide/en-US/html_single/#services-JtaPlatform
http://docs.jboss.org/hibernate/orm/4.1/devguide/en-US/html_single/#services-JtaPlatform

Chapter 4. Configure and star...

24

 <provider>org.hibernate.ogm.jpa.HibernateOgmPersistence</provider>

 <jta-data-source>java:/DefaultDS</jta-data-source>

 <properties>

 <property name="hibernate.transaction.jta.platform"

 value="org.hibernate.service.jta.platform.internal.JBossAppServerJtaPlatform" />

 <property name="hibernate.ogm.datastore.provider"

 value="infinispan" />

 </properties>

 </persistence-unit>

</persistence>

java:DefaultDS will work for out of the box JBoss AS deployments.

4.2.2. In a standalone JTA environment

There is a set of common misconceptions in the Java community about JTA:

• JTA is hard to use

• JTA is only needed when you need transactions spanning several databases

• JTA works in Java EE only

• JTA is slower than "simple" transactions

None of that is true of course, let me show you how to use JBoss Transaction in a standalone

environment with Hibernate OGM.

In Hibernate OGM, make sure to set the following properties:

• transaction-type to JTA in your persistence.xml if you use JPA

• or hibernate.transaction.factory_class to

org.hibernate.transaction.JTATransactionFactory if you use OgmConfiguration to

bootstrap Hibernate OGM.

• hibernate.transaction.jta.platform to

org.hibernate.service.jta.platform.internal.JBossStandAloneJtaPlatform in both

cases.

On the JBoss Transaction side, add JBoss Transaction in your classpath. If you use maven, it

should look like this:

Example 4.4. JBoss Transaction dependency declaration

<dependency>

 <groupId>org.jboss.jbossts</groupId>

 <artifactId>jbossjta</artifactId>

 <version>4.16.4.Final</version>

</dependency>

Without JTA

25

The next step is you get access to the transaction manager. The easiest solution is to do as the

following example:

TransactionManager transactionManager =

 com.arjuna.ats.jta.TransactionManager.transactionmanager();

Then use the standard JTA APIs to demarcate your transaction and you are done!

Example 4.5. Demarcate your transaction with standalone JTA

//note that you must start the transaction before creating the EntityManager

//or else call entityManager.joinTransaction()

transactionManager.begin();

final EntityManager em = emf.createEntityManager();

Poem poem = new Poem();

poem.setName("L'albatros");

em.persist(poem);

transactionManager.commit();

em.clear();

transactionManager.begin();

poem = em.find(Poem.class, poem.getId());

assertThat(poem).isNotNull();

assertThat(poem.getName()).isEqualTo("L'albatros");

em.remove(poem);

transactionManager.commit();

em.close();

That was not too hard, was it? Note that application frameworks like Seam or Spring Framework

should be able to initialize the transaction manager and call it to demarcate transactions for you.

Check their respective documentation.

4.2.3. Without JTA

While this approach works today, it does not ensure that works are done transactionally and hence

won’t be able to rollback your work. This will change in the future but in the mean time, such an

environment is not recommended.

Note

For NoSQL datastores not supporting transactions, this is less of a concern.

Chapter 4. Configure and star...

26

4.3. Configuration options

The most important options when configuring Hibernate OGM are related to the datastore. They

are explained in Chapter 5, Datastores.

Otherwise, most options from Hibernate ORM and Hibernate Search are applicable when using

Hibernate OGM. You can pass them as you are used to do either in your persistence.xml file,

your hibernate.cfg.xml file or programmatically.

More interesting is a list of options that do not apply to Hibernate OGM and that should not be set:

• hibernate.dialect

• hibernate.connection.* and in particular hibernate.connection.provider_class

• hibernate.show_sql and hibernate.format_sql

• hibernate.default_schema and hibernate.default_catalog

• hibernate.use_sql_comments

• hibernate.jdbc.*

• hibernate.hbm2ddl.auto and hibernate.hbm2ddl.import_file

4.4. Configuring Hibernate Search

Hibernate Search integrates with Hibernate OGM just like it does with Hibernate ORM.

In other words, configure where you want to store your indexes, map your entities with the relevant

index annotations and you are good to go. For more information, simply check the Hibernate

Search reference documentation [http://docs.jboss.org/hibernate/stable/search/reference/en-US/

html_single/].

In Section 5.1.5, “Storing a Lucene index in Infinispan” we’ll discuss how to store your Lucene

indexes in Infinispan. This is useful even if you don’t plan to use Infinispan as your primary data

store.

4.5. How to package Hibernate OGM applications for

JBoss AS 7.2

Provided you’re deploying on JBoss AS 7.2 or JBoss EAP6, there is an additional way to add the

OGM dependencies to your application.

In JBoss AS 7, class loading is based on modules that have to define explicit dependencies on

other modules. Modules allow to share the same artifacts across multiple applications, getting you

smaller and quicker deployments.

http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/

How to package Hibernate OGM applications for JBoss AS 7.2

27

More details about modules are described in Class Loading in AS 7.2 [https://docs.jboss.org/

author/display/AS72/Class+Loading+in+AS7].

You can download the pre-packaged module from:

• Sourceforge [https://downloads.sourceforge.net/project/hibernate/hibernate-ogm/4.0.0.Beta4/

hibernate-ogm-modules-4.0.0.Beta4-jbossas-72-dist.zip]

• JBoss’s Maven repository [https://repository.jboss.org/nexus/service/local/artifact/maven/

redirect?r=central&g=org.hibernate.ogm&a=hibernate-ogm-

modules&v=4.0.0.Beta4&e=zip&c=jbossas-72-dist]

Unpack the archive into the modules folder of your JBoss AS 7.2 installation. The modules

included are:

• org.hibernate:ogm, containing the core OGM library and the infinispan datastore provider.

• org.hibernate.ogm.ehcache:main, containing the ehcache datastore provider.

• org.hibernate.ogm.mongodb:main, containing the mongodb datastore provider.

• org.hibernate:main, containing the latest hibernate ORM libraries compatible with OGM.

Warning

The org.hibernate:main module changes the version of Hibernate ORM

included in the default JBoss AS 7.2.

There are two ways to include the dependencies in your project:

Using the manifest

Add this entry to the MANIFEST.MF in your archive:

Dependencies: org.hibernate:ogm services

Using jboss-deployment-structure.xml

This is a proprietary JBoss AS descriptor. Add a WEB-INF/jboss-deployment-

structure.xml in your archive with content:

<jboss-deployment-structure>

 <deployment>

 <dependencies>

 <module name="org.hibernate" slot="ogm" services="export" />

 </dependencies>

 </deployment>

https://docs.jboss.org/author/display/AS72/Class+Loading+in+AS7
https://docs.jboss.org/author/display/AS72/Class+Loading+in+AS7
https://docs.jboss.org/author/display/AS72/Class+Loading+in+AS7
https://downloads.sourceforge.net/project/hibernate/hibernate-ogm/4.0.0.Beta4/hibernate-ogm-modules-4.0.0.Beta4-jbossas-72-dist.zip
https://downloads.sourceforge.net/project/hibernate/hibernate-ogm/4.0.0.Beta4/hibernate-ogm-modules-4.0.0.Beta4-jbossas-72-dist.zip
https://downloads.sourceforge.net/project/hibernate/hibernate-ogm/4.0.0.Beta4/hibernate-ogm-modules-4.0.0.Beta4-jbossas-72-dist.zip
https://repository.jboss.org/nexus/service/local/artifact/maven/redirect?r=central&g=org.hibernate.ogm&a=hibernate-ogm-modules&v=4.0.0.Beta4&e=zip&c=jbossas-72-dist
https://repository.jboss.org/nexus/service/local/artifact/maven/redirect?r=central&g=org.hibernate.ogm&a=hibernate-ogm-modules&v=4.0.0.Beta4&e=zip&c=jbossas-72-dist
https://repository.jboss.org/nexus/service/local/artifact/maven/redirect?r=central&g=org.hibernate.ogm&a=hibernate-ogm-modules&v=4.0.0.Beta4&e=zip&c=jbossas-72-dist
https://repository.jboss.org/nexus/service/local/artifact/maven/redirect?r=central&g=org.hibernate.ogm&a=hibernate-ogm-modules&v=4.0.0.Beta4&e=zip&c=jbossas-72-dist

Chapter 4. Configure and star...

28

</jboss-deployment-structure>

More information about the descriptor can be found in the JBoss AS 7.2 documentation [https://

docs.jboss.org/author/display/AS72/Class+Loading+in+AS7].

https://docs.jboss.org/author/display/AS72/Class+Loading+in+AS7
https://docs.jboss.org/author/display/AS72/Class+Loading+in+AS7
https://docs.jboss.org/author/display/AS72/Class+Loading+in+AS7

Chapter 5.

29

Datastores
Currently Hibernate OGM supports the following datastores:

• Map: stores data in an in-memory Java map to store data. Use it only for unit tests.

• Infinispan: stores data into Infinispan [http://infinispan.org] (data grid)

• Ehcache: stores data into Ehcache [http://ehcache.org] (cache)

• MongoDB: stores data into MongoDB [http://www.mongodb.org] (document store)

More are planned, if you are interested, come talk to us (see Chapter 1, How to get help and

contribute on Hibernate OGM).

Hibernate OGM interacts with NoSQL datastores via two contracts:

• a datastore provider which is responsible for starting and stopping the connection(s) with the

datastore and prop up the datastore if needed

• a grid dialect which is responsible for converting an Hibernate OGM operation into a datastore

specific operation

The main thing you need to do is to configure which datastore provider you want to use. This is

done via the hibernate.ogm.datastore.provider option. Possible values are the fully qualified

class name of a DatastoreProvider implementation or one preferably of the following shortcuts:

• map: stores data in an in-memory Java map to store data. Use it only for unit tests.

• infinispan: stores data into Infinispan [http://infinispan.org] (data grid)

• ehcache: stores data into Ehcache [http://ehcache.org] (cache)

• mongodb: stores data into MongoDB [http://www.mongodb.org] (document store)

• neo4j: stores data into Neo4j [http://http://www.neo4j.org/] (graph)

You also need to add the relevant Hibernate OGM module in your classpath. In maven that would

look like:

<dependency>

 <groupId>org.hibernate.ogm</groupId>

 <artifactId>hibernate-ogm-infinispan</artifactId>

 <version>4.0.0.Beta4</version>

</dependency>

We have respectively hibernate-ogm-infinispan, hibernate-ogm-ehcache, hibernate-ogm-

mongodb and hibernate-ogm-neo4j. The map datastore is included in the Hibernate OGM engine

module.

http://infinispan.org
http://infinispan.org
http://ehcache.org
http://ehcache.org
http://www.mongodb.org
http://www.mongodb.org
http://infinispan.org
http://infinispan.org
http://ehcache.org
http://ehcache.org
http://www.mongodb.org
http://www.mongodb.org
http://http://www.neo4j.org/
http://http://www.neo4j.org/

Chapter 5. Datastores

30

By default, a datastore provider chooses the best grid dialect transparently but you can manually

override that setting with the hibernate.ogm.datastore.grid_dialect option. Use the fully

qualified class name of the GridDialect implementation. Most users should ignore this setting

entirely and live happy.

5.1. Infinispan

Infinispan is an open source in-memory data grid focusing on high performance. As a data grid,

you can deploy it on multiple servers - referred to as nodes - and connect to it as if it were a single

storage engine: it will cleverly distribute both the computation effort and the data storage.

It is trivial to setup on a single node, in your local JVM, so you can easily try Hibernate OGM. But

Infinispan really shines in multiple node deployments: you will need to configure some networking

details but nothing changes in terms of application behaviour, while performance and data size

can scale linearly.

From all its features we’ll only describe those relevant to Hibernate OGM; for a complete

description of all its capabilities and configuration options, refer to the Infinispan project

documentation at infinispan.org [http://infinispan.org].

5.1.1. Configure Infinispan

Two steps basically:

• Add the dependencies to classpath

• And then choose one of:

• Use the default Infinispan configuration (no action needed)

• Point to your own configuration resource name

• Point to a JNDI name of an existing Infinispan instance

5.1.1.1. Adding Infinispan dependencies

To add the dependencies via some Maven-definitions-using tool, add the following module:

<dependency>

 <groupId>org.hibernate.ogm</groupId>

 <artifactId>hibernate-ogm-infinispan</artifactId>

 <version>4.0.0.Beta4</version>

</dependency>

If you’re not using a dependency management tool, copy all the dependencies from the distribution

in the directories:

• /lib/required

http://infinispan.org
http://infinispan.org

Configure Infinispan

31

• /lib/infinispan

• Optionally - depending on your container - you might need some of the jars from /lib/provided

5.1.1.2. Infinispan specific configuration properties

The advanced configuration details of an Infinispan Cache are defined in an Infinispan specific

XML configuration file; the Hibernate OGM properties are simple and usually just point to this

external resource.

To use the default configuration provided by Hibernate OGM - which is a good starting point for

new users - you don’t have to set any property.

Infinispan datastore configuration properties

hibernate.ogm.datastore.provider

To use Infinispan as a datastore provider set it to infinispan.

hibernate.ogm.infinispan.cachemanager_jndiname

If you have an Infinispan EmbeddedCacheManager registered in JNDI, provide the JNDI name

and Hibernate OGM will use this instance instead of starting a new CacheManager. This will

ignore any further configuration properties as Infinispan is assumed being already configured.

hibernate.ogm.infinispan.configuration_resourcename

Should point to the resource name of an Infinispan configuration file. This is ignored in case

JNDI lookup is set. Defaults to org/hibernate/ogm/datastore/infinispan/default-

config.xml.

5.1.1.3. Cache names used by Hibernate OGM

Hibernate OGM will not use a single Cache but three and is going to use them for different

purposes; so that you can configure the Caches meant for each role separately.

Infinispan cache names and purpose

ENTITIES

Is going to be used to store the main attributed of your entities.

ASSOCIATIONS

Stores the association information which maps to the relations between your entities.

IDENTIFIER_STORE

Contains internal metadata that Hibernate OGM needs to provide sequences and auto-

incremental numbers for primary key generation.

We’ll explain in the following paragraphs how you can take advantage of this and which aspects

of Infinispan you’re likely to want to reconfigure from their defaults. All attributes and elements

from Infinispan which we don’t mention are safe to ignore. Refer to the Infinispan User Guide

https://docs.jboss.org/author/display/ISPN/User+Guide

Chapter 5. Datastores

32

[https://docs.jboss.org/author/display/ISPN/User+Guide] for the guru level performance tuning

and customizations.

An Infinispan configuration file is an XML file complying with the Infinispan schema; the basic

structure is shown in the following example:

Example 5.1. Simple structure of an infinispan xml configuration file

<?xml version="1.0" encoding="UTF-8"?>

<infinispan

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:infinispan:config:5.1 http://www.infinispan.org/schemas/infinispan-

config-5.1.xsd"

 xmlns="urn:infinispan:config:5.1">

 <global>

 </global>

 <default>

 </default>

 <namedCache name="ENTITIES">

 </namedCache>

 <namedCache name="ASSOCIATIONS">

 </namedCache>

 <namedCache name="IDENTIFIERS">

 </namedCache>

</infinispan>

The global section contains elements which affect the whole instance; mainly of interest

for Hibernate OGM users is the transport element in which we’ll set JGroups configuration

overrides.

In the namedCache section (or in default if we want to affect all named caches) we’ll likely want

to configure clustering modes, eviction policies and CacheStores.

5.1.2. Manage data size

In its default configuration Infinispan stores all data in the heap of the JVM; in this barebone mode

it is conceptually not very different than using a HashMap: the size of the data should fit in the

heap of your VM, and stopping/killing/crashing your application will get all data lost with no way

to recover it.

To store data permanently (out of the JVM memory) a CacheStore should be enabled. The

infinispan-core.jar includes a simple implementation able to store data in simple binary files,

on any read/write mounted filesystem; this is an easy starting point, but the real stuff is to be

found in the additional modules found in the Infinispan distribution. Here you can find many more

implementations to store your data in anything from JDBC connected relational databases, other

https://docs.jboss.org/author/display/ISPN/User+Guide

Manage data size

33

NoSQL engines, to cloud storage services or other Infinispan clusters. Finally, implementing a

custom CacheStore is a trivial programming exercise.

To limit the memory consumption of the precious heap space, you can activate a passivation or

an eviction policy; again there are several strategies to play with, for now let’s just consider you’ll

likely need one to avoid running out of memory when storing too many entries in the bounded

JVM memory space; of course you don’t need to choose one while experimenting with limited

data sizes: enabling such a strategy doesn’t have any other impact in the functionality of your

Hibernate OGM application (other than performance: entries stored in the Infinispan in-memory

space is accessed much quicker than from any CacheStore).

A CacheStore can be configured as write-through, committing all changes to the CacheStore

before returning (and in the same transaction) or as write-behind. A write-behind configuration is

normally not encouraged in storage engines, as a failure of the node implies some data might be

lost without receiving any notification about it, but this problem is mitigated in Infinispan because

of its capability to combine CacheStore write-behind with a synchronous replication to other

Infinispan nodes.

Example 5.2. Enabling a FileCacheStore and eviction

<namedCache name="ENTITIES">

 <eviction strategy="LIRS" maxEntries="2000" />

 <loaders

 passivation="true" shared="false">

 <loader

 class="org.infinispan.loaders.file.FileCacheStore"

 fetchPersistentState="false"

 purgeOnStartup="false">

 <properties>

 <property name="location" value="/var/hibernate-ogm/myapp/entities-data" />

 </properties>

 </loader>

 </loaders>

</namedCache>

In this example we enabled both eviction and a CacheStore (the loader element). LIRS is one

of the choices we have for eviction strategies. Here it is configured to keep (approximately) 2000

entries in live memory and evict the remaining as a memory usage control strategy.

The CacheStore is enabling passivation, which means that the entries which are evicted are

stored on the filesystem.

Warning

You could configure an eviction strategy while not configuring a passivating

CacheStore! That is a valid configuration for Infinispan but will have the evictor

permanently remove entries. Hibernate OGM will break in such a configuration.

Chapter 5. Datastores

34

Tip

Currently with Infinispan 5.1, the FileCacheStore is neither very fast nor very

efficient: we picked it for ease of setup. For a production system it’s worth looking

at the large collection of high performance and cloud friendly cachestores provided

by the Infinispan distribution.

5.1.3. Clustering: deploy multiple Infinispan nodes

The best thing about Infinispan is that all nodes are treated equally and it requires almost no

beforehand capacity planning: to add more nodes to the cluster you just have to start new JVMs,

on the same or different physical server, having your same Infinispan configuration and your same

application.

Infinispan supports several clustering cache modes; each mode provides the same API and

functionality but with different performance, scalability and availability options:

Infinispan cache modes

local

Useful for a single VM: networking stack is disabled

replication

All data is replicated to each node; each node contains a full copy of all entries.

Consequentially reads are faster but writes don’t scale as well. Not suited for very large

datasets.

distribution

Each entry is distributed on multiple nodes for redundancy and failure recovery, but not to

all the nodes. Provides linear scalability for both write and read operations. distribution is the

default mode.

To use the replication or distribution cache modes Infinispan will use JGroups to discover

and connect to the other nodes.

In the default configuration, JGroups will attempt to autodetect peer nodes using a multicast

socket; this works out of the box in the most network environments but will require some extra

configuration in cloud environments (which often block multicast packets) or in case of strict

firewalls. See the JGroups reference documentation [http://www.jgroups.org/manual/html_single/

], specifically look for Discovery Protocols to customize the detection of peer nodes.

Nowadays, the JVM defaults to use IPv6 network stack; this will work fine with JGroups, but only

if you configured IPv6 correctly. It is often useful to force the JVM to use IPv4.

It is also useful to let JGroups know which networking interface you want to use; especially if you

have multiple interfaces it might not guess correctly.

http://www.jgroups.org/manual/html_single/
http://www.jgroups.org/manual/html_single/

Clustering: deploy multiple Infinispan nodes

35

Example 5.3. JVM properties to set for clustering

#192.168.122.1 is an example IPv4 address

-Djava.net.preferIPv4Stack=true -Djgroups.bind_addr=192.168.122.1

Note

You don’t need to use IPv4: JGroups is compatible with IPv6 provided you have

routing properly configured and valid addresses assigned.

The jgroups.bind_addr needs to match a placeholder name in your JGroups

configuration in case you don’t use the default one.

The default configuration uses distribution as cache mode and uses the jgroups-tcp.xml

configuration for JGroups, which is contained in the Infinispan jar as the default configuration for

Infinispan users. Let’s see how to reconfigure this:

Example 5.4. Reconfiguring cache mode and override JGroups

configuration

<?xml version="1.0" encoding="UTF-8"?>

<infinispan

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:infinispan:config:5.1 http://www.infinispan.org/schemas/infinispan-

config-5.1.xsd"

 xmlns="urn:infinispan:config:5.1">

 <global>

 <transport

 clusterName="HibernateOGM-Infinispan-cluster">

 <properties>

 <property name="configurationFile" value="my-jgroups-conf.xml" />

 </properties>

 </transport>

 </global>

 <default>

 <clustering

 mode="distribution" />

 </default>

 <!-- Cache to store the OGM entities -->

 <namedCache

 name="ENTITIES">

 </namedCache>

 <!-- Cache to store the relations across entities -->

 <namedCache

 name="ASSOCIATIONS">

 </namedCache>

Chapter 5. Datastores

36

 <!-- Cache to store identifiers -->

 <namedCache

 name="IDENTIFIERS">

 <!-- Override the cache mode: -->

 <clustering

 mode="replication" />

 </namedCache>

</infinispan>

In the example above we specify a custom JGroups configuration file and set the cache mode

for the default cache to distribution; this is going to be inherited by the ENTITIES and the

ASSOCIATIONS caches. But for IDENTIFIERS we have chosen (for the sake of this example) to

use replication.

Now that you have clustering configured, start the service on multiple nodes. Each node will need

the same configuration and jars.

Tip

We have just shown how to override the clustering mode and the networking stack

for the sake of completeness, but you don’t have to!

Start with the default configuration and see if that fits you. You can fine tune these

setting when you are closer to going in production.

5.1.4. Transactions

Infinispan supports transactions and integrates with any standard JTA TransactionManager; this

is a great advantage for JPA users as it allows to experience a similar behaviour to the one we

are used to when we work with RDBMS databases.

If you’re having Hibernate OGM start and manage Infinispan, you can skip this as it will inject

the same TransactionManager instance which you already have set up in the Hibernate / JPA

configuration.

If you are providing an already started Infinispan CacheManager instance by using the

JNDI lookup approach, then you have to make sure the CacheManager is using the same

TransactionManager as Hibernate:

Example 5.5. Configuring a JBoss Standalone TransactionManager lookup

<default>

 <transaction

 transactionMode="TRANSACTIONAL"

 transactionManagerLookupClass=

Storing a Lucene index in Infinispan

37

 "org.infinispan.transaction.lookup.JBossStandaloneJTAManagerLookup" />

</default>

Infinispan supports different transaction modes like PESSIMISTIC and OPTIMISTIC, supports XA

recovery and provides many more configuration options; see the Infinispan User Guide [https://

docs.jboss.org/author/display/ISPN/User+Guide] for more advanced configuration options.

5.1.5. Storing a Lucene index in Infinispan

Hibernate Search, which can be used for advanced query capabilities (see Chapter 7, Query your

entities), needs some place to store the indexes for its embedded Apache Lucene engine.

A common place to store these indexes is the filesystem which is the default for Hibernate Search;

however if your goal is to scale your NoSQL engine on multiple nodes you need to share this index.

Network sharing filesystems are a possibility but we don’t recommended that. Often the best option

is to store the index in whatever NoSQL database you are using (or a different dedicated one).

Tip

You might find this section useful even if you don’t intend to store your data in

Infinispan.

The Infinispan project provides an adaptor to plug into Apache Lucene, so that it writes the indexes

in Infinispan and searches data in it. Since Infinispan can be used as an application cache to other

NoSQL storage engines by using a CacheStore (see Section 5.1.2, “Manage data size”) you can

use this adaptor to store the Lucene indexes in any NoSQL store supported by Infinispan:

• Cassandra

• Filesystem (but locked correctly at the Infinispan level)

• MongoDB

• HBase

• JDBC databases

• JDBM

• BDBJE

• A secondary (independent) Infinispan grid

• Any Cloud storage service supported by JClouds [http://www.jclouds.org/documentation/

reference/supported-providers/]

https://docs.jboss.org/author/display/ISPN/User+Guide
https://docs.jboss.org/author/display/ISPN/User+Guide
https://docs.jboss.org/author/display/ISPN/User+Guide
http://www.jclouds.org/documentation/reference/supported-providers/
http://www.jclouds.org/documentation/reference/supported-providers/
http://www.jclouds.org/documentation/reference/supported-providers/

Chapter 5. Datastores

38

How to configure it? Here is a simple cheat sheet to get you started with this type of setup:

• Add org.hibernate:hibernate-search-infinispan:4.4.0.Beta1 to your dependencies

• set these configuration properties:

• hibernate.search.default.directory_provider = infinispan

• hibernate.search.default.exclusive_index_use = false

• hibernate.search.infinispan.configuration_resourcename = [infinispan

configuration filename]

The referenced Infinispan configuration should define a CacheStore to load/store the index in the

NoSQL engine of choice. It should also define three cache names:

Table 5.1. Infinispan caches used to store indexes

Cache name Description Suggested cluster

mode

LuceneIndexesLocking Transfers locking information. Does not need

a cache store.

replication

LuceneIndexesData Contains the bulk of Lucene data. Needs a

cache store.

distribution + L1

LuceneIndexesMetadataStores metadata on the index segments.

Needs a cache store.

replication

This configuration is not going to scale well on write operations: to do that you should read

about the master/slave and sharding options in Hibernate Search. The complete explanation

and configuration options can be found in the Hibernate Search Reference Guide [http://

docs.jboss.org/hibernate/search/4.2/reference/en-US/html_single/#infinispan-directories]

Some NoSQL support storage of Lucene indexes directly, in which case you might skip the

Infinispan Lucene integration by implementing a custom DirectoryProvider for Hibernate

Search. You’re very welcome to share the code and have it merged in Hibernate Search for others

to use, inspect, improve and maintain.

5.2. Ehcache

When combined with Hibernate ORM, Ehcache is commonly used as a 2nd level cache, so

caching data which is stored in a relational database. When used with Hibernate OGM it is not

"just a cache" but is the main storage engine for your data.

This is not the reference manual for Ehcache itself: we’re going to list only how Hibernate OGM

should be configured to use Ehcache; for all the tuning and advanced options please refer to the

Ehcache Documentation [http://www.ehcache.org/documentation].

http://docs.jboss.org/hibernate/search/4.2/reference/en-US/html_single/#infinispan-directories
http://docs.jboss.org/hibernate/search/4.2/reference/en-US/html_single/#infinispan-directories
http://docs.jboss.org/hibernate/search/4.2/reference/en-US/html_single/#infinispan-directories
http://www.ehcache.org/documentation
http://www.ehcache.org/documentation

Configure Ehcache

39

5.2.1. Configure Ehcache

Two steps:

• Add the dependencies to classpath

• And then choose one of:

• Use the default Ehcache configuration (no action needed)

• Point to your own configuration resource name

5.2.1.1. Adding Ehcache dependencies

To add the dependencies via some Maven-definitions-using tool, add the following module:

<dependency>

 <groupId>org.hibernate.ogm</groupId>

 <artifactId>hibernate-ogm-ehcache</artifactId>

 <version>4.0.0.Beta4</version>

</dependency>

If you’re not using a dependency management tool, copy all the dependencies from the distribution

in the directories:

• /lib/required

• /lib/ehcache

• Optionally - depending on your container - you might need some of the jars from /lib/provided

5.2.1.2. Ehcache specific configuration properties

Hibernate OGM expects you to define an Ehcache configuration in its own configuration resource;

all what we need to set it the resource name.

To use the default configuration provided by Hibernate OGM - which is a good starting point for

new users - you don’t have to set any property.

Ehcache datastore configuration properties

hibernate.ogm.datastore.provider

To use Ehcache as a datastore provider set it to ehcache.

hibernate.ogm.ehcache.configuration_resourcename

Should point to the resource name of an Ehcache configuration file. Defaults to /org/

hibernate/ogm/datastore/ehcache/default-ehcache.xml.

Chapter 5. Datastores

40

5.2.2. Transactions

While Ehcache technically supports transactions, Hibernate OGM is currently unable to use them.

Careful!

If you need this feature, it should be easy to implement: contributions welcome! See JIRA

OGM-243 [https://hibernate.onjira.com/browse/OGM-243].

5.3. MongoDB

MongoDB [http://www.mongodb.org] is a document oriented datastore written in C++ with strong

emphasis on ease of use.

5.3.1. Configuring MongoDB

This implementation is based upon the MongoDB Java driver. The currently supported version

is 2.10.1.

The following properties are available to configure MongoDB support:

MongoDB datastore configuration properties

hibernate.ogm.datastore.provider

To use MongoDB as a datastore provider, this property must be set to mongodb

hibernate.ogm.mongodb.host

The hostname of the mongodb instance. The default value is 127.0.0.1.

hibernate.ogm.mongodb.port

The port used by the mongodb instance. The default value is 27017

hibernate.ogm.mongodb.database

The database to connect to. This property has no default value.

hibernate.ogm.mongodb.username

The username used when connecting to the MongoDB server. This property has no default

value.

hibernate.ogm.mongodb.password

The password used to connect to the MongoDB server. This property has no default value.

This property is ignored if the username isn’t specified.

hibernate.ogm.mongodb.connection_timeout

Defines the timeout used by the driver when the connection to the MongoDB instance is

initiated. This configuration is expressed in milliseconds. The default value is 5000.

hibernate.ogm.mongodb.associations.store

Defines the way OGM stores association information. There are three strategies to store

association information. GLOBAL_COLLECTION stores the association information in a unique

MongoDB collection for all associations. COLLECTION stores the association in a dedicated

https://hibernate.onjira.com/browse/OGM-243
https://hibernate.onjira.com/browse/OGM-243
https://hibernate.onjira.com/browse/OGM-243
http://www.mongodb.org
http://www.mongodb.org

Storage principles

41

MongoDB collection per association. IN_ENTITY stores association information from within

the entity. IN_ENTITY is the default.

hibernate.ogm.mongodb.writeconcern

Possible values are ERRORS_IGNORED, ACKNOWLEDGED, UNACKNOWLEDGED, FSYNCED,

JOURNALED, NONE, NORMAL, SAFE, MAJORITY, FSYNC_SAFE, JOURNAL_SAFE, REPLICAS_SAFE.

For more information, please refer to the official documentation [http://api.mongodb.org/java/

current/com/mongodb/WriteConcern.html]. This option is case insensitive and the default

value is ACKNOWLEDGED.

5.3.2. Storage principles

Hibernate OGM tries to make the mapping to the underlying datastore as natural as possible so

that third party applications not using Hibernate OGM can still read and update the same datastore.

We worked particularly hard on the MongoDB model to offer various classic mappings between

your object model and the MongoDB documents.

5.3.2.1. Entities

Entities are stored as MongoDB documents and not as BLOBs which means each entity property

will be translated into a document field. You can use the name property of @Table and @Column

annotation to rename the collections and the document’s field if you need to.

Note that embedded objects are mapped as nested documents.

Example 5.6. Example of an entity with an embedded object

@Entity

public class News {

 @Id

 private String id;

 private String title;

 @Column(name="desc")

 private String description;

 @Embedded

 private NewsPaper paper;

 //getters, setters ...

}

@Embeddable

public class NewsPaper {

 private String name;

 private String owner;

 //getters, setters ...

}

{

 "_id" : "1234-5678-0123-4567",

http://api.mongodb.org/java/current/com/mongodb/WriteConcern.html
http://api.mongodb.org/java/current/com/mongodb/WriteConcern.html
http://api.mongodb.org/java/current/com/mongodb/WriteConcern.html

Chapter 5. Datastores

42

 "title": "On the merits of NoSQL",

 "desc": "This paper discuss why NoSQL will save the world for good",

 "paper": {

 "name": "NoSQL journal of prophecies",

 "owner": "Delphy"

 }

}

5.3.2.1.1. Identifiers

The _id field of a MongoDB document is directly used to store the identifier columns mapped in

the entities. That means you can use simple identifiers (no matter the Java type used) as well as

Embedded identifiers. Embedded identifiers are stored as embedded document into the _id field.

Hibernate OGM will convert the @Id property into a _id document field so you can name the entity

id like you want it will always be stored into _id (the recommended approach in MongoDB). That

means in particular that MongoDB will automatically index your _id fields. Let’s look at an example:

Example 5.7. Example of an entity using Embedded id

@Entity

public class News {

 @EmbeddedId

 private NewsID newsId;

 //getters, setters ...

}

@Embeddable

public class NewsID implements Serializable {

 private String title;

 private String author;

 //getters, setters ...

}

{

 "_id" :{

 "title": "How does Hibernate OGM MongoDB work?",

 "author": "Guillaume"

 }

}

5.3.2.2. Associations

Hibernate OGM MongoDB proposes 3 strategies to store navigation information

for associations. To switch between each of these strategies, use the

hibernate.ogm.mongodb.associations.store configuration property. The three possible

values are:

• IN_ENTITY (default)

Storage principles

43

• GLOBAL_COLLECTION

• COLLECTION

5.3.2.2.1. In Entity strategy

In this strategy, Hibernate OGM directly stores the id(s) of the other side of the association into a

field or an embedded document depending if the mapping concerns a single object or a collection.

The field that stores the relationship information is named like the entity property.

Example 5.8. Java entity

@Entity

public class AccountOwner {

@Id

private String id;

@ManyToMany

public Set<BankAccount> bankAccounts;

//getters, setters, ...

Example 5.9. JSON representation

{

 "_id" : "owner0001",

 "bankAccounts" : [

 { "bankAccounts_id" : "accountXYZ" }

]

}

5.3.2.2.2. Global collection strategy

With this strategy, Hibernate OGM creates a single collection in which it will store all navigation

information for all associations. Each document of this collection is structure in 2 parts. The first

is the _id field which contains the identifier information of the association owner and the name of

the association table. The second part is the rows field which stores (into an embedded collection)

all ids that the current instance is related to.

Example 5.10. Unidirectional relationship

{

 "_id": {

 "owners_id": "owner0001",

 "table": "AccountOwner_BankAccount"

 },

 "rows": [

 { "bankAccounts_id": "accountXYZ" }

Chapter 5. Datastores

44

]

}

For a bidirectional relationship, another document is created where ids are reversed. Don’t worry,

Hibernate OGM takes care of keeping them in sync:

Example 5.11. Bidirectional relationship

{

 "_id": {

 "owners_id": "owner0001",

 "table": "AccountOwner_BankAccount"

 },

 "rows": [{

 "bankAccounts_id": "accountXYZ"

 }]

}

{

 "_id": {

 "bankAccounts_id": "accountXYZ",

 "table": "AccountOwner_BankAccount"

 },

 "rows": [{

 "owners_id": "owner0001"

 }]

}

5.3.2.2.3. One collection per association strategy

In this strategy, Hibernate OGM creates a MongoDB collection per association in which it will

store all navigation information for that particular association. This is the strategy closest to

the relational model. If an entity A is related to B and C, 2 collections will be created. The

name of this collection is made of the association table concatenated with associations_.

For example, if the BankAccount and Owner are related, the collection used to store will be

named associations_Owner_BankAccount. The prefix is useful to quickly identify the association

collections from the entity collections. Each document of an association collection has the following

structure:

• _id contains the id of the owner of relationship

• rows contains all the id of the related entities

Example 5.12. Unidirectional relationship

{

 "_id" : { "owners_id" : "owner0001" },

 "rows" : [

 { "bankAccounts_id" : "accountXYZ" }

Transactions

45

]

}

Example 5.13. Bidirectional relationship

{

 "_id" : { "owners_id" : "owner0001" },

 "rows" : [

 { "bankAccounts_id" : "accountXYZ" }

]

}

{

 "_id" : { "bankAccounts_id" : "accountXYZ" },

 "rows" : [

 { "owners_id" : "owner0001" }

]

}

5.3.3. Transactions

MongoDB does not support transaction. Only changes applied to the same document are done

atomically. A change applied to more than one document will not be applied atomically. This

problem is slightly mitigated by the fact that Hibernate OGM queues all changes before applying

them during flush time. So the window of time used to write to MongoDB is smaller than what you

would have done manually.

We recommend that you still use transaction demarcations with Hibernate OGM to trigger the flush

operation transparently (on commit). But do not consider rollback as a possibility, this won’t work.

5.3.4. Queries

Hibernate OGM is a work in progress and we are actively working on JP-QL query support.

In the mean time, you have two strategies to query entities stored by Hibernate OGM:

• use native MongoDB queries

• use Hibernate Search

Because Hibernate OGM stores data in MongoDB in a natural way, you can use the MongoDB

driver and execute queries on the datastore directly without involving Hibernate OGM. The benefit

of this approach is to use the query capabilities of MongoDB. The drawback is that raw MongoDB

documents will be returned and not managed entities.

The alternative approach is to index your entities with Hibernate Search. That way, a set of

secondary indexes independent of MongoDB is maintained by Hibernate Search and you can write

queries on top of them. The benefit of this approach is an nice integration at the JPA / Hibernate

Chapter 5. Datastores

46

API level (managed entities are returned by the queries). The drawback is that you need to store

the Lucene indexes somewhere (file system, infinispan grid etc). Have a look at the Infinispan

section for more info on how to use Hibernate Search.

5.4. Neo4j

Neo4j [http://www.neo4j.org] is a robust (fully ACID) transactional property graph database. This

kind of databases are suited for those type of problems that can be represented with a graph like

social relationships or road maps for example.

At the moment only the support for the embeedded Neo4j is included in OGM.

This is our first version and a bit experimental. In particular we plan on using node navigation

much more than index lookup in a future version.

5.4.1. How to add Neo4j integration

1. Add the dependencies to your project. If your project uses Maven you can add this to

the pom.xml:

<dependency>

 <groupId>org.hibernate.ogm</groupId>

 <artifactId>hibernate-ogm-neo4j</artifactId>

 <version>4.0.0.Beta4</version>

</dependency>

Alternatively you can find the required libraries in the distribution package on

SourceForge [https://downloads.sourceforge.net/project/hibernate/hibernate-ogm/4.0.0.Beta4/

hibernate-ogm-modules-4.0.0.Beta4-jbossas-72-dist.zip]

2. Add the following properties:

hibernate.ogm.datastore.provider = neo4j_embedded

hibernate.ogm.neo4j.database.path = C:\example\mydb

5.4.2. Configuring Neo4j

The following properties are available to configure Neo4j support:

Neo4j datastore configuration properties

hibernate.ogm.neo4j.database.path

The absolute path representing the location of the Neo4j database. Example: C:\neo4jdb

\mydb

http://www.neo4j.org
http://www.neo4j.org
https://downloads.sourceforge.net/project/hibernate/hibernate-ogm/4.0.0.Beta4/hibernate-ogm-modules-4.0.0.Beta4-jbossas-72-dist.zip
https://downloads.sourceforge.net/project/hibernate/hibernate-ogm/4.0.0.Beta4/hibernate-ogm-modules-4.0.0.Beta4-jbossas-72-dist.zip
https://downloads.sourceforge.net/project/hibernate/hibernate-ogm/4.0.0.Beta4/hibernate-ogm-modules-4.0.0.Beta4-jbossas-72-dist.zip

Storage principles

47

hibernate.ogm.neo4j.properties.location (optional)

Location of the Neo4j embedded properties file. It can be an URL or an absolute file path.

hibernate.ogm.neo4j.index.entity (optional)

Name of the neo4j index containing the stored entities. Default to _nodes_ogm_index

hibernate.ogm.neo4j.index.association (optional)

Name of the Neo4j index containing the stored associations. Default to

_relationships_ogm_index

hibernate.ogm.neo4j.index.sequence (optional)

Name of the index that stores the next available value for a sequence. Default to

_sequences_ogm_index

5.4.3. Storage principles

5.4.3.1. Entities

Entities are stored as Neo4j nodes, which means each entity property will be translated into a

property of the node. An additional property is added to the node and it contains the name of the

table representing the entity.

Example 5.14. Example of entities and the list of properties contained in the

corresponding node

@Entity

class Account {

 @Id

 String login;

 String password;

 Address homeAddress;

 //...

}

@Embeddable

class Address {

 String city;

 String zipCode;

 //...

}

Node properties:

 _table

 id

 login

 password

Chapter 5. Datastores

48

 homeAddress_city

 homeAddress_zipCode

The _table property has been added by OGM and it contains the name of the table representing

the entity (Account in this simple case).

5.4.3.2. Associations

Associations are mapped using Neo4j relationships. A unidirectional association is mapped with a

relationship between two nodes that start from the node representing the owner of the association.

The name of the association is saved as type of the relationship. A bidirectional association is

represented by two relationships, one per direction, between the two nodes.

5.4.4. Transactions

Neo4j operations can be executed only inside a transaction. Unless a different

org.hibernate.engine.transaction.jta.platform.spi.JtaPlatform is specified, OGM will

integrate with the Neo4j transaction mechanism, this means that you should start and commit

transaction using the hibernate session.

Example 5.15. Example of starting and committing transactions

Session session = factory.openSession();

Transaction tx = session.beginTransaction();

Account account = new Account();

account.setLogin("myAccount");

session.persist(account);

tx.commit();

...

tx = session.beginTransaction();

Account savedAccount = (Account) session.get(Account.class, account.getId());

tx.commit();

Chapter 6.

49

Map your entities
TODO:

• Talk about supported approaches (properties, embedded objects, inheritance)

• Talk about associations

• Talk about identifier recommendations

6.1. Supported entity mapping

This section is a work in progress, if you find something that does not work as expected, let us

know and we will update it (and fix the problem of course).

Pretty much all entity related constructs should work out of the box in Hibernate OGM. @Entity,

@Table, @Column, @Enumarated, @Temporal, @Cacheable and the like will work as expected. If you

want an example, check out Chapter 2, Getting started with Hibernate OGM or the documentation

of Hibernate ORM. Let’s concentrate of the features that differ or are simply not supported by

Hibernate OGM.

The various inheritance strategies are not supported by Hibernate OGM, only the table per

concrete class strategy is used. f This is not so much a limitation but rather an acknowledgment

of the dynamic nature of NoSQL schemas. If you feel the need to support other strategies,

let us know (see Section 1.2, “How to contribute”). Simply do not use @Inheritance nor

@DiscriminatorColumn.

Secondary tables are not supported by Hibernate OGM at the moment. If you have needs for this

feature, let us know (see Section 1.2, “How to contribute”).

All SQL related constructs as well as HQL centered mapping are not supported in Hibernate OGM.

Here is a list of feature that will not work:

• Named queries

• Native queries

All standard JPA id generators are supported: IDENTITY, SEQUENCE, TABLE and AUTO. If you

need support for additional generators, let us know (see Section 1.2, “How to contribute”). We

recommend you use a UUID based generator as this type of generator allows maximum scalability

to the underlying data grid as no cluster-wide counter is necessary.

Example 6.1. Using a UUID generator

@Entity

public class Breed {

Chapter 6. Map your entities

50

 @Id @GeneratedValue(generator = "uuid")

 @GenericGenerator(name="uuid", strategy="uuid2")

 public String getId() { return id; }

 public void setId(String id) { this.id = id; }

 private String id;

 public String getName() { return name; }

 public void setName(String name) { this.name = name; }

 private String name;

}

6.2. Supported Types

Most Java built-in types as supported at this stage. However, custom types (@Type) are not

supported.

6.2.1. Types mapped as native Java Types

A few types are supported natively (ie serialized as is in the tuple data structure):

• Boolean

• Byte

• Calendar (this may change)

• Class (this may change)

• Date (this may change)

• Double

• Integer

• Long

• Byte Array

• String

Warning

This list is subject to change and specifically be reduced to a smaller set of core

types.

6.2.2. Types mapped as Strings

For non basic Java types support, OGM stores the data of the object as a String in the data store.

Serialisation to a String value is done with cross platform compatibility in mind when required.

Supported association mapping

51

• BigDecimal (mapped as scientific notation)

• BigInteger

• Url (as described by RFC 1738 and returned by toString of the Java URL type)

• UUID stored as described by RFC 4122

6.3. Supported association mapping

All association types are supported (@OneToOne, @OneToMany, @ManyToOne, @ManyToMany).

Likewise, all collection types are supported (Set, Map, List). The way Hibernate OGM stores

association information is however quite different than the traditional RDBMS representation.

Check Section 3.2, “How is data persisted” for more information.

Keep in mind that collections with many entries won’t perform very well in Hibernate OGM (at

least today) as all of the association navigation for a given entity is stored in a single key. If your

collection is made of 1 million elements, Hibernate OGM stores 1 million tuples in the association

key.

52

Chapter 7.

53

Query your entities
To query a NoSQL database is a complex feat, especially as not all NoSQL solutions support all

forms of query. One of the goals of Hibernate OGM is to deal with this complexity so that users

don’t have to. However, that’s not yet all implemented and depending on your use case there

might be better approaches you can take advantage of.

If you skipped to this section without reading Chapter 3, Architecture, I’d suggest to read at least

Section 3.3, “How is data queried” as it will greatly help you choosing a query approach.

7.1. Using JP-QL

For Hibernate OGM we developed a brand new JP-QL parser which is already able to convert

simple queries using Hibernate Search under the precondition that:

• no join, aggregation, or other relational operations are implied

• you are using the Hibernate Session API (JPA integration is coming)

• the target entities and properties are indexed by Hibernate Search (no validation is happening

today)

We do realize these are strong limitations, so while it might be interesting to try it out, for real

usage we suggest for now to use either Hibernate Search full-text queries or the native query

technology of the NoSQL storage you are using.

To provide an example of what kind of queries would work:

Example 7.1. Example of trivial Hibernate Query remapped on Hibernate

Search

Query query = session

 .createQuery("from Hypothesis h where h.description = :desc")

 .setString("desc", "tomorrow it's going to rain");

@Entity @Indexed

public class Hypothesis {

 @Id

 public String getId() { return id; }

 public void setId(String id) { this.id = id; }

 private String id;

 @Field(analyze=Analyze.NO)

Chapter 7. Query your entities

54

 public String getDescription() { return description; }

 public void setDescription(String description) { this.description = description; }

 private String description;

}

7.2. Using Hibernate Search

We actually did use Hibernate Search already in the previous example; specifically the annotations

@Indexed and @Field are Hibernate Search specific. In this example the query was defined using

a JP-QL string and then defining parameters; that’s useful if all you have a is a JP-QL Query,

but it is limiting.

Hibernate Search remaps the properties annotated with @Field in Lucene Documents, and

manages the Lucene indexes so that you can then perform Lucene Queries.

To be extremely short, Apache Lucene is a full-text indexing and query engine with excellent query

performance. Featurewise, full-text means you can do much more than a simple equality match

as we did in the previous example.

Let’s show another example, now creating a Lucene Query instead:

Example 7.2. Using Hibernate Search for fulltext matching

EntityManager entityManager = ...

//Add full-text superpowers to any EntityManager:

FullTextEntityManager ftem = Search.getFullTextEntityManager(entityManager);

//Optionally use the QueryBuilder to simplify Query definition:

QueryBuilder b = ftem.getSearchFactory()

 .buildQueryBuilder()

 .forEntity(Hypothesis.class)

 .get();

//Create a Lucene Query:

Query lq = b.keyword().onField("description").matching("tomorrow").createQuery();

//Transform the Lucene Query in a JPA Query:

FullTextQuery ftQuery = ftem.createFullTextQuery(lq, Hypothesis.class);

//This is a requirement when using Hibernate OGM instead of ORM:

ftQuery.initializeObjectsWith(ObjectLookupMethod.SKIP,

 DatabaseRetrievalMethod.FIND_BY_ID);

//List all matching Hypothesis:

List<Hypothesis> resultList = ftQuery.getResultList();

Assuming our database contains an Hypothesis instance having description "tomorrow we

release", the query above will not find the entity because we disabled text analysis in the previous

mapping.

If we enable text analysis (which is the default):

Using the Criteria API

55

Example 7.3. Entity enabling text analysis

@Entity @Indexed

public class Hypothesis {

 @Id

 public String getId() { return id; }

 public void setId(String id) { this.id = id; }

 private String id;

 @Field(analyze=Analyze.YES)

 public String getDescription() { return description; }

 public void setDescription(String description) { this.description = description; }

 private String description;

}

Now the entity would match a query on "tomorrow" as we’re unlocking text similarity queries!

Text similarity can be very powerful as it can be configured for specific languages or domain

specific terminology; it can deal with typos and synonyms, and above all it can return results by

relevance.

Worth noting the Lucene index is a vectorial space of term occurrence statistics: so extracting

tags from text, frequencies of strings and correlate this data makes it very easy to build efficient

data analysis applications.

For a full explanation of all its capabilities and configuration options, see the Hibernate

Search reference documentation [http://docs.jboss.org/hibernate/stable/search/reference/en-US/

html_single/].

While the potential of Lucene queries is very high, it’s not suited for all use cases Let’s see some

of the limitations of Lucene Queries as our main query engine:

• Lucene doesn’t support Joins. Any to-One relations can be mapped fine, and the Lucene

community is making progress on other forms, but restrictions on OneToMany or ManyToMany

can’t be implemented today.

• Since we apply changes to the index at commit time, your updates won’t affect queries until

you commit (we might improve on this).

• While queries are extremely fast, write operations are not as fast (but we can make it scale).

7.3. Using the Criteria API

This is not implemented yet.

http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/
http://docs.jboss.org/hibernate/stable/search/reference/en-US/html_single/

56

	Hibernate OGM Reference Guide
	Table of Contents
	Preface
	1. Goals
	2. What we have today
	3. Use cases

	Chapter 1. How to get help and contribute on Hibernate OGM
	1.1. How to get help
	1.2. How to contribute
	1.2.1. How to build Hibernate OGM
	1.2.2. How to contribute code effectively

	Chapter 2. Getting started with Hibernate OGM
	Chapter 3. Architecture
	3.1. General architecture
	3.2. How is data persisted
	3.3. How is data queried

	Chapter 4. Configure and start Hibernate OGM
	4.1. Bootstrapping Hibernate OGM
	4.1.1. Using JPA
	4.1.2. Using Hibernate ORM native APIs

	4.2. Environments
	4.2.1. In a Java EE container
	4.2.2. In a standalone JTA environment
	4.2.3. Without JTA

	4.3. Configuration options
	4.4. Configuring Hibernate Search
	4.5. How to package Hibernate OGM applications for JBoss AS 7.2

	Chapter 5. Datastores
	5.1. Infinispan
	5.1.1. Configure Infinispan
	5.1.1.1. Adding Infinispan dependencies
	5.1.1.2. Infinispan specific configuration properties
	5.1.1.3. Cache names used by Hibernate OGM

	5.1.2. Manage data size
	5.1.3. Clustering: deploy multiple Infinispan nodes
	5.1.4. Transactions
	5.1.5. Storing a Lucene index in Infinispan

	5.2. Ehcache
	5.2.1. Configure Ehcache
	5.2.1.1. Adding Ehcache dependencies
	5.2.1.2. Ehcache specific configuration properties

	5.2.2. Transactions

	5.3. MongoDB
	5.3.1. Configuring MongoDB
	5.3.2. Storage principles
	5.3.2.1. Entities
	5.3.2.1.1. Identifiers

	5.3.2.2. Associations
	5.3.2.2.1. In Entity strategy
	5.3.2.2.2. Global collection strategy
	5.3.2.2.3. One collection per association strategy

	5.3.3. Transactions
	5.3.4. Queries

	5.4. Neo4j
	5.4.1. How to add Neo4j integration
	5.4.2. Configuring Neo4j
	5.4.3. Storage principles
	5.4.3.1. Entities
	5.4.3.2. Associations

	5.4.4. Transactions

	Chapter 6. Map your entities
	6.1. Supported entity mapping
	6.2. Supported Types
	6.2.1. Types mapped as native Java Types
	6.2.2. Types mapped as Strings

	6.3. Supported association mapping

	Chapter 7. Query your entities
	7.1. Using JP-QL
	7.2. Using Hibernate Search
	7.3. Using the Criteria API

