
Hibernate Search

Apache Lucene Integration

Version: 3.0.1.GA

Table of Contents
Preface .. iv
1. Getting started .. 1

1.1. System Requirements ... 1
1.2. Maven ... 1
1.3. Configuration ... 2
1.4. Indexing .. 3
1.5. Searching ... 4
1.6. Analyzer .. 5
1.7. What's next .. 6

2. Architecture .. 7
2.1. Overview ... 7
2.2. Back end ... 8

2.2.1. Lucene .. 8
2.2.2. JMS .. 8

2.3. Work execution .. 9
2.3.1. Synchronous ... 9
2.3.2. Asynchronous ... 10

2.4. Reader strategy .. 10
2.4.1. Shared .. 10
2.4.2. Not-shared .. 10
2.4.3. Custom ... 10

3. Configuration .. 11
3.1. Directory configuration .. 11
3.2. Index sharding ... 12
3.3. Worker configuration ... 13
3.4. JMS Master/Slave configuration .. 14

3.4.1. Slave nodes ... 14
3.4.2. Master node .. 15

3.5. Reader strategy configuration .. 16
3.6. Enabling Hibernate Search and automatic indexing .. 16

3.6.1. Enabling Hibernate Search ... 16
3.6.1.1. Hibernate Core 3.2.6 and beyond ... 17

3.6.2. Automatic indexing ... 17
3.7. Tuning Lucene indexing performance .. 17

4. Mapping entities to the index structure ... 20
4.1. Mapping an entity .. 20

4.1.1. Basic mapping ... 20
4.1.2. Mapping properties multiple times .. 21
4.1.3. Embedded and associated objects ... 22
4.1.4. Boost factor .. 24
4.1.5. Analyzer ... 25

4.2. Property/Field Bridge ... 26
4.2.1. Built-in bridges ... 26
4.2.2. Custom Bridge .. 26

4.2.2.1. StringBridge ... 27
4.2.2.2. FieldBridge .. 28
4.2.2.3. @ClassBridge .. 29

5. Querying ... 31

Hibernate 3.0.1.GA ii

5.1. Building queries ... 31
5.1.1. Building a Lucene query .. 31
5.1.2. Building a Hibernate Search query .. 32

5.1.2.1. Generality .. 32
5.1.2.2. Pagination .. 32
5.1.2.3. Sorting ... 32
5.1.2.4. Fetching strategy .. 32
5.1.2.5. Projection ... 33

5.2. Retrieving the results .. 34
5.2.1. Performance considerations .. 34
5.2.2. Result size .. 34
5.2.3. ResultTransformer ... 35

5.3. Filters .. 35
5.4. Optimizing the query process .. 37
5.5. Native Lucene Queries ... 38

6. Manual indexing ... 39
6.1. Indexing .. 39
6.2. Purging .. 39

7. Index Optimization ... 41
7.1. Automatic optimization .. 41
7.2. Manual optimization ... 41
7.3. Adjusting optimization ... 42

8. Accessing Lucene natively ... 43
8.1. SearchFactory .. 43
8.2. Accessing a Lucene Directory ... 43
8.3. Using an IndexReader .. 43

Hibernate Search

Hibernate 3.0.1.GA iii

Preface
Full text search engines like Apache Lucene™ are very powerful technologies to add efficient free text search
capabilities to applications. However, they suffer several mismatches when dealing with object domain models.
Amongst other things indexes have to be kept up to date and mismatches between index structure and domain
model as well as query mismatches have to be avoided.

Hibernate Search indexes your domain model with the help of a few annotations, takes care of database/index
synchronization and brings back regular managed objects from free text queries. To achieve this Hibernate
Search is combining the power of Hibernate [http://www.hibernate.org] and Apache Lucene
[http://lucene.apache.org].

Hibernate 3.0.1.GA iv

http://www.hibernate.org
http://lucene.apache.org

Chapter 1. Getting started
Welcome to Hibernate Search! The following chapter will guide you through the initial steps required to integ-
rate Hibernate Search into an existing Hibernate enabled application. In case you are a Hibernate new timer we
recommend you start here [http://hibernate.org/152.html].

1.1. System Requirements

Table 1.1. System requirements

Java Runtime A JDK or JRE version 5 or greater. You can down-
load a Java Runtime for Windows/Linux/Solaris here
[http://java.sun.com/javase/downloads/].

Hibernate Search hibernate-search.jar and all the dependencies
from the lib directory of the Hibernate Search distri-
bution, especially lucene :)

Hibernate Core This instructions have been tested against Hibernate
3.2.x. Next to the main hibernate3.jar you will
need all required libaries from the lib directory of the
distribution. Refer to README.txt in the lib directory
of the distibution to determine the minimum runtime
requirements.

Hibernate Annotations Even though Hibernate Search can be used without
Hibernate Annotations the following instructions will
use them for ease of use. The tutorial is tested against
version 3.3.x of Hibernate Annotations.

You can download all dependencies from the Hibernate download site [http://www.hibernate.org/6.html]. You
can also verify the dependency versions against the Hibernate Compatibility Matrix
[http://www.hibernate.org/6.html#A3].

1.2. Maven

Instead of managing all dependencies yourself maven users have the possibility to use the JBoss maven reposit-
ory [http://repository.jboss.com/maven2]. Just add the JBoss repository url to the repositories section of your
pom.xml or settings.xml:

<repository>
<id>repository.jboss.org</id>
<name>JBoss Maven Repository</name>
<url>http://repository.jboss.org/maven2</url>
<layout>default</layout>

</repository>

Then add the following dependencies to your pom.xml:

Hibernate 3.0.1.GA 1

http://hibernate.org/152.html
http://java.sun.com/javase/downloads/
http://www.hibernate.org/6.html
http://www.hibernate.org/6.html#A3
http://repository.jboss.com/maven2
http://repository.jboss.com/maven2

<dependency>
<groupId>org.hibernate</groupId>
<artifactId>hibernate-search</artifactId>
<version>3.0.0.ga</version>

</dependency>
<dependency>

<groupId>org.hibernate</groupId>
<artifactId>hibernate-annotations</artifactId>
<version>3.3.0.ga</version>

</dependency>
<dependency>

<groupId>org.hibernate</groupId>
<artifactId>hibernate-entitymanager</artifactId>
<version>3.3.1.ga</version>

</dependency>

Not all three dependencies are required. hibernate-search alone contains everything needed to use Hibernate
Search. hibernate-annotations is only needed if you use non Hibernate Search annotations like we do in the ex-
amples of this tutorial. Last but not least, hibernate-entitymanager is only required if you use Hibernate Search
in conjunction with JPA.

1.3. Configuration

Once you have downloaded and added all required dependencies to your application you have to add a few
properties to your hibernate configuration file. If you are using Hibernate directly this can be done in hibern-

ate.properties or hibernate.cfg.xml. If you are using Hibernate via JPA you can also add the properties to
persistence.xml. The good news is that for standard use most properties offer a sensible default.

Apache Lucene has a notion of Directory to store the index files. Hibernate Search handles the initialization
and configuration of a Lucene Directory instance via a DirectoryProvider. In this tutorial we will use a sub-
class of DirectoryProvider called FSDirectoryProvider. This will give us the ability to physically inspect
the Lucene indexes created by Hibernate Search (eg via Luke [http://www.getopt.org/luke/]). Once you have a
working configuration you can start experimenting with other directory providers (see Section 3.1, “Directory
configuration”).

Lets assume that your application contains the Hibernate managed class example.Book and you now want to
add free text search capabilities to your application in order to search body and summary of the books con-
tained in your database.

package exmaple.Book
...
@Entity
public class Book {

@Id
private Integer id;
private String body;
private String summary;
@ManyToMany private Set<Author> authors = new HashSet<Author>();
@ManyToOne private Author mainAuthor;
private Date publicationDate;

public Book() {
}

// standard getters/setters follow here
...

Getting started

Hibernate 3.0.1.GA 2

http://www.getopt.org/luke/

First you have to tell Hibernate Search which DirectoryProvider to use. This can be achieved by setting the
hibernate.search.default.directory_provider property. You also have to specify the default root direct-
ory for all indexes via hibernate.search.default.indexBase.

...
the default directory provider
hibernate.search.default.directory_provider = org.hibernate.search.store.FSDirectoryProvider

the default base directory for the indecies
hibernate.search.default.indexBase = /var/lucene/indexes
...

Next you have to add three annotations to the Book class. The first annotation @Indexed marks Book as index-
able. By design Hibernate Search needs to store an untokenized id in the index to ensure index unicity for a giv-
en entity. @DocumentId marks the property to use for this purpose. Most if not all the time, the property is the
database primary key. Last but not least you have to index the fields you want to make searchable. In our ex-
ample these fields are body and summary. Both properties get annotated with @Field. The property in-

dex=Index.TOKENIZED will ensure that the text will be tokenized using the default Lucene analyzer whereas
store=Store.NO ensures that the actual data will not be stored in the index. Usually, tokenizing means
chunking a sentence into individual words (and potentially excluding common words like a, the etc).

These settings are sufficient for an initial test. For more details on entity mapping refer to Section 4.1,
“Mapping an entity”. In case you want to store and retrieve the indexed data in order to avoid database
roundtrips, refer to projections in Section 5.1.2.5, “Projection”

package exmaple.Book
...
@Entity
@Indexed
public class Book {

@Id
@DocumentId
private Integer id;

@Field(index=Index.TOKENIZED, store=Store.NO)
private String body;

@Field(index=Index.TOKENIZED, store=Store.NO)
private String summary;
@ManyToMany private Set<Author> authors = new HashSet<Author>();
@ManyToOne private Author mainAuthor;
private Date publicationDate;

public Book() {
}

// standard getters/setters follow here
...

1.4. Indexing

Hibernate Search will index every entity persisted, updated or removed through Hibernate core transparently
for the application. However, the data already present in your database needs to be indexed once to populate the
Lucene index. Once you have added the above properties and annotations it is time to trigger an initial batch in-
dex of your books. You can achieve this by adding one of the following code examples to your code (see also

Getting started

Hibernate 3.0.1.GA 3

Chapter 6, Manual indexing):

Example using Hibernate Session:

FullTextSession fullTextSession = Search.createFullTextSession(session);
Transaction tx = fullTextSession.beginTransaction();
List books = session.createQuery("from Book as book").list();
for (Book book : books) {

fullTextSession.index(book);
}
tx.commit(); //index are written at commit time

Example using JPA:

EntityManager em = entityManagerFactory.createEntityManager();
FullTextEntityManager fullTextEntityManager = Search.createFullTextEntityManager(em);
List books = em.createQuery("select book from Book as book").getResultList();
for (Book book : books) {

fullTextEntityManager.index(book);
}

After executing the above code, you should be able to see a Lucene index under /

var/lucene/indexes/example.Book. Go ahead an inspect this index. It will help you to understand how Hi-
bernate Search works.

1.5. Searching

Now it is time to execute a first search. The following code will prepare a query against the fields summary and
body, execute it and return a list of Books:

Example using Hibernate Session:

FullTextSession fullTextSession = Search.createFullTextSession(session);

Transaction tx = fullTextSession.beginTransaction();

MultiFieldQueryParser parser = new MultiFieldQueryParser(new String[]{"summary", "body"},
new StandardAnalyzer());

Query query = parser.parse("Java rocks!");
org.hibernate.Query hibQuery = fullTextSession.createFullTextQuery(query, Book.class);
List result = hibQuery.list();

tx.commit();
session.close();

Example using JPA:

EntityManager em = entityManagerFactory.createEntityManager();

FullTextEntityManager fullTextEntityManager =
org.hibernate.hibernate.search.jpa.Search.createFullTextEntityManager(em);

MultiFieldQueryParser parser = new MultiFieldQueryParser(new String[]{"summary", "body"},
new StandardAnalyzer());

Query query = parser.parse("Java rocks!");
org.hibernate.Query hibQuery = fullTextEntityManager.createFullTextQuery(query, Book.class);
List result = hibQuery.list();

Getting started

Hibernate 3.0.1.GA 4

1.6. Analyzer

Assume that one of your indexed book entities contains the text "Java rocks" and you want to get hits for all of
the following queries: "rock", "rocks", "rocked" and "rocking". In Lucene this can be achieved by choosing an
analyzer class which applies word stemming during the indexing process. Hibernate Search offers several ways
to configure the analyzer to use (see Section 4.1.5, “Analyzer”):

• Setting the hibernate.search.analyzer property in the configuration file. The specified class will then be
the default analyzer.

• Setting the Analyzer annotation at the entity level.

• Setting the Analyzer annotation at the field level.

The following example uses the entity level annotation to apply a English language analyzer which would help
you to achieve your goal. The class EnglishAnalyzer is a custom class using the Snowball English Stemmer
from the Lucene Sandbox [http://lucene.apache.org/java/docs/lucene-sandbox/].

package example.Book
...
@Entity
@Indexed
@Analyzer(impl = example.EnglishAnalyzer.class)
public class Book {

@Id
@DocumentId
private Integer id;

@Field(index=Index.TOKENIZED, store=Store.NO)
private String body;

@Field(index=Index.TOKENIZED, store=Store.NO)
private String summary;
@ManyToMany private Set<Author> authors = new HashSet<Author>();
@ManyToOne private Author mainAuthor;
private Date publicationDate;

public Book() {
}

// standard getters/setters follow here
...
}

public class EnglishAnalyzer extends Analyzer {
/**
* {@inheritDoc}
*/
@Override
public TokenStream tokenStream(String fieldName, Reader reader) {

TokenStream result = new StandardTokenizer(reader);
result = new StandardFilter(result);
result = new LowerCaseFilter(result);
result = new SnowballFilter(result, name);
return result;

}
}

Getting started

Hibernate 3.0.1.GA 5

http://lucene.apache.org/java/docs/lucene-sandbox/

1.7. What's next

The above paragraphs hopefully helped you getting started with Hibernate Search. You should by now have a
file system based index and be able to search and retrieve a list of managed objects via Hibernate Search. The
next step is to get more familiar with the overall architecture ((Chapter 2, Architecture)) and explore the basic
features in more detail.

Two topics which where only briefly touched in this tutorial were analyzer configuration (Section 4.1.5,
“Analyzer”) and field bridges (Section 4.2, “Property/Field Bridge”), both important features required for more
fine-grained indexing.

More advanced topics cover clustering (Section 3.4, “JMS Master/Slave configuration”) and large indexes
handling (Section 3.2, “Index sharding”).

Getting started

Hibernate 3.0.1.GA 6

Chapter 2. Architecture

2.1. Overview

Hibernate Search consists of an indexing and an index search engine. Both are backed by Apache Lucene.

When an entity is inserted, updated or removed in/from the database, Hibernate Search keeps track of this event
(through the Hibernate event system) and schedules an index update. All the index updates are handled for you
without you having to use the Apache Lucene APIs (see Section 3.6, “Enabling Hibernate Search and automatic
indexing”).

To interact with Apache Lucene indexes, Hibernate Search has the notion of DirectoryProviders. A directory
provider will manage a given Lucene Directory type. You can configure directory providers to adjust the dir-
ectory target (see Section 3.1, “Directory configuration”).

Hibernate Search can also use the Lucene index to search an entity and return a list of managed entities saving
you the tedious object to Lucene document mapping. The same persistence context is shared between Hibernate
and Hibernate Search; as a matter of fact, the Search Session is built on top of the Hibernate Session. The ap-
plication code use the unified org.hibernate.Query or javax.persistence.Query APIs exactly the way a
HQL, JPA-QL or native queries would do.

To be more efficient, Hibernate Search batches the write interactions with the Lucene index. There is currently
two types of batching depending on the expected scope.

Outside a transaction, the index update operation is executed right after the actual database operation. This
scope is really a no scoping setup and no batching is performed.

It is however recommended, for both your database and Hibernate Search, to execute your operation in a trans-
action be it JDBC or JTA. When in a transaction, the index update operation is scheduled for the transaction
commit and discarded in case of transaction rollback. The batching scope is the transaction. There are two im-
mediate benefits:

• Performance: Lucene indexing works better when operation are executed in batch.

• ACIDity: The work executed has the same scoping as the one executed by the database transaction and is
executed if and only if the transaction is committed.

Note

Disclaimer, the work in not ACID in the strict sense of it, but ACID behavior is rarely useful for full
text search indexes since they can be rebuilt from the source at any time.

You can think of those two scopes (no scope vs transactional) as the equivalent of the (infamous) autocommit
vs transactional behavior. From a performance perspective, the in transaction mode is recommended. The scop-
ing choice is made transparently: Hibernate Search detects the presence of a transaction and adjust the scoping.

Note
Hibernate Search works perfectly fine in the Hibernate / EntityManager long conversation pattern aka.
atomic conversation.

Note

Hibernate 3.0.1.GA 7

Depending on user demand, additional scoping will be considered, the pluggability mechanism being
already in place.

2.2. Back end

Hibernate Search offers the ability to let the scoped work being processed by different back ends. Two back
ends are provided out of the box for two different scenarios.

2.2.1. Lucene

In this mode, all index update operations applied on a given node (JVM) will be executed to the Lucene direct-
ories (through the directory providers) by the same node. This mode is typically used in non clustered environ-
ment or in clustered environments where the directory store is shared.

This mode targets non clustered applications, or clustered applications where the Directory is taking care of the
locking strategy.

The main advantage is simplicity and immediate visibility of the changes in Lucene queries (a requirement is
some applications).

2.2.2. JMS

All index update operations applied on a given node are sent to a JMS queue. A unique reader will then process
the queue and update the master Lucene index. The master index is then replicated on a regular basis to the
slave copies. This is known as the master / slaves pattern. The master is the sole responsible for updating the
Lucene index. The slaves can accept read as well as write operations. However, they only process the read op-
eration on their local index copy and delegate the update operations to the master.

Architecture

Hibernate 3.0.1.GA 8

This mode targets clustered environments where throughput is critical, and index update delays are affordable.
Reliability is ensured by the JMS provider and by having the slaves working on a local copy of the index.

Note
Hibernate Search is an extensible architecture. While not yet part of the public API, plugging a third
party back end is possible. Feel free to drop ideas to hibernate-dev@lists.jboss.org.

2.3. Work execution

The indexing work (done by the back end) can be executed synchronously with the transaction commit (or up-
date operation if out of transaction), or asynchronously.

2.3.1. Synchronous

This is the safe mode where the back end work is executed in concert with the transaction commit. Under
highly concurrent environment, this can lead to throughput limitations (due to the Apache Lucene lock mechan-

Architecture

Hibernate 3.0.1.GA 9

ism) and it can increase the system response time if the backend is significantly slower than the transactional
process and if a lot of IO operations are involved.

2.3.2. Asynchronous

This mode delegates the work done by the back end to a different thread. That way, throughput and response
time are (to a certain extend) decorrelated from the back end performance. The drawback is that a small delay
appears between the transaction commit and the index update and a small overhead is introduced to deal with
thread management.

It is recommended to use synchronous execution first and evaluate asynchronous execution if performance
problems occur and after having set up a proper benchmark (ie not a lonely cowboy hitting the system in a
completely unrealistic way).

2.4. Reader strategy

When executing a query, Hibernate Search interacts with the Apache Lucene indexes through a reader strategy.
chosing a reader strategy will depend on the profile of the application (frequent updates, read mostly, asyn-
chronous index update etc). See also Section 3.5, “Reader strategy configuration”

2.4.1. Shared

With this strategy, Hibernate Search will share the same IndexReader, for a given Lucene index, across mul-
tiple queries and threads provided that the IndexReader is still up-to-date. If the IndexReader is not up-to-date,
a new one is opened and provided. Generally speaking, this strategy provides much better performances than
the not-shared strategy. It is especially true if the number of updates is much lower than the reads. This
strategy is the default.

2.4.2. Not-shared

Every time a query is executed, a Lucene IndexReader is opened. This strategy is not the most efficient since
opening and warming up an IndexReader can be a relatively expensive operation.

2.4.3. Custom

You can write your own reader strategy that suits your application needs by implementing
org.hibernate.search.reader.ReaderProvider. The implementation must be thread safe.

Note

Some additional strategies are planned in future versions of Hibernate Search

Architecture

Hibernate 3.0.1.GA 10

Chapter 3. Configuration

3.1. Directory configuration

Apache Lucene has a notion of Directory to store the index files. The Directory implementation can be cus-
tomized, but Lucene comes bundled with a file system (FSDirectoryProvider) and a in memory (RAMDirect-
oryProvider) implementation. Hibernate Search has the notion of DirectoryProvider that handles the config-
uration and the initialization of the Lucene Directory.

Table 3.1. List of built-in Directory Providers

Class Description Properties

org.hibernate.search.store.FSDirect
oryProvider

File system based directory. The
directory used will be
<indexBase>/< @Indexed.name >

indexBase : Base directory

indexName: override @Index.name
(useful for sharded indexes)

org.hibernate.search.store.FSMaste
rDirectoryProvider File system based directory. Like

FSDirectoryProvider. It also copies
the index to a source directory (aka
copy directory) on a regular basis.

The recommended value for the re-
fresh period is (at least) 50% high-
er that the time to copy the inform-
ation (default 3600 seconds - 60
minutes).

Note that the copy is based on an
incremental copy mechanism redu-
cing the average copy time.

DirectoryProvider typically used
on the master node in a JMS back
end cluster.
DirectoryProvider typically used
on slave nodes using a JMS back
end.

indexBase: Base directory

indexName: override @Index.name
(useful for sharded indexes)

sourceBase: Source (copy) base
directory.

source: Source directory suffix
(default to @Indexed.name). The
actual source directory name being
<sourceBase>/<source>

refresh: refresh period in second
(the copy will take place every re-
fresh seconds).

org.hibernate.search.store.FSSlave
DirectoryProvider File system based directory. Like

FSDirectoryProvider, but retrieves
a master version (source) on a reg-
ular basis. To avoid locking and in-
consistent search results, 2 local
copies are kept.

The recommended value for the re-
fresh period is (at least) 50% high-
er that the time to copy the inform-

indexBase: Base directory

indexName: override @Index.name
(useful for sharded indexes)

sourceBase: Source (copy) base
directory.

source: Source directory suffix
(default to @Indexed.name). The

Hibernate 3.0.1.GA 11

Class Description Properties

ation (default 3600 seconds - 60
minutes).

Note that the copy is based on an
incremental copy mechanism redu-
cing the average copy time.

DirectoryProvider typically used
on slave nodes using a JMS back
end.

actual source directory name being
<sourceBase>/<source>

refresh: refresh period in second
(the copy will take place every re-
fresh seconds).

org.hibernate.search.store.RAMDir
ectoryProvider

Memory based directory, the dir-
ectory will be uniquely identified
(in the same deployment unit) by
the @Indexed.name element

none

If the built-in directory providers does not fit your needs, you can write your own directory provider by imple-
menting the org.hibernate.store.DirectoryProvider interface

Each indexed entity is associated to a Lucene index (an index can be shared by several entities but this is not
usually the case). You can configure the index through properties prefixed by hibernate.search.indexname .
Default properties inherited to all indexes can be defined using the prefix hibernate.search.default.

To define the directory provider of a given index, you use the
hibernate.search.indexname.directory_provider

hibernate.search.default.directory_provider org.hibernate.search.store.FSDirectoryProvider
hibernate.search.default.indexBase=/usr/lucene/indexes

hibernate.search.Rules.directory_provider org.hibernate.search.store.RAMDirectoryProvider

applied on

@Indexed(name="Status")
public class Status { ... }

@Indexed(name="Rules")
public class Rule { ... }

will create a file system directory in /usr/lucene/indexes/Status where the Status entities will be indexed,
and use an in memory directory named Rules where Rule entities will be indexed.

You can easily define common rules like the directory provider and base directory, and overide those default
later on on a per index basis.

Writing your own DirectoryProvider, you can utilize this configuration mechanism as well.

3.2. Index sharding

In some extreme cases involving huge indexes (in size), it is necessary to split (shard) the indexing data of a
given entity type into several Lucene indexes. This solution is not recommended until you reach significant in-
dex sizes and index update time are slowing down. The main drawback of index sharding is that searches will

Configuration

Hibernate 3.0.1.GA 12

end up being slower since more files have to be opend for a single search. In other words don't do it until you
have problems :)

Despite this strong warning, Hibernate Search allows you to index a given entity type into several sub indexes.
Data is sharded into the different sub indexes thanks to an IndexShardingStrategy. By default, no sharding
strategy is enabled, unless the number of shards is configured. To configure the number of shards use the fol-
lowing property

hibernate.search.<indexName>.sharding_strategy.nbr_of_shards 5

This will use 5 different shards.

The default sharding strategy, when shards are set up, splits the data according to the hash value of the id string
representation (generated by the Field Bridge). This ensures a fairly balanced sharding. You can replace the
strategy by implementing IndexShardingStrategy and by setting the following property

hibernate.search.<indexName>.sharding_strategy my.shardingstrategy.Implementation

Each shard has an independent directory provider configuration as described in Section 3.1, “Directory config-
uration”. The DirectoryProvider default name for the previous example are <indexName>.0 to <indexName>.4.
In other words, each shard has the name of it's owning index followed by . (dot) and its index number.

hibernate.search.default.indexBase /usr/lucene/indexes

hibernate.search.Animal.sharding_strategy.nbr_of_shards 5
hibernate.search.Animal.directory_provider org.hibernate.search.store.FSDirectoryProvider
hibernate.search.Animal.0.indexName Animal00
hibernate.search.Animal.3.indexBase /usr/lucene/sharded
hibernate.search.Animal.3.indexName Animal03

This configuration uses the default id string hashing strategy and shards the Animal index into 5 subindexes.
All subindexes are FSDirectoryProvider instances and the directory where each subindex is stored is as fol-
lowed:

• for subindex 0: /usr/lucene/indexes/Animal00 (shared indexBase but overridden indexName)

• for subindex 1: /usr/lucene/indexes/Animal.1 (shared indexBase, default indexName)

• for subindex 2: /usr/lucene/indexes/Animal.2 (shared indexBase, default indexName)

• for subindex 3: /usr/lucene/shared/Animal03 (overridden indexBase, overridden indexName)

• for subindex 4: /usr/lucene/indexes/Animal.4 (shared indexBase, default indexName)

3.3. Worker configuration

It is possible to refine how Hibernate Search interacts with Lucene through the worker configuration. The work
can be exected to the Lucene directory or sent to a JMS queue for later processing. When processed to the Lu-
cene directory, the work can be processed synchronously or asynchronously to the transaction commit.

You can define the worker configuration using the following properties

Table 3.2. worker configuration

Configuration

Hibernate 3.0.1.GA 13

Property Description

hibernate.worker.backend Out of the box support for the Apache Lucene back
end and the JMS back end. Default to lucene. Sup-
ports also jms.

hibernate.worker.execution Supports synchronous and asynchrounous execution.
Default to sync. Supports also async.

hibernate.worker.thread_pool.size Defines the number of threads in the pool. useful only
for asynchrounous execution. Default to 1.

hibernate.worker.buffer_queue.max Defines the maximal number of work queue if the
thread poll is starved. Useful only for asynchrounous
execution. Default to infinite. If the limit is reached,
the work is done by the main thread.

hibernate.worker.jndi.* Defines the JNDI properties to initiate the InitialCon-
text (if needed). JNDI is only used by the JMS back
end.

hibernate.worker.jms.connection_factory Mandatory for the JMS back end. Defines the JNDI
name to lookup the JMS connection factory from
(java:/ConnectionFactory by default in JBoss AS)

hibernate.worker.jms.queue Mandatory for the JMS back end. Defines the JNDI
name to lookup the JMS queue from. The queue will
be used to post work messages.

hibernate.worker.batch_size Defines the maximum number of elements indexed
before flushing the transaction-bound queue. Default
to 0 (ie no limit). See Chapter 6, Manual indexing for
more information.

3.4. JMS Master/Slave configuration

This section describes in greater detail how to configure the Master / Slaves Hibernate Search architecture.

3.4.1. Slave nodes

Every index update operation is sent to a JMS queue. Index quering operations are executed on a local index
copy.

slave configuration

DirectoryProvider
(remote) master location
hibernate.search.default.sourceBase = /mnt/mastervolume/lucenedirs/mastercopy

local copy location
hibernate.search.default.indexBase = /Users/prod/lucenedirs

refresh every half hour
hibernate.search.default.refresh = 1800

appropriate directory provider
hibernate.search.default.directory_provider = org.hibernate.search.store.FSSlaveDirectoryProvider

Configuration

Hibernate 3.0.1.GA 14

Backend configuration
hibernate.search.worker.backend = jms
hibernate.search.worker.jms.connection_factory = java:/ConnectionFactory
hibernate.search.worker.jms.queue = queue/hibernatesearch
#optional jndi configuration (check your JMS provider for more information)

Optional asynchronous execution strategy
org.hibernate.worker.execution = async
org.hibernate.worker.thread_pool.size = 2
org.hibernate.worker.buffer_queue.max = 50

A file system local copy is recommended for faster search results.

The refresh period should be higher that the expected time copy.

3.4.2. Master node

Every index update operation is taken from a JMS queue and executed. The master index(es) is(are) copied on
a regular basis.

master configuration

DirectoryProvider
(remote) master location where information is copied to
hibernate.search.default.sourceBase = /mnt/mastervolume/lucenedirs/mastercopy

local master location
hibernate.search.default.indexBase = /Users/prod/lucenedirs

refresh every half hour
hibernate.search.default.refresh = 1800

appropriate directory provider
hibernate.search.default.directory_provider = org.hibernate.search.store.FSMasterDirectoryProvider

Backend configuration
#Backend is the default lucene one

The refresh period should be higher that the expected time copy.

In addition to the Hibernate Search framework configuration, a Message Driven Bean should be written and set
up to process index works queue through JMS.

@MessageDriven(activationConfig = {
@ActivationConfigProperty(propertyName="destinationType", propertyValue="javax.jms.Queue"),
@ActivationConfigProperty(propertyName="destination", propertyValue="queue/hiebrnatesearch"),
@ActivationConfigProperty(propertyName="DLQMaxResent", propertyValue="1")

})
public class MDBSearchController extends AbstractJMSHibernateSearchController implements MessageListener {

@PersistenceContext EntityManager em;

//method retrieving the appropriate session
protected Session getSession() {

return (Session) em.getDelegate();
}

//potentially close the session opened in #getSession(), not needed here
protected void cleanSessionIfNeeded(Session session)
}

}

This example inherit the abstract JMS controller class available and implements a JavaEE 5 MDB. This imple-

Configuration

Hibernate 3.0.1.GA 15

mentation is given as an example and, while most likely more complex, can be adjusted to make use of non
Java EE Message Driven Beans. For more information about the getSession() and cleanSessionIfNeeded(),
please check AbstractJMSHibernateSearchController's javadoc.

Note

Hibernate Search test suite makes use of JBoss Embedded to test the JMS integration. It allows the unit
test to run both the MDB container and JBoss Messaging (JMS provider) in a standalone way
(marketed by some as "lightweight").

3.5. Reader strategy configuration

The different reader strategies are described in Reader strategy. The default reader strategy is shared. This can
be adjusted:

hibernate.search.reader.strategy = not-shared

Adding this property switch to the non shared strategy.

Or if you have a custom reader strategy:

hibernate.search.reader.strategy = my.corp.myapp.CustomReaderProvider

where my.corp.myapp.CustomReaderProvider is the custom strategy implementation

3.6. Enabling Hibernate Search and automatic indexing

3.6.1. Enabling Hibernate Search

Hibernate Search is enabled out of the box when using Hibernate Annotations or Hibernate EntityManager. If,
for some reason you need to disable it, set hibernate.search.autoregister_listeners to false. Note that
there is no performance runtime when the listeners are enabled while no entity is indexable.

To enable Hibernate Search in Hibernate Core, add the FullTextIndexEventListener for the three Hibernate
events that occur after changes are executed to the database. Once again, such a configuration is not useful with
Hibernate Annotations or Hibernate EntityManager.

<hibernate-configuration>
<session-factory>

...
<event type="post-update"/>

<listener class="org.hibernate.search.event.FullTextIndexEventListener"/>
</event>
<event type="post-insert"/>

<listener class="org.hibernate.search.event.FullTextIndexEventListener"/>
</event>
<event type="post-delete"/>

<listener class="org.hibernate.search.event.FullTextIndexEventListener"/>
</event>

</session-factory>
</hibernate-configuration>

Be sure to add the appropriate jar files in your classpath. Check lib/README.TXT for the list of third party lib-

Configuration

Hibernate 3.0.1.GA 16

raries. A typical installation on top of Hibernate Annotations will add:

• hibernate-search.jar: the core engine

• lucene-core-*.jar: Lucene core engine

3.6.1.1. Hibernate Core 3.2.6 and beyond

If you use Hibernate Core 3.2.6 and beyond, make sure to add three additional event listeners that cope with
collection events

<hibernate-configuration>
<session-factory>

...
<event type="post-collection-recreate"/>

<listener class="org.hibernate.search.event.FullTextIndexCollectionEventListener"/>
</event>
<event type="post-collection-remove"/>

<listener class="org.hibernate.search.event.FullTextIndexCollectionEventListener"/>
</event>
<event type="post-collection-update"/>

<listener class="org.hibernate.search.event.FullTextIndexCollectionEventListener"/>
</event>

</session-factory>
</hibernate-configuration>

Those additional event listeners have been introduced in Hibernate 3.2.6. note the FullTextIndexCollec-

tionEventListener usage. You need to explicitly reference those event listeners unless you use Hibernate An-
notations 3.3.1 and above.

3.6.2. Automatic indexing

By default, every time an object is inserted, updated or deleted through Hibernate, Hibernate Search updates the
according Lucene index. It is sometimes desirable to disable that features if either your index is read-only or if
index updates are done in a batch way (see Chapter 6, Manual indexing).

To disable event based indexing, set

hibernate.search.indexing_strategy manual

Note

In most case, the JMS backend provides the best of both world, a lightweight event based system keeps
track of all changes in the system, and the heavyweight indexing process is done by a separate process
or machine.

3.7. Tuning Lucene indexing performance

Hibernate Search allows you to tune the Lucene indexing performance by specifying a set of parameters which
are passed through to underlying Lucene IndexWriter such as mergeFactor, maxMergeDocs and maxBuffered-

Docs. You can specify these parameters either as default values applying for all indexes or on a per index basis.

There are two sets of parameters allowing for different performance settings depending on the use case. During
indexing operations triggered by database modifications, the following ones are used:

Configuration

Hibernate 3.0.1.GA 17

• hibernate.search.[default|<indexname>].transaction.merge_factor

• hibernate.search.[default|<indexname>].transaction.max_merge_docs

• hibernate.search.[default|<indexname>].transaction.max_buffered_docs

When indexing occurs via FullTextSession.index() (see Chapter 6, Manual indexing), the following proper-
ties are used:

• hibernate.search.[default|<indexname>].batch.merge_factor

• hibernate.search.[default|<indexname>].batch.max_merge_docs

• hibernate.search.[default|<indexname>].batch.max_buffered_docs

Unless the corresponding .batch property is explicitly set, the value will default to the .transaction property.

For more information about Lucene indexing performances, please refer to the Lucene documentation.

Table 3.3. List of indexing performance properties

Property Description Default Value

hibern-

ate.search.[default|<indexnam

e>].transaction.merge_factor

Controls segment merge frequency
and size.

Determines how often segment in-
dices are merged when insertion
occurs. With smaller values, less
RAM is used while indexing, and
searches on unoptimized indices
are faster, but indexing speed is
slower. With larger values, more
RAM is used during indexing, and
while searches on unoptimized in-
dices are slower, indexing is faster.
Thus larger values (> 10) are best
for batch index creation, and smal-
ler values (< 10) for indices that
are interactively maintained. The
value must no be lower than 2.

Used by Hibernate Search during
index update operations as part of
database modifications.

10

hibern-

ate.search.[default|<indexnam

e>].transaction.max_merge_doc

s

Defines the largest number of doc-
uments allowed in a segment.

Used by Hibernate Search during
index update operations as part of
database modifications.

Unlimited
(Integer.MAX_VALUE)

Configuration

Hibernate 3.0.1.GA 18

Property Description Default Value

hibern-

ate.search.[default|<indexnam

e>].transaction.max_buffered_

docs

Controls the amount of documents
buffered in memory during index-
ing. The bigger the more RAM is
consumed.

Used by Hibernate Search during
index update operations as part of
database modifications.

10

hibern-

ate.search.[default|<indexnam

e>].batch.merge_factor

Controls segment merge frequency
and size.

Determines how often segment in-
dices are merged when insertion
occurs. With smaller values, less
RAM is used while indexing, and
searches on unoptimized indices
are faster, but indexing speed is
slower. With larger values, more
RAM is used during indexing, and
while searches on unoptimized in-
dices are slower, indexing is faster.
Thus larger values (> 10) are best
for batch index creation, and smal-
ler values (< 10) for indices that
are interactively maintained. The
value must no be lower than 2.

Used during indexing via Full-

TextSession.index()

10

hibern-

ate.search.[default|<indexnam

e>].batch.max_merge_docs

Defines the largest number of doc-
uments allowed in a segment.

Used during indexing via Full-

TextSession.index()

Unlimited
(Integer.MAX_VALUE)

hibern-

ate.search.[default|<indexnam

e>].batch.max_buffered_docs

Controls the amount of documents
buffered in memory during index-
ing. The bigger the more RAM is
consumed.

Used during indexing via Full-

TextSession.index()

10

Configuration

Hibernate 3.0.1.GA 19

Chapter 4. Mapping entities to the index structure
All the metadata information needed to index entities is described through some Java annotations. There is no
need for xml mapping files nor a list of indexed entities. The list is discovered at startup time scanning the Hi-
bernate mapped entities.

4.1. Mapping an entity

4.1.1. Basic mapping

First, we must declare a persistent class as indexable. This is done by annotating the class with @Indexed (all
entities not annotated with @Indexed will be ignored by the indexing process):

@Entity
@Indexed(index="indexes/essays")
public class Essay {

...
}

The index attribute tells Hibernate what the Lucene directory name is (usually a directory on your file system).
If you wish to define a base directory for all Lucene indexes, you can use the hibern-

ate.search.default.indexBase property in your configuration file. Each entity instance will be represented
by a Lucene Document inside the given index (aka Directory).

For each property (or attribute) of your entity, you have the ability to describe how it will be indexed. The de-
fault (ie no annotation) means that the property is completly ignored by the indexing process. @Field does de-
clare a property as indexed. When indexing an element to a Lucene document you can specify how it is in-
dexed:

• name : describe under which name, the property should be stored in the Lucene Document. The default
value is the property name (following the JavaBeans convention)

• store : describe whether or not the property is stored in the Lucene index. You can store the value
Store.YES (comsuming more space in the index but allowing projection, see Section 5.1.2.5, “Projection”
for more information), store it in a compressed way Store.COMPRESS (this does consume more CPU), or
avoid any storage Store.NO (this is the default value). When a property is stored, you can retrieve it from
the Lucene Document (note that this is not related to whether the element is indexed or not).

• index: describe how the element is indexed (ie the process used to index the property and the type of in-
formation store). The different values are Index.NO (no indexing, ie cannot be found by a query), In-

dex.TOKENIZED (use an analyzer to process the property), Index.UN_TOKENISED (no analyzer pre pro-
cessing), Index.NO_NORM (do not store the normalization data). The default value is TOKENIZED.

These attributes are part of the @Field annotation.

Whether or not you want to store the data depends on how you wish to use the index query result. For a regular
Hibernate Search usage, storing is not necessary. However you might want to store some fields to subsequently
project them (see Section 5.1.2.5, “Projection” for more information).

Whether or not you want to tokenize a property depends on whether you wish to search the element as is, or by
the words it contains. It make sense to tokenize a text field, but it does not to do it for a date field (or an id

Hibernate 3.0.1.GA 20

field). Note that fields used for sorting must not be tokenized.

Finally, the id property of an entity is a special property used by Hibernate Search to ensure index unicity of a
given entity. By design, an id has to be stored and must not be tokenized. To mark a property as index id, use
the @DocumentId annotation.

@Entity
@Indexed(index="indexes/essays")
public class Essay {

...

@Id
@DocumentId
public Long getId() { return id; }

@Field(name="Abstract", index=Index.TOKENIZED, store=Store.YES)
public String getSummary() { return summary; }

@Lob
@Field(index=Index.TOKENIZED)
public String getText() { return text; }

}

These annotations define an index with three fields: id , Abstract and text . Note that by default the field
name is decapitalized, following the JavaBean specification.

Note

You must specify @DocumentId on the identifier property of your entity class.

4.1.2. Mapping properties multiple times

It is sometimes needed to map a property multiple times per index, with slightly different indexing strategies.
Especially, sorting a query by field requires the field to be UN_TOKENIZED. If one want to search by words in this
property and still sort it, one need to index it twice, once tokenized, once untokenized. @Fields allows to
achieve this goal.

@Entity
@Indexed(index = "Book")
public class Book {

@Fields({
@Field(index = Index.TOKENIZED),
@Field(name = "summary_forSort", index = Index.UN_TOKENIZED, store = Store.YES)
})

public String getSummary() {
return summary;

}

...
}

The field summary is indexed twice, once as summary in a tokenized way, and once as summary_forSort in an
untokenized way. @Field supports 2 attributes useful when @Fields is used:

• analyzer: defines a @Analyzer annotation per field rather than per property

• bridge: defines a @FieldBridge annotation per field rather than per property

See below for more information about analyzers and field bridges.

Mapping entities to the index structure

Hibernate 3.0.1.GA 21

4.1.3. Embedded and associated objects

Associated objects as well as embedded objects can be indexed as part of the root entity index. It is necessary if
you expect to search a given entity based on properties of the associated object(s). In the following example,
the use case is to return the places whose city is Atlanta (In the Lucene query parser language, it would trans-
late into address.city:Atlanta).

@Entity
@Indexed
public class Place {

@Id
@GeneratedValue
@DocumentId
private Long id;

@Field(index = Index.TOKENIZED)
private String name;

@OneToOne(cascade = { CascadeType.PERSIST, CascadeType.REMOVE })
@IndexedEmbedded
private Address address;
....

}

@Entity
@Indexed
public class Address {

@Id
@GeneratedValue
@DocumentId
private Long id;

@Field(index=Index.TOKENIZED)
private String street;

@Field(index=Index.TOKENIZED)
private String city;

@ContainedIn
@OneToMany(mappedBy="address")
private Set<Place> places;
...

}

In this example, the place fields will be indexed in the Place index. The Place index documents will also con-
tain the fields address.id, address.street, and address.city which you will be able to query. This is en-
abled by the @IndexedEmbedded annotation.

Be careful. Because the data is denormalized in the Lucene index when using the @IndexedEmbedded technique,
Hibernate Search needs to be aware of any change in the Place object and any change in the Address object to
keep the index up to date. To make sure the Place Lucene document is updated when it's Address changes, you
need to mark the other side of the birirectional relationship with @ContainedIn.

@ContainedIn is only useful on associations pointing to entities as opposed to embedded (collection of) objects.

Let's make our example a bit more complex:

@Entity
@Indexed
public class Place {

@Id
@GeneratedValue
@DocumentId
private Long id;

Mapping entities to the index structure

Hibernate 3.0.1.GA 22

@Field(index = Index.TOKENIZED)
private String name;

@OneToOne(cascade = { CascadeType.PERSIST, CascadeType.REMOVE })
@IndexedEmbedded
private Address address;
....

}

@Entity
@Indexed
public class Address {

@Id
@GeneratedValue
@DocumentId
private Long id;

@Field(index=Index.TOKENIZED)
private String street;

@Field(index=Index.TOKENIZED)
private String city;

@IndexedEmbedded(depth = 1, prefix = "ownedBy_")
private Owner ownedBy;

@ContainedIn
@OneToMany(mappedBy="address")
private Set<Place> places;
...

}

@Embeddable
public class Owner {

@Field(index = Index.TOKENIZED)
private String name;
...

}

Any @*ToOne and @Embedded attribute can be annotated with @IndexedEmbedded. The attributes of the associ-
ated class will then be added to the main entity index. In the previous example, the index will contain the fol-
lowing fields

• id

• name

• address.street

• address.city

• addess.ownedBy_name

The default prefix is propertyName., following the traditional object navigation convention. You can override
it using the prefix attribute as it is shown on the ownedBy property.

depth is necessary when the object graph contains a cyclic dependency of classes (not instances). For example,
if Owner points to Place. Hibernate Search will stop including Indexed embedded atttributes after reaching the
expected depth (or the object graph boundaries are reached). A class having a self reference is an example of
cyclic dependency. In our example, because depth is set to 1, any @IndexedEmbedded attribute in Owner (if
any) will be ignored.

Mapping entities to the index structure

Hibernate 3.0.1.GA 23

Such a feature (@IndexedEmbedded) is very useful to express queries refering to associated objects, such as:

• Return places where name contains JBoss and where address city is Atlanta. In Lucene query this would be

+name:jboss +address.city:atlanta

• Return places where name contains JBoss and where owner's name contain Joe. In Lucene query this would
be

+name:jboss +address.orderBy_name:joe

In a way it mimics the relational join operation in a more efficient way (at the cost of data duplication). Re-
member that, out of the box, Lucene indexes have no notion of association, the join operation is simply non-
existent. It might help to keep the relational model normalzed while benefiting from the full text index speed
and feature richness.

Note

An associated object can itself be (but don't have to) @Indexed

When @IndexedEmbedded points to an entity, the association has to be directional and the other side has to be
annotated @ContainedIn (as see in the previous example). If not, Hibernate Search has no way to update the
root index when the associated entity is updated (in ou example, a Place index document has to be updated
when the associated Address instance is updated.

Sometimes, the object type annotated by @IndexedEmbedded is not the object type targeted by Hibernate and
Hibernate Search especially when interface are used in lieu of their implementation. You can override the ob-
ject type targeted by Hibernate Search using the targetElement parameter.

@Entity
@Indexed
public class Address {

@Id
@GeneratedValue
@DocumentId
private Long id;

@Field(index= Index.TOKENIZED)
private String street;

@IndexedEmbedded(depth = 1, prefix = "ownedBy_", targetElement = Owner.class)
@Target(Owner.class)
private Person ownedBy;

...
}

@Embeddable
public class Owner implements Person { ... }

4.1.4. Boost factor

Lucene has the notion of boost factor . It's a way to give more weigth to a field or to an indexed element over
an other during the indexation process. You can use @Boost at the field or the class level.

@Entity

Mapping entities to the index structure

Hibernate 3.0.1.GA 24

@Indexed(index="indexes/essays")
@Boost(2)
public class Essay {

...

@Id
@DocumentId
public Long getId() { return id; }

@Field(name="Abstract", index=Index.TOKENIZED, store=Store.YES)
@Boost(2.5f)
public String getSummary() { return summary; }

@Lob
@Field(index=Index.TOKENIZED)
public String getText() { return text; }

}

In our example, Essay's probability to reach the top of the search list will be multiplied by 2 and the summary
field will be 2.5 more important than the test field. Note that this explaination is actually wrong, but it is simple
and close enought to the reality. Please check the Lucene documentation or the excellent Lucene In Action from
Otis Gospodnetic and Erik Hatcher.

4.1.5. Analyzer

The default analyzer class used to index the elements is configurable through the hibernate.search.analyzer

property. If none is defined, org.apache.lucene.analysis.standard.StandardAnalyzer is used as the de-
fault.

You can also define the analyzer class per entity, per property and even per @Field (useful when multiple fields
are indexed from a single property).

@Entity
@Indexed
@Analyzer(impl = EntityAnalyzer.class)
public class MyEntity {

@Id
@GeneratedValue
@DocumentId
private Integer id;

@Field(index = Index.TOKENIZED)
private String name;

@Field(index = Index.TOKENIZED)
@Analyzer(impl = PropertyAnalyzer.class)
private String summary;

@Field(index = Index.TOKENIZED, analyzer = @Analyzer(impl = FieldAnalyzer.class)
private String body;

...
}

In this example, EntityAnalyzer is used index all tokenized properties (eg. name), except for summary and body

which are indexed with PropertyAnalyzer and FieldAnalyzer respectively.

Caution

Mixing different analyzers in the same entity is most of the time a bad practice. It makes query building
more complex and results less predictable (for the novice), especially if you are using a QueryParser

Mapping entities to the index structure

Hibernate 3.0.1.GA 25

1Using a Range query is debatable and has drawbacks, an alternative approach is to use a Filter query which will filter the result query to
the appropriate range.

Hibernate Search will support a padding mechanism

(which uses the same analyzer for the whole query). As a thumb rule, the same analyzer should be used
for both the indexing and the query for a given field.

4.2. Property/Field Bridge

In Lucene all index fields have to be represented as Strings. For this reason all entity properties annotated with
@Field have to be indexed in a String form. For most of your properties, Hibernate Search does the translation
job for you thanks to a built-in set of bridges. In some cases, though you need a more fine grain control over the
translation process.

4.2.1. Built-in bridges

Hibernate Search comes bundled with a set of built-in bridges between a Java property type and its full text
representation.

null
null elements are not indexed. Lucene does not support null elements and this does not make much sense
either.

java.lang.String
String are indexed as is

short, Short, integer, Integer, long, Long, float, Float, double, Double, BigInteger, BigDecimal
Numbers are converted in their String representation. Note that numbers cannot be compared by Lucene (ie
used in ranged queries) out of the box: they have to be padded 1

java.util.Date
Dates are stored as yyyyMMddHHmmssSSS in GMT time (200611072203012 for Nov 7th of 2006
4:03PM and 12ms EST). You shouldn't really bother with the internal format. What is important is that
when using a DateRange Query, you should know that the dates have to be expressed in GMT time.

Usually, storing the date up to the milisecond is not necessary. @DateBridge defines the appropriate resolu-
tion you are willing to store in the index (@DateBridge(resolution=Resolution.DAY)). The date pattern will then
be truncated accordingly.

@Entity
@Indexed
public class Meeting {

@Field(index=Index.UN_TOKENIZED)
@DateBridge(resolution=Resolution.MINUTE)
private Date date;
...

Warning

A Date whose resolution is lower than MILLISECOND cannot be a @DocumentId

4.2.2. Custom Bridge

Mapping entities to the index structure

Hibernate 3.0.1.GA 26

It can happen that the built-in bridges of Hibernate Search do not cover some of your property types, or that the
String representation used is not what you expect. The following paragraphs sveral solutions for this problem.

4.2.2.1. StringBridge

The simpliest custom solution is to give Hibernate Search ™ an implementation of your expected object to
String bridge. To do so you need to implements the org.hibernate.search.bridge.StringBridge interface

/**
* Padding Integer bridge.
* All numbers will be padded with 0 to match 5 digits
*
* @author Emmanuel Bernard
*/

public class PaddedIntegerBridge implements StringBridge {

private int PADDING = 5;

public String objectToString(Object object) {
String rawInteger = ((Integer) object).toString();
if (rawInteger.length() > PADDING)

throw new IllegalArgumentException("Try to pad on a number too big");
StringBuilder paddedInteger = new StringBuilder();
for (int padIndex = rawInteger.length() ; padIndex < PADDING ; padIndex++) {

paddedInteger.append('0');
}
return paddedInteger.append(rawInteger).toString();

}
}

Then any property or field can use this bridge thanks to the @FieldBridge annotation

@FieldBridge(impl = PaddedIntegerBridge.class)
private Integer length;

Parameters can be passed to the Bridge implementation making it more flexible. The Bridge implementation
implements a ParameterizedBridge interface, and the parameters are passed through the @FieldBridge an-
notation.

public class PaddedIntegerBridge implements StringBridge, ParameterizedBridge {

public static String PADDING_PROPERTY = "padding";
private int padding = 5; //default

public void setParameterValues(Map parameters) {
Object padding = parameters.get(PADDING_PROPERTY);
if (padding != null) this.padding = (Integer) padding;

}

public String objectToString(Object object) {
String rawInteger = ((Integer) object).toString();
if (rawInteger.length() > padding)

throw new IllegalArgumentException("Try to pad on a number too big");
StringBuilder paddedInteger = new StringBuilder();
for (int padIndex = rawInteger.length() ; padIndex < padding ; padIndex++) {

paddedInteger.append('0');
}
return paddedInteger.append(rawInteger).toString();

}
}

//property
@FieldBridge(impl = PaddedIntegerBridge.class,

params = @Parameter(name="padding", value="10")

Mapping entities to the index structure

Hibernate 3.0.1.GA 27

)
private Integer length;

The ParameterizedBridge interface can be implemented by StringBridge , TwoWayStringBridge , Field-
Bridge implementations (see bellow).

If you expect to use your bridge implementation on for an id property (ie annotated with @DocumentId), you
need to use a slightly extended version of StringBridge named TwoWayStringBridge . Hibernate Search

needs to read the string representation of the identifier and generate the object out of it. There is not difference
in the way the @FieldBridge annotation is used.

public class PaddedIntegerBridge implements TwoWayStringBridge, ParameterizedBridge {

public static String PADDING_PROPERTY = "padding";
private int padding = 5; //default

public void setParameterValues(Map parameters) {
Object padding = parameters.get(PADDING_PROPERTY);
if (padding != null) this.padding = (Integer) padding;

}

public String objectToString(Object object) {
String rawInteger = ((Integer) object).toString();
if (rawInteger.length() > padding)

throw new IllegalArgumentException("Try to pad on a number too big");
StringBuilder paddedInteger = new StringBuilder();
for (int padIndex = rawInteger.length() ; padIndex < padding ; padIndex++) {

paddedInteger.append('0');
}
return paddedInteger.append(rawInteger).toString();

}

public Object stringToObject(String stringValue) {
return new Integer(stringValue);

}
}

//id property
@DocumentId
@FieldBridge(impl = PaddedIntegerBridge.class,

params = @Parameter(name="padding", value="10")
private Integer id;

It is critically important for the two-way process to be idempotent (ie object = stringToObject(objectToString(
object))).

4.2.2.2. FieldBridge

Some usecase requires more than a simple object to string translation when mapping a property to a Lucene in-
dex. To give you most of the flexibility you can also implement a bridge as a FieldBridge . This interface give
you a property value and let you map it the way you want in your Lucene Document .This interface is very sim-
ilar in its concept to the Hibernate™ UserType .

You can for example store a given property in two different document fields

/**
* Store the date in 3 different field year, month, day
* to ease Range Query per year, month or day
* (eg get all the elements of december for the last 5 years)
*
* @author Emmanuel Bernard
*/

Mapping entities to the index structure

Hibernate 3.0.1.GA 28

public class DateSplitBridge implements FieldBridge {
private final static TimeZone GMT = TimeZone.getTimeZone("GMT");

public void set(String name, Object value, Document document, Field.Store
store, Field.Index index, Float boost) {

Date date = (Date) value;
Calendar cal = GregorianCalendar.getInstance(GMT);
cal.setTime(date);
int year = cal.get(Calendar.YEAR);
int month = cal.get(Calendar.MONTH) + 1;
int day = cal.get(Calendar.DAY_OF_MONTH);
//set year
Field field = new Field(name + ".year", String.valueOf(year), store, index);
if (boost != null) field.setBoost(boost);
document.add(field);
//set month and pad it if needed
field = new Field(name + ".month", month < 10 ? "0" : "" + String.valueOf(month), store, index);
if (boost != null) field.setBoost(boost);
document.add(field);
//set day and pad it if needed
field = new Field(name + ".day", day < 10 ? "0" : "" + String.valueOf(day), store, index);
if (boost != null) field.setBoost(boost);
document.add(field);

}
}

//property
@FieldBridge(impl = DateSplitBridge.class)
private Integer length;

4.2.2.3. @ClassBridge

It is sometimes useful to combine more than one property of a given entity and index this combination in a spe-
cific way into the Lucene index. The @ClassBridge and @ClassBridges annotations can be defined at the class
level (as opposed to the property level). In this case the custom field bridge implementation receives the entity
instance as the value parameter instead of a particular property.

@Entity
@Indexed
@ClassBridge(name="branchnetwork",

index=Index.TOKENIZED,
store=Store.YES,
impl = CatFieldsClassBridge.class,
params = @Parameter(name="sepChar", value=" "))

public class Department {
private int id;
private String network;
private String branchHead;
private String branch;
private Integer maxEmployees;
...

}

public class CatFieldsClassBridge implements FieldBridge, ParameterizedBridge {

private String sepChar;

public void setParameterValues(Map parameters) {
this.sepChar = (String) parameters.get("sepChar");

}

public void set(String name,
Object value, //the department instance (entity) in this case
Document document, //the Lucene document
Field.Store store, Field.Index index, Float boost) {

Mapping entities to the index structure

Hibernate 3.0.1.GA 29

// In this particular class the name of the new field was passed
// from the name field of the ClassBridge Annotation. This is not
// a requirement. It just works that way in this instance. The
// actual name could be supplied by hard coding it below.
Department dep = (Department) value;
String fieldValue1 = dep.getBranch();
if (fieldValue1 == null) {

fieldValue1 = "";
}
String fieldValue2 = dep.getNetwork();
if (fieldValue2 == null) {

fieldValue2 = "";
}
String fieldValue = fieldValue1 + sepChar + fieldValue2;
Field field = new Field(name, fieldValue, store, index);
if (boost != null) field.setBoost(boost);
document.add(field);

}
}

In this example, the particular CatFieldsClassBridge is applied to the department instance, the field bridge
then concatenate both branch and network and index the concatenation.

Mapping entities to the index structure

Hibernate 3.0.1.GA 30

Chapter 5. Querying
The second most important capability of Hibernate Search is the ability to execute a Lucene query and retrieve
entities managed by an Hibernate session, providing the power of Lucene without living the Hibernate
paradigm, and giving another dimension to the Hibernate classic search mechanisms (HQL, Criteria query, nat-
ive SQL query).

To access the Hibernate Search™ querying facilities, you have to use an Hibernate FullTextSession . A
Search Session wraps a regular org.hibernate.Session to provide query and indexing capabilities.

Session session = sessionFactory.openSession();
...
FullTextSession fullTextSession = Search.createFullTextSession(session);

The search facility is built on native Lucene queries.

org.apache.lucene.queryParser.QueryParser parser = new QueryParser("title", new StopAnalyzer());

org.apache.lucene.search.Query luceneQuery = parser.parse("summary:Festina Or brand:Seiko");
org.hibernate.Query fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery);

List result = fullTextQuery.list(); //return a list of managed objects

The Hibernate query built on top of the Lucene query is a regular org.hibernate.Query , you are in the same
paradigm as the other Hibernate query facilities (HQL, Native or Criteria). The regular list() , uniqueRes-
ult() , iterate() and scroll() can be used.

For people using Java Persistence (aka EJB 3.0 Persistence) APIs of Hibernate, the same extensions exist:

EntityManager em = entityManagerFactory.createEntityManager();

FullTextEntityManager fullTextEntityManager =
org.hibernate.hibernate.search.jpa.Search.createFullTextEntityManager(em);

...
org.apache.lucene.queryParser.QueryParser parser = new QueryParser("title", new StopAnalyzer());

org.apache.lucene.search.Query luceneQuery = parser.parse("summary:Festina Or brand:Seiko");
javax.persistence.Query fullTextQuery = fullTextEntityManager.createFullTextQuery(luceneQuery);

List result = fullTextQuery.getResultList(); //return a list of managed objects

The following examples show the Hibernate APIs but the same example can be easily rewritten with the Java
Persistence API by just adjusting the way the FullTextQuery is retrieved.

5.1. Building queries

Hibernate Search queries are built on top of Lucene queries. It gives you a total freedom on the kind of Lucene
queries you are willing to execute. However, once built, Hibernate Search abstract the query processing from
your application using org.hibernate.Query as your primary query manipulation API.

5.1.1. Building a Lucene query

This subject is generally speaking out of the scope of this documentation. Please refer to the Lucene document-
ation or Lucene In Action.

Hibernate 3.0.1.GA 31

5.1.2. Building a Hibernate Search query

5.1.2.1. Generality

Once the Lucene query is built, it needs to be wrapped into an Hibernate Query.

FullTextSession fullTextSession = Search.createFullTextSession(session);
org.hibernate.Query fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery);

If not specified otherwise, the query will be executed against all indexed entities, potentially returning all types
of indexed classes. It is advised, from a performance point of view, to restrict the returned types:

org.hibernate.Query fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery, Customer.class);
//or
fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery, Item.class, Actor.class);

The first example returns only matching customers, the second returns matching actors and items.

5.1.2.2. Pagination

It is recommended to restrict the number of returned objects per query. It is a very common use case as well,
the user usually navigate from one page to an other. The way to define pagination is exactly the way you would
define pagination in a plain HQL or Criteria query.

org.hibernate.Query fullTextQuery = fullTextSession.createFullTextQuery(luceneQuery, Customer.class);
fullTextQuery.setFirstResult(15); //start from the 15th element
fullTextQuery.setMaxResults(10); //return 10 elements

Note

It is still possible to get the total number of matching elements regardless of the pagination. See
getResultSize() below

5.1.2.3. Sorting

Apache Lucene provides a very flexible and powerful way to sort results. While the default sorting (by relev-
ance) is appropriate most of the time, it can interesting to sort by one or several properties.

Inject the Lucene Sort object to apply a Lucene sorting strategy to an Hibernate Search.

org.hibernate.search.FullTextQuery query = s.createFullTextQuery(query, Book.class);
org.apache.lucene.search.Sort sort = new Sort(new SortField("title"));
query.setSort(sort);
List results = query.list();

One can notice the FullTextQuery interface which is a sub interface of org.hibernate.Query.

Fields used for sorting must not be tokenized.

5.1.2.4. Fetching strategy

When you restrict the return types to one class, Hibernate Search loads the objects using a single query. It also
respects the static fetching strategy defined in your domain model.

It is often useful, however, to refine the fetching strategy for a specific use case.

Querying

Hibernate 3.0.1.GA 32

Criteria criteria = s.createCriteria(Book.class).setFetchMode("authors", FetchMode.JOIN);
s.createFullTextQuery(luceneQuery).setCriteriaQuery(criteria);

In this example, the query will return all Books matching the luceneQuery. The authors collection will be
loaded from the same query using an SQL outer join.

When defining a criteria query, it is not needed to restrict the entity types returned while creating the Hibernate
Search query from the full text session: the type is guessed from the criteria query itself. Only fetch mode can
be adjusted, refrain from applying any other restriction.

One cannot use setCriteriaQuery if more than one entity type is expected to be returned.

5.1.2.5. Projection

For some use cases, returning the domain object (graph) is overkill. Only a small subset of the properties is ne-
cessary. Hibernate Search allows you to return a subset of properties:

org.hibernate.search.FullTextQuery query = s.createFullTextQuery(luceneQuery, Book.class);
query.setProjection("id", "summary", "body", "mainAuthor.name");
List results = query.list();
Object[] firstResult = (Object[]) results.get(0);
Integer id = firstResult[0];
String summary = firstResult[1];
String body = firstResult[2];
String authorName = firstResult[3];

Hibernate Search extracts the properties from the Lucene index and convert them back to their object represent-
ation, returning a list of Object[]. Projections avoid a potential database round trip (useful if the query re-
sponse time is critical), but has some constraints:

• the properties projected must be stored in the index (@Field(store=Store.YES)), which increase the index
size

• the properties projected must use a FieldBridge implementing
org.hibernate.search.bridge.TwoWayFieldBridge or
org.hibernate.search.bridge.TwoWayStringBridge, the latter being the simpler version. All Hibernate
Search built-in types are two-way.

Projection is useful for another kind of usecases. Lucene provides some metadata informations to the user about
the results. By using some special placeholders, the projection mechanism can retrieve them:

org.hibernate.search.FullTextQuery query = s.createFullTextQuery(luceneQuery, Book.class);
query.setProjection(FullTextQuery.SCORE, FullTextQuery.BOOST, FullTextQuery.THIS, "mainAuthor.name");
List results = query.list();
Object[] firstResult = (Object[]) results.get(0);
float score = firstResult[0];
float boost = firstResult[1];
Book book = firstResult[2];
String authorName = firstResult[3];

You can mix and match regular fields and special placeholders. Here is the list of available placeholders:

• FullTextQuery.THIS: returns the intialized and managed entity (as a non projected query would have done)

• FullTextQuery.DOCUMENT: returns the Lucene Document related to the object projected

• FullTextQuery.SCORE: returns the document score in the query. The score is guatanteed to be between 0

Querying

Hibernate 3.0.1.GA 33

and 1 but the highest score is not necessarily equals to 1. Scores are handy to compare one result against an
other for a given query but are useless when comparing the result of different queries.

• FullTextQuery.BOOST: the boost value of the Lucene Document

• FullTextQuery.ID: the id property value of the projected object

• FullTextQuery.DOCUMENT_ID: the Lucene document id. Careful, Lucene document id can change over-
time between two different IndexReader opening (this feature is experimental)

5.2. Retrieving the results

Once the Hibernate Search query is built, executing it is in no way different than executing a HQL or Criteria
query. The same paradigm and object semantic apply. All the common operations are available: list(),
uniqueResult(), iterate(), scroll().

5.2.1. Performance considerations

If you expect a reasonable number of results (for example using pagination) and expect to work on all of them,
list() or uniqueResult() are recommended. list() work best if the entity batch-size is set up properly.
Note that Hibernate Search has to process all Lucene Hits elements (within the pagination) when using list() ,
uniqueResult() and iterate().

If you wish to minimize Lucene document loading, scroll() is more appropriate. Don't forget to close the
ScrollableResults object when you're done, since it keeps Lucene resources. If you expect to use scroll but
wish to load objects in batch, you can use query.setFetchSize(): When an object is accessed, and if not
already loaded, Hibernate Search will load the next fetchSize objects in one pass.

Pagination is a preferred method over scrolling though.

5.2.2. Result size

It is sometime useful to know the total number of matching documents:

• for the Google-like feature 1-10 of about 888,000,000

• to implement a fast pagination navigation

• to implement a multi step search engine (adding approximation if the restricted query return no or not
enough results)

But it would be costly to retrieve all the matching documents.

Hibernate Search allows you to retrieve the total number of matching documents regardless of the pagination
parameters. Even more interesting, you can retrieve the number of matching elements without triggering a
single object load.

org.hibernate.search.FullTextQuery query = s.createFullTextQuery(luceneQuery, Book.class);
assert 3245 == query.getResultSize(); //return the number of matching books without loading a single one

org.hibernate.search.FullTextQuery query = s.createFullTextQuery(luceneQuery, Book.class);
query.setMaxResult(10);
List results = query.list();

Querying

Hibernate 3.0.1.GA 34

assert 3245 == query.getResultSize(); //return the total number of matching books regardless of pagination

Note

Like Google, the number of results is approximative if the index is not fully up-to-date with the data-
base (asynchronous cluster for example).

5.2.3. ResultTransformer

Especially when using projection, the data structure returned by a query (an object array in this case), is not al-
ways matching the application needs. It is possible to apply a ResultTransformer operation post query to
match the targeted data structure:

org.hibernate.search.FullTextQuery query = s.createFullTextQuery(luceneQuery, Book.class);
query.setProjection("title", "mainAuthor.name");

query.setResultTransformer(
new StaticAliasToBeanResultTransformer(BookView.class, "title", "author")

);
List<BookView> results = (List<BookView>) query.list();
for(BookView view : results) {

log.info("Book: " + view.getTitle() + ", " + view.getAuthor());
}

Examples of ResultTransformer implementations can be found in the Hibernate Core codebase.

5.3. Filters

Apache Lucene has a powerful feature that allows to filters results from a query according to a custom filtering
process. This is a very powerful way to apply some data restrictions after a query, especially since filters can be
cached and reused. Some interesting usecases are:

• security

• temporal data (eg. view only last month's data)

• population filter (eg. search limited to a given category)

• and many more

Hibernate Search pushes the concept further by introducing the notion of parameterizable named filters which
are transparantly cached. For people familiar with the notion of Hibernate Core filters, the API is very similar.

fullTextQuery = s.createFullTextQuery(query, Driver.class);
fullTextQuery.enableFullTextFilter("bestDriver");
fullTextQuery.enableFullTextFilter("security").setParameter("login", "andre");
fullTextQuery.list(); //returns only best drivers where andre has credentials

In this example we enabled 2 filters on top of this query. You can enable (or disable) as many filters as you
want.

Declaring filters is done through the @FullTextFilterDef annotation. This annotation can be on any @Indexed

entity regardless of the filter operation.

@Entity
@Indexed

Querying

Hibernate 3.0.1.GA 35

@FullTextFilterDefs({
@FullTextFilterDef(name = "bestDriver", impl = BestDriversFilter.class, cache=false), //actual Filter implementation
@FullTextFilterDef(name = "security", impl = SecurityFilterFactory.class) //Filter factory with parameters

})
public class Driver { ... }

Each named filter points to an actual filter implementation.

public class BestDriversFilter extends org.apache.lucene.search.Filter {

public BitSet bits(IndexReader reader) throws IOException {
BitSet bitSet = new BitSet(reader.maxDoc());
TermDocs termDocs = reader.termDocs(new Term("score", "5"));
while (termDocs.next()) {

bitSet.set(termDocs.doc());
}
return bitSet;

}
}

BestDriversFilter is an example of a simple Lucene filter that will filter all results to only return drivers
whose score is 5. The filters must have a no-arg constructor when referenced in a FulltextFilterDef.impl.

The cache flag, defaulted to true, tells Hibernate Search to search the filter in its internal cache and reuses it if
found.

Note that, usually, filter using the IndexReader are wrapped in a Lucene CachingWrapperFilter to benefit
from some caching speed improvement. If your Filter creation requires additional steps or if the filter you are
willing to use does not have a no-arg constructor, you can use the factory pattern:

@Entity
@Indexed
@FullTextFilterDef(name = "bestDriver", impl = BestDriversFilterFactory.class) //Filter factory
public class Driver { ... }

public class BestDriversFilterFactory {

@Factory
public Filter getFilter() {

//some additional steps to cache the filter results per IndexReader
Filter bestDriversFilter = new BestDriversFilter();
return new CachingWrapperFilter(bestDriversFilter);

}
}

Hibernate Search will look for a @Factory annotated method and use it to build the filter instance. The factory
must have a no-arg constructor. For people familiar with JBoss Seam, this is similar to the component factory
pattern, but the annotation is different!

Named filters comes in handy where the filters have parameters. For example a security filter needs to know
which credentials you are willing to filter by:

fullTextQuery = s.createFullTextQuery(query, Driver.class);
fullTextQuery.enableFullTextFilter("security").setParameter("level", 5);

Each parameter name should have an associated setter on either the filter or filter factory of the targeted named
filter definition.

public class SecurityFilterFactory {
private Integer level;

/**

Querying

Hibernate 3.0.1.GA 36

* injected parameter
*/
public void setLevel(Integer level) {

this.level = level;
}

@Key
public FilterKey getKey() {

StandardFilterKey key = new StandardFilterKey();
key.addParameter(level);
return key;

}

@Factory
public Filter getFilter() {

Query query = new TermQuery(new Term("level", level.toString()));
return new CachingWrapperFilter(new QueryWrapperFilter(query));

}
}

Note the method annotated @Key and returning a FilterKey object. The returned object has a special contract:
the key object must implement equals / hashcode so that 2 keys are equals if and only if the given Filter types
are the same and the set of parameters are the same. In other words, 2 filter keys are equal if and only if the fil-
ters from which the keys are generated can be interchanged. The key object is used as a key in the cache mech-
anism.

@Key methods are needed only if:

• you enabled the filter caching system (enabled by default)

• your filter has parameters

In most cases, using the StandardFilterKey implementation will be good enough. It delegates the equals/
hashcode implementation to each of the parameters equals and hashcode methods.

Why should filters be cached? There are two area where filter caching shines:

• the system does not update the targeted entity index often (in other words, the IndexReader is reused a lot)

• the Filter BitSet is expensive to compute (compared to the time spent to execute the query)

Cache is enabled by default and use the notion of SoftReferences to dispose memory when needed. To adjust
the size of the hard reference cache, use hibernate.search.filter.cache_strategy.size (defaults to 128).
Don't forget to use a CachingWrapperFilter when the filter is cacheable and the Filter's bits methods makes
use of IndexReader.

For advance use of filter caching, you can implement your own FilterCachingStrategy. The classname is
defined by hibernate.search.filter.cache_strategy.

5.4. Optimizing the query process

Query performance depends on several criteria:

• the Lucene query itself: read the literature on this subject

• the number of object loaded: use pagination (always ;-)) or index projection (if needed)

Querying

Hibernate 3.0.1.GA 37

• the way Hibernate Search interacts with the Lucene readers: defines the appropriate Reader strategy.

5.5. Native Lucene Queries

If you wish to use some specific features of Lucene, you can always run Lucene specific queries. Check
Chapter 8, Accessing Lucene natively for more informations.

Querying

Hibernate 3.0.1.GA 38

Chapter 6. Manual indexing

6.1. Indexing

It is sometimes useful to index an object even if this object is not inserted nor updated to the database. This is
especially true when you want to build your index for the first time. You can achieve that goal using the Full-

TextSession.

FullTextSession fullTextSession = Search.createFullTextSession(session);
Transaction tx = fullTextSession.beginTransaction();
for (Customer customer : customers) {

fullTextSession.index(customer);
}
tx.commit(); //index are written at commit time

For maximum efficiency, Hibernate Search batches index operations and executse them at commit time (Note:
you don't need to use org.hibernate.Transaction in a JTA environment).

If you expect to index a lot of data, you need to be careful about memory consumption: since all documents are
kept in a queue until the transaction commit, you can potentially face an OutOfMemoryException.

To avoid that, you can set up the hibernate.search.worker.batch_size property to a sensitive value: all in-
dex operations are queued until batch_size is reached. Every time batch_size is reached (or if the transaction
is committed), the queue is processed (freeing memory) and emptied. Be aware that the changes cannot be roll-
backed if the number of index elements goes beyond batch_size. Be also aware that the queue limits are also
applied on regular transparent indexing (and not only when session.index() is used). That's why a sensitive
batch_size value is expected.

Other parameters which also can affect indexing time and memory consumption are hibern-

ate.search.[default|<indexname>].batch.merge_factor , hibern-

ate.search.[default|<indexname>].batch.max_merge_docs and hibern-

ate.search.[default|<indexname>].batch.max_buffered_docs . These parameters are Lucene specific and
Hibernate Search is just passing these paramters through - see Section 3.7, “Tuning Lucene indexing perform-
ance” for more details.

Here is an especially efficient way to index a given class (useful for index (re)initialization):

fullTextSession.setFlushMode(FlushMode.MANUAL);
fullTextSession.setCacheMode(CacheMode.IGNORE);
transaction = fullTextSession.beginTransaction();
//Scrollable results will avoid loading too many objects in memory
ScrollableResults results = fullTextSession.createCriteria(Email.class).scroll(ScrollMode.FORWARD_ONLY);
int index = 0;
while(results.next()) {

index++;
fullTextSession.index(results.get(0)); //index each element
if (index % batchSize == 0) s.clear(); //clear every batchSize since the queue is processed

}
transaction.commit();

It is critical that batchSize in the previous example matches the batch_size value described previously.

6.2. Purging

Hibernate 3.0.1.GA 39

It is equally possible to remove an entity or all entities of a given type from a Lucene index without the need to
physically remove them from the database. This operation is named purging and is done through the Full-

TextSession.

FullTextSession fullTextSession = Search.createFullTextSession(session);
Transaction tx = fullTextSession.beginTransaction();
for (Customer customer : customers) {

fullTextSession.purge(Customer.class, customer.getId());
}
tx.commit(); //index are written at commit time

Purging will remove the entity with the given id from the Lucene index but will not touch the database.

If you need to remove all entities of a given type, you can use the purgeAll method.

FullTextSession fullTextSession = Search.createFullTextSession(session);
Transaction tx = fullTextSession.beginTransaction();
fullTextSession.purgeAll(Customer.class);
//optionally optimize the index
//fullTextSession.getSearchFactory().optimize(Customer.class);
tx.commit(); //index are written at commit time

It is recommended to optimize the index after such an operation.

Note

Methods index, purge and purgeAll are available on FullTextEntityManager as well

Manual indexing

Hibernate 3.0.1.GA 40

Chapter 7. Index Optimization
From time to time, the Lucene index needs to be optimized. The process is essentially a defragmentation: until
the optimization occurs, deleted documents are just marked as such, no physical deletion is applied, the optim-
ization can also adjust the number of files in the Lucene Directory.

The optimization speeds up searches but in no way speeds up indexation (update). During an optimization,
searches can be performed (but will most likely be slowed down), and all index updates will be stopped. Prefer
optimizing:

• on an idle system or when the searches are less frequent

• after a lot of index modifications (doing so before will not speed up the indexation process)

7.1. Automatic optimization

Hibernate Search can optimize automatically an index after:

• a certain amount of operations have been applied (insertion, deletion)

• or a certain amout of transactions have been applied

The configuration can be global or defined at the index level:

hibernate.search.default.optimizer.operation_limit.max = 1000
hibernate.search.default.optimizer.transaction_limit.max = 100

hibernate.search.Animal.optimizer.transaction_limit.max = 50

An optimization will be triggered to the Animal index as soon as either:

• the number of addition and deletion reaches 1000

• the number of transactions reaches 50 (hibernate.search.Animal.optimizer.transaction_limit.max
having priority over hibernate.search.default.optimizer.transaction_limit.max)

If none of these parameters are defined, not optimization is processed automatically.

7.2. Manual optimization

You can programmatically optimize (defragment) a Lucene index from Hibernate Search through the Search-

Factory

searchFactory.optimize(Order.class);

searchFactory.optimize();

The first example reindex the Lucene index holding Orders, the second, optimize all indexes.

The SearchFactory can be accessed from a FullTextSession:

Hibernate 3.0.1.GA 41

FullTextSession fullTextSession = Search.createFullTextSession(regularSession);
SearchFactory searchFactory = fullTextSession.getSearchFactory();

Note that searchFactory.optimize() has no effect on a JMS backend. You must apply the optimize operation
on the Master node.

7.3. Adjusting optimization

Apache Lucene has a few parameters to influence how optimization is performed. Hibernate Search expose
those parameters.

Further index optimisation parameters include hibernate.search.[default|<indexname>].merge_factor,
hibernate.search.[default|<indexname>].max_merge_docs and hibern-

ate.search.[default|<indexname>].max_buffered_docs - see Section 3.7, “Tuning Lucene indexing per-
formance” for more details.

Index Optimization

Hibernate 3.0.1.GA 42

Chapter 8. Accessing Lucene natively

8.1. SearchFactory

The SearchFactory object keeps track of the underlying Lucene resources for Hibernate Search, it's also a con-
venient way to access Lucene natively. The SearchFactory can be accessed from a FullTextSession:

FullTextSession fullTextSession = Search.createFullTextSession(regularSession);
SearchFactory searchFactory = fullTextSession.getSearchFactory();

8.2. Accessing a Lucene Directory

You can always access the Lucene directories through plain Lucene, the Directory structure is in no way differ-
ent with or without Hibernate Search. However there are some more convenient ways to access a given Direct-
ory. The SearchFactory keeps track of the DirectoryProviders per indexed class. One directory provider can
be shared amongst several indexed classes if the classes share the same underlying index directory. While usu-
ally not the case, a given entity can have several DirectoryProviders is the index is sharded (see Section 3.2,
“Index sharding”).

DirectoryProvider[] provider = searchFactory.getDirectoryProviders(Order.class);
org.apache.lucene.store.Directory directory = provider[0].getDirectory();

In this example, directory points to the lucene index storing Orders information. Note that the obtained Lucene
directory must not be closed (this is Hibernate Search responsibility).

8.3. Using an IndexReader

Queries in Lucene are executed on an IndexReader. Hibernate Search caches such index readers to maximize
performances. Your code can access such cached / shared resources. You will just have to follow some "good
citizen" rules.

DirectoryProvider orderProvider = searchFactory.getDirectoryProviders(Order.class)[0];
DirectoryProvider clientProvider = searchFactory.getDirectoryProviders(Client.class)[0];

ReaderProvider readerProvider = searchFactory.getReaderProvider();
IndexReader reader = readerProvider.openReader(orderProvider, clientProvider);

try {
//do read-only operations on the reader

}
finally {

readerProvider.closeReader(reader);
}

The ReaderProvider (described in Reader strategy), will open an IndexReader on top of the index(es) refer-
enced by the directory providers. This IndexReader being shared amongst several clients, you must adhere to
the following rules:

• Never call indexReader.close(), but always call readerProvider.closeReader(reader); (a finally block is the
best area).

Hibernate 3.0.1.GA 43

• This indexReader must not be used for modification operations (especially delete), if you want to use an
read/write index reader, open one from the Lucene Directory object.

Aside from those rules, you can use the IndexReader freely, especially to do native queries. Using the shared
IndexReaders will make most queries more efficient.

Accessing Lucene natively

Hibernate 3.0.1.GA 44

	Hibernate Search
	Table of Contents
	Preface
	Chapter 1. Getting started
	1.1. System Requirements
	1.2. Maven
	1.3. Configuration
	1.4. Indexing
	1.5. Searching
	1.6. Analyzer
	1.7. What's next

	Chapter 2. Architecture
	2.1. Overview
	2.2. Back end
	2.2.1. Lucene
	2.2.2. JMS

	2.3. Work execution
	2.3.1. Synchronous
	2.3.2. Asynchronous

	2.4. Reader strategy
	2.4.1. Shared
	2.4.2. Not-shared
	2.4.3. Custom

	Chapter 3. Configuration
	3.1. Directory configuration
	3.2. Index sharding
	3.3. Worker configuration
	3.4. JMS Master/Slave configuration
	3.4.1. Slave nodes
	3.4.2. Master node

	3.5. Reader strategy configuration
	3.6. Enabling Hibernate Search and automatic indexing
	3.6.1. Enabling Hibernate Search
	3.6.1.1. Hibernate Core 3.2.6 and beyond

	3.6.2. Automatic indexing

	3.7. Tuning Lucene indexing performance

	Chapter 4. Mapping entities to the index structure
	4.1. Mapping an entity
	4.1.1. Basic mapping
	4.1.2. Mapping properties multiple times
	4.1.3. Embedded and associated objects
	4.1.4. Boost factor
	4.1.5. Analyzer

	4.2. Property/Field Bridge
	4.2.1. Built-in bridges
	4.2.2. Custom Bridge
	4.2.2.1. StringBridge
	4.2.2.2. FieldBridge
	4.2.2.3. @ClassBridge

	Chapter 5. Querying
	5.1. Building queries
	5.1.1. Building a Lucene query
	5.1.2. Building a Hibernate Search query
	5.1.2.1. Generality
	5.1.2.2. Pagination
	5.1.2.3. Sorting
	5.1.2.4. Fetching strategy
	5.1.2.5. Projection

	5.2. Retrieving the results
	5.2.1. Performance considerations
	5.2.2. Result size
	5.2.3. ResultTransformer

	5.3. Filters
	5.4. Optimizing the query process
	5.5. Native Lucene Queries

	Chapter 6. Manual indexing
	6.1. Indexing
	6.2. Purging

	Chapter 7. Index Optimization
	7.1. Automatic optimization
	7.2. Manual optimization
	7.3. Adjusting optimization

	Chapter 8. Accessing Lucene natively
	8.1. SearchFactory
	8.2. Accessing a Lucene Directory
	8.3. Using an IndexReader

