¢ HIBERNATE

Hibernate Search

Apache Lucene Integration

Version: 3.0.1.GA

Table of Contents

(1=, =0 2SR iv

I 7= AT T [= =" 1

S = = o U] = 1.1 1 PRSPPI 1

2 V= = o 1

RS I @] o1 To U= 1o o NP TP REPRR 2

R 1 0T (= (1 o P PP PPPPPP PP 3

TS == 1 o oo R PPPPRRPP 4

LL6. ANBIYZED ..ot e e e b e s 5

Y = Sy = SRR 6

P e 1= o U PRSPPI 7

FZN I @Y= a1 SRR 7

2.2. BACK ENA ... e nnes 8

220 LUCENE .. 8

2.2.2. IMIS e e e b e e e et e e e e e nte e e e e anae e e e e nnreaeeanees 8

2.3. WOIK EXECULION ... eeeiiieiiee e e e ettt e e e e ettt e e e e e e et e e e e e e e s s st teeeeaaaeessssnteaneeeaeeseannnenees 9

2.3.1. SYNCHIONOUS ..o 9

2.3.2. ASYNCHIOMNOUSuuiiiiiiiiie e e ieeititte et e e e e s e e e e e e e e e e et e e e e e e s s s sant e b e e eeaeeesaansbraeeeaens 10

2.4, REBAEN SIIAIEJYuvveeeeeiieeie e ettt e e ettt e e ettt e e e ettt e e ekt e e e e e b e e e e e s e e e e e e nn e e e e e e e e nnreeeean 10

P S 7= = o [PPSR 10

P [0 = =T o PRSP 10

P R 11 (o] PR SPPRR 10

A Of0 g1 1o U] = 14 1o o OO PP T PPPPPOPPPRN 11

1C I IR B = ox (0] VAo 0 1 o 0 = o o 11

R 2 1 0T (== o 1 o SRR 12

3.3, WOTKEN CONFIQUIBLION ...ttt ettt e et e e s e e e e e e e e annneeeen 13

3.4. IMS Master/Slave CONFIQUIALioNeeeiiieiiiiiiiiieiie e e e e s e ree e e 14

0 I = 1Y/ o o L= SR 14

I (V== L o o L= S 15

3.5. Reader strategy CONfIQUIELIONccoiuuriieiiiiiie et e ettt e e e e e e e snbneeeean 16

3.6. Enabling Hibernate Search and automatic indexingccccvveiiieeei i 16

3.6.1. Enabling Hibernate Searchccuveviviiiii e 16

3.6.1.1. Hibernate Core 3.2.6 and beyondcccooiiiiiiiiiiie e 17

3.6.2. AULOMELIC INAEXING ...uvvviiiiiie e it e e e e e e e e e e e s st e e e e e e e e e eanneees 17

3.7. Tuning Lucene indexing PErfOrMENCEuiiiiiiiiieeiiiee et e e 17

4. Mapping entitiesto the iNdeX SLITUCLUN €coevviiiiiiiieeeeeeeeeeeeeeeeeee e 20

IV =10 o 1 o I 1= U] SRR 20

4.1.1. BASICMEPPING +eeeiutreieeiiiiteee et e e st e et e e st e e e e as e e e e s r e e e an e e e e e e e e e nanrrn e e e 20

4.1.2. Mapping propertieS MUItIPIE tIMESeevii i 21

4.1.3. Embedded and associated ODJECEScooouiiiiiiiiiiie e 22

I T 0L = o o TR 24

A.15. ANBIYZEL e e e e e e 25

R o o< 1Y/ = o I =TT o = 26

N I =W] T o o 1= SRR 26

4.2.2. CUSLOM BIIAGE ...ttt e e e e 26

4.2.2.1. SHNGBIIAGE ... e e e e e e e e e e e e e e 27

4.2.2.2. FIEIABIIAGEcooiieieeiiiiite ettt 28

4.2.2.3. @CIBSSBIIAGEeveeeeiiiiiieeaiiiiee e eeieee ettt e et e e e et e e e e e e e s snnneeeeennnaeeeeans 29

SO 101 8 V71 o OO PP PP PP PPPPPOPPPRP 31
Hibernate 3.0.1.GA ii

Hibernate Search

5.1 BUIAING QUENTES ...ttt ettt e e s e e e e a e e e e nnrreeeean 31
5.1.1. BUIlAING @LUCENE QUENYeeiiiiieeeee e ettt e ettt e e e e e st e e e e e e s e earnraeeeeeas 31

5.1.2. Building a Hibernate Search QUENYcueviiiiiiiii e 32

5.12. 1 GENENAIILY .oeveiiiiiiee e ettt et e e e e nees 32

5.1.2.2. PAQINGLION ...coiiiiiiieiiieiee sttt e st e e e e e 32

512,30 SOMLING +eeeeeeeeeee ittt e e ettt e e e e e e e e ettt e e e e e e e e e s nnbeteeeeaee e e e nnnaneneeaaeeaans 32

5.1.2.4. FELChING SIFALEOY ..vvvvereieeeiiiiiiiieiee e e e e e s e ettt et e e e e e e e s e e e e e e e s s st rraeeeeaaeeaans 32

5.1.2.5. PrOJECHION ..ceiiiiiiie ettt ettt e e et e e e e e 33

5.2 RAMEVING tNETESUILS ...oeveiiie it e e e e e s e e e e e e e s e e bbb e e e e e aaeeeans 34
5.2.1. Performance CONSIAEIatioNSeviieeeiiiiiiiiiereee e s eecitieier e e e e e s s snnteaeeeeeee s s enneerneeeeens 34

5.2.2. RESUIT SIZE ..oeeieiiiiee ettt et et e et e e et e e e e na e e e e e e e nees 34

5.2.3. RESUILTIANSIOMMIEN ...uveiiiiieee ittt e e e e et e e e e e e e r e e e e e s s st ae e e e e e e s s annssrneeeaans 35

TG T 1 =SOSR 35

5.4. OptimiZing the QUENY PrOCESSuvieiiiieeeiiiiiiiitie et e e e s s eectt e e e e e e e e s s ssaatraeeeaeeeesssnntraaaeeeaaeeaaans 37

5.5. NatiVe LUCENE QUENTEScoeeeeiiiiiiiiiieie e e e e ee ettt et e e e e s e ettt ee e e e e e s s snnteaeeeaaeeesasnsraneeeeaaeeaaans 38

O =T [N F= T o [N (T o T TR PP PPP 39
LG M 0T0 (1 o PP P PP PUPPPRPPTPPPN 39

B.2. PUIING .o, 39

A N gL 1= @]) 4] 441 T74= 11 oo SR 41
7.1. AULOMELTIC OPLIMIZBEIONeeiiiiiiiie ettt e e e e e e s e e e s e e e e e anrreeeens 41

7.2. Manual OPLIMIZALIONceiie et e e e e e e s s s e e e e e e e s e e ntbbaeeeeaaeeaans 41

7.3. AQJUSEING OPLIMIZBEIONeeeieiiiiie ettt e et e e s s e e e e r e e e e annreeeean 42

8. ACCESSING LUCENE NALIVEIY ..o e e e e e et reeeeeeas 43
8.1, SEAICHIFACIONY ..ottt et e e e e br e e an 43

8.2. Accessing aLuCeENE DIrECIONYccooeeeeee e, 43

8.3. USiNG an INAEXREAAESocciiiiiieiiie e e e e e e et eraaaeeean 43

Hibernate 3.0.1.GA

Preface

Full text search engines like Apache Lucene™ are very powerful technologies to add efficient free text search
capabilities to applications. However, they suffer several mismatches when dealing with object domain models.
Amongst other things indexes have to be kept up to date and mismatches between index structure and domain
model as well as query mismatches have to be avoided.

Hibernate Search indexes your domain model with the help of a few annotations, takes care of database/index
synchronization and brings back regular managed objects from free text queries. To achieve this Hibernate
Search is combining the power of Hibernate [http://www.hibernate.org] and Apache Lucene
[http://lucene.apache.org].

Hibernate 3.0.1.GA iv

http://www.hibernate.org
http://lucene.apache.org

Chapter 1. Getting started

Welcome to Hibernate Search! The following chapter will guide you through the initial steps required to integ-
rate Hibernate Search into an existing Hibernate enabled application. In case you are a Hibernate new timer we
recommend you start here [http://hibernate.org/152.html].

1.1. System Requirements

Table 1.1. System requirements

Java Runtime A JDK or JRE version 5 or greater. You can down-
load a Java Runtime for Windows/Linux/Solaris here
[http://java.sun.com/javase/downl oads/].

Hibernate Search hi bernate-search.jar and al the dependencies
from the i b directory of the Hibernate Search distri-
bution, especialy lucene:)

Hibernate Core This instructions have been tested against Hibernate
3.2X. Next to the main hibernate3.jar you will
need all required libariesfrom thel i b directory of the
distribution. Refer to README. t xt inthel i b directory
of the distibution to determine the minimum runtime
requirements.

Hibernate Annotations Even though Hibernate Search can be used without
Hibernate Annotations the following instructions will
use them for ease of use. The tutorial is tested against
version 3.3.x of Hibernate Annotations.

Y ou can download all dependencies from the Hibernate download site [http://www.hibernate.org/6.html]. Y ou
can aso verify the dependency versions against the Hibernate Compatibility Matrix
[http://www.hibernate.org/6.html#A3].

1.2. Maven

Instead of managing all dependencies yourself maven users have the possibility to use the JBoss maven reposit-
ory [http://repository.jboss.com/maven?2]. Just add the JBoss repository url to the repositories section of your
pom xm Or settings.xm :

<r eposi tory>
<i d>repository.jboss.org</id>
<name>JBoss Maven Repository</name>
<url >http://repository.jboss. org/ maven2</url >
<l ayout >def aul t </ | ayout >
</repository>

Then add the following dependencies to your pom.xml:

Hibernate 3.0.1.GA 1

http://hibernate.org/152.html
http://java.sun.com/javase/downloads/
http://www.hibernate.org/6.html
http://www.hibernate.org/6.html#A3
http://repository.jboss.com/maven2
http://repository.jboss.com/maven2

Getting started

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactl|d>hi bernate-search</artifactld>
<ver si on>3. 0. 0. ga</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernat e-annotati ons</artifactld>
<ver si on>3. 3. 0. ga</ ver si on>

</ dependency>

<dependency>
<gr oupl d>or g. hi ber nat e</ gr oupl d>
<artifactld>hi bernate-entitymanager</artifactld>
<versi on>3. 3. 1. ga</ ver si on>

</ dependency>

Not al three dependencies are required. hibernate-search aone contains everything needed to use Hibernate
Search. hibernate-annotationsis only needed if you use non Hibernate Search annotations like we do in the ex-
amples of thistutorial. Last but not least, hibernate-entitymanager is only required if you use Hibernate Search
in conjunction with JPA.

1.3. Configuration

Once you have downloaded and added all required dependencies to your application you have to add a few
properties to your hibernate configuration file. If you are using Hibernate directly this can be done in hi ber n-
ate. properties Or hi bernate. cfg. xm . If you are using Hibernate via JPA you can also add the properties to
per si st ence. xm . The good newsisthat for standard use most properties offer a sensible default.

Apache Lucene has a notion of Di rect ory to store the index files. Hibernate Search handles the initialization
and configuration of alLuceneDi rect ory instance viaanbi rect or yProvi der . In this tutorial we will use a sub-
class of DirectoryProvider caled FSDirect oryProvi der. This will give us the ability to physically inspect
the Lucene indexes created by Hibernate Search (eg via Luke [http://www.getopt.org/luke/]). Once you have a
working configuration you can start experimenting with other directory providers (see Section 3.1, “Directory
configuration”).

Lets assume that your application contains the Hibernate managed class exanpl e. Book and you now want to
add free text search capabilities to your application in order to search body and summary of the books con-
tained in your database.

package exmapl e. Book
@ntity
public class Book {
@d
private Integer id;
private String body;
private String sunmary;
@manyToMany private Set <Author> authors = new HashSet <Aut hor>();
@manyToOne private Author mai nAut hor
private Date publicationDate;

publ i c Book() {
}

/] standard getters/setters follow here

Hibernate 3.0.1.GA 2

http://www.getopt.org/luke/

Getting started

First you have to tell Hibernate Search which Di rect or yProvi der to use. This can be achieved by setting the
hi ber nat e. sear ch. def aul t. di rect ory_provi der property. You also have to specify the default root direct-
ory for al indexesviahi ber nat e. sear ch. def aul t . i ndexBase.

the default directory provider
hi ber nat e. search. defaul t. directory_provi der = org. hi bernate. search. store. FSDi rect oryProvi der

the default base directory for the indecies
hi ber nat e. search. defaul t. i ndexBase = /var/| ucene/i ndexes

Next you have to add three annotations to the Book class. The first annotation @ ndexed marks Book as index-
able. By design Hibernate Search needs to store an untokenized id in the index to ensure index unicity for agiv-
en entity. @ocunent | d marks the property to use for this purpose. Most if not al the time, the property is the
database primary key. Last but not least you have to index the fields you want to make searchable. In our ex-
ample these fields are body and summary. Both properties get annotated with @i el d. The property in-
dex=I ndex. TOKENI ZED Will ensure that the text will be tokenized using the default Lucene analyzer whereas
store=Store. NO ensures that the actual data will not be stored in the index. Usualy, tokenizing means
chunking a sentence into individual words (and potentially excluding common words like a, t he €tc).

These settings are sufficient for an initial test. For more details on entity mapping refer to Section 4.1,
“Mapping an entity”. In case you want to store and retrieve the indexed data in order to avoid database
roundtrips, refer to projectionsin Section 5.1.2.5, “Projection”

package exmapl e. Book

@ntity
@ ndexed
public class Book {

@d
@ocunent | d
private Integer id;

@i el d(i ndex=I ndex. TOKENI ZED, st ore=St ore. NO
private String body;

@i el d(i ndex=I ndex. TOKENI ZED, st or e=St or e. NO

private String summary;

@mnyToMany private Set<Author> authors = new HashSet <Aut hor>();
@manyToOne private Aut hor mai nAut hor;

private Date publicationDate;

public Book() ({
}

/] standard getters/setters follow here

1.4. Indexing

Hibernate Search will index every entity persisted, updated or removed through Hibernate core transparently
for the application. However, the data already present in your database needs to be indexed once to populate the
Lucene index. Once you have added the above properties and annotations it is time to trigger an initial batch in-
dex of your books. You can achieve this by adding one of the following code examples to your code (see also

Hibernate 3.0.1.GA 3

Getting started

Chapter 6, Manual indexing):

Example using Hibernate Session:

Ful | Text Sessi on ful |l Text Sessi on = Sear ch. creat eFul | Text Sessi on(sessi on);
Transaction tx = full Text Sessi on. begi nTransacti on();
Li st books = session.createQuery("from Book as book").list();
for (Book book : books) {
ful | Text Sessi on. i ndex(book);
}

tx.commt(); //index are witten at comit tine

Example using JPA:

EntityManager em = entityManager Factory. creat eEntityManager();
Ful | Text EntityManager full Text EntityManager = Search. creat eFul | Text Entit yManager (en);
Li st books = em createQuery("sel ect book from Book as book").getResul tList();
for (Book book : books) ({
full Text EntityManager.i ndex(book);
}

After executing the above code, you should be able to see a Lucene index under /
var/ | ucene/ i ndexes/ exanpl e. Book. GO ahead an inspect this index. It will help you to understand how Hi-

bernate Search works.

1.5. Searching

Now it istime to execute afirst search. The following code will prepare a query against the fields sunmmary and
body, execute it and return alist of Books:

Example using Hibernate Session:

Ful | Text Sessi on ful |l Text Sessi on = Sear ch. creat eFul | Text Sessi on(sessi on);
Transaction tx = full Text Sessi on. begi nTransacti on();

Mul ti Fi el dQueryParser parser = new Miulti Fi el dQueryParser(new String[]{"sunmary", "body"},
new St andar dAnal yzer());

Query query = parser.parse("Java rocks!");

org. hi bernate. Query hi bQuery = full Text Sessi on. creat eFul | Text Query(query, Book.class);

List result = hibQuery.list();

tx.commt();
session. cl ose();

Example using JPA:

EntityManager em = entityManager Factory. creat eEntityManager ();

Ful | Text EntityManager full Text EntityManager =
or g. hi bernat e. hi bernat e. sear ch. j pa. Search. creat eFul | Text Enti t yManager (enj;
Mul ti Fi el dQueryParser parser = new Miulti Fi el dQueryParser(new String[]{"sunmary", "body"},
new St andar dAnal yzer());
Query query = parser.parse("Java rocks!");
org. hi bernate. Query hi bQuery = full Text EntityManager. createFul | Text Query(query, Book.class);
List result = hibQuery.list();

Hibernate 3.0.1.GA 4

Getting started

1.6. Analyzer

Assume that one of your indexed book entities contains the text "Java rocks' and you want to get hits for all of

the following queries: "rock", "rocks", "rocked" and "rocking". In Lucene this can be achieved by choosing an
analyzer class which applies word stemming during the indexing process. Hibernate Search offers several ways
to configure the analyzer to use (see Section 4.1.5, “Analyzer”):

e Setting the hi ber nat e. sear ch. anal yzer property in the configuration file. The specified class will then be
the default analyzer.

e Setting the Anal yzer annotation at the entity level.
e Setting the Anal yzer annotation at thefield level.

The following example uses the entity level annotation to apply a English language analyzer which would help
you to achieve your goal. The class Engl i shAnal yzer is acustom class using the Snowball English Stemmer
from the Lucene Sandbox [http://lucene.apache.org/java/docs/|ucene-sandbox/] .

package exanpl e. Book
@ntity
@ ndexed

@\nal yzer (i npl = exanpl e. Engl i shAnal yzer. cl ass)
public class Book {

@d
@ocunent | d
private Integer id;

@i el d(i ndex=I ndex. TOKENI ZED, st or e=St or e. NO)
private String body;

@i el d(i ndex=I ndex. TOKENI ZED, st ore=Store. NO

private String summary;

@manyToMany private Set<Author> authors = new HashSet <Aut hor>();
@mnyToOne private Author mai nAut hor;

private Date publicationDate;

publ i c Book() {
}

/'l standard getters/setters follow here

public class EnglishAnal yzer extends Anal yzer {
/**
* {@nheritDoc}
*/
@verride
publ i c TokenStream tokenStream(String fiel dNane, Reader reader) {
TokenStream result = new StandardTokeni zer (reader);
resul t new StandardFilter(result);
result new Lower CaseFilter(result);
result = new Snowbal | Filter(result, nane);
return result;

Hibernate 3.0.1.GA 5

http://lucene.apache.org/java/docs/lucene-sandbox/

Getting started

1.7. What's next

The above paragraphs hopefully helped you getting started with Hibernate Search. Y ou should by now have a
file system based index and be able to search and retrieve a list of managed objects via Hibernate Search. The
next step is to get more familiar with the overall architecture ((Chapter 2, Architecture)) and explore the basic
featuresin more detail.

Two topics which where only briefly touched in this tutorial were analyzer configuration (Section 4.1.5,
“Analyzer”) and field bridges (Section 4.2, “ Property/Field Bridge"), both important features required for more
fine-grained indexing.

More advanced topics cover clustering (Section 3.4, “JMS Master/Slave configuration”) and large indexes
handling (Section 3.2, “Index sharding”).

Hibernate 3.0.1.GA 6

Chapter 2. Architecture

2.1. Overview

Hibernate Search consists of an indexing and an index search engine. Both are backed by Apache Lucene.

When an entity is inserted, updated or removed in/from the database, Hibernate Search keeps track of this event
(through the Hibernate event system) and schedules an index update. All the index updates are handled for you
without you having to use the Apache Lucene APIs (see Section 3.6, “ Enabling Hibernate Search and automatic
indexing”).

To interact with Apache Lucene indexes, Hibernate Search has the notion of Di r ect or yPr ovi der S. A directory
provider will manage a given Lucene Di rect ory type. Y ou can configure directory providers to adjust the dir-
ectory target (see Section 3.1, “Directory configuration”).

Hibernate Search can also use the Lucene index to search an entity and return a list of managed entities saving
you the tedious object to Lucene document mapping. The same persistence context is shared between Hibernate
and Hibernate Search; as a matter of fact, the Search Session is built on top of the Hibernate Session. The ap-
plication code use the unified or g. hi ber nate. Query Or j avax. persi st ence. Query APIs exactly the way a
HQL, JPA-QL or native queries would do.

To be more efficient, Hibernate Search batches the write interactions with the Lucene index. There is currently
two types of batching depending on the expected scope.

Outside a transaction, the index update operation is executed right after the actual database operation. This
scopeisreally ano scoping setup and no batching is performed.

It is however recommended, for both your database and Hibernate Search, to execute your operation in atrans-
action be it JDBC or JTA. When in a transaction, the index update operation is scheduled for the transaction
commit and discarded in case of transaction rollback. The batching scope is the transaction. There are two im-
mediate benefits:

« Performance: Lucene indexing works better when operation are executed in batch.

e ACIDity: The work executed has the same scoping as the one executed by the database transaction and is
executed if and only if the transaction is committed.

Note

Disclaimer, the work in not ACID in the strict sense of it, but ACID behavior is rarely useful for full
text search indexes since they can be rebuilt from the source at any time.

Y ou can think of those two scopes (no scope vs transactional) as the equivalent of the (infamous) autocommit
vstransactional behavior. From a performance perspective, the in transaction mode is recommended. The scop-
ing choice is made transparently: Hibernate Search detects the presence of atransaction and adjust the scoping.

Note

Hibernate Search works perfectly fine in the Hibernate / EntityManager long conversation pattern aka.
atomic conversation.

Note

Hibernate 3.0.1.GA 7

Architecture

Depending on user demand, additional scoping will be considered, the pluggability mechanism being
already in place.

2.2. Back end

Hibernate Search offers the ahility to let the scoped work being processed by different back ends. Two back
ends are provided out of the box for two different scenarios.

2.2.1. Lucene

In this mode, al index update operations applied on a given node (JVM) will be executed to the Lucene direct-
ories (through the directory providers) by the same node. This mode is typically used in non clustered environ-
ment or in clustered environments where the directory store is shared.

Hibernate
+
Hibernate Search

[~

e Search request
Index update

Luce g

Search reque%t
________________ - Index update p

Hibernate
+
Hibernate Search

e

This mode targets non clustered applications, or clustered applications where the Directory is taking care of the
locking strategy.

The main advantage is simplicity and immediate visibility of the changes in Lucene queries (a requirement is
some applications).

2.2.2. IMS

All index update operations applied on a given node are sent to a JMS queue. A unique reader will then process
the queue and update the master Lucene index. The master index is then replicated on a regular basis to the
slave copies. This is known as the master / daves pattern. The master is the sole responsible for updating the
Lucene index. The slaves can accept read as well as write operations. However, they only process the read op-
eration on their local index copy and delegate the update operations to the master.

Hibernate 3.0.1.GA 8

Architecture

Lucene
Directory

{Indle)
Copy

Search request

Hibernate R
+ 5
Hibernate Search :

Slave

|

Index update order

Hibernate

+
@ Process — | Hibernate Search
Master

Undex update arder

Lucensa
Diractory
(Indax)
Master

[

Hibernate
+ @
Hibernate Search /

Slave

Search request

Lucene
Directory -

{Inctizac) o
Copy

-

This mode targets clustered environments where throughput is critical, and index update delays are affordable.
Reliability is ensured by the IMS provider and by having the slaves working on alocal copy of the index.

Note

Hibernate Search is an extensible architecture. While not yet part of the public API, plugging a third
party back end is possible. Feel free to drop ideasto hi ber nat e-dev@i st s. j boss. org.

2.3. Work execution

The indexing work (done by the back end) can be executed synchronously with the transaction commit (or up-
date operation if out of transaction), or asynchronously.

2.3.1. Synchronous

This is the safe mode where the back end work is executed in concert with the transaction commit. Under
highly concurrent environment, this can lead to throughput limitations (due to the Apache Lucene lock mechan-

Hibernate 3.0.1.GA 9

Architecture

ism) and it can increase the system response time if the backend is significantly slower than the transactional
process and if alot of 10 operations are involved.

2.3.2. Asynchronous

This mode delegates the work done by the back end to a different thread. That way, throughput and response
time are (to a certain extend) decorrelated from the back end performance. The drawback is that a small delay
appears between the transaction commit and the index update and a small overhead is introduced to deal with
thread management.

It is recommended to use synchronous execution first and evaluate asynchronous execution if performance
problems occur and after having set up a proper benchmark (ie not a lonely cowboy hitting the system in a
completely unrealistic way).

2.4. Reader strategy

When executing a query, Hibernate Search interacts with the Apache L ucene indexes through a reader strategy.
chosing a reader strategy will depend on the profile of the application (frequent updates, read mostly, asyn-
chronous index update etc). See also Section 3.5, “Reader strategy configuration”

2.4.1. Shared

With this strategy, Hibernate Search will share the same IndexReader, for a given Lucene index, across mul-
tiple queries and threads provided that the IndexReader is still up-to-date. If the IndexReader is not up-to-date,
a new one is opened and provided. Generaly speaking, this strategy provides much better performances than
the not - shared strategy. It is especialy true if the number of updates is much lower than the reads. This
strategy is the default.

2.4.2. Not-shared

Every time a query is executed, a Lucene IndexReader is opened. This strategy is not the most efficient since
opening and warming up an IndexReader can be arelatively expensive operation.

2.4.3. Custom

You can write your own reader strategy that suits your application needs by implementing
or g. hi ber nat e. sear ch. r eader . Reader Pr ovi der . The implementation must be thread safe.

Note

Some additional strategies are planned in future versions of Hibernate Search

Hibernate 3.0.1.GA 10

Chapter 3. Configuration

3.1. Directory configuration

Apache Lucene has a notion of Di rect ory to store the index files. The Directory implementation can be cus-
tomized, but Lucene comes bundled with a file system (FSDi r ect or yPr ovi der) and ain memory (RAMDI r ect -
or yProvi der) implementation. Hibernate Search has the notion of Di r ect or yPr ovi der that handles the config-
uration and the initialization of the Lucene Directory.

Table 3.1. List of built-in Directory Providers

Class

Description

Properties

org.hibernate.search.store.FSDirect
oryProvider

org.hibernate.search.store. FSMaste
rDirectoryProvider

File system based directory. The
directory used will be
<indexBase>/< @ ndexed. nane >

File system based directory. Like
FSDirectoryProvider. It also copies
the index to a source directory (aka
copy directory) on aregular basis.

The recommended value for the re-
fresh period is (at least) 50% high-
er that the time to copy the inform-
ation (default 3600 seconds - 60
minutes).

Note that the copy is based on an
incremental copy mechanism redu-
cing the average copy time.

DirectoryProvider typically used
on the master node in a IMS back
end cluster.

DirectoryProvider typically used
on slave nodes using a JIMS back
end.

i ndexBase : Base directory

i ndexNane: override @Index.name
(useful for sharded indexes)

i ndexBase: Base directory

i ndexNane: override @Index.name
(useful for sharded indexes)

sour ceBase: Source (copy) base
directory.

source: Source directory suffix
(default to @ ndexed. nane). The
actual source directory name being
<sour ceBase>/ <sour ce>

refresh: refresh period in second
(the copy will take place every re-
fresh seconds).

org.hibernate.search.store.FSSlave
DirectoryProvider

File system based directory. Like
FSDirectoryProvider, but retrieves
a master version (source) on a reg-
ular basis. To avoid locking and in-
consistent search results, 2 local
copies are kept.

The recommended value for the re-
fresh period is (at least) 50% high-
er that the time to copy the inform-

i ndexBase: Base directory

i ndexNane: override @Index.name
(useful for sharded indexes)

sourceBase: Source (copy) base
directory.

source: Source directory suffix
(default to @ ndexed. nane). The

Hibernate 3.0.1.GA

11

Configuration

Class Description Properties

_ actual source directory name being
ation (default 3600 seconds - 60 gour ceBases/ <sour ce>

minutes).
refresh: refresh period in second

Note that the copy is based on an (the copy will take place every re-
incremental copy mechanism redu- fregh seconds).

cing the average copy time.

DirectoryProvider typicaly used
on dave nodes using a JMS back
end.

org.hibernate.search.store RAMDir Memory based directory, the dir- none
ectoryProvider ectory will be uniquely identified

(in the same deployment unit) by

the @ ndexed. nane element

If the built-in directory providers does not fit your needs, you can write your own directory provider by imple-
menting the or g. hi ber nat e. st ore. Di rect or yProvi der interface

Each indexed entity is associated to a Lucene index (an index can be shared by severa entities but this is not
usually the case). Y ou can configure the index through properties prefixed by hi ber nat e. sear ch. i ndexnane .
Default properties inherited to all indexes can be defined using the prefix hi ber nat e. sear ch. def aul t .

To define the directory provider of a given index, you use the
hi ber nat e. sear ch. i ndexnane. di rect ory_provi der

hi ber nat e. search. defaul t. di rectory_provi der org. hi bernate. search. store. FSDi r ect or yPr ovi der
hi ber nat e. search. def aul t. i ndexBase=/ usr/| ucene/ i ndexes

hi ber nat e. search. Rul es. di rectory_provi der org. hi bernate. search. st ore. RAMDI rect oryProvi der

applied on

@ ndexed(name=" St at us")
public class Status { ... }

@ ndexed(nane="Rul es")
public class Rule { ... }

will create a file system directory in /usr/ 1 ucene/ i ndexes/ St at us where the Status entities will be indexed,
and use an in memory directory named Rul es where Rule entities will be indexed.

You can easily define common rules like the directory provider and base directory, and overide those default
later on on a per index basis.

Writing your own Di r ect or yPr ovi der , you can utilize this configuration mechanism as well.

3.2. Index sharding

In some extreme cases involving huge indexes (in size), it is necessary to split (shard) the indexing data of a
given entity type into several Lucene indexes. This solution is not recommended until you reach significant in-
dex sizes and index update time are slowing down. The main drawback of index sharding is that searches will

Hibernate 3.0.1.GA 12

Configuration

end up being slower since more files have to be opend for a single search. In other words don't do it until you
have prablems :)

Despite this strong warning, Hibernate Search allows you to index a given entity type into several sub indexes.
Data is sharded into the different sub indexes thanks to an | ndexShar di ngSt r at egy. By default, no sharding
strategy is enabled, unless the number of shards is configured. To configure the number of shards use the fol-
lowing property

hi ber nat e. sear ch. <i ndexNane>. shar di ng_strat egy. nbr_of _shards 5

Thiswill use 5 different shards.

The default sharding strategy, when shards are set up, splits the data according to the hash value of the id string
representation (generated by the Field Bridge). This ensures a fairly balanced sharding. You can replace the
strategy by implementing | ndexShar di ngSt r at egy and by setting the following property

hi ber nat e. sear ch. <i ndexNanme>. shardi ng_strat egy ny.shardi ngstrategy. | npl ementation

Each shard has an independent directory provider configuration as described in Section 3.1, “Directory config-
uration”. The DirectoryProvider default name for the previous example are <i ndexNane>. 0 t0 <i ndexNane>. 4.
In other words, each shard has the name of it's owning index followed by . (dot) and itsindex number.

hi ber nat e. search. def aul t. i ndexBase /usr/| ucene/i ndexes

hi ber nat e. sear ch. Ani mal . shardi ng_strat egy. nbr_of _shards 5

hi ber nat e. search. Ani mal . di rectory_provi der org. hi bernate. search. store. FSDi r ect or yPr ovi der
hi ber nat e. sear ch. Ani mal . 0. i ndexNane Ani mal 00

hi ber nat e. sear ch. Ani mal . 3. i ndexBase /usr/| ucene/ sharded

hi ber nat e. sear ch. Ani mal . 3. i ndexNane Ani mal 03

This configuration uses the default id string hashing strategy and shards the Animal index into 5 subindexes.
All subindexes are FSDirectoryProvider instances and the directory where each subindex is stored is as fol-
lowed:

for subindex 0: /usr/lucene/indexes/Animal 00 (shared indexBase but overridden indexName)
e for subindex 1: /usr/lucene/indexes/Animal.1 (shared indexBase, default indexName)
e for subindex 2: /usr/lucene/indexes/Animal.2 (shared indexBase, default indexName)
e for subindex 3: /usr/lucene/shared/Animal 03 (overridden indexBase, overridden indexName)

e for subindex 4: /usr/lucene/indexes/Animal.4 (shared indexBase, default indexName)

3.3. Worker configuration

It is possible to refine how Hibernate Search interacts with Lucene through the worker configuration. The work
can be exected to the Lucene directory or sent to a IMS queue for later processing. When processed to the Lu-
cene directory, the work can be processed synchronously or asynchronously to the transaction commit.

Y ou can define the worker configuration using the following properties

Table 3.2. worker configuration

Hibernate 3.0.1.GA 13

Configuration

Property Description
hi ber nat e. wor ker . backend Out of the box support for the Apache Lucene back
end and the IMS back end. Default to | ucene. Sup-
portsalsoj ms.
hi ber nat e. wor ker . execut i on Supports synchronous and asynchrounous execution.

Default to sync. Supports aso async.

hi ber nat e. wor ker . t hr ead_pool . si ze Defines the number of threads in the pool. useful only
for asynchrounous execution. Default to 1.

hi ber nat e. wor ker . buf f er _queue. max Defines the maximal number of work queue if the
thread poll is starved. Useful only for asynchrounous
execution. Default to infinite. If the limit is reached,
the work is done by the main thread.

hi ber nat e. wor ker. j ndi . * Defines the INDI properties to initiate the InitialCon-
text (if needed). JNDI is only used by the IMS back
end.
hi ber nat e. wor ker . j ms. connection_factory Mandatory for the IMS back end. Defines the JNDI

name to lookup the JMS connection factory from
(j ava: / Connecti onFact ory by default in JBoss AS)

hi ber nat e. wor ker . j ms. queue Mandatory for the IMS back end. Defines the JNDI
name to lookup the IMS queue from. The queue will
be used to post work messages.

hi ber nat e. wor ker . bat ch_si ze Defines the maximum number of e ements indexed

before flushing the transaction-bound queue. Default
to 0 (ie no limit). See Chapter 6, Manual indexing for
more information.

3.4. IMS Master/Slave configuration

This section describes in greater detail how to configure the Master / Slaves Hibernate Search architecture.

3.4.1. Slave nodes

Every index update operation is sent to a JMS queue. Index quering operations are executed on a local index
copy.

sl ave configuration

DirectoryProvider

(renpote) naster location

hi ber nat e. sear ch. def aul t. sour ceBase = / mt/ mast er vol une/ | ucenedi r s/ mast er copy

| ocal copy |ocation
hi ber nat e. search. defaul t. i ndexBase = /Users/prod/|l ucenedirs

refresh every half hour
hi ber nat e. search. default.refresh = 1800

appropriate directory provider
hi ber nat e. search. defaul t. directory_provi der = org. hi bernate. search. store. FSSI aveDi r ect or yProvi der

Hibernate 3.0.1.GA 14

Configuration

Backend configuration

hi ber nat e. sear ch. wor ker . backend = j ns

hi ber nat e. sear ch. wor ker . j ms. connection_factory = java:/Connecti onFactory

hi ber nat e. search. worker . j ms. queue = queue/ hi ber nat esearch

#optional jndi configuration (check your JMS provider for nore information)

Optional asynchronous execution strategy
org. hi ber nat e. wor ker. executi on = async
org. hi bernate. worker.thread_pool . si ze
org. hi bernat e. wor ker . buf f er _queue. max

2
50

A file system local copy is recommended for faster search results.

The refresh period should be higher that the expected time copy.

3.4.2. Master node

Every index update operation is taken from a JM S gqueue and executed. The master index(es) is(are) copied on
aregular basis.

master configuration

DirectoryProvider
(renote) naster |ocation where information is copied to
hi ber nat e. search. def aul t. sour ceBase = / mt/ mast ervol ume/ | ucenedi r s/ mast er copy

|l ocal master location
hi ber nat e. search. defaul t. i ndexBase = /Users/prod/|l ucenedirs

refresh every half hour
hi ber nat e. search. default.refresh = 1800

appropriate directory provider
hi ber nat e. search. defaul t.directory_provi der = org. hi bernate. search. store. FSVast erDi rect oryPr ovi der

Backend confi guration
#Backend is the default |ucene one

The refresh period should be higher that the expected time copy.

In addition to the Hibernate Search framework configuration, a Message Driven Bean should be written and set
up to process index works gqueue through IMS.

@kessageDri ven(activationConfig = {
@\ct i vati onConfi gProperty(propertyName="desti nati onType", propertyVal ue="javax.jnms. Queue"),
@A\ct i vati onConfi gProperty(propertyNanme="desti nation", propertyVal ue="queue/ hi ebrnatesearch"),
@Act i vati onConf i gProperty(propertyNanme="DLQVaxResent", propertyVal ue="1")
1)
public class MDBSearchControl |l er extends Abstract JVMSH ber nat eSearchControl |l er inpl enents Messageli st el
@Per si st enceCont ext EntityManager em

/I method retrieving the appropriate session
protected Session getSession() {

return (Session) em getDel egate();
}

//potentially close the session opened in #getSession(), not needed here
protected void cl eanSessi onl f Needed(Sessi on sessi on)

}

This example inherit the abstract JIMS controller class available and implements a JavaEE 5 MDB. Thisimple-

Hibernate 3.0.1.GA 15

Configuration

mentation is given as an example and, while most likely more complex, can be adjusted to make use of non
Java EE Message Driven Beans. For more information about the get Sessi on() and cl eanSessi onl f Needed() ,
please check Abst r act IMSHi ber nat eSear chCont r ol | er 'Sjavadoc.

Note

Hibernate Search test suite makes use of JBoss Embedded to test the IMS integration. It allows the unit
test to run both the MDB container and JBoss Messaging (JMS provider) in a standalone way
(marketed by some as "lightweight™).

3.5. Reader strategy configuration

The different reader strategies are described in Reader strategy. The default reader strategy is shar ed. This can
be adjusted:

hi ber nat e. search. reader. strategy = not-shared

Adding this property switch to the non shar ed strategy.
Or if you have a custom reader strategy:

hi ber nat e. search. reader. strategy = ny. corp. nyapp. Cust onReader Provi der

where ny. cor p. nyapp. Cust onReader Provi der 1S the custom strategy implementation

3.6. Enabling Hibernate Search and automatic indexing

3.6.1. Enabling Hibernate Search

Hibernate Search is enabled out of the box when using Hibernate Annotations or Hibernate EntityManager. If,
for some reason you need to disable it, set hi ber nat e. sear ch. aut oregi ster_l i steners to false. Note that
there is no performance runtime when the listeners are enabled while no entity isindexable.

To enable Hibernate Search in Hibernate Core, add the Ful | Text I ndexEvent Li st ener for the three Hibernate
events that occur after changes are executed to the database. Once again, such a configuration is not useful with
Hibernate Annotations or Hibernate EntityManager.

<hi ber nat e- confi gurati on>
<sessi on-factory>

<event type="post-update"/>
<listener class="org.hi bernate.search. event. Ful | Text| ndexEvent Li stener"/>
</ event >
<event type="post-insert"/>
<listener class="org. hibernate.search. event. Ful | Text | ndexEvent Li st ener"/ >
</ event >
<event type="post-delete"/>
<l istener class="org.hibernate.search. event. Ful | Text| ndexEvent Li st ener"/>
</ event >
</ sessi on-factory>
</ hi ber nat e- conf i gur ati on>

Be sure to add the appropriate jar files in your classpath. Check Ii b/ READVE. TXT for the list of third party lib-

Hibernate 3.0.1.GA 16

Configuration

raries. A typical installation on top of Hibernate Annotations will add:

e hibernate-search.jar: the coreengine

e lucene-core-*.jar:Lucenecoreengine

3.6.1.1. Hibernate Core 3.2.6 and beyond

If you use Hibernate Core 3.2.6 and beyond, make sure to add three additional event listeners that cope with
collection events

<hi ber nat e- confi gurati on>
<sessi on-factory>

<event type="post-collection-recreate"/>
<l istener class="org.hibernate.search. event. Ful | Text| ndexCol | ecti onEvent Li stener"/>
</ event >
<event type="post-collection-renmove"/>
<listener class="org. hibernate.search. event. Ful | Text | ndexCol | ecti onEventLi stener"/>
</ event >
<event type="post-collection-update"/>
<l istener class="org. hibernate.search. event. Ful | Text| ndexCol | ecti onEventLi stener"/>
</ event >
</ sessi on-factory>
</ hi ber nat e- conf i gurati on>

Those additional event listeners have been introduced in Hibernate 3.2.6. note the Ful | Text | ndexCol | ec-
ti onEvent Li st ener usage. Y ou need to explicitly reference those event listeners unless you use Hibernate An-
notations 3.3.1 and above.

3.6.2. Automatic indexing

By default, every time an object isinserted, updated or deleted through Hibernate, Hibernate Search updates the
according Lucene index. It is sometimes desirable to disable that features if either your index is read-only or if
index updates are done in abatch way (see Chapter 6, Manual indexing).

To disable event based indexing, set

hi ber nat e. search. i ndexi ng_strat egy nmanual

Note

In most case, the IMS backend provides the best of both world, a lightweight event based system keeps
track of all changes in the system, and the heavyweight indexing process is done by a separate process
or machine.

3.7. Tuning Lucene indexing performance

Hibernate Search alows you to tune the L ucene indexing performance by specifying a set of parameters which
are passed through to underlying Lucene | ndexW i t er such as ner geFact or, maxMer geDocs and maxBuf f er ed-
Docs. You can specify these parameters either as default values applying for all indexes or on a per index basis.

There are two sets of parameters alowing for different performance settings depending on the use case. During
indexing operations triggered by database modifications, the following ones are used:

Hibernate 3.0.1.GA 17

Configuration

* hibernate.search. [defaul t|<indexname>].transaction
* hibernate.search. [defaul t]|<i ndexnane>].transaction

* hibernate.search. [defaul t|<indexname>].transaction

. merge_factor

. max_nmer ge_docs

. max_buf f ered_docs

When indexing occurs via Ful | Text Sessi on. i ndex() (see Chapter 6, Manual indexing), the following proper-

ties are used:

* hibernate. search. [defaul t|<i ndexnane>]. bat ch. nerge_f act or

* hibernate.search. [defaul t|<indexname>]. bat ch. nax_ner ge_docs

* hibernate.search. [defaul t|<i ndexnane>] . bat ch. max_buf f ered_docs

Unless the corresponding . bat ch property isexplicitly set, the value will default to the . t ransact i on property.

For more information about L ucene indexing performances, please refer to the Lucene documentation.

Table 3.3. List of indexing performance properties

Property

hi ber n-
at e. search. [def aul t| <i ndexnam
e>].transaction. nerge_factor

hi ber n-

at e. search. [def aul t | <i ndexnam
e>] . transacti on. max_mner ge_doc
s

Description

Controls segment merge frequency
and size.

Determines how often segment in-
dices are merged when insertion
occurs. With smaller values, less
RAM is used while indexing, and
searches on unoptimized indices
are faster, but indexing speed is
dower. With larger values, more
RAM is used during indexing, and
while searches on unoptimized in-
dices are dower, indexing is faster.
Thus larger values (> 10) are best
for batch index creation, and smal-
ler values (< 10) for indices that
are interactively maintained. The
value must no be lower than 2.

Used by Hibernate Search during
index update operations as part of
database modifications.

Defines the largest number of doc-
uments allowed in a segment.

Used by Hibernate Search during
index update operations as part of
database modifications.

Default Value
10

Unlimited
(Integer. MAX_VALUE)

Hibernate 3.0.1.GA

18

Configuration

Property

hi ber n-

at e. search. [def aul t| <i ndexnam
e>].transaction. max_buffered_
docs

hi ber n-
at e. search. [def aul t| <i ndexnam
e>] . batch. merge_factor

Description

Controls the amount of documents
buffered in memory during index-
ing. The bigger the more RAM is
consumed.

Used by Hibernate Search during
index update operations as part of
database modifications.

Controls segment merge frequency
and size.

Determines how often segment in-
dices are merged when insertion
occurs. With smaller values, less
RAM is used while indexing, and
searches on unoptimized indices
are faster, but indexing speed is
dower. With larger values, more
RAM is used during indexing, and
while searches on unoptimized in-
dices are dower, indexing is faster.
Thus larger values (> 10) are best
for batch index creation, and smal-
ler values (< 10) for indices that
are interactively maintained. The
value must no be lower than 2.

Used during indexing via Ful | -
Text Sessi on. i ndex()

Default Value
10

10

hi ber n-
at e. search. [def aul t| <i ndexnam
e>] . bat ch. max_ner ge_docs

hi ber n-
at e. search. [def aul t| <i ndexnam
e>] . bat ch. max_buf f er ed_docs

Defines the largest number of doc-
uments allowed in a segment.

Used during indexing via Ful | -
Text Sessi on. i ndex()

Controls the amount of documents
buffered in memory during index-
ing. The bigger the more RAM is
consumed.

Used during indexing via Ful | -
Text Sessi on. i ndex()

Unlimited
(Integer. MAX_VALUE)

10

Hibernate 3.0.1.GA

19

Chapter 4. Mapping entities to the index structure

All the metadata information needed to index entities is described through some Java annotations. There is no
need for xml mapping files nor alist of indexed entities. The list is discovered at startup time scanning the Hi-
bernate mapped entities.

4.1. Mapping an entity

4.1.1. Basic mapping

First, we must declare a persistent class as indexable. This is done by annotating the class with @ ndexed (al
entities not annotated with @ ndexed will be ignored by the indexing process):

@ntity
@ ndexed(i ndex="i ndexes/ essays")
public class Essay {

}

Thei ndex attribute tells Hibernate what the Lucene directory name is (usually a directory on your file system).
If you wish to define a base directory for al Lucene indexes, you can use the hibern-
ate. search. defaul t. i ndexBase property in your configuration file. Each entity instance will be represented
by aLucene Docurrent inside the given index (aka Directory).

For each property (or attribute) of your entity, you have the ability to describe how it will be indexed. The de-
fault (ie no annotation) means that the property is completly ignored by the indexing process. @i el d does de-
clare a property as indexed. When indexing an element to a Lucene document you can specify how it isin-
dexed:

« nane : describe under which name, the property should be stored in the Lucene Document. The default
value is the property name (following the JavaBeans convention)

e store : describe whether or not the property is stored in the Lucene index. You can store the value
St or e. YES (comsuming more space in the index but allowing projection, see Section 5.1.2.5, “Projection”
for more information), store it in a compressed way St or e. COMPRESS (this does consume more CPU), or
avoid any storage st or e. NO (this is the default value). When a property is stored, you can retrieve it from
the Lucene Document (note that thisis not related to whether the element isindexed or not).

¢ index: describe how the element is indexed (ie the process used to index the property and the type of in-
formation store). The different values are 1 ndex. NO (no indexing, ie cannot be found by a query), I n-
dex. TOKENI ZED (use an analyzer to process the property), | ndex. UN_ TOKENI SED (no analyzer pre pro-
cessing), | ndex. NO_NORM (do not store the normalization data). The default value is TOKENI ZED.

These attributes are part of the @i el d annotation.

Whether or not you want to store the data depends on how you wish to use the index query result. For aregular
Hibernate Search usage, storing is not necessary. However you might want to store some fields to subsequently
project them (see Section 5.1.2.5, “ Projection” for more information).

Whether or not you want to tokenize a property depends on whether you wish to search the element asis, or by
the words it contains. It make sense to tokenize a text field, but it does not to do it for a date field (or an id

Hibernate 3.0.1.GA 20

Mapping entities to the index structure

field). Note that fields used for sorting must not be tokenized.

Finally, the id property of an entity is a special property used by Hibernate Search to ensure index unicity of a
given entity. By design, an id has to be stored and must not be tokenized. To mark a property as index id, use
the @ocument | d annotation.

@ntity
@ ndexed(i ndex="i ndexes/ essays")
public class Essay {

@d
@ocumnent | d
public Long getld() { returnid; }

@i el d(name="Abstract", index=lndex. TOKENI ZED, st ore=Store. YES)
public String getSummary() { return sunmary; }

@ob
@i el d(i ndex=I ndex. TOKENI ZED)
public String getText() { return text; }

}

These annotations define an index with three fields: i d , Abstract and text . Note that by default the field
name is decapitalized, following the JavaBean specification.

Note

Y ou must specify @ocument | d on the identifier property of your entity class.

4.1.2. Mapping properties multiple times

It is sometimes needed to map a property multiple times per index, with slightly different indexing strategies.
Especially, sorting aquery by field requires the field to be UN_TOKENI ZED. If one want to search by wordsin this
property and still sort it, one need to index it twice, once tokenized, once untokenized. @Fields alows to
achieve thisgoal.

@ntity
@ ndexed(i ndex = "Book")
public class Book {

@ields({
@i el d(i ndex = | ndex. TOKEN ZED),
@i el d(name = "summary_forSort", index = |Index. UN_TOKENI ZED, store = Store. YES)
1)

public String get Summary() {
return sunmary;
}

}

The field summary is indexed twice, once as summary in a tokenized way, and once as sunmary_f or Sort in an
untokenized way. @Field supports 2 attributes useful when @Fieldsis used:

e anayzer: defines a @Analyzer annotation per field rather than per property
* bridge: defines a @FieldBridge annotation per field rather than per property

See below for more information about analyzers and field bridges.

Hibernate 3.0.1.GA 21

Mapping entities to the index structure

4.1.3. Embedded and associated objects

Associated objects as well as embedded objects can be indexed as part of the root entity index. It is necessary if
you expect to search a given entity based on properties of the associated object(s). In the following example,
the use case is to return the places whose city is Atlanta (In the Lucene query parser language, it would trans-
late into addr ess. ci ty: Atl ant a).

@ntity

@ ndexed

public class Place {
@d
@zener at edVal ue
@ocunent | d
private Long id;

@i el d(index = | ndex. TOKENI ZED)
private String nane;

@neToOne(cascade = { CascadeType. PERS| ST, CascadeType. REMOVE })
@ ndexedEnbedded
private Address address;

}

@ntity

@ ndexed

public class Address {
@d
@zener at edVal ue
@ocunent | d

private Long id;

@i el d(i ndex=I ndex. TOKENI ZED)
private String street;

@i el d(i ndex=I ndex. TOKENI ZED)
private String city;

@ont ai nedl n
@neToMany(mappedBy="addr ess")
private Set<Pl ace> pl aces;

In this example, the place fields will be indexed in the Pl ace index. The Pl ace index documents will aso con-
tain the fields address. i d, addr ess. street, and addr ess. ci ty which you will be able to query. Thisis en-
abled by the @ ndexedEnbedded annotation.

Be careful. Because the data is denormalized in the Lucene index when using the @ ndexedEnbedded technique,
Hibernate Search needs to be aware of any change in the Place object and any change in the Address object to
keep the index up to date. To make sure the Place Lucene document is updated when it's Address changes, you
need to mark the other side of the birirectional relationship with @ont ai nedi n.

@ont ai nedl n isonly useful on associations pointing to entities as opposed to embedded (collection of) objects.
Let's make our example a bit more complex:

@ntity

@ ndexed

public class Place {
@d
@zener at edVal ue
@ocunent | d
private Long id;

Hibernate 3.0.1.GA 22

Mapping entities to the index structure

@i el d(index = I ndex. TOKENI ZED)
private String nane;

@neToOne(cascade = { CascadeType. PERSI ST, CascadeType. REMOVE })

@ ndexedEnbedded
private Address address;

}

@ntity

@ ndexed

public class Address {
@d
@zener at edVal ue
@ocunent | d

private Long id;

@i el d(i ndex=I ndex. TOKENI ZED)
private String street;

@i el d(i ndex=I ndex. TOKENI ZED)
private String city;

@ ndexedEnbedded(depth = 1, prefix = "ownedBy_")
private Owmner ownedBy;

@cont ai nedl n
@neToMany(mappedBy="addr ess")
private Set <Pl ace> pl aces;

}

@nbeddabl e

public class Oaner {
@i el d(i ndex = | ndex. TOKENI ZED)
private String nane;

Any @ Toone and @nbedded attribute can be annotated with @ ndexedEnbedded. The attributes of the associ-
ated class will then be added to the main entity index. In the previous example, the index will contain the fol-
lowing fields

e id

* name

* address.street

* address.city

e addess.ownedBy name

The default prefix is propertyNane. , following the traditional object navigation convention. Y ou can override
it using the pref i x attribute asit is shown on the ownedBy property.

dept h is necessary when the object graph contains a cyclic dependency of classes (not instances). For example,
if omner pointsto Pl ace. Hibernate Search will stop including Indexed embedded atttributes after reaching the
expected depth (or the object graph boundaries are reached). A class having a self reference is an example of
cyclic dependency. In our example, because dept h is set to 1, any @ ndexedEnbedded attribute in Owner (if
any) will beignored.

Hibernate 3.0.1.GA 23

Mapping entities to the index structure

Such afeature (@ ndexedEnbedded) is very useful to express queries refering to associated objects, such as:

¢ Return places where name contains JBoss and where address city is Atlanta. In Lucene query thiswould be

+nane: j boss +address.city:atlanta

» Return places where name contains JBoss and where owner's name contain Joe. In Lucene query this would
be

+namne: j boss +address. order By_nane: j oe

In away it mimics the relational join operation in a more efficient way (at the cost of data duplication). Re-
member that, out of the box, Lucene indexes have no notion of association, the join operation is simply non-
existent. It might help to keep the relational model normalzed while benefiting from the full text index speed
and feature richness.

Note
An associated object can itself be (but don't have to) @ ndexed

When @I ndexedEmbedded points to an entity, the association has to be directional and the other side has to be
annotated @ont ai nedl n (as see in the previous example). If not, Hibernate Search has no way to update the
root index when the associated entity is updated (in ou example, a Pl ace index document has to be updated
when the associated Addr ess instance is updated.

Sometimes, the object type annotated by @ ndexedEnbedded is not the object type targeted by Hibernate and
Hibernate Search especially when interface are used in lieu of their implementation. Y ou can override the ob-
ject type targeted by Hibernate Search using thet ar get El enent parameter.

@ntity

@ ndexed

public class Address {
@d
@zener at edVal ue
@ocunent | d

private Long id;

@i el d(i ndex= | ndex. TOKENI ZED)
private String street;

@ ndexedEnbedded(depth = 1, prefix = "ownedBy_", targetEl enent = Oaner. cl ass)

@rar get (Omner. cl ass)
private Person ownedBy;

}

@nbeddabl e
public class Oaer inplenents Person { ... }

4.1.4. Boost factor

Lucene has the notion of boost factor . It's a way to give more weigth to afield or to an indexed element over
an other during the indexation process. Y ou can use @oost at thefield or the class level.

@ntity

Hibernate 3.0.1.GA 24

Mapping entities to the index structure

@ ndexed(i ndex="i ndexes/ essays")
@oost (2)
public class Essay {

@d
@ocunent | d
public Long getld() { returnid; }

@i el d(name="Abstract", index=lndex. TOKENI ZED, st ore=Store. YES)
@Boost (2. 5f)
public String getSummary() { return sunmary; }

@.ob
@i el d(i ndex=I ndex. TOKENI ZED)
public String getText() { return text; }

In our example, Essay's probability to reach the top of the search list will be multiplied by 2 and the summary
field will be 2.5 more important than the test field. Note that this explaination is actually wrong, but it is simple
and close enought to the reality. Please check the Lucene documentation or the excellent Lucene In Action from
Otis Gospodnetic and Erik Hatcher.

4.1.5. Analyzer

The default analyzer class used to index the elements is configurable through the hi ber nat e. sear ch. anal yzer
property. If none is defined, or g. apache. | ucene. anal ysi s. st andar d. St andar dAnal yzer is used as the de-
fault.

Y ou can also define the analyzer class per entity, per property and even per @Field (useful when multiple fields
areindexed from asingle property).

@ntity
@ ndexed
@\nal yzer (i npl = EntityAnal yzer. cl ass)
public class MyEntity {
@d
@=ener at edVal ue
@ocunent | d
private Integer id;

@i el d(i ndex = | ndex. TOKENI ZED)
private String nane;

@i el d(i ndex = | ndex. TOKENI ZED)
@\nal yzer (i npl = PropertyAnal yzer. cl ass)
private String sunmary;

@i el d(i ndex = | ndex. TOKENI ZED, anal yzer = @nal yzer (i npl = Fi el dAnal yzer. cl ass)
private String body;

In thisexample, Entit yAnal yzer isused index all tokenized properties (eg. nane), except for summar y and body
which are indexed with Pr oper t yAnal yzer and Fi el dAnal yzer respectively.

Caution

Mixing different analyzers in the same entity is most of the time a bad practice. It makes query building
more complex and results less predictable (for the novice), especialy if you are using a QueryParser

Hibernate 3.0.1.GA 25

Mapping entities to the index structure

(which uses the same analyzer for the whole query). As athumb rule, the same analyzer should be used
for both the indexing and the query for a given field.

4.2. Property/Field Bridge

In Lucene al index fields have to be represented as Strings. For this reason all entity properties annotated with
@i el d have to be indexed in a String form. For most of your properties, Hibernate Search does the trandation
job for you thanks to a built-in set of bridges. In some cases, though you need a more fine grain control over the
trand ation process.

4.2.1. Built-in bridges

Hi ber nat e Sear ch comes bundled with a set of built-in bridges between a Java property type and its full text
representation.

null
null elements are not indexed. Lucene does not support null elements and this does not make much sense
either.

javalang.String
String areindexed asis

short, Short, integer, Integer, long, Long, float, Float, double, Double, Biglnteger, BigDecimal
Numbers are converted in their String representation. Note that numbers cannot be compared by Lucene (ie
used in ranged queries) out of the box: they have to be padded 1

java.util.Date
Dates are stored as yyyyMMddHHMMSSSSS in GMT time (200611072203012 for Nov 7th of 2006
4:03PM and 12ms EST). You shouldn't really bother with the internal format. What is important is that
when using a DateRange Query, you should know that the dates have to be expressed in GMT time.

Usually, storing the date up to the milisecond is not necessary. @at eBri dge defines the appropriate resolu-
tion you are willing to store in the index (@at eBri dge(r esol uti on=Resol uti on. DAY)). The date pattern will then
be truncated accordingly.

@ntity

@ ndexed

public class Meeting {
@i el d(i ndex=I ndex. UN_TCOKENI ZED)
@pat eBri dge(resol uti on=Resol uti on. M NUTE)
private Date date;

Warning

A Date whose resolution is lower than M LLI SECOND cannot be a @ocunent | d

4.2.2. Custom Bridge

lus ng a Range query is debatable and has drawbacks, an alternative approach is to use a Filter query which will filter the result query to
the appropriate range.

Hibernate Search will support a padding mechanism

Hibernate 3.0.1.GA 26

Mapping entities to the index structure

It can happen that the built-in bridges of Hibernate Search do not cover some of your property types, or that the
String representation used is not what you expect. The following paragraphs sveral solutions for this problem.

4.2.2.1. StringBridge

The simpliest custom solution is to give Hibernate Search ™ an implementation of your expected object to
String bridge. To do so you need to implementsthe or g. hi ber nat e. sear ch. bri dge. Stri ngBri dge interface

/**

* Paddi ng | nteger bridge.

* ALl nunmbers will be padded with O to match 5 digits

*

* @ut hor Emmanuel Bernard

*/

public class Paddedl ntegerBridge inplenents StringBridge {

private int PADDI NG = 5;

public String objectToString(Cbject object) {
String rawi nteger = ((Integer) object).toString();
if (rawl nteger.length() > PADD NG
throw new |11 egal Argunment Exception("Try to pad on a nunber too big");
StringBui |l der paddedl nteger = new StringBuilder();
for (int padlndex = rawl nteger.|length() ; padlndex < PADDI NG ; padl ndex++) {
paddedI nt eger . append(' 0');

}
return paddedl nt eger. append(rawl nteger).toString();

Then any property or field can use this bridge thanks to the @i el dBri dge annotation

@i el dBri dge(i npl = Paddedl nt eger Bri dge. cl ass)
private |Integer |ength;

Parameters can be passed to the Bridge implementation making it more flexible. The Bridge implementation
implements a Par anet eri zedBri dge interface, and the parameters are passed through the @i el dBri dge an-
notation.

public class Paddedl ntegerBridge inplenents StringBridge, ParaneterizedBridge {

public static String PADD NG PROPERTY = "paddi ng";
private int padding = 5; //default

public void setParaneterVal ues(Map paraneters) {
bj ect paddi ng = paraneters. get(PADD NG PROPERTY);
if (padding != null) this.padding = (Integer) padding;
}

public String objectToString(Cbject object) {
String rawvinteger = ((I nteger) object).toString();
if (rawl nteger.|length() > paddi ng)
throw new |11 egal Argunment Exception("Try to pad on a nunber too big");
StringBui |l der paddedl nteger = new StringBuilder();
for (int padlndex = rawl nteger.length() ; padlndex < padding ; padlndex++) {
paddedl nt eger . append(' 0');

}
return paddedl nt eger. append(rawi nteger).toString();

/| property
@i el dBri dge(i npl = Paddedl nt eger Bri dge. cl ass,
parans = @par anet er (name="paddi ng", val ue="10")

Hibernate 3.0.1.GA 27

Mapping entities to the index structure

private |nteger |ength;

The Par anet eri zedBri dge interface can be implemented by St ringBri dge , TwoVayStri ngBri dge , Fi el d-
Bri dge implementations (see bellow).

If you expect to use your bridge implementation on for an id property (ie annotated with @ocunent 1d), you
need to use a dlightly extended version of StringBridge named TwoWayStri ngBri dge . Hi bernate Search
needs to read the string representation of the identifier and generate the object out of it. There is not difference
in the way the @i el dBri dge annotation is used.

public class Paddedl nt egerBri dge i npl ements TwoWayStri ngBri dge, ParaneterizedBridge {

public static String PADD NG PROPERTY = "paddi ng";
private int padding = 5; //default

public voi d setParaneterVal ues(Map paraneters) {
(bj ect paddi ng = paraneters. get(PADD NG _PROPERTY);
if (padding != null) this.padding = (Integer) padding;
}

public String objectToString(Cbject object) {

String rawinteger = ((I nteger) object).toString();

if (rawinteger.length() > padding)
throw new |11 egal Argunment Exception("Try to pad on a nunber too big");

StringBui |l der paddedl nteger = new StringBuilder();

for (int padlndex = rawi nteger.length() ; padlndex < padding ; padlndex++) {
paddedI nt eger . append(' 0');

}

return paddedl nt eger. append(rawi nteger).toString();
}

public Object stringToObject(String stringValue) {
return new I nteger(stringVal ue);

}

/1id property
@ocunent 1 d
@i el dBri dge(i npl = Paddedl nt eger Bri dge. cl ass,
paranms = @rar anet er (name="paddi ng", val ue="10")
private Integer id;

It is critically important for the two-way process to be idempotent (ie object = stringToObject(objectToString(
object))).

4.2.2.2. FieldBridge

Some usecase requires more than a simple object to string translation when mapping a property to aLucene in-
dex. To give you most of the flexibility you can also implement a bridge as aFi el deri dge . Thisinterface give
you a property value and let you map it the way you want in your Lucene Docurent .Thisinterfaceis very sim-
ilar in its concept to the Hibernate™ User Type .

Y ou can for example store a given property in two different document fields

/**
* Store the date in 3 different field year, nmonth, day

* to ease Range Query per year, nonth or day
* (eg get all the elenents of decenmber for the last 5 years)

@wut hor Emmanuel Bernard
/

* X *

Hibernate 3.0.1.GA 28

Mapping entities to the index structure

public class Dat

eSplitBridge inplenments FieldBridge {

private final static Ti meZone GMI = Ti neZone. get Ti neZone(" GMI") ;

public void set(String name, Object value, Docunment docunent, Field. Store
store, Field.lndex index, Float boost) {
Date date = (Date) val ue;
Cal endar cal = GregorianCal endar. getlnstance(GMI);
cal.setTine(date);
int year = cal.get(Cal endar. YEAR);
int nmonth = cal.get(Calendar. MONTH) + 1
int day = cal.get(Cal endar. DAY_OF_MONTH);
/] set year
Field field = new Field(name + ".year", String.valueO (year), store, index);
if (boost !'=null) field. setBoost(boost);
docunent . add(field);
/lset month and pad it if needed
field = new Field(name + ".nmonth", nmonth < 10 ? "0" : "" + String.val ueX (nonth),
if (boost !'=null) field. setBoost(boost);
docunent . add(field);
//set day and pad it if needed
field = new Field(nane + ".day", day < 10 ? "0" : "" + String.valueO(day), store,
if (boost !=null) field.setBoost(boost);
docunent .. add(field);

/| property

@i el dBri dge(inpl = DateSplitBridge.class)

private |nteger

| engt h;

4.2.2.3. @ClassBridge

store, inde

i ndex);

It is sometimes useful to combine more than one property of a given entity and index this combination in a spe-
cific way into the Lucene index. The @ assBri dge and @ assBri dges annotations can be defined at the class
level (as opposed to the property level). In this case the custom field bridge implementation receives the entity
instance as the value parameter instead of a particular property.

@ntity
@ ndexed

@ assBri dge(name="br anchnet wor k",
i ndex=l ndex. TOKENI ZED,
store=Store. YES
i npl = Cat Fi el dsC assBri dge. cl ass,

par

ams = @araneter(name="sepChar", value=" "))

public class Departnent {

private int
private Stri
private Stri
private Stri

id;

ng network;

ng branchHead;
ng branch;

private |nteger maxEnpl oyees;

}
public class Cat
private Stri

public void

Fi el dsC assBridge inplenments Fiel dBri dge, ParaneterizedBridge {

ng sepChar;

set Par anet er Val ues(Map paraneters) {

this.sepChar = (String) paraneters.get("sepChar");

}

public void

set (String name,

bj ect value, //the departnent instance (entity) in this case

Docunent docunent, //the Lucene docunent
Field. Store store, Field.Index index, Float boost) {

Hibernate 3.0.1.GA

29

Mapping entities to the index structure

/1 In this particular class the nanme of the new field was passed
/1 fromthe name field of the O assBridge Annotation. This is not
/1l arequirement. It just works that way in this instance. The
/1 actual name could be supplied by hard coding it bel ow.
Departnment dep = (Departnent) val ue;
String fieldValuel = dep. getBranch();
if (fieldvaluel == null) {

fieldvaluel = "";
}

String fieldValue2 = dep. get Net work();

if (fieldvalue2 == null) {
fieldvalue2 = "";

}

String fieldValue = fieldValuel + sepChar + fiel dval ue2;
Field field = new Field(nanme, fieldValue, store, index);
if (boost !=null) field.setBoost(boost);

docunent . add(field);

In this example, the particular Cat Fi el dsd assBri dge is applied to the depar t ment instance, the field bridge
then concatenate both branch and network and index the concatenation.

Hibernate 3.0.1.GA 30

Chapter 5. Querying

The second most important capability of Hibernate Search is the ability to execute a Lucene query and retrieve
entities managed by an Hibernate session, providing the power of Lucene without living the Hibernate
paradigm, and giving another dimension to the Hibernate classic search mechanisms (HQL, Criteria query, nat-

ive SQL query).

To access the Hibernate Search™ querying facilities, you have to use an Hibernate Ful | Text Session . A
Search Session wraps aregular or g. hi ber nat e. Sessi on to provide query and indexing capabilities.

Sessi on sessi on = sessi onFact ory. openSessi on();

Ful | Text Sessi on ful | Text Sessi on = Search. creat eFul | Text Sessi on(sessi on);

The search facility is built on native Lucene queries.

or g. apache. | ucene. quer yPar ser. QueryPar ser parser = new QueryParser("title", new StopAnalyzer());
org. apache. | ucene. search. Query | uceneQuery = parser.parse("summary: Festina O brand: Sei ko");

org. hi bernate. Query full Text Query = ful |l Text Sessi on. creat eFul | Text Query(| uceneQuery);

List result = full TextQuery.list(); //return a |ist of nmanaged objects

The Hibernate query built on top of the Lucene query isaregular or g. hi ber nat e. Query , you are in the same
paradigm as the other Hibernate query facilities (HQL, Native or Criterid). The regular 1i st () , uni queRes-
ult() ,iterate() andscroll () canbe used.

For people using Java Persistence (aka EJB 3.0 Persistence) APIs of Hibernate, the same extensions exist:

EntityManager em = entityManager Factory. creat eEntityManager();
Ful | Text EntityManager full Text EntityManager =
or g. hi ber nat e. hi ber nat e. sear ch. j pa. Sear ch. creat eFul | Text Enti t yManager (en) ;
or g. apache. | ucene. queryPar ser. QueryPar ser parser = new QueryParser("title", new StopAnalyzer());

org. apache. | ucene. search. Query | uceneQuery = parser.parse("summary: Festi na O brand: Sei ko");
j avax. persi stence. Query full Text Query = full Text EntityManager. createFul | Text Query(|uceneQuery);

List result = full TextQuery.getResultList(); //return a list of managed objects

The following examples show the Hibernate APIs but the same example can be easily rewritten with the Java
Persistence API by just adjusting the way the Full TextQuery is retrieved.

5.1. Building queries
Hibernate Search queries are built on top of Lucene queries. It gives you atotal freedom on the kind of Lucene

queries you are willing to execute. However, once built, Hibernate Search abstract the query processing from
your application using org.hibernate.Query as your primary query manipulation API.

5.1.1. Building a Lucene query

This subject is generaly speaking out of the scope of this documentation. Please refer to the Lucene document-
ation or Lucene In Action.

Hibernate 3.0.1.GA 31

Querying

5.1.2. Building a Hibernate Search query

5.1.2.1. Generality
Once the Lucene query is built, it needs to be wrapped into an Hibernate Query.

Ful | Text Sessi on ful | Text Sessi on = Search. creat eFul | Text Sessi on(session);
org. hi bernate. Query full Text Query = full Text Sessi on. creat eFul | Text Query(|uceneQuery);

If not specified otherwise, the query will be executed against all indexed entities, potentially returning all types
of indexed classes. It is advised, from a performance point of view, to restrict the returned types:

org. hi bernate. Query full Text Query = full Text Sessi on. creat eFul | Text Query(| uceneQuery, Custoner.class)
/] or
full Text Query = full Text Sessi on. creat eFul | Text Query(| uceneQuery, Itemclass, Actor.class);

The first example returns only matching customers, the second returns matching actors and items.

5.1.2.2. Pagination

It is recommended to restrict the number of returned objects per query. It is a very common use case as well,
the user usually navigate from one page to an other. The way to define pagination is exactly the way you would
define pagination in aplain HQL or Criteria query.

org. hi bernate. Query full Text Query = full Text Sessi on. creat eFul | Text Query(|uceneQuery, Custoner.class |
full Text Query. setFirstResult(15); //start fromthe 15th el enent
full Text Query. set MaxResul ts(10); //return 10 el ements

Note

It is still possible to get the total number of matching elements regardless of the pagination. See
get Resul t Si ze() below

5.1.2.3. Sorting

Apache Lucene provides a very flexible and powerful way to sort results. While the default sorting (by relev-
ance) is appropriate most of the time, it can interesting to sort by one or several properties.

Inject the Lucene Sort object to apply a Lucene sorting strategy to an Hibernate Search.

org. hi bernate. search. Ful | Text Query query = s.createFul | Text Query(query, Book.class);
or g. apache. | ucene. search. Sort sort = new Sort(new SortField("title"));

query. setSort(sort);

List results = query.list();

One can notice the Ful | Text Query interface which is asub interface of or g. hi ber nat e. Query.

Fields used for sorting must not be tokenized.

5.1.2.4. Fetching strategy

When you restrict the return types to one class, Hibernate Search loads the objects using a single query. It also
respects the static fetching strategy defined in your domain model.

It is often useful, however, to refine the fetching strategy for a specific use case.

Hibernate 3.0.1.GA 32

Querying

Criteria criteria = s.createCriteria(Book.class).setFetchMde("authors", FetchMbde.JON);
s.creat eFul | Text Query(luceneQuery).setCriteriaQuery(criteria);

In this example, the query will return all Books matching the luceneQuery. The authors collection will be
loaded from the same query using an SQL outer join.

When defining a criteria query, it is not needed to restrict the entity types returned while creating the Hibernate
Search query from the full text session: the type is guessed from the criteria query itself. Only fetch mode can
be adjusted, refrain from applying any other restriction.

One cannot useset Cri t eri aQuery if more than one entity type is expected to be returned.

5.1.2.5. Projection

For some use cases, returning the domain object (graph) is overkill. Only a small subset of the propertiesis ne-
cessary. Hibernate Search allows you to return a subset of properties:

org. hi bernate. search. Ful | Text Query query = s.createFul | Text Query(|uceneQuery, Book.class);
query.setProjection("id", "summary", "body", "mainAuthor.nanme");

List results = query.list();

Object[] firstResult = (Object[]) results.get(0);

Integer id = firstResult[0];

String summary = firstResult[1];

String body = firstResult[2];

String authorName = firstResult[3];

Hibernate Search extracts the properties from the Lucene index and convert them back to their object represent-
ation, returning a list of ject[]. Projections avoid a potential database round trip (useful if the query re-
sponse time is critical), but has some constraints:

» the properties projected must be stored in the index (@i el d(st or e=St or e. YES)), which increase the index
size

o the properties projected must use a Fi el dBri dge implementing
org. hi bernat e. search. bri dge. TwoWayFi el dBri dge or
or g. hi ber nat e. sear ch. bri dge. TwoWay St ri ngBri dge, the latter being the smpler version. All Hibernate
Search built-in types are two-way.

Projection is useful for another kind of usecases. Lucene provides some metadata informations to the user about
the results. By using some special placeholders, the projection mechanism can retrieve them:

org. hi bernate. search. Ful | Text Query query = s.createFul | Text Query(|uceneQuery, Book.class);

query. set Projection(Full Text Query. SCORE, Ful |l Text Query. BOOST, Full Text Query. THI'S, "nmai nAut hor. name" |
List results = query.list();

bject[] firstResult = (oject[]) results.get(0);

float score = firstResult[O0];

float boost = firstResult[1];

Book book = firstResult[2];

String authorName = firstResult[3];

Y ou can mix and match regular fields and specia placeholders. Hereisthe list of available placeholders:
¢ FullTextQuery. THIS: returns the intialized and managed entity (as a non projected query would have done)

¢ FullTextQuery. DOCUMENT: returns the L ucene Document related to the object projected

¢ FullTextQuery.SCORE: returns the document score in the query. The score is guatanteed to be between 0

Hibernate 3.0.1.GA 33

Querying

and 1 but the highest score is not necessarily equals to 1. Scores are handy to compare one result against an
other for agiven query but are usel ess when comparing the result of different queries.

¢ FullTextQuery.BOOST: the boost value of the Lucene Document
¢ FullTextQuery.ID: the id property value of the projected object

e FullTextQuery.DOCUMENT ID: the Lucene document id. Careful, Lucene document id can change over-
time between two different IndexReader opening (this feature is experimental)

5.2. Retrieving the results

Once the Hibernate Search query is built, executing it is in no way different than executing a HQL or Criteria
query. The same paradigm and object semantic apply. All the common operations are available: 1ist(),
uni queResul t(),iterate(),scroll ().

5.2.1. Performance considerations

If you expect a reasonable number of results (for example using pagination) and expect to work on all of them,
l'ist() or uniqueResul t () are recommended. |ist() work best if the entity bat ch-si ze is set up properly.
Note that Hibernate Search has to process all Lucene Hits elements (within the pagination) when using 1 i st () ,
uni queResul t () anditerate().

If you wish to minimize Lucene document loading, scrol | () is more appropriate. Don't forget to close the
Scrol | abl eResul t s object when you're done, since it keeps Lucene resources. If you expect to usescrol | but
wish to load objects in batch, you can use query. set Fet chSi ze() : When an object is accessed, and if not
aready loaded, Hibernate Search will 1oad the next f et chSi ze objects in one pass.

Pagination is a preferred method over scrolling though.

5.2.2. Result size

It is sometime useful to know the total number of matching documents:

» for the Google-like feature 1-10 of about 888,000,000
« toimplement afast pagination navigation

e to implement a multi step search engine (adding approximation if the restricted query return no or not
enough results)

But it would be costly to retrieve all the matching documents.

Hibernate Search allows you to retrieve the total number of matching documents regardless of the pagination
parameters. Even more interesting, you can retrieve the number of matching elements without triggering a
single object load.

or g. hi bernat e. search. Ful | Text Query query = s.createFul | Text Query(|uceneQuery, Book.class);
assert 3245 == query.getResultSize(); //return the nunber of matching books wi thout |oading a single ¢

org. hi bernate. search. Ful | Text Query query = s.createFul | Text Query(|uceneQuery, Book.class);
query. set MaxResul t (10);
List results = query.list();

Hibernate 3.0.1.GA 34

Querying

assert 3245 == query.getResultSize(); //return the total nunber of matching books regardl ess of pagi n

Note

Like Google, the number of results is approximative if the index is not fully up-to-date with the data-
base (asynchronous cluster for example).

5.2.3. ResultTransformer

Especially when using projection, the data structure returned by a query (an object array in this case), is not al-
ways matching the application needs. It is possible to apply a Resul t Transf or mer operation post query to
match the targeted data structure:

or g. hi bernat e. search. Ful | Text Query query = s.createFul | Text Query(|uceneQuery, Book.class);
query.setProjection("title", "mainAuthor.nane");

query. set Resul t Tr ansf or mer (
new Stati cAl i asToBeanResul t Tr ansf or ner (BookVi ew. cl ass, "title", "author")
)
Li st <BookVi ew> results = (List<BookView>) query.list();
for(BookView view : results) {
| og.info("Book: " + view.getTitle() + ", " + view getAuthor());

}

Examples of Resul t Transf or mer implementations can be found in the Hibernate Core codebase.

5.3. Filters

Apache Lucene has a powerful feature that allows to filters results from a query according to a custom filtering
process. Thisis avery powerful way to apply some data restrictions after a query, especially since filters can be
cached and reused. Some interesting usecases are:

e security

temporal data (eg. view only last month's data)
e population filter (eg. search limited to a given category)
e and many more

Hibernate Search pushes the concept further by introducing the notion of parameterizable named filters which
are transparantly cached. For people familiar with the notion of Hibernate Core filters, the APl isvery similar.

full Text Query = s.createFul | Text Query(query, Driver.class);

full Text Query. enabl eFul | TextFilter("bestDriver");

full Text Query. enabl eFul | TextFilter("security").setParameter("login", "andre");
full Text Query.list(); //returns only best drivers where andre has credential s

In this example we enabled 2 filters on top of this query. You can enable (or disable) as many filters as you
want.

Declaring filters is done through the @ ul | Text Fi | t er Def annotation. This annotation can be on any @ ndexed
entity regardless of the filter operation.

@ntity
@ ndexed

Hibernate 3.0.1.GA 35

Querying

@ul | TextFilterDefs({
@ ul | Text Fi | t er Def (nane
@rul | Text Fi |l t er Def (nane

"bestDriver", inmpl = BestDriversFilter.class, cache=false), //actual Fil
"security", inmpl = SecurityFilterFactory.class) //Filter factory wi th p:

19

public class Driver { ... }

Each named filter points to an actual filter implementation.

public class BestDriversFilter extends org.apache.|ucene.search. Filter {

public BitSet bits(lndexReader reader) throws | OException {
BitSet bitSet = new BitSet(reader.naxDoc());
TermDocs ternDocs = reader.ternDocs(new Tern{"score", "5"));
while (ternDocs.next()) {
bi t Set.set(ternDocs.doc());

}

return bit Set;

Best Dri versFilter is an example of a simple Lucene filter that will filter all results to only return drivers
whose score is 5. The filters must have a no-arg constructor when referenced in aFul | t ext Fi | t er Def . i npl .

The cache flag, defaulted to t r ue, tells Hibernate Search to search the filter in itsinternal cache and reuses it if
found.

Note that, usually, filter using the | ndexReader are wrapped in a Lucene Cachi ngW apper Fi | ter to benefit
from some caching speed improvement. If your Filter creation requires additional steps or if the filter you are
willing to use does not have a no-arg constructor, you can use the factory pattern:

@ntity

@ ndexed

@-ul | TextFilterDef(nane = "bestDriver", inpl = BestDriversFilterFactory.class) //Filter factory
public class Driver { ... }

public class BestDriversFilterFactory {

@-actory

public Filter getFilter() {
//some additional steps to cache the filter results per |IndexReader
Filter bestDriversFilter = new BestDriversFilter();
return new Cachi ngW apperFilter(bestDriversFilter);

Hibernate Search will look for a @act ory annotated method and use it to build the filter instance. The factory
must have a no-arg constructor. For people familiar with JBoss Seam, thisis similar to the component factory
pattern, but the annotation is different!

Named filters comes in handy where the filters have parameters. For example a security filter needs to know
which credentials you are willing to filter by:

full Text Query = s.createFul | Text Query(query, Driver.class);
full Text Query. enabl eFul | TextFilter("security").setParameter("level", 5);

Each parameter name should have an associated setter on either the filter or filter factory of the targeted named
filter definition.

public class SecurityFilterFactory {
private |nteger |evel;

/**

Hibernate 3.0.1.GA 36

Querying

* injected paraneter
*/
public void setlLevel (Integer level) {
this.level = 1|evel;

}

@ey

public FilterKey getKey() {
St andar dFi | ter Key key = new StandardFil terKey();
key. addPar aneter(|evel);

return key;
}
@-actory
public Filter getFilter() {
Query query = new TermQuery(new Tern("level", level.toString()));

return new Cachi ngW apperFilter(new QueryW apperFilter(query));

}

Note the method annotated @xey and returning a Fi | t er Key object. The returned object has a special contract:
the key object must implement equals / hashcode so that 2 keys are equals if and only if the given Filter types
are the same and the set of parameters are the same. In other words, 2 filter keys are equal if and only if the fil-
ters from which the keys are generated can be interchanged. The key object is used as a key in the cache mech-
anism.

@ey methods are needed only if:

» you enabled thefilter caching system (enabled by default)
e your filter has parameters

In most cases, using the st andar dFi | t er Key implementation will be good enough. It delegates the equals/
hashcode implementation to each of the parameters equals and hashcode methods.

Why should filters be cached? There are two area where filter caching shines:

« the system does not update the targeted entity index often (in other words, the IndexReader is reused a lot)
» theFilter BitSet is expensive to compute (compared to the time spent to execute the query)

Cache is enabled by default and use the notion of SoftReferences to dispose memory when needed. To adjust
the size of the hard reference cache, use hi bernat e. search. filter.cache_strategy. si ze (defaults to 128).
Don't forget to use a Cachi ngW apper Fi | t er when the filter is cacheable and the Filter's bits methods makes
use of IndexReader.

For advance use of filter caching, you can implement your own Fi | t er Cachi ngStrat egy. The classname is
defined by hi ber nat e. search. fil ter.cache_strat egy.

5.4. Optimizing the query process

Query performance depends on several criteria:

« the Lucene query itself: read the literature on this subject

« the number of object loaded: use pagination (always ;-)) or index projection (if needed)

Hibernate 3.0.1.GA 37

Querying

« theway Hibernate Search interacts with the Lucene readers: defines the appropriate Reader strategy.

5.5. Native Lucene Queries

If you wish to use some specific features of Lucene, you can always run Lucene specific queries. Check
Chapter 8, Accessing Lucene natively for more informations.

Hibernate 3.0.1.GA 38

Chapter 6. Manual indexing

6.1. Indexing

It is sometimes useful to index an object even if this object is not inserted nor updated to the database. Thisis
especially true when you want to build your index for the first time. Y ou can achieve that goal using the Ful | -
Text Sessi on.

Ful | Text Sessi on ful |l Text Sessi on = Sear ch. creat eFul | Text Sessi on(sessi on);
Transaction tx = full Text Sessi on. begi nTransacti on();
for (Custoner custoner : custoners) {
ful | Text Sessi on. i ndex(customner);
}

tx.commt(); //index are witten at commit tine

For maximum efficiency, Hibernate Search batches index operations and executse them at commit time (Note:
you don't need to use or g. hi ber nat e. Transact i on in aJTA environment).

If you expect to index alot of data, you need to be careful about memory consumption: since all documents are
kept in a queue until the transaction commit, you can potentially face an cut of Menor yExcept i on.

To avoid that, you can set up the hi ber nat e. sear ch. wor ker . bat ch_si ze property to a sensitive value: al in-
dex operations are queued until bat ch_si ze is reached. Every timebat ch_si ze isreached (or if the transaction
is committed), the queue is processed (freeing memory) and emptied. Be aware that the changes cannot be roll-
backed if the number of index elements goes beyond bat ch_si ze. Be aso aware that the queue limits are also
applied on regular transparent indexing (and not only when sessi on. i ndex() is used). That's why a sensitive
bat ch_si ze valueis expected.

Other parameters which aso can affect indexing time and memory consumption are hibern-
at e. sear ch. [def aul t | <i ndexnanme>] . bat ch. nerge_f act or , hi ber n-
at e. search. [def aul t | <i ndexnane>] . bat ch. max_ner ge_docs and hi ber n-
ate. search. [def aul t| <i ndexname>] . bat ch. max_buf f er ed_docs . These parameters are Lucene specific and
Hibernate Search is just passing these paramters through - see Section 3.7, “Tuning Lucene indexing perform-
ance” for more details.

Hereis an especially efficient way to index a given class (useful for index (re)initialization):

ful | Text Sessi on. set Fl ushibde(Fl ushMode. MANUAL) ;

ful | Text Sessi on. set CacheMbde(CacheMode. | GNORE) ;

transaction = full Text Sessi on. begi nTransacti on();

//Scrollable results will avoid | oading too nany objects in nenory

Scrol | abl eResults results = full Text Session.createCriteria(Email.class).scroll(Scroll Mde. FORWARD_(
int index = O;

while(results.next()) {

i ndex++;
ful | Text Session.index(results.get(0)); //index each el enent
if (index % batchSize == 0) s.clear(); //clear every batchSize since the queue is processed

}

transaction.comit ();

It iscritical that bat chSi ze in the previous example matches the bat ch_si ze value described previoudly.

6.2. Purging

Hibernate 3.0.1.GA 39

Manual indexing

It is equally possible to remove an entity or all entities of a given type from a Lucene index without the need to
physically remove them from the database. This operation is named purging and is done through the Ful I -

Text Sessi on.

Ful | Text Sessi on ful |l Text Sessi on = Sear ch. creat eFul | Text Sessi on(sessi on);
Transaction tx = full Text Sessi on. begi nTransacti on();
for (Custoner custoner : custoners) {

ful | Text Sessi on. purge(Custoner.class, custoner.getld());

}

tx.commt(); //index are witten at commit tine

Purging will remove the entity with the given id from the Lucene index but will not touch the database.

If you need to remove all entities of a given type, you can use the pur geAl I method.

Ful | Text Sessi on ful | Text Session = Search. creat eFul | Text Sessi on(sessi on);
Transaction tx = full Text Sessi on. begi nTransacti on();

ful | Text Sessi on. purgeAl | (Custoner.class);

//optionally optim ze the index

/1 full Text Sessi on. get SearchFactory().optim ze(Custoner.class);
tx.commit(); //index are witten at comit time

It is recommended to optimize the index after such an operation.

Note

Methodsi ndex, pur ge and pur geAl | are available on Ful | Text Ent i t yManager aswell

Hibernate 3.0.1.GA

40

Chapter 7. Index Optimization

From time to time, the Lucene index needs to be optimized. The process is essentially a defragmentation: until
the optimization occurs, deleted documents are just marked as such, no physical deletion is applied, the optim-
ization can also adjust the number of filesin the Lucene Directory.

The optimization speeds up searches but in no way speeds up indexation (update). During an optimization,
searches can be performed (but will most likely be slowed down), and all index updates will be stopped. Prefer
optimizing:

¢ onanidle system or when the searches are less frequent

e dfter alot of index modifications (doing so before will not speed up the indexation process)

7.1. Automatic optimization

Hibernate Search can optimize automatically an index after:

e acertain amount of operations have been applied (insertion, deletion)
e or acertain amout of transactions have been applied
The configuration can be global or defined at the index level:

hi ber nat e. search. defaul t.optim zer.operation_|limt.mx = 1000
hi bernat e. search. defaul t. optimni zer.transaction_linmt.mx = 100

hi ber nat e. search. Ani mal . optim zer.transaction_limt.mx = 50

An optimization will be triggered to the Ani mal index as soon as either:

* the number of addition and deletion reaches 1000

¢ the number of transactions reaches 50 (hi ber nat e. sear ch. Ani mal . optini zer.transaction_|imt.max
having priority over hi ber nat e. sear ch. defaul t. optimi zer.transaction_| i nit. max)

If none of these parameters are defined, not optimization is processed automatically.

7.2. Manual optimization

Y ou can programmatically optimize (defragment) a Lucene index from Hibernate Search through the Sear ch-
Factory

searchFactory. opti m ze(Order. cl ass);
searchFactory. optim ze();
The first example reindex the Lucene index holding o der s, the second, optimize all indexes.

The Sear chFact ory can be accessed from aFul | Text Sessi on:

Hibernate 3.0.1.GA 41

Index Optimization

Ful | Text Sessi on ful | Text Session = Search. creat eFul | Text Sessi on(regul ar Sessi on) ;
SearchFactory searchFactory = full Text Sessi on. get Sear chFactory();

Note that sear chFact ory. opti nmi ze() hasno effect on aJMS backend. Y ou must apply the optimize operation
on the Master node.

7.3. Adjusting optimization

Apache Lucene has a few parameters to influence how optimization is performed. Hibernate Search expose
those parameters.

Further index optimisation parameters include hi ber nat e. sear ch. [def aul t | <i ndexnane>] . ner ge_f act or,
hi ber nat e. sear ch. [def aul t | <i ndexnane>] . max_ner ge_docs and hi ber n-
at e. sear ch. [def aul t | <i ndexname>] . max_buf f ered_docs - See Section 3.7, “Tuning Lucene indexing per-
formance” for more details.

Hibernate 3.0.1.GA 42

Chapter 8. Accessing Lucene natively

8.1. SearchFactory

The sear chFact ory object keeps track of the underlying Lucene resources for Hibernate Search, it's also a con-
venient way to access Lucene natively. The Sear chFact ory can be accessed from aFul | Text Sessi on:

Ful | Text Sessi on ful | Text Sessi on = Search. creat eFul | Text Sessi on(regul ar Sessi on) ;
Sear chFactory searchFactory = ful | Text Sessi on. get Sear chFactory();

8.2. Accessing a Lucene Directory

Y ou can always access the Lucene directories through plain Lucene, the Directory structure isin no way differ-
ent with or without Hibernate Search. However there are some more convenient ways to access a given Direct-
ory. The Sear chFact ory keepstrack of the bi rect or yPr ovi der S per indexed class. One directory provider can
be shared amongst several indexed classes if the classes share the same underlying index directory. While usu-
ally not the case, a given entity can have several Di rect oryProvi der sis the index is sharded (see Section 3.2,
“Index sharding”).

DirectoryProvider[] provider = searchFactory. getDirectoryProviders(Oder.class);
org. apache. | ucene.store.Directory directory = provider[0].getDirectory();

In this example, directory points to the lucene index storing o der s information. Note that the obtained Lucene
directory must not be closed (this is Hibernate Search responsibility).

8.3. Using an IndexReader

Queries in Lucene are executed on an | ndexReader . Hibernate Search caches such index readers to maximize
performances. Y our code can access such cached / shared resources. Y ou will just have to follow some "good
citizen" rules.

Di rectoryProvi der orderProvi der = searchFactory. getDirectoryProviders(Oder.class)[0];
Di rectoryProvi der clientProvider = searchFactory. getDirectoryProviders(dient.class)[O0];

Reader Provi der readerProvi der = searchFact ory. get Reader Provi der () ;
I ndexReader reader = readerProvi der.openReader (orderProvider, clientProvider);

try {
//do read-only operations on the reader
}

finally {
reader Provi der. cl oseReader (reader);
}

The ReaderProvider (described in Reader strategy), will open an IndexReader on top of the index(es) refer-
enced by the directory providers. This IndexReader being shared amongst severa clients, you must adhere to
the following rules:

* Never call indexReader.close(), but always call readerProvider.closeReader(reader); (a finaly block is the
best area).

Hibernate 3.0.1.GA 43

Accessing Lucene natively

e This indexReader must not be used for modification operations (especially delete), if you want to use an
read/write index reader, open one from the Lucene Directory object.

Aside from those rules, you can use the IndexReader freely, especially to do native queries. Using the shared
I ndexReader S will make most queries more efficient.

Hibernate 3.0.1.GA 44

	Hibernate Search
	Table of Contents
	Preface
	Chapter 1. Getting started
	1.1. System Requirements
	1.2. Maven
	1.3. Configuration
	1.4. Indexing
	1.5. Searching
	1.6. Analyzer
	1.7. What's next

	Chapter 2. Architecture
	2.1. Overview
	2.2. Back end
	2.2.1. Lucene
	2.2.2. JMS

	2.3. Work execution
	2.3.1. Synchronous
	2.3.2. Asynchronous

	2.4. Reader strategy
	2.4.1. Shared
	2.4.2. Not-shared
	2.4.3. Custom

	Chapter 3. Configuration
	3.1. Directory configuration
	3.2. Index sharding
	3.3. Worker configuration
	3.4. JMS Master/Slave configuration
	3.4.1. Slave nodes
	3.4.2. Master node

	3.5. Reader strategy configuration
	3.6. Enabling Hibernate Search and automatic indexing
	3.6.1. Enabling Hibernate Search
	3.6.1.1. Hibernate Core 3.2.6 and beyond

	3.6.2. Automatic indexing

	3.7. Tuning Lucene indexing performance

	Chapter 4. Mapping entities to the index structure
	4.1. Mapping an entity
	4.1.1. Basic mapping
	4.1.2. Mapping properties multiple times
	4.1.3. Embedded and associated objects
	4.1.4. Boost factor
	4.1.5. Analyzer

	4.2. Property/Field Bridge
	4.2.1. Built-in bridges
	4.2.2. Custom Bridge
	4.2.2.1. StringBridge
	4.2.2.2. FieldBridge
	4.2.2.3. @ClassBridge

	Chapter 5. Querying
	5.1. Building queries
	5.1.1. Building a Lucene query
	5.1.2. Building a Hibernate Search query
	5.1.2.1. Generality
	5.1.2.2. Pagination
	5.1.2.3. Sorting
	5.1.2.4. Fetching strategy
	5.1.2.5. Projection

	5.2. Retrieving the results
	5.2.1. Performance considerations
	5.2.2. Result size
	5.2.3. ResultTransformer

	5.3. Filters
	5.4. Optimizing the query process
	5.5. Native Lucene Queries

	Chapter 6. Manual indexing
	6.1. Indexing
	6.2. Purging

	Chapter 7. Index Optimization
	7.1. Automatic optimization
	7.2. Manual optimization
	7.3. Adjusting optimization

	Chapter 8. Accessing Lucene natively
	8.1. SearchFactory
	8.2. Accessing a Lucene Directory
	8.3. Using an IndexReader

