JBoss AOP - Aspect-Oriented
Framework for Java

JBoss AOP Reference
Documentation

ISBN:
Publication date:

JBoss AOP - Aspect-Oriented F...

JBoss AOP - Aspect-Oriented Framework for Java: JBoss
AOP Reference Documentation

JBoss AOP - Aspect-Oriented F...

=Y = Yo iX

I 1= 1 0 S PP 1
I @ =T o T P 1
2. CNAPLET 2 et 3
I @ =T o T P 3
2. ASPECE CIASS ..ieiitiieeiiii ettt 3
3. AQVICE MELNOAS . .covviiiiii e 3
o [1 (=T (ol=T o] (o] £ PP 4
5. ReSoIVINg ANNOLALIONSiiiiieii e 4
oI\ L= =T - - PR 4
6.1. Resolving XML Metadatac.cceuveviiiiiiiiieiii e 4

6.2. Attaching Metadatacccuuiiiiiiiiiieii e 5

7. MiXin DEFINITIONoiiieiiie e e 5
8. DYNAMIC CRIOW ...iiitiiiiiii e 6
3. Joinpoint and PointCut EXPreSSIONSc..uiiiiiiiiiieiieee e e e e e 7
IV 1o [o L PPN 7
2. TYPE PaBINS oo 7
3. Method Patterns ..o e 8
4. CONSIIUCLOr PAtEINS ... ceuiiiiiiiii e e 9
5. Field PAtterns ... 10
B. POINICULS .ttt 11
7. Pointcut COMPOSITION ..eevuiiiiiiii e 13
8. POINtCUL REFEIENCESviiiiiii i 13
9. Typedef EXPIrESSIONS ...cccuuuiiiiii ettt ettt 13
0 o T ' To | €= PN 14
10.1. JOINPOINE BEANS ...covviiiiiiiiiee e 14
10.2. CONEXE VAIUESeiiiiiieiiii ettt 14

Y 1Y/ o = PP 17
Y (010 oo [N o L PP 17
2. Before/After/After-Throwing/Finally AdVICeScooveiiiiiiiiiiiiiiieiiieeees 19
2.1. Before Advice Signaturecocceviiiiiieiiiieiie e, 19

2.2. After AVICE SIgNALUIEcoovuiieiiiii e 19

2.3. After-Throwing Advice Signatureccceeeviiiiiieiiiieiiiece e 20

2.4. Finally AdVice SigNaturecoooeeeeiiiieiiiiieeeiieeeee e 20

3. Annotated AdVICe Parametersc.oiveiiiiiiiiiiiiiiieeein e 20
3.1. @Thrown annotated parameterccooveiieiiiiiiineeiieeie e, 23

3.2. JOINPOINt AFQUMENES ...ivveiiiiiieeie e e e e e e e e e een 25

4. Overloaded AUVICESc.uiiiiiiiiie e 29
4.1. Annotated-parameter Signatureccoeevviieiiii i eeeiee s 30
4.1.1. PreSence PriOrityooeieeuuieeeiiiieeeeeii e 31

4.1.2. Assignability DEQIeecccevniiiiiieiiieiie e 33

4.1.3. REUM TYPES ..iriiiiiieiieeet ettt e 35

414, A MALCH ..o 37

4.1.5. LOWESLE PIIiOMTYuiiiieiieiiiiii e 38

JBoss AOP - Aspect-Oriented F...

4.2, Default SigNaturecooevieiiii e 38

4.3. Mixing Different Signaturesocoeiiieiiiiinncie e 40

5. ComMMON MIStAKESoovuiiiiiii e 40
5. XML BINAINGS ettt ettt e 43
L IEIO et 43
2. RESOIVING XML ittt 43
2.1. Standalone XML ReSOIVINGcc.oevuiiiiiiiiiiiieeiii e 43

2.2. Application Server XML ReSOIVINGcoviiiiiiiiiiiiiieeci, 43

3. XML SCREM@ et e 44
4. ASPECT et 44
4.1, Basic DefiNItiONccovuiiiiiiiiii e 44

4.2, SCOPE ..ttt 44

4.3, Configurationccuuiiiiiiiiii e 45
4.3.1. NAMES ..o 46

4.3.2. Example configurationc.cccoeeeiiiiiiiin i, 46

4.4, ASPECE FACIONES ..oevvuiiiiii ettt et e 47

LT 101 (=T (o= o) (o] P 47
B. DN it a7
T2 SEACK eeee et aaaa 48
8. POINLCUL ...ttt et 49
L BT o o 0T i o] o PP 49
9.1. Interface iNtrodUCtiONScoiiviiiiiiii e 49

9.2, MIXINS ettt 49

10. annotation-iNtrodUCTIONiiiiiii e 50
11, COW-STACK .oeeiieieiei e 50
12, BYPEUET o 51
13, dynamiC-CIlOWcoieii e 51
T4, PIEPAIE ...ttt 52
15, MELAAALA ..oevveiiiiii e 52
16. metadata-loadercouuiiiii i 53
A o] (= To7=To [T o7 TP 54
18. ECIAIE ..oeneeeee e 54
18.1. decClare-Warningcoceuieiiiieii e 54
18.2. dECIAIE-EITONeeiieeiei et 55

6. ANNOtation BiNAINGS ...oovuiiii i e e e e e e e 57
I (20 = od P 57
2. @INEEICEPIOIDES ..uiiiii i 58
2.1. Interceptor EXamPpPleooooiiiiiiiiii e 59

2.2. AspectFactory EXampleccoeeiiiiiiiiiiic e 59

3. @POINTCULDET .oeeee e 60
A, @BING ... e 61
ST @] g1 0o [0 Tt 1[0] o TN 63
B. @MIXIN ittt 64
(o2 o (=] o T= 1 PP 67

vi

7.1. @Prepare POJOcooiiiiieiie e 68

8. @ TYPEDES 69
9. @CFIOWDET ..o 70
10. @DYNamiCCFIOWDETiiiei e 72
11. @ANnotationIntroductionDefcooiiiiiiiiiii e 73
12, @PIECEUBNCE ...oeeeieee e 75
13. @DeclareError and @DeclareWarningcccccceveviiieviiieeiineeiieeeieeennn 76
7. DYNAMIC AOP ..ottt 79
I o o 1 D= o] (o) 41T o | PP 79
2. Per INStance AOP ... 79
T o (=T o - U= [) o [80
4. Improved INStANCE APuuiiii e 80
5. DynamicAOP With HOISWAPcoovniiiiieiiicce e 82
8. INSTAIING oeveeeee e e 85
1. Installing Standaloneooeeiiiiiiiii e 86
2. Installing with JBoss 4.0.x and JBoss 4.2.x Application Server for JDK
L PP 86
3. Installing with JBoss Application Server 5ccoovvvieiiiiiiiiiinieceieeeeee, 87
9. Building and Compiling Aspectized Javaccccuveiiiieiiiiiiiieeie e 89
1. InsStrumentation MOAEScoeuniiiiii e 89
b AN 4| G 1) (=T | = 111 I PPN 89
3. CoMMAN LINE e 93
10. Running Aspectized APPlICAtIONScc.viiiiiiiiii e 95
1. Loadtime, Compiletime and HotSwap MOdeSccoeevvviiiiiiiiiinneiininnen. 95
2. Regular Java ApPlICAtiONSocvviiiiiieci e 96
2.1. Precompiled inStrumentationcccuiiiiiiiinnieiiieeeci e 96
2.2, L0AAUME ..uiiiiiii e 97
2.2.1. Loadtime using JROCKItcoeveeuiiiiiiiiieiiiii e 98
2.2.2. Improving Loadtime Performanceccoooeviiiiiieninnnnns 98
2.3, HOISWAD oo 100
2.4. User-Defined ClassLoAderscoveveeiiieiiiiinieiiiiinieeeiin e 101
3. JB0OSS APPIICALION SEIVET ...ccovuiiiiiiii e 102
3.1. Packaging AOP Applicationsccccceieiiiieiiiiieie e 102
3.2. The JBoss AspectManager SEIVICeocceuuuiieeieiiineeieiineeeennn, 104
3.2.1. JBoss 5 AspectManager ServiCecccovevvvveviiieeeineennnnn, 104
3.2.2. JBoss 4.x AspectManager ServiCeccceeveveeuinneeennnn. 105
3.3. Loadtime transformation in JBoss AS Using Sun JDK 106
3.4. JB0SS 5 and JROCKILcoeuniiiiiiiiiieie e 107
3.5. Improving Loadtime Performance in a JBoss AS Environment..... 107
4. Scoping aop to the classloaderccoiiiiiiiiniiii e 108
4.1. Deploying as part of a scoped classloadercccoeevvviveinnnnn. 108
4.2. Attaching to a scoped deploymentccooveiiiiniiiiiineeiiiie, 108
11. Building JBoss AOP with Maven2ccccoiiiiiiiiiiiece e, 111
1. AOP Compile With Maven2oiiiiiiiiiii e 111

Vii

JBoss AOP - Aspect-Oriented F...

2. AOP Compile tests with Maven2cccoiiiiiiiiiicr e 113

3. Running precompiled with Maven2cccooiiiiiiiii e, 114

4. Running loadtime weaving with Maven2cccoooviiveiiieiiii e 115

5. Running tests with Maven2 ... 115

12. Reflection @nd AOP ..o 117
1. Force interception via reflectionccoooiiiiiiiiiii 117

2. Clean results from reflection info methodsc.oooeiiiiiiiiiiin e, 119

13. Interception of Array Element ACCESSccoouiiiiiiiiiiiiiiii e 121
1. Replacing Array ACCESScicuuiiiiieiii ettt aans 121

2. Preparing Array FieldsScooouiiiiiiii e 121

3. Binding Advices to array element aCCeSScecevveiiiieviiieriiiieeiieeeieeens 122

4. Invocation types for array element access interceptioncc.uuen... 122

14. Instrumentation MOOESiiiiiiiiie e 125
1. ClaSSIC WEAVINGciiiiiieiiiii ettt 125

1.1. NON-OPtIMIZEA ...uiiiiiiii e 125

1.2, OPUMIZEA .ooeiiiieei e 126

2. Generated AdVISOr WEAVINGuviiinieiiieiiiieeie e e e e e e 126

2.1, Lightweight ASPECESccouviiiiiiiiieeei e 127

2.2. Improved INStance APlc.oviiiiii e 127

2.3. Chain Overriding of Inherited Methodsccoeviiiiiiiiinieennn, 128

viii

Preface

Aspect-Oriented Programming (AOP) is a new paradigm that allows you to organize
and layer your software applications in ways that are impossible with traditional
object-oriented approaches. Aspects allow you to transparently glue functionality
together so that you can have a more layered design. AOP allows you to intercept
any event in a Java program and trigger functionality based on those events. Mixins
allow you to introduce multiple inheritance to Java so that you can provide APIs for
your aspects. Combined with annotations, it allows you to extend the Java language
with new syntax.

JBoss AOP is a 100% Pure Java aspected oriented framework usable in any
programming environment or tightly integrated with our application server.

This document is meant to be a boring reference guide. It focuses solely on syntax
and APIs and worries less about providing real world examples. Please see our
"User Guide: The Case for Aspects" document for a more interesting discussion on
the use of aspects.

If you have questions, use the user forum linked on the JBoss AOP website. We
also provide tracking links for tracking bug reports and feature requests. If you are
interested in the development of JBoss AOP, post a message on the forum. If you
are interested in translating this documentation into your language, contact us on the
developer mailing list.

Commercial development support, production support and training for JBoss AOP is
available through JBoss Inc. (see http://www.jboss.org/). JBoss AOP is a project of
the JBoss Professional Open Source product suite.

In some of the example listings, what is meant to be displayed on one line does not

fit inside the available page width. These lines have been broken up. A '\ at the end

of a line means that a break has been introduced to fit in the page, with the following
lines indented. So:

Let's pretend to have an extrenely \
long line that \
does not fit

This one is short

Is really:

Let's pretend to have an extrenely long |ine that does not fit
This one is short

Chapter 1.

Terms

1. Overview

The section defines some basic terms that will be used throughout this guide.

Joinpoint
A joinpoint is any point in your java program. The call of a method. The execution
of a constructor the access of a field. All these are joinpoints. You could also
think of a joinpoint as a particular Java event. Where an event is a method call,
constructor call, field access etc...

Invocation
An Invocation is a JBoss AOP class that encapsulates what a joinpiont is at
runtime. It could contain information like which method is being called, the
arguments of the method, etc...

Advice
An advice is a method that is called when a particular joinpoint is executed, i.e.,
the behavior that is triggered when a method is called. It could also be thought
of as the code that does the interception. Another analogy is that an advice is an
"event handler".

Pointcut
Pointcuts are AOP's expression language. Just as a regular expression matches
strings, a pointcut expression matches a particular joinpoint.

Introductions
An introduction modifies the type and structure of a Java class. It can be used
to force an existing class to implement an interface or to add an annotation to
anything.

Aspect
An Aspect is a plain Java class that encapsulates any number of advices,
pointcut definitions, mixins, or any other JBoss AOP construct.

Interceptor
An interceptor is an Aspect with only one advice named "invoke". It is a specific
interface that you can implement if you want your code to be checked by forcing
your class to implement an interface. It also will be portable and can be reused in
other JBoss environments like EJBs and JMX MBeans.

Chapter 2.

Implementing Aspects

1. Overview

JBoss AOP is a 100% pure Java framework. All your AOP constructs are defined as
pure Java classes and bound to your application code via XML or by annotations.
This Chapter walks through implementing aspects.

2. Aspect Class

The Aspect Class is a plain Java class that can define zero or more advices,
pointcuts, and/or mixins.

public class Aspect
{

public Object trace(lnvocation invocation) throws Throwabl e {

try {
Systemout. println("Entering anything");
return invocation.invokeNext(); // proceed to next advice
or actual call
} finally {
System out. println("Leaving anythi ng");

The example above is of an advice t r ace that traces calls to any type of joinpoint.
Notice that | nvocat i on objects are the runtime encapsulation of joinpoints. The
method i nvocati on. i nvokeNext () is used to drive the advice chain. It either calls
the next advice in the chain, or does the actual method or constructor invocation.

3. Advice Methods

For basic interception, any method that follows the form:

Obj ect et hodNane(| nvocati on obj ect) throws Throwabl e

can be an advice. The I nvocat i on. i nvokeNext () method must be called by
the advice code or no other advice will be called, and the actual method, field, or
constructor invocation will not happen.

JBoss AOP provides five types of advice: before, around, after, finally and
after-throwing. The advice sginature above is the default one for an around advice.
Advices types, signature rules and overloading will be covered in Chapter 4, Advices.

Chapter 2. Implementing Aspects

4. Interceptors

Interceptors are a special type of aspect that contains only one advice. This advice
has its signature defined by an interface, or g. j boss. aop. advi ce. I nt er cept or:

public interface Interceptor

{
public String get Nane();

publ i ¢ Obj ect invoke(lnvocation invocation) throws Throwabl e;

The method i nvoke(Il nvocati on) is the unique advice contained in an interceptor.
The method get Name() is used for identification in the JBoss AOP framework.

So, this method must return a name that is unique in the whole system. It is only
really used for aspects added to the | nst anceAdvi sor as shown in Section 2, “Per
Instance AOP”.

5. Resolving Annotations

JBoss AOP provides an abstraction for resolving annotations. In future versions of
JBoss AOP, there will be a way to override annotation values on a per thread basis,
or via XML overrides, or even provide VM and cluster wide defaults for annotation
values. Also if you want to write a truly generic advice that takes the base Invocation
type, you can still get the annotation value of the method, constructor, or field you're
invoking on by calling this method:

bj ect resol veAnnot ati on(C ass annot ati on);

That's just resolving for resolving member annotations. If your aspect needs to
resolve class level annotations then this method should be called:

Ohj ect resol veC assAnnot ati on(C ass annot at i on)

6. Metadata

6.1. Resolving XML Metadata

Untyped metadata can be defined within XML files and bound to
org.jboss.aop.metadata.SimpleMetaData structures. This XML data can be attached
per method, field, class, and constructor. To resolve this type of metadata, the
Invocation object provides a method to abstract out where the metadata comes from.

Obj ect get Met aDat a(Obj ect group, Cbject attr)

Attaching Metadata

When this method is called, the invocation will look for metadata in this order:

1. First it looks in the Invocation's metadata (Si npl eMet aDat a get Met aDat a())

2. Next it looks in org. j boss. aop. net adat a. Thr eadMet aDat a. i nst ance() .
ThreadMetaData allows you to override metadata for the whole thread. The
metadata is managed by a ThreadLocal. ThreadMetaData is used by every single
invocation object at runtime.

3. Next it looks in either org.jboss.aop.Advisor.getMethodMetaData(),
Advisor.getConstructorMetaData(), or Advisor.getFieldMetaData() depending on
the invocation type.

4. Next it looks in either Advisor.getDefaultMetaData().

6.2. Attaching Metadata

You can attach untyped metadata to the invocation object, or even to the response.
This allows advices to pass contextual data to one another in the incoming invocation
or outgoing response for instance if you had advices running on a remote client that
wanted to pass contextual data to server-side aspects. This method on invocation
gets you access to a or g. j boss. aop. net adat a. Si npl eMet aDat a instance so that
you can attach or read data.

Si npl eMet aDat a get Met aDat a()

Si npl eMet aDat a has three types of metadata, AS_IS, MARSHALLED, and
TRANSIENT. This allows you to specify whether or not metadata is marshalled
across the wire. TRANSIENT says, attached metadata should not be sent across the
wire. MARSHALLED is for classloader sensitive contextual data. AS_IS doesn't care
about classloaders. Read the Javadocs for more information.

To piggyback and read metadata on the invocation response, two methods are
provided. One to attach data one to read data.

Ohj ect get ResponseAtt achnent (bj ect key);
voi d addResponseAttachnent (Obj ect key, Object val ue);

7. Mixin Definition

Mixins are a type of introduction in which you can do something like C++ multiple
inheritance and force an existing Java class to implement a particular interface and
the implementation of that particular interface is encapsulated into a particular class
called a mixin.

Mixin classes have no restrictions other than they must implement the interfaces that
you are introducing.

Chapter 2. Implementing Aspects

8. Dynamic CFlow

Dynamic CFlows allow you to define code that will be executed that must be resolved
true to trigger positive on a cflow test on an advice binding. (See <cflow-stack> for
more information). The test happens dynamically at runtime and when combined with
a pointcut expression allows you to do runtime checks on whether a advice binding
should run or not. To implement a dynamic CFlow you just have to implement the
simple org.jboss.aop.pointcut.DynamicCFlow interface. You can then use it within
cflow expressions. (See XML or Annotations)

public interface Dynam cCFl ow

{

bool ean shoul dExecut e(l nvocati on i nvocati on);

Chapter 3.

Joinpoint and Pointcut
Expressions

The pointcut language is a tool that allows joinpoint matching. A pointcut expression
determines in which joinpoint executions of the base system an advice should be
invoked.

In this Chapter, we will explore the syntax of pointcut expressions.

We will also see the API used to represent a matched joinpoint during advice
execution, and how this relates to pointcut expression constructs.

1. Wildcards

There are two types of wildcards you can use within pointcut expressions

e * |s aregular wildcard that matches zero or more characters. It can be used within
any type expression, field, or method name, but not in an annotation expression

e .. Is used to specify any number of parameters in an constructor or method
expression. . . following a package-name is used to specify all classes from
within a given package ut not within sub-packages. e.g or g. acne. . matches
org. acne. Foo and or g. acne. Bar, but it does not match or g. acne. sub. SubFoo.

2. Type Patterns

Type patterns are defined by an annotation or by fully qualified class name.
Annotation expressions are not allowed to have wildcards within them, but class
expressions are.

e org. acne. SomeC ass matches that class.

e org. acne. * will match or g. acne. Soned ass as well as

org. acne. Somed ass. Sonel nner Cl ass
e @avax. ej b. Enti ty will match any class tagged as such.

e String or oj ect are illegal. You must specify the fully qualified name of every
java class. Even those under the j ava. | ang package.

To reference all subtypes of a certain class (or implementors of an interface), the
$i nst anceof {} expression can be used. Wildcards and annotations may also be
used within $i nst anceof {} expressions.

Chapter 3. Joinpoint and Poin...

$i nst anceof { or g. acne. Sonel nt er f ace}
$i nst anceof { @r g. acne. SoneAnnot at i on}
$i nst anceof {org. acne. i nterfaces. *}

are all allowed.

For very complex type expressions, the Typedef construct can be used. To reference
a Typedef within a class expression $t ypedef {i d} is used.

3. Method Patterns

public void org.acne. SomeC ass- >net hodNane(j ava. | ang. Stri ng)

The attributes(public, static, private) ofthe method are optional. If the
attribute is left out then any attribute is assumed. Attributes accept the ! modifier for
negation.

public !static void org.acnme. SomeC ass->*(..)
$i nst anceof {} can be used in place of the class name.

voi d
$i nst anceof { or g. acnme. Sonel nt er f ace} - >net hodNane(j ava. | ang. Stri ng)

To pick out all t oSt ri ng() methods of all classes within the or g. acne package, we
can use or g. acre. . in place of the class name.

java.lang. String org.acne..->toString()

To only match methods from a given interface you can use the $i npl ement s{}
or $i npl enment i ng{} keywords in place of the method name. $i npl enent s{}
only matches methods from the exact interface(s) given, while $i npl enent i ng{}
matches methods from the interface(s) given AND their super interfaces.

voi d $i nstanceof {org. acre. | f A} - >$i npl enent s(org. acne. [fA) (..)

voi d $i nstanceof {org. acne. | f B} - >$i npl enenti ng(org. acne. | f A,
org.acme. [fB)(..)

Annotations can be used in place of the class name. The below example matches
any methodName() of a tagged @javax.ejb.Entity class.

voi d @ avax.ejb. Entity->met hodNanme(j ava. | ang. Stri ng)

Constructor Patterns

Annotations can be also be used in place of the method name. The below examples
matches any method tagged as @javax.ejb.Tx.

* *->@avax.ejb. Tx(..)

In addition you can use typedefs, $i nst anceof {}, annotations and wildcards for
method parameters and return types. The following matches all methods called

| oadEnti ty that return a class annotated with @javax.ejb.Entity, that takes a class
(or a class whose superclass/interface is) annotated as @org.acme.Ann and any
class that matches j ava. *. St ri ng (such as java.lang.String).

@avax.ejb. Entity *->l oadEntity($i nstanceof { @rg. acne. Ann},
java.*. String)

You can also include an optional throws clause in the pointcut expression:

public void org. acne. SonmeC ass- >net hodNanme(j ava. | ang. Stri ng) \
t hrows org. acne. SoneException, java.l ang. Exception

If any exceptions are present in the pointcut expression they must be present in the
throws clause of the methods to be matched.

4. Constructor Patterns

publ i c org.acne. Soned ass->new(j ava. | ang. Stri ng)

Constructor expressions are made up of the fully qualified classname and the new
keyword The attributes(public, static, private) ofthe method are optional. If
the attribute is left out then any attribute is assumed. Attributes accept the ! modifier
for negation.

I public org.acne. Somed ass->new . .)

$i nst anceof {} can be used in the class name.

$i nst anceof { or g. acne. Sonel nt er f ace} - >new(. .)

To pick out all no-args constructors of all classes within the or g. acne package, we
can use or g. acre. . in place of the class name.

org. acne. . - >new)

Annotations can be used in place of the class name. The below example matches
any constructor of a tagged @javax.ejb.Entity class.

Chapter 3. Joinpoint and Poin...

@ avax. ejb. Entity->new(..)

Annotations can be also be used in place of the new keyword. The below examples
matches any constructor tagged as @ avax. ej b. Met hodPer ni ssi on.

*->@ avax. ej b. Met hodPer nmi ssi on(. .)

In addition, just as for methods you can use typedefs, $i nst anceof {}, annotations
and wildcards for constructor parameters. The following matches all constructors
that take a class annotated as @org.acme.Ann and any class that matches

java. *. String (such as java.lang.String).

->new(@r g. acnme. Ann, java.. String)
You can also include an optional throws clause in the pointcut expression:

public void org. acne. SoneCl ass->new(j ava. |l ang. String) \
throws org. acnme. SoneException, java.l ang. Exception

If any exceptions are present in the pointcut expression they must be present in the
throws clause of the constructors to be matched.

5. Field Patterns

public java.lang. String org.acne. SoneCl ass->fi el dname

Constructor expressions are made up of the type, the fully qualified classname where
the field resides and the field's name. The attributes(public, static, private)
of the field are optional. If the attribute is left out then any attribute is assumed.
Attributes accept the ! modifier for negation.

Ipublic java.lang. String org.acne. SoneC ass- >*

$i nst anceof {} can be used in the class name. The below expression matches any
field of any type or subtype of or g. acrme. Sonel nter f ace

* $i nst anceof { or g. acne. Sonel nt er f ace} - >*

Annotations can be used in place of the class name. The below example matches
any field where the type class is tagged with @ avax. ej b. Enti ty.

* @avax. ejb. Entity->*

Annotations can be also be used in place of the field name. The below examples
matches any field tagged as @r g. j boss. | nj ect ed.

10

Pointcuts

* *->@rg.jboss.|njected

In addition, you can use typedefs, $i nst anceof {}, annotations and wildcards for
field types. The following matches all fields where the type class has been tagged
with @javax.ejb.Entity.

@avax.ejb. Entity *->*

To pick out all fields annotated with @r g. f 0o. Tr ansi ent within the
or g. acme package, we can use or g. acne. . in place of the class name, and
@r g. f oo. Transi ent in please of the field name

* org.acne..->@rg. foo. Transi ent

6. Pointcuts

Pointcuts use class, field, constructor, and method expressions to specify the actual
joinpoint that should be intercepted/watched.

execution(met hod or constructor)

execution(public void Foo->nethod()
execution(public Foo->new())

execut i on is used to specify that you want an interception to happen whenever
a method or constructor is called. The the first example of matches anytime a
method is called, the second matches a constructor. System classes cannot be
used within execut i on expressions because it is impossible to instrument them.

construction(constructor)

construction(public Foo->new())

constructi on is used to specify that you want aspects to run within the
constructor. The execut i on pointcut requires that any code that calls new() must
be instrumented by the compiler. With const r uct i on the aspects are weaved
right within the constructor after all the code in the constructor. The aspects are
appended to the code of the constructor.

get (field expression)

get (public int Foo->fiel dnane)

get is used to specify that you want an interception to happen when a specific
field is accessed for a read.

11

Chapter 3. Joinpoint and Poin...

set (field expression)

get (public int Foo->fiel dnane)

set is used to specify that you want an interception to happen when a specific
field is accessed for a write.

field(field expression)

al |

cal

field(public int Foo->fiel dnane)

fi el d is used to specify that you want an interception to happen when a specific
field is accessed for a read or a write.

(type expression)

al | (org. acne. SoneCl ass)
all (@rg.jboss. security. Perm ssi on)

al | is used to specify any constructor, method or field of a particular class will be
intercepted. If an annotation is used, it matches the member's annotation, not the
class's annotation.

| (method or constructor)

call (public void Foo->net hod()
cal | (public Foo->new())

cal | is used to specify any constructor or method that you want intercepted. It
is different than execut i on in that the interception happens at the caller side
of things and the caller information is available within the Invocation object.
cal | can be used to intercept System classes because the bytecode weaving
happens within the callers bytecode.

within(type expression)

wi t hi n(org. acme. SomeCl ass)
wi thin(@rg.jboss. security. Perm ssion)

wi t hi n matches any joinpoint (method or constructor call) within any code within
a particular type.

wi t hi ncode(net hod or constructor)

wi t hi ncode(public void Foo->nethod()
wi t hi ncode(publ i c Foo->new))

12

Pointcut Composition

wi t hi ncode matches any joinpoint (method or constructor call) within a particular
method or constructor.

has(met hod or constructor)

has(void *->@rg. | boss. security. Perm ssion(..))
has(*->new(j ava. | ang. String))

has is an additional requirement for matching. If a joinpoint is matched, its class
must also have a constructor or method that matches the has expression.

hasfi el d(field expression)

hasfiel d(* *->@rg.]jboss. security.Permn ssion)
hasfi el d(public java.lang. String *->*)

has is an additional requirement for matching. If a joinpoint is matched, its class
must also have a field that matches the hasfi el d expression.

7. Pointcut Composition

Pointcuts can be composed into boolean expressions.

« | logical not.

AND logical and.

OR logical or.
» Paranthesis can be used for grouping expressions.

Here's some examples.

cal | (voi d Foo->someMet hod()) AND withi ncode(void Bar->caller())
execution(* *->@oneAnnotation(..)) OR field(* *->@oneAnnotati on)

8. Pointcut References

Pointcuts can be named in XML (Chapter 5, XML Bindings) or annotation (Chapter 6,
Annotation Bindings) bindings. They can be referenced directly within a pointcut
expression.

sone. nanmed. poi ntcut OR cal | (voi d Foo- >sormeMet hod())

9. Typedef Expressions

Sometimes, when writing pointcuts, you want to specify a really complex type they
may or may not have boolean logic associated with it. You can group these complex

13

Chapter 3. Joinpoint and Poin...

type definitions into a JBoss AOP Typedef either in XML or as an annotation (See
later in this document). Typedef expressions can also be used within i nt r oduct i on
expressions. Typedef expressions can be made up of has, hasfield, and

cl ass expressions. cl ass takes a fully qualified class name, or an $i nst anceof {}
expression.

cl ass(org. pkg.*) OR has(* *->@x(..)) AND
I cl ass($i nst anceof {org. foo. Bar})

10. Joinpoints

After getting acquainted with all pointcut constructs, let's see how this reflects on the
API available to advices during their execution.

10.1. Joinpoint Beans

JBoss AOP provides JoinPoint Beans, so that an advice can access all
information regarding a joinpoint during its execution. This information consists
of context values, explained in the next subsection, and of reflection objects

(j ava. l ang. ref | ecti on). The reflection objects describe the joinpoint being
intercepted like a j ava. | ang. Met hod for a method execution joinpoint).

There are two groups of beans. The first one is the | nvocat i on beans group. All
classes of this group are subclasses of or g. j boss. aop. j oi npoi nt. | nvocat i on.
The I nvocat i on class was presented in Chapter 2 as a runtime encapsulation of a
joinpoint. An | nvocat i on object also contains an interceptor chain, where all advices
and interceptors that intercept the joinpoint are stored. Invocation beans provide the

i nvokeNext () method, responsible for proceeding execution to the next advice in
the interceptor chain (if there is an advice that has not started execution yet) or to the
joinpoint itself (if all advices contained in the interceptor chain have already started
running). We will see more on this in the next chapter.

The other group of beans contains only information regarding the joinpoint itself,
and are called the Joi nPoi nt Bean group. All beans of this group are defined in
interfaces, with org. j boss. j oi npoi nt. Joi nPoi nt Bean being their common
superinterface.

The I nvocat i on objects are available only to around advices. All other types of
advices can use the Joi nPoi nt Bean types to access joinpoint specific data.

In both groups there is a specific type for each joinpoint type. The type of bean
corresponding to each joinpoint type can be seen in Table 3.1, “ Joinpoint Types
Table ". All beans are in the package or g. j boss. aop. j oi npoi nt .

10.2. Context Values

According to the type of the joinpoint, there are specific context values available.

14

Context Values

The context values are:

« return value: joinpoints like a constructor execution or a non-void method call, have
a return value.

* arguments: the arguments of a constructor or method execution joinpoint are the
arguments received by the constructor or method. Similarly, the arguments of a
call are the arguments received by the method or constructor being called.

* target: the target object of a joinpoint varies according to the joinpoint type.
For method executions and calls, it refers to the object whose method is being
executed (available only on non-static methods). For field reads and writes, it
refers to the object that contains that field.

« caller: the caller object is available only on call joinpoints, and it refers to the object
whose method or constructor is performing the call (notice the caller object is not
available if the call is inside a static method).

Table 3.1, “ Joinpoint Types Table ” shows what context values may be available
depending on the joinpoint type.

Joinpoint Pointcut Bean ContextValues
Construct |y gcation JoinpointBearTarget CallérgumerReturn
Value
field read r ead,Fi el|dReadl nvocatFiosl dAccess| Yes No No | Yes
field, all
field write witdsi el dWitel nvocaFi ehndAccess| Yes No Yes No
field,all

method execut i oret hodl nvocatMeohodExecut i onYes No | Yes | Yes
execution al |

constructor | executCamst|r uct or | @oosar uchor Execut iNa No Yes | Yes
execution

construction const r uGanstT uct i onlmn#mLﬁMrExecut iYas No Yes No

method call call, Callerlnvocati thodCall,| Yes | Yes | Yes | Yes
Vet woditiah| edBy Consivetutd Invigyc@dnstrmuct or
Wi Wit med@ | ed By Met Hidetl tli Byivet hod

constructor call, CallerlnvocatoosfructorCallYes | Yes Yes | Yes

call Const mi¢thomGal | ed By@uststu roCalnvisc@anmstr, uct|or ,
Gonshir ncode Cal | ed Bydviet tnvroCadt li Byvet hod

Table 3.1. Joinpoint Types Table

15

16

Chapter 4.

Advices

Advices are aspect methods that are invoked during specific joinpoint executions.
JBoss AOP provides five types of advice.

The default one is the around advice, and it can be used on all execution modes.
This advice wraps the joinpoint, in a way that it replaces the joinpoint execution in the
base system, and is responsible for proceeding execution to the joinpoint.

Besides around advices, you can write advices that, instead of wrapping the
joinpoint, are executed before or after it. In this category, JBoss AOP provides
before, after, after-throwing and finally advices. These advices are available only
when using the generated advisor mode (this is the default mode in JBoss AOP, to
learn how to select another weaving mode, refer to Chapter X).

The next sections will explain in detail the binding and signature rules for JBoss AOP
advices.

1. Around Advices

An around advice can follow this template:

public Object [advice nane] ([l nvocation] invocation) throws
Thr owabl e
{

try{
/1 do sonething before joinpoint execution

/| execute the joinpoint and get its return val ue

hj ect returnVal ue = invocation.invokeNext ();

/1 do sonething after joinpoint has executed successfully ...
[/l return a val ue

return returnVal ue;

}

cat ch(Exception e)

{
/I handl e any exceptions arising fromcalling the joinpoint
t hrow e;

}

finally

{

// Take some action once the joinpoint has conpl et ed
successfully or not

}

17

Chapter 4. Advices

In the template above, Invocation refers to one of the Invocation beans, and can be
the class or g. j boss. aop. j oi npoi nt. | nvocat i on or one of its subtypes.

Since an around advice wraps a joinpoint, it must proceed execution to the joinpoint
itself during its execution. This can be done by calling the method i nvokeNext ()

on i nvocat i on. This method will proceed execution to the next around advice of
that joinpoint. At the end of this chain this i nvokeNext () will proceed to the joinpoint
itself. The value returned by the around advice will replace the joinpoint return value
in the base system.

For example, in the case where there are two around advices bound to a

joinpoint, the first around advice will trigger the second around advice by calling

i nvokeNext () . The second advice will trigger the joinpoint execution by calling the
same method. As a result of the i nvokeNext () execution, the second advice will
receive the joinpoint return value. The value returned by this second advice will be
received as a result by the first around advice. Finally, the value returned by this
advice will replace the joinpoint return value in the base system execution. Normally
though, around advices will simply return whatever value the joinpoint returned! This
is shown in the preceding template example.

If an around advice wants to completely replace the joinpoint execution, it can skip
the call to i nvokeNext () . This will also skip execution of any subsequent around
advices in the chain. As a third alternative, the around advice can call the method
i nvokeTar get () instead of i nvokeNext (). This method will invoke the target
joinpoint directly, skipping any subsequent advices.

The presence of the | nvocat i on parameter is optional. If an around advice does
not have this parameter, it can replace the call to i nvokeNext () with a call to
org. j boss. aop.j oi npoi nt. Currentlnvocati on. proceed().

The signature described before is the default around advice signature rule. In
addition to it, the around advice signature can also be of this form (only in generated
advisor mode):

public [return type] [advice nane] ([annotated paraneter],[annotated
paraneter],...[annot ated paranmeter]) throws Throwabl e

This signature is joinpoint dependent. The return type of the advice must be a type
assignable to the the return type of the joinpoint to be intercepted (i.e. be the same
type; a subclass, if the return type is class; or a subinterface or an implementing
class, if the return type is an interface). In case the joinpoint being intercepted does
not have a return type, this advice return type must be voi d.

An around advice can have zero or more annotated parameters. The annotated
parameters will be covered in detail in Section 3, “Annotated Advice Parameters”.

18

Before/After/After-Throwing/Finally Advices

Finally, JBoss AOP also features a special type of around advice: | nt er cept or.
An interceptor class implements or g. j boss. aop. I nt er cept or, and is described in
Section 4, “Interceptors”.

2. Before/After/After-Throwing/Finally Advices

These advices are more lightweight in the JBoss AOP framework, since they do
not wrap a joinpoint, avoiding the creation of the | nvocat i on objects per joinpoint
execution.

Instead of | nvocat i on objects, JBoss AOP provides JoinPointBean beans for these
advices. As described in Section 10.1, “Joinpoint Beans”, these beans contain all
information regarding a joinpoint, like an | nvocat i on would do. However, since

Joi nPoi nt Bean objects are not used on around advice types, they do not provide
proceeding methods, like i nvokeNext () . They also do not allow you to attach
metadata for a particular invocation.

The rules for before, after, after-throwing and finally advices are quite similar. All of
them can have zero or more annotated advice parameters in their signature, which
will be described in the next subsection.

2.1. Before Advice Signature

A before advice is executed before the joinpoint. The signature for a before advice
must be of this form:

public void [advi ce nane] ([annot at ed paraneter], [annotated
paraneter],...[annot at ed paraneter])

2.2. After Advice Signature

Since an after advice is executed after a joinpoint, it can return a value to replace
the joinpoint return value in the base system. So, they can follow one of these

signatures:
public void [advi ce nane] ([annot at ed paraneter], [annotated
paraneter],...[annotated paraneter])

public [return type] [advice nane] ([annot ated paraneter],
[annot at ed paraneter],...[annotated paraneter])

In the first signature, the after advice does not overwrite the joinpoint return value.
On the other hand, when using the second signature, the after advice return value
will replace the joinpoint return value. As with around advices, this return type must
be assignable to the joinpoint return type.

19

Chapter 4. Advices

2.3. After-Throwing Advice Signature

The fourth type of advice provided by JBoss AOP is the after-throwing type.
This advice is invoked only after the execution of a joinpoint that has thrown a
j ava. | ang. Thr owabl e or one of its subtypes.

The signature of such an advice is the same as the one for before advices:

public void [advice nane] ([annotated paraneter], [annotated
paraneter],...[annot at ed paraneter])

Different from the other advice types, an after-throwing advice has a mandatory
annotated parameter. This parameter is the exception thrown by the joinpoint
execution, as we will see in the next subsection.

2.4. Finally Advice Signature

Lastly, JBoss AOP provides the finally advice type. It is invoked from inside a finally
block, after the joinpoint execution.

This advice is the only one that is called after a joinpoint execution in a deterministic
way. Calls to after and after-throwing advices take place depending on the joinpoint
execution outcome. After advices are not called when the joinpoint execution
terminates abruptly with an exception. After-throwing ones, on the other hand, are
not called when the joinpoint execution returns normally, since no exception is
thrown this time. So, if an advice needs to be run no matter what is the outcome of
the joinpoint, it should be a finally advice.

Pretty much as after advices, finally advices can follow one of the signatures below:

public void [advi ce nanme] ([annotated paraneter], [annotated
paraneter],...[annot at ed paraneter])

public [return type] [advice nane] ([annot ated paraneter],
[annot at ed paraneter],...[annotated paraneter])

The last signature shows that finally advices can also overwrite the joinpoint
execution return value by returning a value themselves. But notice that this return
value will not be received by the base system if an exception has been thrown.
However, it is easy to know whether this condition is met, by making use of
annotated parameters.

3. Annotated Advice Parameters

This section lists the annotated parameters that can be used on JBoss AOP advices
(available only in generated advisor execution mode). Table 4.1, “Annotated
Parameters Table” lists all annotations and their semantics.

20

Annotated Advice Parameters

Except for the @oi nPoi nt annotation, used to refer to joinpoint beans, all other
annotations are used on parameters that contain joinpoint context values.

Notice that the types of annotated parameters are dependent on the joinpoint being
intercepted by the advice.

JBoss AOP will accept any type that is assignable from the type referred by that
parameter, as shown in the Type Assignable From column of the table below. For
example, for a joinpoint whose target is of type PQIQ, the annotated parameter that
receives the target must be of PQIOtype, one of PQIOJs superclasses, or one of the
interfaces implemented by PQIO.

Regarding the type of joinpoint bean parameters, the rules are the same for the
default signature of around advices (without annotations). For example, an around
advice that intercepts a method execution, can receive either a Met hodl nvocat i on,
or an | nvocati on (the complete list of joinpoint beans and their relationship with
joinpoint types was shown in Table 3.1, “ Joinpoint Types Table). As already
explained, around advices use | nvocat i on instances, while the other advices use
Joi nPoi nt Bean objects.

Notice also that only one annotated parameter can be mandatory: @hr own. This will
be further explained in Section 3.1, “@Thrown annotated parameter”.

Except for @\ g, all annotations are single-enforced, i.e., there must be at most only
one advice parameter with that annotation per advice.

21

Chapter 4. Advices

Annotation Semantics Type Mandatory Advice type
assignable Beforéround After After-Finall
from Throwing
@oi nPoi nt| JoinPoint Joinpoint No No | Yes No No No
bean invocation
type
JoinpointBean No Yes| No Yes | Yes Yes
interface
type
@rar get Joinpoint Joinpoint No Yes| Yes Yes | Yes Yes
target target type
@cal | er Joinpoint JoinPoint No Yes| Yes Yes | Yes Yes
caller caller type
(only for call
joinpoints)
@hr own Joinpoint |java.l ang. Thi¥esable No | No No | Yes Yes
thrown
exception If used on - for
an after- after-
throwing throwing
advice, this | advices
parameter
can also be: ~ O
finally
- assignable | advices
from any only if
exception @eturn
declaredto | is
be thrown present
by the
joinpoint No: otherwise
-java. |l ang. Runti neExceptijon
or any
subtype of
this class
@eturn | Joinpoint JoinPoint No No No Yes| No Yes
return return type
value
@vrg One of the | JoinPoint No Yes| Yes Yes | Yes Yes
joinpoint argument
arguments type
Talohegd4.1. Alhniopgtech Pangndeiters Thlble Yes Yes Yes Yes Yes
arguments

22

@Thrown annotated parameter

Due to the fact that most of these parameters represent context values, their
availability depends on the joinpoint type. If an advice receives as a parameter a
context value that is not available during a joinpoint execution, the parameter value
will be null. The exception to this rule is @Return. If an advice has this parameter, it
will not intercept joinpoints that don’t have a return value.

The only exception to this rule is @\ gs on field read joinpoints. Such an advice will
be called with an empty arguments array, in that case.

3.1. @Thrown annotated parameter

As shown in Table 4.1, “Annotated Parameters Table”, the presence of a @hr own
annotated parameter can be mandatory depending on the advice type and its
parameters.

This annotation is available only for after-throwing and finally advices. For
after-throwing advices this parameter is always mandatory:

public class Aspect

{
public void throw ngl(@hrown Runti neExcepti on thrownExcepti on)
{
}
public void throw ng2()
{
}
}
<a0p>
<aspect class="Aspect"/>
<bi nd pointcut="...">
<t hr owi ng aspect ="Aspect" nanme="t hr ow ngl"/>
<t hr owi ng aspect ="Aspect" nanme="t hr ow ng2"/ >
</ bi nd>
</ aop>

The advice t hr owi ng1 follows this rule; advice t hr owi ng2, on the other hand, is
invalid, because it does not contain the mandatory @hr own annotated parameter.

For finally advices, the @hr own annotation is compulsory only if a @Ret urn
annotated parameter is present. This way, a finally advice can identify whether

the return value is valid or not. If the @hr own parameter is nul | , it means that

the joinpoint returned normally and that the value contained in the @ret urn
annotated-parameter is valid. Otherwise, the value contained in @et ur n annotated

23

Chapter 4. Advices

parameter must be ignored (it will be nul | if the return type is not primitive, 0 if it is
a primitive number or f al se if it is boolean). If the finally advice does not receive the
joinpoint return value, the use of the @hr own annotated parameter is optional and,
as expected, its value will be nul | if the joinpoint being intercepted did not throw an
exception. Take a look at the next example:

public class Aspect

{
public void finallyl(@hrown Throwabl e t hrownExcepti on)

{

public void finally2()
{

public void finally3(@Return int returnedVal ue, @hrown
Thr owabl e t hr ownExcept i on)

{ i f (thrownException == null)
{
//We returned normal ly, the @eturn paraneter is valid
int i = returnedVal ue;
}
el se
{
/1 An exception happened whil e invoking the target
j oi npoi nt
//The return value is invalid
}
}
public void finally4(@Return int returnedVal ue)
{
}

24

JoinPoint Arguments

}
<aop>
<aspect class="Aspect"/>
<bi nd poi nt cut ="execution(public int *->*(..))">
<finally aspect="Aspect" nane="finallyl"/>
<finally aspect="Aspect" nane="finally2"/>
<finally aspect="Aspect" nane="finally3"/>
<finally aspect="Aspect" nane="finally4"/>
</ bi nd>
</ aop>

This example binds four finally advices to the execution of all public methods that
return an int value. Take note on the type of the @hr own-annotated parameters,
which must be Thr owabl e for this type of advice.

The presence of @hr own is not mandatory in advices fi nal | y1() and fi nal | y2(),
because they do not have a @Ret ur n annotated parameter. Hence, both advices are
valid. Besides, fi nal | y1() will receive a non-null exception only when the joinpoint
being intercepted throws an exception.

For advice method fi nal | y3() the presence of a @hr own annotated parameter

is mandatory because this advice also has a @et ur n annotated parameter. If an
exception happens when invoking the target joinpoint, this advice will receive a
non-null @hr own parameter, meaning that the @Ret ur n annotated parameter is
invalid. If the joinpoint completes normally, the @hr own annotated parameter will be
nul I and the @ret ur n annotated parameter will contain the return value of the target
joinpoint.

The final | y4() advice is invalid, it contains a @ret ur n parameter, but has no
@hr own annotated parameter. Finally advices require a @hr own parameter if a
@ret ur n annotated parameter is present.

3.2. JoinPoint Arguments

As we saw, an advice can receive the joinpoint arguments as annotated parameters.
This can be achieved with the use of two different annotations: @\ g and @\r gs.

There is a great difference between these two approaches, though. With @\ g,
each parameter is equivalent to a single joinpoint parameter. With @\vr gs, one
single parameter, of type Obj ect [], receives an array containing all joinpoint
arguments. This last possibility is more generic than the first one, since it can be
used independently of the joinpoint argument types. Plus, it allows changes to
the argument values. Any changes performed on the values of this array will be

25

Chapter 4. Advices

perpetuated to the joinpoint execution. However, the use of @\r gs parameters on

a join point interception means the arguments array needs creation. The same
happens with the use of get Ar gunent s() and set Ar gument s() methods on

I nvocat i on classes. So the use of @\ g annotated parameters is more lightweight,
and should be used whenever there is no need to changing the joinpoint arguments.

When using @\ g annotated parameters, the types of these parameters depend
on the joinpoint being intercepted. Not all the target joinpoint arguments need to
be included as parameters to the advice method. An advice can receive only the
argument values that are relevant to its execution.

Given all the possibilities in the usage of @\r g, JBoss AOP will match the advice
parameters with the joinpoint ones, to infer to which joinpoint argument each advice
parameter refers to. This matching process consists of the following steps:

» Each advice parameter will be matched to the first unmatched joinpoint argument
that has the same type. This is done in the order that the advice parameters
appear in the advice method.

« If any advice parameter is left unmatched, we proceed to an additional step. Each
advice parameter will be matched to the first unmatched joinpoint argument that is
assignable to it. This is done in the order that the advice parameters appear in the
advice method declaration.

To illustrate this mechanism, consider the following scenario:

public class PQIO

{
voi d met hod(Col | ection arg0, List argl, int arg2, String

arg3) {}

}
<aop>
<aspect cl ass="M/Aspect"/>
<bi nd poi nt cut ="executi on(* PQIO >nmet hod(..))">
<bef ore aspect="M/Aspect" name="advice"/>
</ bi nd>
</ aop>

The example above shows a xml-declared binding. We will use examples with those
to illustrate signature concepts from now on. Detailed syntax of xml bindings is
shown in Chapter 5, XML Bindings.

Class PQiOis a plain java old object that contains only one method. When calling
this method, we want to trigger MyAspet . advi ce() before this method is called.
PQIO. et hod() receives four distinct arguments, all of them can be available to an

26

JoinPoint Arguments

advice by using @\ g annotated parameters. If MyAspect . advi ce() has the following
signature:

public class MyAspect

{
public void advice(@rg Col | ecti on paranD, @\rg List parant,

@\rg int paran2, @\wrg String paran8)
{

MyAspect . advi ce() parameters will be trivially matched to PQIO. et hod()
arguments as follows:

paranD <- arg0
paraml <- argl
paran? <- arg2
paran8 <- arg3

The matching outcome will be the same if MyAspect . advi ce() signature changes
slightly in the following manner, since Col | ecti on is assignable from Li st for
par ang:

public class MyAspect

{
public void advice (@\rg Collection paranD, @\rg Coll ection

paraml, @\g int paranR, @\wg String paranB)
{

If MyAspect . advi ce() receives only one parameter, of type j ava. | ang. Obj ect :

public class MyAspect

{
public void advice(@\ g Object paranD)
{
}

}

The parameter matching outcome will be:

27

Chapter 4. Advices

paranD <- arg0

Since there is no joinpoint argument of type Qoj ect , we proceed to the additional
matching step in this case. Because ar g0 is the first unmatched argument that is
assignable to bj ect , we assign this argument to par anD.

Notice that JBoss AOP will match all parameters correctly if we invert the order of
parameters:

public class MyAspect

{
public void advice(@\vrg int paran2, @\vwg Collection paranD, @\rg
String paranB8, @\rg List paranil)

{

If one writes an advice whose unique parameter is a Col | ect i on, and we want to
refer to the second joinpoint argument:

public class M/Aspect

{
public void advice (@\rg Collection paraml)
{
}

}

It will not work as desired. JBoss AOP will assign ar g0 to par ant.:

paranil <- argO

In cases like this, it is possible to enforce the correct matching of joinpoint arguments
and advice parameters. The annotation @\ g has an attribute, index, whose purpose
is to define the index of the argument to which that parameter refers.

So, in this case, the MyAspect . advi ce() parameter list below:

public class MyAspect

{
public void advice (@\rg(index=1) Collection paranid)

{

28

Overloaded Advices

Will have the desired matching, which is:

paranil <- argl

In the example just shown in this section, MyAspect . advi ce() was a before advice,
but the same rules are used for all advices using @\ g annotated parameters.

4. Overloaded Advices

Method names can be overloaded for interception in different joinpoint scenarios. For
instance, let's say you wanted to have a different trace advice for each invocation
type. You can specify the same method name t r ace and just overload it with the
concrete invocation type.

public class AroundAspect
{

public Object trace(Methodl nvocation invocation) throws Throwab
{

try

{

Systemout.println("Entering method: " +
i nvocat i on. get Met hod()");

return invocation.invokeNext(); // proceed to next advice
or actual cal

}
finally
{
Systemout. println("Leaving nethod: " +
i nvocat i on. get Met hod()");
}
}
public Object trace(Constructorlnvocation invocation) throws
Thr owabl e
{
try
{
Systemout.println("Entering constructor: " +

i nvocati on. get Constructor()");
return invocation.invokeNext(); // proceed to next advice
or actual cal
}
finally

{

29

Chapter 4. Advices

System out . printl n("Leaving constructor: " +

i nvocat i on. get Constructor()");

}

As you can see, the selection of the advice method is very dynamic. JBoss AOP will
select the most appropriate advice method for each joinpoint interception. For the

following setup:

class PQIO
{
public PQIQ(){}
publ i c soneMet hod(){}

}
<aop>
<aspect cl ass="AroundAspect"/>
<bi nd poi ntcut="al | (PQIO ">
<advi ce aspect =" AroundAspect "
</ bi nd>
</ aop>

When calling POJO’s constructor:

poj 0. someMet hod() ;

name="trace"/ >

JBoss AOP will call the t race() method taking a Const r uct or I nvocat i on, and

when calling:

poj 0. someMet hod() ;

JBoss AOP will call the trace() method taking a Met hodl nvocati on.

This examples shows that JBoss AOP will select the most appropriate advice
method for each joinpoint interception. The capability of selecting overloaded advices
is available for all types of advices. And its impact in the system performance is

minimal since this selection is done once.

In this section, we will describe every rule JBoss AOP uses to select an advice

method when this one is overloaded.

4.1. Annotated-parameter Signature

Let's start with the selection of advices when all of them use the
annotated-parameter signature. As we will see later, very similar rules are used for

selecting advices with the default signature.

30

Annotated-parameter Signature

The process of selection of advices that follow the annotated-parameter signature
depends on the priority of each kind of parameter:

@oi nPoi nt > @arget > @al | er > @hrowabl e = @eturn > @\rg > @\rgs

This priority is used in two different criteria:

» presence of the annotated parameter

 assignability degree of the annotation parameter
4.1.1. Presence priority

This rule is quite simple, it means that an advice that receives only a joinpoint bean
(@oi nPoi nt) as its parameter will have a higher priority than another advice

that receives all other annotated parameters available (notice we are following the
annotation priority order just described).

In other words, the first OneAspect . af t er () advice method will be chosen when
calling PQIO. soneMet hod() in this example:

public class PQIO

{
String soneMet hod(String s){}
}
<aop>
<aspect cl ass="OneAspect"/>
<bi nd poi nt cut ="executi on(* PQIO >sonmeMet hod(..))">
<after aspect="OneAspect" name="after"/>
</ bi nd>
</ aop>

public class OneAspect

{
public void after(@oi nPoi nt Met hodJoi nPoint njp){} //1

public String after(@arget PQIO pojo, @Return String ret, @\rg
String arg0){} //2

}

Again in the following example, the first OneAspect . af t er () advice method will

be chosen when calling PQJIO. soneMet hod() . The first aft er () advice method’s
highest priority parameter is @ar get , the second advice parameter’s highest priority
parameter is @et ur n, and @ar get has a higher priority than @et ur n:

public class PQIO

{
String soneMet hod(String s){}

31

Chapter 4. Advices

}
<aop>
<aspect cl ass="OneAspect"/>
<bi nd poi nt cut ="execution(* PQIO >sonmeMet hod(..))">
<after aspect="OneAspect" name="after"/>
</ bi nd>
</ aop>

public class OneAspect

{
public void after(@arget PQJIO pojo){} //1

public String after(@Return String ret, @vrg String arg0){} //2

In cases where the highest priority annotated parameter of two advice methods

is the same, we move on to the next highest priority annotated parameter of both
advices. In the following scenario, both OneAspect . af t er () methods have the

@oi nPoi nt parameter as the highest priority parameter. The first one has a

@rar get as its second-highest priority parameter while the second one has @ret urn
as its second-highest priority parameter. Since @ar get has a higher priority than
@ret ur n, the first OneAspect . aft er () is chosen for PQIO. soneMet hod() .

public class PQIO

{
String soneMet hod(String s){}
}
<a0p>
<aspect cl ass="OneAspect"/>
<bi nd poi nt cut ="executi on(* PQIC >soneMet hod(..))">
<after aspect="OneAspect" name="after"/>
</ bi nd>
</ aop>

public class OneAspect

{
public void after(@oi nPoi nt Met hodJoi nPoi nt njp, @arget PQIO

pojo){} //1
public String after(@oi nPoi nt Met hodJoi nPoi nt nj p, @Return
String ret){} //2

}

In the next example, the first OneAspect . bef or e() advice is chosen over the second
one when calling PQJO sonmeMet hod() . The reason is that, all else being equal, the
first one matches more parameters..

32

Annotated-parameter Signature

public class PQIO

{
String soneMethod(String s, int i){}
}
<a0p>
<aspect cl ass="OneAspect"/>
<bi nd poi nt cut ="execution(* PQIO >someMet hod(..))">
<bef ore aspect ="OneAspect"” nanme="before"/>
</ bi nd>
</ aop>

public class OneAspect

{
public void before(@rg String s, @vrg int i){} //1
public String before(@\vrg String s){} //2

If the priority of annotated parameters using the presence criterion is the same on
more than one advice, the next criterion, the assignability degree, is used.

4.1.2. Assignability Degree

The assignability degree rule will select the advice with the lowest assignability
degree on the highest priority parameter. The assignability degree is simply the
distance in the class hierarchy between the parameter type, and the type it must be
assignable from.

As an example, let us look at the following class hierarchy:

public interface PQIO nterface{}
public class PQICSuper Cl ass extends java.l ang. Obj ect{}

public class PQIO extends PQJOSuperC ass i npl enents PQIQ nterface

{
voi d method(){}

And this advice binding:

<aop>
<aspect cl ass="OneAspect"/>
<bi nd poi nt cut ="executi on(* PQIO >nmethod(..))">
<bef ore aspect ="OneAspect" nanme="before"/>
</ bi nd>
</ aop>

33

Chapter 4. Advices

public class OneAspect

{
public void before(@arget PQIO target){} //1
public void before(@arget PQIO nterface target){} //2
public void before(@arget PQIOSuperC ass target){} //3
public void before(@arget Cbject target){} //4

}

With PQl O as the target of a joinpoint, the parameter list fo the first
OneAspect . bef or e() advice method has an assignability degree O on @rar get .

The parameter lists for the second and third OneAspect . bef or e() advice methods
both have an assignability degree of 1 for @rar get, since it takes one step through
the hierarchy to reach the desired type, PQIO.

Finally, the parameter list for the fourth OneAspect . bef ore() advice method has an
assignability degree of 2 on @rar get .

Hence, JBoss AOP will select the first advice in the example above, since it has the
lowest asignability degree on @rar get .

The assignability degree rule is, similarly to the presence rule, applied on the highest
priority annotated parameter, which is @oi nPoi nt . In case there is a match using
this criteria (i.e., either both advices lack a @oi nPoi nt annotated parameter, or
they both have the same type on the @oi nPoi nt parameter), we move to the next
highest priority annotated parameter, which is @ar get . The same rule is applied
until we can find an advice with the highest priority.

Notice that the assignability degree of an advice on @r g is the sum of the
assignability degree on all @\ g parameters. In the following scenario:

public class PQIO

{
public void nmethod(PQJO argunment0, String argumentl, int
ar gunent 2)
}
<a0p>
<aspect cl ass="OneAspect"/>
<bi nd poi nt cut =" executi on(* PQIO >nmet hod(..))">
<bef ore aspect ="OneAspect" nanme="before"/>
</ bi nd>
</ aop>

public class OneAspect
{

34

Annotated-parameter Signature

public void before(@rg PQIO p, @\rg String s, @vrg int i){} //1

public void before(@rg PQICSuperCl ass p, @\rg String s, @\rg
int i){} //2

public void before(@rg PQIO p, @\rg Object s, @rg int i){} //3

public void before(@rg Object p, @G\rg Object s, @vrg int i){}
/14

The first advice has assignability degree of 0 (for PQIO) + O (for St ri ng) + O (fori nt).
Notice how primitive types don’t have superclasses, and, hence, have always a 0
value of assinability degree.

The second advice has a larger assignability degree, since PQIQSuper d ass is the
superclass of PQIO, @r g PQICSuper G ass p has assignability degree of 1. Hence,
this advice assignability degree on @vrgis: 1 +0+0=1.

The third one also has an assignability degree of 1, since bj ect is the superclass of
String.

Finally, the last advice has assignability degree of 3 on @r g. The first parameter,
@vrg oject p,refersto PQJOand has assignability degree of 2. The second one,
assignability degree of 1, since it refers to St ri ng. And, since @\ g i nt refers to the
i nt argument of PQJIO. et hod(), we have 2 +1 + 0= 3.

In the above example, JBoss AOP would select the first advice to intercept
PQJQ. net hod() execution.

4.1.3. Return Types

For annotated parameters typed around advices, there is a third rule, which is the
return type. This rule also applies to after and finally advices. If the joinpoint has a
non-void return type, the assignability degree of the advice return type is analyzed,
pretty much in the same way we do with annotated parameters. So, for overloaded
around advices, these three criteria are applied:

» presence of annotated parameter
« assignability degree of annotated parameter
« assignability degree of return type

If two advices have the same ranking on the first two criteria, we check their return
types and pick the advice with the lowest assignability degree:

public class PQIO

{
public Collection method(int arg0O, bool ean argl, short arg2) {.}

35

Chapter 4. Advices

<a0p>
<aspect cl ass="OneAspect"/>
<bi nd poi nt cut ="executi on(* PQIO >nethod(..))">
<advi ce aspect ="OneAspect"” name="around"/>
</ bi nd>
</ aop>

public class OneAspect
{

public Collection around(@oi nPoi nt |Invocation inv, @\rg int
paranD) throws Throwabl e
{...} /1

public List around(@oi nPoint |Invocation inv, @\vg bool ean
paraml) throws Throwabl e
{...} /2

In OneAspect above, we have two around advices. Both of them are equal when
compared using the presence criteria. When comparing them using the assignability
of annotated parameter, both of them have the same degrees on @oi nPoi nt and on
@\r g parameters. In this case, we will compare their return type assignability degree.

Notice that, when it comes to return types, it is the return type that must be
assignable to the joinpoint type, and not the contrary. This is due to the fact that
JBoss AOP will assign the advice return value to the joinpoint return result in the
base system. Hence, in the example above, the caller of PQJO. et hod() expects

a Col | ecti on return value. So, it is ok to receive either a Col | ect i on from the

first advice, as the more specific type Li st from the second advice. But JBoss

AOP will complain if your advice returns an Qbj ect (Obj ect return type is allowed
only in the default signature; here we are discussing the annotated-parameter
signature), because we can't give an Qbj ect to the base system when it is expecting
a Col | ecti on.

So, in the above example, the first advice has an assignability degree of 0 on

the return type, becase it takes 0 steps in the hierarchy to go from Collection to

Col | ecti on. In the second advice, this value is 1, because it takes 1 step to go from
Li st to Col I ecti on. JBoss AOP would select the first advice.

On overloaded after and finally advices, we also have a return type rule. But, since
the return type is optional (these advices can return a value, but is not enforced to it),
we have a total of four rules for this advice:

» presence of annotated parameter

36

Annotated-parameter Signature

« assignability degree of annotated parameter
» presence of non-void return type
« assignability degree of return value type

The third rule, presence of non-void return type, states that JBoss AOP will give
preference to an after advice that returns a value:

<aop>
<aspect cl ass="OneAspect"/>
<bi nd poi nt cut ="execution(* PQIO >nethod(..))">
<after aspect="OneAspect" name="around"/>
</ bi nd>
</ aop>

public class OneAspect

{
public Collection after(@vrg int parand) {...} //1
public List after(@wvrg boolean parant) { ... } //2
public void after(@vrg short paran2) { ... } /13
}

Considering the same PQJOclass defined previously (with publ i ¢

voi d nethod(int, boolean, short)), all three overloade versions of

OneAspect . af t er () advice wil be considered equivalent in the first two criteria.
Hence, we move to the third rule, that states that JBoss AOP prefers an after advice
that returns a value over another one that is voi d. So, in the example above, the
third advice is ruled out, and JBoss AOP still has two advices to select. Moving to
the next rule, he assignability degree of the return type, we have the same result as
the OneAspect . around() advice: the first one has a 0 degree, and the second one,
a 1 degree value. As a conclusion of these degrees, JBoss AOP will select the first
advice, with the lowest return assignability degree.

4.1.4. A Match

Notice that, ilf JBoss AOP cannot find an advice with highest priority, it just selects
one of the methods arbitrarily. This would be the case of the following advice method
scenario:

public class PQIO

{

public void nethod(int argO, long argl) {.}
}
<a0p>

37

Chapter 4. Advices

<aspect cl ass="OneAspect"/>
<bi nd poi nt cut =" executi on(* PQIO >nmethod(..))">
<bef ore aspect ="OneAspect" nanme="before"/>
</ bi nd>
</ aop>

public class OneAspect

{
public void advice(@vrg int arg0) {}

public void advice(@rg |ong argl) {}

4.1.5. Lowest Priority

There are exceptions for the rules we've seen. Advices with one or more of the
following characteristics will be considered lowest priority, regardless of any other
criteria:

e an advice that receives @rar get parameter to intercept a joinpoint with no target
available

« an advice that receives @al | er parameter to intercept a joinpoint with no caller
available

* an advice that receives @\ g parameter to intercept a field read joinpoint

4.2. Default Signature

For the default around advice signature (i.e., without annotated parameters), there is
only one parameter to analyze, the invocation. So, the priority rules are very simple:

« presence of the invocation parameter
- assignability degree of the invocation parameter.

Lets revisit the example given in the beginning of this section, in augmented version:

cl ass PQIO

{
public int field;

public PQIQ(){}
publ i c someMet hod(){}

public class OneAspect

38

Default Signature

public Object trace(Methodl nvocation invocation) throws
Throwable {...} //1

public Object trace(Constructorlnvocation invocation) throws
Throwable {...} //2

public Object trace(lnvocation invocation) throws Throwabl e
{...} 113

public Ooject trace() throws Throwable {...} //4

}
<aop>
<aspect cl ass="OneAspect"/>
<bi nd poi ntcut="al | (PQIO) ">
<advi ce aspect ="OneAspect" nanme="trace"/>
</ bi nd>
</ aop>

The fourth advice above will never be called, considering the presence rule. It is

the only one that lacks the I nvocat i on parameter, and would be called only if all
others were considered invalid in a scenario, which won'’t happen in this example.
By ruling out this advice with the presence rule, all other advices are equivalent:

the invocation parameter is present in all of them. So, we need to move on to the
assignability degree rule to select one of them. However, the assignability degree
needs to be calculated accordingly to the joinpoint being intercepted. JBoss AOP
needs to evaluate each joinpoint type to be intercepted to do the correct selection for
each case.

Consider the interception of the constructor of PQJQ. In that case, the first advice

is considered invalid, becase a Met hodl nvocat i on is not assignable from the
invocation type that JBoss AOP will provide, Const rucor I nvocat i on. We are now
left with the second and third advices. The second one has assignability degree of 0
on the invocation type. The third one, assignability degree of 1 (it takes one step in
the hierarchy to go fom Construct or I nvocati on to | nvocat i on). So, in this case,
JBoss AOP will select the second advice, because it is the valid advice with the lower
assignability degree on the invocation.

Similary, to intercept the execution of PQIO. someMet hod() , JBoss AOP will
consider the second advice invalid, because it is supposed to receive an invocation
whose type is assignable from Met hodl nvocat i on. Since the first advice has an
assignability degree of 0 on the invocation, and the third one, assignability degree of
1, JBoss AOP will select the first one.

Given that I nvocat i on will always be the super class of the expected invocation
type, JBoss AOP will select this advice, whose assignability degree will always be 1,
only when the other two advices are invalid. That would be the case of a field read,
where the invocation type is Fi el dReadl nvocat i on.

39

Chapter 4. Advices

4.3. Mixing Different Signatures

Finally, when we mix default signature methods with annotated parameter ones, an
advice in one of the forms:

public Object [advice nane] ([|nvocation] invocation) throws
Thr owabl e

public Object [advice nane] ([l nvocation] invocation) throws
Thr owabl e

public Object [advice nane] () throws Throabl e

Has the highest priority over all annotated-parameter advices. If there is more than
one with the default signature, the criteria described in the previous section will be
used to select one of them..

Notice that mixing different signatures is possible only with around advices, since
only these ones can follow the default signature.

5. Common Mistakes

While writing advices and bindings, it is possible to make some mistakes, like, for
example, mistyping the advice name, or writing an advice with an invalid signature.

Whenever there is a mistake in the advice nhame or signature, JBoss AOP will throw
an exception with a message stating the cause of the error. The exception thrown

is a runtime exception and should not be treated. Instead, it indicates a mistake that
must be fixed.

There are two types of exceptions JBoss AOP can throw on those cases:

* org.jboss. I nvalidAdvi ceException

This exception indicates that an advice's signature is considered invalid for the
type used on the binding.

This can happen when the advice is mistakenly declared to be of the wrong type,
or when one of the signature rules was not followed.

* org.jboss. NoMat chi ngAdvi ceExcepti on

This exception is thrown when JBoss AOP can not find an advice method suitable
for a specific joinpoint to be intercepted.

A possible scenario is when there is no advice method with the name used on the
bind declaration. To solve it, just fix the advice name on the declaration or add a
method with the declared advice name.

40

Common Mistakes

When there is one or more methods with the advice name, this exception indicates
that JBoss was not able to find an advice with a signature that suits the joinpoint to
be intercepted. In this case, the solution can be to alter the signature of one of the
existent advice methods, or to add an overloaded advice method that matches the
joinpoint to be intercepted.

41

42

Chapter 5.

XML Bindings

1. Intro

In the last sections you saw how to code aspects and how pointcut expressions are
formed. This chapter puts it all together. There are two forms of bindings for advices,
mixins, and introductions. One is XML which will be the focus of this chapter. The
Annotated Bindings chapter discusses how you can replace XML with annotations.

2. Resolving XML

JBoss AOP resolves pointcut and advice bindings at runtime. So, bindings are a
deployment time thing. How does JBoss AOP find the XML files it needs at runtime?
There are a couple of ways.

2.1. Standalone XML Resolving

When you are running JBoss AOP outside of the application server there are a few
ways that the JBoss AOP framework can resolve XML files.

* j boss. aop. pat h This is a system property that is a ;' (Windows) or ":' (Unix)
delimited list of XML files and/or directories. If the item in the list is a directory,
JBoss AOP will load any xml file in those directories with the filename suffix
-aop. xm

* META- I NF/j boss-aop. xml Any JAR file in your CLASSPATH that has a
j boss-aop. xm file in the META- 1 NF/ will be loaded. JBoss AOP does a
Cl assLoader . get Resour ces(" META- | NF/ j boss-aop. xm ") to obtain all these
files.

2.2. Application Server XML Resolving

On the other hand, when you are running JBoss AOP integrated with the application
server, XML files can be deployed in two different ways. One is to place an XML

file with the suffix *- aop. xm in the deploy directory. The other way is to JAR up
your classes and provide a META- | NF/ j boss- aop. xni file in this JAR. This JAR file
must be suffixed with . aop and placed within the deploy/ directory or embedded as a
nested archive.

Note that in JBoss 5, you MUST specify the schema used, otherwise

your information will not be parsed correctly. You do this by adding the

xm ns="urn: j boss: aop- beans: 1: 0 attribute to the root aop element, as shown
here:

43

Chapter 5. XML Bindings

<aop xm ns="urn:j boss: aop- beans: 1. 0" >
<l-- The exact contents w |l be explained bel ow -->
</ aop>

3. XML Schema

The xml schema can be found in the distribution's et c/ literal> folder.

4. aspect

The <aspect > tag specifies to the AOP container to declare an aspect class. It is
also used for configuring aspects as they are created and defining the scope of the
aspects instance.

4.1. Basic Definition

<aspect class="org.jboss. MyAspect"/>

In a basic declaration you specify the fully qualified class name of the aspect. If you
want to reference the aspect at runtime through the AspectManager, the name of
the aspect is the same name as the class name. The default Scope of this aspect is
PER_VM Another important note is that aspect instances are created on demand and
NOT at deployment time.

4.2. Scope
<aspect class="org.]jboss. M/Aspect" scope="PER VM'/>

The scope attribute defines when an instance of the aspect should be created. An
aspect can be created per vm, per class, per instance, or per joinpoint.

44

Configuration

Name Description

PER_VM One and only instance of the aspect class is allocated
for the entire VM.
PER_CLASS One and only instance of the aspect class is allocated

for a particular class. This instance will be created if an
advice of that aspect is bound to that particular class.

PER_INSTANCE

PER_JOINPOINT

PER_CLASS_JOINPOINT

An instance of an aspect will be created per advised
object instance. For instance, if a method has an
advice attached to it, whenever an instance of that
advised class is allocated, there will also be one
created for the aspect.

An instance of an aspect will be created per

joinpoint advised. If the joinpoint is a static member
(constructor, static field/method), then there will be one
instance of the aspect created per class, per joinpoint.
If the joinpoint is a regular non-static member, than

an instance of the aspect will be created per object
instance, per joinpoint.

An instance of an aspect will be created per advised
joinpoint. The aspect instance is shared between all
instances of the class (for that joinpoint).

Table 5.1. Aspect instance scope

4.3. Configuration

<aspect class="org.jboss. SoneAspect" >

<attribute nane=

" Sonel nt Val ue" >55</ attri but e>

<advi sor-attribute name="M/Advi sor"/>
<i nst ance- advi sor-attribute nanme="M/I nst anceAdvi sor"/>
<j oi npoi nt-attribute name="M/Joi npoint"/>

</ aspect >

Aspects can be configured by default using a Java Beans style convention. The
<at t ri but e> tag will delegate to a setter method and convert the string value to the

type of the setter method.

45

Chapter 5. XML Bindings

primitive types (int, float, String, etc...)

java.lang.Class
java.lang.Class[]

java.lang.String[]

java.math.BigDecimal

org.w3c.dom.Document

java.io.File
java.net.InetAddress

java.net.URL

javax.management.ObjectName (if running in JBoss)

Table 5.2. Supported Java Bean types

Besides types, you can also inject AOP runtime constructs into the aspect. These
types of attributes are referenced within XML under special tags. See the table

below.
<advisor-attribute> org.jboss.aop.Advisor
<instance-advisor- org.jboss.aop.InstanceAdvisor
attribute>
<joinpoint-attribute> org.jboss.aop.joinpoint.Joinpoint

Table 5.3. Injecting AOP runtime constructs

4.3.1. Names

If there is no name attribute defined, the name of the aspect is the same as the cl ass
or f act ory attribute value.

4.3.2. Example configuration

<aspect cl ass="org.jboss. SoneAspect ">
<attribute nane="Sonel nt Val ue" >55</attri but e>
<advi sor-attribute name="M/Advi sor"/ >
<i nst ance- advi sor-attri bute nane="M/I nst anceAdvi sor"/ >
<j oi npoi nt-attri bute name="M/Joi npoint"/>
</ aspect >

The above example would would need a class implemented as follows:

public class SomeAspect {
publ i ¢ SoneAspect () {}

public void set Sonel nt Val ue(int val) {...}

46

Aspect Factories

public void set M/Advi sor (org. j boss. aop. Advi sor advisor) {...}

public void set Myl nst anceAdvi sor (org.j boss. aop. | nst anceAdvi sor
advisor) {...}

public void set MyJoi npoi nt (org. j boss. aop. j oi npoi nt. Joi npoi nt
joinpoin) {...}
}

4.4. Aspect Factories

<aspect name="M/Aspect" factory="org.]jboss. Aspect Confi gFact ory"
scope="PER_CLASS" >

<some-ar bi trary-xm >val ue</ sone-arbi trary-xm >
</ aspect >

If you do not like the default Java Bean configuration for aspects, or want to delegate
aspect creation to some other container, you can plug in your own factory class by
specifying the f act or y attribute rather than the cl ass attribute. Any arbitrary XML
can be specified in the aspect XML declaration and it will be passed to the factory
class. Factories must implement the or g. j boss. aop. advi ce. Aspect Fact ory
interface.

5. interceptor

<interceptor class="org.jboss. M/Interceptor" scope="PER VM'/>
<interceptor class="org.jboss. Sonel nterceptor">
<attribute nanme="Sonel nt Val ue">55</attri bute>
<advi sor-attribute name="M/Advi sor"/>
<i nst ance- advi sor-attri bute nanme="M/I nst anceAdvi sor"/>
<j oi npoi nt-attribute name="M/Joi npoint"/>
</interceptor>
<i nt ercept or name="M/Aspect"
factory="org.jboss. | nterceptorConfi gFactory" scope="PER CLASS">
<sone- ar bi trary-xm >val ue</ some- ar bi trary-xm >
</interceptor>

Interceptors are defined in XML the same exact way as aspects are. No difference
except the tag. If there is no nane attribute defined, the name of the interceptor is the
same as the cl ass or f act or y attribute value.

6. bind

<bi nd poi nt cut =" executi on(voi d Foo->bar())">
<interceptor-ref nane="org.jboss. Myl nterceptor/>
<bef ore name="bef or eAdvi ce" aspect="org.jboss. MyAspect"/>
<around name="aroundAdvi ce" aspect="org.jboss. MyAspect"/>

47

Chapter 5. XML Bindings

<after nane="afterAdvi ce" aspect="org.jboss. MyAspect"/>
<t hr owi ng nane="t hr owi ngAdvi ce" aspect="org.j boss. MyAspect"/ >
<finally name="final | yAdvi ce" aspect="org.jboss. MyAspect"/ >
<advi ce name="trace" aspect="org.]jboss. M/Aspect"/>

</ bi nd>

In the above example, the Myl nt er cept or interceptor and several advice methods of
the MyAspect class will be executed when the Foo. bar method is invoked.

bind
bi nd tag is used to bind an advice of an aspect, or an interceptor to a
specific joinpoint. The poi nt cut attribute is required and at least an advice or
interceptor-ref definition.

interceptor-ref
The i nt er cept or -ref tag must reference an already existing i nt er cept or
XML definition. The name attribute should be the name of the interceptor you are
referencing.

before, around, after, throwing and finally
All these tags take a name attribute that should map to an advice of the specified
type within the aspect class. The aspect attribute should be the name of the
aspect definition.

advice
The same as the previous, except for the fact that doesn't specify the type of the
advice. This tag selects the default advice type, around, and is hence equivalent
to the tag ar ound.

7. stack

Stacks allow you to define a predefined set of advices/interceptors that you want to
reference from within a bi nd element.

<stack name="stuff">
<i nterceptor class="Sinplelnterceptorl" scope="PER VM'/>
<advi ce nane="trace" aspect="org.]jboss. Traci ngAspect"/>
<i nterceptor class="Sinpl el nterceptor3">
<attribute nane="size">55</attribute>
</i nt er cept or>
</ st ack>

After defining the stack you can then reference it from within a bi nd element.
<bi nd poi nt cut ="execution(* PQIO>*(..))">

<stack-ref nanme="stuff"/>
</ bi nd>

48

pointcut

8. pointcut

The poi nt cut tag allows you to define a pointcut expression, name it and reference
it within any binding you want. It is also useful to publish pointcuts into your
applications to that others have a clear set of named integration points.

<poi nt cut nane="publ i cMet hods" expr="execution(public *

(L)) >
<poi nt cut nane="stati cMet hods" expr="execution(static *
->(..))" >

The above define two different pointcuts. One that matches all public methods, the
other that matches the execution of all static methods. These two pointcuts can then
be referenced within a bi nd element.

<bi nd poi nt cut =" publ i cMet hods AND st ati cMet hods" >
<interceptor-ref name="tracing"/>
</ bi nd>

9. introduction

9.1. Interface introductions

The i ntroducti on tag allows you to force an existing Java class to implement a
particular defined interface.

<i ntroduction class="org.acne. M/Cl ass" >
<interfaces>j ava.io. Serializabl e</interfaces>
</introducti on>

The above declaration says that the org.acme.MyClass class will be forced to
implement java.io.Serializable. The cl ass attribute can take wildcards but not
boolean expressions. If you need more complex type expressions, you can use the
expr attribute instead.

<i ntroduction expr="has(* *->@est(..)) OR class(org.acne.*)">

<interfaces>java.io. Serializable</interfaces>
</introduction>

The expr can be any type expression allowed in a t ypedef expression
9.2. Mixins

When introducing an interface you can also define a mixin class which will provide
the implementation of that interface.

49

Chapter 5. XML Bindings

<i ntroduction class="org.acne. M/Cl ass">

<m Xxi n>

<i nterfaces>
java.io. Externalizable
</interfaces>
<cl ass>or g. acne. Ext ernal i zabl eM xi n</ cl ass>
<constructi on>new
org. acnme. Ext ernal i zabl eM xi n(t hi s) </ constructi on>
</ m xi n>
</introduction>

interfaces
defines the list of interfaces you are introducing

class
The type of the mixin class.

construction
The construction statement allows you to specify any Java code to create the
mixin class. This code will be embedded directly in the class you are introducing
to so t hi s works in the construction statement.

10. annotation-introduction

Annotation introductions allow you to embed an annotation within a the class file of
the class. You can introduce an annotation to a class, method, field, or constructor.

<annot ati on-i ntroducti on expr="constructor(PQIO >new))" >
@rg. j boss. conplex (ch="a', string="hello world", flt=5.5,
dbl =6. 6, shrt=5, |ng=6, \
i nt eger=7, bool =true, annotation=@i ngl e("hello"),
array={"hell 0", "world"}, \
cl azz=j ava. |l ang. Stri ng)
</ annot ati on-i ntroducti on>

The expr attribute takes method(), constructor(), class(), or field(). Within those
you must define a valid expression for that construct. The following rules must be
followed for the annotation declaration:

< Any annotation, Class or Enum referenced, MUST be fully qualified.

11. cflow-stack

Control flow is a runtime construct. It allows you to specify pointcut parameters
revolving around the call stack of a Java program. You can do stuff like, if method A
calls method B calls Method C calls Method D from Constructor A, trigger this advice.

50

typedef

In defining a control flow, you must first paint a picture of what the Java call stack
should look like. This is the responsibility of the cflow-stack.

<cfl ow st ack name="recursive2">
<cal | ed expr="void PQIO >recursive(int)"/>
<cal | ed expr="void PQIO >recursive(int)"/>
<not -cal | ed expr="void PQIO >recursive(int)"/>
</ cf | ow st ack>

A cf |l ow st ack has a name and a bunch of cal | ed and not - cal | ed elements

that define individual constructor or method calls with a Java call stack. The expr
attribute must be a method or constructor expression. cal | ed states that the expr
must be in the call stack. not - cal | ed states that there should not be any more of the
expression within the stack. In the above example, the cf | ow st ack will be triggered
if there are two and only two calls to the r ecur si ve method within the stack. Once
the cf | ow st ack has been defined, it can then be referenced within a bi nd element
through the cf | ow attribute. Boolean expressions are allowed here as well.

<bi nd poi nt cut =" executi on(voi d PQIO >recursive(int))"
cfl ow="recursive2 AND ! cfl ow2" >

<interceptor class="Sinplelnterceptor"/>
</ bi nd>

12. typedef

<t ypedef name="j nx" expr="class(@rg.]j boss.jnx. @Bean) OR \

has(* *->org.]jboss.jnx. @/anagedOper ati on)
OR\

has(*
*->0rg.j boss. jmx. @knagedAttri bute)"/>

t ypedef s allow you to define complex type expressions and then use then pointcut
expressions. In the above example, we're defining a class that is tagged as
@Mbean, or has a method tagged as @ManagedOperaion or @ManagedAttribute.
The above typedef could then be used in a pointcut, introduction, or bind element

<poi ntcut nane="stuff" expr="execution(* $typedef{jm}->*(..))"/>
<i ntroduction expr="cl ass($typedef{jnm})">

13. dynamic-cflow

dynanmi c- cf | owallows you to define code that will be executed that must be resolved
true to trigger positive on a cflow test on an advice binding. The test happens
dynamically at runtime and when combined with a pointcut expression allows you to

51

Chapter 5. XML Bindings

do runtime checks on whether a advice binding should run or not. Create a dynamic
cflow class, by implementing the following interface.

package org.j boss. aop. poi nt cut ;

i mport org.jboss. aop.joi npoi nt. | nvocati on;

/**

* Dynamic cflow allows you to programmatically check to see if
* you want to execute a given advice binding.

*

* @ut hor
<a>Bi | | Burke

* @ersion $Revision: 79662 $

*

**/
public interface Dynam cCFl ow

{

bool ean shoul dExecut e(l nvocati on i nvocati on);

You must declare it with XML so that it can be used in bind expressions.
<dynam c- cfl ow name="si npl e" cl ass="org.j boss. Si npl eDynani cCFl ow'/ >
You can then use it within a bi nd

<bi nd expr="execution(void Foo->bar())" cfl ow="sinple">

14. prepare

The pr epar e tag allows you to define a pointcut expression. Any joinpoint that
matches the expression will be aspectized and bytecode instrumented. This allows
you to hotdeploy and bind aspects at runtime as well as to work with the per instance
API that every aspectized class has. To prepare something, just define a pointcut
expression that matches the joinpoint you want to instrument.

<prepare expr="execution(void Foo-bar())"/>

15. metadata

You can attach untyped metadata that is stored in
org.j boss. aop. met adat a. Si npl eMet aDat a st ruct ur es within the
org. j boss. aop. Advi sor class that manages each aspectized class. The XML

52

metadata-loader

mapping has a section for each type of metadata. Class, method, constructor, field,
and defaults for the whole shabang. Here's an example:

<net adata tag="testdata" class="org.jboss.test.PQIO" >
<def aul t >
<somne- dat a>def aul t val ue</ sone- dat a>
</ def aul t >
<cl ass>
<dat a>cl ass | evel </ dat a>
</ cl ass>
<constructor expr="PQIOConstructorTest()">
<sone- dat a>enpt y</ sone- dat a>
</ construct or >
<met hod expr="voi d another(int, int)">
<ot her - dat a>hal f </ ot her - dat a>
</ met hod>
<field name="sonefiel d">
<ot her - dat a>f ul | </ ot her - dat a>
</field>
</ met adat a>

Any element can be defined under the class, default, method, field, and constructor
tags. The name of these elements are used as attribute names in SimpleMetaData
structures. The t ag attribute is the name used to reference the metadata within the
Advisor, or Invocation lookup mechanisms.

16. metadata-loader

<met adat a- | oader tag="security"
cl ass="org.j boss. aspects. security. SecurityC assMet aDat aLoader"/ >

If you need more complex XML mappings for untyped metadata, you can write

your own metadata binding. The tag attribute is used to trigger the loader. The
loader class must implement the or g. j boss. aop. met adat a. Cl assMet aDat aLoader
interface.

public interface C assMetaDat aLoader
{
publ i ¢ Cl assMet aDat aBi ndi ng i nport Met aDat a(El enent el enment,
String nane,
String tag, String
cl assExpr) throws Excepti on;

public void bind(C assAdvi sor advi sor, Cl assMet aDat aBi ndi ng
dat a,
Ct Met hod[] nmethods, CtField[] fields,
Ct Constructor[] constructors) \
t hrows Excepti on;

53

Chapter 5. XML Bindings

17.

public void bind(C assAdvi sor advi sor, C assMet aDat aBi ndi ng
dat a,

Met hod[] nethods, Field[] fields, Constructor][]
constructors) \

t hrows Exception

Any arbitrary XML can be in the net adat a element. The
ClassMetaDataBinding.importMetaData method is responsible for parsing the
element and building ClassMetaDataBinding structurs which are used in the

precompiler and runtime bind steps. Look at the SecurityClassMetaDatal.oader code
shown above for a real concrete example.

precedence

Precedence allows you to impose an overall relative sorting order of your
interceptors and advices.

<pr ecedence>
<interceptor-ref nane="org.acne.|nterceptor"/>
<advi ce aspect="org. acme. Aspect"” name="advi cel"/>
<advi ce aspect="org. acrme. Aspect" name="advi ce2"/>
</ pr ecedence>

This says that when a joinpoint has both or g. acne. I nt er cept or and

or g. acne. Aspect . advi ce() bound to it, or g. acne. | nt er cept or must always be
invoked before or g. acne. Aspect . advi cel() which must in turn be invoked before
or g. acne. Aspect . advi ce2() . The ordering of interceptors/advices that do not
appear in a precedence is defined by their ordering for the individual bindings or
intercerceptor stacks.

18. declare

You can declare checks to be enforced at instrumentation time. They take a pointcut
and a message. If the pointcut is matched, the message is printed out.

18.1. declare-warning

<decl ar e- war ni ng expr="cl ass($i nst anceof { Vehi cl eDAG}) \
AND ! has(public void *->save())">
Al'l Vehi cl eDAO subcl asses nmust override the save() nethod.
</ decl ar e- war ni ng>

The above declaration says that if any subclass of VehicleDAO does not implement
a noargs save() method, a warning with the supplied message should be

54

declare-error

logged. Your application will continue to be instrumented/run (since we are using
decl ar e- war ni ng in this case).

18.2. declare-error

<decl are-error expr="call (* org.acne. busi nessl ayer.*->*(..))

AND wi t hi n(or g. acre. dat al ayer. *) ">
Data | ayer classes should not call up to the business |ayer
</ decl are-error>

The above declaration says that if any classes in the datalayer call classes
in the business layer of your application, an error should be thrown.
Instumentation/execution of your application will stop.

55

56

Chapter 6.

Annotation Bindings

Annotations can be used as an alternative to XML for configuring classes for AOP.

1. @Aspect

To mark a class as an aspect you annotate it with the @spect annotation.
Remember that a class to be used as an aspect does not need to inherit or
implement anything special, but it must have an empty constuctor and contain one or
more methods (advices) of the format:

publ i c Obj ect <any-met hod- nane>(org.jboss. aop.j oi npoi nt. | nvocati on)

The declaration of or g. j boss. aop. Aspect is:

package org.j boss. aop;

i mport
i mport
i mpor t
i mport
i mport

org. j boss.
j ava. | ang.
j ava. | ang.
j ava. | ang.
j ava. | ang.

aop. advi ce.
annot at i on.
annot at i on.
annot ati on.
annot at i on.

Scope,;

El enent Type;

Ret ent i on;

Ret enti onPol i cy;
Tar get ;

@rar get ({ El ement Type. TYPE}) @Retenti on(RetentionPolicy. RUNTI ME)
public @nterface Aspect

Scope scope() default Scope. PER VM

and Scope is:

package org.j boss. aop. advi ce;

publ i c enum Scope

{

PER VM PER CLASS, PER | NSTANCE, PER JO NPO NT

See Section 4.2, “Scope” for a description of the various scopes.

We use the @Aspect annotation as follows:

57

Chapter 6. Annotation Bindings

package com mypackage;

i mport org.jboss. aop. Aspect;
i nport org.jboss. aop. advi ce. Scope;
i mport org.jboss. aop.joi npoi nt. | nvocati on;

@\spect (scope = Scope. PER VM
public class M/Aspect
{

publi c Obj ect nyAdvi ce(lnvocation invocation)

The name of the class (in this case com nmypackage. MyAspect) gets used as the
internal name of the aspect. The equivalent using XML configuration would be:

<aop>
<aspect cl ass="com nypackage. M/Aspect” scope="PER VM'/>
</ aop>

2. @InterceptorDef

To mark a class as an interceptor or an aspect factory you annotate

it with the @ nt er cept or Def annotation. The class must either
implement the or g. j boss. aop. advi ce. | nt er cept or interface or the
org. j boss. aop. advi ce. Aspect Fact ory interface.

The declaration of or g. j boss. aop. | nt er cept or Def is:

package org.j boss. aop;

@rar get ({ El ement Type. TYPE}) @Retenti on(Retenti onPolicy. RUNTI ME)
public @nterface Aspect

Scope scope() default Scope. PER VM

The same Scope enum is used as for Aspect . The following examples use the
@Bind annotation, which will be described in more detail below.

58

Interceptor Example

2.1. Interceptor Example

We use the @ nt er cept or Def annotation to mark an Interceptor as follows:

package com mypackage;

i mport org.jboss. aop. Bi nd;
i mport org.jboss. aop. | ntercept or Def;
i mport org.jboss. aop. advi ce. | nt erceptor;

@ nt er cept or Def (scope = Scope. PER VM
@i nd (poi ntcut="execution("* com bl ah. Test->test(..)")
public class M/l nterceptor inplenments |nterceptor

{ public Object invoke(lnvocation invocation)throws Throwabl e
{
return invocation.invokeNext();
}
}

The name of the class (in this case com mypackage. Myl nt er cept or) gets used as
the class name of the interceptor. The equivalent using XML configuration would be:

<aop>

<i nterceptor class="com nypackage. Myl nterceptor"
scope="PER VM'/ >

</ aop>

2.2. AspectFactory Example

The @ nt er cept or Def annotation is used to mark an AspectFactory as follows:

package com mypackage;
i mport org.jboss. aop. advi ce. Aspect Fact ory;

@ nt er cept or Def (scope=org.j boss. aop. advi ce. Scope. PER_VM
@Bi nd (poi ntcut="execution("* com bl ah. Test->test2(..)")
public class M/l nterceptorFactory inplenents Aspect Factory

{

/11 npl enented nethods | eft out for brevity

59

Chapter 6. Annotation Bindings

3. @PointcutDef

To define a named pointcut you annotate a field within an @spect or

@ nt er cept or Def annotated class with @oi nt cut Def . @oi nt cut Def only applies
to fields and is not recognised outside @\spect or @ nt er cept or Def annotated
classes.

The declaration of or g. j boss. aop. Poi nt cut Def is:

package org.j boss. aop;

@rar get ({ El enent Type. FI ELD}) @Ret enti on(Retenti onPol i cy. RUNTI MVE)
public @nterface Pointcut Def

{
String val ue();

@oi nt cut Def takes only one value, a valid pointcut expression. The name of the
pointcut used internally and when yo want to reference it is:

<nanme of @Aspect/ @nterceptorDef annotated cl ass>. <name of
@oi nt cut Def annotated fiel d>

An example of an aspect class containing a named pointcut which it references from
a bindng's pointcut expression:

package com nypackage;

i mport org.jboss. aop. Poi nt cut Def;
i mport org.jboss. aop. poi nt cut. Poi ntcut;

@\spect (scope = Scope. PER VM
public class M/Aspect

{
@Poi nt cut Def (" (execution(* org.bl ah. Foo- >soneMet hod()) OR \
execution(* org. bl ah. Foo- >ot her Met hod()))")
public static Pointcut fooMethods;
public Object nyAdvi ce(lnvocation invocation)
{
return invocation.invokeNext();
}
}

60

@Bind

It is worth noting that named pointcuts can be referenced in pointcut expressions
outside the class they are declared in (if the annotated fields are declared public of
coursel!).

Using XML configuration this would be:

<aop>

<aspect cl ass="com nypackage. M/Aspect" scope="PER VM'/>

<poi nt cut
name="com nypackage. MyAspect . f ooMet hods"
expr =" (execution(* org.bl ah. Foo- >someMet hod()) OR \
execution(* org. bl ah. Foo- >ot her Met hod()))"
/>
</ aop>

4. @Bind

To create a binding to an advice method from an aspect class, you annotate the
advice method with @i nd. To create a binding to an Interceptor or AspectFactory,
you annotate the class itself with @i nd since Interceptors only contain one advice
(the i nvoke() method). The @Bind annotation will only be recognised in the
situations just mentioned.

The declaration of or g. j boss. aop. Bi nd is:

package org.j boss. aop;

@rar get ({ El erent Type. METHOD, El enent Type. TYPE})
@Ret enti on(Ret ent i onPol i cy. RUNTI MVE)
public @nterface Bind

{
Advi ceType type() default Advi ceType. AROUND;

String pointcut();
String cflow) default

The @i nd annotation takes three parameters:

* type, valid values are Advi ceType. AROUND, Advi ceType. BEFORE,
Advi ceType. AFTER, Advi ceType. THRON NGand Advi ceType. FI NALLY. See
Chapter 4, Advices for a description of the different advice types. If omitted, the
default is an around advice.

61

Chapter 6. Annotation Bindings

 poi nt cut, which is a pointcut expression resolving to the joinpoints you want to
bind an aspect/interceptor to

» cfl ow, which is optional. If defined it must resolve to the name of a defined cflow.)

In the case of a binding to an advice in an aspect class, the internal name of the
binding becomes:

<name of the aspect class>.<the nane of the advice nethod>

In the case of a binding to an I nt er cept or or Aspect Fact ory implementation, the
internal name of the binding becomes:

<nanme of the Interceptor/AspectFactory inplenentation class>

An example of a binding using an advice method in an aspect class:

package com mypackage;
i mport org.jboss. aop. Bi nd;

@\spect (scope = Scope. PER_VM
public class MyAspect

{
@Poi nt cut Def (" (execution(* org. bl ah. Foo- >soneMet hod()) \
OR execution(* org. bl ah. Foo->ot her Met hod()))")
public static Pointcut fooMethods;
@i nd (poi ntcut ="com nypackage. MyAspect . f ooMet hods")
publi c Obj ect nyAdvi ce(lnvocation invocation)
{
return invocation.invokeNext();
}
@Bi nd (poi ntcut="execution("* org.bl ah. Bar->soneMet hod())")
publi c Object nyAdvi ce(lnvocation invocation)
{
return invocation.invokeNext();
}
}

The equivalent using XML configuration would be:

<aop>
<aspect cl ass="com nypackage. M/Aspect"” scope="PER VM'/>

62

@Introduction

<poi nt cut
nane="com nypackage. MyAspect . f ooMet hods"
expr="(execution("* org.bl ah. Foo- >someMet hod()) OR \
execution("* org. bl ah. Foo- >ot her Met hod()))"
/>
<bi nd poi nt cut =" com nypackage. MyAspect . f ooMet hods" >
<advi ce nane="nyAdvi ce" aspect="com mypackage. MyAspect " >
</ bi nd>
<bi nd poi nt cut ="executi on("* org. bl ah. Bar - >soneMet hod()) ">
<advi ce name="ot her Advi ce"
aspect =" com nypackage. MyAspect " >
</ bi nd>
</ aop>

Revisiting the examples above in the @InterceptorDef section, now that we know
what @Bind means, the equivalent using XML configuration would be:

<aop>

<i nterceptor class="com nypackage. M/l nt erceptor"
scope="PER VM'/ >

<i nt er cept or
factory="com nmypackage. M/l nt er cept or Fact ory" scope="PER VM'/ >

<bi nd poi nt cut ="executi on("* com bl ah. Test->test2(..)">
<i nterceptor-ref name="com nypackage. Myl nterceptor"/>
</ bi nd>
<bi nd poi nt cut ="execution("* com bl ah. Test->test2(..)">
<i nterceptor-ref

nane="com nypackage. Myl nt er cept or Fact ory"/ >
</ bi nd>
</ aop>

5. @Introduction

Interface introductions can be done using the @ nt r oduct i on annotation. Only fields
within a class annotated with @\spect or @ nt er cept or Def can be annotated with
@ ntroducti on.

The declaration of or g. j boss. aop. I nt r oduct i on:

package org.j boss. aop;

@rar get ({ El enent Type. FI ELD}) @Ret enti on(Retenti onPol i cy. RUNTI MVE)
public @nterface Introduction

63

Chapter 6. Annotation Bindings

{
Class target() default java.lang.d ass. cl ass
String typeExpression() default "";
Class[] interfaces();

}

The parameters of @ nt r oduct i on are:

* target, the name of the class we want to introduce an interface to.

e typeExpression, a type expression that should resolve to one or more classes we
want to introduce an interface to.

e interfaces, an array of the interfaces we want to introduce
target ortypeExpressi on has to be specified, but not both.

This is how to use this annotation:

package com mypackage;
i mport org.jboss. aop. I ntroducti on;

@\spect (scope = Scope. PER_ VM
public class IntroAspect

{
@ ntroduction (target=com bl ah. SomeC ass. cl ass, \
interfaces={java.io.Serializable.class})
public static Object pojoNolnterfaceslntro;
}

This means make com bl ah. Soned ass. cl ass implement the
java.io. Serializabl e interface. The equivalent configured via XML would be:

<i ntroduction cl ass="com bl ah. Soned ass. cl ass" >
<interfaces>
java.io. Serializabl e
</interfaces>
</introduction>

. @Mixin

Sometimes when we want to introduce/force a new class to implement an interface,
that interface introduces new methods to a class. The class needs to implement

64

@Mixin

these methods to be valid. In these cases a mixin class is used. The mixin class
must implement the methods specified by the interface(s) and the main class can
then implement these methods and delegate to the mixin class.

Mixins are created using the @Mixin annotation. Only methods within a class
annotated with @\spect or @ nt er cept or Def can be annotated with @ xi n. The
annotated method has

* be public

* be static

* have an empty parameter list, or receive the target of introduction as parameter
« contain the logic to create the mixin class

« return an instance of the mixin class
The declaration of or g. j boss. aop. M xi n:

package org.j boss. aop;

@rar get ({ El enment Type. METHOD})
@Ret ent i on(Ret enti onPol i cy. RUNTI ME)
public @nterface M xin

{
Class target() default java.lang.d ass. cl ass;
String typeExpression() default
Class[] interfaces();
bool ean isTransient() default true;
}

The parameters of @M xi n are:

* target, the name of the class we want to introduce an interface to.

* typeExpression, a type expression that should resolve to one or more classes we
want to introduce an interface to.

e interfaces, an array of the interfaces we want to introduce, implemented by the
mixin class.

* isTransi ent. Internally AOP makes the main class keep a reference to the mixin
class, and this sets if that reference should be transient or not. The default is true.
target ortypeExpressi on has to be specified, but not both.

An example aspect using @ xi n follows:

65

Chapter 6. Annotation Bindings

package com mypackage;

i mport org.jboss.aop. M xi n;
i mport com nmypackage. PQIG,

@\spect (scope=org.jboss. aop. advi ce. Scope. PER_VM
public class Introducti onAspect

{
@ xi n (target=com nmypackage. PQJO cl ass,

i nterfaces={java.io. Externalizabl e. cl ass})
public static ExternalizableM xin
creat eExt ernal i zabl eM xi n(PQJIO poj o) {
return new Externalizabl eM xi n(poj o) ;

Since this is slightly more complex than the previous examples we have seen, the
PQJOand Ext er nal i zabl eM xi n classes are included here.

package com mypackage;

public class PQIO

{
String stuff;

package com mypackage;

i nport java.io.Externalizabl e;
i mport java.io.| OException;

i mport java.io.Objectlnput;

i mport java.io.Qoject Qut put;

public class Externalizabl eM xin inpl enents Externalizable

{
PQJO poj o;

publ i ¢ Externalizabl eM xi n(PQIO poj o)
{

this.pojo = pojo;

public void readExternal (Objectlnput in) throws | OException,
Cl assNot FoundExcepti on
{

66

@Prepare

poj o. stuff = in.readUTF();

}

public void witeExternal (OhjectQutput out) throws
| OExcepti on

{

out.witeUTF(pojo.stuff);

This has the same effect as the following XML configuration:

<i ntroduction cl asss="com nypackage. PQJO'>
<m xin transient="true">
<interfaces>
java.io. Externalizable
</interfaces>
<cl ass>com nypackage. Ext er nal i zabl eM xi n</ cl ass>

<construction>l ntroducti onAspect . cr eat eExt ernal i zabl eM xi n(t hi s) </
constructi on>
</ m xi n>
</introduction>

7. @Prepare

To prepare a joinpoint or a set of joinpoints for DynamicAOP annotate a field with
@r epar e in a class anotated with @\spect or @ nt er cept or Def .

The declaration of or g. j boss. aop. Prepar e is:

package org.j boss. aop;

@rar get ({ El ement Type. FI ELD, El enent Type. TYPE})
@Ret enti on(Ret ent i onPol i cy. RUNTI MVE)
public @nterface Prepare {
String val ue() default

The single field val ue contains a pointcut expression matching one or more
joinpoints.

To use @r epar e follow this example:

67

Chapter 6. Annotation Bindings

package com mypackage;
i mport org.jboss. aop. Prepar e;
@ nt er cept or Def (scope = Scope. PER_VM

@i nd (poi ntcut="execution("* com bl ah. Test->test(..)")
public class M/l nterceptor2 inplenments |nterceptor

{
@repare ("all (com bl ah. Dynam cPQIO) ")
public static Pointcut dynam cPQIO
public Object invoke(lnvocation invocation)throws Throwabl e
{
return invocation.invokeNext();
}
}

Using XML configuration instead we would write:

<prepare expr="all (com bl ah. Dynam cPQIO) "/ >

This simple example used an @ nt er cept or Def class for a bit of variety in the
examples, and to reiterate that @oi nt cut, @ nt r oduct i on, @ xi n, @r epar e,
@vypedef, @Fl ow, @ynani cCFl owand @nnot ati onl ntroducti onDef can all be
used both in @ nt er cept or Def annotated classes AND @spect annotated classes.
Same for @i nd, but that is a special case as mentioned above.

7.1. @Prepare POJO

You can also annotate a POJO with @Prepare directly in cases where you are using
Dynamic AOP, and the exact bindings are not known at instrumentation time. In this
case you annotate the class itself. Here's how it is done:

package com mypackage;
i mport org.jboss. aop. Prepare;
@repare ("all(this)")

public class MyDynan cPQJO i npl ements | nterceptor
{

68

@TypeDef

al I (this) means the same as al | (com bl ah. MyDynani cPQJO), but the use of
al | (this) is recommended.

The examples just given equate to this XML

<prepare expr="all (com bl ah. M/Dynam cPQIO) "/ >

To summarise, when using @Prepare within an @Interceptor or @Aspect annotated
class, you annotate a field within that class. When using @Prepare with a POJO you
annotate the class itself.

8. @TypeDef

To use a typedef, you annotate a field with @ypeDef in a class anotated with
@\spect or @ nt er cept or Def .

The declaration of or g. j boss. aop. TypeDef :

package org.j boss. aop;

@rar get ({ El enent Type. FI ELD}) @Ret enti on(Retenti onPol i cy. RUNTI MVE)
public @nterface TypeDef {
String val ue();

The single val ue field takes a type expression that resolves to one or more classes.
The name of the typedef used for reference and internally is:

<name of @\spect/ @ nterceptorDef annotated cl ass>. <nane of @ypeDef
annot ated fiel d>

Here's how to use it:

package com mypackage;

i mport org.jboss. aop. TypeDef ;

i mport org.jboss. aop. poi nt cut. Typedef;

@\spect (scope=org.jboss. aop. advi ce. Scope. PER_VM
public class Typedef Aspect

{
@ypebDef ("class(com bl ah. PQJO) ")

69

Chapter 6. Annotation Bindings

public static Typedef nyTypedef;
@i nd (poi ntcut="execution(* \

$t ypedef { com nypackage. Typedef Aspect . myTypedef } -

>met hodW t hTypedef ())")
publ i c Object typedefAdvi ce(lnvocation invocation) throws

Thr owabl e

{

return invocation.invokeNext();

The equivalent using XML configuration would be:

<aop>
<aspect cl ass="com nypackage. Typedef Aspect "

scope="PER>VM'/ >
<t ypedef nanme="com nypackage. Typedef Aspect. myTypedef "

expr="cl ass(com bl ah. PQIO "/ >
<bi nd
poi nt cut ="execution(* \

$t ypedef { com nypackage. Typedef Aspect . nyTypedef } -

>met hodW t hTypedef ())"
>

<advi ce name="typedef Advi ce"
aspect =" com nypackage. Typedef Aspect "/ >

</ bi nd>

</ aop>

9. @CFlowDef

To create a CFlow stack, you annotate a field with @Fl owDef in a
class anotated with @spect or @ nt er cept or Def . The declaration of
org. j boss. aop. CFl owst ackDef is:

package org.j boss. aop;

@rar get ({ El ement Type. FI ELD}) @Rret enti on(Ret enti onPol i cy. RUNTI MVE)
public @nterface CFl owSt ackDef

CFl owDef [] cfl ows();

70

@CFlowDef

In turn the declaration of or g. j boss. aop. CFl owDef is:

package org.j boss. aop;

public @nterface CFl owDef {
bool ean cal | ed();
String expr();

The parameters of @CFl owDef are:

 cal | ed, whether the corresponding expr should appear in the stack trace or not.

e expr, a string matching stack a trace element
The name of the CFlowStackDef used for reference and internally is:

<nanme of @Aspect/ @ nterceptorDef annotated cl ass>. <nane of
@cFl owSt ackDef annotated fiel d>

CFlowsStackDef is used like the following example:

package com mypackage;

i mport org.jboss. aop. CFl owSt ackDef ;
i mport org.jboss. aop. poi nt cut . CFl owsSt ack;

@\spect (scope=org.jboss. aop. advi ce. Scope. PER_VM
public class CFl owAspect

{

@CFl owst ackDef (cfl ows={ @Fl owDef (expr= "voi d
com bl ah. PG >cf | owivet hod1() ", \
cal |l ed=fal se), @Fl owDef (expr = "void
com bl ah. PQJO >cf | owivet hod2() ", \
cal l ed=true)})
public static CFl owStack cfNot1And2St ack;

@i nd (poi ntcut="execution(void
com bl ah. PQIO*- >pri vMet hod())", \
cf | ow="com nypackage. CFl owAspect . cf Not 1And2St ack")
public Object cflowAdvice(lnvocation invocation) throws
Thr owabl e

{

return invocation.invokeNext();

71

Chapter 6. Annotation Bindings

The above means the same as this XML:

<a0p>
<cfl ow st ack

name="com nypackage. CFl owAspect . cf Not 1And2St ack" >
<cal | ed expr="voi d com bl ah. PQIO >cf | owMet hod1()"/>
<not - cal | ed expr="voi d com bl ah. PQIO >cf | owMet hod2()"/ >
</ cf | ow st ack>
</ aop>

10. @DynamicCFlowDef

To create a dynamic CFlow you annotate a class implementing
org. j boss. aop. poi nt cut . Dynani cCFl owwith @ynani cCFl owDef . The declaration
of @r g. j boss. aop. Dynani cCFl owDef is:

package org.j boss. aop;

@rar get (El enent Type. TYPE) @Ret enti on(Ret enti onPol i cy. RUNTI ME)
public @nterface Dynam cCFl owDef

{
}

Here is a @DynamicCFlow annotated class:

package com mypackage;

i mport org.jboss. aop. Dynam cCFl owDef ;
i mport org.j boss. aop. poi nt cut . Dynani cCFl ow,

@ynam cCFl owDef
public class MyDynani cCFl ow i npl ement s Dynani cCFl ow

{

public static bool ean execute = fal se;

publ i ¢ bool ean shoul dExecut e(|l nvocati on i nvocati on)

{

return execute;

72

@AnnotationintroductionDef

The name of the @ynani cCFl owDef annotated class gets used as the name of the
cflow for references.

To use the dynamic cflow we just defined:

package com mypackage;

@\spect (scope=org.|jboss. aop. advi ce. Scope. PER_VM
public class CFl owAspect

{

@i nd (poi nt cut="execution(void
com bl ah. PQJO >soneMet hod())", \
cfl ow="com nypackage. MyDynam cCFl ow")
public Object cflowAdvice(lnvocation invocation) throws
Thr owabl e

{

return invocation.invokeNext();

11. @AnnotationintroductionDef

You can introduce annotations by annotating a field with
the @nnot ati onl nt roduct i onDef in a class anotated
with @spect or @ nt er cept or Def . The declaration of
org. j boss. aop. Annot at i onl nt r oduct i onDef is:

package org.j boss. aop;

@arget (El ement Type. FI ELD) @Ret enti on(Ret enti onPol i cy. RUNTI MVE)
public @nterface Annotati onl ntroducti onDef

{
String expr();
bool ean i nvi si bl e();
String annotation();
}

The parameters of @nnot at i onl nt r oduct i onDef are:

e expr, pointcut matching the classes/constructors/methods/fields we want to
annotate.

73

Chapter 6. Annotation Bindings

 invisibl e, if true: the annotation's retention is RetentionPolicy.CLASS; false:
RetentionPolicy. RUNTIME

* annot at i on, the annotation we want to introduce.

The listings below make use of an annotation called
@om nypackage. MyAnnot at i on:

package com mypackage;
public interface M/Annotati on

{
String string();
int integer();
bool ean bool ();
}

What its parameters mean is not very important for our purpose.

The use of @\nnot ati onl ntroduct i onDef :

package com mypackage;

i mport org.jboss. aop. Annot ati onl nt roduct i onDef :
i mport org.jboss. aop.introduction. Annot ati onl nt roducti on;

@ | nt ercept or Def (scope=org.j boss. aop. advi ce. Scope. PER_VM
@r g. j boss. aop. Bi nd (poi ntcut="all (com bl ah. SonePQJO) ")
public class IntroducedAnnot ati onl nterceptor inplenents
I nt er cept or
{
@r g. j boss. aop. Annot at i onl ntroduct i onDef \
(expr="rmet hod(*
com bl ah. SomePQIO >annot at i onl nt r oducti onMet hod())", \
i nvi si bl e=fal se, \
annot at i on=" @om mypackage. MyAnnot ati on \
(string="hell o', integer=5, bool=true)")
public static Annotationlntroducti on annotati onl ntroducti on;

public String get Name()

{
return "I ntroducedAnnot ati onl nterceptor";
}
publ i c Object invoke(lnvocation invocation) throws Throwabl e
{
return invocation.invokeNext();
}

74

@Precedence

Note that the reference to @om nypackage. MyAnnot at i on must use the fully
qualified class name, and that the value for its string parameter uses single quotes.

The previous listings are the same as this XML configuration:

<annot ati on-i ntroducti on
expr =" nmet hod(*
com bl ah. SomePQIO >annot at i onl nt r oduct i onMet hod())
i nvi si bl e="fal se"
>

@om nmypackage. MyAnnot ati on (string="hello", integer=5,
bool =t rue)
</ annot ati on-i nt roducti on>

12. @Precedence

You can declare precedence by annotating a class with @r ecedence, and then
annotate fields where the types are the various Interfaces/Aspects you want to sort.
You annotate fields where the type is an interceptor with @r ecedencel nt er cept or .
When the type is an aspect class, you annotate the field with @r ecedenceAdvi ce.
The definitions of org.jboss.aop.Precedence, org.jboss.aop.Precedencelnterceptor
and org.jboss.aop.PrecedenceAdvice are

package org.j boss. aop;

@rar get ({ El ement Type. TYPE}) @Retenti on(RetentionPolicy. RUNTI ME)
public @nterface Precedence

{
}

package org.j boss. aop;

@rar get ({ El ement Type. FI ELD}) @Ret enti on(Retenti onPol i cy. RUNTI MVE)
public @nterface Precedencel nterceptor

{

}

75

Chapter 6. Annotation Bindings

package org.j boss. aop;

@rar get ({ El ement Type. FI ELD}) @Ret enti on(Ret enti onPol i cy. RUNTI MVE)
public @nterface PrecedenceAdvice

{
String val ue();

The val ue() attribute of PrecedenceAdvi ce is the name of the advice method to
use.

The example shown below declares a relative sort order where
org. acne. | nt er cept or must always be invoked before

org. acne. Aspect . advi ce1() which must be invoked before
org. acne. Aspect . advi ce2():

i mport org.]jboss. aop. Precedence;
i mport org.jboss. aop. PrecedenceAdvi ce;

@°r ecedence
public class M/Precedence

{

@°r ecedencel nt er cept or
org.acne. I nterceptor intercept;

@r ecedenceAdvi ce ("advicel")
org. acne. Aspect precAdvicel;

@r ecedenceAdvi ce ("advice2")
org. acne. Aspect precAdvicez2;

The ordering of interceptors/advices defined via annotations that have no
precedence defined, is arbitrary.

13. @DeclareError and @DeclareWarning

You can declare checks to be enforced at instrumentation time. They take a pointcut
and a message. If the pointcut is matched, the message is printed out. To use

this with annotations, annotate fields with Decl ar eVWar ni ng or Decl ar eErr or

within a class annotated with @\spect or @ nt er cept or Def . The definitions of

org. j boss. aop. Decl areError and org. j boss. aop. Decl ar eWar ni ng are:

package org.j boss. aop;

76

@DeclareError and @DeclareWarning

@rar get ({ El ement Type. FI ELD}) @Ret enti on(Ret enti onPol i cy. RUNTI MVE)
public @nterface Decl areWarni ng

{
String expr();
String msg();

package org.j boss. aop;

@rar get ({ El enent Type. FI ELD}) @Ret enti on(Retenti onPol i cy. RUNTI MVE)
public @nterface Decl areError
{

String expr();

String msg();

For both: the expr() attribute is a pointcut expression that should not occur, and the
msg() attribute is the message to print out if a match is found for the pointcut. If you
use Decl ar eWar ni ng instrumentation/your application will simply continue having
printed the message you supplied. In the case of Decl ar eEr r or , the message is
logged and an error is thrown, causing instrumentation/your application to stop. Here
is an example:

i mport org.jboss. aop. Aspect ;

i mport org.jboss. aop. poi nt cut . Poi nt cut ;
i mport org.jboss. aop. Decl areError;

i mport org.jboss. aop. Decl ar eVar ni ng;

@\spect (scope=org.jboss. aop. advi ce. Scope. PER_VM
public class Decl areAspect
{
@ecl areWarni ng (expr="cl ass($i nst anceof { Vehi cl eDAC}) AND \
lhas(public void *->save())", \
nsg="Al| Vehi cl eDAO subcl asses nust override the save()
nmet hod. ")
Poi nt cut war ni ng;

@ecl areError (expr="call (* org.acne. busi nessl ayer.*->*(..))

AND wi t hi n(or g. acre. dat al ayer.*)", \
nsg="Data | ayer classes should not call up to the business
| ayer")
Poi ntcut error;

77

Chapter 6. Annotation Bindings

78

Chapter 7.

1. Hot

2. Per

Dynamic AOP

Deployment

With JBoss AOP you can change advice and interceptor bindings at runtime. You
can unregister existing bindings, and hot deploy new bindings if the given joinpoints
have been instrumented. Hot-deploying within the JBoss application server is as
easy as putting (or removing) a * - aop. xni file or . aop jar file within the deploy/
directory. There is also a runtime API for adding advice bindings at runtime. Getting
an instance of or g. j boss. aop. Aspect Manager . i nst ance(), you can add your
binding.

org. j boss. aop. advi ce. Advi ceBi ndi ng bi ndi ng =
new
Advi ceBi ndi ng("executi on(PQIO >new..))", null);
bi ndi ng. addl nt er cept or (Si npl el nt er cept or. cl ass) ;
Aspect Manager . i nst ance() . addBi ndi ng(bi ndi ng) ;

First, you allocated an Advi ceBi ndi ng passing in a pointcut expression. Then

you add the interceptor via its class and then add the binding through the
AspectManager. When the binding is added the AspectManager will iterate through
ever loaded class to see if the pointcut expression matches any of the joinpoints
within those classes.

Instance AOP

Any class that is instrumented by JBoss AOP, is forced to implement the
org. j boss. aop. Advi sed interface.

public interface InstanceAdvi sed

{
publ i c | nstanceAdvi sor _getl nstanceAdvi sor();
public void _setlnstanceAdvi sor (| nstanceAdvi sor newAdvi sor);
}
public interface Advi sed extends | nstanceAdvi sed
{
publ i ¢ Advi sor _get Advi sor ();
}

The InstanceAdvisor is the interesting interface here. InstanceAdvisor allows you to
insert Interceptors at the beginning or the end of the class's advice chain.

public interface |nstanceAdvisor

79

Chapter 7. Dynamic AOP

{
public void insertlnterceptor(lnterceptor interceptor);
public void renmovel nterceptor(String nane);
publ i c voi d appendl nterceptor(Interceptor interceptor);
public void insertlnterceptorStack(String stackNane);
public void removel nterceptorStack(String nane);
publ i c voi d appendl nterceptorStack(String stackNane);
publ i c Si npl eMet aDat a get Met aDat a() ;

}

So, there are three advice chains that get executed consecutively in the same java
call stack. Those interceptors that are added with the i nsert | nt er cept or () method
for the given object instance are executed first. Next, those advices/interceptors

that were bound using regular bi nds. Finally, those interceptors added with the
appendl nt er cept or () method to the object instance are executed. You can also
reference st acks and insert/append full stacks into the pre/post chains.

Besides interceptors, you can also append untyped metadata to the object instance
via the getMetaData() method.

3. Preparation

Dynamic AOP cannot be used unless the particular joinpoint has been instrumented.
You can force intrumentation with the pr epar e functionality

4. Improved Instance API

As mentioned, you can add more aspects to a woven class using the
org. j boss. aop. I nst anceAdvi sor . This APl is limited to adding interceptors to the
existing intereptor chains, so it is a bit limited.

The new default weaving mode introduced in JBoss AOP 2.0.0 still allows you
access to the I nst anceAdvi sor interface, but also offers a fuller instance API,

which allows you to add bindings, annotation overrides etc. via the normal

dynamic AOP API. This is underdocumented, but for a full overview of the

capabilites take a look at how or g. j boss. aop. Aspect Xl Loader interacts with

org. j boss. aop. Aspect Manager . We are working on a new tidier API for the next
version of JBoss AOP. Normally, for dynamic AOP you add things to the top level
Aspect Manager , which means that all instances of all woven classes can be affected.

In JBoss AOP 2.0.0, each aspectized class has its own Domain. A domain is a
sub-AspectManager. What is deployed in the main AspectManager is visible to the
class's domain, but not vice versa. Furthermore each advised instance has its own
Domain again which is a child of the class's domain. The Domain class is a sub-class

80

Improved Instance API

of the AspectManager, meaning you can add ANYTHING supported by JBoss AOP
to it, you are not limited to just interceptors. In the following example we prepare all
joinpoints of the POJO class and declare an aspect called MyAspect

<l-- Weave in the hooks into our PQJO cl ass and add the
interceptors -->
<a0p>
<aspect cl ass="M/Aspect"/>
<prepare expr="all (PQIO"/>

</ aop>
PQJO poj 0l = new PQIQ();
PQJIO poj 02 = new PAIQ);

poj ol. soneMet hod() ;

At this stage, our PQJO has the hooks woven in for AOP, but now bindings are
deployed, so our call to PQIO. someMet hod() is not intercepted. Next let us add a
binding to PQIJs class domain.

/1A'l woven classes inplenent the Advised interface

Advi sed cl assAdvi sor = ((Advi sed)poj ol);

/Il Get the domain used by all instances of PQJO

Aspect Manager poj oDonai n =
cl assAdvi sor. _get Advi sor (). get Manager () ;

/1 Add a binding with an aspect for that class this is simlar to

Advi ceBi ndi ng bi ndi ngl = new Advi ceBi ndi ng("execution(*
PQIO >soneMet hod*(..))", null);

Aspect Definition myAspect =
Aspect Manager . i nst ance() . get Aspect Defi ni ti on(" M/Aspect");

bi ndi ngl. addl nt er cept or Fact or y(new Advi ceFact or y(nyAspect,
"intercept"));

/1 Add the binding to PQIO s domain
poj oDomai n. addBi ndi ng(bi ndi ngl) ;

poj ol. sonmeMet hod() ;
poj 02. someMet hod() ;

81

Chapter 7. Dynamic AOP

Now we have added a binding to PQIOs class Domain. Both calls to soneMet hod()
get intercepted by MyAspect

// Create an annotation introduction
Annot ati onl ntroduction intro =
Annot at i onl nt r oducti on. cr eat eMet hodAnnot at i onl nt r oduct i on(
"* PQIO >soneMet hod() ",
"@¥yAnnot ati on",
true);

/| Creat e anot her bi ndi ng

Advi ceBi ndi ng bi ndi ng2 = new Advi ceBi ndi ng("execution(*
PQIO >@&Annot ation)", null);

bi ndi ng2. addl nt er cept or (Myl nt er cept or. cl ass) ;

// Al woven instances have an instance advi sor
I nst anceAdvi sor i nstanceAdvisorl =
((Advi sed) poj ol). _get | nstanceAdvi sor () ;

/1 The instance advi sor has its own donmain
Dorei n poj olDonmai n = i nst anceAdvi sor 1. get Domai n() ;

/1 Add the annotation override and binding to the domain
poj o1Domai n. addAnnot at i onOverri de(intro);
poj o1Domai n. addBi ndi ng(bi ndi ng2) ;

poj ol. sonmeMet hod() ;
poj 02. someMet hod() ;

We have added an annotation override and a new binding matching on that
annotaton to poj ol1's domain, so when calling poj o1. someMet hod() this gets
intercecpted by MyAspect AND Myl nt er cept or . poj 02. someMet hod() still gets
intercepted by MyAspect only.

5. DynamicAOP with HotSwap

When running JBoss AOP with HotSwap, the dynamic AOP operations may result in
the weaving of bytecodes. In this case, the flow control of joinpoints matched only by
pr epar e expressions is not affected before any advices or interceptors are applied
to them via dynamic aop. Only then, the joinpoint bytecodes will be weaved to start
invoking the added advices and interceptors and, as a result, their flow control will be
affected.

82

DynamicAOP with HotSwap

On the other hand, if HotSwap is disabled, the joinpoints matched by pr epar e
expressions are completely instrumented and the flow control is affected before
classes get loaded, even if no interceptors are applied to them with dynamic aop.

To learn how to enable HotSwap, refer to the "Running Aspectized Application”
chapter.

83

84

Chapter 8.

Installing

This section defines how to install JBoss AOP standalone, within JBoss 4.0.x, JBoss
4.2.x and within JBoss 5.x

[jboss-aop-2.0.0.GA
Bl bin
[build.xml
Bl docs
Bl etc
el jboss-40-install
L] jboss-aop-jdk50.deployer
= jboss-50-install
] jboss-aop-jboss5.deployer
& lib
ReadMe-AS5.1xt
|bossorg-eula.txt

2 javassist.jar

2 jboss-aop-client.jar

= |boss-aop-single.jar

2 jboss-aop.jar

j |boss-commaon-care. jar

2 |boss-logging-log4j.jar

2 |boss-logging-spi.jar

2 jboss-mdr.jar

= jboss-reflect.jar

2 |boss-standalone-aspect-library.jar
= Jrockit-pluggable-instrumentor.jar

= log4j.jar
j pluggable-instrumentaor.jar
2 trove.jar
Bl lib-test
RELEASE_MNOTES.html
 src

85

Chapter 8. Installing

1. Installing Standalone

There's nothing really to install if you're running outside the JBoss application server.
Just use the libraries under 1'i b/ .

2. Installing with JBoss 4.0.x and JBoss 4.2.x
Application Server for JIDK 5

DISCLAIMER: We no longer actively test against JBoss Application Server 4.0.x or
4.2 x. If there are any problems with the issues outlined below, please contact us on
the JBoss AOP user forum at http://www.jboss.org.

To install JBBoss AOP in JBoss 4.0.x or JBoss 4.2.x Application Server: with

JDK 5, there is an ant build script to install into the application server. It lives

inj boss-40-install/jboss-aop-jdk50. depl oyer/ bui | d. xm . Modify

j boss-40-install/jboss-aop-jdk50. depl oyer/j boss. properti es to point to
the the root of your JBoss installation and specify the application server configuration
you want to upgrade. These are the steps taken by the ant script:

1. Back up the existing
${j boss. hone}/ server/ <confi g- nanme>/ depl oy/ j boss- aop-j dk50. depl oyer
to
${j boss. hone}/ server/ <confi g- nane>/ depl oy/j boss- aop-
j dk50. depl oyer . bak
2. Copy the files from j boss- 40-i nstal | / j boss- aop-j dk50. depl oyer over the
files that already exist in your existing JBoss Application Server distribution under
${j boss. hone}/ server/ <confi g- nanme>/ depl oy/ j boss- aop-j dk50. depl oyer
3. In JBoss 4.0.4.GA and later, move
${j boss. hone}/ server/ <confi g- nane>/ depl oy/ j boss- aop-j dk50. depl oyer/
javassist.jar to
${j boss. hone}/server/ <confi g-nane>/1ib/javassist.jar.
Any existing javassist.jar in that location
is copied to
${j boss. hone}/ server/ <confi g- nane>/ depl oy/ j boss- aop-
j dk50. depl oyer . bak/ i b/javassi st. bak
4. If you NOT upgrading from a previous
AOP 2 distribution, open up
${j boss. hone}/ server/ <confi g- nanme>/ depl oy/ j boss- aop-j dk50. depl oyer/
j boss-aspect-1ibrary-jdk50.jar and delete all
classes and subpackages under or g. j boss. aop.
In AOP 2.0 we changed the packaging,
these classes now exist inside
${j boss. hone}/ server/ <confi g- nane>/ depl oy/ j boss- aop-j dk50. depl oyer/
j boss- aop- as4- depl oyer . j ar. Also,

86

Installing with JBoss Application Server 5

we delete any files that also exist in
${j boss. hone}/ server/ <confi g- nanme>/ depl oy/ j boss- aop-j dk50. depl oyer/
j boss- st andal one-aspect-library.jar

3. Installing with JBoss Application Server 5

JBoss AS 5 ships with AOP 2.0.0.GA. To upgrade to a newer AOP version,

we have provided am an script to upgrade the server. It can be found at

j boss-50-install/build. xm . Modifly j boss-50-i nstal | to point to the root of
your JBoss installation, and specify the application server configuration you want to
upgrade. These are the steps taken by the ant script:

1. Back up the existing ${j boss. hone}/lib
and
${j boss. hone}/server/ <confi g- nane>/ depl oyer s/ j boss- aop-
j boss5. depl oyer folders.

2. Overwrite the
${j boss. hone}/ server/ <confi g- nane>/ depl oyer s/ j boss- aop-
j boss5. depl oyer folder with the files from
j boss-50-instal |l /]jboss-aop-]j boss5. depl oyer.

3. Overwrite the ${j boss. hone}/ | i b folder with the files from
jboss-50-install/lib.

87

88

Chapter 9.

Building and Compiling
Aspectized Java

1. Instrumentation modes

JBoss AOP works by instrumenting the classes you want to run. This means
that modifications to the bytecode are made in order to add extra information
to the classes to hook into the AOP library. JBoss AOP allows for two types of
instrumentation

» Precompiled - The classes are instrumented in a separate aop compilation step
before they are run.

« Loadtime - The classes are instrumented when they are first loaded.

This chapter describes the steps you need to take to precompile your classes with
the aop precompiler.

2. Ant Integration

JBoss AOP comes with an ant task that you can use for precompiling your classes
with the aop precompiler. An example build.xml file is the basis for the explanation.

<?xm version="1.0" encodi ng="UTF-8"?>
<proj ect default="conpile" nanme="JBoss/ACP">
<target nanme="prepare">

Define the source directory, and the directory to compile classes to.

<property name="src.dir" val ue="PATH TO YOUR SOURCE DI R'>
<property nanme="cl asses.dir" val ue="PATH TO YOUR DI R FOR
COWP| LED CLASSES' >

Define also the path of your JBoss AOP installation, as well as the path to the lib
directory:

<property nane="j boss. aop.root" val ue="PATH TO JBOSS ACP
HOMVE" / >

89

Chapter 9. Building and Compi...

<property nane="j boss. aop.|ib"
val ue="${j boss. aop.root}/lib"/>

Include the jboss-aop.jar and the jars it depends on in the classpath:

<path id="cl asspat h">
<pat hel enment pat h="${j boss. aop. | i b}/j boss-aop.jar"/>
<pat hel ement pat h="${j boss. aop. |i b}/javassist.jar"/>
<pat hel ement pat h="${j boss. aop.lib}/trove.jar"/>
<pat hel ement
pat h="$%{j boss. aop. | i b}/ j boss- conmon-core.jar"/>
<pat hel enment
pat h="3%{j boss. aop. | i b}/ j boss-1 oggi ng-spi .jar"/>
<pat hel ement
pat h="$%${j boss. aop. | i b}/ j boss-1 oggi ng-1o0g4j .jar"/>
<pat hel ement pat h="3${j boss. aop. |i b}/jboss-ndr.jar"/>
<pat hel ement pat h="${j boss. aop.|ib}/jboss-reflect.jar"/>
<pat hel enent pat h="${j boss. aop.li b}/l og4j.jar"/>
</ pat h>

As an alternative, you can use the single jar provided with JBoss AOP. This jar
bundles all the libraries used by JBoss AOP in a single unit. To use this jar, just
define:

<path id="cl asspat h">
<pat hel ement
pat h="$%{j boss. aop. | i b}/ j boss-aop-single.jar"/>
</ pat h>

Now, define the or g. j boss. aop. ant . AopC ant aop precompiler task:

<t askdef nane="aopc" cl assnanme="org.jboss. aop. ant. AopC'
cl asspat hr ef ="j boss. aop. cl asspat h"/ >
</target>

<t arget nane="conpile" depends="prepare">

Compile the files (from the source directory to the compiled classes directory):

90

Ant Integration

<javac srcdir="${src.dir}"
destdir="%{classes.dir}"
debug="on"
depr ecati on="on"
optim ze="of f"
i ncl udes="**">
<cl asspath refid="cl asspath"/>
</javac>

Now use the ant aop precompiler task, it reads the files from the classes directory
and weaves those classes, ovewriting them with the corresponding weaved version.

<aopc conpi |l ercl asspat href ="cl asspat h" verbose="true">
<cl asspat h pat h="%${cl asses.dir}"/>
<src path="${cl asses.dir}"/>
<i ncl ude name="**/*_ cl ass"/>
<aoppat h pat h="j boss-aop. xm "/ >
<aopcl asspath path="${cl asses.dir}"/>

</ aopc>

</t arget >
</ pr oj ect >

The last tag, aopcl asspat h, must be used only if you used annotations to

configure aspects, bindings, and the like. If this is the case and you are not using

a jboss-aop.xml file, you can ommit the aoppat h tag. You can also use both
annotations and XML to configure aspects. In this case, you must declare both tags.
The complete list of the parameters that or g. j boss. aop. ant . AopC ant task takes
follows:

e conpil ercl asspat h or conpi | ercl asspat href - These are interchangable,
and represent the jars needed for the aop precompiler to work. The
conpi | er cl asspat h version takes the paths of the jar files, and the
conpi | ercl asspat hr ef version takes the name of a predefined ant path. They
can be specified as attributes of aopc, as shown above. conpi | er cl asspat h can
also be specified as a child element of aopc, in which case you can use all the
normal ant functionality for paths (e.g. fileset).

« cl asspat h or cl asspat href - Path to the compiled classes to be instrumented.
The cl asspat h version takes the path of the directory, and the cl asspat hr ef
version takes the name of a predefined ant path. They both be specified as
attributes of aopc. cl asspat h can also be specified as a child element of aopc, as
shown above, in which case you can use all the normal ant functionality for paths

91

Chapter 9. Building and Compi...

(e.g. fileset). The full classpath of the underlying java process will be classpath +
compilerclasspath.

sr ¢ - A directory containing files to be transformed. You can use multiple src
elements to specify more that one root directory for transformation.

i ncl ude - This is optional and it serves as a filter to pick out which files within sr c
should be transformed. You can use wildcards within the name expression, and you
can also use multiple i ncl ude elements.

ver bose - Default is false. If true, verbose output is generated, which comes in
handy for diagnosing unexpected results.

report - Default is false. If true, the classes are not instrumented, but a report
called aop-report.xm is generated which shows all classes that have been
loaded that pertain to AOP, what interceptors and advices that are attached, and
also what metadata that has been attached. One particularly useful thing is the
unbounded section. It specifys all bindings that are not bound. It allows you to
debug when you might have a typo in one of your XML deployment descriptors.

Report generation works on the instrumented classes, so to get valid data in
your report, you have to to make two passes with aopc. First you run aopc
with report ="f al se" to instrument the classes, and then you run aopc with
report="true" to generate the report.

aoppat h - The path of the *- aop. xnl file containing the xml configuration of your
bindings. Files or Directories can be specified. If it is a directory, JBoss AOP will

take all aop. xm files from that directory. This gets used for the j boss. aop. pat h
optional system property which is described in the "Command Line" section.

If you have more than one xml file, for example if you have both a "normal”

j boss-aop. xn file, and a

<aoppat h>

<pat hel ement pat h="j boss-aop. xm "/ >
<pat hel ement path="xm dir"/>

</ aoppat h>

aopcl asspat h - This should mirror your class path and contain all JARs/directories
that may have annotated aspects (Ses Chapter "Annotated Bindings"). The

AOPC compiler will browse each class file in this path to determine if any of them
are annotationed with @spect . This gets used for the j boss. aop. cl ass. pat h
optional system property which is described in the "Command Line" section. If you
have more than one jar file, you can specify these as follows:

<aopcl asspat h>

92

Command Line

<pat hel ement pat h="aspects.jar"/>
<pat hel ement pat h="foo.jar"/>
</ aopcl asspat h>

* maxsrc - The ant task expands any directories in sr c to list all class files,
when creating the parameters for the java command that actually performs the
compilation. On some operating systems there is a limit to the length of vaid
command lines. The default value for maxsr ¢ is 1000. If the total length of all the
files used is greater than maxsr c, a temporary file listing the files to be transformed
is used and passed in to the java command instead. If you have problems running
the aopc task, try setting this value to a value smaller than 1000.

3. Command Line

To run the aop precompiler from the command line you need all the aop jars on your
classpath, and the class files you are instrumenting must have everything they would
need to run in the java classpath, including themselves, or the precompiler will not be
able to run.

The j boss. aop. pat h optional system property points to XML files that contain your
pointcut, advice bindings, and metadata definitions that the precompiler will use to
instrument the .class files. The property can have one or files it points to delimited by
the operating systems specific classpath delimiter (';' on windows, "' on unix). Files or
Directories can be specified. If it is a directory, JBoss AOP will take all aop. xni files
from that directory.

The j boss. aop. cl ass. pat h optional system property points to all JARs or
directories that may have classes that are annotated as @spect (See Chapter
"Annotated Bindings"). JBoss AOP will browse all classes in this path to see if
they are annotated. The property can have one or files it points to delimited by the
operating systems specific classpath delimiter (';' on windows, "' on unix).

It is invoked as:

$j ava -classpath ... [-Dj boss. aop. path=...]
[-Dj boss. aop.class.path=...] \
org.j boss. aop. st andal one. Conpi | er <class files
or directories>

In the /bin folder of the distribution we have provided batch/script files to make this
easier. It includes all the aop libs for you, so you just have to worry about your files.
The usage:

93

Chapter 9. Building and Compi...

$ aopc <cl asspath> [-aoppath ...] [-aopclasspath ...] [-report]
[-verbose] \
<class files or directories>+

* cl asspat h - path to your classes and any jars your code depends on
The other parameters are the same as above.

94

Chapter 10.

Running Aspectized
Applications

This section will show you how to run JBoss AOP with standalone applications and
how to run it integrated with the JBoss application server.

1. Loadtime, Compiletime and HotSwap Modes

There are 3 different modes to run your aspectized applications. Precompiled,
loadtime or hotswap. JBoss AOP needs to weave your aspects into the classes
which they aspectize. You can choose to use JBoss AOP's precompiler to
accomplish this (Compiletime) or have this weavining happen at runtime either when
the class is loaded (Loadtime) or after it (HotSwap).

Compiletime happens before you run your application. Compiletime weaving is

done by using the JBoss AOP precompiler to weave in your aspects to existing

.class files. The way it works is that you run the JBoss AOP precompiler on a set of
.class files and those files will be modified based on what aspects you have defined.
Compiletime weaving isn't always the best choice though. JSPs are a good instance
where compiletime weaving may not be feasible. It is also perfectly reasonable to mix
and match compile time and load time though. If you have load-time transformation
enabled, precompiled aspects are not transformed when they are loaded and ignored
by the classloader transformer.

Loadtime weaving offers the ultimate flexibility. JBoss AOP does not require a
special classloader to do loadtime weaving, but there are some issues that you need
to think about. The Java Virtual Machine actually has a simple standard mechanism
of hooking in a class transformer through the - j avaagent . JBoss AOP an additional
load-time transformer that can hook into classloading via this standard mechanism.

Load-time weaving also has other serious side effects that you need to be aware of.
JBoss AOP needs to do the same kinds of things that any standard Java profiling
product needs to do. It needs to be able to process bytecode at runtime. This
means that boot can end up being significantly slowed down because JBoss AOP
has to do a lot of work before a class can be loaded. Once all classes are loaded
though, load-time weaving has zero effect on the speed of your application. Besides
boottime, load-time weaving has to create a lot of Javassist datastructure that
represent the bytecode of a particular class. These datastructures consume a lot of
memory. JBoss AOP does its best to flush and garbage collect these datastructures,
but some must be kept in memory. We'll talk more about this later.

HotSwap weaving is a good choice if you need to enable aspects in runtime and
don't want that the flow control of your classes be changed before that. When using
this mode, your classes are instrumented a minimum necessary before getting

95

Chapter 10. Running Aspectize...

loaded, without affecting the flow control. If any joinpoint becomes intercepted in
runtime due to a dynamic AOP operation, the affected classes are weaved, so that
the added interceptors and aspects can be invoked. As the previous mode, hot swap
contains some drawbacks that need to be considered.

2. Regular Java Applications

JBoss AOP does not require an application server to be used. Applications running
JBoss AOP can be run standalone outside of an application server in any standard
Java application. This section focuses on how to run JBoss AOP applications that
don't run in the JBoss application server.

2.1. Precompiled instrumentation

Running a precompiled aop application is quite similar to running a normal java
application. In addition to the classpath required for your application you need to
specify the files required for aop, which are the files in the distribution's | i b/ folder.

As an alternative, you can replace all those jars by j boss- aop- si ngl e. j ar, that
bundles the libraries used by JBoss AOP with JBoss AOP class files in a single jar.

JBoss AOP finds XML configuration files in these two ways:

* You tell JBoss AOP where the XML files are. Set the j boss. aop. pat h system
property. (You can specify multiple files or directories separated by "' (*nix) or ;'
(Windows), i.e. - Dj boss. aop. pat h=j boss- aop. xni ; net adat a- aop. xm) If you
specify a directory, all aop. xnm files will be loaded from there as well.

* Let JBoss AOP figure out where XML files are. JBoss AOP will look for all XML
files that match this pattern / META- | NF/ j boss- aop. xnl . So, if you package your
jars and put your JBoss AOP XML files within / META- | NF/ j boss- aop. xmi , JBoss
AOP will find these files.

If you are using annotated bindings (See Chapter "Annotated Bindings"), you must
tell IBBoss AOP which JARS or directories that may have annotated @Aspects.

To do this you must set the j boss. aop. cl ass. pat h system property. (You can
specify multiple jars or directories separated by "' (*nix) or ';' (Windows), i.e.

- D boss. aop. cl ass. pat h=aspects. j ar; cl asses)

So to run a precompiled AOP application, where your jboss-aop.xml file is not part of
a jar, you enter this at a command prompt:

$ java -cp=<cl asspath as descri bed above> - D boss. aop. path=<path to
j boss-aop. xm > \
- Dj boss. aop. cl ass. pat h=aspects. | ar
com bl ah. M\yMai nCl ass

96

Loadtime

To run a precompiled AOP application, where your application contains a jar with a
META-INF/jboss-aop.xml file, you would need to do this from the command-line:

$ java -cp=<cl asspath as descri bed above> com bl ah. M\yMai nCl ass

In the /bin folder of the distribution we have provided batch/script files to make this
easier. It includes all the aop libs for you, so you just have to worry about your files.
The usage:

$ run-preconpil ed cl asspath [-aoppath path_to_aop. xm]
[-aopcl asspath pat h_to_annot at ed] \
com bl ah. MyMai nCl ass [args. . .]

If your application is not in a jar with a META-INF/jboss-aop.xml file, you must
specify the path to your *- aop. xni files in the - aoppat h parameter, and if your class
comtains aspects configured via annotations (@GAspect etc.) you must pass in this
classpath via the - aopcl asspat h parameter.

2.2. Loadtime

This section describes how to use loadtime instrumentation of classes with aop.
The classes themselves are just compiled using Java, but are not precompiled with
the aop precompiler. In the examples given if your classes are contained in a jar
with a META-INF/jboss-aop.xml file, you would omit the - Dj boss. aop. pat h system

property.

The JVM has a pluggable way of defining a class transformer via the

java. l ang. i nstrunment package. JBoss AOP uses this mechanism to weave
aspects at class load time. Using loadtime weaving is really easy. All you

have to do is define an additional standard switch on the Java command line.

-j avaagent : j boss- aop. j ar. Here's how run an AOP application with loadtime
instrumentation, where your jboss-aop.xml file is not part of a jar:

$ java -cp=<cl asspath as descri bed above> - D boss. aop. path=<path to
j boss-aop. xm > \
-j avaagent : j boss-aop.jar com bl ah. MyMai nC ass

And to run an AOP application with loadtime instrumentation, where your application
contains a jar with a META-INF/jboss-aop.xml file:

97

Chapter 10. Running Aspectize...

$ java -cp=<cl asspath as descri bed above> -j avaagent:j boss-aop.j ar
\
com bl ah. M\yMai nCl ass

In the /bin folder of the distribution we have provided batch/script files to make this
easier. It includes all the aop libs for you, so you just have to worry about your files.
The usage:

$ run-1load classpath [-aoppath path_to_aop.xm] [-aopcl asspath
path_to_annot ated] \
com bl ah. MyMai nCl ass [args...]

The parameters have the same meaning as for the run-precompiled scripts.

If you invoke the previous j ava examples with ant, by using the ant j ava task, make
sure that you set f ork="true" in the ant j ava task. Failure to do so, causes the

j ava task to execute in the same VM as ant which is already running. This means
that the special classloader used to do the loadtime transformations does not replace
the standard one, so no instrumentation takes place.

2.2.1. Loadtime using JRocKkit

JRockit 5+ supports the "normal” -javaagent switch.

2.2.2. Improving Loadtime Performance

JBoss AOP needs to do the same kinds of things that any standard Java profiling
product needs to do. It needs to be able to process bytecode at runtime before a
class is loaded. JBoss AOP has to do a lot of work before a class can be loaded.
This means that boot time can end up being significantly slowed down. Once all
classes are loaded though, load-time weaving has zero effect on the speed of your
application.

Besides boottime, load-time weaving has to create a lot of Javassist datastructures
that represent the bytecode of a particular class. These datastructures consume

a lot of memory. JBoss AOP does its best to flush and garbage collect these
datastructures, but some must be kept in memory. This section focuses on how you
can improve the performance of Loadtime weaving.

Increase the Java Heapspace
In Java, when your application is getting close to eating up all of its
memory/heapspace, the Java Garbage Collector starts to run more frequently

98

Loadtime

and aggressively. When the GC starts running more often the performance of
your application will suffer. JBoss AOP does its best to balance bootup speed
vS. memory consumption, but it does require loading bytecode into Javassist
datastructures so it can analyze and transform a class. For speed purposes,
the datastructures are cached thus leading to the extra memory consumption.
Javassist structures of non-transformed classes are placed a SoftReference
cache, so they are GC'd when memory is running low. Transformed classes,
however, are locked in the cache. Transformed classes are help in memory, as
they may effect pointcut matching on classes that haven't been loaded yet.

To increase your Heap size, use the standard - Xnx switch.

Filtering
Filtering probably has the greatest effect on overall boot-time speed. If you've
ever worked with a Java profiling product before, you probably noticed that it
has an option to filter classes that you are not interested in profiling. This can
speed up performance of the tool. JBoss AOP has to analyze every class in the
system to make sure it does not need to be transformed. THis is one reason
why load-time weaving can be so slow. You can give JBoss AOP a lot of help by
specifying sets of classes that do not need to be transformed.

To enable filtering, you can use the j boss. aop. excl ude System Property. This
System Property is a comma delimited list. The strings in the list can be package
names and/or classnames. Packages/classes within this list will ignored by
JBoss AOP. You can use the wildcard * in place of a classname, this will then
exclude all classes. No other wildcards are supported.

j ava
- Dj boss. aop. excl ude=or g. j boss, or g. apache . ..

There is also a mirror opposite of exclude. The System Property
j boss. aop. i ncl ude overrides any thing specified with exclude.

Include ignored annotations
To improve the startup time of JBoss AOP all invisible annotations
(invisible annotations are all annotations that are not annotated with
@=et enti on(Ret enti onPol i cy. RUNTI ME)) are ignored by default. To include
them use the system property j boss. aop. i nvi si bl e. annot at i ons to add
packages that will be included, or add "*" to include all.

j ava
- Dj boss. aop. i ncl ude. annot at i ons=com f 0o. bar, or g. ny. conpany

99

Chapter 10. Running Aspectize...

To include all:

java -Dj boss. aop. i ncl ude. annot at i ons=*

Turn off optimizations
To increase overall runtime performance, JBoss AOP has to dynamically create
a lot of extra code. If you turn off these optimizations, JBoss AOP can weave
a bit quicker. There is a good chance, depending on your application that you
will not even notice that these optimizations are turned off. See Chapter 14,
Instrumentation Modes for how to switch between weaving modes.

Turn off pruning
JBoss AOP tries to aggressive prune cached Javassist structures. This may,
may not have a tiny effect on performance. The j boss. aop. pr une system
property can be set to turn off pruning.

java -Dj boss. aop. prune=fal se ...

-client/-server
Strangely enough, it seems that the -client VM switch is a little faster for JBoss
AOP loadtime weaving that -server. If you are using the -server VM, trying
switching to -client (the default).

Ignore
A way to completely ignore classes from being instrumented. This overrides
whatever you have set up using the include/exclude filters. The system property
is j boss. aop. i gnor e, and you can use wildcards in the classnames. As for
include/exclude you may specify a comma separated list of class name patterns.
This following example avoids instrumenting the cglib generated proxies for
hibernate:

j ava
- Dj boss. aop. i gnor e=*$$Enhancer ByCGLI B$$*

2.3. HotSwap

The HotSwap feature allows bytecode of your classes to be weaved in runtime.
This results in application flow control changes to your classes only when joinpoints
become intercepted (to do this, use the dynamic aop funcionality provided by JBoss
AOP). This is a mode to be considered when you want to assure the flow control of
your classes will be kept intact until a binding or a interceptor is added.

100

User-Defined ClassLoaders

This mode is currently provided through the
java.lang.instrument.|nstrumentation hot swap functionality, which is part of
the JVMTI (Java Virtual Machine Tool Interface). So, you cannot run JBoss AOP in
this mode when using a previous JDK version.

To enable HotSwap, you have to add an argument to the Java command line in a
very similar way to the Loadtime mode: - j avaagent : j boss- aop. j ar =- hot Swap. The
difference is that the - hot Swap argument was added to the agent parameter list.

This way, if your jboss-aop.xml file is contained in a jar file, run:

$ java -cp=<cl asspath as descri bed above> - D boss. aop. path=<path to
j boss-aop. xm > \
-j avaagent : j boss- aop. j ar =- hot Swap com bl ah. M/Mai nCl ass

And if your jboss-aop.xml file is contained in a jar, run the following command line:

$ java -cp=<cl asspath as descri bed above>
-j avaagent : j boss-aop. j ar =- hot Swap \
com bl ah. MyMai nCl ass

The run- | oadHot Swap batch/script files contained in the /bin folder of the distribution
are similar to the r un- | oad ones, described in the previous subsection. All aop libs
are included in these script files. To use them, run:

$ run-load classpath [-aoppath path_to_aop.xm] [-aopcl asspath
pat h_to_annot at ed] \
com bl ah. M\yMai nCl ass [args...]

When hotswap is enabled, the prunning of classes is turned off. Therefore, if you try
to configure the jboss.aop.prune option as tr ue, this setup will be ignored.

As with the Loadtime mode, the HotSwap mode results in a boot time delay. Besides
this drawback, the execution of some dynamic aop operations may be slower

than in the other modes, when classes need to be hot swapped. The available
options to tune performance are the same as described in the "Improving Loadtime
Performance" subsection, except the pruning of classes.

2.4. User-Defined ClassLoaders

In order to be compatible with JBoss AOP, the ClassLoader responsible for loading
your application's classes must be able to find class files as resources. This means

101

Chapter 10. Running Aspectize...

that, given the name of a class that is in the classpath of your application, the
methods below must all return the URL(S) of the corresponding class file(s):

public URL get Resource(String nane)

publ i ¢ Enunerati on<URL> get Resources(String nane) throws
| OExcepti on

publ i ¢ Enunerati on<URL> get ResourceAsStrean(Stri ng nane) throws
| OExcepti on

Usually, there is no need to be concerned about this, as the ClassLoader
implementations of Sun's JVM and JRockit follow the requirement above. On the
other hand, if the application is being run with a user-defined ClassLoader, it is
necessary to make sure the ClassLoader follows this important requirement.

3. JBoss Application Server

JBoss AOP is integrated with JBoss 4.0.1+ application server. The integration steps
are different depending on what version of JBoss AS you are using and what JDK
version you are using. It is also dependent on whether you want to use loadtime

or compiletime instrumentation. JBoss 4.x comes with previous versions of JBoss
AOP, which can be upgraded to AOP 2.0.x by using the ant scripts as explained in
Section 2, “Installing with JBoss 4.0.x and JBoss 4.2.x Application Server for JDK 5",
JBoss 5 comes with AOP 2.0.x built in.

Based on what JDK you are on and what loadtime weaving option you want to you,
you must configure JBoss AS differently.

3.1. Packaging AOP Applications

To deploy an AOP application in JBoss you need to package it. AOP is packaged
similarly to SARs(MBeans). You can either deploy an XML file directly in the deploy/
directory with the signature *-aop.xml along with your package (this is how the
base-aop.xml, included in the j boss- aop. depl oyer file works) or you can include

it in the jar file containing your classes. If you include your xml file in your jar, it
must have the file extension .aop and a jboss-aop.xml file must be contained in a
META-INF directory, i.e. META- | NF/ j boss- aop. xmi .

Note that in JBoss 5, you MUST specify the schema used, otherwise

your information will not be parsed correctly. You do this by adding the

xm ns="urn: j boss: aop- beans: 1: 0 attribute to the root aop element, as shown
here:

<aop xm ns="urn:j boss: aop- beans: 1. 0" >

102

Packaging AOP Applications

</ aop>

If you want to create anything more than a non-trivial example, using the .aop jar
files, you can make any top-level deployment contain a .aop file containing the xml
binding configuration. That is you can have a .aop file in an .ear file, or a .aop file in a
war file etc. The bindings specified in the META- 1 NF/ j boss- aop. xnl file contained in
the .aop file will affect all the classes in the whole war!

To pick up a .aop file in an .ear file, it must be listed in the
. ear/ META- | NF/ appl i cation. xm as ajava module, e.g.:

<?xm version='"1.0" encodi ng=' UTF-8' ?>
<! DOCTYPE application PUBLIC '-//Sun M crosystens, Inc.//DTD J2EE
Application 1.2//EN

"http://java. sun.com j 2ee/ dtds/application_1 2.dtd"' >

<appl i cati on>
<di spl ay- name>ACP i n JBoss exanpl e</di spl ay- name>
<nmodul e>
<j ava>exanpl e. aop</j ava>
</ modul e>
<nmodul e>
<ej b>aopexanpl eej b. j ar </ ej b>
</ nodul e>
<modul e>
<web>
<web- uri >aopexanpl e. war </ web- uri >
<cont ext - r oot >/ aopexanpl e</ cont ext - r oot >
</ web>
</ nodul e>
</ appl i cati on>

Note that in newer versions of JBoss (>= 4.0.5), the contents of the .ear file are
deployed in the order they are listed in the application.xml. When using loadtime
weaving the bindings listed in the example.aop file must be deployed before the
classes being advised are deployed, so that the bindings exist in the system before
the ejb, servlet etc. classes are loaded. This is acheived by listing the .aop file at the
start of the application.xml. Older versions of JBoss did not have this issue since the
contained .aop files were deployed before anything else, and this still holds true for
other types of archives such as .sar and .war files.

103

Chapter 10. Running Aspectize...

3.2. The JBoss AspectManager Service

The AspectManager Service is installed in both JBoss 5 and JBoss 4.x.

It can be managed at run time using the JMX console which is found at
http://1ocal host: 8080/ j nx- consol e. It is registered under the ObjectName

j boss. aop: servi ce=Aspect Manager . If you want to configure it on startup you
need to edit some configuration files, which are different on JBoss 5 and JBoss 4.x,
although the concepts are the same.

3.2.1. JBoss 5 AspectManager Service

In JBoss 5 the AspectManager Service is configured using a JBoss Microcontainer
bean. The configuration file is j boss- 5. x. x. GA/ ser ver / xxx/ conf / aop. xm . The
AspectManager Service is deployed with the following xml:

<bean name="Aspect Manager"
cl ass="org.j boss. aop. depl oyer s. Aspect Manager JDK5" >

<property nane="jbossl ntegration"><inject
bean="AOPJBossl| nt egrati on"/ ></ property>

<property nane="enabl eLoadti meWeavi ng" >f al se</ property>

<I-- only rel evant when Enabl eLoadti meWaving is true.
When transfornmer is on, every |oaded class gets
transforned. If AOP can't find the class, then it

throws an exception. Sonetinmes, classes may not have
all the classes they reference. So, the Suppressing
is needed. (i.e. Jboss cache in the default
configuration -->
<property nane="suppressTransformati onErrors”>true</property>
<property nane="prune">true</property>
<property nane="incl ude">org. j boss.test.,
org.j boss. i nj bossaop. </ property>
<property nane="excl ude">org. j boss. </ property>
<I-- This avoids instrunentation of hibernate cglib enhanced
pr oxi es
<property nane="i gnore">*$$Enhancer ByCGL|I B$$* </ pr operty> -->
<property nane="optim zed">true</ property>
<property nane="verbose">f al se</ property>
<l--
Avai | abl e choices for this attribute are:
org.j boss. aop. i nstrunent. C assi cl nstrunentor (default)
org.j boss. aop. i nst runent . Gener at edAdvi sor | nst r ument or
<property
nane="i nstrument or" >or g. j boss. aop. i nstrunent . d assi cl nst runent or </
property>

104

The JBoss AspectManager Service

<l--

By default the depl oynent of the aspects contained

../ depl oyers/j boss-aop-j boss5. depl oyer/ base-aspect s. xni
are not deployed. To turn on depl oyment unconment
this property
<property nane="useBaseXnl ">t rue</ property>
-->

</ bean>

In later sections we will talk about changing the class of the AspectManager Service,
to do this replace the contents of the cl ass attribute of the bean element.

3.2.2. JBoss 4.x AspectManager Service

In JBoss 4.x the AspectManager Service is configured using a JBoss Microcontainer
bean. The configuration file is

j boss-4. x.x. GA/ server/ def aul t/ depl oy/j boss-aop-j dk50. depl oyer/ META-

I NF/ j boss- servi ce. xm . The AspectManager Service is deployed with the
following xmil:

<nmbean code="org.j boss. aop. depl oynent . Aspect Manager Ser vi ceJDK5"
nanme="j boss. aop: servi ce=Aspect Manager " >
<attribute nane="Enabl eLoadti meWeavi ng" >f al se</attri bute>

<I-- only rel evant when Enabl eLoadti meWaving i s true.
When transfornmer is on, every |oaded class gets
transfornmed. |f AOP can't find the class, then it

throws an exception. Sonetines, classes may not have
all the classes they reference. So, the Suppressing
is needed. (i.e. Jboss cache in the default
configuration -->
<attribute
nanme="Suppr essTransformati onErrors">true</attribute>
<attribute nanme="Prune">true</attribute>
<attribute nanme="Incl ude">org.j boss.test,
org. j boss. i nj bossaop</attri bute>
<attribute nanme="Excl ude">org.jboss. </attri bute>
<I-- This avoids instrunentation of hibernate cglib enhanced
pr oxi es
<attribute name="Ignore">*$$Enhancer ByCG.| B$$*</ attri but e>

<attribute nanme="Optim zed">true</attribute>

105

Chapter 10. Running Aspectize...

<attribute nanme="Verbose">fal se</attribute>
<depends optional -attri but e- nane="JBossl| nt egrati onW apper"
proxy-
type="attribute">j boss. aop: servi ce=JBoss4l nt egr ati onW apper </
depends>
<l--
Avai |l abl e choices for this attribute are:
org.j boss. aop. i nstrunent. d assi cl nstrunentor (default)
org.j boss. aop. i nst runent . Gener at edAdvi sor | nst r ument or
<attribute
name="1nst runent or " >or g. j boss. aop. i nst rument . Cl assi cl nstrunent or </
attribute>
-->
</ nbean>

In later sections we will talk about changing the class of the AspectManager Service,
to do this replace the contents of the code attribute of the mbean element.

3.3. Loadtime transformation in JBoss AS Using Sun JDK

JBoss AS has special integration with JDK (from version 5.0 on) to do loadtime
transformations. This section explains how to use it.

If you want to do load-time transformations with JBoss 5 and Sun JDK, these are the
steps you must take.

« Set the enabl eLoadt i reWeavi ng attribute/property to true. By default, JBoss
application server will not do load-time bytecode manipulation of AOP files
unless this is set. If suppr essTransf ormati onErrors istrue failed bytecode
transformation will only give an error warning. This flag is needed because
sometimes a JBoss deployment will not have all the classes a class references.

» Copy the pl uggabl e-i nstrunentor.jar fromthelib/ directory of your JBoss
AOP distribution to the bi n/ directory of your JBoss AOP application server
installation.

* Next editrun. sh or run. bat (depending on what OS you're on) and add the
following to the JAVA_OPTS environment variable:

set JAVA OPTS=%AVA OPTS% - Dpr ogr am nane=%"ROGNAMEY
- j avaagent : pl uggabl e-i nstrunentor. j ar

Note that the class of the AspectManager Service must be
org. j boss. aop. depl oyers. Aspect Manager JDK5 on JBoss 5, or

106

JBoss 5 and JRockit

org. j boss. aop. depl oynent . Aspect Manager Ser vi ceJDK5 as these are what work
with the -javaagent weaver.

3.4. JBoss 5 and JRockit

JRockit also supports the -javaagent switch mentioned in Section 3.3, “Loadtime
transformation in JBoss AS Using Sun JDK”. If you wish to use that, then the steps
in Section 3.3, “Loadtime transformation in JBoss AS Using Sun JDK” are sufficient.
However, JRockit also comes with its own framework for intercepting when classes
are loaded, which might be faster than the -javaagent switch. If you wish to use this,
there are three steps you must take.

If you want to do load-time transformations with JBoss 5 and JRockit using the
special JRockit hooks, these are the steps you must take.

« Set the enabl eLoadt i neWeavi ng attribute/property to true. By default, JBoss
application server will not do load-time bytecode manipulation of AOP files
unless this is set. If suppressTransformati onErrors is true failed bytecode
transformation will only give an error warning. This flag is needed because
sometimes a JBoss deployment will not have all the classes a class references.

e Copythejrockit-pluggabl e-instrunentor.jar fromthelib/ directory of your
JBoss AOP distribution to the bi n/ directory of your JBoss AOP application server
installation.

* Next editrun. sh or run. bat (depending on what OS you're on) and add the
following to the JAVA_OPTS and JBOSS_CLASSPATH environment variables:

Setup JBoss sepecific properties
JAVA OPTS="$JAVA OPTS - Dpr ogr am name=$PROGNAME \

Xmanagemnent : cl ass=or g. j boss. aop. hook. JRocki t Pl uggabl eCl assPr eProcessor"
JBOSS_CLASSPATH="$JBOSS_CLASSPATH: j r ocki t - pl uggabl e-
instrunentor.jar"

» Set the class of the AspectManager Service to be
org. j boss. aop. depl oyers. Aspect Manager JRocki t on JBoss 5, or
org.j boss. aop. depl oynent . Aspect Manager Ser vi ce as these are what work
with special hooks in JRockit.

3.5. Improving Loadtime Performance in a JBoss AS
Environment

The same rules apply to JBoss AS for tuning loadtime weaving performance
as standalone Java. See the previous chapter on tips and hints. YOU

107

Chapter 10. Running Aspectize...

CANNOT USE THE SAME SYSTEM PROPERTIES THOUGH! Switches

like pruning, optimized, and include/exclude are configured through the
jboss-aop.deployer/META-INF/jboss-service.xml file talked about earlier in this
chapter. You should be able to figure out how to turn the switches on/off from the

above documentation.

4. Scoping aop to the classloader

By default all deployments in JBoss are global to the whole application server.
That means that any ear, sar, jar etc. that is put in the deploy directory can see
the classes from any other deployed archive. Similarly, aop bindings are global
to the whole virtual machine. This "global” visibility can be turned off per top-level
deployment.

4.1. Deploying as part of a scoped classloader

How the following works may be changed in future versions of jboss-aop. If you
deploy a .aop file as part of a scoped archive, the bindings etc. applied within the
.aop/META-INF/jboss-aop.xml file will only apply to the classes within the scoped
archive and not to anything else in the application server. Another alternative is to
deploy -aop.xml files as part of a service archive (SAR). Again if the SAR is scoped,
the bindings contained in the -aop.xml files will only apply to the contents of the SAR
file. It is not currently possible to deploy a standalone -aop.xml file and have that
attach to a scoped deployment. Standalone -aop.xml files will apply to classes in the
whole application server.

4.2. Attaching to a scoped deployment

If you have an application using classloader isolation, as long as you have "prepared
your classes” you can later attach a .aop file to that deployment. If we have a
.ear file scoped using a jboss-app.xml file, with the scoped loader repository

j boss. test:servi ce=scoped:

<j boss- app>
<l oader - reposi tory>
j boss. test: servi ce=scoped
</'| oader - r eposi t ory>
</ j boss- app>

We can later deploy a .aop file containing aspects and configuration to attach that
deployment to the scoped .ear. This is done using the | oader - r eposi t ory tag in the
.aop files META- | NF/ j boss- aop. xni file.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<a0p>
<l oader - r eposi t or y>j boss. t est : servi ce=scoped</ | oader - r eposi t ory>

108

Attaching to a scoped deployment

<l-- Aspects and bindings -->
</ aop>

This has the same effect as deploying the .aop file as part of the .ear as we saw
previously, but allows you to hot deploy aspects into your scoped application.

109

110

Chapter 11.

Building JBoss AOP with
Maven?2

Since JBoss AOP requires either loadtime or compiletime weaving we need to
customize maven a bit to make it do what we want. JBoss AOP provides plugins to
make this weaving as easy as possible.

The JBoss AOP plugin is named jbossaop and is provided under the maven2
jboss.org repository. For the final releases use:

<r eposi tory>

<i d>maven. j boss. org</i d>

<nane>JBoss Maven Repository</ name>

<url >http://repository.jboss. coni maven2</ url >
</repository>

If you want to use the snapshot releases use:

<r eposi tory>
<i d>snapshot s. j boss. org</i d>
<nanme>JBoss Maven Snapshot Repository</nane>
<url >http://snapshots.jboss. org/ maven2</url >
</repository>

The jbossaop maven plugin will provide all the aop dependencies needed to weave
and run. There is no need to include aop dependencies other than the plugin. NOTE:
The version used in these examples may be obsolete, please check the latest
release for the reference version instead of using the version in these examples.

1. AOP Compile with Maven2

The aop compile plugin is configured to run after the default maven compile
phase has ended. By default it will try to find the jboss-aop.xml file in

src/ mai n/ resour ces/ j boss-aop. xn . It will also try to weave every class in
$proj ect . bui I d. out put Di rect ory (usually target/classes). List of options:

* aoppat hs - an array of possible jboss-aop.xml files. Default is
src/ mai n/ resour ces/ j boss-aop. xm

* verbose - if set to true it will provide debug information during the aop weaving. '
Default set to true.

111

Chapter 11. Building JBoss AO...

e suppr ess - suppress when a class cannot be found that a class references. This
may happen if code in a class references something and the class is not in the
classpath. Default set to true.

* noopt - do not optimize the weaving. Default set to false.
e report - store the output to a file (aop-report. xm). Default set to false.

 incl udeProj ect Dependency - if set to true all project dependencies will also be
included to the aop classpath. Only needed if a class inherits a class thats not
defined in the current module. Default set to false.

 cl assPat h - classpath, by default set to null. If its set to null it will use the plugin
dependencies (and add project dependencies if i ncl udePr oj ect Dependency is
set) + the output build path. Do not change this if you are not sure.

* aopd assPat h - load xml files that adds aspects to the manager. Do not change
this if you are not sure. By default set to null.

 incl udes - an array of classes that will be weaved. Note that if this is specified just
the classes thats specified here will be weaved. Default set to null.

» properties - alist of properties (name, value objects) that will be added as JVM
properties. A small example:

<properties>

<property>
<nanme>| og4j . confi gur at i on</ nane>
<val ue>l og4j . properti es</val ue>

</ property>

</ properties>

This will add log4j.configuration as JVM properties like:
-Dlog4j.configuration=log4j.properties.
There are a lot of options that can be set, but noone are mandatory (if they are
mandatory they have a default value set). The average user would most likely only
change aoppat hs. A more complete example would look like:

<pl ugi n>
<gr oupl d>or g. j boss. naven. pl ugi ns</ gr oupl d>
<artifactld>maven-j bossaop- pl ugi n</artifactld>
<ver si on>1. 0</ ver si on>
<executi ons>
<executi on>
<i d>conpi | e</i d>
<confi gurati on>
<l-- if you want to include dependencies fromthe current
nmodul e

112

AOP Compile tests with Maven2

(only needed if a class inherits a class thats not
defined in this nodul e
2o
<i ncl udePr oj ect Dependency>t r ue</ i ncl udePr oj ect Dependency>
<aoppat hs>
<aoppat h>sr ¢/ mai n/ r esour ces/ j boss- aop_t est 2. xn </ aoppat h>
<I-- for a second jboss-aop.xm file
<aoppat h>sr ¢/ mai n/ r esour ces/ j boss- aop. xnm </ aoppat h>
-->
</ aoppat hs>
<I-- You can specify to only aopc a specific set of classes

<i ncl udes>
<i ncl ude>PQJO. cl ass</i ncl ude>
</incl udes>
-->
</ confi guration>
<goal s>
<goal >conpi | e</ goal >
</ goal s>
</ executi on>
</ execut i ons>
</ pl ugi n>

2. AOP Compile tests with Maven?2

The only difference between aop compiling tests and non-tests are the name of the
plugin. The options are the same for tests and non-tests. A quick example:

<pl ugi n>
<gr oupl d>or g. j boss. naven. pl ugi ns</ gr oupl d>
<artifactld>maven-j bossaop- pl ugi n</artifactld>
<ver si on>1. 0</ ver si on>
<executi ons>
<executi on>
<i d>conpi l e-test</id>
<confi gurati on>
<aoppat hs>

<aoppat h>src/ mai n/ r esour ces/ j boss- aop_t est case. xnml </ aoppat h>
</ aoppat hs>
</ confi guration>
<goal s>
<goal >conpi | e-t est </ goal >
</ goal s>
</ executi on>
</ executi ons>

113

Chapter 11. Building JBoss AO...

</ pl ugi n>

3. Running precompiled with Maven?2

JBoss aop run plugin is configured to run after the package phase. There are less
options here than for the compile step and they are very similar.

* aoppat hs - an array of possible jboss-aop.xml files. Default is
src/ mai n/ resour ces/ j boss-aop. xm

 incl udeProj ect Dependency - if set to true all project dependencies will also be
included to the aop classpath. Only needed if a class inherits a class thats not
defined in the current module. Default set to false.

 cl assPat h - classpath, by default set to null. If its set to null it will use the plugin
dependencies (and add project dependencies if i ncl udePr oj ect Dependency is
set) + the output build path. Do not change this if you are not sure.

» execut abl e - the java class that will be executed

» properties - alist of properties (name, value objects) that will be added as JVM
properties. A small example:

<properties>
<property>
<nane>l og4j . confi gur at i on</ name>
<val ue>| og4j . properties</val ue>
</ property>
</ properties>

This will add log4j.configuration as JVM properties like:
-Dlog4j.configuration=log4j.properties.
A small example using default jboss-aop.xmil:

<pl ugi n>
<gr oupl d>or g. j boss. naven. pl ugi ns</ gr oupl d>
<artifactld>maven-j bossaop- pl ugi n</artifactld>
<versi on>1. 0. CR1</ ver si on>
<executi ons>
<executi on>
<i d>run</id>
<confi gurati on>
<execut abl e>Foo</ execut abl e>
</ confi guration>
<goal s>
<goal >run</ goal >

114

Running loadtime weaving with Maven2

</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>

4. Running loadtime weaving with Maven2

Running a java application in loadtime weaving is almost identical to compile time
(except that you dont need to precompile it first). The only change is that we need an
option to say that we want to run it loadtime.

« | oadti ne - set it to true if you want loadtime weaving. Default is set to false.

A small example:

<pl ugi n>
<gr oupl d>or g. j boss. naven. pl ugi ns</ gr oupl d>
<artifact!| d>maven-j bossaop-pl ugi n</artifactld>
<ver si on>1. 0. CR1</ ver si on>
<execut i ons>
<execut i on>
<i d>run</id>
<confi gurati on>
<aoppat hs>

<aoppat h>sr c/ mai n/ r esour ces/ j boss- aop_t est case. xnl </ aoppat h>
</ aoppat hs>
<l oadti me>true</| oadti me>
<execut abl e>Test </ execut abl e>
</ confi guration>
<goal s>
<goal >run</ goal >
</ goal s>
</ executi on>
</ executi ons>
</ pl ugi n>

5. Running tests with Maven2

Running tests with aop is a different matter since the maven tests plugin is rather
complex. But we can add the hooks we need to run it both compiletime and loadtime
with the maven tests too. An example on how to run a test thats been aop compiled:

<pl ugi n>
<gr oupl d>or g. apache. maven. pl ugi ns</ gr oupl d>
<artifactld>maven-surefire-plugin</artifactld>

115

Chapter 11. Building JBoss AO...

<ver si on>2. 4</ ver si on>
<confi gurati on>
<f or kMbde>al ways</ f or kMode>
<useSyst enTl assLoader >t r ue</ useSyst en’ assLoader >

<ar gLi ne>- Dj boss. aop. pat h=sr c/ mai n/ r esour ces/ j boss-
aop_t estcase. xm </ argLi ne>
</ confi guration>
</ pl ugi n>

To run it loadtime we only need to add the javaagent option to argLine. Like this:

<argLi ne>-j avaagent : ${setti ngs. | ocal Reposi tory}/org/jboss/|boss-
aop/ 2. 0. 0. CR3/\
j boss-aop-2.0.0.CR3.jar \

- Dj boss. aop. pat h=src/ mai n/ resour ces/ j boss-aop_t est case. xm </
ar gLi ne>

- big thanks to henrik and finn for figuring out how to do this :) Note again that the
versions used here are just for a reference and to provide as examples. Check the
JBoss AOP homepage for the up-to-date versions.

116

Chapter 12.

Reflection and AOP

While AOP works fine for normal access to fields, methods and constructors, there
are some problems with using the Reflection API for this using JBoss. The problems

are:

« Intereptors/aspects bound to execution pointcuts for fields and constructors don't
get invoked.

* Intereptors/aspects bound to caller pointcuts for methods and constructors don't
get invoked.

« Reflection Methods such as d ass. get Met hods() and C ass. get Fi el d() return
extra JBoss AOP "plumbing" information.

1. Force interception via reflection

To address the issues with interceptors not being invoked when you use reflection,
we have provided a reflection aspect. You bind it to a set of caller pointcuts, and it
mounts the pre-defined interceptor/aspect chains. The jboss-aop.xml entries are:

<aspect cl ass="org.]jboss. aop.refl ection. Refl ecti onAspect™
scope="PER VM'/ >

<bi nd poi ntcut="call (* java.lang. d ass->new nstance())">
<advi ce name="i nt er cept New nst ance" \
aspect ="org. j boss. aop. refl ecti on. Refl ecti onAspect"/ >

</ bi nd>

<bi nd poi ntcut="cal | (*
java.l ang. refl ect. Constructor - >new nst ance(j ava. | ang. Gbj ect[]))">
<advi ce name="i nt ercept New nst ance" \
aspect ="org. j boss. aop. refl ecti on. Refl ecti onAspect"/ >
</ bi nd>

<bi nd poi ntcut="cal |l (*
java. | ang. ref | ect. Met hod- >i nvoke(j ava. | ang. Obj ect,
java.lang. Gbject[]))">
<advi ce name="i nt er cept Met hodl nvoke" \
aspect ="org. j boss. aop. refl ecti on. Refl ecti onAspect"/ >
</ bi nd>

<bi nd pointcut="call(* java.lang.reflect.Field->get*(..))">
<advi ce name="interceptFiel dGet" \
aspect ="org. j boss. aop. refl ecti on. Refl ecti onAspect"/ >
</ bi nd>

117

Chapter 12. Reflection and AOP

<bi nd pointcut="call (* java.lang.reflect.Field->set*(..))">
<advi ce nanme="interceptFiel dSet" \
aspect ="org. j boss. aop. refl ecti on. Refl ecti onAspect"/ >
</ bi nd>

The Refl ecti onAspect class provides a few hooks for you to override from a
subclass if you like. These methods described below.

prot ected Obj ect interceptConstructor(
I nvocati on invocati on,
Constructor constructor,
oj ect[] args)
t hrows Thr owabl e;

Calls to d ass. newl nst ance() and Constructor. new nst ance() end up here. The
default behavior is to mount any constructor execution or caller interceptor chains. If
you want to override the behaviour, the parameters are:

e invocation - The invocation driving the chain of advices.
e construct or - The constructor being called

* args - the arguments being passed in to the constructor (in the case of
Class.newlnstance(), a zero-length array since it takes no parameters)

prot ected Object interceptFiel dRead(
I nvocati on invocati on,
Field field,
hj ect instance)
t hrows Thr owabl e;

Calls to Fi el d. get XXX() end up here. The default behavior is to mount any field
read interceptor chains. If you want to override the behaviour, the parameters are:

e invocati on - The invocation driving the chain of advices.
e field- The field being read

e instance - The instance from which we are reading a non-static field.

protected Object interceptFiel dWite(
| nvocati on i nvocati on,

118

Clean results from reflection info methods

Field field,
hj ect instance,
hj ect argQ)

t hrows Thr owabl e;

Calls to Fi el d. set XXX() end up here. The default behavior is to mount any field
write interceptor chains. If you want to override the behaviour, the parameters are:

* invocation - The invocation driving the chain of advices.
e fiel d- The field being written
 instance - The instance on which we are writing a non-static field.

e arg - The value we are setting the field to

prot ected Obj ect interceptMethod(
I nvocati on invocati on,
Met hod net hod,
Ohj ect instance,
oj ect[] args)
t hrows Throwabl e;

Calls to Met hod. i nvoke() end up here. The default behavior is to mount any method
caller interceptor chains (method execution chains are handled correctly by default).
If you want to override the behaviour, the parameters are:

* invocati on - The invocation driving the chain of advices.
* net hod - The method being invoked
* instance - The instance on which we are invoking a nhon-static method.

 args - Values for the method arguments.

2. Clean results from reflection info methods

The Refl ecti onAspect also helps with getting rid of the JBoss AOP "plumbing"
information. You bind it to a set of caller pointcuts, using the followingjboss-aop.xml
entries :

<bi nd pointcut="call (* java.lang.d ass->getInterfaces())">
<advi ce name="interceptCGetlnterfaces" \

aspect="org. j boss.test.aop.refl ection. Refl ecti onAspect Tester"/>

119

Chapter 12. Reflection and AOP

</ bi nd>

<bi nd poi ntcut="call (* java.lang. d ass->get Decl ar edMet hods())" >
<advi ce name="i nt er cept Get Decl ar edMet hods" \

aspect ="org. | boss.test.aop.refl ection. Refl ecti onAspect Tester"/>
</ bi nd>

<bi nd poi ntcut="call (* java.l ang. C ass->get Decl aredMet hod(..))">
<advi ce name="i nt er cept Get Decl ar edMet hod" \

aspect="org.j boss.test.aop.refl ection. Refl ecti onAspect Tester"/>
</ bi nd>

<bi nd poi ntcut="call (* java.lang. d ass->get Met hods())">
<advi ce name="i nt er cept Get Met hods" \

aspect="org.j boss.test.aop.refl ection. Refl ecti onAspect Tester"/>
</ bi nd>

<bi nd poi ntcut="call (* java.l ang. Cl ass->get Method(..))">
<advi ce name="int ercept Get Met hod" \

aspect="org.j boss.test.aop.refl ection. Refl ecti onAspect Tester"/>
</ bi nd>

<bi nd poi ntcut="call (* java.lang. C ass->get Decl aredFi el ds())">
<advi ce name="i nt er cept Get Decl ar edFi el ds" \

aspect ="org.j boss.test.aop.refl ection. Refl ecti onAspect Tester"/>
</ bi nd>

<bi nd pointcut="cal | (* java.lang. C ass->get Decl aredCl asses()) ">
<advi ce name="int er cept Get Decl ar edCl asses" \

aspect="org.j boss.test.aop.refl ection. Refl ecti onAspect Tester"/>
</ bi nd>

<bi nd pointcut="call (* java.lang. d ass->get Decl aredField(..))">
<advi ce name="i nt er cept Get Decl ar edFi el d" \

aspect="org.j boss.test.aop.refl ection. Refl ecti onAspect Tester"/>
</ bi nd>

This way the calls to d ass. get Met hods() etc. only return information that is present
in the "raw" class, by filtering out the stuff added to the class by JBoss AOP.

120

Chapter 13.

Interception of Array Element
Access

This chapter will show you how to intercept access to the individual elements of an
array. The concepts are similar to the interception we have seen previously, but a
few configuration options are introduced. Array interception can currently only be
configured via xml. There are three steps involved.

» Specifying which classes we want to replace access to arrays in
» Preparing the array fields in the target class

 Binding advices to array access

1. Replacing Array Access

To achieve array interception we need to replace all access to arrays within a
selected set of classes. The arrayr epl acenent element is used for this. You can
either specify a particular class using the cl ass attribute or a class expression using
the expr attribute:

<arrayrepl acenent class="org. acne. PQIOWN t hArray"/ >
<arrayrepl acenent expr="cl ass(org.acne.*)"/>

2. Preparing Array Fields

If we want to intercept an array's elements, that array field needs to be woven, using
either a pr epar e or a bi nd expression. If that field is within a class picked out by

an ar r ayr epl acenent expression it gets all the hooks for arrayreplacement to

take place. The following xml along with the previous ar r ayr epl acement weaves
org. acme. PQDIOW t hArray. i nt s for array element interception.

<prepare expr="field(int[] org.acne. PQOONthArray->ints)"/>

121

Chapter 13. Interception of A...

3. Binding Advices to array element access

To bind advices to the access of array elements, you use a ar r aybi nd element. It
binds advices to all arrays woven for array access. You can use the t ype attribute
to specify if you want the interception to take place when setting elements in the
array, getting elements from the array, or both. Valid values for the t ype attribute
are: READ WRI TE, READ_ONLY and WRI TE_ONLY. An example is shown below:

<interceptor class="org.acne. Testlnterceptor"/>
<arraybi nd type="READ ONLY">

<i nterceptor-ref name="org.acne. Testlnterceptor"/>
</ arr aybi nd>

arr aybi nd currently only supports i nt er cept or-ref and advi ce as child elements.
before, after, throw ng and fi nal | y are not yet supported for array interception.
for arrays.

4. Invocation types for array element access
interception

Writing aspects for array element interception is more or less the same as for any
other joinpoint. However, array element interception comes with its own hierarchy of
I nvocat i on clases. Which one of these is used depends on what is being itercepted.
The hierarchy is shown below (all the classes live in the or g. j boss. aop. arr ay
package):

ArrayEl ement | nvocat i on
- Arr ayEl enent Readl nvocat i on

- - Bool eanArrayEl ement Readl nvocati on -El enent read from a bool ean[]

- - Byt eArr ayEl ement Readl nvocat i on -Element read froma byte[]

- - Char Ar r ayEl ement Readl nvocat i on -Elenent read froma char[]

- - Doubl eArr ayEl enent Readl nvocat i on -El ement read from a doubl e[]

- - Fl oat Arr ayEl ement Readl nvocat i on -Element read froma float[]

- -1 nt ArrayEl enent Readl nvocat i on -Element read froma int[]

- - LongArrayEl ement Readl nvocati on -El ement read froma | ong[]

- - Obj ect Arr ayEl enent Readl nvocat i on -El ement read froma bject[],
String[] etc.

- - Short Arr ayEl ement Readl nvocat i on -El ement read froma shore[]

-ArrayEl ement Wit el nvocati on
- - Bool eanArrayEl ement Wi tel nvocation -El enent witten to a
bool ean[]

122

Invocation types for array element access

interception
--ByteArrayEl ement Wit el nvocati on -Element witten to a byte[]
--Char ArrayEl ement Wit el nvocati on -Element witten to a char[]
- - Doubl eArrayEl enent Wi tel nvocation -Elenent witten to a doubl e[]
--Fl oat ArrayEl ement Wi t el nvocati on -Element witten to a float[]
--IntArrayEl enent Wi tel nvocati on -Elemrent witten to a int[]
--LongArrayEl ement Wit el nvocati on -Element witten to a |ong[]
--Obj ect ArrayEl enent Witel nvocation -Elenent witten to a
Qoject[], String[] etc.
--Short ArrayEl ement Wi t el nvocati on -Element witten to a short[]

The write invocation classes allow you access to the value the element is being set
to. ArrayEl enent Readl nvocat i on defines a method to get hold of the value being
set:

public abstract OCbject getVal ue();

The sub-classes override this value, and also define a more fine-grained value
to avoid using the wrapper classes where appropriate, as shown in the following
methods from Doubl eArr ayEl enent Wi t el nvocati on:

publ i c Object getVal ue()

{
return new Doubl e(val ue);
}
publ i ¢ doubl e get Doubl eVal ue()
{
return val ue;
}

When reading an array element the invocation's return value contains the value read.
For all array invocations you can get the index of the element being accessed by
calling ArrayEl enent | nvocat i on. get | ndex() .

123

124

Chapter 14.

Instrumentation Modes

Since it's inception JBoss AOP has introduced different modes of weaving. While
the base functionality is the same, the weaving mode introduced in JBoss AOP 2.0.0
allows for more functionality. This chapter will explain a bit about the pros and cons
of the different weaving modes, and what functionalities are offered.

1. Classic Weaving

This original weaving mode offers the full basic functionality, and comes in two
flavours: 'non-optimized' and 'optimized'.

1.1. Non-optimized

This is the original weaving mode. It generates a minimum amount of woven code,
only modyfying the target joinpoints. However, the the invocation classes end up
calling the target joinpoint using reflection. Hence it will have minimum overhead at
weaving time, but incur the extra cost of calling via reflection at runtime.

To use not-optimized classic weaving at compile-time, you need to specify the
following parameters to the aopc ant task.

e optinized - false

e j boss. aop. i nstrunent or - org.jposs.aop.instrument.Classiclnstrumentor

An example is shown in the following build.xml snippet. Only the relevant parts are

shown.
<aopc optim zed="fal se" conpil erclasspathref="...">
<sysproperty key="jboss. aop.instrunentor"” \
val ue="org. j boss. aop. i nstrunent. C assi cl nstrunentor"/>
</ aopc>

To turn this weaving mode on when using load-time weaving, you need to specify the
same flags as system properties when running your woven application. Here is an
example:

java -Dj boss. aop. opti m zed=fal se \

125

Chapter 14. Instrumentation Modes

Dj boss. aop. i nst runent or =or g. j boss. aop. i nstrunment . d assi cl nst runent or
\
[ot her aop and cl asspath settings] M/C ass

1.2. Optimized

This is a development of the original weaving mode. Like the non-optimized flavour,
it modifies the target joinpoints, but in addition it generates an invocation class per
woven joinpoint, which calls the target joinpoint normally, avoiding the cost of calling
via reflection.

To use optimized classic weaving at compile-time, you need to specify the following
parameters to the aopc ant task.

e optimzed - true
e jboss. aop.instrument or - org.jboss.aop.instrument.Classiclnstrumentor

An example is shown in the following build.xml snippet. Only the relevant parts are

shown.
<aopc optim zed="true" conpilerclasspathref="...">
<sysproperty key="jboss. aop.instrunentor" \
val ue="org. j boss. aop. i nstrunent. d assi cl nstrunentor"/ >
</ aopc>

To turn this weaving mode on when using load-time weaving, you need to specify the
same flags as system properties when running your woven application. Here is an
example:

java -Dj boss. aop. optim zed=true \

Dj boss. aop. i nst runent or =or g. j boss. aop. i nstrunment . d assi cl nst runent or
\
[ot her aop and cl asspath settings] My/C ass

2. Generated Advisor Weaving

This is the weaving mode that is used by default in JBoss AOP 2.0.x. In addition to
generating the invocation classes, it also generates the 'advisors'. These contain

126

Lightweight Aspects

the internal book-keeping code that keeps track of the advice chains for the varoius
woven joinpoints). At runtime, this means that there is less overhead of looking
things up. This mode also allows for some new features in JBoss AOP 2.0.x.

This weaving mode is used by default, so you don't have to specify any extra
parameters. This may change in future, so for completeness the parameter you
would to pass in to the aopc ant task is.

* jboss. aop.instrumentor -
org.jboss.aop.instrument.GeneratedAdvisorinstrumentor

An example is shown in the following build.xml snippet. Only the relevant parts are
shown.

<aopc optim zed="true" conpilerclasspathref="...">
<sysproperty key="jboss. aop.instrunentor" \

val ue="org. j boss. aop. i nstrunent . Gener at edAdvi sor | nstrunentor"/>

</ aopc>

Similarly, for load-time weaving, the default is to use this weaving mode. If you were
to need to turn it one you would pass in the Gener at edAdvi sor | nst r ument or when
starting the JVM:

j ava

Dj boss. aop. i nst runent or =or g. j boss. aop. i nstrunment . Gener at edAdvi sor | nst r unent or
\
[other aop and cl asspath settings] Myd ass

Now we will look at some of the features that are available using this weaving mode.

2.1. Lightweight Aspects

The use of the before, after, after-throwing and finally advices as mentioned in
Section 2, “Before/After/After-Throwing/Finally Advices” is only supported in this
weaving mode.

2.2. Improved Instance API

The improved instance api mentioned in Section 4, “Improved Instance API” is only
available in this weaving mode.

127

Chapter 14. Instrumentation Modes

2.3. Chain Overriding of Inherited Methods

This will be explained with an example. Consider the following case:

public class Base{
void test(){}

public class Chil d{
}

public class ChildTest{
void test(){}

}
<aop>
<prepare expr="execution(* PQIO >test())"/>
<bi nd poi nt cut ="executi on(* Base->test())">
<i nterceptor class="Baselnterceptor"/>
</ bi nd>
<bi nd poi nt cut ="execution(* Child*->test())">
<interceptor class="Childlnterceptor"/>
</ bi nd>
</ aop>
Base base = new Base(); /11
Child child = new Child(); /12

Chi | dTest chil dTest = new Chil dTest (); /13

base.test(); /14
child.test(); /15
chil dTest.test(); /16

With the "old" weaving we needed an exact match on methods for advices to get
bound, meaning that:

 Call 4 would get intercepted by Baselnterceptor

128

Chain Overriding of Inherited Methods

 Call 5 would get intercepted by Baselnterceptor

» Call 6 would get intercepted by ChildIinterceptor

The discrepancy is between calls 5 and 6, we get different behaviour depending
on if we have overridden the method or are just inheriting it, which in turn means
we have to have some in-depth knowledge about our hierarchy of classes and who
overrides/inherits what in order to have predictable interception.

The new weaving model matches differently, and treats inherited methods the same
as overridden methods, so:

 Call 4 would get intercepted by Baselnterceptor

 Call 5 would get intercepted by Childinterceptor

» Call 6 would get intercepted by ChildIinterceptor

Note that for this to work, the parent method MUST be woven. In the previous
example Base. t est () has been prepared.

129

130

	JBoss AOP - Aspect-Oriented Framework for Java
	Table of Contents
	Preface
	Chapter 1. Terms
	1. Overview

	Chapter 2. Implementing Aspects
	1. Overview
	2. Aspect Class
	3. Advice Methods
	4. Interceptors
	5. Resolving Annotations
	6. Metadata
	6.1. Resolving XML Metadata
	6.2. Attaching Metadata

	7. Mixin Definition
	8. Dynamic CFlow

	Chapter 3. Joinpoint and Pointcut Expressions
	1. Wildcards
	2. Type Patterns
	3. Method Patterns
	4. Constructor Patterns
	5. Field Patterns
	6. Pointcuts
	7. Pointcut Composition
	8. Pointcut References
	9. Typedef Expressions
	10. Joinpoints
	10.1. Joinpoint Beans
	10.2. Context Values

	Chapter 4. Advices
	1. Around Advices
	2. Before/After/After-Throwing/Finally Advices
	2.1. Before Advice Signature
	2.2. After Advice Signature
	2.3. After-Throwing Advice Signature
	2.4. Finally Advice Signature

	3. Annotated Advice Parameters
	3.1. @Thrown annotated parameter
	3.2. JoinPoint Arguments

	4. Overloaded Advices
	4.1. Annotated-parameter Signature
	4.1.1. Presence priority
	4.1.2. Assignability Degree
	4.1.3. Return Types
	4.1.4. A Match
	4.1.5. Lowest Priority

	4.2. Default Signature
	4.3. Mixing Different Signatures

	5. Common Mistakes

	Chapter 5. XML Bindings
	1. Intro
	2. Resolving XML
	2.1. Standalone XML Resolving
	2.2. Application Server XML Resolving

	3. XML Schema
	4. aspect
	4.1. Basic Definition
	4.2. Scope
	4.3. Configuration
	4.3.1. Names
	4.3.2. Example configuration

	4.4. Aspect Factories

	5. interceptor
	6. bind
	7. stack
	8. pointcut
	9. introduction
	9.1. Interface introductions
	9.2. Mixins

	10. annotation-introduction
	11. cflow-stack
	12. typedef
	13. dynamic-cflow
	14. prepare
	15. metadata
	16. metadata-loader
	17. precedence
	18. declare
	18.1. declare-warning
	18.2. declare-error

	Chapter 6. Annotation Bindings
	1. @Aspect
	2. @InterceptorDef
	2.1. Interceptor Example
	2.2. AspectFactory Example

	3. @PointcutDef
	4. @Bind
	5. @Introduction
	6. @Mixin
	7. @Prepare
	7.1. @Prepare POJO

	8. @TypeDef
	9. @CFlowDef
	10. @DynamicCFlowDef
	11. @AnnotationIntroductionDef
	12. @Precedence
	13. @DeclareError and @DeclareWarning

	Chapter 7. Dynamic AOP
	1. Hot Deployment
	2. Per Instance AOP
	3. Preparation
	4. Improved Instance API
	5. DynamicAOP with HotSwap

	Chapter 8. Installing
	1. Installing Standalone
	2. Installing with JBoss 4.0.x and JBoss 4.2.x Application Server for JDK 5
	3. Installing with JBoss Application Server 5

	Chapter 9. Building and Compiling Aspectized Java
	1. Instrumentation modes
	2. Ant Integration
	3. Command Line

	Chapter 10. Running Aspectized Applications
	1. Loadtime, Compiletime and HotSwap Modes
	2. Regular Java Applications
	2.1. Precompiled instrumentation
	2.2. Loadtime
	2.2.1. Loadtime using JRockit
	2.2.2. Improving Loadtime Performance

	2.3. HotSwap
	2.4. User-Defined ClassLoaders

	3. JBoss Application Server
	3.1. Packaging AOP Applications
	3.2. The JBoss AspectManager Service
	3.2.1. JBoss 5 AspectManager Service
	3.2.2. JBoss 4.x AspectManager Service

	3.3. Loadtime transformation in JBoss AS Using Sun JDK
	3.4. JBoss 5 and JRockit
	3.5. Improving Loadtime Performance in a JBoss AS Environment

	4. Scoping aop to the classloader
	4.1. Deploying as part of a scoped classloader
	4.2. Attaching to a scoped deployment

	Chapter 11. Building JBoss AOP with Maven2
	1. AOP Compile with Maven2
	2. AOP Compile tests with Maven2
	3. Running precompiled with Maven2
	4. Running loadtime weaving with Maven2
	5. Running tests with Maven2

	Chapter 12. Reflection and AOP
	1. Force interception via reflection
	2. Clean results from reflection info methods

	Chapter 13. Interception of Array Element Access
	1. Replacing Array Access
	2. Preparing Array Fields
	3. Binding Advices to array element access
	4. Invocation types for array element access interception

	Chapter 14. Instrumentation Modes
	1. Classic Weaving
	1.1. Non-optimized
	1.2. Optimized

	2. Generated Advisor Weaving
	2.1. Lightweight Aspects
	2.2. Improved Instance API
	2.3. Chain Overriding of Inherited Methods

