
JBoss Administration and Development
Second Edition

Scott Stark and

The JBoss Group

© JBoss Group, LLC
2520 Sharondale Dr.

Atlanta, GA 30305 USA
sales@jbossgroup.com

Last Updated: April 14, 2003 9:41 am
JBoss Version 3.0.7
JBoss Administration and Development

JBoss Administration and Development

 :
Contents
: List of Listings - ix
: List of Figures - xiii

CHAPTER i Preface 15

i: Forward - 15
i: About the Authors - 16
i: About Open Source - 17
i: About JBoss - 17

JBoss: A Full J2EE Implementation with JMX - 18
What this Book Covers - 18

CHAPTER 1 Installing and Building the JBoss Server 21

1: Getting the Binary- - 22
Prerequisites - 22
Installing the Binary Package - 22

Directory Structure - 22
 - 24
The Default Server Configuration File Set - 25

conf/jboss-minimal.xml - 26
conf/jboss-service.xml - 26
conf/jbossmq-state.xml - 26
conf/jndi.properties - 26
conf/log4j.xml- - 27
conf/login-config.xml - 27
conf/server.policy - 27
conf/standardjaws.xml - 27
conf/standardjbosscmp-jdbc.xml - 27
conf/standardjboss.xml- - 27
deploy/http-invoker.sar- - 27
deploy/jbossweb.sar - 27
deploy/jmx-console.war - 28
deploy/jmx-rmi-adaptor.sar- - 28
deploy/counter-service.xml- - 28
deploy/ejb-management.jar- - 28
deploy/hsqldb-service.xml - 28
deploy/jboss-jca.sar - 28
deploy/jboss-local-jdbc.rar - 28
deploy/jboss-xa.rar - 28
deploy/jbossmq-destinations-service.xml - 29
deploy/jbossmq-service.xml - 29
deploy/jms-ra.rar - 29
deploy/jms-service.xml - 29
deploy/jmx-ejb-adaptor.jar, deploy/jmx-ejb-connector-server.sar - 29
deploy/jmx-invoker-adaptor-servier.sar - 29
deploy/mail-service.xml - 29
deploy/properties-service.xml - 29
deploy/scheduler-service.xml- - 29
i

 :
deploy/user-service.xml - 29
Basic Installation Testing - 30
Building the Server from Source Code - 31

Accessing the JBoss CVS Repositories at SourceForge - 31
Understanding CVS - 31
Anonymous CVS Access - 32
Obtaining a CVS Client - 32
Building the JBoss-3.0.7 Distribution Using the Source Code - 32
Building the JBoss-3.0.7 Distribution Using the CVS Source Code - 32
Building the JBoss-3.0.7/Tomcat-4.1.24 Integrated Bundle- - 34
An Overview of the JBoss CVS Source Tree - 34

Using the JBossTest unit testsuite - 35

CHAPTER 2 The JBoss JMX Microkernel 39

2: JMX - 39
An Introduction to JMX - 40

Instrumentation Level - 41
Agent Level - 42
Distributed Services Level - 42
JMX Component Overview - 43

Managed Beans or MBeans - 43
Notification Model - 44
MBean Metadata Classes - 44
MBean Server- - 44
Agent Services - 45

JBoss JMX Implementation Architecture- - 46
The JBoss ClassLoader Architecture - 46

Class Loading and Types in Java- - 46
ClassCastExceptions - I’m Not Your Type- - 46
IllegalAccessException - Doing what you should not - 51
LinkageErrors - Making Sure You Are Who You Say You Are - 53
Inside the JBoss Class Loading Architecture - 60

Connecting to the JMX Server- - 67
Inspecting the Server - the JMX Console Web Application - 67

Securing the JMX Console - 69
Connecting to JMX Using RMI - 71

Using JMX as a Microkernel - 79
The Startup Process - 79
JBoss MBean Services - 80

The SARDeployer MBean - 80
The Service Life Cycle Interface - 84
The ServiceController MBean - 85
Specifying Service Dependencies - 87
Identitifying Unsatisfied Dependencies - 89

Writing A JBoss MBean Service - 89
A Custom MBean Example- - 90

The Core JBoss MBeans - 94
org.jboss.logging.Log4jService- - 98
org.jboss.web.WebService - 99
org.jboss.deployment.scanner.URLDeploymentScanner - 99

Deployment Ordering and Dependencies - 100
The JBoss Deployer Architecture - 112
ii

 :
Deployers and ClassLoaders - 115

CHAPTER 3 Naming on JBoss - The JNDI Naming Service 119

3: An Overview of JNDI - 119
The JNDI API - 120

Names - 120
Contexts - 121

Obtaining a Context using InitialContext - 121
J2EE and JNDI – The Application Component Environment - - - - - - - - - - - - - - - - - - 122

ENC Usage Conventions- 123
The ejb-jar.xml ENC Elements - 124
The web.xml ENC Elements - 125
The jboss.xml ENC Elements- 127
The jboss-web.xml ENC Elements - 128
Environment Entries- 129
EJB References - 130
EJB References with jboss.xml and jboss-web.xml- 132
EJB Local References - 133
Resource Manager Connection Factory References - 135
Resource Manager Connection Factory References with jboss.xml and jboss-web.xml- - - - - - - - - - - - 136
Resource Environment References - 137
Resource Environment References and jboss.xml, jboss-web.xml - 138

3-15: The JBossNS Architecture - 139
The Naming InitialContext Factories- - 141

Naming Discovery in Clustered Environments - 142
The HTTP InitialContext Factory Implementation - 143
The Login InitialContext Factory Implementation - 144

Accessing JNDI over HTTP - 144
Accessing JNDI over HTTPS - 147

Securing Access to JNDI over HTTP - 150
Securing Access to JNDI with a Read-Only Unsecured Context - - - - - - - - - - - - - - - - - 152
Additional Naming MBeans - 153

org.jboss.naming.ExternalContext MBean - 153
The org.jboss.naming.NamingAlias MBean - 155
The org.jboss.naming.JNDIView MBean - 155

CHAPTER 4 Transactions on JBoss - The JTA Transaction Service 159

4: Transaction/JTA Overview - 159
Pessimistic and optimistic locking - 160
The components of a distributed transaction - 161
The two-phase XA protocol - 161
Heuristic exceptions - 162
Transaction IDs and branches - 162

•: JBoss Transaction Internals - 163
Adapting a Transaction Manager to JBoss - 163
The Default Transaction Manager - 164

org.jboss.tm.XidFactory - 164
UserTransaction Support - 165
iii

 :
CHAPTER 5 EJBs on JBoss - The EJB Container Configuration and Architecture 167

5: The EJB Client Side View - 167
•: The EJB Server Side View - 171

Detached Invokers - The Transport Middlemen- - 171
The LocalInvoker - In VM transport - 172
The JRMPInvoker - RMI/JRMP Transport - 173
The HttpInvoker - RMI/HTTP Transport - 174
The HA JRMPInvoker - Clustered RMI/JRMP Transport - 175
The HA HttpInvoker - Clustered RMI/HTTP Transport - 176
HttpProxyFactory - Building Dynamic HTTP Proxies - 177
Steps to Expose Any RMI Interface HTTP - 177

3: The EJB Container - 179
EJBDeployer MBean - 179

Verifying EJB deployments - 180
Deploying EJBs Into Containers - 180
Container configuration information - 181

The container-name Element- 185
The call-logging Element - 186
The container-invoker and container-invoker-conf Elements - 186
The container-interceptors Element - 186
The instance-pool and container-pool-conf Elements - 187
The instance-cache and container-cache-conf Elements - 187
The persistence-manager Element - 189
The transaction-manager Element - 189
The locking-policy Element - 189
The commit-option and optiond-refresh-rate Element - 190
The security-domain Element - 190

Container Plug-in Framework - 191
org.jboss.ejb.ContainerPlugin - 191
org.jboss.ejb.Interceptor - 192
org.jboss.ejb.InstancePool - 193
org.jboss.ebj.InstanceCache - 194
org.jboss.ejb.EntityPersistenceManager - 195
org.jboss.ejb.StatefulSessionPersistenceManager - 201

5-14: Entity Bean Locking and Deadlock Detection - 202
Why JBoss Needs Locking - 202
Entity Bean Lifecycle - 203
Default Locking Behavior - 203

Method Lock - 203
Transaction Lock - 204

Pluggable Interceptors and Locking Policy - 204
Deadlock - 205

Dedlock Detection - 205
Catching ApplicationDeadlockException - 206
Viewing Lock Information - 207

Advanced Configurations and Optimizations - 208
Short-lived Transactions - 208
Ordered Access - 208
Read-Only Beans - 208
Explicitly Defining Read-Only Methods - 209
Instance Per Transaction Policy - 209

Running Within a Cluster - 211
iv

 :
Troubleshooting - 212
Locking Behavior Not Working - 212
IllegalStateException - 212
Hangs and Transaction Timeouts - 212

CHAPTER 6 Messaging on JBoss - JMS Configuration and Architecture 213

6: JMS Examples - 213
A Point-To-Point Example - 214
A Pub-Sub Example - 216
A Pub-Sub With Durable Topic Example - 222
A Point-To-Point With MDB Example- - 225

•: JBoss Messaging Overview - 232
Invocation Layer - 233

RMI IL - 233
OIL IL - 233
UIL IL - 233
UIL2 IL - 233
JVM IL - 234

Security Manager - 234
Destination Manager - 234
Message Cache - 234
State Manager - 234
Persistence Manager - 234

File PM - 235
Rolling Logged PM - 235
JDBC2 PM - 235

Destinations - 235
Queues - 235
Topics- 236

•: JBoss Messaging Configuration and MBeans - 236
org.jboss.mq.il.jvm.JVMServerILService - 237
org.jboss.mq.il.rmi.RMIServerILService - 237
org.jboss.mq.il.oil.OILServerILService - 237
org.jboss.mq.il.uil.UILServerILService - 238
org.jboss.mq.il.uil2.UILServerILService - 239
org.jboss.mq.server.jmx.Invoker - 240
org.jboss.mq.server.jmx.InterceptorLoader - 240
org.jboss.mq.security.SecurityManager - 240
org.jboss.mq.server.jmx.DestinationManager- - 241
org.jboss.mq.server.MessageCache - 241
org.jboss.mq.pm.file.CacheStore- - 242
org.jboss.mq.sm.file.DynamicStateManager - 242
org.jboss.mq.pm.file.PersistenceManager - 242
org.jboss.mq.pm.rollinglogged.PersistenceManager- - 242
org.jboss.mq.pm.jdbc2.PersistenceManager - 242
Destination MBeans - 243

org.jboss.mq.server.jmx.Queue - 244
org.jboss.mq.server.jmx.Topic - 244
Destination Security Configuration - 245

Administration Via JMX - 245
v

 :
Creating Queues At Runtime - 245
Creating Topics At Runtime - 246
Managing a JBossMQ User IDs at Runtime - 246
Checking how many messages are on a Queue - 246
Checking to see how the Message Cache is performing - 246

CHAPTER 7 Connectors on JBoss - The JCA Configuration and Architecture 249

7: JCA Overview - 249
7-2: An Overview of the JBossCX Architecture - 253

BaseConnectionManager2 MBean - 254
RARDeployment MBean - 255
JBossManagedConnectionPool MBean - 256
CachedConnectionManager MBean - 256
A Sample Skeleton JCA Resource Adaptor- - 257
Example Configurations- - 265

CHAPTER 8 Security on JBoss - J2EE Security Configuration and Architecture 267

8: J2EE Declarative Security Overview - 267
Security References - 269
Security Identity - 270
Security roles - 271
EJB method permissions - 272
Web Content Security Constraints - 275
Enabling Declarative Security in JBoss - 276

8-5: An Introduction to JAAS - 276
What is JAAS? - 276

The JAAS Core Classes - 277
Subject and Principal - 277
Authentication of a Subject - 278

6: The JBoss Security Model - 281
Enabling Declarative Security in JBoss Revisited - 284

8-8: The JBoss Security Extension Architecture - 289
How the JaasSecurityManager Uses JAAS - 292
The JaasSecurityManagerService MBean - 295
An Extension to JaasSecurityManager, the JaasSecurityDomain MBean - - - - - - - - - - - - - 298
An XML JAAS Login Configuration MBean - 298
The JAAS Login Configuration Management MBean - 300
Using and Writing JBossSX Login Modules - 301

org.jboss.security.auth.spi.IdentityLoginModule- 301
org.jboss.security.auth.spi.UsersRolesLoginModule - 302
org.jboss.security.auth.spi.LdapLoginModule - 303
org.jboss.security.auth.spi.DatabaseServerLoginModule - 307
org.jboss.security.auth.spi.ProxyLoginModule - 308
org.jboss.security.auth.spi.RunAsLoginModule - 309
org.jboss.security.ClientLoginModule - 309

Writing Custom Login Modules - 310
Support for the Subject Usage Pattern- 311
A Custom LoginModule Example - 315
vi

 :
8-13: The Secure Remote Password (SRP) Protocol - 319
Providing Password Information for SRP - 323
Inside of the SRP algorithm - 325

An SRP example - 328
8-17: Running JBoss with a Java 2 security manager- - 332
8-1: Using SSL with JBoss using JSSE - 334

CHAPTER 9 Integrating Servlet Containers 341

9: The AbstractWebContainer Class - 341
The AbstractWebContainer Contract- - 342
Creating an AbstractWebContainer Subclass - 347

Use the Thread Context Class Loader - 348
Integrate Logging Using log4j - 348
Delegate web container authentication and authorization to JBossSX - 348

9-3: JBoss/Tomcat-4.0.x bundle notes- - 349
The Embedded Tomcat Configuration Elements - 351

Server- 352
Service - 352
Connector - 352

The HTTP Connector - 352
The AJP Connector - 352
The Warp Connector- 353

Engine - 353
Host - 354

Alias - 354
DefaultContext - 354

Manager - 354
Logger - 354
Valve - 355
Listener - 355

Using SSL with the JBoss/Tomcat bundle - 355
Setting up Virtual Hosts with the JBoss/Tomcat-4.x bundle - - - - - - - - - - - - - - - - - - - 360
Using Apache with the JBoss/Tomcat-4.x bundle - 362
Using Clustering - 363

5: JBoss/Jetty-4.0.0 Bundle Notes - 364
Integration with JBoss - 364
Deployment - 365
Configuration- - 365

Unpacking wars on deployment - 368
Classloading behaviour - 368
Changing the default HTTP listener port - 369
Changing other HTTP listener port attributes- 369
Using SSL - 369
Using JAAS - 370
Using Distributed HttpSessions - 371

Other Jetty Configuration Tips- - 372
Deploying a war to context '/' - 372
Using virtual hosts- 372

Running on port 80 - 372
Running with Apache front-ending Jetty - 372
vii

 :
CHAPTER 10 MBean Services Miscellany 373

10: System Properties Management - 373
10-1: Property Editor Management - 374
•: Services Binding Management - 375

Running Two JBoss Instances - 377
•: Scheduling Tasks - 386

org.jboss.varia.scheduler.Scheduler - 386

Appendix A The JBoss Group and Our LGPL License 389

A: About The JBoss Group - 389
A: The GNU Lesser General Public License (LGPL) - 389

Appendix B The JBoss DTDs 401

B: The jboss_3_0.dtd - 401
B: The jbosscmp-jdbc_3_0.dtd DTD - 419
B: The jboss-web_3_0.dtd DTD - 430
B: The security_config.dtd DTD - 432

Appendix C Book Example Installation 435
viii

List of Listings
List of Listings
1-1 Listing 1-1, the JBoss 3.0.x branch build process.. 33
2-1 The ExCCEc class used to demonstrate ClassCastException due to duplicate class loaders.... 47
2-2 The ExCtx, ExObj, and ExObj2 classes used by the examples ... 48
2-3 The ExObj and ExObj2 classes used in the examples ... 49
2-4 The chap2-ex0c.log debugging output for the ExObj classes seen ... 50
2-5 The ExIAEd class used to demonstrate IllegalAccessException due to duplicate class loaders51
2-6 Classes demonstrating the need for loading constraints .. 54
2-7 A concrete example of a LinkageError.. 55
2-8 Obtaining debugging information for a Class.. 58
2-9 An example log4j.xml configuration fragment for enabling verbose class loading logging..... 59
2-10 An example jboss-app.xml descriptor for enabled scoped class loading at the ear level. 64
2-11 The jmx-console.war web.xml and jboss-web.xml descriptors with the security elements uncom-

mented.. 70
2-12 The RMIAdaptor interface... 71
2-13 A JMX client that uses the RMIAdaptor ... 75
2-14 The org.jboss.system.Service interface.. 84
2-15 Service descriptor fragments illustrating the usage of the depends and depends-list elements.88
2-16 An example of using the depends element to specify the complete configuration of a depended

on service. .. 88
2-17 JNDIMapMBean interface and implementation based on the service interface method pattern

90
2-18 JNDIMap MBean interface and implementation based on the ServiceMBean interface and Ser-

viceMBeanSupport class.. 92
2-19 The example 1 JNDIMap MBean service descriptor and a client usage code fragment. 94
2-20 The default jboss-service.xml configuration file from the standard JBoss distribution 94
2-21 An example ear with an MBean that depends on an EJB.. 100
2-22 A DynamicMBean service that uses and EJB.. 101
2-23 The standard MBean interface for Listing 2-22... 107
2-24 The DynamicMBean jboss-service.xml descriptor.. 109
2-25 The org.jboss.deployment.SubDeployer interface... 114
3-1 A sample jndi.properties file.. 122
3-2 ENC access sample code ... 123
3-3 An example ejb-jar.xml env-entry fragment.. 130
3-4 ENC env-entry access code fragment .. 130
3-5 An example ejb-jar.xml ejb-ref descriptor fragment ... 131
3-6 ENC ejb-ref access code fragment... 132
3-7 An example jboss.xml ejb-ref fragment... 133
3-8 An example ejb-jar.xml ejb-local-ref descriptor fragment .. 134
3-9 ENC ejb-local-ref access code fragment.. 134
3-10 A web.xml resource-ref descriptor fragment ... 135
3-11 ENC resource-ref access sample code fragment.. 136
3-12 A sample jboss-web.xml resource-ref descriptor fragment ... 137
3-13 An example ejb-jar.xml resource-env-ref fragment... 137
3-14 ENC resource-env-ref access code fragment... 138
JBoss Administration and Development ix

3-15 A sample jboss.xml resource-env-ref descriptor fragment .. 138
3-16 A JNDI client that uses HTTPS as the transport ... 148
3-17 An example web.xml descriptor for secured access to the JNDI servlets 150
3-18 The additional web.xml descriptor elements needed for read-only access............................ 152
3-19 ExternalContext MBean configurations .. 154
5-1 The client-interceptors from the “Standard Stateless SessionBean” configuration................ 170
5-2 The org.jboss.invocation.Invoker interface ... 171
5-3 A custom JRMPInvoker example that enables compressed sockets for session bean............. 173
5-4 A sample jboss.xml descriptor for enabling RMI/HTTP for a stateless session bean............. 175
5-5 A jboss.xml stateless session configuration for HA-RMI/HTTP .. 176
5-6 An example of a complex container-configuration element from the server/default/conf/standard-

jboss.xml file.. 182
5-7 An example of overriding the standardjboss.xml container stateless session beans configuration

to enable secured access. ... 184
5-8 The org.jboss.ejb.ContainerPlugin interface.. 191
5-9 The org.jboss.ejb.Interceptor interface .. 192
5-10 The org.jboss.ejb.InstancePool interface ... 193
5-11 The org.jboss.ejb.InstanceCache interface .. 194
5-12 The org.jboss.ejb.EntityPersistenceManager interface.. 195
5-13 The org.jboss.ejb.EntityPersistanceStore interface.. 198
5-14 The org.jboss.ejb.StatefulSessionPersistenceManager interface... 201
5-15 The “Standard CMP 2.x EntityBean” interceptor definition ... 204
5-16 The org.jboss.ejb.plugins.lock.BeanLockSupport deadlockDetection method 206
5-17 Marking an entity bean read-only using jboss.xml.. 208
5-18 Defining entity bean methods as read-only ... 209
5-19 An example of using the Instance Per Transaction policy available in JBoss 3.0.1+. 210
5-20 The Instance Per Transaction configuration ... 210
6-1 A P2P JMS client example .. 214
6-2 A Pub-Sub JMS client example ... 216
6-3 A JMS publisher client .. 219
6-4 A JMS subscriber client ... 220
6-5 A durable topic JMS client example.. 222
6-6 A TextMessage processing MDB .. 225
6-7 The MDB ejb-jar.xml and jboss.xml descriptors... 227
6-8 A JMS client that interacts with the TextMDB .. 228
6-9 The default login-config.xml configuration for JBoss messaging... 241
6-10 Default SqlProperties ... 243
6-11 Sample Destination Security Configuration .. 245
7-1 The nontransactional file system resource adaptor deployment descriptor. 258
7-2 The nontransactional file system resource adaptor MBeans service descriptor. 259
7-3 The stateless session bean echo method code which shows the access of the resource adaptor con-

nection factory. .. 262
8-1 An example ejb-jar.xml and web.xml descriptor fragments which illustrate the security-role-ref

element usage... 270
8-2 An example ejb-jar.xml descriptor fragment which illustrates the security-identity element usage.

271
8-3 An example ejb-jar.xml and web.xml descriptor fragments which illustrate the security-role ele-
x JBoss Administration and Development

List of Listings
ment usage. .. 272
8-4 An example ejb-jar.xml descriptor fragment which illustrates the method-permission element us-

age. ... 273
8-5 A web.xml descriptor fragment which illustrates the use of the security-constraint and related el-

ements. ... 275
8-6 An illustration of the steps of the authentication process from the application perspective.... 279
8-7 The example 1 custom EchoSecurityProxy implementation that enforces the echo argument-

based security constraint. ... 286
8-8 The jboss.xml descriptor which configures the EchoSecurityProxy as the custom security proxy

for the EchoBean.. 287
8-9 A sample login module configuration suitable for use with XMLLoginConfig 299
8-10 A JndiUserAndPass custom login module... 316
8-11 The chap8-ex2 secured client access output .. 318
8-12 The chap8-ex2 server side behavior of the JndiUserAndPass ... 318
8-13 The chap8-ex2 security domain and login module configuration ... 319
8-14 The SRPVerifierStore interface ... 324
8-15 The chap8-ex3 jar contents .. 329
8-16 The chap8-ex3.sar jboss-service.xml descriptor for the SRP services 329
8-17 The chap8-ex3 client side and server side SRP login module configurations....................... 330
8-18 The modifications to the Win32 run.bat start script to run JBoss with a Java 2 security manager.

332
8-19 The modifications to the UNIX/Linux run.sh start script to run JBoss with a Java 2 security man-

ager... 332
8-20 A sample JaasSecurityDomain config for RMI/SSL... 337
8-21 The jboss-service.xml and jboss.xml configurations to enable SSL with the example 4 stateless

session bean. .. 337
9-1 Key methods of the AbstractWebContainer class. .. 342
9-2 A pseudo-code description of authenticating a user via the JBossSX API and the java:comp/env/

security JNDI context. ... 348
9-3 A pseudo-code description of authorization a user via the JBossSX API and the java:comp/env/

security JNDI context. ... 349
9-4 The JaasSecurityDoman and EmbeddedCatalinaSX MBean configurations for setting up Tomcat-

4.x to use SSL as its primary connector protocol. ... 356
9-5 The JaasSecurityDoman and EmbeddedCatalinaSX MBean configurations for setting up Tomcat-

4.x to use both non-SSL and SSL enabled HTTP connectors. .. 357
9-6 An example virtual host configuration. ... 360
9-7 An example jboss-web.xml descriptor for deploying a WAR to the www.starkinternational.com

virtual host ... 361
9-8 Output from the www.starkinternational.com Host component when the Listing 9-7 WAR is de-

ployed... 362
9-9 An example EmbeddedCatalinaSX MBean configuration that supports integration with Apache

using the Ajpv13 protocol connector... 362
9-10 Standard Jetty service configuration file jboss-service.xml .. 365
9-11 Jetty listener port attributes .. 369
9-12 Using the SecurityDomainListener configure SSL for Jetty ... 370
10-1 An example SystemPropertiesService jboss-service descriptor .. 373
10-2 The docs/examples/binding-service/sample-bindings.xml file.. 378
JBoss Administration and Development xi

10-3 An example Scheduler jboss-service descriptor .. 387
10-4 The Listing 10-3 ExSchedulable class code .. 387
11-1 The GNU lesser general public license text... 389
xii JBoss Administration and Development

List of Figures
List of Figures
i-1 the JBoss JMX integration bus and the standard JBossXX components................................... 18
1-1 A view of the JBoss server installation directory structure with the default server configuration

file set expanded and overridable locations identified... 23
1-2 An expanded view of the default server configuration file set conf and deploy directories. 26
1-3 the testsuite CVS module directory structure .. 35
1-4 An example testsuite run report status html view as generated by the testsuite. 38
2-1 The JBoss JMX integration bus and the standard JBoss components. 40
2-2 The Relationship between the components of the JMX architecture .. 41
2-3 The JBoss 3.x core class loading components ... 60
2-4 The default class LoaderRepository MBean view in the JMX console..................................... 62
2-5 A complete class loader view .. 65
2-6 The JBoss JMX console web application agent view.. 68
2-7 The MBean view for the “jboss.system:type=Server” MBean.. 69
2-8 The jmx-console basic HTTP login dialog presented after making the changes shown in Listing 2-

11. .. 71
2-9 the DTD for the MBean service descriptor parsed by the SARDeployer.................................. 81
2-10 A sequence diagram highlighting the main activities performed by the SARDeployer to start a

JBoss MBean service. .. 83
2-11 The interaction between the SARDeployer and ServiceController to start a service. 86
2-12 The EjbMBeanAdaptor MBean operations JMX console view .. 112
2-13 The deployment layer classes .. 113
2-14 An illustration of the class loaders involved with an EAR deployment 116
3-1 The ENC elements in the standard ejb-jar.xml 2.0 deployment descriptor. 125
3-2 The ENC elements in the standard servlet 2.3 web.xml deployment descriptor. 127
3-3 The ENC elements in the JBoss 3.0 jboss.xml deployment descriptor. 128
3-4 The ENC elements in the JBoss 3.0 jboss-web.xml deployment descriptor. 129
3-5 Key components in the JBossNS architecture. .. 139
3-6 The HTTP invoker proxy/server structure for a JNDI Context ... 145
3-7 The relationship between configuration files and JNDI/HTTP component 146
3-8 The HTTP JMX agent view of the configured JBoss MBeans.. 156
3-9 The HTTP JMX MBean view of the JNDIView MBean. ... 157
3-10 The HTTP JMX view of the JNDIView list operation output... 158
5-1 The composition of an EJBHome proxy in JBoss. .. 168
5-2 The jboss.xml descriptor client side interceptor configuration elements. 169
5-3 The transport invoker server side architecture... 172
5-4 The jboss.xml descriptor container invoker configuration elements. 172
5-5 The jboss_3_0 DTD elements related to container configuration. .. 181
5-6 The jboss.xml descriptor EJB to container configuration mapping elements 184
5-7 Deadlock definition example ... 205
7-1 The relationship between a J2EE application server and a JCA resource adaptor 251
7-2 The JCA 1.0 specification class diagram for the connection management architecture. 252
7-3 The JBoss JCA implementation components .. 253
7-4 The file system RAR class diagram... 257
7-5 A sequence diagram illustrating the key interactions between the JBossCX framework and the ex-
JBoss Administration and Development xiii

ample resource adaptor that result when the EchoBean accesses the resource adaptor connec-
tion factory. .. 264

8-1 A subset of the EJB 2.0 deployment descriptor content model that shows the security related ele-
ments. ... 268

8-2 A subset of the Servlet 2.2 deployment descriptor content model that shows the security related
elements. .. 269

8-3 The key security model interfaces and their relationship to the JBoss server EJB container ele-
ments. ... 282

8-4 The relationship between the JBossSX framework implementation classes and the JBoss server
EJB container layer. ... 284

8-5 The security element subsets of the JBoss server jboss.xml and jboss-web.xml deployment de-
scriptors.. 285

8-6 The relationship between the security-domain component deployment descriptor value, the com-
ponent container and the JaasSecurityManager... 291

8-7 An illustration of the steps involved in the authentication and authorization of a secured EJB
home method invocation.. 293

8-8 The XMLLoginConfig DTD ... 299
8-9 An LDAP server configuration compatible with the testLdap sample configuration. 306
8-10 The JBossSX components of the SRP client-server framework.. 321
8-11 The SRP client-server authentication algorithm sequence diagram. 326
8-12 A sequence diagram illustrating the interaction of the SRPCacheLoginModule with the SRP ses-

sion cache... 328
9-1 The complete jboss-web.xml descriptor DTD... 342
9-2 An overview of the Tomcat-4.0.6 configuration DTD supported by the EmbeddedCatalinaSer-

viceSX Config attribute. .. 351
9-3 The Internet Explorer 5.5 security alert dialog. ... 359
9-4 The Internet Explorer 5.5 SSL certificate details dialog. .. 360
10-1 Class diagram for the org.jboss.services.binding package of the ServiceBindingManager .. 375
10-2 How the ServiceConfigurator queries the ServiceBindingManager...................................... 376
xiv JBoss Administration and Development

CHAPTER i Preface
This introductory oververview gives a quick run down of what JBoss is about, and who the JBoss
Group is.

Forward
If you are reading this foreword, first of all I want to thank you for buying our products. This is one of
the ways in which you can support the development effort and ensure that JBoss continues to thrive
and deliver the most technologically advanced web application server possible. The time this book
was written corresponds to an interesting point in the evolution of Open Source. There are many
projects out there and once the initial excitement has faded, the will to continue requires some profes-
sional dedication. JBoss seeks to define the forefront of "Professional Open Source" through com-
mercial activities that subsidize the development of the free core product.

JBoss' modules are growing fast. The JMX base allows us to integrate all these disparate modules
together using the MBeanServer of JMX as the basic abstraction for their lifecycle and management.
Great Events of the Twentieth Century 15

Preface
In this book, we cover the configuration and administration of all our MBeans. We also provide a
comprehensive snapshot of the state of JBoss server modules, documented in a professional fashion
by one of our very best developers. From the basic architecture, to the advanced modules like
JBossSX for security and our CMP engine, you will find the information you need "to get the job
done." In addition, we provide a wealth of information on all the modules you will want to understand
better and eventually master as you progress in your day-to-day usage of JBoss.

JBoss has achieved a reputation for technical savvy and excellence. I would like this reputation to
evolve a bit. Don't get me wrong, I am extremely proud of the group of people gathered around JBoss
for the past 2+ years, but I want to make the circle bigger. I want to include all of you reading this
book. Think of JBoss, not only as a great application server, but also as a community that thrives by
the addition of new minds. We are not simply interested in gaining users; we are interested in giving
you the tools and the knowledge necessary to master our product to the point of becoming a contribu-
tor. Understanding JBoss' configuration and architecture is a necessary step, not only for your day job
using JBoss in development and production, but also an initiation into the joy of technology, as expe-
rienced in Open Source.

We hope this book will fulfill its potential to bring as many of you as possible to a strong enough
understanding of the modules' functionality to dream up new tools and new functionalities, maybe
even new modules. When you reach that point, make sure to come online, where you will find a thriv-
ing community of committed professionals sharing a passion for good technology. At
www.jboss.org, you can also find additional information,
forums, and the latest binaries.

Again thank you for buying our documentation. We hope to see you around. In
the meantime, learn, get the job done and, most of all, enjoy,
xxxxxxxxxxxxxxxx
Marc Fleury
President
JBoss Group, LLC
xxxxxxxxxxxxxxxx

About the Authors
Scott Stark , Ph.D., was born in Washington State of the U.S. in 1964. He started out as a chemical
engineer and graduated with a B.S. from the University of Washington, and later a PhD from the Uni-
versity of Delaware. While at Delaware it became apparent that computers and programming were to
be his passion and so he made the study of applying massively parallel computers to difficult chemi-
cal engineering problems the subject of his PhD research. It has been all about distributed program-
ming ever since. Scott currently serves as the Chief Technology Officer of the JBoss Group, LLC.

Marc Fleury, Ph.D., was born in Paris in 1968. Marc started in Sales at Sun Microsystems France. A
graduate of the Ecole Polytechnique, France's top engineering school, and an ex-Lieutenant in the
16 Great Events of the Twentieth Century

http://www.jboss.org

About Open Source
paratroopers, he has a master in Theoretical Physics from the ENS ULM and a PhD in Physics for
work he did as a visiting scientist at MIT (X-Ray Lasers). Marc currently serves as the President of
the JBoss Group, LLC; an elite services company based out of Atlanta, GA.

JBoss Group LLC, headed by Marc Fleury, is composed of over 100 developers worldwide who are
working to deliver a full range of J2EE tools, making JBoss the premier Enterprise Java application
server for the Java 2 Enterprise Edition platform.

JBoss is an Open Source, standards-compliant, J2EE application server implemented in 100% Pure
Java. The JBoss/Server and complement of products are delivered under a public license. With
upwards of 100,000 downloads per month, JBoss is the most downloaded J2EE based server in the
industry.

About Open Source
The basic idea behind open source is very simple: When programmers can read, redistribute, and
modify the source code for a piece of software, the software evolves. People improve it, people adapt
it, people fix bugs. And this can happen at a speed that, if one is used to the slow pace of conventional
software development, seems astonishing.Open Source is an often-misunderstood term relating to
free software. The Open Source Initiative (OSI) web site provides a number of resources that define
the various aspects of Open Source including an Open Source Definition at: http://www.open-
source.org/docs/definition.html. The following quote from the OSI home page summarizes the key
aspects as they relate to JBoss nicely:

We in the open source community have learned that this rapid evolutionary process
produces better software than the traditional closed model, in which only a very few
programmers can see the source and everybody else must blindly use an opaque block
of bits.

Open Source Initiative exists to make this case to the commercial world.

Open source software is an idea whose time has finally come. For twenty years it has
been building momentum in the technical cultures that built the Internet and the World
Wide Web. Now it's breaking out into the commercial world, and that's changing all
the rules. Are you ready?

About JBoss
JBoss, one of the leading java Open Source groups, integrates and develops these services for a full
J2EE-based implementation. JBoss provides JBossServer, the basic EJB container, and Java Manage-
Great Events of the Twentieth Century 17

Preface
ment Extension (JMX) infrastructure. It also provides JBossMQ, for JMS messaging, JBossTX, for
JTA/JTS transactions, JBossCMP for CMP persistence, JBossSX for JAAS based security, and
JBossCX for JCA connectivity. Support for web components, such as servlets and JSP pages, is pro-
vided by an abstract integration layer. Implementations of the integration service are provided for
third party servlet engines like Tomcat and Jetty. JBoss enables you to mix and match these compo-
nents through JMX by replacing any component you want with a JMX compliant implementation for
the same APIs. JBoss doesn't even impose the JBoss components. Now that is modularity.

JBoss: A Full J2EE Implementation with JMX
Our goal is to provide the full Open Source J2EE stack. We have met our goal, and the reason for our
success lies on JMX. JMX, or Java Management Extension, is the best weapon we have found for
integration of software. JMX provides a common spine that allows one to integrate modules, contain-
ers, and plug-ins. illustrates how JMX is used a bus through which the components of the JBoss archi-
tecture interact.

FIGURE i-1. the JBoss JMX integration bus and the standard JBossXX components.

What this Book Covers
The primary focus of this book is the presentation of the standard JBoss 3.0.5 architecture compo-
nents from both the perspective of their configuration and architecture. As a user of a standard JBoss
distribution you will be given an understanding of how to configure the standard components.
18 Great Events of the Twentieth Century

About JBoss
As a JBoss developer, you will be given a good understanding of the architecture and integration of
the standard components to enable you to extend or replace the standard components for your infra-
structure needs. We also show you how to obtain the JBoss source code, along with how to build and
debug the JBoss server.
Great Events of the Twentieth Century 19

Preface
20 Great Events of the Twentieth Century

CHAPTER 1 Installing and Building the
JBoss Server
JBoss is the highly popular, free J2EE compatible application server that has become the most widely
used Open Source application server. The highly flexible and easy to use server architecture has made
JBoss the ideal choice for users just starting out with J2EE, as well as senior architects looking for a
customizable middleware platform. The server is available as a binary distribution with or without a
bundled servlet container. The source code for each binary distribution is also available from the
server source repository located at SourceForge. The source code availability allows you to debug the
server, learn its inner workings and create customized versions for your personal use.

This chapter presents a step-by-step tutorial on how to install and configure JBoss 3.0.x. You will
learn how to obtain updated binaries from the JBoss SourceForge project site, install the binary, and
test the installation. You will also learn about the installation directory structure as well as the key
configuration files that an administrator may want to use to customize the JBoss installation. You will
also learn how to obtain the source code for the 3.0.x release from the SourceForge CVS repository,
and how to build the server distribution.
JBoss Administration and Development 21

Installing and Building the JBoss Server
Getting the Binary
The most recent release of JBoss is available from the SourceForge JBoss project files page at http://
sourceforge.net/projects/jboss. Here you will also find previous releases as well as betas of upcoming
versions.

Prerequisites
Before installing and running the server, you should check that your JDK 1.3+ installation is working.
The simplest way to do this is to execute the java –version command to ensure that the java execut-
able is in your path, and that you’re using at least version 1.3. For example, running this command on
a Linux system with the Sun 1.3.1 JDK produces:

/tmp 1206>java -version
java version "1.3.1_03"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.3.1_03-b03)
Java HotSpot(TM) Client VM (build 1.3.1_03-b03, mixed mode)

It does not matter where you install JBoss. Note, however, that installation of JBoss into a directory
that has a name containing spaces causes problems in some situations with Sun based VMs. This is
due to bugs with file URLs not correctly escaping the spaces in the resulting URL. There is no
requirement for root access to run JBoss on Unix/Linux systems because none of the default ports are
below the 0-1023 privileged port range.

Installing the Binary Package
Once you have the binary archive you want to install, use the JDK jar tool, or any other zip extraction
tool to unzip the archive contents into a location of your choice. The extraction process will create a
jboss-3.0.7 directory. We’ll look at the contents of this directory next.

Directory Structure
Installation of the JBoss distribution creates a jboss-3.0.7 directory that contains server start scripts,
jars, server configuration sets and working directories. You do need to know your way around the dis-
tribution layout to locate jars for compilation, updating configurations, deploying your code, etc.
Figure 1-1 shows the installation directory of the JBoss server.
22 JBoss Administration and Development

http://sourceforge.net/projects/jboss
http://sourceforge.net/projects/jboss
http://sourceforge.net/projects/jboss
http://sourceforge.net/projects/jboss
http://sourceforge.net/projects/jboss

Getting the Binary
FIGURE 1-1. A view of the JBoss server installation directory structure with the default server
configuration file set expanded and overridable locations identified.

Throughout the book we will refer to the top-level jboss-3.0.7 directory as the JBOSS_DIST direc-
tory. In Figure 1-1, the default server configuration file set is shown expanded and it contains a num-
ber of subdirectories; conf, db, deploy, lib, log and tmp. In a clean installation only the conf, deploy
and lib directories will exist. The purposes of the various directories are discussed in Table 1-1 and
Table 1-2. In these tables the “ServerConfig Property” column refers to the org.jboss.sys-
tem.server.ServerConfig constant and its corresponding system property string if the direc-
tory has a corresponding value. The ServerConfig constant names are those show in the upper
case blue text of Figure 1-1. The XXX_URL names correspond to locations that can be specified
using a URL to access remote locations, as would be the case for http URLs against a web server. The
properties listed in the tables can be used to override the layout of a JBoss distribution.
JBoss Administration and Development 23

Installing and Building the JBoss Server
TABLE 1-1. The JBoss server installation top-level directories and descriptions

Directory Description ServerConfig Property
bin All the entry point jars and start scripts included

with the JBoss distribution are located in this direc-
tory.

client Jars required for clients are found in the client
directory. A typical client requires jboss-client.jar,
jboss-common-client.jar, jbosssx-client.jar, jaas.jar,
jnp-client.jar, jboss-j2ee.jar, and log4j.jar. If you
use JBossMQ JMS provider, you will also need the
jbossmq-client.jar and oswego-concurrent.jar.

server The JBoss server configuration sets are located
under this directory. The default server configura-
tion set is the server/default set. JBoss ships with
minimal, default and all configuration sets. The
subdirectories and key configuration files contained
in the default configuration set will be discussed in
more detail in Table 1-2, common subdirectories
used by server configuration sets1-2 and the fol-
lowing section, “The default Server Configuration
File Set.”

SERVER_BASE_DIR =
“jboss.server.base.dir”
SERVER_BASE_URL =
“jboss.server.base.url”

lib This directory contains startup jars used by JBoss.
You do not place your own libraries here.

LIBRARY_URL =
“jboss.lib.url”
24 JBoss Administration and Development

Getting the Binary
The Default Server Configuration File Set
The JBOSS_DIST/server directory contains one or more configuration file sets. The default JBoss
configuration file set is located in the JBOSS_DIST/server/default directory. JBoss allows the possi-
bility of more than one configuration set so that a server can easily be run using alternate configura-
tions. Creating a new configuration file set typically starts with copying the default file set into a new
directory name and then modifying the configuration files as desired. The contents of the default con-
figuration file set are shown in Figure 1.2.

TABLE 1-2. Common subdirectories used by server configuration sets

Directory Description ServerConfig Property
conf A directory for configuration files of services as

well as the core jboss-service.xml MBean descrip-
tor.

SERVER_CONFIG_URL =
“jboss.server.config.url”

db This is the directory services use for persistent disk
storage.

SERVER_DATA_DIR =
“jboss.server.data.dir”

deploy This is the server’s deployment directory. Drop
your jars here and they will be deployed automati-
cally.

lib This is the server’s jar library directory. Any jars
located in this directory are automatically added to
the server class repository on startup.

SERVER_LIBRARY_URL =
“jboss.server.lib.url”

log JBoss log files are located in this directory. File
logging is turned on by default and produces
boot.log and server.log files in this directory

tmp A working directory used by JBoss during deploy-
ment of content found in the deploy directory.

SERVER_TEMP_DIR =
“jboss.server.temp.dir”
JBoss Administration and Development 25

Installing and Building the JBoss Server
FIGURE 1-2. An expanded view of the default server configuration file set conf and deploy
directories.

conf/jboss-minimal.xml
This is a minimalist example of the jboss-server.xml configuration file. It is the jboss-server.xml file
used in the minimal configuration file set.

conf/jboss-service.xml
The jboss-service.xml defines the core services configurations. The complete DTD and syntax of this
file is described in along with the details on integrating custom services as JMX MBeans.

conf/jbossmq-state.xml
The jbossmq-state.xml is the JBossMQ configuration file that specifies the user to password map-
pings file, and the user to durable subscription.

conf/jndi.properties
The jndi.properties file specifies the JNDI InitialContext properties that are used within the JBoss
server whenever an InitialContext is created using the no-arg constructor.
26 JBoss Administration and Development

Getting the Binary
conf/log4j.xml
The log4j.xml file configures the Apache log4j framework category priorities and appenders used by
the JBoss server code. See the JBoss/Log4j book for details on configuring and using log4j with
JBoss.

conf/login-config.xml
The login-config.xml file contains sample server side authentication configurations that are applica-
ble when using JAAS based security. See the chapter 8, “Security on JBoss - J2EE Security Configu-
ration and Architecture” for additional details on the JBoss security framework and the format of this
file.

conf/server.policy
The server.policy file is a place holder for Java2 security permissions. The default file simply grants
all permissions to all codebases.

conf/standardjaws.xml
The standardjaws.xml provides a default configuration file for the legacy EJB 1.1 JBossCMP engine.
The cmp layer has been rewritten in JBoss 3.0 and is fully documented in the JBossCMP book. An
introduction to the CMP engine is given in the quick start quide available from SourceForge.

conf/standardjbosscmp-jdbc.xml
The standardjbosscmp-jdbc.xml provides a default configuration file for the JBoss 3.0 EJB 2.0 JBoss-
CMP engine. The cmp layer has been rewritten in JBoss 3.0 and is fully documented in the JBoss-
CMP book. An introduction to the CMP engine is given in the quick start quide available from
SourceForge.

conf/standardjboss.xml
The standardjboss.xml file provides the default container configurations. Use of this file is covered in
Chapter “The EJB Container Configuration and Architecture”

deploy/http-invoker.sar

The http-invoker.sar

deploy/jbossweb.sar
The jbossweb.sar directory is an unpackaged MBean service archive for the configuration of the Jetty
servlet engine. The SAR is unpackaged rather than deployed as a jar archive so that the jbossweb.sar/
META-INF/jboss-service.xml descriptor can be easily edited.
JBoss Administration and Development 27

Installing and Building the JBoss Server
deploy/jmx-console.war
The jmx-console.war directory is an unpackaged web application archive that provides an html adap-
tor for the JMX MBeanServer. The war is unpackaged rather than deployed as a jar archive so that the
jmx-console.war/WEB-INF/*.xml descriptors may be edited to configure role based security easily.

deploy/jmx-rmi-adaptor.sar
This jxm-rmi-adaptor.sar is an unpacked MBean service archvie that exposes a subset of the JMX
MBeanServer interface methods as an an RMI interface to enable remote access to the JMX core
functionality.

deploy/counter-service.xml
This is the configuration file for a simple MBean service offering accumulator style counters to help
in diagnosing performance issues.

deploy/ejb-management.jar
This is an EJB deployment that implements the JSR-77 management EJB interfaces. The JSR-77
interfaces are incomplete in the 3.0.x series at this point.

deploy/hsqldb-service.xml
This is the Hypersonic 1.61 embedded database service configuration file. It sets up the embedded
database and related connection factories.

deploy/jboss-jca.sar
This is the application server implementation of the 1.0 JCA specification. It provides the connection
management facitilities for integrating resource adaptors into the JBoss server. Configure your Con-
nectionFactoryLoaders in separate *-service.xml or sar archives. Consult the hsqldb-service.xml and
the JBOSS_DIST/docs/examples/jca/*-service.xml files for examples of integrating JDBC data
sources.

deploy/jboss-local-jdbc.rar
A JCA resource adaptor that implements the JCA ManagedConnectionFactory interface for JDBC
drivers that support the DataSource interface but not JCA.

deploy/jboss-xa.rar
A JCA resource adaptor that implements the JCA ManagedConnectionFactory interface for JDBC
drivers that support the XADataSource interface but not JCA.
28 JBoss Administration and Development

Getting the Binary
deploy/jbossmq-destinations-service.xml
This file configures a number of JMS queues and topics used by the JMS unit tests.

deploy/jbossmq-service.xml
This file configures the JBossMQ JMS service. This includes the various invocation layers, persis-
tence managers and cache.

deploy/jms-ra.rar
A JCA resource adaptor that implements the JCA ManagedConnectionFactory interface for JMS
ConnectionFactories.

deploy/jms-service.xml
This file configures the JBossMQ JMS provider for use with the jms-ra.rar JCA resource adaptor.

deploy/jmx-ejb-adaptor.jar, deploy/jmx-ejb-connector-server.sar
Collectively this jar and sar deploy an EJB that exposes a subset of the JMX MBeanServer interface
methods as an EJB to enable secure remote access to the JMX core functionality.

deploy/jmx-invoker-adaptor-servier.sar

deploy/mail-service.xml
This is an MBean service descriptor that provides JavaMail sessions for use inside of the JBoss
server.

deploy/properties-service.xml
This is an MBean service descriptor that allows for customization of the JavaBeans PropertyEditors
as well as the definition of system properties.

deploy/scheduler-service.xml
This is an MBean service descriptor that provides a cron type of service.

deploy/user-service.xml
This is a template MBean service descriptor to which you may add your own custom MBean services.
JBoss Administration and Development 29

Installing and Building the JBoss Server
Basic Installation Testing
Once you have installed the JBoss distribution, it is wise to perform a simple startup test to validate
that there are no major problems with your Java VM/operating system combination. To test your
installation, move to the JBOSS_DIST/bin directory and execute the run.bat or run.sh script as appro-
priate for your operating system. Your output should be similar to that shown below and contain no
error or exception messages:

[starksm@succubus bin]$./run.sh
==

 JBoss Bootstrap Environment

 JBOSS_HOME: /tmp/jboss-3.0.7

 JAVA: /home/starksm/Java/j2sdk1.4.1_02/bin/java

 JAVA_OPTS: -server -Dprogram.name=run.sh

 CLASSPATH: /tmp/jboss-3.0.7/bin/run.jar:/home/starksm/Java/j2sdk1.4.1_02/lib/
tools.jar

==

22:20:18,565 INFO [Server] JBoss Release: JBoss-3.0.7 CVSTag=JBoss_3_0_7
22:20:18,610 INFO [Server] Home Dir: /tmp/jboss-3.0.7
22:20:18,611 INFO [Server] Home URL: file:/tmp/jboss-3.0.7/
22:20:18,613 INFO [Server] Library URL: file:/tmp/jboss-3.0.7/lib/
22:20:18,618 INFO [Server] Patch URL: null
22:20:18,619 INFO [Server] Server Name: default
22:20:18,620 INFO [Server] Server Home Dir: /tmp/jboss-3.0.7/server/default
22:20:18,622 INFO [Server] Server Home URL: file:/tmp/jboss-3.0.7/server/
default/
22:20:18,623 INFO [Server] Server Data Dir: /tmp/jboss-3.0.7/server/default/db
22:20:18,624 INFO [Server] Server Temp Dir: /tmp/jboss-3.0.7/server/default/tmp
22:20:18,636 INFO [Server] Server Config URL: file:/tmp/jboss-3.0.7/server/
default/conf/
22:20:18,637 INFO [Server] Server Library URL: file:/tmp/jboss-3.0.7/server/
default/lib/
22:20:18,638 INFO [Server] Root Deployemnt Filename: jboss-service.xml
22:20:18,651 INFO [Server] Starting General Purpose Architecture (GPA)...
22:20:19,893 INFO [ServerInfo] Java version: 1.4.1_02,Sun Microsystems Inc.
22:20:19,895 INFO [ServerInfo] Java VM: Java HotSpot(TM) Server VM 1.4.1_02-
b06,Sun Microsystems Inc.
22:20:19,896 INFO [ServerInfo] OS-System: Linux 2.4.18-14,i386
22:20:20,254 INFO [ServiceController] Controller MBean online
22:20:20,536 INFO [MainDeployer] Creating
...
22:21:12,162 INFO [Server] JBoss (MX MicroKernel) [3.0.7 (CVSTag=JBoss_3_0_7
Date=200304081816)] Started in 0m:53s:511ms

If your output is similar to this (accounting for installation directory differences), you should now be
ready to use JBoss. To shutdown the server, simply issue a Ctrl-C sequence in the console in which
JBoss was started.
30 JBoss Administration and Development

Getting the Binary
This starts the server using the default server configuration file set. To start with an alternate configu-
ration set pass in the name of the directory under JBOSS_DIST/server you wish to use as the value to
the –c command line option. For example, to start with the minimal configuration file set you would
specify:
[starksm@succubus bin]$./run.sh -c minimal
...
22:22:42,903 INFO [Server] JBoss (MX MicroKernel) [3.0.7 (CVSTag=JBoss_3_0_7
Date=200304081816)] Started in 0m:6s:194ms

To view all of the supported command line options for the JBoss server bootstrap class issue run –h
command, and the output will be:
usage: run.sh [options]

options:
 -h, --help Show this help message
 -V, --version Show version information
 -- Stop processing options
 -D<name>[=<value>] Set a system property
 -p, --patchdir=<dir> Set the patch directory; Must be absolute
 -n, --netboot=<url> Boot from net with the given url as base
 -c, --configuration=<name> Set the server configuration name
 -j, --jaxp=<type> Set the JAXP impl type (ie. crimson)
 -L, --library=<filename> Add an extra library to the loaders classpath
 -C, --classpath=<url> Add an extra url to the loaders classpath
 -P, --properties=<url> Load system properties from the given url

Building the Server from Source Code
Source code is available for every JBoss module, and you can build any version of JBoss from source
by downloading the appropriate version of the code from SourceForge.

Accessing the JBoss CVS Repositories at SourceForge
The JBoss source is hosted at SourceForge, a great Open Source community service provided by VA
Linux Systems. With nearly 43,000 Open Source projects and over 440,000 registered users, Source-
Forge.net is the largest Open Source hosting service available. Many of the top Open Source projects
have moved their development to the SourceForge.net site. The services offered by SourceForge
include hosting of project CVS repositories and a web interface for project management that includes
bug tracking, release management, mailing lists and more. Best of all, these services are free to all
Open Source developers. For additional details and to browse the plethora of projects, see the Source-
Forge home page: (http://sourceforge.net/).

Understanding CVS
CVS (Concurrent Versions System) is an Open Source version control system that is used pervasively
throughout the Open Source community. CVS is a Source Control or Revision Control tool designed
JBoss Administration and Development 31

http://sourceforge.net/
http://sourceforge.net/

Installing and Building the JBoss Server
to keep track of source changes made by groups of developers who are working on the same files.
CVS enables developers to stay in sync with each other as each individual chooses.

Anonymous CVS Access
The JBoss project's SourceForge CVS repository can be accessed through anonymous (pserver) CVS
with the following instruction set. The module you want to check out must be specified as the modu-
lename. When prompted for a password for anonymous, simply press the Enter key. The general syn-
tax of the command line version of CVS for anonymous access to the JBoss repositories is:
cvs -d:pserver:anonymous@cvs.jboss.sourceforge.net:/cvsroot/jboss login
cvs -z3 -d:pserver:anonymous@cvs.jboss.sourceforge.net:/cvsroot/jboss co
modulename

The first command logs into JBoss CVS repository as an anonymous user. This command only needs
to be performed once for each machine on which you use CVS because the login information will be
saved in your HOME/.cvspass file or equivalent for your system. The second command checks out a
copy of the modulename source code into the directory from which you run the cvs command. To
avoid having to type the long cvs command line each time, you can set up a CVSROOT environment
variable with the value “:pserver:anonymous@cvs.jboss.sourceforge.net:/cvsroot/jboss” and then use
the following abbreviated versions of the previous commands:
cvs login
cvs -z3 co modulename

Obtaining a CVS Client
The command line version of the CVS program is freely available for nearly every platform, and is
included by default on most Linux and Unix distributions. A good port of CVS as well as numerous
other Unix programs for Win32 platforms is available from Cygwin at http://sources.redhat.com/
cygwin/. The syntax of the command line version of CVS will be examined because this is common
across all platforms.

For complete documentation on CVS, check out the CVS home page at http://www.cvshome.org/.

Building the JBoss-3.0.7 Distribution Using the Source Code
Every JBoss release includes a source archive that contains everything needed to build the release and
is available from the files section of the JBoss project site here: http://sourceforge.net/projects/
jboss/. The source directory structure matches that of the cvs source tree described below so once you
have the source distribution you can build the release by following the instructions given in the next
section, beginning with the instructions after the step to obtain the jboss-3.0 source tree.

Building the JBoss-3.0.7 Distribution Using the CVS Source Code
This section will guide you through the task of building a JBoss distribution from the CVS source
code. To start, create a directory into which you want to download the CVS source tree, and move
into the newly created directory. This directory is referred to as the CVS_WD directory for CVS
32 JBoss Administration and Development

http://sourceforge.net/projects/jboss/
http://sourceforge.net/projects/jboss/
http://sources.redhat.com/cygwin
http://sources.redhat.com/cygwin
http://www.cvshome.org/

Getting the Binary
working directory. The example build in this book will check out code into a /tmp/3.0.7 directory on a
Linux system. Next, obtain the 3.0.7 version of the source code as shown here1:
[starksm@succubus /tmp]$ cd /tmp/3.0.7
[starksm@succubus 3.0.7]$ export
CVSROOT=:pserver:anonymous@cvs.jboss.sourceforge.net:/cvsroot/jboss
[starksm@succubus 3.0.7]$ cvs co -r JBoss_3_0_7 jboss-3.0
cvs server: Updating jboss-3.0
U jboss-3.0/.donotremove
cvs server: Updating jboss-3.0/lib
cvs server: Updating tools
...

The resulting jboss-3.0 directory structure contains all of the cvs modules required to build the server.
To perform the build, cd to the jboss-all/build directory and execute the build.sh or build.bat file as
appropriate for you OS. You will need to set the JAVA_HOME environment variable to the location
of the JDK you wish to use for compilation. For this example build, JAVA_HOME is set to a Sun
JDK 1.3.1 installation located under /home/starksm/Java/jdk1.3.1_06.

LISTING 1-1. Listing 1-1, the JBoss 3.0.x branch build process

[starksm@succubus 3.0.7]$ cd jboss-3.0/build/
[starksm@succubus build]$ export JAVA_HOME=~/Java/jdk1.3.1_06
[starksm@succubus build]$./build.sh
Searching for build.xml ...
Buildfile: /tmp/3.0.7/jboss-3.0/build/build.xml
...
<much_output_deleted>
...
install:

most:

main:

BUILD SUCCESSFUL

Total time: 4 minutes 37 seconds

The build process is driven by an Ant based configuration. The main Ant build script is the build.xml
file located in the jboss-all/build directory. This script uses a number of custom Ant tasks masked as
buildmagic constructs. The purpose of the main build.xml file is to compile the various module direc-
tories under jboss-all and then to integrate their output to produce the binary release. The binary
release structure is found under the jboss-3.0/build/output directory.

1. There was a change in the module aliases used to obtain the complete JBoss source tree just prior to the 3.0.4 release. Now, instead
of using jboss-all as the module alias for every branch, a branch specific module alias is defined. For the 3.0 branch thi s is jboss-3.0,
for the 3.2 branch it is jboss-3.2, etc. To checkout the HEAD revision of jboss to obtain the latest code on the main branch you
would use jboss-head as the module alias.
JBoss Administration and Development 33

Installing and Building the JBoss Server
Building the JBoss-3.0.7/Tomcat-4.1.24 Integrated Bundle
The default release build performed in the previous section included the Jetty servlet container. A ser-
vice for embedding the Tomcat-4.1.x servlet container into JBoss is also supported. To build the
embedded JBoss/Tomcat bundle follow these steps:

1. Download the Tomcat binary. The Jakarta-Tomcat-4.1.24 binary can be obtained from the Apache
site here http://www.tux.org/pub/net/apache/dist/jakarta/tomcat-4/binaries/tomcat-4.1.24-
LE-jdk14.tar.gz.

2. Either unpack the bundle into the jboss-3.0/tomcat41 directory and rename it jakarta-tomcat, or
create a jboss-all/tomcat41/local.properties file that contains a definition for the tomcat.server.root
property. This must point to the location of the Tomcat binary. For example: tomcat.server.root=/
tmp/jakarta-tomcat-4.1.24-LE-jdk14

3. Perform the main build from the jboss-3.0/build directory of the JBoss_3_0_7 cvs snapshot or
source download if you have not done so already.

4. Perform a build from the jboss-3.0/catalina directory and specify “bundle” as the target name.

This will create a jboss-3.0/tomcat41/output/jboss-3.0.7 directory that includes the embedded tomcat
service in place of the default jbossweb.sar. This directory need simply be zipped up into an archive
and it is equivalent to the archive available from the SourceForge download page.

An Overview of the JBoss CVS Source Tree
The top-level directory structure under the jboss-all source tree is illustrated in Figure 1-3, the CVS
source tree top-level directories.Table 1-3 gives the primary purpose of each of the top-level directories.
34 JBoss Administration and Development

http://www.tux.org/pub/net/apache/dist/jakarta/tomcat-4/binaries/tomcat-4.1.24-LE-jdk14.tar.gz
http://www.tux.org/pub/net/apache/dist/jakarta/tomcat-4/binaries/tomcat-4.1.24-LE-jdk14.tar.gz

Getting the Binary
TABLE 1-3. Descriptions of the top-level directories of the JBoss CVS source tree.

Using the JBossTest unit testsuite
More advanced testing of the JBoss installation and builds can be done using the JBoss testsuite. The
JBossTest suite is a collection of client oriented unit tests of the JBoss server application. It is an Ant
based package that uses the JUnit (http://www.junit.org) unit test framework. The JBossTest suite is
used as a QA benchmark by the development team to help test new functionality and prevent intro-
duction of bugs. It is run on a nightly basis and the results are posted to the development mailing list
for all to see.

The unit tests are run using Ant and the source for the tests are contained in the jboss-all/testsuite
directory of the source tree. The structure of the jbosstest CVS module is illustrated in Figure 1-3.

FIGURE 1-3. the testsuite CVS module directory structure

Directory Description
admin An experimental administration client not going anywhere currently
build The main build directory from which the release builds are initiated
catalina The obsolete Tomcat-4.0.x embedded service source module.
cluster The clustering support services source module.
common A source module of common utility type code used by many of the

other source modules.
connector The JCA support and application server integration source module.
ejb Unused
iiop The RMI/IIOP transport service source module.
j2ee A source module of standard J2EE API interfaces and classes.
jboss.net A web services support source module that provides support for using

SOAP to invoke operations on EJBs and Mbeans.
jetty The Jetty servlet container source module.
jmx The JBoss JMX implementation source module.
management The JBoss JSR-77 source module.
messaging The JBoss JMS 1.0.2b implementation source module.
naming The JBoss JNDI 1.2.1 implementation source module.
pool An obsolete pooling module used by earlier versions of the JCA imple-

mentation.
security The JBoss standard J2EE declarative security implementation based

on JAAS.
server The EJB 2.0 container implementation related source.
system The JMX microkernel based bootstrap services and standard deploy-

ment services source module.
testsuite The JUnit unit test source module.
thirdparty A module containing the third-party binary jars used by the JBoss

modules.
tomcat41 The Tomcat-4.1.x embedded service source module
tools The jars used by the JBoss build process.
varia Various utility services that have not or will not been integrated into

one of the higher-level modules.
JBoss Administration and Development 35

http://www.junit.org

Installing and Building the JBoss Server
The two main source branches are src/main and src/resources. The src/main tree contains the Java
source code for the unit tests. The src/resources tree contains resource files like deployment descrip-
tors, jar manifests, web content, etc. The root package of every unit test is org.jboss.test. The typical
structure below each specific unit test subpackage (for example, security) consists of a test package
that contains the unit test classes. The test subpackage is a required naming convention as this is the
only directory searched for unit tests by the Ant build scripts. If the tests involves EJBs then the con-
vention is to include an interfaces, and ejb subpackage for these components. The unit tests them-
selves need to follow a naming convention for the class file. The unit test class must be named
XXXUnitTest.java, where XXX is either the class being tested or the name of the functionality being
tested.

To run the unit tests use the build scripts located in the jboss-all/testsuite directory. The key targets in
the build.xml file include:

• tests: this target builds and runs all unit tests and generates html and text reports of the tests into
the testsuite/output/reports/html and testsuite/output/reports/text directories respectively.

• tests-standard-unit: builds all unit tests and runs a subset of the key unit tests. This is useful for
quick check of the server to test for gross problems.

• test: this target allows one to run all tests within a particular package. To run this target you need to
specify a test property that specifies a package name using -Dtest=package command line. The
package value is the name of the package below org.jboss.test you want to run unit tests for. So, for
example, to run all unit tests in the org.jboss.test.naming package, you would use:
build.sh -Dtest=naming test
36 JBoss Administration and Development

Getting the Binary
• one-test: this target allows you to run a single unit test. To run this target you need to specify a test
property that specifies the classname of the unit test using -Dtest=classname on the command line.
So, for example, to run the org.jboss.test.naming.test.ENCUnitTestCase, you would use:
build.sh -Dtest=org.jboss.test.naming.test.ENCUnitTestCase one-test

• tests-report: this target generates html and text reports of the tests into the testsuite/output/reports/
html and testsuite/output/reports/text directories respectively using the current junit xml results in
the testsuite/output/reports directory. This is useful for generating the nice html reports when you
have run a subset of the tests by hand and want to generate a summary.

On completion of a test the testsuite/output/reports directory will contain one or more XML files that
represent the individual junit test runs. The tests-report target collates these into an html report
located in the html subdirectory along with a text report located in the text subdirectory. Figure 1-4
shows an example of the html report for a run of the test suite against the JBoss-3.0.7 release on a
Win2k system. As of the 3.0.4 release you can find the results of the testsuite in the jboss distribution
in under the docs/tests directory.
JBoss Administration and Development 37

Installing and Building the JBoss Server
FIGURE 1-4. An example testsuite run report status html view as generated by the testsuite.
38 JBoss Administration and Development

CHAPTER 2 The JBoss JMX Microkernel
Modularly developed from the ground up, the JBoss server and container are completely implemented
using component-based plug-ins. The modularization effort is supported by the use of JMX, the Java
Management Extension API. Using JMX, industry-standard interfaces help manage both JBoss/
Server components and the applications deployed on it. Ease of use is still the number one priority,
and the JBoss Server version 3.x architecture sets a new standard for modular, plug-in design as well
as ease of server and application management.

This high degree of modularity benefits the application developer in several ways. The already tight
code can be further trimmed down to support applications that must have a small footprint. For exam-
ple, if EJB passivation is unnecessary in your application, simply take the feature out of the server. If
you later decide to deploy the same application under an Application Service Provider (ASP) model,
simply enable the server's passivation feature for that Web-based deployment. Another example is the
freedom you have to drop your favorite object to relational database (O-R) mapping tool, such as
TOPLink, directly into the container.

This chapter will introduce you to JMX and its role as the JBoss server component bus. You will also
be introduced to the JBoss MBean service notion that adds life cycle operations to the basic JMX
management component.

JMX
The success of the full Open Source J2EE stack lies with the use of JMX (Java Management Exten-
sion). JMX is the best tool for integration of software. It provides a common spine that allows the user
to integrate modules, containers, and plug-ins. Figure 2-1 shows the role of JMX as an integration
spine or bus into which components plug. Components are declared as MBean services that are then
loaded into JBoss. The components may subsequently be administered using JMX.
JBoss Administration and Development 39

The JBoss JMX Microkernel
.

FIGURE 2-1. The JBoss JMX integration bus and the standard JBoss components.

An Introduction to JMX
Before looking at how JBoss uses JMX as its component bus, it would help to get a basic overview
what JMX is by touching on some of its key aspects.

JMX components are defined by the Java Management Extensions Instrumentation and Agent Speci-
fication, v1.0, which is available from the JSR003 Web page at http://jcp.org/aboutJava/communi-
typrocess/final/jsr003/index.html. The material in this JMX overview section is derived from JMX
instrumentation specification, with a focus on the aspects most used by JBoss. A more comprehensive
discussion of JMX and its application can be found in JMX: Managing J2EE with Java Management
Extensions written by Juha Lindfors (Sams, 0672322889, 2002).

JMX is about providing a standard for managing and monitoring all varieties of software and hard-
ware components from Java. Further, JMX aims to provide integration with the large number of exist-
ing management standards. Figure 2-2, The Relationship between the components of the JMX
architecture2-2 shows examples of components found in a JMX environment, and illustrates the rela-
tionship between them as well as how they relate to the three levels of the JMX model. The three lev-
els are:

• Instrumentation, which are the resources to manage
• Agents, which are the controllers of the instrumentation level objects
40 JBoss Administration and Development

JMX
• Distributed services, the mechanism by which administration applications interact with agents
and their managed objects

FIGURE 2-2. The Relationship between the components of the JMX architecture

Instrumentation Level
The instrumentation level defines the requirements for implementing JMX manageable resources. A
JMX manageable resource can be virtually anything, including applications, service components,
devices, and so on. The manageable resource exposes a Java object or wrapper that describes its man-
ageable features, which makes the resource instrumented so that it can be managed by JMX-compli-
ant applications.

The user provides the instrumentation of a given resource using one or more managed beans, or
MBeans. There are four varieties of MBean implementations: standard, dynamic, model, and open.
The differences between the various MBean types is discussed in “Managed Beans or MBeans” on
page 43.
JBoss Administration and Development 41

The JBoss JMX Microkernel
The instrumentation level also specifies a notification mechanism. The purpose of the notification
mechanism is to allow MBeans to communicate changes with their environment. This is similar to the
JavaBean property change notification mechanism, and can be used for attribute change notifications,
state change notifications, and so on.

Agent Level
The agent level defines the requirements for implementing agents. Agents are responsible for control-
ling and exposing the managed resources that are registered with the agent. By default, management
agents are located on the same hosts as their resources. This collocation is not a requirement.

The agent requirements make use of the instrumentation level to define a standard MBeanServer
management agent, supporting services, and a communications connector. JBoss provides both an
html adaptor as well as an RMI adaptor.

The JMX agent can be located in the hardware that hosts the JMX manageable resources when a Java
Virtual Machine (JVM) is available. This is currently how the JBoss server uses the MBeanServer.
A JMX agent does not need to know which resources it will serve. JMX manageable resources may
use any JMX agent that offers the services it requires.

Managers interact with an agent's MBeans through a protocol adaptor or connector, as described in
the “Distributed Services Level” in the next section. The agent does not need to know anything about
the connectors or management applications that interact with the agent and its MBeans.

JMX agents run on the Java 2 Platform Standard Edition. The goal of the JMX specification is to
allow agents to run on platforms like PersonalJava and EmbeddedJava, once these are compatible
with the Java 2 platform.

Distributed Services Level
The JMX specification notes that a complete definition of the distributed services level is beyond the
scope of the initial version of the JMX specification. This was indicated in by the component boxes
with the horizontal lines in Figure 2-2. The general purpose of this level is to define the interfaces
required for implementing JMX management applications or managers. The following points high-
light the intended functionality of the distributed services level as discussed in the current JMX spec-
ification.

• Provide an interface for management applications to interact transparently with an agent and
its JMX manageable resources through a connector
• Exposes a management view of a JMX agent and its MBeans by mapping their semantic
meaning into the constructs of a data-rich protocol (for example HTML or SNMP)
• Distributes management information from high-level management platforms to numerous
JMX agents
• Consolidates management information coming from numerous JMX agents into logical views
that are relevant to the end user’s business operations
• Provides security
42 JBoss Administration and Development

JMX
It is intended that the distributed services level components will allow for cooperative management of
networks of agents and their resources. These components can be expanded to provide a complete
management application.

JMX Component Overview
This section offers an overview of the instrumentation and agent level components. The instrumenta-
tion level components include the following:

• MBeans (standard, dynamic, open, and model MBeans)
• Notification model elements
• MBean metadata classes

The agent level components include:

• MBean server
• Agent services

MANAGED BEANS OR MBEANS

An MBean is a Java object that implements one of the standard MBean interfaces and follows the
associated design patterns. The MBean for a resource exposes all necessary information and opera-
tions that a management application needs to control the resource.

The scope of the management interface of an MBean includes the following:

• Attributes values that may be accessed by name
• Operations or functions that may be invoked
• Notifications or events that may be emitted
• The constructors for the MBean’s Java class

JMX defines four types of MBeans to support different instrumentation needs:

• Standard MBeans These use a simple JavaBean style naming convention and a statically
defined management interface. This is currently the most common type of MBean used by JBoss.
• Dynamic MBeans These must implement the javax.management.DynamicMBean
interface, and they expose their management interface at runtime when the component is instanti-
ated for the greatest flexibility. JBoss makes use of Dynamic MBeans in circumstances where the
components to be managed are not known until runtime.
• Open MBeans These are an extension of dynamic MBeans. Open MBeans rely on basic data
types for universal manageability and which are self-describing for user-friendliness. As of the
1.0 JMX specification these are incompletely defined. JBoss currently does not use Open
MBeans.
• Model MBeans These are also an extension of dynamic MBeans. Model MBeans must
implement the javax.management.modelmbean.ModelMBean interface. Model
MBeans simplify the instrumentation of resources by providing default behavior. JBoss currently
does not use Model MBeans.
JBoss Administration and Development 43

The JBoss JMX Microkernel
We will present an example of a standard MBean in the section that discusses extending JBoss with
your own custom services.

NOTIFICATION MODEL

JMX Notifications are an extension of the Java event model. Both the MBeanServer and MBeans
can send notifications to provide information. The JMX specification defines the javax.manage-
ment package Notification event object, NotificationBroadcaster event sender, and
NotificationListener event receiver interfaces. The specification also defines the MBeanS-
erver operations that allow for the registration of notification listeners.

MBEAN METADATA CLASSES

There is a collection of metadata classes that describe the management interface of an MBean. Users
can obtain a common metadata view of any of the four MBean types by querying the MBeanServer
with which the MBeans are registered. The metadata classes cover an MBean's attributes, operations,
notifications, and constructors. For each of these, the metadata includes a name, a description, and its
particular characteristics. For example, one characteristic of an attribute is whether it is readable,
writable, or both. The metadata for an operation contains the signature of its parameter and return
types.

The different types of MBeans extend the metadata classes to be able to provide additional informa-
tion as required. This common inheritance makes the standard information available regardless of the
type of MBean. A management application that knows how to access the extended information of a
particular type of MBean is able to do so.

MBEAN SERVER

A key component of the agent level is the managed bean server. Its functionality is exposed through
an instance of the javax.management.MBeanServer. An MBeanServer is a registry for
MBeans that makes the MBean management interface available for use by management application.
The MBean never directly exposes the MBean object itself; rather, its management interface is
exposed through metadata and operations available in the MBeanServer interface. This provides a
loose coupling between management applications and the MBeans they manage.

MBeans can be instantiated and registered with the MBeanServer by the following:

• Another MBean
• The agent itself
• A remote management application (through the distributed services)

When you register an MBean, you must assign it a unique object name. The object name then
becomes the unique handle by which management applications identify the object on which to per-
form management operations. The operations available on MBeans through the MBeanServer include
the following:

• Discovering the management interface of MBeans
• Reading and writing attribute values
44 JBoss Administration and Development

JMX
• Invoking operations defined by MBeans
• Registering for notifications events
• Querying MBeans based on their object name or their attribute values

Protocol adaptors and connectors are required to access the MBeanServer from outside the agent’s
JVM. Each adaptor provides a view via its protocol of all MBeans registered in the MBeanServer
the adaptor connects to. An example adaptor is an HTML adaptor that allows for the display MBeans
using a Web browser. As was indicated in Figure 2-2, there are no protocol adaptors defined by the
current JMX specification. Later versions of the specification will address the need for remote access
protocols in standard ways.

A connector is an interface used by management applications to provide a common API for accessing
the MBeanServer in a manner that is independent of the underlying communication protocol. Each
connector type provides the same remote interface over a different protocol. This allows a remote
management application to connect to an agent transparently through the network, regardless of the
protocol. The specification of the remote management interface will be addressed in a future version
of the JMX specification.

Adaptors and connectors make all MBean server operations available to a remote management appli-
cation. For an agent to be manageable from outside of its JVM, it must include at least one protocol
adaptor or connector. JBoss currently includes a custom HTML adaptor implementation and a custom
JBoss RMI adaptor.

AGENT SERVICES

The JMX agent services are objects that support standard operations on the MBeans registered in the
MBean server. The inclusion of supporting management services helps you build more powerful
management solutions. Agent services are often themselves MBeans, which allow the agent and their
functionality to be controlled through the MBean server. The JMX specification defines the following
agent services:

• A Dynamic class loading MLet (management applet) service. This allows for the retrieval
and instantiation of new classes and native libraries from an arbitrary network location.
• Monitor services. These observe an MBean attribute’s numerical or string value, and can
notify other objects of several types of changes in the target.
• Timer services. These provide a scheduling mechanism based on a one-time alarm-clock
notification or on a repeated, periodic notification.
• The relation service. This service defines associations between MBeans and enforces consis-
tency on the relationships.

Any JMX-compliant implementation will provide all of these agent services. JBoss currently does not
rely on any of these standard agent services.
JBoss Administration and Development 45

The JBoss JMX Microkernel
JBoss JMX Implementation Architecture

The JBoss ClassLoader Architecture
JBoss 3.x employs a new class loading architecture that facilitates sharing of classes across deploy-
ment units. In JBoss 2.x it was difficult to have MBean services interact with dynamically deployed
J2EE components, and MBeans themselves were not hot deployable. In JBoss 3.x, everything is hot
deployable, and the new deployment architecture and class loading architecture makes this possible.
Before discussing the JBoss specific class loading model, we need to understand the nature of Java’s
type system and how ClassLoaders fit in.

CLASS LOADING AND TYPES IN JAVA

Class loading is a fundamental part of all server architectures. Arbitrary services and their supporting
classes must be loaded into the server framework. This can be problematic due to the strongly typed
nature of Java. Most developers know that the type of a class in Java is a function of the fully quali-
fied name of the class. As of Java 1.2, the type is also a function of the java.lang.Class-
Loader that is used to define that class. This additional qualification of type was added to ensure
that environments in which classes may be loaded from arbitrary locations would be type-safe. A
paper entitled “Java is not type-safe” by Vijay Saraswat in 1997 demonstrated that Java was not type-
safe as intended. This could allow one to gain access to method and members of a class to which they
should not have had access by fooling the Java VM into using an alternate implementation of a previ-
ously loaded class. Such circumvention of the type system was based on introducing class loaders
that by-pass the normal delegation model. A ClassLoader uses a delegation model to search for
classes and resources. Each instance of ClassLoader has an associated parent class loader that is
either explicity set when the ClassLoader is created, or assigned by the VM if no parent was spec-
ified. When called upon to find a class, a ClassLoader will typically delegate the search for the
class to its parent class loader before attempting to find the class or resource itself. The VM has a root
class loader, called the bootstrap class loader, does not have a parent but may serve as the parent of a
ClassLoader instance.

To address the type-safety issue, the type system was strengthened to include a class’s defining
ClassLoader in addition to the name of the class to fully define the type. The original paper in
which the solution was described is “Dynamic Class Loading in the Java Virtual Machine”, by Sheng
Liang and Gilad Bracha, and can be obtained from http://java.sun.com/people/sl/papers/
oopsla98.ps.gz. The ramifications of this change in a dynamic environment like an application server,
and especially JBoss with its support for hot deployment are that ClassCastExceptions,
LinkageErrors, and IllegalAccessErrors can show up in ways not seen in more static
class loading contexts. Let’s take a look at the meaning of each of these exceptions and how they can
happen.

CLASSCASTEXCEPTIONS - I’M NOT YOUR TYPE

A java.lang.ClassCastException results whenever an attempt is made to cast an instance
to an incompatible type. A simple example is trying to obtain a java.lang.String from a
java.util.ArrayList into which a java.net.URL was placed:
46 JBoss Administration and Development

http://java.sun.com/people/sl/papers/oopsla98.ps.gz
http://java.sun.com/people/sl/papers/oopsla98.ps.gz

JMX
 ArrayList array = new ArrayList();
 array.add(new URL("file:/tmp"));
 String url = (String) array.get(0);

java.lang.ClassCastException: java.net.URL
at org.jboss.chap2.ex0.ExCCEa.main(Ex1CCE.java:16)

The ClassCastException tells you that the attempt to cast the array element to a String failed
because the actual type was java.net.URL. This trivial case is not what we are interested in how-
ever. Consider the case of a jar being loaded by different URLClassLoaders. Although the classes
loaded through each URLClassLoader are identical in terms of the bytecode, they are completely
different types as viewed by the Java type system. An example of this is illustrated by the code shown
in Listing 2-1.

LISTING 2-1. The ExCCEc class used to demonstrate ClassCastException due to duplicate class
loaders

1 package org.jboss.chap2.ex0;
2
3 import java.io.File;
4 import java.net.URL;
5 import java.net.URLClassLoader;
6 import java.lang.reflect.Method;
7
8 import org.apache.log4j.Logger;
9
10 import org.jboss.util.ChapterExRepository;
11 import org.jboss.util.Debug;
12
13 /** An example of a ClassCastException that results from classes loaded through
14 * different class loaders.
15 * @author Scott.Stark@jboss.org
16 * @version $Revision:$
17 */
18 public class ExCCEc
19 {
20 public static void main(String[] args) throws Exception
21 {
22 ChapterExRepository.init(ExCCEc.class);
23
24 String chapDir = System.getProperty("chapter.dir");
25 Logger ucl0Log = Logger.getLogger("UCL0");
26 File jar0 = new File(chapDir+"/j0.jar");
27 ucl0Log.info("jar0 path: "+jar0.toString());
28 URL[] cp0 = {jar0.toURL()};
29 URLClassLoader ucl0 = new URLClassLoader(cp0);
30 Thread.currentThread().setContextClassLoader(ucl0);
31 Class objClass = ucl0.loadClass("org.jboss.chap2.ex0.ExObj");
32 StringBuffer buffer = new StringBuffer("ExObj Info");
33 Debug.displayClassInfo(objClass, buffer, false);
34 ucl0Log.info(buffer.toString());
35 Object value = objClass.newInstance();
36
JBoss Administration and Development 47

The JBoss JMX Microkernel
37 File jar1 = new File(chapDir+"/j0.jar");
38 Logger ucl1Log = Logger.getLogger("UCL1");
39 ucl1Log.info("jar1 path: "+jar1.toString());
40 URL[] cp1 = {jar1.toURL()};
41 URLClassLoader ucl1 = new URLClassLoader(cp1);
42 Thread.currentThread().setContextClassLoader(ucl1);
43 Class ctxClass2 = ucl1.loadClass("org.jboss.chap2.ex0.ExCtx");
44 buffer.setLength(0);
45 buffer.append("ExCtx Info");
46 Debug.displayClassInfo(ctxClass2, buffer, false);
47 ucl1Log.info(buffer.toString());
48 Object ctx2 = ctxClass2.newInstance();
49
50 try
51 {
52 Class[] types = {Object.class};
53 Method useValue = ctxClass2.getMethod("useValue", types);
54 Object[] margs = {value};
55 useValue.invoke(ctx2, margs);
56 }
57 catch(Exception e)
58 {
59 ucl1Log.error("Failed to invoke ExCtx.useValue", e);
60 throw e;
61 }
62 }
63 }

LISTING 2-2. The ExCtx, ExObj, and ExObj2 classes used by the examples

1 package org.jboss.chap2.ex0;
2
3 import java.io.IOException;
4
5 import org.apache.log4j.Logger;
6
7 import org.jboss.util.Debug;
8
9 /** A classes used to demonstrate various class loading issues
10 * @author Scott.Stark@jboss.org
11 * @version $Revision: 1.2 $
12 */
13 public class ExCtx
14 {
15 ExObj value;
16
17 public ExCtx() throws IOException
18 {
19 value = new ExObj();
20 Logger log = Logger.getLogger(ExCtx.class);
21 StringBuffer buffer = new StringBuffer("ctor.ExObj");
22 Debug.displayClassInfo(value.getClass(), buffer, false);
23 log.info(buffer.toString());
24 ExObj2 obj2 = value.ivar;
48 JBoss Administration and Development

JMX
25 buffer.setLength(0);
26 buffer = new StringBuffer("ctor.ExObj.ivar");
27 Debug.displayClassInfo(obj2.getClass(), buffer, false);
28 log.info(buffer.toString());
29 }
30 public Object getValue()
31 {
32 return value;
33 }
34 public void useValue(Object obj) throws Exception
35 {
36 Logger log = Logger.getLogger(ExCtx.class);
37 StringBuffer buffer = new StringBuffer("useValue2.arg class");
38 Debug.displayClassInfo(obj.getClass(), buffer, false);
39 log.info(buffer.toString());
40 buffer.setLength(0);
41 buffer.append("useValue2.ExObj class");
42 Debug.displayClassInfo(ExObj.class, buffer, false);
43 log.info(buffer.toString());
44 ExObj ex = (ExObj) obj;
45 }
46 void pkgUseValue(Object obj) throws Exception
47 {
48 Logger log = Logger.getLogger(ExCtx.class);
49 log.info("In pkgUseValue");
50 }
51 }
52

LISTING 2-3. The ExObj and ExObj2 classes used in the examples

package org.jboss.chap2.ex0;

import java.io.Serializable;

/**
 * @author Scott.Stark@jboss.org
 * @version $Revision:$
 */
public class ExObj implements Serializable
{
 public ExObj2 ivar = new ExObj2();
}
--
package org.jboss.chap2.ex0;

import java.io.Serializable;

/**
 * @author Scott.Stark@jboss.org
 * @version $Revision: 1.1$
 */
public class ExObj2 implements Serializable
{

JBoss Administration and Development 49

The JBoss JMX Microkernel
}

The ExCCEc.main method uses reflection to isolate the classes that are being loaded by the URL-
ClassLoaders ucl0 and ucl1 from the application class loader. Both are setup to load classes from
the output/chap2/j0.jar, the contents of which are:
examples 794>jar -tf output/chap2/j0.jar
org/jboss/chap2/ex0/ExCtx.class
org/jboss/chap2/ex0/ExObj.class
org/jboss/chap2/ex0/ExObj2.class

We will run an example that demonstrates how a ClassCastException can occur and then look
at the specific issue with the example. See Appendix C for instructions on installing the examples
accompanying the book, and then run the example from within the examples directory using the fol-
lowing command:
examples 780>ant -Dchap=2 -Dex=0c run-example
Buildfile: build.xml
...
 [java] [ERROR,UCL1] Failed to invoke ExCtx.useValue
 [java] java.lang.reflect.InvocationTargetException:
 [java] java.lang.ClassCastException: org.jboss.chap2.ex0.ExObj
 [java] at org.jboss.chap2.ex0.ExCtx.useValue(ExCtx.java:44)
 [java] at java.lang.reflect.Method.invoke(Native Method)
 [java] at org.jboss.chap2.ex0.ExCCEc.main(ExCCEc.java:55)
 [java] Exception in thread "main"
 [java] Java Result: 1

Only the exception is shown here. The full output can be found in the logs/chap2-ex0c.log file. At
line 55 of ExCCEc.java we are invoking ExcCCECtx.useValue(Object) on the instance
loaded and created in lines 37-48 using the URLClassLoader ucl1. The ExObj passed in is the
one loaded and created in lines 25-35 via the URLClassLoader ucl0. The exception results when
the ExCtx.useValue code attempts to cast the argument passed in to a ExObj. To understand
why this fails consider the debugging output from the chap2-ex0c.log file shown in Listing 2-4.

LISTING 2-4. The chap2-ex0c.log debugging output for the ExObj classes seen

[INFO,UCL0] ExObj Info
org.jboss.chap2.ex0.ExObj(113fe2).ClassLoader=java.net.URLClassLoader@6e3914
..java.net.URLClassLoader@6e3914
....file:/C:/Scott/JBoss/Books/AdminDevel/education/books/admin-devel/examples/
output/chap2/j0.jar
++++CodeSource: (file:/C:/Scott/JBoss/Books/AdminDevel/education/books/admin-
devel/examples/output/chap2/j0.jar <no certificates>)
Implemented Interfaces:
++interface java.io.Serializable(7934ad)
++++ClassLoader: null
++++Null CodeSource

[INFO,ExCtx] useValue2.ExObj class
org.jboss.chap2.ex0.ExObj(415de6).ClassLoader=java.net.URLClassLoader@30e280
50 JBoss Administration and Development

JMX
..java.net.URLClassLoader@30e280

....file:/C:/Scott/JBoss/Books/AdminDevel/education/books/admin-devel/examples/
output/chap2/j0.jar
++++CodeSource: (file:/C:/Scott/JBoss/Books/AdminDevel/education/books/admin-
devel/examples/output/chap2/j0.jar <no certificates>)
Implemented Interfaces:
++interface java.io.Serializable(7934ad)
++++ClassLoader: null
++++Null CodeSource

The first output prefixed with [INFO,UCL0] shows that the ExObj class loaded at line ExC-
CEc.java:31 has a hash code of 113fe2 and an associated URLClassLoader instance with a hash
code of 6e3914, which corresponds to ucl0. This is the class used to create the instance passed to the
ExCtx.useValue method. The second output prefixed with [INFO,ExCtx] shows that the ExObj
class as seen in the context of the ExCtx.useValue method has a hash code of 415de6 and a
URLClassLoader instance with an associated hash code of 30e280, which corresponds to ucl1. So
even though the ExObj classes are the same in terms of actual bytecode since it comes from the same
j0.jar, the classes are different as seen by both the ExObj class hash codes, and the associated URL-
ClassLoader instances. Hence, attempting to cast and instance of ExObj from one scope to the
other results in the ClassCastException.

This type of error is common when one redeploys an application to which other applications are hold-
ing references to classes from the redeployed application. For example, a standalone war accessing an
ejb. If you are redeploying an application, all dependent applications must flush their class references.
Typically this requires that the dependent applications themselves be redeployed.

ILLEGALACCESSEXCEPTION - DOING WHAT YOU SHOULD NOT

A java.lang.IllegalAccessException is thrown when one attempts to access a method
or member that visibility qualfiers do not allow. Typical examples are attempting to access private or
protected methods or instance variables. Another common example is accessing package protected
methods or members from a class that appears to be in the correct package, but is really not due to
caller and callee classes being loaded by different class loaders. An example of this is illustrated by
the code shown in Listing 2-6.

LISTING 2-5. The ExIAEd class used to demonstrate IllegalAccessException due to duplicate
class loaders

1 package org.jboss.chap2.ex0;
2
3 import java.io.File;
4 import java.net.URL;
5 import java.net.URLClassLoader;
6 import java.lang.reflect.Method;
7
8 import org.apache.log4j.Logger;
9
10 import org.jboss.util.ChapterExRepository;
11 import org.jboss.util.Debug;
12
JBoss Administration and Development 51

The JBoss JMX Microkernel
13 /** An example of IllegalAccessExceptions due to classes loaded by two class
14 * loaders.
15 * @author Scott.Stark@jboss.org
16 * @version $Revision: 1.2$
17 */
18 public class ExIAEd
19 {
20 public static void main(String[] args) throws Exception
21 {
22 ChapterExRepository.init(ExIAEd.class);
23
24 String chapDir = System.getProperty("chapter.dir");
25 Logger ucl0Log = Logger.getLogger("UCL0");
26 File jar0 = new File(chapDir+"/j0.jar");
27 ucl0Log.info("jar0 path: "+jar0.toString());
28 URL[] cp0 = {jar0.toURL()};
29 URLClassLoader ucl0 = new URLClassLoader(cp0);
30 Thread.currentThread().setContextClassLoader(ucl0);
31
32 StringBuffer buffer = new StringBuffer("ExIAEd Info");
33 Debug.displayClassInfo(ExIAEd.class, buffer, false);
34 ucl0Log.info(buffer.toString());
35
36 Class ctxClass1 = ucl0.loadClass("org.jboss.chap2.ex0.ExCtx");
37 buffer.setLength(0);
38 buffer.append("ExCtx Info");
39 Debug.displayClassInfo(ctxClass1, buffer, false);
40 ucl0Log.info(buffer.toString());
41 Object ctx0 = ctxClass1.newInstance();
42
43 try
44 {
45 Class[] types = {Object.class};
46 Method useValue = ctxClass1.getDeclaredMethod("pkgUseValue", types);
47 Object[] margs = {null};
48 useValue.invoke(ctx0, margs);
49 }
50 catch(Exception e)
51 {
52 ucl0Log.error("Failed to invoke ExCtx.pkgUseValue", e);
53 }
54 }
55 }

The ExIAEd.main method uses reflection to load the ExCtx class via the ucl0 URLClassLoad-
ers while the ExIEAd class was loaded by the application class loader. We will run this example to
demonstrate how the IllegalAccessException can occur and then look at the specific issue
with the example. Run the example using the following command:
examples 806>ant -Dchap=2 -Dex=0d run-example
Buildfile: build.xml
...
 [java] [ERROR,UCL0] Failed to invoke ExCtx.pkgUseValue
 [java] java.lang.IllegalAccessException
 [java] at java.lang.reflect.Method.invoke(Native Method)
52 JBoss Administration and Development

JMX
 [java] at org.jboss.chap2.ex0.ExIAEd.main(ExIAEd.java:48)

The truncated output shown here illustrates the IllegalAccessException. The full output can
be found in the logs/chap2-ex0d.log file. At line 48 of ExIAEd.java the
ExCtx.pkgUseValue(Object) method is invoked via reflection. The pkgUseValue method
has package protected access and even though both the invoking class ExIAEd and the ExCtx class
whose method is being invoked reside in the org.jboss.chap2.ex0 package, the invocation is seen to
be invalid due to the fact that the two classes are loaded by different class loader. This can be seen by
looking at the debugging output from the chap2-ex0d.log file. The key lines are:
[INFO,UCL0] ExIAEd Info
org.jboss.chap2.ex0.ExIAEd(65855a).ClassLoader=sun.misc.Launcher$AppClassLoader@
3f52a5
..sun.misc.Launcher$AppClassLoader@3f52a5
...
[INFO,UCL0] ExCtx Info
org.jboss.chap2.ex0.ExCtx(70eed6).ClassLoader=java.net.URLClassLoader@113fe2
..java.net.URLClassLoader@113fe2
...

The ExIAEd class is seen to have been loaded via the default application class loader instance
sun.misc.Launcher$AppClassLoader@3f52a5, while the ExCtx class was loaded by the
java.net.URLClassLoader@113fe2 instance. Because the classes are loaded by different
class loaders, access to the package protected method is seen to be a security violation. So, not only is
type a function of both the fully qualified class name and class loader, the package scope is as well.

An example of how this can happen in practise is to include the same classes in two different SAR
deployments. If classes in the deployment have a package protected relationship, users of the sar ser-
vice may end up loading one class from SAR class loading at one point, and then load another class
from the second SAR at a later time. If the two classes in question have a protected access relation-
ship an IllegalAccessError will result. The solution is to either include the classes in a sepa-
rate jar that is referenced by the SARs, or to combine the SARs into a single deployment. This can
either be a single SAR, or an EAR the includes both SARs.

LINKAGEERRORS - MAKING SURE YOU ARE WHO YOU SAY YOU ARE

To address the type-safety problems of the early Java VMs, the notion of loading constraints were
added to the 1.2 Java language spec. Loading constraints validate type expectations in the context of
class loader scopes to ensure that a class X is consistently the same class when multiple class loaders
are involved. This is important because Java allows for user defined class loaders LinkageErrors
are essentially an extension of the ClassCastException that is enforced by the VM when
classes are loaded and used.

To understand what loading constraints are and how they ensure type-safety we will first introduce
the nomenclature of the Liang and Bracha paper along with an example from this paper. There are
two type of class loaders, initiating and defining. An initiating class loader is one that a Class-
Loader.loadClass method has been invoked on to initiate the loading of the named class. A
defining class loader is the loader that calls one of the ClassLoader.defineClass methods to
JBoss Administration and Development 53

The JBoss JMX Microkernel
convert the class byte code into a Class instance. The most complete expression of a class is given
by:

where C is the fully qualified class name, is the defining class loader, and is the initiating

class loader. In a context where the initiating class loader is not important the type may be represented

by , while when the defining class loader is not important, the type may be represented by .
In the latter case, there is still a defining class loader, its just not important what the identity of the
defining class loader is. Also, a type is completely defined by . The only time the initiating
loader is relevant is when a loading constraint is being validated. Now consider the classes shown in
Listing 2-6.

LISTING 2-6. Classes demonstrating the need for loading constraints

class

{
 void f()
 {

 x = .g();

 x.secret_value = 1; // Should not be allowed
 }
}
--
class

{

 static g() {...}

}
--
class

{
 public int secret_value;
}
--
class

{
 private int secret_value;
}

The class C is defined by L1 and so L1 is used to initiate loading of the classes Spoofed and Dele-
gated referenced in the C.f() method. The Spoofed class is defined by L1, but Delegated is
defined by L2 because L1 delegates to L2. Since Delegated is defined by L2, L2 will be used to ini-

LC Ld,〈 〉 i

Ld Li

C Ld,〈 〉 C
Li

C Ld,〈 〉

C L1,〈 〉

Spoofed L1,〈 〉
L1 Delegated L2,〈 〉

L1

Delegated L2,〈 〉

Spoofed L2,〈 〉
L3

Spoofed L1,〈 〉

Spoofed L2,〈 〉
54 JBoss Administration and Development

JMX
tiate loading of Spoofed in the context of the Delegated.g() method. In this example both L1
and L2 define different versions of Spoofed as indicated by the two versions shown at the end of
Listing 2-6. Since C.f() believes x is an instance of it is able to access the private
field scecret_value of returned by Delegated.g() due to the 1.1 and earlier
Java VM’s failure to take into account that a class type is determined by both the fully qualified name
of the class and the defining class loader.

Java 1.2 and beyond addresses this problem by generating loader constraints to validate type consis-
tency when the types being used are coming from different defining class loaders. For the Listing 2-6

example, the VM generates a constraint when the first line of method C.f()
is verified to indicate that the type Spoofed must be the same regardless of whether the load of
Spoofed is initiated by L1 or L2. It does not matter if L1 or L2, or even some other class loader
defines Spoofed. All that matters is that there is only one Spoofed class defined regardless of
whether L1 or L2 was used to initiate the loading. If L1 or L2 have already defined separate versions
of Spoofed when this check is made a LinkageError will be generated immediately. Otherwise,
the constraint will be recorded and when Delegated.g() is executed, any attempt to load a dupli-
cate version of Spoofed will result in a LinkageError.

Now let’s take a look at how a LinkageError can occurr with a concrete example. Listing 2-7
gives the example main class along with the custom class loader used.

LISTING 2-7. A concrete example of a LinkageError

1 package org.jboss.chap2.ex0;
2
3 import java.io.File;
4 import java.net.URL;
5
6 import org.apache.log4j.Logger;
7 import org.jboss.util.ChapterExRepository;
8 import org.jboss.util.Debug;
9
10 /** An example of a LinkageError due to classes being defined by more than
11 * one class loader in a non-standard class loading environment.
12 * @author Scott.Stark@jboss.org
13 * @version $Revision: 1.1$
14 */
15 public class ExLE
16 {
17 public static void main(String[] args) throws Exception
18 {
19 ChapterExRepository.init(ExLE.class);
20
21 String chapDir = System.getProperty("chapter.dir");
22 Logger ucl0Log = Logger.getLogger("UCL0");
23 File jar0 = new File(chapDir+"/j0.jar");
24 ucl0Log.info("jar0 path: "+jar0.toString());
25 URL[] cp0 = {jar0.toURL()};

Spoofed L1,〈 〉

Spoofed L2,〈 〉

Spoofed
L1 Spoofed

L2=
JBoss Administration and Development 55

The JBoss JMX Microkernel
26 Ex0URLClassLoader ucl0 = new Ex0URLClassLoader(cp0);
27 Thread.currentThread().setContextClassLoader(ucl0);
28 Class ctxClass1 = ucl0.loadClass("org.jboss.chap2.ex0.ExCtx");
29 Class obj2Class1 = ucl0.loadClass("org.jboss.chap2.ex0.ExObj2");
30 StringBuffer buffer = new StringBuffer("ExCtx Info");
31 Debug.displayClassInfo(ctxClass1, buffer, false);
32 ucl0Log.info(buffer.toString());
33 buffer.setLength(0);
34 buffer.append("ExObj2 Info, UCL0");
35 Debug.displayClassInfo(obj2Class1, buffer, false);
36 ucl0Log.info(buffer.toString());
37
38 File jar1 = new File(chapDir+"/j1.jar");
39 Logger ucl1Log = Logger.getLogger("UCL1");
40 ucl1Log.info("jar1 path: "+jar1.toString());
41 URL[] cp1 = {jar1.toURL()};
42 Ex0URLClassLoader ucl1 = new Ex0URLClassLoader(cp1);
43 Class obj2Class2 = ucl1.loadClass("org.jboss.chap2.ex0.ExObj2");
44 buffer.setLength(0);
45 buffer.append("ExObj2 Info, UCL1");
46 Debug.displayClassInfo(obj2Class2, buffer, false);
47 ucl1Log.info(buffer.toString());
48
49 ucl0.setDelegate(ucl1);
50 try
51 {
52 ucl0Log.info("Try ExCtx.newInstance()");
53 Object ctx0 = ctxClass1.newInstance();
54 ucl0Log.info("ExCtx.ctor succeeded, ctx0: "+ctx0);
55 }
56 catch(Throwable e)
57 {
58 ucl0Log.error("ExCtx.ctor failed", e);
59 }
60 }
61 }
--
1 package org.jboss.chap2.ex0;
2
3 import java.net.URLClassLoader;
4 import java.net.URL;
5
6 import org.apache.log4j.Logger;
7
8 /** A custom class loader that overrides the standard parent delegation model
9 * @author Scott.Stark@jboss.org
10 * @version $Revision:$
11 */
12 public class Ex0URLClassLoader extends URLClassLoader
13 {
14
15 private static Logger log = Logger.getLogger(Ex0URLClassLoader.class);
16 private Ex0URLClassLoader delegate;
17
18 public Ex0URLClassLoader(URL[] urls)
56 JBoss Administration and Development

JMX
19 {
20 super(urls);
21 }
22
23 void setDelegate(Ex0URLClassLoader delegate)
24 {
25 this.delegate = delegate;
26 }
27
28 protected synchronized Class loadClass(String name, boolean resolve)
29 throws ClassNotFoundException
30 {
31 Class clazz = null;
32 if(delegate != null)
33 {
34 log.debug(Integer.toHexString(hashCode())+"; Asking delegate to
loadClass: "+name);
35 clazz = delegate.loadClass(name, resolve);
36 log.debug(Integer.toHexString(hashCode())+"; Delegate returned:
"+clazz);
37 }
38 else
39 {
40 log.debug(Integer.toHexString(hashCode())+"; Asking super to
loadClass: "+name);
41 clazz = super.loadClass(name, resolve);
42 log.debug(Integer.toHexString(hashCode())+"; Super returned: "+clazz);
43 }
44 return clazz;
45 }
46
47 protected Class findClass(String name)
48 throws ClassNotFoundException
49 {
50 Class clazz = null;
51 log.debug(Integer.toHexString(hashCode())+"; Asking super to findClass:
"+name);
52 clazz = super.findClass(name);
53 log.debug(Integer.toHexString(hashCode())+"; Super returned: "+clazz);
54 return clazz;
55 }
56 }

The key component in this example is the URLClassLoader subclass Ex0URLClassLoader.
This class loader implementation overrides the default parent delegation model to allow the ucl0 and
ucl1 instances to both load the ExObj2 class and then setup a delegation relationship from ucl0 to
ucl1. At lines 28 and 29 of ExLE.main the ucl0 Ex0URLClassLoader is used to load the
ExCtx and ExObj2 classes. At line 43 of ExLE.main the ucl1 Ex0URLClassLoader is used to
load the ExObj2 class again. At this point both the ucl0 and ucl1 class loaders have defined the
ExObj2 class. A delegation relationship from ucl0 to ucl1 is then setup at line 49 via the ucl0.set-
Delegate(ucl1) method call. Finally, at line 53 of ExLE.main an instance of ExCtx is created
using the class loaded via ucl0. The ExCtx class is the same as presented in Listing 2-2, and the con-
structor was:
JBoss Administration and Development 57

The JBoss JMX Microkernel
17 public ExCtx() throws IOException
18 {
19 value = new ExObj();
20 Logger log = Logger.getLogger(ExCtx.class);
21 StringBuffer buffer = new StringBuffer("ctor.ExObj");
22 Debug.displayClassInfo(value.getClass(), buffer, false);
23 log.info(buffer.toString());
24 ExObj2 obj2 = value.ivar;
25 buffer.setLength(0);
26 buffer = new StringBuffer("ctor.ExObj.ivar");
27 Debug.displayClassInfo(obj2.getClass(), buffer, false);
28 log.info(buffer.toString());
29 }

Now, since the ExCtx class was defined by the ucl0 class loader, and at the time the ExCtx con-
structor is executed, ucl0 delegates to ucl1, line 24 of the ExCtx constructor involves the following
expression which has been rewritten in terms of the complete type expressions:

This generates a loading constraint of since the ExObj2 type must be con-
sistent across the ucl0 and ucl1 class loader instances. Because we have loaded ExObj2 using both
ucl0 and ucl1 prior to setting up the delegation relationship, the constraint will be violated and should
generate a LinkageError when run. Run the example using the following command:
examples 512>ant -Dchap=2 -Dex=0e run-example
Buildfile: build.xml
...
 [java] [ERROR,UCL0] ExCtx.ctor failed
 [java] java.lang.LinkageError: loader constraints violated when linking org/
jboss/chap2/ex0/ExObj2 class
 [java] at org.jboss.chap2.ex0.ExCtx.<init>(ExCtx.java:24)
 [java] at java.lang.Class.newInstance0(Native Method)
 [java] at java.lang.Class.newInstance(Class.java:232)
 [java] at org.jboss.chap2.ex0.ExLE.main(ExLE.java:53)

As expected, a LinkageError is thrown while validating the loader constraints required by line 24
of the ExCtx constructor.

DEBUGGING CLASS LOADING ISSUES

Debugging class loading issues comes down to finding out where a class was loaded from. A useful
tool for this is the code snippet shown in Listing 2-8 taken from the org.jboss.util.Debug
class of the book examples.

LISTING 2-8. Obtaining debugging information for a Class

Class clazz = ...;
StringBuffer results = new StringBuffer();

ExObj2 ucl0,〈 〉
ucl0obj2 ExObj ucl1,〈 〉

ucl0value ivar•=

ExObj2
ucl0 ExObj2

ucl1=
58 JBoss Administration and Development

JMX
ClassLoader cl = clazz.getClassLoader();

results.append("\n"+clazz.getName()+"("+Integer.toHexString(clazz.hashCode())+")
.ClassLoader="+cl);
 ClassLoader parent = cl;
 while(parent != null)
 {
 results.append("\n.."+parent);
 URL[] urls = getClassLoaderURLs(parent);
 int length = urls != null ? urls.length : 0;
 for(int u = 0; u < length; u ++)
 {
 results.append("\n...."+urls[u]);
 }
 if(showParentClassLoaders == false)
 break;
 if(parent != null)
 parent = parent.getParent();
 }
 CodeSource clazzCS = clazz.getProtectionDomain().getCodeSource();
 if(clazzCS != null)
 results.append("\n++++CodeSource: "+clazzCS);
 else
 results.append("\n++++Null CodeSource");

The key items are shown in bold. The first is that every Class object knows its defining Class-
Loader and this is available via the getClassLoader() method. The defines the scope in which
the Class type is known as we have just seen in the previous sections on ClassCastExcep-
tions, IllegalAccessExceptions and LinkageErrors. From the ClassLoader you can
view the heirarchy of ClassLoaders that make up the parent delegation chain. If the Class-
Loader is a URLClassLoader you can also see the URLs used for class and resource loading.

The defining ClassLoader of a Class cannot tell you from what location a Class was loaded.
To determine this you must obtain the java.security.ProtectionDomain and then the
java.security.CodeSource. It is the CodeSource that has the URL location from which
the class originated. Note that not every Class has a CodeSource. If a class is loaded by the boot-
strap then its CodeSource will be null. This will be the case for all classes in the java.* and
javax.* packages of the VM implementation for example.

Beyond that it may be useful to view the details of classes being loaded into the JBoss server. You can
enable verbose logging of the JBoss class loading layer using a Log4j configuration fragment like that
shown in Listing 2-9.

LISTING 2-9. An example log4j.xml configuration fragment for enabling verbose class loading
logging

 <appender name="UCL" class="org.apache.log4j.FileAppender">
 <param name="File" value="${jboss.server.home.dir}/log/ucl.log"/>
 <param name="Append" value="false"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="[%r,%c{1},%t] %m%n"/>
JBoss Administration and Development 59

The JBoss JMX Microkernel
 </layout>
 </appender>
 <category name="org.jboss.mx.loading" additivity="false">
 <priority value="TRACE" class="org.jboss.logging.XLevel"/>
 <appender-ref ref="UCL"/>
 </category>

This places the output from the classes in the org.jboss.mx.loading package into the ucl.log
file of the server configurations log directory. Although it may not be meaningful if you have not
looked at the class loading code, it is vital information needed for submitting bug reports or questions
regarding class loading problems. If you have a class loading problem that appears to be a bug, sub-
mit it to the JBoss project on SourceForge and include this log file as an attachment. If the log file is
too big, compress it and mail it to scott.stark@jboss.org.

INSIDE THE JBOSS CLASS LOADING ARCHITECTURE

Now that we have the role of class loaders in the Java type system defined, let’s take a look at the
JBoss 3.x class loading architecture. Figure 2-3 illustrates the basic components in the core of the
class loading architecture.

FIGURE 2-3. The JBoss 3.x core class loading components

The central component is the org.jboss.mx.loading.UnifiedClassLoader3 (UCL)
class loader. This is an extension of the standard java.net.URLClassLoader that overrides the
standard parent delegation model to use a shared repository of classes and resources. This shared
repository is the org.jboss.mx.loading.UnifiedLoaderRepository3. Every UCL is
associated with a single UnifiedLoaderRepository3, and a
UnifiedLoaderRepository3 typically has many UCLs. As of the 3.0.5RC1 release, a UCL
may have multiple URLs associated with it for class and resource loading. Prior to this release, a UCL
always was associated with a single URL. This could lead to IllegalAccessExceptions and
LikageErrors due to packaging issues we saw in the previous sections where we discussed how
these types of errors can arise when multiple class loaders exist. With the 3.0.5RC1 release, deployers
use the top-level deployment’s UCL as a shared class loader and all deployment archives are assigned
60 JBoss Administration and Development

http://sourceforge.net/tracker/?group_id=22866&atid=376685
mailto:scott.stark@jboss.org
mailto:scott.stark@jboss.org

JMX
to this class loader. We will talk about the JBoss deployers and their interaction with the class loading
system in more detail latter in the section “JBoss MBean Services” on page 80.

When a UCL is asked to load a class, it first looks to the repository cache it is associated with to see if
the class has already been loaded. Only if the class does not exist in the repository will it be loaded
into the repository by the UCL. By default, there is a single UnifiedLoaderRepository3
shared across all UCL instances. This means the UCLs form a single flat class loader namespace. The
complete sequence of steps that occur when a UnfiedClassLoader3.loadClass(String,
boolean) method is called is:

1. Check the UnifiedLoaderRepository3 classes cache associated with the
UnfiedClassLoader3. If the class is found in the cache it is returned.

2. Else, ask the UnfiedClassLoader3 if it can load the class. This is essentially a call to the
superclass URLClassLoader.loadClass(String, boolean) method to see if the class
is among the URLs associated with the class loader, or visible to the parent class loader. If the class
is found it is placed into the repository classes cache and returned.

3. Else, the repository is queried for all UCLs that are capable of providing the class based on the
repository package name to UCL map. When a UCL is added to a repository an association
between the package names available in the URLs associated with the UCL is made, and a map-
ping from package names to the UCLs with classes in the package is updated. This allows for a
quick determination of which UCLs are capable of loading the class. The UCLs are then queried
for the requested class in the order in which the UCLs were added to the repository. If a UCL is
found that can load the class it is returned, else a java.lang.ClassNotFoundException
is thrown.

VIEWING CLASSES IN THE LOADER REPOSITORY

Another useful source of information on classes is the UnifiedLoaderRepository itself. This is an
MBean that contains operations to display class and package information. The default repository is
located under a standard JMX name of “JMImplementation:name=Default,service=LoaderReposi-
tory”, and its MBean can be access via the JMX console by following its link from the front page.
This hyperlink: LoaderRepository takes you to the JMX console view shown in Figure 2-4. We dis-
cuss the JMX console in the next section, “Connecting to the JMX Server” on page 67.
JBoss Administration and Development 61

http://localhost:8080/jmx-console/HtmlAdaptor?action=inspectMBean&name=JMImplementation%3Aservice%3DLoaderRepository%2Cname%3DDefault

The JBoss JMX Microkernel
FIGURE 2-4. The default class LoaderRepository MBean view in the JMX console

Two useful operations you will find here are getPackageClassLoaders(String) and dis-
playClassInfo(String). The getPackageClassLoaders operation returns a set of class
loaders that have been indexed to contain classes or resources for the given package name. The pack-
age name must have a trailing period. If you type in the package name “org.jboss.ejb.”, the following
representation is displayed:

[org.jboss.mx.loading.UnifiedClassLoader3@166a22b{ url=file:/C:/tmp/JBoss/jboss-
3.0.5RC2/server/default/tmp/deploy/server/default/conf/jboss-service.xml/
1.jboss-service.xml ,addedOrder=2}]

This is the string representation of the set. It shows one UnifiedClassLoader3 instance with a
primary URL pointing to the default/conf/jboss-service.xml descriptor. This is the second class loader
added to the repository (shown by the addedOrder=2) and it is the class loader that owns all of the jars
in the lib directory of the server configuration (e.g., server/default/lib). If you enter the package name
“org.jboss.jmx.adaptor.rmi.”, then the following set will be displayed:
[org.jboss.mx.loading.UnifiedClassLoader3@47393f{ url=file:/C:/tmp/JBoss/jboss-
3.0.5RC2/server/default/tmp/deploy/server/default/conf/jboss-service.xml/
1.jboss-service.xml ,addedOrder=2},
org.jboss.mx.loading.UnifiedClassLoader3@156e5ed{ url=file:/C:/tmp/JBoss/jboss-
3.0.5RC2/server/default/deploy/jmx-rmi-adaptor.sar/ ,addedOrder=6}]

This time there are two UnifiedClassLoader3 instances, one for the default/conf/jboss-ser-
vice.xml and one for the default/deploy/jmx-rmi-adaptor.sar.
62 JBoss Administration and Development

JMX
The view the information for a given class, use the displayClassInfo operation, passing in the
fully qualified name of the class to view. For example, if we use “org.jboss.jmx.adaptor.rmi.RMI-
AdaptorImpl” which is from the package we just looked at, the following description is displayed:

org.jboss.jmx.adaptor.rmi.RMIAdaptorImpl Information
Repository cache version:
org.jboss.jmx.adaptor.rmi.RMIAdaptorImpl(11bd9c9).ClassLoader=org.jboss.mx.loadi
ng.UnifiedClassLoader3@166a22b{ url=file:/C:/tmp/JBoss/jboss-3.0.5RC2/server/
default/tmp/deploy/server/default/conf/jboss-service.xml/1.jboss-service.xml
,addedOrder=2}
..org.jboss.mx.loading.UnifiedClassLoader3@166a22b{ url=file:/C:/tmp/JBoss/jboss-
3.0.5RC2/server/default/tmp/deploy/server/default/conf/jboss-service.xml/
1.jboss-service.xml ,addedOrder=2}
..org.jboss.system.server.NoAnnotationURLClassLoader@1bc4459
..sun.misc.Launcher$AppClassLoader@12f6684
....file:/C:/tmp/JBoss/jboss-3.0.5RC2/bin/
....file:/C:/usr/local/Java/j2sdk1.4.1_01/lib/tools.jar
....file:/C:/tmp/JBoss/jboss-3.0.5RC2/bin/run.jar
..sun.misc.Launcher$ExtClassLoader@f38798
....file:/C:/usr/local/Java/j2sdk1.4.1_01/jre/lib/ext/dnsns.jar
....file:/C:/usr/local/Java/j2sdk1.4.1_01/jre/lib/ext/ldapsec.jar
....file:/C:/usr/local/Java/j2sdk1.4.1_01/jre/lib/ext/localedata.jar
....file:/C:/usr/local/Java/j2sdk1.4.1_01/jre/lib/ext/sunjce_provider.jar
++++CodeSource: (file:/C:/tmp/JBoss/jboss-3.0.5RC2/server/default/lib/jboss.jar)
Implemented Interfaces:
++interface org.jboss.jmx.adaptor.rmi.RMIAdaptor(98f192)
++++ClassLoader: org.jboss.mx.loading.UnifiedClassLoader3@e31e33{ url=file:/C:/
tmp/JBoss/jboss-3.0.5RC2/server/default/deploy/jmx-rmi-adaptor.sar/
,addedOrder=6}
++++CodeSource: (file:/C:/tmp/JBoss/jboss-3.0.5RC2/server/default/deploy/jmx-rmi-
adaptor.sar/)

Instance0 found in UCL: org.jboss.mx.loading.UnifiedClassLoader3@166a22b{
url=file:/C:/tmp/JBoss/jboss-3.0.5RC2/server/default/tmp/deploy/server/default/
conf/jboss-service.xml/1.jboss-service.xml ,addedOrder=2}

The information is a dump of the information for the Class instance in the loader repository if one
has been loaded, followed by the class loaders that are seen to have the class file available. If a class
is seen to have more than one class loader associated with it, then there is the potential for class load-
ing related errors.

SCOPING CLASSES USING EARS

If you need to deploy multiple versions of an application the default 3.x class loading model would
require that each application be deployed in a separate JBoss server. Sometimes this is desirable as
you have more control over security and resource monitoring, but it can be difficult to manage multi-
ple server instances. An alternative mechanism exists that allows multiple versions of an application
to be deployed using EAR based scoping.

Such an EAR creates its own class loader repository in the form of a
HeirarchicalLoaderRepository3 that looks first to the UnifiedClassLoader3
instances of the deployment units included in the EAR before delegating to the default
JBoss Administration and Development 63

The JBoss JMX Microkernel
UnifiedLoaderRepository3. To enable an EAR specific loader repository, you need to create
a META-INF/jboss-app.xml descriptor as shown in Listing 2-10

LISTING 2-10. An example jboss-app.xml descriptor for enabled scoped class loading at the ear
level.

<jboss-app>
 <loader-repository>some.dot.com:loader=webtest.ear</loader-repository>
</jboss-app>

The value of the loader-repository element is the JMX ObjectName to assign to the repository created
for the EAR. This must be unique and valid JMX ObjectName, but the actual name is not important.

THE COMPLETE CLASS LOADING MODEL

The previous discussion of the core class loading components introduced the custom
UnifiedClassLoader3 and UnifiedLoaderRepository3 classes that form a shared class
loading space. The complete class loading picture must also include the parent class loader used by
UnifiedClassLoader3s as well as class loaders introduced for scoping and other speciality
class loading purposes. Figure 2-5 shows an outline of the class hierarchy that would exist for an
EAR deployment containing EJBs and WARs.
64 JBoss Administration and Development

JMX
FIGURE 2-5. A complete class loader view

The following points apply to Figure 2-5:

• System ClassLoaders. The System ClassLoaders node refers to either the thread context class
loader (TCL) of the VM main thread or of the thread of the application that is loading the JBoss
server if it is embedded.
• ServerLoader. The ServerLoader node refers to the a URLClassLoader that delegates to the
System ClassLoaders and contains the following boot URLs

•All URLs referenced via the jboss.boot.library.list system property. These are path specifica-
tions relative to the libraryURL defined by the jboss.lib.url property. If there is no jboss.lib.url
JBoss Administration and Development 65

The JBoss JMX Microkernel
property specified, it default to the jboss.home.url + /lib/. If there is no jboss.boot.library
property specified, it defaults to jaxp.jar, log4j-boot.jar, jboss-common.jar, and jboss-sys-
tem.jar.
•The JAXP jar which is either crimson.jar or xerces.jar depending on the -j option to the Main
entry point. The default is crimson.jar.
•The JBoss JMX jar and GNU regex jar, jboss-jmx.jar and gnu-regexp.jar.
•Oswego concurrency classes jar, concurrent.jar
•Any jars specified as libraries via -L command line options
•Any other jars or directories specified via -C command line options

• Server. The Server node represent a collection of UnifiedClassLoader3s created by the
org.jboss.system.server.Server interface implementation. The default implementation creates
UCLs for the patchDir entries as well as the server conf directory. The last UCL created is set as
the JBoss main thread context class loader. This will be combined into a single UCL now that
multiple URLs per UCL are supported.
• All UnifiedClassLoader3s. The All UnifiedClassLoader3s node represents the
UCLs created by deployers. This covers EARs, jars, WARs, SARs and directories seen by the
deployment scanner as well as jars referenced by their manifests and any nested deployment units
they may contain. This is a flat namespace and there should not be multiple instances of a class in
different deployment jars. If there are, only the first loaded will be used and the results may not be
as expected. There is a mechanism for scoping visibility based on EAR deployment units that we
discussed in “Scoping Classes Using EARs”. Use this mechanism if you need to deploy multiple
versions of a class in a given JBoss server.
• EJB DynClassLoader. The EJB DynClassLoader node is a subclass of URLClassLoader that
is used to provide RMI dynamic class loading via the simple HTTP WebService. It specifies an
empty URL[] and delegates to the TCL as its parent class loader. If the WebService is configured
to allow system level classes to be loaded, all classes in the UnifiedLoaderRepository3
as well as the system classpath are available via HTTP.
• EJB ENCLoader. The EJB ENCLoader node is a URLClassLoader that exists only to provide
a unique context for an EJB deployment's java:comp JNDI context. It specifies an empty URL[]
and delegates to the EJB DynClassLoader as its parent class loader.
• Web ENCLoader. The Web ENCLoader node is a URLClassLoader that exists only to provide
a unique context for a web deployment's java:comp JNDI context. It specifies an empty URL[]
and delegates to the TCL as its parent class loader.
• WAR Loader. The WAR Loader is a servlet container specific ClassLoader that delegates to
the Web ENCLoader as its parent class loader. The default behavior is to load from its parent class
loader and then the war WEB-INF/{classes,lib} directories. If the servlet 2.3 class loading model
is enabled it will first load from the war WEB-INF/{classes,lib} and then the parent class loader.

In its current form there are some advantages and disadvantages to the 3.x class loading architecture.
Advantages include:

• Classes do not need to be replicated across deployment units in order to have access to them.
• Many future possibilities including novel partitioning of the repositories into domains, depen-
dency and conflict detection, etc.
66 JBoss Administration and Development

JMX
Disadvantages include:

• Existing deployments may need to be repackaged to avoid duplicate classes. Duplication of
classes in a loader repository can lead to ClassCastExceptions and LinkageErrors
depending on how the classes are loaded. As of the 3.0.5RC1 release this should generally not be
a problem, but may still exist.
• Deployments that depend on different versions of a given class need to be isolated in separate
ears and a unique HeirarchicalLoaderRepository3 defined using a jboss-app.xml
descriptor.

Connecting to the JMX Server
JBoss includes adaptors that allow access to the JMX MBeanServer from outside of the JBoss
server VM. The current adaptors include HTML, an RMI interface, and an EJB.

Inspecting the Server - the JMX Console Web Application
JBoss 3.0.1 and higher comes with its own implementation of a JMX HTML adaptor that allows one
to view the MBeanServer’s MBeans using a standard web browser. The default URL for the con-
sole web application is http://localhost:8080/jmx-console/. If you browse this location you will see
something similar to that presented in Figure 2-6.
JBoss Administration and Development 67

http://localhost:8080/jmx-console/
http://localhost:8080/jmx-console/

The JBoss JMX Microkernel
FIGURE 2-6. The JBoss JMX console web application agent view

The top view is called the agent view and it provides a listing of all MBeans registered with the MBeanS-
erver sorted by the domain portion of the MBean ObjectName. Under each domain is the MBeans
under that domain. When you select one of the MBeans you will be taken to the MBean view. This allows
one to view and edit an MBean’s attributes as well as invoke operations. As an example, Figure 2-7 shows
the MBean view for the “jboss.system:type=Server” MBean.
68 JBoss Administration and Development

JMX
FIGURE 2-7. The MBean view for the “jboss.system:type=Server” MBean

The source code for the JMX console web application is located in the jboss-all/varia module under the src/
main/org/jboss/jmx directory. Its web pages are located under jboss-all/varia/src/resources/jmx. The appli-
cation is a simple MVC servlet with JSP views that utilizes the MBeanServer.

SECURING THE JMX CONSOLE
JBoss Administration and Development 69

The JBoss JMX Microkernel
Since the JMX console web application is just a standard servlet, it may be secured using standard
J2EE role based security. The jmx-console.war that ships with the 3.0.1 and latter releases is deployed
as an unpacked war that includes template settings for quickly enabling simple username and pass-
word based access restrictions. If you look at the jmx-console.war in the server/default/deploy direc-
tory you will find the web.xml and jboss-web.xml descriptors in the WEB-INF directory and a
roles.properties and users.properties file under WEB-INF/classes as shown here:
bin 875>ls server/default/deploy/jmx-console.war/WEB-INF
classes/ jboss-web.xml web.xml
bin 876>ls server/default/deploy/jmx-console.war/WEB-INF/classes/
org/ roles.properties users.properties

By uncommenting the security sections of the web.xml and jboss-web.xml descriptors as shown in
Listing 2-11, you enable HTTP basic authentication that restricts access to the jmx-console applica-
tion to username=admin, password=admin. The username and password are determined by the
admin=admin line in the WEB-INF/classes/users.properties file.

LISTING 2-11. The jmx-console.war web.xml and jboss-web.xml descriptors with the security
elements uncommented.

<?xml version="1.0"?>
<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
...
 <!-- A security constraint that restricts access to the HTML JMX console
 to users with the role JBossAdmin. Edit the roles to what you want and
 uncomment the WEB-INF/jboss-web.xml/security-domain element to enable
 secured access to the HTML JMX console.
 -->
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>HtmlAdaptor</web-resource-name>
 <description>An example security config that only allows users with the
 role JBossAdmin to access the HTML JMX console web application
 </description>
 <url-pattern>/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>JBossAdmin</role-name>
 </auth-constraint>
 </security-constraint>

 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>JBoss JMX Console</realm-name>
 </login-config>
70 JBoss Administration and Development

JMX
 <security-role>
 <role-name>JBossAdmin</role-name>
 </security-role>
</web-app>

<jboss-web>
 <!-- Uncomment the security-domain to enable security. You will
 need to edit the htmladaptor login configuration to setup the
 login modules used to authentication users.
 -->
 <security-domain>java:/jaas/jmx-console</security-domain>
</jboss-web>

Make these changes and either with the server running or prior to starting and then when you try to
access the jmx-console URL you will see a dialog similar to that shown in Figure 2-8.

FIGURE 2-8. The jmx-console basic HTTP login dialog presented after making the changes
shown in Listing 2-11.

Its generally a bad idea to use the properties files for securing access to the JMX console application. To
see how to properly onfigure the security settings of web applications see Chapter 8.

Connecting to JMX Using RMI
JBoss supplies an RMI interface for connecting to the JMX MBeanServer. This interface is
org.jboss.jmx.adaptor.rmi.RMIAdaptor, and it is shown in Listing 2-12.

LISTING 2-12. The RMIAdaptor interface
JBoss Administration and Development 71

The JBoss JMX Microkernel
/*
* JBoss, the OpenSource J2EE webOS
*
* Distributable under LGPL license.
* See terms of license at gnu.org.
*/
package org.jboss.jmx.adaptor.rmi;

import javax.management.Attribute;
import javax.management.AttributeList;
import javax.management.ObjectName;
import javax.management.QueryExp;
import javax.management.ObjectInstance;
import javax.management.NotificationFilter;
import javax.management.NotificationListener;
import javax.management.MBeanInfo;

import javax.management.AttributeNotFoundException;
import javax.management.InstanceAlreadyExistsException;
import javax.management.InstanceNotFoundException;
import javax.management.IntrospectionException;
import javax.management.InvalidAttributeValueException;
import javax.management.ListenerNotFoundException;
import javax.management.MBeanException;
import javax.management.MBeanRegistrationException;
import javax.management.NotCompliantMBeanException;
import javax.management.OperationsException;
import javax.management.ReflectionException;

public interface RMIAdaptor
extends java.rmi.Remote

{

public ObjectInstance createMBean(String pClassName, ObjectName pName)
throws ReflectionException,
InstanceAlreadyExistsException,
MBeanRegistrationException,
MBeanException,
NotCompliantMBeanException,
RemoteException;

public ObjectInstance createMBean(String pClassName, ObjectName pName,
ObjectName pLoaderName)

throws ReflectionException,
InstanceAlreadyExistsException,
MBeanRegistrationException,
MBeanException,
NotCompliantMBeanException,
InstanceNotFoundException,
RemoteException;

public ObjectInstance createMBean(String pClassName, ObjectName pName,
Object[] pParams, String[] pSignature)

throws ReflectionException,
InstanceAlreadyExistsException,
72 JBoss Administration and Development

JMX
MBeanRegistrationException,
MBeanException,
NotCompliantMBeanException,
RemoteException;

public ObjectInstance createMBean(String pClassName, ObjectName pName,
ObjectName pLoaderName, Object[] pParams, String[] pSignature)

throws ReflectionException,
InstanceAlreadyExistsException,
MBeanRegistrationException,
MBeanException,
NotCompliantMBeanException,
InstanceNotFoundException,
RemoteException;

public void unregisterMBean(ObjectName pName)
throws InstanceNotFoundException,
MBeanRegistrationException,
RemoteException;

public ObjectInstance getObjectInstance(ObjectName pName)
throws InstanceNotFoundException,

RemoteException;

public Set queryMBeans(ObjectName pName, QueryExp pQuery)
throws RemoteException;

public Set queryNames(ObjectName pName, QueryExp pQuery)
throws RemoteException;

public boolean isRegistered(ObjectName pName)
throws RemoteException;

public boolean isInstanceOf(ObjectName pName, String pClassName)
throws InstanceNotFoundException,
RemoteException;

public Integer getMBeanCount()
throws RemoteException;

public Object getAttribute(ObjectName pName, String pAttribute)
throws MBeanException,

AttributeNotFoundException,
InstanceNotFoundException,
ReflectionException,
RemoteException;

public AttributeList getAttributes(ObjectName pName, String[] pAttributes)
throws InstanceNotFoundException,
ReflectionException,
RemoteException;

public void setAttribute(ObjectName pName, Attribute pAttribute)
throws InstanceNotFoundException,
AttributeNotFoundException,
JBoss Administration and Development 73

The JBoss JMX Microkernel
InvalidAttributeValueException,
MBeanException,
ReflectionException,
RemoteException;

public AttributeList setAttributes(ObjectName pName, AttributeList
pAttributes)

throws InstanceNotFoundException,
ReflectionException,
RemoteException;

public Object invoke(ObjectName pName, String pActionName,
Object[] pParams, String[] pSignature)
throws InstanceNotFoundException,
MBeanException,
ReflectionException,
RemoteException;

public String getDefaultDomain()
throws RemoteException;

public void addNotificationListener(ObjectName pName, ObjectName pListener,
NotificationFilter pFilter, Object pHandback)

throws InstanceNotFoundException,
RemoteException;

public void removeNotificationListener(ObjectName pName, ObjectName
pListener)

throws InstanceNotFoundException,
ListenerNotFoundException,
RemoteException;

public MBeanInfo getMBeanInfo(ObjectName pName)
throws InstanceNotFoundException,

IntrospectionException,
ReflectionException,
RemoteException;

}

The RMIAdaptor interface is bound into JNDI by the org.jboss.jmx.adaptor.rmi.RMI-
AdaptorService MBean. The RMIAdaptorService is deployed as the jmx-rmi-adaptor.sar
package, and supports the following attributes:

• JndiName: The JNDI name under which the RMIAdaptor interface will be bound. The
default name is jmx/rmi/RMIAdaptor. Note that prior to JBoss 3.0.4 this was hard-coded to be
“jmx:” + <server> + “:rmi” where <server> was the value of InetAddress.getLocalHost().getH-
ostName(). This binding is currently maintained for backward compatability but will likely be
dropped in future versions.
• RMIObjectPort: The server side listening port number for the exported RMI object. This
defaults to 0 meaning choose an anonymous available port.
• ServerAddress: The server interface name or IP address to bind the export RMI listening port
to. This defaults to an empty value meaning to bind on all available interfaces.
74 JBoss Administration and Development

JMX
• Backlog: The RMI object server socket backlog of client connection requests that will be
accepted before a connection error occurs.

Listing 2-13 shows a client that makes use of the RMIAdaptor interface to query the MBeanInfo for
the JNDIView MBean. It also invokes the MBean’s list(boolean) method and displays the
result.

LISTING 2-13. A JMX client that uses the RMIAdaptor

package org.jboss.chap2.ex4;

import javax.management.MBeanInfo;
import javax.management.MBeanOperationInfo;
import javax.management.MBeanParameterInfo;
import javax.management.ObjectName;
import javax.naming.InitialContext;

import org.jboss.jmx.adaptor.rmi.RMIAdaptor;

/** A client that demonstrates how to connect to the JMX server using the RMI
 adaptor.

 @author Scott.Stark@jboss.org
 @version $Revision: 1.2$
 */
public class JMXBrowser
{

 /**
 * @param args the command line arguments
 */
 public static void main(String[] args) throws Exception
 {
 InitialContext ic = new InitialContext();
 RMIAdaptor server = (RMIAdaptor) ic.lookup("jmx/rmi/RMIAdaptor");

 // Get the MBeanInfo for the JNDIView MBean
 ObjectName name = new ObjectName("jboss:service=JNDIView");
 MBeanInfo info = server.getMBeanInfo(name);
 System.out.println("JNDIView Class: "+info.getClassName());
 MBeanOperationInfo[] opInfo = info.getOperations();
 System.out.println("JNDIView Operations: ");
 for(int o = 0; o < opInfo.length; o ++)
 {
 MBeanOperationInfo op = opInfo[o];
 String returnType = op.getReturnType();
 String opName = op.getName();
 System.out.print(" + "+returnType+" "+opName+"(");
 MBeanParameterInfo[] params = op.getSignature();
 for(int p = 0; p < params.length; p ++)
 {
 MBeanParameterInfo paramInfo = params[p];
 String pname = paramInfo.getName();
JBoss Administration and Development 75

The JBoss JMX Microkernel
 String type = paramInfo.getType();
 if(pname.equals(type))
 System.out.print(type);
 else
 System.out.print(type+" "+name);
 if(p < params.length-1)
 System.out.print(',');
 }
 System.out.println(")");
 }

 // Invoke the list(boolean) op
 String[] sig = {"boolean"};
 Object[] opArgs = {Boolean.TRUE};
 Object result = server.invoke(name, "list", opArgs, sig);
 System.out.println("JNDIView.list(true) output:\n"+result);
 }
}

To test the client access using the RMIAdaptor, run the following:
examples 691>ant -Dchap=2 -Dex=4 run-example
Buildfile: build.xml

validate:
 [java] JBoss version is: 3.0.4

fail_if_not_valid:

init:
 [echo] Using jboss.dist=/tmp/JBoss/jboss-3.0.4

compile:
 [javac] Compiling 2 source files to
C:\Scott\JBoss\Books\AdminDevel\education\books\admin-
devel\examples\output\classes

run-example:
run-example4:
 [java] JNDIView Class: org.jboss.naming.JNDIView
 [java] JNDIView Operations:
 [java] + java.lang.String list(boolean)
 [java] + void start()
 [java] + void stop()
 [java] + void destroy()
 [java] + void create()
 [java] + java.lang.String listXML()
 [java] JNDIView.list(true) output:
 [java] <h1>Ejb Module: file%/C%/tmp/JBoss/jboss-3.0.4/server/default/deploy/
ejb-management.jar</h1>
 [java] <h2>java:comp namespace of the MEJB bean:</h2>
 [java] <pre>
 [java] +- env (class: org.jnp.interfaces.NamingContext)
 [java] | +- Server-Name (class: java.lang.String)
76 JBoss Administration and Development

JMX
 [java] </pre>
 [java] <h1>Ejb Module: file%/C%/tmp/JBoss/jboss-3.0.4/server/default/deploy/
chap6-ex2.jar</h1>
 [java] <h2>java:comp namespace of the TextMDB bean:</h2>
 [java] <pre>
 [java] +- env (class: org.jnp.interfaces.NamingContext)
 [java] | +- jms (class: org.jnp.interfaces.NamingContext)
 [java] | | +- QCF[link -> ConnectionFactory] (class:
javax.naming.LinkRef)
 [java] </pre>
 [java] <h1>Ejb Module: file%/C%/tmp/JBoss/jboss-3.0.4/server/default/deploy/
jmx-ejb-adaptor.jar</h1>
 [java] <h2>java:comp namespace of the jmx/ejb/Adaptor bean:</h2>
 [java] <pre>
 [java] +- env (class: org.jnp.interfaces.NamingContext)
 [java] | +- Server-Name (class: java.lang.String)
 [java] </pre>
 [java] <h1>java: Namespace</h1>
 [java] <pre>
 [java] +- DefaultDS (class:
org.jboss.resource.adapter.jdbc.local.LocalDataSource)
 [java] +- XAConnectionFactory (class: org.jboss.mq.SpyXAConnectionFactory)
 [java] +- SecurityProxyFactory (class:
org.jboss.security.SubjectSecurityProxyFactory)
 [java] +- NoTransFS (class: org.jboss.chap7.ex1.ra.DirContextFactoryImpl)
 [java] +- DefaultJMSProvider (class: org.jboss.jms.jndi.JBossMQProvider)
 [java] +- CounterService (class: org.jboss.varia.counter.CounterService)
 [java] +- comp (class: javax.naming.Context)
 [java] +- JmsXA (class:
org.jboss.resource.adapter.jms.JmsConnectionFactoryImpl)
 [java] +- ConnectionFactory (class: org.jboss.mq.SpyConnectionFactory)
 [java] +- jaas (class: javax.naming.Context)
 [java] | +- JmsXARealm (class:
org.jboss.security.plugins.SecurityDomainContext)
 [java] | +- jbossmq (class:
org.jboss.security.plugins.SecurityDomainContext)
 [java] | +- http-invoker (class:
org.jboss.security.plugins.SecurityDomainContext)
 [java] +- timedCacheFactory (class: javax.naming.Context)
 [java] Failed to lookup: timedCacheFactory,
errmsg=org.jboss.util.TimedCachePolicy
 [java] +- TransactionPropagationContextExporter (class:
org.jboss.tm.TransactionPropagationContextFactory)
 [java] +- Mail (class: javax.mail.Session)
 [java] +- StdJMSPool (class: org.jboss.jms.asf.StdServerSessionPoolFactory)
 [java] +- TransactionPropagationContextImporter (class:
org.jboss.tm.TransactionPropagationContextImporter)
 [java] +- TransactionManager (class: org.jboss.tm.TxManager)
 [java] </pre>
 [java] <h1>Global JNDI Namespace</h1>
 [java] <pre>
 [java] +- XAConnectionFactory (class: org.jboss.mq.SpyXAConnectionFactory)
 [java] +- RMIXAConnectionFactory (class:
org.jboss.mq.SpyXAConnectionFactory)
 [java] +- EntityLockMonitor (class: org.jboss.monitor.EntityLockMonitor)
JBoss Administration and Development 77

The JBoss JMX Microkernel
 [java] +- UserTransactionSessionFactory (class:
org.jboss.tm.usertx.server.UserTransactionSessionFactoryImpl)
 [java] +- topic (class: org.jnp.interfaces.NamingContext)
 [java] | +- testDurableTopic (class: org.jboss.mq.SpyTopic)
 [java] | +- testTopic (class: org.jboss.mq.SpyTopic)
 [java] | +- securedTopic (class: org.jboss.mq.SpyTopic)
 [java] +- queue (class: org.jnp.interfaces.NamingContext)
 [java] | +- A (class: org.jboss.mq.SpyQueue)
 [java] | +- testQueue (class: org.jboss.mq.SpyQueue)
 [java] | +- ex (class: org.jboss.mq.SpyQueue)
 [java] | +- DLQ (class: org.jboss.mq.SpyQueue)
 [java] | +- D (class: org.jboss.mq.SpyQueue)
 [java] | +- C (class: org.jboss.mq.SpyQueue)
 [java] | +- B (class: org.jboss.mq.SpyQueue)
 [java] +- jmx:banshee2:rmi (class:
org.jboss.jmx.adaptor.rmi.RMIAdaptorImpl)
 [java] +- ConnectionFactory (class: org.jboss.mq.SpyConnectionFactory)
 [java] +- RMIConnectionFactory (class: org.jboss.mq.SpyConnectionFactory)
 [java] +- UserTransaction (class:
org.jboss.tm.usertx.client.ClientUserTransaction)
 [java] +- ejb (class: org.jnp.interfaces.NamingContext)
 [java] | +- mgmt (class: org.jnp.interfaces.NamingContext)
 [java] | | +- MEJB (proxy: $Proxy15 implements interface
javax.management.j2ee.ManagementHome,interface javax.ejb.Handle)
 [java] | +- jmx (class: org.jnp.interfaces.NamingContext)
 [java] | | +- ejb (class: org.jnp.interfaces.NamingContext)
 [java] | | | +- Adaptor (proxy: $Proxy21 implements interface
org.jboss.jmx.adaptor.interfaces.AdaptorHome,interface javax.ejb.Handle)
 [java] +- invokers (class: org.jnp.interfaces.NamingContext)
 [java] | +- banshee2 (class: org.jnp.interfaces.NamingContext)
 [java] | | +- pooled (class:
org.jboss.invocation.pooled.interfaces.PooledInvokerProxy)
 [java] | | +- jrmp (class:
org.jboss.invocation.jrmp.interfaces.JRMPInvokerProxy)
 [java] | | +- http (class:
org.jboss.invocation.http.interfaces.HttpInvokerProxy)
 [java] +- jmx (class: org.jnp.interfaces.NamingContext)
 [java] | +- rmi (class: org.jnp.interfaces.NamingContext)
 [java] | | +- RMIAdaptor (class:
org.jboss.jmx.adaptor.rmi.RMIAdaptorImpl)
 [java] +- UILXAConnectionFactory (class:
org.jboss.mq.SpyXAConnectionFactory)
 [java] +- UILConnectionFactory (class: org.jboss.mq.SpyConnectionFactory)
 [java] </pre>

BUILD SUCCESSFUL
Total time: 5 secondsJBoss and JMX
78 JBoss Administration and Development

JMX
Using JMX as a Microkernel

When JBoss starts up, one of the first steps performed is to create an MBean server instance
(javax.management.MBeanServer). The JMX MBean server in the Jboss architecture plays
the role of a microkernel aggregator component. All other manageable MBean components are
plugged into JBoss by registering with the MBean server. The kernel in that sense is only an aggrega-
tor, and not a source of actual functionality. The functionality is provided by MBeans, and in fact all
major JBoss components are manageable MBeans interconnected through the MBean server.

The Startup Process
In this section we will describe the JBoss server startup process. A summary of the steps that occur
during the JBoss server startup sequence is:

4. The run start script initiates the boot sequence using the
org.jboss.Main.main(String[]) method entry point.

5. The Main.main method creates a thread group named “jboss” and then starts a thread belonging
to this thread group. This thread invokes the Main.boot method.

6. The Main.boot method processes the Main.main arguments and then creates an
org.jboss.system.server.ServerLoader using the system properties along with any
additional properties specified as arguments.

7. The xml parser libraries, jboss-jmx.jar, concurrent.jar and extra libraries and classpaths given as
arguments are registered with the ServerLoader.

8. The JBoss server instance is created using the ServerLoader.load(ClassLoader)
method with the current thread context class loader passed in as the ClassLoader argument.
The returned server instance is an implementation of the org.jboss.sys-
tem.server.Server interface. The creation of the server instance entails:
1. Creating a java.net.URLClassLoader with the URLs of the jars and directories regis-

tered with the ServerLoader. This URLClassLoader uses the ClassLoader passed in
as its parent and it is pushed as the thread context class loader.

2. The class name of the implementation of the Server interface to use is determined by the
“jboss.server.type” property. This defaults to org.jboss.system.server.Server-
Impl.

3. The Server implementation class is loaded using the URLClassLoader created in step 6
and instantiated using its no-arg constructor. The thread context class loader present on entry
into the ServerLoader.load method is restored and the server instance is returned.

6. The server instance is intialized with the properties passed to the ServerLoader constructor
using the Server.init(Properties) method.

7. The server instance is then started using the Server.start() method. The default implemen-
tation performs the following steps:
1. Set the thread context class loader to the class loader used to load the ServerImpl class.
2. Create an MBeanServer under the “jboss” domain using the MBeanServerFac-
tory.createMBeanServer(String) method.

3. Register the ServerImpl and ServerConfigImpl MBeans with the MBeanServer.
JBoss Administration and Development 79

The JBoss JMX Microkernel
4. Initialize the unified class loader repository to contain all jars in the optional patch directory as
well as the server configuration file conf directory, for example, server/default/conf. For each
jar and directory an org.jboss.mx.loading.UnifiedClassLoader is created and
registered with the unified repository. One of these UnifiedClassLoader is then set as the
thread context class loader. This effectively makes all UnifiedClassLoaders available
through the thread context class loader.

5. The org.jboss.system.ServiceController MBean is created. The Service-
Controller manages the JBoss MBean services lifecycle. We will discuss the JBoss MBean
services notion in detail in “The Core JBoss MBeans” on page 94.

6. The org.jboss.deployment.MainDeployer is created and started. The MainDe-
ployer manages deployment dependencies and directing deployments to the correct deployer.

7. The org.jboss.deployment.JARDeployer is created and started. The JARDe-
ployer handles the deployment of jars that are simple library jars.

8. The org.jboss.deployment.SARDeployer is created and started. The SARDe-
ployer handles the deployment of JBoss MBean services.

9. The MainDeployer is invoked to deploy the services defined in the conf/jboss-service.xml of
the current server file set.

10. Restore the thread context class loader.

The JBoss server starts out as nothing more than a container for the JMX MBean server, and then
loads its personality based on the services defined in the jboss-service.xml MBean configuration file
from the named configuration set passed to the server on the command line. Because MBeans define
the functionality of a JBoss server instance, it is important to understand how the core JBoss MBeans
are written, and how you should integrate your existing services into JBoss using MBeans. This is the
topic of the next section.

JBoss MBean Services
As we have seen, JBoss relies on JMX to load in the MBean services that make up a given server
instance’s personality. All of the bundled functionality provided with the standard JBoss distribution
is based on MBeans. The best way to add services to the JBoss server is to write your own JMX
MBeans.

There are two classes of MBeans: those that are independent of JBoss services, and those that are
dependent on JBoss services. MBeans that are independent of JBoss services are the trivial case. They
can be written per the JMX specification and added to a JBoss server by adding an mbean tag to the
deploy/user-service.xml file. Writing an MBean that relies on a JBoss service such as naming requires
you to follow the JBoss service pattern. The JBoss MBean service pattern consists of a set of life
cycle operations that provide state change notifications. The notifications inform an MBean service
when it can create, start, stop, and destroy itself. The management of the MBean service lifecycle is
the responsibility of three JBoss MBeans, SARDeployer, ServiceConfigurator and Ser-
viceController.

THE SARDEPLOYER MBEAN
80 JBoss Administration and Development

JMX
JBoss manages the deployment of its MBean services via a custom MBean that loads an XML varia-
tion of the standard JMX MLet configuration file. This custom MBean is implemented in the
org.jboss.deployment.SARDeployer class. The SARDeployer MBean is loaded when
JBoss starts up as part of the bootstrap process. The SAR acronym stands for service archive.

The SARDeployer handles services archives. A service archive can be either a jar that ends with a
“.sar” suffix and contains a META-INF/jboss-service.xml descriptor, or a standalone XML descriptor
with a naming pattern that matches “*-service.xml”. The DTD for the service descriptor is given in
Figure 2-9.

FIGURE 2-9. the DTD for the MBean service descriptor parsed by the SARDeployer.

The elements of the DTD are:

• server/local-directory: This element specifies a path within the deployment archive that
should be copied to the server/<config>/db directory for use by the MBean. The path attribute is
the name of an entry within the deployment archive.
• server/classpath: This element specifies one or more external jars that should be deployed
with the MBean(s). The optional archives attribute specifies a comma separated list of the jar
names to load, or the “*” wild card to signify that all jars should be loaded. The wild card only
works with file URLs. The codebase attribute specifies the URL from which the jars specified in
the archive attribute should be loaded. If the codebase is a path rather than a URL string, the full
JBoss Administration and Development 81

The JBoss JMX Microkernel
URL is built by treating the codebase value as a path relative to the JBoss dist server/<config>
directory. The order of jars specified in the archives as well as the ordering across multiple class-
patah element is used as the classpath ordering of the jars. Therefore, if you have patches or
inconsistent versions of classes that require a certain ordering, use this feature to ensure the cor-
rect ordering. Both the codebase and archives attributes values may reference a system property
using a pattern “${x}” to refer to replacement of the “x” system property.
• server/mbean: This element specifies an MBean service. The required code attribute gives
the fully qualified name of the MBean implementation class. The required name attribute gives
the JMX ObjectName of the MBean.
• server/mbean/attribute: Each attribute element specifies a name/value pair of the attribute of
the MBean. The name of the attribute is given by the name attribute, and the attribute element
body gives the value. The body may be a text representation of the value, or an arbitrary element
and child elements if the type of the MBean attribute is org.w3c.dom.Element. For text val-
ues, the text is converted to the attribute type using the JavaBean java.beans.Proper-
tyEditor mechanism.
As of the 3.0.5 release, the text value of an attribute may reference a system property “x” by using
the pattern “${x}”. In this case the value of the attribute will be the result of System.get-
Property(“x”), or null if no such property exists.
• server/mbean/depends and server/mbean/depends-list: these elements specify a depen-
dency from the MBean using the element to the MBean(s) named by the depends or depeneds-list
elements. See “Specifying Service Dependencies” on page 87 for the details of specifying depen-
dencies.

When the SARDeployer is asked to deploy a service performs several steps. Figure 2-10 is a
sequence diagram that shows the init through start phases of a service.
82 JBoss Administration and Development

JMX
FIGURE 2-10. A sequence diagram highlighting the main activities performed by the
SARDeployer to start a JBoss MBean service.

In Figure 2-10 the following is illustrated:

1. Methods prefixed with 1.1 correspond to the load and parse of the XML service descriptor.
2. Methods prefixed with 1.2 correspond to processing each classpath element in the service descrip-

tor to create an independent deployment that makes the jar or directory available through a Uni-
fiedClassLoader registered with the unified loader repository.
JBoss Administration and Development 83

The JBoss JMX Microkernel
3. Methods prefixed with 1.3 correspond to processing each local-directory element in the service
descriptor. This does a copy of the SAR elements specified in the path attribute to the server/<con-
fig>/db directory.

4. Method 1.4. Process each deployable unit nested in the service a child deployment is created and
added to the service deployment info subdeployment list.

5. Method 2.1. The UnifiedClassLoader of the SAR deployment unit is registered with the
MBeanServer so that is can be used for loading of the SAR MBeans.

6. Method 2.2. For each mbean element in the descriptor, create an instance and initialize its
attributes with the values given in the service descriptor. This is done by calling the Service-
Controller.install method.

7. Method 2.4.1. For each MBean instance created, obtain its JMX ObjectName and ask the Ser-
viceController to handle the create step of the service lifecycle. The ServiceControl-
ler handles the dependencies of the MBean service. Only if the service’s dependencies are
satisfied is the service create method invoked.

8. Methods prefixed with 3.1 correspond to the start of each MBean service defined in the service
descriptor. For each MBean instance created, obtain its JMX ObjectName and ask the Ser-
viceController to handle the start step of the service lifecycle. The ServiceController
handles the dependencies of the MBean service. Only if the service’s dependencies are satisfied is
the service start method invoked.

THE SERVICE LIFE CYCLE INTERFACE

The JMX specification does not define any type of life cycle or dependency management for
MBeans. The JBoss ServiceController MBean introduces this notion. A JBoss MBean is an
extension of the JMX MBean in that an MBean is expected to decouple creation from the life cycle of
its service duties. This is necessary to implement any type of dependency management. For example,
if you are writing an MBean that needs a JNDI naming service to be able to function, your MBean
needs to be told when its dependencies are satisfied. This ranges from difficult to impossible to do if
the only life cycle event is the MBean constructor. Therefore, JBoss introduces a service life cycle
interface that describes the events a service can use to manage its behavior. Listing 2-14 shows the
org.jboss.system.Service interface:

LISTING 2-14. The org.jboss.system.Service interface

package org.jboss.system;
public interface Service
{
 public void create() throws Exception;
 public void start() throws Exception;
 public void stop();
 public void destroy();
}

The ServiceController MBean invokes the methods of the Service interface at the appro-
priate times of the service lifecycle. We’ll discuss the methods in more detail in the ServiceCon-
troller section.
84 JBoss Administration and Development

JMX
Note that there is a J2EE management specification request (JSR 77, http://jcp.org/jsr/
detail/77.jsp) that introduces a state management notion that includes a start/stop life-
cycle notion. When this standard is finalized JBoss will likely support an extension of
the JSR 77 based service lifecycle implementation.

THE SERVICECONTROLLER MBEAN

JBoss manages dependencies between MBeans via the org.jboss.system.ServiceCon-
troller custom MBean. The SARDeployer delegates to the ServiceController when ini-
tializing, creating, starting, stopping and destroying MBean services. Figure 2-11 shows a sequence
diagram that highlights interaction between the SARDeployer and ServiceController.
JBoss Administration and Development 85

The JBoss JMX Microkernel
FIGURE 2-11. The interaction between the SARDeployer and ServiceController to start a
service.
86 JBoss Administration and Development

JMX
The ServiceController MBean has four key methods for the management of the service lifecy-
cle: create, start, stop and destroy.

THE CREATE(OBJECTNAME) METHOD

The create(ObjectName) method is called whenever an event occurs that affects the named ser-
vices state. This could be triggered by an explicit invocation by the SARDeployer, a notification of
a new Class, or another service reaching its created state.

When a service’s create method is called, all services on which the service depends have also had
their create method invoked. This gives an MBean an opportunity to check that required MBeans
or resources exist. A service cannot utilize other MBean services at this point, as most JBoss MBean
services do not become fully functional until they have been started via their start method.
Because of this, service implementations often do not implement create in favor of just the start
method because that is the first point at which the service can be fully functional.

THE START(OBJECTNAME) METHOD

The start(ObjectName) method is called whenever an event occurs that affects the named ser-
vices state. This could be triggered by an explicit invocation by the SARDeployer, a notification of
a new Class, or another service reaching its started state.

When a service’s start method is called, all services on which the service depends have also had
their start method invoked. Receipt of a start method invocation signals a service to become
fully operational since all services upon which the service depends have been created and started.

THE STOP(OBJECTNAME) METHOD

The stop(ObjectName) method is called whenever an event occurs that affects the named ser-
vices state. This could be triggered by an explicit invocation by the SARDeployer, notification of a
Class removal, or a service on which other services depend reaching its stopped state.

THE DESTROY(OBJECTNAME) METHOD

The destroy(ObjectName) method is called whenever an event occurs that affects the named
services state. This could be triggered by an explicit invocation by the SARDeployer, notification
of a Class removal, or a service on which other services depend reaching its destroyed state.

Service implementations often do not implement destroy in favor of simply implementing the
stop method, or neither stop nor destroy if the service has no state or resources that need
cleanup.

SPECIFYING SERVICE DEPENDENCIES

To specify that an MBean service depends on other MBean services you need to declare the depen-
dencies in the mbean element of the service descriptor. This is done using the depends and depends-
list elements. One difference between the two elements relates to the optional-attribute-name attribute
usage. If you track the ObjectNames of dependencies using single valued attributes you should use
the depends element. If you track the ObjectNames of dependencies using java.util.List
compatible attributes you would use the depends-list element. If you only want to specify a depen-
JBoss Administration and Development 87

The JBoss JMX Microkernel
dency and don’t care to have the associated service ObjectName bound to an attribute of your
MBean then use whatever element is easiest. Listing 2-15 shows example service descriptor frag-
ments that illustrate the usage of the dependency related elements.

LISTING 2-15. Service descriptor fragments illustrating the usage of the depends and depends-
list elements.

 <mbean code="org.jboss.mq.server.jmx.Topic"
 name="jms.topic:service=Topic,name=testTopic">
 <!-- Declare a dependency on the “jboss.mq:service=DestinationManager” and
 bind this name to the DestinationManager attribute -->
 <depends optional-attribute-name="DestinationManager">
 jboss.mq:service=DestinationManager
 </depends>
 <!-- Declare a dependency on the “jboss.mq:service=SecurityManager” and
 bind this name to the SecurityManager attribute -->
 <depends optional-attribute-name="SecurityManager">
 jboss.mq:service=SecurityManager
 </depends>
 ...
 <!-- Declare a dependency on the “jboss.mq:service=CacheManager” without
 any binding of the name to an attribute-->
 <depends>jboss.mq:service=CacheManager</depends>
 </mbean>

 <mbean code="org.jboss.mq.server.jmx.TopicMgr"
 name="jboss.mq.destination:service=TopicMgr">
 <!-- Declare a dependency on the given topic destination mbeans and
 bind these names to the Topics attribute -->
 <depends-list optional-attribute-name="Topics">
 <depends-list-element>jms.topic:service=Topic,name=A</depends-list-element>
 <depends-list-element>jms.topic:service=Topic,name=B</depends-list-element>
 <depends-list-element>jms.topic:service=Topic,name=C</depends-list-element>
 </depends>
 </mbean>

Another difference between the depends and depends-list elements is that the value of the depends
element may be a complete MBean service configuration rather than just the ObjectName of the ser-
vice. Listing 2-16 shows an example from the hsqldb-service.xml descriptor. In this listing the
org.jboss.resource.connectionmanager.RARDeployment service configuration is
defined using a nested mbean element as the depends element value. This indicates that the
org.jboss.resource.connectionmanager.LocalTxConnectionManager MBean
depends on this service. The “jboss.jca:service=LocalTxDS,name=hsqldbDS” ObjectName will be
bound to the ManagedConnectionFactoryName attribute of the LocalTxConnectionManager
class.

LISTING 2-16. An example of using the depends element to specify the complete configuration of
a depended on service.

<mbean code="org.jboss.resource.connectionmanager.LocalTxConnectionManager"
88 JBoss Administration and Development

JMX
 name="jboss.jca:service=LocalTxCM,name=hsqldbDS">
 <depends optional-attribute-name="ManagedConnectionFactoryName">
 <!--embedded mbean-->
 <mbean code="org.jboss.resource.connectionmanager.RARDeployment"
 name="jboss.jca:service=LocalTxDS,name=hsqldbDS">
 <attribute name="JndiName">DefaultDS</attribute>
 <attribute name="ManagedConnectionFactoryProperties">
 <properties>
 <config-property name="ConnectionURL" type="java.lang.String">
 jdbc:hsqldb:hsql://localhost:1476
 </config-property>
 <config-property name="DriverClass" type="java.lang.String">
 org.hsqldb.jdbcDriver
 </config-property>
 <config-property name="UserName" type="java.lang.String">sa
 </config-property>
 <config-property name="Password" type="java.lang.String"/>
 </properties>
 </attribute>
 ...
 </mbean>
 ...
</mbean>

IDENTITIFYING UNSATISFIED DEPENDENCIES

The ServiceController MBean supports two operations that help with debugging what MBeans are
not running due to unsatisfied dependencies. The first operation is listIncompletelyDe-
ployed. This returns a java.util.List of org.jboss.system.ServiceContext
objects for the MBean services that are not in the RUNNING state.

The second operation is listWaitingMBeans. This operation returns a java.util.List of
the JMX ObjectNames of MBean services that cannot be deployed because the class specified by
the code attribute is not available.

Writing A JBoss MBean Service

Writing a custom MBean service that integrates into the JBoss server requires the use of the
org.jboss.system.Service interface pattern if the custom service is dependent on other ser-
vices. When a custom MBean depends on other MBean services you cannot perform any service
dependent initialization in any of the javax.management.MBeanRegistration interface
methods since JMX has no dependency notion. Instead, you must manage dependency state using the
Service interface create and/or start methods. You can do this using any one of the following
approaches:

• Add any of the Service methods that you want called on your MBean to your MBean inter-
face. This allows your MBean implementation to avoid dependencies on JBoss specific inter-
faces.
• Have your MBean interface extend the org.jboss.system.Service interface.
JBoss Administration and Development 89

The JBoss JMX Microkernel
• Have your MBean interface extend the org.jboss.system.ServiceMBean interface.
This is a subinterface of org.jboss.system.Service that adds String getName(),
int getState(), and String getStateString() methods.

Which approach you choose depends on if you want to be associated with JBoss specific code. If you
don't, then you would use the first approach. If you don't care about dependencies on JBoss classes,
the simplest approach is to have your MBean interface extend from org.jboss.system.Ser-
viceMBean and your MBean implementation class extend from the abstract org.jboss.sys-
tem.ServiceMBeanSupport class. This class implements the
org.jboss.system.ServiceMBean interface. ServiceMBeanSupport provides imple-
mentations of the create, start, stop, and destroy methods that integrate logging and JBoss
service state management tracking. Each method delegates any subclass specific work to create-
Service, startService, stopService, and destroyService methods respectively.
When subclassing ServiceMBeanSupport, you would override one or more of the create-
Service, startService, stopService, and destroyService methods as required

A CUSTOM MBEAN EXAMPLE

This section develops a simple MBean that binds a HashMap into the JBoss JNDI namespace at a
location determined by its JndiName attribute to demonstrate what is required to create a custom
MBean. Because the MBean uses JNDI, it depends on the JBoss naming service MBean and must use
the JBoss MBean service pattern to be notified when the naming service is available.

The MBean you develop is called JNDIMap. Version one of the JNDIMapMBean interface and
JNDIMap implementation class, which is based on the service interface method pattern, is given in
Listing 2-17. This version of the interface makes use of the first approach in that it incorporates the
Service interface methods needed to start up correctly, but does not do so by using a JBoss-specific
interface. The interface includes the Service.start method, which will be informed when all
required services have been started, and the stop method, which will clean up the service.

LISTING 2-17. JNDIMapMBean interface and implementation based on the service interface
method pattern

package org.jboss.chap2.ex1;

// The JNDIMap MBean interface
import javax.naming.NamingException;

public interface JNDIMapMBean
{
 public String getJndiName();
 public void setJndiName(String jndiName) throws NamingException;
 public void start() throws Exception;
 public void stop() throws Exception;
}

package org.jboss.chap2.ex1;
// The JNDIMap MBean implementation
90 JBoss Administration and Development

JMX
import java.util.HashMap;
import javax.naming.InitialContext;
import javax.naming.Name;
import javax.naming.NamingException;
import org.jboss.naming.NonSerializableFactory;

public class JNDIMap implements JNDIMapMBean
{
 private String jndiName;
 private HashMap contextMap = new HashMap();
 private boolean started;

 public String getJndiName()
 {
 return jndiName;
 }
 public void setJndiName(String jndiName) throws NamingException
 {
 String oldName = this.jndiName;
 this.jndiName = jndiName;
 if(started)
 {
 unbind(oldName);
 try
 {
 rebind();
 }
 catch(Exception e)
 {
 NamingException ne = new NamingException("Failed to update jndiName");
 ne.setRootCause(e);
 throw ne;
 }
 }
 }
 public void start() throws Exception
 {
 started = true;
 rebind();
 }

 public void stop()
 {
 started = false;
 unbind(jndiName);
 }

 private void rebind() throws NamingException
 {
 InitialContext rootCtx = new InitialContext();
 Name fullName = rootCtx.getNameParser("").parse(jndiName);
 System.out.println("fullName="+fullName);
 NonSerializableFactory.rebind(fullName, contextMap, true);
 }
 private void unbind(String jndiName)
JBoss Administration and Development 91

The JBoss JMX Microkernel
 {
 try
 {
 InitialContext rootCtx = new InitialContext();
 rootCtx.unbind(jndiName);
 NonSerializableFactory.unbind(jndiName);
 }
 catch(NamingException e)
 {
 e.printStackTrace();
 }
 }
}

Version two of the JNDIMapMBean interface and JNDIMap implementation class, which is based
on the ServiceMBean interface and ServiceMBeanSupport class, is given in Listing 2-18. In
this version, the implementation class extends the ServiceMBeanSupport class and overrides
the startService method and the stopService method. JNDIMapMBean also implements
the abstract getName to return a descriptive name for the MBean. The JNDIMapMBean interface
extends the org.jboss.system.ServiceMBean interface and only declares the setter and get-
ter methods for the JndiName attribute because it inherits the Service life cycle methods from
ServiceMBean. This is the third approach mentioned at the start of the "Writing JBoss MBean Ser-
vices" section. The implementation differences between Listing 2-17 and Listing 2-18 are highlighted
in bold in Listing 2-18.

LISTING 2-18. JNDIMap MBean interface and implementation based on the ServiceMBean
interface and ServiceMBeanSupport class

package org.jboss.chap2.ex2;
// The JNDIMap MBean interface
import javax.naming.NamingException;

public interface JNDIMapMBean extends org.jboss.system.ServiceMBean
{
 public String getJndiName();
 public void setJndiName(String jndiName) throws NamingException;
}

package org.jboss.chap2.ex2;
// The JNDIMap MBean implementation
import java.util.HashMap;
import javax.naming.InitialContext;
import javax.naming.Name;
import javax.naming.NamingException;
import org.jboss.naming.NonSerializableFactory;

public class JNDIMap extends org.jboss.system.ServiceMBeanSupport
 implements JNDIMapMBean
{
 private String jndiName;
 private HashMap contextMap = new HashMap();
92 JBoss Administration and Development

JMX
 public String getJndiName()
 {
 return jndiName;
 }
 public void setJndiName(String jndiName) throws NamingException
 {
 String oldName = this.jndiName;
 this.jndiName = jndiName;
 if(super.getState() == STARTED)
 {
 unbind(oldName);
 try
 {
 rebind();
 }
 catch(Exception e)
 {
 NamingException ne = new NamingException("Failed to update jndiName");
 ne.setRootCause(e);
 throw ne;
 }
 }
 }

 public void startService() throws Exception
 {
 rebind();
 }
 public void stopService()
 {
 unbind(jndiName);
 }

 private void rebind() throws NamingException
 {
 InitialContext rootCtx = new InitialContext();
 Name fullName = rootCtx.getNameParser("").parse(jndiName);
 log.info("fullName="+fullName);
 NonSerializableFactory.rebind(fullName, contextMap, true);
 }
 private void unbind(String jndiName)
 {
 try
 {
 InitialContext rootCtx = new InitialContext();
 rootCtx.unbind(jndiName);
 NonSerializableFactory.unbind(jndiName);
 }
 catch(NamingException e)
 {
 log.error("Failed to unbind map", e);
 }
 }
}

JBoss Administration and Development 93

The JBoss JMX Microkernel
The source code for these MBeans along with the service descriptors is located in the examples/src/
main/org/jboss/chap2/{ex1,ex2} directories.

The example 1 service descriptor is given in Listing 2-19 along with a sample client usage code frag-
ment. The JNDIMap MBean binds a HashMap object under the "inmemory/maps/MapTest" JNDI
name and the client code fragment demonstrates retrieving the HashMap object from the "inmemory/
maps/MapTest" location.

LISTING 2-19. The example 1 JNDIMap MBean service descriptor and a client usage code
fragment.

<!-- The SAR META-INF/jboss-service.xml descriptor -->
<server>
 <mbean code="org.jboss.chap2.ex1.JNDIMap" name="chap2.ex1:service=JNDIMap">
 <attribute name="JndiName">inmemory/maps/MapTest</attribute>
 <depends>jboss:service=Naming</depends>
 </mbean>
</server>

// Sample lookup code
InitialContext ctx = new InitialContext();
HashMap map = (HashMap) ctx.lookup("inmemory/maps/MapTest");

The Core JBoss MBeans
Now that you have seen how to write MBean services, we will overview the JBoss core MBeans
defined in the server/default/conf/jboss-service.xml file. Listing 2-20 shows the default jboss-ser-
vice.xml configuration file shipped with the standard JBoss server distribution. The listing shows
only those entries that are not commented out. Here we will only cover the core MBeans that are not
covered elsewhere. The other core MBeans will be discussed in their respective chapters.

LISTING 2-20. The default jboss-service.xml configuration file from the standard JBoss
distribution

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE server>
<!-- $Id: jboss-service.xml,v 1.44.2.16 2002/10/08 21:30:29 patriot1burke Exp $ -->

<!-- === -->
<!-- -->
<!-- JBoss Server Configuration -->
<!-- -->
<!-- === -->

<server>

 <!-- Load all jars from the JBOSS_DIST/server/<config>/lib directory. This
 can be restricted to specific jars by specifying them in the archives
 attribute.
 -->
 <classpath codebase="lib" archives="*"/>
94 JBoss Administration and Development

JMX
 <!-- == -->
 <!-- PropertyEditors and System Properties -->
 <!-- == -->
 <mbean code="org.jboss.varia.property.PropertyEditorManagerService"
 name="jboss:type=Service,name=BootstrapEditors">
 <!-- Preload all custom editors for VMs that don't use the thread
 context class loader when searching for PropertyEditors
 -->
 <attribute name="BootstrapEditors">
 java.math.BigDecimal=org.jboss.util.propertyeditor.BigDecimalEditor
 java.lang.Boolean=org.jboss.util.propertyeditor.BooleanEditor
 java.lang.Class=org.jboss.util.propertyeditor.ClassEditor
 java.util.Date=org.jboss.util.propertyeditor.DateEditor
 java.io.File=org.jboss.util.propertyeditor.FileEditor
 java.net.InetAddress=org.jboss.util.propertyeditor.InetAddressEditor
 java.lang.Integer=org.jboss.util.propertyeditor.IntegerEditor
 javax.management.ObjectName=org.jboss.util.propertyeditor.ObjectNameEditor
 java.util.Properties=org.jboss.util.propertyeditor.PropertiesEditor
 [Ljava.lang.String;=org.jboss.util.propertyeditor.StringArrayEditor
 java.net.URL=org.jboss.util.propertyeditor.URLEditor
 </attribute>
 </mbean>
 <mbean code="org.jboss.varia.property.SystemPropertiesService"
 name="jboss:type=Service,name=SystemProperties">
 <!-- The invokerServletPath property gives the public URL to the
 org.jboss.invocation.http.servlet.InvokerServlet used by the
 HTTP proxy for RMI/HTTP. This is only needed if the http-invoker.sar
 is deployed.
 -->
 <attribute name="Properties">
 invokerServletPath=http://localhost:8080/invoker/JMXInvokerServlet
 </attribute>
 <!-- Load properties from each of the given comma seperated URLs
 <attribute name="URLList">
 http://somehost/some-location.properties,
 ./conf/somelocal.properties
 </attribute>
 -->
 </mbean>

 <!-- == -->
 <!-- Log4j Initialization -->
 <!-- == -->
 <mbean code="org.jboss.logging.Log4jService"
 name="jboss.system:type=Log4jService,service=Logging">
 <attribute name="ConfigurationURL">resource:log4j.xml</attribute>
 </mbean>

 <!-- == -->
 <!-- Class Loading -->
 <!-- == -->

 <mbean code="org.jboss.web.WebService"
 name="jboss:service=Webserver">

 <attribute name="Port">8083</attribute>
 <!-- Should resources and non-EJB classes be downloadable -->
 <attribute name="DownloadServerClasses">true</attribute>
 </mbean>
JBoss Administration and Development 95

The JBoss JMX Microkernel
 <!-- == -->
 <!-- JSR-77 Single JBoss Server Management Domain -->
 <!-- == -->

 <mbean code="org.jboss.management.j2ee.SingleJBossServerManagement"
 name="jboss.management.single:j2eeType=J2EEDomain,name=Manager" >

 </mbean>

 <!-- == -->
 <!-- JNDI -->
 <!-- == -->

 <mbean code="org.jboss.naming.NamingService"
 name="jboss:service=Naming">

 <!-- The listening port for the bootstrap JNP service. Set this to -1
 to run the NamingService without the JNP invoker listening port.
 -->
 <attribute name="Port">1099</attribute>
 </mbean>
 <mbean code="org.jboss.naming.JNDIView"

 name="jboss:service=JNDIView"/>

 <!-- == -->
 <!-- Security -->
 <!-- == -->

 <mbean code="org.jboss.security.plugins.SecurityConfig"
 name="jboss.security:name=SecurityConfig">

 <attribute name="LoginConfig">jboss.security:service=XMLLoginConfig</attribute>
 </mbean>
 <mbean code="org.jboss.security.auth.login.XMLLoginConfig"

 name="jboss.security:service=XMLLoginConfig">
 <attribute name="ConfigResource">login-config.xml</attribute>
 </mbean>

 <!-- JAAS security manager and realm mapping -->
 <mbean code="org.jboss.security.plugins.JaasSecurityManagerService"

 name="jboss.security:service=JaasSecurityManager">
 <attribute name="SecurityManagerClassName">
 org.jboss.security.plugins.JaasSecurityManager
 </attribute>
 </mbean>

 <!-- == -->
 <!-- Transactions -->
 <!-- == -->

 <mbean code="org.jboss.tm.XidFactory"
 name="jboss:service=XidFactory">

 </mbean>

 <mbean code="org.jboss.tm.TransactionManagerService"

 name="jboss:service=TransactionManager">
 <attribute name="TransactionTimeout">300</attribute>
 <depends optional-attribute-name="XidFactory">jboss:service=XidFactory</depends>
 </mbean>

 <mbean code="org.jboss.tm.usertx.server.ClientUserTransactionService"
 name="jboss:service=ClientUserTransaction">

 </mbean>
96 JBoss Administration and Development

JMX
 <!-- The CachedConnectionManager is used partly to relay started UserTransactions to
 open connections so they may be enrolled in the new tx-->
 <mbean code="org.jboss.resource.connectionmanager.CachedConnectionManager"
name="jboss.jca:service=CachedConnectionManager">
 </mbean>

 <!-- == -->
 <!-- The deployers... -->
 <!-- == -->

 <!-- Main Deployer and SARDeployer are provided by main -->

 <!-- EJB deployer, remove to disable EJB behavior-->
 <mbean code="org.jboss.ejb.EJBDeployer" name="jboss.ejb:service=EJBDeployer">
 <attribute name="VerifyDeployments">true</attribute>
 <attribute name="ValidateDTDs">false</attribute>
 <attribute name="MetricsEnabled">false</attribute>
 <attribute name="VerifierVerbose">true</attribute>
 <!-- Add a dependency on the JMS provider(jms-service.xml) for MDBs. If
 you are not using MDBs and JMS remove these.
 -->
 <depends>jboss.mq:service=JMSProviderLoader,name=JBossMQProvider</depends>
 <depends>jboss.mq:service=ServerSessionPoolMBean,name=StdJMSPool</depends>
 </mbean>

 <!-- EAR deployer -->
 <mbean code="org.jboss.deployment.EARDeployer" name="jboss.j2ee:service=EARDeployer">
 </mbean>

 <!-- WAR Deployer is provided by tomcat or jetty -->
 <!-- RAR Deployer is provided by the rar.sar package -->

 <!-- == -->
 <!-- Invokers to the JMX node -->
 <!-- == -->

 <!-- RMI/JRMP invoker -->
 <mbean code="org.jboss.invocation.jrmp.server.JRMPInvoker"
 name="jboss:service=invoker,type=jrmp">
 <attribute name="RMIObjectPort">4444</attribute>
 <!--
 <attribute name="RMIClientSocketFactory">custom</attribute>
 <attribute name="RMIServerSocketFactory">custom</attribute>
 <attribute name="RMIServerSocketAddr">custom</attribute>
 -->
 </mbean>

 <mbean code="org.jboss.invocation.pooled.server.PooledInvoker"
 name="jboss:service=invoker,type=pooled">
 </mbean>

 <mbean code="org.jboss.invocation.local.LocalInvoker"
 name="jboss:service=invoker,type=local">
 </mbean>

 <!-- == -->
 <!-- Deployment Scanning -->
JBoss Administration and Development 97

The JBoss JMX Microkernel
 <!-- == -->

 <!-- An mbean for hot deployment/undeployment of archives.
 -->
 <mbean code="org.jboss.deployment.scanner.URLDeploymentScanner"

 name="jboss.deployment:type=DeploymentScanner,flavor=URL">

 <depends optional-attribute-name="Deployer">jboss.system:service=MainDeployer</
depends>

 <!-- The URLComparator can be used to specify a deployment ordering
 for deployments found in a scanned directory. The class specified
 must be an implementation of java.util.Comparator, it must be able
 to compare two URL objects, and it must have a no-arg constructor.
 Two deployment comparators are shipped with JBoss:
 - org.jboss.deployment.DeploymentSorter
 Sorts by file extension, as follows:
 "sar", "service.xml", "rar", "jar", "war", "wsr", "ear", "zip",
 "*"
 - org.jboss.deployment.scanner.PrefixDeploymentSorter
 If the name portion of the url begins with 1 or more digits, those
 digits are converted to an int (ignoring leading zeroes), and
 files are deployed in that order. Files that do not start with
 any digits will be deployed first, and they will be sorted by
 extension as above with DeploymentSorter.
 -->
 <attribute name="URLComparator">org.jboss.deployment.DeploymentSorter</attribute>
 <!--
 <attribute name="URLComparator">org.jboss.deployment.scanner.PrefixDeploymentSorter</
attribute>
 -->

 <!-- The Filter specifies a java.io.FileFilter for scanned
 directories. Any file not accepted by this filter will not be
 deployed. The org.jboss.deployment.scanner.DeploymentFilter
 rejects the following patterns:
 "#*", "%*", ",*", ".*", "_$*", "*#", "*$", "*%", "*.BAK",
 "*.old", "*.orig", "*.rej", "*.bak", "*,v", "*~", ".make.state",
 ".nse_depinfo", "CVS", "CVS.admin", "RCS", "RCSLOG", "SCCS",
 "TAGS", "core", "tags"
 -->
 <attribute name="Filter">org.jboss.deployment.scanner.DeploymentFilter</attribute>

 <attribute name="ScanPeriod">5000</attribute>

 <!-- URLs are comma seperated and unprefixed arguments are considered
 file URLs and resolve relative to server home(JBOSS_DIST/server/default)
 unless the given path is absolute. Any referenced directories cannot
 be unpackaged archives, use the parent directory of the unpacked
 archive.
 -->
 <attribute name="URLs">
 ./deploy
 </attribute>
 </mbean>

</server>

ORG.JBOSS.LOGGING.LOG4JSERVICE
98 JBoss Administration and Development

JMX
The Log4jService MBean configures the Apache log4j system. JBoss uses the log4j framework as its
internal logging API.

• ConfigurationURL: The URL for the log4j configuration file. This can refer to either a XML
document parsed by the org.apache.log4j.xml.DOMConfigurator or a Java properties file parsed
by the org.apache.log4j.PropertyConfigurator. The type of the file is determined by the URL con-
tent type, or if this is null, the file extension. The default setting of “resource:log4j.xml” refers to
the conf/log4j.xml file of the active server configuration file set.
• RefreshPeriod: The time in seconds between checks for changes in the log4 configuration
specified by the ConfigurationURL attribute. The default value is 60 seconds.

ORG.JBOSS.WEB.WEBSERVICE

The WebService MBean provides dynamic class loading for RMI access to the server EJBs. The con-
figurable attributes for the WebService are as follows:

• Port: the WebService listening port number. A port of 0 will use any available port.
• Host: Set the name of the public interface to use for the host portion of the RMI codebase
URL.
• BindAddress: the specific address the WebService listens on. This can be used on a multi-
homed host for a java.net.ServerSocket that will only accept connect requests to one of its
addresses.
• Backlog: The maximum queue length for incoming connection indications (a request to con-
nect) is set to the backlog parameter. If a connection indication arrives when the queue is full, the
connection is refused.
• DownloadServerClasses: A flag indicating if the server should attempt to download classes
from thread context class loader when a request arrives that does not have a class loader key pre-
fix.

ORG.JBOSS.DEPLOYMENT.SCANNER.URLDEPLOYMENTSCANNER
The URLDeploymentScanner MBean service provides the JBoss hot deployment capability. This ser-
vice watches one or more URLs for deployable archives and deploys the archives as they appear or
change. It also undeploys previously deployed applications if the archive from which the application
was deployed is removed. The configurable attributes include:

• URLs: A comma separated list of URL strings for the locations that should be watched for
changes. Strings that do not correspond to valid URLs are treated as file paths. Relative file paths
are resolved against the server config file set rootm for example, JBOSS_DIST/server/default for
the default config file set. If a URL represents a file then the file is deployed and watched for sub-
sequent updates or removal. If a URL represents a directory then the contents of the directory are
treated as deployable archives and watched for updates or removal.

The default value for the URLs attribute is “./deploy” which means that any SARs, EARs, JARs,
WARs, RARs, etc. dropped into the server/<name>/deploy directory will be automatically
deployed and watched for updates.

A directory referred to in the URLs attribute cannot be an unpacked archive. To add an unpacked
JBoss Administration and Development 99

The JBoss JMX Microkernel
archive to the watch list you need to refer to its parent directory rather than the root directory of
the unpacked archive.
• ScanPeriod: The time in milliseconds between runs of the scanner thread. The default is 5000
(5 seconds).
• URLComparator: The class name of a java.util.Comparator implementation used to specify
a deployment ordering for deployments found in a scanned directory. The implementation must
be able to compare two java.net.URL objects passed to its compare method. The default setting is
the org.jboss.deployment.DeploymentSorter class which orders based on the deployment URL
suffix. The ordering of suffixes is: "sar", "service.xml", "rar", "jar", "war", "wsr", "ear", "zip".

An an alternate implementation is the org.jboss.deployment.scanner.PrefixDeploymentSorter
class. This orders the URLs based on numeric prefixes. The prefix digits are converted to an int
(ignoring leading zeroes), smaller prefixes are ordered ahead of larger numbers. Deployments that
do not start with any digits will be deployed after all numbered deployments. Deployments with
the same prefix value are further sorted by the DeploymentSorter logic.
• Filter: The class name of a java.io.FileFilter implementation that is used to filter the contents
of scanned directories. Any file not accepted by this filter will not be deployed. The default is
org.jboss.deployment.scanner.DeploymentFilter which is an implementation that rejects the fol-
lowing patterns:
• "#*", "%*", ",*", ".*", "_$*", "*#", "*$", "*%", "*.BAK", "*.old", "*.orig", "*.rej", "*.bak",
"*,v", "*~", ".make.state", ".nse_depinfo", "CVS", "CVS.admin", "RCS", "RCSLOG", "SCCS",
"TAGS", "core", "tags"
• Deployer: The JMX ObjectName string of the MBean that implements the org.jboss.deploy-
ment.Deployer interface operations. The default setting is to use the MainDeployer created by the
bootstrap startup process.

Deployment Ordering and Dependencies
We have seen how to manage dependencies using the service descriptor depends and depends-list
tags. The deployment ordering supported by the deployment scanners provides a coarse-grained
dependency management in that there is an order to deployments. If dependencies are consistent with
the deployment packages then this is a simpler mechanism than having to enumerate the explicit
MBean-MBean dependencies. By writing your own filters you can change the coarse grained order-
ing performed by the deployment scanner.

When a component archive is deployed, its nested deployment units are processed in a depth first
ordering. Structuring of components into an archive hierarchy is yet another way to mange deploy-
ment ordering.

Typically you will need to explicitly state your MBean dependencies because your packaging struc-
ture does not happen to resolve the dependencies. Let’s consider an example component deployment
that consists of an MBean that uses an EJB. Listing 2-21 shows the example EAR structure.

LISTING 2-21. An example ear with an MBean that depends on an EJB
100 JBoss Administration and Development

JMX
output/chap2/chap2-ex3.ear
+- META-INF/MANIFEST.MF
+- META-INF/jboss-app.xml
+- chap2-ex3.jar (archive) [EJB jar]
| +- META-INF/MANIFEST.MF
| +- META-INF/ejb-jar.xml
| +- org/jboss/chap2/ex3/EchoBean.class
| +- org/jboss/chap2/ex3/EchoLocal.class
| +- org/jboss/chap2/ex3/EchoLocalHome.class
+- chap2-ex3.sar (archive) [MBean sar]
| +- META-INF/MANIFEST.MF
| +- META-INF/jboss-service.xml
| +- org/jboss/chap2/ex3/EjbMBeanAdaptor.class
+- META-INF/application.xml

The EAR contains a chap2-ex3.jar and chap2-ex3.sar. The chap2-ex3.jar is the EJB archive and the
chap2-ex3.sar is the MBean service archive. We have implemented the service as a DynamicMBean
to provide an illustration of their use. Listing 2-22 shows the code for the EjbMBeanAdaptor
MBean service.

LISTING 2-22. A DynamicMBean service that uses and EJB

30 package org.jboss.chap2.ex3;
31
32 import java.lang.reflect.Method;
33 import javax.ejb.CreateException;
34 import javax.management.Attribute;
35 import javax.management.AttributeList;
36 import javax.management.AttributeNotFoundException;
37 import javax.management.DynamicMBean;
38 import javax.management.InvalidAttributeValueException;
39 import javax.management.JMRuntimeException;
40 import javax.management.MBeanAttributeInfo;
41 import javax.management.MBeanConstructorInfo;
42 import javax.management.MBeanInfo;
43 import javax.management.MBeanNotificationInfo;
44 import javax.management.MBeanOperationInfo;
45 import javax.management.MBeanException;
46 import javax.management.MBeanServer;
47 import javax.management.ObjectName;
48 import javax.management.ReflectionException;
49 import javax.naming.InitialContext;
50 import javax.naming.NamingException;
51
52 import org.jboss.system.ServiceMBeanSupport;
53
54 /** An example of a DynamicMBean that exposes select attributes and operations
55 of an EJB as an MBean.
56
57 @author Scott.Stark@jboss.org
58 @version $Revision: 1.1 $
59 */
60 public class EjbMBeanAdaptor extends ServiceMBeanSupport
JBoss Administration and Development 101

The JBoss JMX Microkernel
61 implements DynamicMBean
62 {
63 private String helloPrefix;
64 private String ejbJndiName;
65 private EchoLocalHome home;
66
67 /** These are the mbean attributes we expose
68 */
69 private MBeanAttributeInfo[] attributes = {
70 new MBeanAttributeInfo("HelloPrefix", "java.lang.String",
71 "The prefix message to append to the session echo reply",
72 true, // isReadable
73 true, // isWritable
74 false), // isIs
75 new MBeanAttributeInfo("EjbJndiName", "java.lang.String",
76 "The JNDI name of the session bean local home",
77 true, // isReadable
78 true, // isWritable
79 false) // isIs
80 };
81 /** These are the mbean operations we expose
82 */
83 private MBeanOperationInfo[] operations;
84
85
86 /** We override this method to setup our echo operation info. It could
87 also be done in a ctor.
88 */
89 public ObjectName preRegister(MBeanServer server, ObjectName name)
90 throws Exception
91 {
92 log.info("preRegister notification seen");
93
94 operations = new MBeanOperationInfo[5];
95
96 Class thisClass = getClass();
97 Class[] parameterTypes = {String.class};
98 Method echoMethod = thisClass.getMethod("echo", parameterTypes);
99 String desc = "The echo op invokes the session bean echo method and"
100 + " returns its value prefixed with the helloPrefix attribute value";
101 operations[0] = new MBeanOperationInfo(desc, echoMethod);
102
103 // Add the Service interface operations from our super class
104 parameterTypes = new Class[0];
105 Method createMethod = thisClass.getMethod("create", parameterTypes);
106 operations[1] = new MBeanOperationInfo("The JBoss Service.create",
createMethod);
107 Method startMethod = thisClass.getMethod("start", parameterTypes);
108 operations[2] = new MBeanOperationInfo("The JBoss Service.start",
startMethod);
109 Method stopMethod = thisClass.getMethod("stop", parameterTypes);
110 operations[3] = new MBeanOperationInfo("The JBoss Service.stop",
startMethod);
111 Method destroyMethod = thisClass.getMethod("destroy", parameterTypes);
102 JBoss Administration and Development

JMX
112 operations[4] = new MBeanOperationInfo("The JBoss Service.destroy",
startMethod);
113 return name;
114 }
115
116
117 // --- Begin ServiceMBeanSupport overides
118 protected void createService() throws Exception
119 {
120 log.info("Notified of create state");
121 }
122 protected void startService() throws Exception
123 {
124 log.info("Notified of start state");
125 InitialContext ctx = new InitialContext();
126 home = (EchoLocalHome) ctx.lookup(ejbJndiName);
127 }
128 protected void stopService()
129 {
130 log.info("Notified of stop state");
131 }
132 // --- End ServiceMBeanSupport overides
133
134 public String getHelloPrefix()
135 {
136 return helloPrefix;
137 }
138 public void setHelloPrefix(String helloPrefix)
139 {
140 this.helloPrefix = helloPrefix;
141 }
142
143 public String getEjbJndiName()
144 {
145 return ejbJndiName;
146 }
147 public void setEjbJndiName(String ejbJndiName)
148 {
149 this.ejbJndiName = ejbJndiName;
150 }
151
152 public String echo(String arg)
153 throws CreateException, NamingException
154 {
155 log.debug("Lookup EchoLocalHome@"+ejbJndiName);
156 EchoLocal bean = home.create();
157 String echo = helloPrefix + bean.echo(arg);
158 return echo;
159 }
160
161 // --- Begin DynamicMBean interface methods
162 /** Returns the management interface that describes this dynamic resource.
163 * It is the responsibility of the implementation to make sure the
164 * description is accurate.
165 *
JBoss Administration and Development 103

The JBoss JMX Microkernel
166 * @return the management interface descriptor.
167 */
168 public MBeanInfo getMBeanInfo()
169 {
170 String classname = getClass().getName();
171 String description = "This is an MBean that uses a session bean in the"
172 + " implementation of its echo operation.";
173 MBeanConstructorInfo[] constructors = null;
174 MBeanNotificationInfo[] notifications = null;
175 MBeanInfo mbeanInfo = new MBeanInfo(classname, description, attributes,
176 constructors, operations, notifications);
177 // Log when this is called so we know when in the lifecycle this is used
178 Throwable trace = new Throwable("getMBeanInfo trace");
179 log.info("Don't panic, just a stack trace", trace);
180 return mbeanInfo;
181 }
182
183 /** Returns the value of the attribute with the name matching the
184 * passed string.
185 *
186 * @param attribute the name of the attribute.
187 * @return the value of the attribute.
188 * @exception AttributeNotFoundException when there is no such attribute.
189 * @exception MBeanException wraps any error thrown by the resource when
190 * getting the attribute.
191 * @exception ReflectionException wraps any error invoking the resource.
192 */
193 public Object getAttribute(String attribute)
194 throws AttributeNotFoundException, MBeanException, ReflectionException
195 {
196 Object value = null;
197 if(attribute.equals("HelloPrefix"))
198 value = getHelloPrefix();
199 else if(attribute.equals("EjbJndiName"))
200 value = getEjbJndiName();
201 else
202 throw new AttributeNotFoundException("Unknown
attribute("+attribute+") requested");
203 return value;
204 }
205
206 /** Returns the values of the attributes with names matching the
207 * passed string array.
208 *
209 * @param attributes the names of the attribute.
210 * @return an {@link AttributeList AttributeList} of name and value pairs.
211 */
212 public AttributeList getAttributes(String[] attributes)
213 {
214 AttributeList values = new AttributeList();
215 for(int a = 0; a < attributes.length; a ++)
216 {
217 String name = attributes[a];
218 try
219 {
104 JBoss Administration and Development

JMX
220 Object value = getAttribute(name);
221 Attribute attr = new Attribute(name, value);
222 values.add(attr);
223 }
224 catch(Exception e)
225 {
226 log.error("Failed to find attribute: "+name, e);
227 }
228 }
229 return values;
230 }
231
232 /** Sets the value of an attribute. The attribute and new value are
233 * passed in the name value pair {@link Attribute Attribute}.
234 *
235 * @see javax.management.Attribute
236 *
237 * @param attribute the name and new value of the attribute.
238 * @exception AttributeNotFoundException when there is no such attribute.
239 * @exception InvalidAttributeValueException when the new value cannot be
240 * converted to the type of the attribute.
241 * @exception MBeanException wraps any error thrown by the resource when
242 * setting the new value.
243 * @exception ReflectionException wraps any error invoking the resource.
244 */
245 public void setAttribute(Attribute attribute)
246 throws AttributeNotFoundException, InvalidAttributeValueException,
247 MBeanException, ReflectionException
248 {
249 String name = attribute.getName();
250 if(name.equals("HelloPrefix"))
251 {
252 String value = attribute.getValue().toString();
253 setHelloPrefix(value);
254 }
255 else if(name.equals("EjbJndiName"))
256 {
257 String value = attribute.getValue().toString();
258 setEjbJndiName(value);
259 }
260 else
261 throw new AttributeNotFoundException("Unknown attribute("+name+")
requested");
262 }
263
264 /** Sets the values of the attributes passed as an
265 * {@link AttributeList AttributeList} of name and new value pairs.
266 *
267 * @param attributes the name an new value pairs.
268 * @return an {@link AttributeList AttributeList} of name and value pairs
269 * that were actually set.
270 */
271 public AttributeList setAttributes(AttributeList attributes)
272 {
273 AttributeList setAttributes = new AttributeList();
JBoss Administration and Development 105

The JBoss JMX Microkernel
274 for(int a = 0; a < attributes.size(); a ++)
275 {
276 Attribute attr = (Attribute) attributes.get(a);
277 try
278 {
279 setAttribute(attr);
280 setAttributes.add(attr);
281 }
282 catch(Exception ignore)
283 {
284 }
285 }
286 return setAttributes;
287 }
288
289 /** Invokes a resource operation.
290 *
291 * @param actionName the name of the operation to perform.
292 * @param params the parameters to pass to the operation.
293 * @param signature the signartures of the parameters.
294 * @return the result of the operation.
295 * @exception MBeanException wraps any error thrown by the resource when
296 * performing the operation.
297 * @exception ReflectionException wraps any error invoking the resource.
298 */
299 public Object invoke(String actionName, Object[] params, String[]
signature)
300 throws MBeanException, ReflectionException
301 {
302 Object rtnValue = null;
303 log.debug("Begin invoke, actionName="+actionName);
304 try
305 {
306 if(actionName.equals("echo"))
307 {
308 String arg = (String) params[0];
309 rtnValue = echo(arg);
310 log.debug("Result: "+rtnValue);
311 }
312 else if(actionName.equals("create"))
313 {
314 super.create();
315 }
316 else if(actionName.equals("start"))
317 {
318 super.start();
319 }
320 else if(actionName.equals("stop"))
321 {
322 super.stop();
323 }
324 else if(actionName.equals("destroy"))
325 {
326 super.destroy();
327 }
106 JBoss Administration and Development

JMX
328 else
329 {
330 throw new JMRuntimeException("Invalid state, don't know about
op="+actionName);
331 }
332 }
333 catch(Exception e)
334 {
335 throw new ReflectionException(e, "echo failed");
336 }
337 log.debug("End invoke, actionName="+actionName);
338 return rtnValue;
339 }
340
341 // --- End DynamicMBean interface methods
342
343 }

Believe it or not, this is a very trial MBean. The vast majority of the code is there to provide the
MBean metadata and handle the callbacks from the MBeanServer. This is required because a
DynamicMBean is free to expose whatever management interface it wants. A DynamicMBean can
in fact change its management interface at runtime simply by returning a different metadata value
from the getMBeanInfo method. Of course, clients may not be too happy with such a dynamic
object, but the MBeanServer will do nothing to prevent a DynamicMBean from changing its
interface.

There are two points to this example. First, demonstrate how an MBean can depend on an EJB for
some of its functionality and second, how to create MBeans with dynamic management interfaces. If
we were to write a standard MBean with a static interface for this example it would be as given in
Listing 2-23.

LISTING 2-23. The standard MBean interface for Listing 2-22

public interface EjbMBeanAdaptorMBean
{

public String getHelloPrefix();
public void setHelloPrefix(String prefix);
public String getEjbJndiName();
public void setEjbJndiName(String jndiName);
public String echo(String arg) throws CreateException, NamingException;
public void create() throws Exception;
public void start() throws Exception;
public void stop();
public void destroy();

}

Moving to lines 67-83, this is where the MBean operation metadata is constructed. The
echo(String), create(), start(), stop() and destroy() operations are defined by
obtaining the corresponding java.lang.reflect.Method object and adding a descrip-
tion.Let’s go through the code and discuss where this interface implementation exists and how the
MBean uses the EJB. Beginning with lines 40-51, the two MBeanAttributeInfo instances cre-
JBoss Administration and Development 107

The JBoss JMX Microkernel
ated define the attributes of the MBean. These attributes correspond to the getHelloPrefix/
setHelloPrefix and getEjbJndiName/setEjbJndiName of the static interface. One thing
to note in terms of why one might want to use a DynamicMBean is that you have the ability to asso-
ciate descriptive text with the attribute metadata. This is not something you can do with a static inter-
face.

Lines 88-103 correspond to the JBoss service life cycle callbacks. Since we are subclassing the Ser-
viceMBeanSupport utility class, we override the createService, startService, and
stopService template callbacks rather than the create, start, and stop methods of the ser-
vice interface. Note that we cannot attempt to lookup the EchoLocalHome interface of the EJB we
make use of until the startService method. Any attempt to access the home interface in an ear-
lier life cycle method would result in the name not being found in JNDI because the EJB container
had not gotten to the point of binding the home interfaces. Because of this dependency we will need
to specify that the MBean service depends on the EchoLocal EJB container to ensure that the ser-
vice is not started before the EJB container is started. We will see this dependency specification when
we look at the service descriptor.

Lines 105-121 are the HelloPrefix and EjbJndiName attribute accessors implementations. These are
invoked in response to getAttribute/setAttribute invocations made through the MBean-
Server.

Lines 123-130 correspond to the echo(String) operation implementation. This method invokes
the EchoLocal.echo(String) EJB method. The local bean interface is created using the
EchoLocalHome that was obtained in the startService method.

The remainder of the class makes up the DynamicMBean interface implementation. Lines 133-152
correspond to the MBean metadata accessor callback. This method returns a description of the
MBean management interface in the form of the javax.management.MBeanInfo object. This
is made up of a description, the MBeanAttributeInfo and MBeanOperationInfo metadata
created earlier, as well as constructor and notification information. This MBean does not need any
special constructors or notifications so this information is null.

Lines 154-258 handle the attribute access requests. This is rather tedious and error prone code so a
toolkit or infrastructure that helps generate these methods should be used. A ModelMBean frame-
work based on XML called XBeans is currently being investigated in JBoss. Other than this, no other
DynamicMBean frameworks currently exist.

Lines 260-310 correspond to the operation invocation dispatch entry point. Here the request operation
action name is checked against those the MBean handles and the appropriate method is invoked.

The jboss-service.xml descriptor for the MBean is given in Listing 2-24. The dependency on the EJB
container MBean is highlighted in bold. The format of the EJB container MBean ObjectName is:
"jboss.j2ee:service=EJB,jndiName=" + <home-jndi-name>

where the <home-jndi-name> is the EJB home interface JNDI name.
108 JBoss Administration and Development

JMX
LISTING 2-24. The DynamicMBean jboss-service.xml descriptor

<server>
 <mbean code="org.jboss.chap2.ex3.EjbMBeanAdaptor"
 name="jboss.book:service=EjbMBeanAdaptor">
 <attribute name="HelloPrefix">AdaptorPrefix</attribute>
 <attribute name="EjbJndiName">local/chap2.EchoBean</attribute>
 <depends>jboss.j2ee:service=EJB,jndiName=local/chap2.EchoBean</depends>
 </mbean>
</server>

Deploy the example ear by running:
examples 880>ant -Dchap=2 -Dex=3 run-example
Buildfile: build.xml
...
run-example3:
 [copy] Copying 1 file to C:\tmp\JBoss\jboss-3.0.4\server\default\deploy

BUILD SUCCESSFUL

Total time: 5 seconds
examples 881>

On the server console there will be messages similar to the following:
09:23:58,889 INFO [MainDeployer] Starting deployment of package: file:/C:/tmp/JBoss/
jboss-3.0.4/server/default/deploy/chap2-ex3.ear
09:23:58,899 INFO [EARDeployer] Init J2EE application: file:/C:/tmp/JBoss/jboss-3.0.4/
server/default/deploy/chap2-ex3.ear
09:23:58,950 INFO [EjbMBeanAdaptor] preRegister notification seen
09:23:58,960 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace
 at org.jboss.chap2.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:149)
 at org.jboss.mx.server.MBeanServerImpl.getMBeanInfo(MBeanServerImpl.java:539)
 at org.jboss.system.ServiceConfigurator.configure(ServiceConfigurator.java:231)
 at
org.jboss.system.ServiceConfigurator.internalInstall(ServiceConfigurator.java:188)
 at org.jboss.system.ServiceConfigurator.install(ServiceConfigurator.java:130)
 at org.jboss.system.ServiceController.install(ServiceController.java:225)
 at sun.reflect.GeneratedMethodAccessor8.invoke(Unknown Source)
 at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
 at java.lang.reflect.Method.invoke(Method.java:324)
 at
org.jboss.mx.capability.ReflectedMBeanDispatcher.invoke(ReflectedMBeanDispatcher.java:284)
 at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:517)
 at org.jboss.util.jmx.MBeanProxy.invoke(MBeanProxy.java:174)
 at $Proxy3.install(Unknown Source)
 at org.jboss.deployment.SARDeployer.create(SARDeployer.java:209)
 at org.jboss.deployment.MainDeployer.create(MainDeployer.java:760)
 at org.jboss.deployment.MainDeployer.create(MainDeployer.java:752)
 at org.jboss.deployment.MainDeployer.deploy(MainDeployer.java:620)
 at org.jboss.deployment.MainDeployer.deploy(MainDeployer.java:585)
 at sun.reflect.GeneratedMethodAccessor9.invoke(Unknown Source)
 at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
JBoss Administration and Development 109

The JBoss JMX Microkernel
 at java.lang.reflect.Method.invoke(Method.java:324)
 at
org.jboss.mx.capability.ReflectedMBeanDispatcher.invoke(ReflectedMBeanDispatcher.java:284)
 at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:517)
 at org.jboss.util.jmx.MBeanProxy.invoke(MBeanProxy.java:174)
 at $Proxy4.deploy(Unknown Source)
 at
org.jboss.deployment.scanner.URLDeploymentScanner.deploy(URLDeploymentScanner.java:435)
 at
org.jboss.deployment.scanner.URLDeploymentScanner.scanDirectory(URLDeploymentScanner.java:
656)
 at
org.jboss.deployment.scanner.URLDeploymentScanner.scan(URLDeploymentScanner.java:507)
 at
org.jboss.deployment.scanner.AbstractDeploymentScanner$ScannerThread.doScan(AbstractDeploy
mentScanner.java:212)
 at
org.jboss.deployment.scanner.AbstractDeploymentScanner$ScannerThread.loop(AbstractDeployme
ntScanner.java:225)
 at
org.jboss.deployment.scanner.AbstractDeploymentScanner$ScannerThread.run(AbstractDeploymen
tScanner.java:202)
09:23:58,990 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace
 at org.jboss.chap2.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:149)
 at org.jboss.mx.server.MBeanServerImpl.getMBeanInfo(MBeanServerImpl.java:539)
 at org.jboss.system.ServiceController.getServiceProxy(ServiceController.java:739)
 at org.jboss.system.ServiceController.create(ServiceController.java:277)
 at org.jboss.system.ServiceController.create(ServiceController.java:243)
 at sun.reflect.GeneratedMethodAccessor4.invoke(Unknown Source)
 at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
 at java.lang.reflect.Method.invoke(Method.java:324)
 at
org.jboss.mx.capability.ReflectedMBeanDispatcher.invoke(ReflectedMBeanDispatcher.java:284)
 at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:517)
 at org.jboss.util.jmx.MBeanProxy.invoke(MBeanProxy.java:174)
 at $Proxy3.create(Unknown Source)
 at org.jboss.deployment.SARDeployer.create(SARDeployer.java:217)
 at org.jboss.deployment.MainDeployer.create(MainDeployer.java:760)
 at org.jboss.deployment.MainDeployer.create(MainDeployer.java:752)
 at org.jboss.deployment.MainDeployer.deploy(MainDeployer.java:620)
 at org.jboss.deployment.MainDeployer.deploy(MainDeployer.java:585)
 at sun.reflect.GeneratedMethodAccessor9.invoke(Unknown Source)
 at
sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25)
 at java.lang.reflect.Method.invoke(Method.java:324)
 at
org.jboss.mx.capability.ReflectedMBeanDispatcher.invoke(ReflectedMBeanDispatcher.java:284)
 at org.jboss.mx.server.MBeanServerImpl.invoke(MBeanServerImpl.java:517)
 at org.jboss.util.jmx.MBeanProxy.invoke(MBeanProxy.java:174)
 at $Proxy4.deploy(Unknown Source)
 at
org.jboss.deployment.scanner.URLDeploymentScanner.deploy(URLDeploymentScanner.java:435)
 at
org.jboss.deployment.scanner.URLDeploymentScanner.scanDirectory(URLDeploymentScanner.java:
656)
 at
org.jboss.deployment.scanner.URLDeploymentScanner.scan(URLDeploymentScanner.java:507)
110 JBoss Administration and Development

JMX
 at
org.jboss.deployment.scanner.AbstractDeploymentScanner$ScannerThread.doScan(AbstractDeploy
mentScanner.java:212)
 at
org.jboss.deployment.scanner.AbstractDeploymentScanner$ScannerThread.loop(AbstractDeployme
ntScanner.java:225)
 at
org.jboss.deployment.scanner.AbstractDeploymentScanner$ScannerThread.run(AbstractDeploymen
tScanner.java:202)
09:23:59,090 INFO [EjbModule] Creating
09:23:59,110 INFO [EjbModule] Deploying chap2.EchoBean
09:23:59,130 INFO [EjbModule] Created
09:23:59,130 INFO [EjbModule] Starting
09:23:59,140 INFO [EjbModule] Started
09:23:59,140 INFO [MainDeployer] Deployed package: file:/C:/tmp/JBoss/jboss-3.0.4/server/
default/deploy/chap2-ex3.ear

The stack traces are not exceptions. They are traces coming from line 150 of the EjbMBeanAdap-
tor code to demonstrate that clients ask for the MBean interface when they want to discover the
MBean’s capabilities. Notice that the EJB container (lines with [EjbModule]) is started before the
example MBean (lines with [EjbMBeanAdaptor]).

Now, let’s invoke the echo method using the JMX console web application. Browse to http://local-
host:8080/jmx-console/HtmlAdaptor?action=inspectM-
Bean&name=jboss.book%3Aservice%3DEjbMBeanAdaptor and scroll down to the echo
operation section. The view should be like that shown in Figure 2-12.
JBoss Administration and Development 111

http://localhost:8080/jmx-console/HtmlAdaptor?action=inspectMBean&name=jboss.book%3Aservice%3DEjbMBeanAdaptor

The JBoss JMX Microkernel
FIGURE 2-12. The EjbMBeanAdaptor MBean operations JMX console view

As shown, we have already entered an argument string of “-echo-arg” into the ParamValue text field.
Pres the Invoke button and a result string of “AdaptorPrefix-echo-arg” is displayed on the results
page. The server console will show several stack traces from the various metadata queries issues by
the JMX console and the MBean invoke method debugging lines:
15:37:41,312 INFO [EjbMBeanAdaptor] Begin invoke, actionName=echo
15:37:41,312 INFO [EjbMBeanAdaptor] Lookup EchoLocalHome@local/chap2.EchoBean
15:37:41,328 INFO [EjbMBeanAdaptor] Result: AdaptorPrefix-echo-arg
15:37:41,328 INFO [EjbMBeanAdaptor] End invoke, actionName=echo

The JBoss Deployer Architecture
JBoss has an extensible deployment architecture that allows one to incorporate components into the
bare JBoss JMX microkernel. Figure 2-13 shows the classes in the deployment layer.
112 JBoss Administration and Development

JMX
FIGURE 2-13. The deployment layer classes

The MainDeployer is the deployment entry point. Requests to deploy a component are sent to the
MainDeployer and it determines if there is a subdeployer capable of handling the deployment, and
if there is, it delegates the deployment to the subdeployer. We saw an example of this when we looked
at how the MainDeployer used the SARDeployer to deploy MBean services. The current
deployers included with JBoss are:

• AbstractWebContainer: This subdeployer handles web application archives (WARs). It
accepts deployment archives and directories whose name ends with a “war” suffix. WARs must
have a WEB-INF/web.xml descriptor and may have a WEB-INF/jboss-web.xml descriptor.
• EARDeployer: This subdeployer handles enterprise application archives (EARs). It accepts
deployment archives and directories whose name ends with an “ear” suffix. EARs must have a
META-INF/application.xml descriptor and may have a META-INF/jboss-app.xml descriptor.
• EJBDeployer: This subdeployer handles enterprise bean jars. It accepts deployment archives
and directories whose name ends with a “jar” suffix. EJB jars must have a META-INF/ejb-jar.xml
descriptor and may have a META-INF/jboss.xml descriptor.
• JARDeployer: This subdeployer handles library jar archives. The only restriction it places on
an archive is that it cannot contain a WEB-INF directory.
JBoss Administration and Development 113

The JBoss JMX Microkernel
• RARDeployer: This subdeployer handles JCA resource archives (RARs). It accepts deploy-
ment archives and directories whose name ends with a “rar” suffix. RARs must have a META-
INF/ra.xml descriptor.
• SARDeployer: This subdeployer handles JBoss MBean service archives (SARs). It accepts
deployment archives and directories whose name ends with a “sar” suffix, as well as standalone
XML files that end with “service.xml”. SARs that are jars must have a META-INF/jboss-ser-
vice.xml descriptor.

The MainDeployer, JARDeployer and SARDeployer are hard coded deployers in the JBoss
server core. The AbstractWebContainer, EARDeployer, EJBDeployer, and RARDe-
ployer are MBean services that register themselves as deployers with the MainDeployer using
the addDeployer(SubDeployer) operation. The SubDeployer interface is given in
Listing 2-25:

LISTING 2-25. The org.jboss.deployment.SubDeployer interface

public interface SubDeployer
{
 /**
 * The <code>accepts</code> method is called by MainDeployer to
 * determine which deployer is suitable for a DeploymentInfo.
 *
 * @param sdi a <code>DeploymentInfo</code> value
 * @return a <code>boolean</code> value
 *
 * @jmx:managed-operation
 */
 boolean accepts(DeploymentInfo sdi);

 /**
 * The <code>init</code> method lets the deployer set a few properties
 * of the DeploymentInfo, such as the watch url.
 *
 * @param sdi a <code>DeploymentInfo</code> value
 * @throws DeploymentException if an error occurs
 *
 * @jmx:managed-operation
 */
 void init(DeploymentInfo sdi) throws DeploymentException;

 /**
 * Set up the components of the deployment that do not
 * refer to other components
 *
 * @param sdi a <code>DeploymentInfo</code> value
 * @throws DeploymentException Failed to deploy
 *
 * @jmx:managed-operation
 */
 void create(DeploymentInfo sdi) throws DeploymentException;

114 JBoss Administration and Development

JMX
 /**
 * The <code>start</code> method sets up relationships with other components.
 *
 * @param sdi a <code>DeploymentInfo</code> value
 * @throws DeploymentException if an error occurs
 *
 * @jmx:managed-operation
 */
 void start(DeploymentInfo sdi) throws DeploymentException;

 /**
 * The <code>stop</code> method removes relationships between components.
 *
 * @param sdi a <code>DeploymentInfo</code> value
 * @throws DeploymentException if an error occurs
 *
 * @jmx:managed-operation
 */
 void stop(DeploymentInfo sdi) throws DeploymentException;

 /**
 * The <code>destroy</code> method removes individual components
 *
 * @param sdi a <code>DeploymentInfo</code> value
 * @throws DeploymentException if an error occurs
 *
 * @jmx:managed-operation
 */
 void destroy(DeploymentInfo sdi) throws DeploymentException;
}

The DeploymentInfo object is basically a data structure that encapsulates the complete state of a
deployable component. When the MainDeployer receives a deployment request, it iterates
through its registered subdeployers and invokes the accepts(DeploymentInfo) method on the
subdeployer. The first subdeployer to return true is chosen and the deployment deployer and the
MainDeployer will delegate the init, create, start, stop and destroy deployment life
cycle operations to the subdeployer.

Deployers and ClassLoaders
Deployers are the mechanism by which components are brought into a JBoss server. Deployers are
also the creators of the majority of UCL instances, and the primary creator is the MainDeployer.
The MainDeployer creates the UCL for a deployment early on during its init method. The UCL
is created by calling the DeploymentInfo.createClassLoaders() method. As of the
3.0.5RC1 release, only the topmost DeploymentInfo will actually create a UCL. All subdeploy-
ments will add their class paths to their parent DeploymentInfo UCL. Previously every subde-
ployment created a UCL for its deployment, and a seperate UCL for every manifest or classpath
reference. This could cause problems because classes ended up being loaded by more than one UCL
and IllegalAccessErrors and LinkageErrors would result. Every deployment does have a
standalone URLClassLoader that uses the deployment URL as its path. This is used to localize the
JBoss Administration and Development 115

The JBoss JMX Microkernel
loading of resources such as deployment descriptors. Figure 2-14 provides an illustration of the inter-
action between Deployers, DeploymentInfos and class loaders.

FIGURE 2-14. An illustration of the class loaders involved with an EAR deployment

The figure illustrates an EAR deployment with EJB and WAR subdeployments. The EJB deployment
references the lib/util.jar utility jar via its manifest. The WAR includes classes in its WEB-INF/
classes directory as well as the WEB-INF/lib/jbosstest-web-util.jar. Each deployment has a
DeploymentInfo instance that has a URLClassLoader pointing to the deployment archive.
The DeploymentInfo associated with some.ear is the only one to have a UCL created. The
ejbs.jar and web.war DeploymentInfos add their deployment archive to the some.ear UCL class-
path, and share this UCL as their deployemnt UCL. The EJBDeployer also adds any manifest jars
to the EAR UCL.

The WARDeployer behaves differently than other deployers in that it only adds its WAR archive to
the DeploymentInfo UCL classpath. The loading of classes from the WAR WEB-INF/classes and
WEB-INF/lib locations is handled by the servlet container class loader. The servlet container class
loaders delegate to the WAR DeploymentInfo UCL as their parent class loader, but the server
container class loader is not part of the JBoss class loader repository. Therefore, classes inside of a
WAR are not visible to other components. Classes that need to be shared between web application
116 JBoss Administration and Development

JMX
components and other components such as EJBs, and MBeans need to be loaded into the shared class
loader repository either by including the classes into a SAR or EJB deployment, or by referencing a
jar containing the shared classes through a manifest Class-Path entry. In the case of a SAR, the SAR
classpath element in the service deployment serves the same purpose as a jar manifest Class-Path.
JBoss Administration and Development 117

The JBoss JMX Microkernel
118 JBoss Administration and Development

CHAPTER 3 Naming on JBoss - The JNDI
Naming Service
This chapter discusses the JBoss JNDI based naming service and the role of JNDI in JBoss and J2EE.
An introduction to the basic JNDI API and common usage conventions will also be discussed. The
JBoss specific configuration of J2EE component naming environments defined by the standard
deployment descriptors will also be addressed. The final topic is the configuration and architecture of
the JBoss naming service component, Naming/JBoss.

The JBoss naming service is an implementation of the Java Naming and Directory Interface (JNDI).
JNDI plays a key role in J2EE because it provides a naming service that allows a user to map a name
onto an object. This is a fundamental need in any programming environment because developers and
administrators want to be able to refer to objects and services by recognizable names. A good exam-
ple of a pervasive naming service is the Internet Domain Name System (DNS). The DNS service
allows you to refer to hosts using logical names, rather than their numeric Internet addresses. JNDI
serves a similar role in J2EE by enabling developers and administrators to create name-to-object
bindings for use in J2EE components.

An Overview of JNDI
JNDI is a standard Java API that is bundled with JDK1.3 and higher. JNDI provides a common inter-
face to a variety of existing naming services: DNS, LDAP, Active Directory, RMI registry, COS reg-
istry, NIS, and file systems. The JNDI API is divided logically into a client API that is used to access
naming services, and a service provider interface (SPI) that allows the user to create JNDI implemen-
tations for naming services.

The SPI layer is an abstraction that naming service providers must implement to enable the core JNDI
classes to expose the naming service using the common JNDI client interface. An implementation of
JNDI for a naming service is referred to as a JNDI provider. JBoss naming is an example JNDI imple-
JBoss Administration and Development 119

Naming on JBoss - The JNDI Naming Service
mentation, based on the SPI classes. Note that the JNDI SPI is not needed by J2EE component devel-
opers.

For a thorough introduction and tutorial on JNDI, which covers both the client and service provider
APIs, see the Sun tutorial at http://java.sun.com/products/jndi/tutorial/.

The JNDI API
The main JNDI API package is the javax.naming package. It contains five interfaces, 10 classes, and
several exceptions. There is one key class, InitialContext, and two key interfaces, Context and Name.

Names
The notion of a name is of fundamental importance in JNDI. The naming system determines the syn-
tax that the name must follow. The syntax of the naming system allows the user to parse string repre-
sentations of names into its components. A name is used with a naming system to locate objects. In
the simplest sense, a naming system is just a collection of objects with unique names. To locate an
object in a naming system you provide a name to the naming system, and the naming system returns
the object store under the name.

As an example, consider the Unix file system's naming convention. Each file is named from its path
relative to the root of the file system, with each component in the path separated by the forward slash
character ("/"). The file’s path is ordered from left to right. The pathname, /usr/jboss/readme.txt, for
example, names a file readme.txt in the directory jboss, under the directory usr, located in the root of
the file system. JBoss naming uses a Unix-style namespace as its naming convention.

The javax.naming.Name interface represents a generic name as an ordered sequence of components. It
can be a composite name (one that spans multiple namespaces), or a compound name (one that is
used within a single hierarchical naming system). The components of a name are numbered. The
indexes of a name with N components range from 0 up to, but not including, N. The most significant
component is at index 0. An empty name has no components.

A composite name is a sequence of component names that span multiple namespaces. An example of
a composite name would be the hostname+file commonly used with Unix commands like scp. For
example, this command copies localfile.txt to the file remotefile.txt in the tmp directory on host
ahost.someorg.org:
scp localfile.txt ahost.someorg.org:/tmp/remotefile.txt

A compound name is derived from a hierarchical namespace. Each component in a compound name
is an atomic name, meaning a string that cannot be parsed into smaller components. A file pathname
in the Unix file system is an example of a compound name.The ahost.someorg.org:/tmp/remotefile.txt
is a composite name that spans the DNS and Unix file system namespaces. The components of the
composite name are ahost.someorg.org and /tmp/remotefile.txt. A component is a string name from
the namespace of a naming system. If the component comes from a hierarchical namespace, that com-
ponent can be further parsed into its atomic parts by using the javax.naming.CompoundName class.
120 JBoss Administration and Development

http://java.sun.com/products/jndi/tutorial/

An Overview of JNDI
The JNDI API provides the javax.naming.CompositeName class as the implementation of the Name
interface for composite names.

Contexts
The javax.naming.Context interface is the primary interface for interacting with a naming service.
The Context interface represents a set of name-to-object bindings. Every context has an associated
naming convention that determines how the context parses string names into javax.naming.Name
instances. To create a name to object binding you invoke the bind method of a Context and specify a
name and an object as arguments. The object can later be retrieved using its name using the Context
lookup method. A Context will typically provide operations for binding a name to an object, unbind-
ing a name, and obtaining a listing of all name-to-object bindings. The object you bind into a Context
can itself be of type Context. The Context object that is bound is referred to as a subcontext of the
Context on which the bind method was invoked.

As an example, consider a file directory with a pathname /usr, which is a context in the Unix file sys-
tem. A file directory named relative to another file directory is a subcontext (commonly referred to as
a subdirectory). A file directory with a pathname /usr/jboss names a jboss context that is a subcontext
of usr. In another example, a DNS domain, such as org, is a context. A DNS domain named relative
to another DNS domain is another example of a subcontext. In the DNS domain jboss.org, the DNS
domain jboss is a subcontext of org because DNS names are parsed right to left.

OBTAINING A CONTEXT USING INITIALCONTEXT

All naming service operations are performed on some implementation of the Context interface.
Therefore, you need a way to obtain a Context for the naming service you are interested in using. The
javax.naming.IntialContext class implements the Context interface, and provides the starting point
for interacting with a naming service.

When you create an InitialContext, it is initialized with properties from the environment. JNDI deter-
mines each property's value by merging the values from the following two sources, in order such as:

• The first occurrence of the property from the constructor's environment parameter and (for appro-
priate properties) the applet parameters and system properties.

• All jndi.properties resource files found on the classpath.

For each property found in both of these two sources, the property's value is determined as follows. If
the property is one of the standard JNDI properties that specify a list of JNDI factories, all of the val-
ues are concatenated into a single, colon-separated list. For other properties, only the first value found
is used. The preferred method of specifying the JNDI environment properties is through a jndi.prop-
erties file. The reason is that this allows your code to externalize the JNDI provider specific informa-
tion, and changing JNDI providers will not require changes to your code; thus it avoids the need to
recompile to be able to see the change.

The Context implementation used internally by the InitialContext class is determined at runtime. The
default policy uses the environment property "java.naming.factory.initial", which contains the class
JBoss Administration and Development 121

Naming on JBoss - The JNDI Naming Service
name of the javax.naming.spi.InitialContextFactory implementation. You obtain the name of the Ini-
tialContextFactory class from the naming service provider you are using.

Listing 3-1 gives a sample jndi.properties file a client application would use to connect to a JBossNS
service running on the local host at port 1099. The client application would need to have the
jndi.properties file available on the application classpath. These are the properties that the JBossNS
JNDI implementation requires. Other JNDI providers will have different properties and values.

LISTING 3-1. A sample jndi.properties file

JBossNS properties
java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=jnp://localhost:1099
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

J2EE and JNDI – The Application Component Environment
JNDI is a fundamental aspect of the J2EE specifications. One key usage is the isolation of J2EE com-
ponent code from the environment in which the code is deployed. Use of the application component’s
environment allows the application component to be customized without the need to access or change
the application component’s source code. The application component environment is sometimes
referred to as the enterprise naming context (ENC). It is the responsibility of the application compo-
nent container to make an ENC available to the container components in the form of JNDI Context.
The ENC is utilized by the participants involved in the life cycle of a J2EE component in the follow-
ing ways:

1. Application component business logic should be coded to access information from its ENC. The
component provider uses the standard deployment descriptor for the component to specify the
required ENC entries. The entries are declarations of the information and resources the component
requires at runtime.

2. The container provides tools that allow a deployer of a component to map the ENC references
made by the component developer to the deployment environment entity that satisfies the refer-
ence.

3. The component deployer utilizes the container tools to ready a component for final deployment.
4. The component container uses the deployment package information to build the complete compo-

nent ENC at runtime

The complete specification regarding the use of JNDI in the J2EE platform can be found in Section 5
of the J2EE 1.3 specification. The J2EE specification is available at http://java.sun.com/j2ee/down-
load.html.

An application component instance locates the ENC using the JNDI API. An application component
instance creates a javax.naming.InitialContext object by using the no argument constructor and then
looks up the naming environment under the name java:comp/env. The application component’s envi-
ronment entries are stored directly in the ENC, or in its subcontexts.Listing 3-2 illustrates the proto-
typical lines of code a component uses to access its ENC.
122 JBoss Administration and Development

http://java.sun.com/j2ee/download.html
http://java.sun.com/j2ee/download.html

An Overview of JNDI
LISTING 3-2. ENC access sample code

// Obtain the application component’s ENC
Context iniCtx = new InitialContext();
Context compEnv = (Context) iniCtx.lookup(“java:comp/env”);

An application component environment is a local environment that is accessible only by the compo-
nent when the application server container thread of control is interacting with the application compo-
nent. This means that an EJB Bean1 cannot access the ENC elements of EJB Bean2, and visa-versa.
Similarly, Web application Web1 cannot access the ENC elements of Web application Web2 or Bean1
or Bean2 for that matter. Also, arbitrary client code, whether it is executing inside of the application
server VM or externally cannot access a component’s java:comp JNDI context. The purpose of the
ENC is to provide an isolated, read-only namespace that the application component can rely on
regardless of the type of environment in which the component is deployed. The ENC must be isolated
from other components because each component defines its own ENC content, and components A
and B may define the same name to refer to different objects. For example, EJB Bean1 may define an
environment entry java:comp/env/red to refer to the hexadecimal value for the RGB color for red,
while Web application Web1 may bind the same name to the deployment environment language
locale representation of red.

There are three commonly used levels of naming scope in the JBossNS implementation – names
under java:comp, names under java:, and any other name. As discussed, the java:comp context and its
subcontexts are only available to the application component associated with the java:comp context.
Subcontexts and object bindings directly under java: are only visible within the JBoss server virtual
machine. Any other context or object binding is available to remote clients, provided the context or
object supports serialization. You’ll see how the isolation of these naming scopes is achieved in the
section titled "The JBossNS Architecture"

An example of where the restricting a binding to the java: context is useful would be a javax.sql.Data-
Source connection factory that can only be used inside of the JBoss VM where the associated data-
base pool resides. An example of a globally visible name that should accessible by remote client is an
EJB home interface.

ENC Usage Conventions
JNDI is used as the API for externalizing a great deal of information from an application component.
The JNDI name that the application component uses to access the information is declared in the stan-
dard ejb-jar.xml deployment descriptor for EJB components, and the standard web.xml deployment
descriptor for Web components. Several different types of information may be stored in and retrieved
from JNDI including:

• Environment entries as declared by the env-entry elements
• EJB references as declared by ejb-ref and ejb-local-ref elements.
• Resource manager connection factory references as declared by the resource-ref elements
• Resource environment references as declared by the resource-env-ref elements
JBoss Administration and Development 123

Naming on JBoss - The JNDI Naming Service
Each type of deployment descriptor element has a JNDI usage convention with regard to the name of
the JNDI context under which the information is bound. Also, in addition to the standard deployment
descriptor element, there is a JBoss server specific deployment descriptor element that maps the JNDI
name as used by the application component to the deployment environment JNDI name.

THE EJB-JAR.XML ENC ELEMENTS

The EJB 2.0 deployment descriptor describes a collection of EJB components and their environment.
Each of the three types of EJB components—session, entity, and message-driven—support the speci-
fication of an EJB local naming context. The ejb-jar.xml description is a logical view of the environ-
ment that the EJB needs to operate. Because the EJB component developer generally cannot know
into what environment the EJB will be deployed, the developer describes the component environment
in a deployment environment independent manner using logical names. It is the responsibility of a
deployment administrator to link the EJB component logical names to the corresponding deployment
environment resources.

Figure 3-1 gives a graphical view of the EJB deployment descriptor DTD without the non-ENC ele-
ments. Only the session element is shown fully expanded as the ENC elements for entity and mesage-
driven are identical. The full ejb-jar.xml DTD is available from the Sun Web site at the ENC elements
in the standard EJB 2.0 ejb-jar.xml deployment descriptor.
124 JBoss Administration and Development

An Overview of JNDI
FIGURE 3-1. The ENC elements in the standard ejb-jar.xml 2.0 deployment descriptor.

THE WEB.XML ENC ELEMENTS
JBoss Administration and Development 125

Naming on JBoss - The JNDI Naming Service
The Servlet 2.3 deployment descriptor describes a collection of Web components and their environ-
ment. The ENC for a Web application is declared globally for all servlets and JSP pages in the Web
application. Because the Web application developer generally cannot know into what environment
the Web application will be deployed, the developer describes the component environment in a
deployment environment independent manner using logical names. It is the responsibility of a
deployment administrator to link the Web component logical names to the corresponding deployment
environment resources.

Figure 3-2 gives a graphical view of the Web application deployment descriptor DTD without the
non-ENC elements. The full web.xml DTD is available from the Sun Web site at http://
java.sun.com/dtd/web-app_2_3.dtd.
126 JBoss Administration and Development

http://java.sun.com/dtd/web-app_2_3.dtd
http://java.sun.com/dtd/web-app_2_3.dtd

An Overview of JNDI
FIGURE 3-2. The ENC elements in the standard servlet 2.3 web.xml deployment descriptor.

THE JBOSS.XML ENC ELEMENTS

The JBoss EJB deployment descriptor provides the mapping from the EJB component ENC JNDI
names to the actual deployed JNDI name. It is the responsibility of the application deployer to map
JBoss Administration and Development 127

Naming on JBoss - The JNDI Naming Service
the logical references made by the application component to the corresponding physical resource
deployed in a given application server configuration. In JBoss, this is done for the ejb-jar.xml descrip-
tor using the jboss.xml deployment descriptor. Figure 3-3 gives a graphical view of the JBoss EJB
deployment descriptor DTD without the non-ENC elements. Only the session element is shown fully
expanded as the ENC elements for entity and message-driven are identical.

FIGURE 3-3. The ENC elements in the JBoss 3.0 jboss.xml deployment descriptor.

THE JBOSS-WEB.XML ENC ELEMENTS

The JBoss Web deployment descriptor provides the mapping from the Web application ENC JNDI
names to the actual deployed JNDI name. It is the responsibility of the application deployer to map
the logical references made by the Web application to the corresponding physical resource deployed
in a given application server configuration. In JBoss, this is done for the web.xml descriptor using the
jboss-web.xml deployment descriptor.Figure 3-4 gives a graphical view of the JBoss Web deploy-
ment descriptor DTD without the non-ENC elements. The full jboss-web.xml DTD is available from
the JBoss Web site at http://www.jboss.org/j2ee/dtd/jboss_web.dtd.
128 JBoss Administration and Development

http://www.jboss.org/j2ee/dtd/jboss_web.dtd

An Overview of JNDI
FIGURE 3-4. The ENC elements in the JBoss 3.0 jboss-web.xml deployment descriptor.

ENVIRONMENT ENTRIES

Environment entries are the simplest form of information stored in a component ENC, and are similar
to operating system environment variables like those found on Unix or Windows. Environment
entries are a name-to-value binding that allows a component to externalize a value and refer to the
value using a name.

An environment entry is declared using an env-entry element in the standard deployment descriptors.
The env-entry element contains the following child elements:

• An optional description element that provides a description of the entry
• An env-entry-name element giving the name of the entry relative to java:comp/env
• An env-entry-type element giving the Java type of the entry value that must be one of:

• java.lang.Byte
• java.lang.Boolean
• java.lang.Character
• java.lang.Double
• java.lang.Float
• java.lang.Integer
• java.lang.Long
• java.lang.Short
• java.lang.String

• An env-entry-value element giving the value of entry as a string
JBoss Administration and Development 129

Naming on JBoss - The JNDI Naming Service
An example of an env-entry fragment from an ejb-jar.xml deployment descriptor is given inListing 3-
3 . There is no JBoss specific deployment descriptor element because an env-entry is a complete
name and value specification. Listing 3-4 shows a sample code fragment for accessing the maxEx-
emptions and taxRate env-entry values declared in Listing 3-3 .

LISTING 3-3. An example ejb-jar.xml env-entry fragment

...
<session>
 <ejb-name>ASessionBean</ejb-name>
...
 <env-entry>
 <description>The maximum number of tax exemptions allowed
 </description>
 <env-entry-name>maxExemptions</env-entry-name>
 <env-entry-type>java.lang.Integer</env-entry-type>
 <env-entry-value>15</env-entry-value>
 </env-entry>

 <env-entry>
 <description>The tax rate
 </description>
 <env-entry-name>taxRate</env-entry-name>
 <env-entry-type>java.lang.Float</env-entry-type>
 <env-entry-value>0.23</env-entry-value>
 </env-entry>
</session>
...

LISTING 3-4. ENC env-entry access code fragment

InitialContext iniCtx = new InitialContext();
Context envCtx = (Context) iniCtx.lookup(“java:comp/env”);
Integer maxExemptions = (Integer) envCtx.lookup(“maxExemptions”);
Float taxRate = (Float) envCtx.lookup(“taxRate”);

EJB REFERENCES

It is common for EJBs and Web components to interact with other EJBs. Because the JNDI name
under which an EJB home interface is bound is a deployment time decision, there needs to be a way
for a component developer to declare a reference to an EJB that will be linked by the deployer. EJB
references satisfy this requirement.

An EJB reference is a link in an application component naming environment that points to a deployed
EJB home interface. The name used by the application component is a logical link that isolates the
component from the actual name of the EJB home in the deployment environment. The J2EE specifi-
cation recommends that all references to enterprise beans be organized in the java:comp/env/ejb con-
text of the application component’s environment.
130 JBoss Administration and Development

An Overview of JNDI
An EJB reference is declared using an ejb-ref element in the deployment descriptor. Each ejb-ref ele-
ment describes the interface requirements that the referencing application component has for the ref-
erenced enterprise bean. The ejb-ref element contains the following child elements:

• An optional description element that provides the purpose of the reference.
• An ejb-ref-name element that specifies the name of the reference relative to the java:comp/env

context. To place the reference under the recommended java:comp/env/ejb context, use an ejb/
link-name form for the ejb-ref-name value.

• An ejb-ref-type element that specifies the type of the EJB. This must be either Entity or Session.
• A home element that gives the fully qualified class name of the EJB home interface.
• A remote element that gives the fully qualified class name of the EJB remote interface.
• An optional ejb-link element that links the reference to another enterprise bean in the ejb-jar file or

in the same J2EE application unit. The ejb-link value is the ejb-name of the referenced bean. If
there are multiple enterprise beans with the same ejb-name, the value uses the path name specify-
ing the location of the ejb-jar file that contains the referenced component. The path name is rela-
tive to the referencing ejb-jar file. The Application Assembler appends the ejb-name of the
referenced bean to the path name separated by #. This allows multiple beans with the same name to
be uniquely identified.

An EJB reference is scoped to the application component whose declaration contains the ejb-ref ele-
ment. This means that the EJB reference is not accessible from other application components at runt-
ime, and that other application components may define ejb-ref elements with the same ejb-ref-name
without causing a name conflict. Listing 3-5 provides an ejb-jar.xml fragment that illustrates the use
of the ejb-ref element. A code sample that illustrates accessing the ShoppingCartHome reference
declared in Listing 3-5 is given in Listing 3-6.

LISTING 3-5. An example ejb-jar.xml ejb-ref descriptor fragment

...
<session>
 <ejb-name>ShoppingCartBean</ejb-name>
 ...
</session>

<session>
<ejb-name>ProductBeanUser</ejb-name>
...
<ejb-ref>
 <description>This is a reference to the store products entity
 </description>
 <ejb-ref-name>ejb/ProductHome</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>org.jboss.store.ejb.ProductHome</home>
</ejb-ref> <remote> org.jboss.store.ejb.Product</remote>
</session>

<session>
<ejb-ref>
 <ejb-name>ShoppingCartUser</ejb-name>
JBoss Administration and Development 131

Naming on JBoss - The JNDI Naming Service
 ...
 <ejb-ref-name>ejb/ShoppingCartHome</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>org.jboss.store.ejb.ShoppingCartHome</home>
 <remote> org.jboss.store.ejb.ShoppingCart</remote>
 <ejb-link>ShoppingCartBean</ejb-link>
</ejb-ref>
</session>

<entity>
 <description>The Product entity bean
 </description>
 <ejb-name>ProductBean</ejb-name>
 ...
</entity>
...

LISTING 3-6. ENC ejb-ref access code fragment

InitialContext iniCtx = new InitialContext();
Context ejbCtx = (Context) iniCtx.lookup(“java:comp/env/ejb”);
ShoppingCartHome home = (ShoppingCartHome) ejbCtx.lookup(“ShoppingCartHome”);

EJB REFERENCES WITH JBOSS.XML AND JBOSS-WEB.XML

The JBoss server jboss.xml EJB deployment descriptor affects EJB references in two ways. First, the
jndi-name child element of the session and entity elements allows the user to specify the deployment
JNDI name for the EJB home interface. In the absence of a jboss.xml specification of the jndi-name
for an EJB, the home interface is bound under the ejb-jar.xml ejb-name value. For example, the ses-
sion EJB with the ejb-name of ShoppingCartBean in Listing 3.5 would have its home interface bound
under the JNDI name ShoppingCartBean in the absence of a jboss.xml jndi-name specification.

The second use of the jboss.xml descriptor with respect to ejb-refs is the setting of the destination to
which a component’s ENC ejb-ref refers. The ejb-link element cannot be used to refer to EJBs in
another enterprise application. If your ejb-ref needs to access an external EJB, you can specify the
JNDI name of the deployed EJB home using the jboss.xml ejb-ref/jndi-name element.

The jboss-web.xml descriptor is used only to set the destination to which a Web application ENC ejb-
ref refers. The content model for the JBoss ejb-ref is as follows:

• An ejb-ref-name element that corresponds to the ejb-ref-name element in the ejb-jar.xml or
web.xml standard descriptor

• A jndi-name element that specifies the JNDI name of the EJB home interface in the deployment
environment

Listing 3-7 provides an example jboss.xml descriptor fragment that illustrates the following usage
points:

• The ProductBeanUser ejb-ref link destination is set to the deployment name of jboss/store/Pro-
ductHome
132 JBoss Administration and Development

An Overview of JNDI
• The deployment JNDI name of the ProductBean is set to jboss/store/ProductHome

LISTING 3-7. An example jboss.xml ejb-ref fragment

 ...
<session>
<ejb-name>ProductBeanUser</ejb-name>
<ejb-ref>
 <ejb-ref-name>ejb/ProductHome</ejb-ref-name>
 <jndi-name>jboss/store/ProductHome</jndi-name>
</ejb-ref>
</session>

<entity>
 <ejb-name>ProductBean</ejb-name>
 <jndi-name>jboss/store/ProductHome</jndi-name>
 ...
</entity>
...

EJB LOCAL REFERENCES

In EJB 2.0 one can specify non-remote interfaces called local interfaces that do not use RMI call by
value semantics. These interfaces use a call by reference semantic and therefore do not incur any RMI
serialization overhead. An EJB local reference is a link in an application component naming environ-
ment that points to a deployed EJB local home interface. The name used by the application compo-
nent is a logical link that isolates the component from the actual name of the EJB local home in the
deployment environment. The J2EE specification recommends that all references to enterprise beans
be organized in the java:comp/env/ejb context of the application component’s environment.

An EJB local reference is declared using an ejb-local-ref element in the deployment descriptor. Each
ejb-local-ref element describes the interface requirements that the referencing application component
has for the referenced enterprise bean. The ejb-local-ref element contains the following child ele-
ments:

• An optional description element that provides the purpose of the reference.
• An ejb-ref-name element that specifies the name of the reference relative to the java:comp/env

context. To place the reference under the recommended java:comp/env/ejb context, use an ejb/
link-name form for the ejb-ref-name value.

• An ejb-ref-type element that specifies the type of the EJB. This must be either Entity or Session.
• A local-home element that gives the fully qualified class name of the EJB local home interface.
• A local element that gives the fully qualified class name of the EJB local interface.
• An ejb-link element that links the reference to another enterprise bean in the ejb-jar file or in the

same J2EE application unit. The ejb-link value is the ejb-name of the referenced bean. If there are
multiple enterprise beans with the same ejb-name, the value uses the path name specifying the
location of the ejb-jar file that contains the referenced component. The path name is relative to the
referencing ejb-jar file. The Application Assembler appends the ejb-name of the referenced bean
to the path name separated by #. This allows multiple beans with the same name to be uniquely
JBoss Administration and Development 133

Naming on JBoss - The JNDI Naming Service
identified. An ejb-link element must be specified in JBoss to match the local reference to the corre-
sponding EJB.

An EJB local reference is scoped to the application component whose declaration contains the ejb-
local-ref element. This means that the EJB local reference is not accessible from other application
components at runtime, and that other application components may define ejb-local-ref elements with
the same ejb-ref-name without causing a name conflict. Listing 3-8 provides an ejb-jar.xml fragment
that illustrates the use of the ejb-local-ref element. A code sample that illustrates accessing the Probe-
LocalHome reference declared in Listing 3-8 is given in Listing 3-9.

LISTING 3-8. An example ejb-jar.xml ejb-local-ref descriptor fragment

...
 <session>
 <ejb-name>Probe</ejb-name>
 <home>org.jboss.test.perf.interfaces.ProbeHome</home>
 <remote>org.jboss.test.perf.interfaces.Probe</remote>
 <local-home>org.jboss.test.perf.interfaces.ProbeLocalHome</local-home>
 <local>org.jboss.test.perf.interfaces.ProbeLocal</local>
 <ejb-class>org.jboss.test.perf.ejb.ProbeBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Bean</transaction-type>
 </session>

 <session>
 <ejb-name>PerfTestSession</ejb-name>
 <home>org.jboss.test.perf.interfaces.PerfTestSessionHome</home>
 <remote>org.jboss.test.perf.interfaces.PerfTestSession</remote>
 <ejb-class>org.jboss.test.perf.ejb.PerfTestSessionBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <ejb-ref>
 <ejb-ref-name>ejb/ProbeHome</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>org.jboss.test.perf.interfaces.SessionHome</home>
 <remote>org.jboss.test.perf.interfaces.Session</remote>
 <ejb-link>Probe</ejb-link>
 </ejb-ref>
 <ejb-local-ref>
 <ejb-ref-name>ejb/ProbeLocalHome</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>org.jboss.test.perf.interfaces.ProbeLocalHome</local-home>
 <local>org.jboss.test.perf.interfaces.ProbeLocal</local>
 <ejb-link>Probe</ejb-link>
 </ejb-local-ref>
 </session>
...

LISTING 3-9. ENC ejb-local-ref access code fragment
134 JBoss Administration and Development

An Overview of JNDI
InitialContext iniCtx = new InitialContext();
Context ejbCtx = (Context) iniCtx.lookup(“java:comp/env/ejb”);
ProbeLocalHome home = (ProbeLocalHome) ejbCtx.lookup(“ProbeLocalHome”);

RESOURCE MANAGER CONNECTION FACTORY REFERENCES

Resource manager connection factory references allow application component code to refer to
resource factories using logical names called resource manager connection factory references.
Resource manager connection factory references are defined by the resource-ref elements in the stan-
dard deployment descriptors. The Deployer binds the resource manager connection factory references
to the actual resource manager connection factories that exist in the target operational environment
using the jboss.xml and jboss-web.xml descriptors.

Each resource-ref element describes a single resource manager connection factory reference. The
resource-ref element consists of the following child elements:

• An optional description element that provides the purpose of the reference.
• A res-ref-name element that specifies the name of the reference relative to the java:comp/env con-

text. The resource type based naming convention for which subcontext to place the res-ref-name
into is discussed in the next paragraph.

• A res-type element that specifies the fully qualified class name of the resource manager connection
factory.

• A res-auth element that indicates whether the application component code performs resource
signon programmatically, or whether the container signs on to the resource based on the principal
mapping information supplied by the Deployer. It must be one of Application or Container.

• An option res-sharing-scope element. This currently is not supported by JBoss.

The J2EE specification recommends that all resource manager connection factory references be orga-
nized in the subcontexts of the application component’s environment, using a different subcontext for
each resource manager type. The recommended resource manager type to subcontext name is as fol-
lows:

• JDBC DataSource references should be declared in the java:comp/env/jdbc subcontext.
• JMS connection factories should be declared in the java:comp/env/jms subcontext.
• JavaMail connection factories should be declared in the java:comp/env/mail subcontext.
• URL connection factories should be declared in the java:comp/env/url subcontext.

Listing 3-10 shows an example web.xml descriptor fragment that illustrates the resource-ref element
usage. Listing 3-11 provides a code fragment that an application component would use to access the
DefaultMail resource defined in Listing 3-10.

LISTING 3-10. A web.xml resource-ref descriptor fragment

<web>
...
<servlet>
 <servlet-name>AServlet</servlet-name>
JBoss Administration and Development 135

Naming on JBoss - The JNDI Naming Service
 ...
</servlet>
...
 <!-- JDBC DataSources (java:comp/env/jdbc) -->
 <resource-ref>
 <description>The default DS</description>
 <res-ref-name>jdbc/DefaultDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 <!-- JavaMail Connection Factories (java:comp/env/mail) -->
 <resource-ref>
 <description>Default Mail</description>
 <res-ref-name>mail/DefaultMail</res-ref-name>
 <res-type>javax.mail.Session</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 <!-- JMS Connection Factories (java:comp/env/jms) -->
 <resource-ref>
 <description>Default QueueFactory</description>
 <res-ref-name>jms/QueFactory</res-ref-name>
 <res-type>javax.jms.QueueConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
</web>

LISTING 3-11. ENC resource-ref access sample code fragment

 Context initCtx = new InitialContext();
 javax.mail.Session s = (javax.mail.Session)
 initCtx.lookup("java:comp/env/mail/DefaultMail");

RESOURCE MANAGER CONNECTION FACTORY REFERENCES WITH JBOSS.XML AND
JBOSS-WEB.XML

The purpose of the JBoss jboss.xml EJB deployment descriptor and jboss-web.xml Web application
deployment descriptor is to provide the link from the logical name defined by the res-ref-name ele-
ment to the JNDI name of the resource factory as deployed in JBoss. This is accomplished by provid-
ing a resource-ref element in the jboss.xml or jboss-web.xml descriptor. The JBoss resource-ref
element consists of the following child elements:

• A res-ref-name element that must match the res-ref-name of a corresponding resource-ref element
from the ejb-jar.xml or web.xml standard descriptors

• An optional res-type element that specifies the fully qualified class name of the resource manager
connection factory

• A jndi-name element that specifies the JNDI name of the resource factory as deployed in JBoss

Listing 3-12 provides a sample jboss-web.xml descriptor fragment that shows sample mappings of
the resource-ref elements given in Listing 3-10.
136 JBoss Administration and Development

An Overview of JNDI
LISTING 3-12. A sample jboss-web.xml resource-ref descriptor fragment

<jboss-web>
...
 <resource-ref>
 <res-ref-name>jdbc/DefaultDS</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <jndi-name>java:/DefaultDS</jndi-name>
 </resource-ref>
 <resource-ref>
 <res-ref-name>mail/DefaultMail</res-ref-name>
 <res-type>javax.mail.Session</res-type>
 <jndi-name>java:/Mail</jndi-name>
 </resource-ref>
 <resource-ref>
 <res-ref-name>jms/QueFactory</res-ref-name>
 <res-type>javax.jms.QueueConnectionFactory</res-type>
 <jndi-name>QueueConnectionFactory</jndi-name>
 </resource-ref>
...
</jboss-web>

RESOURCE ENVIRONMENT REFERENCES

Resource environment references are elements that refer to administered objects that are associated
with a resource (for example, JMS destinations) by using logical names. Resource environment refer-
ences are defined by the resource-env-ref elements in the standard deployment descriptors. The
Deployer binds the resource environment references to the actual administered objects location in the
target operational environment using the jboss.xml and jboss-web.xml descriptors.

Each resource-env-ref element describes the requirements that the referencing application component
has for the referenced administered object. The resource-env-ref element consists of the following
child elements:

• An optional description element that provides the purpose of the reference.
• A resource-env-ref-name element that specifies the name of the reference relative to the

java:comp/env context. Convention places the name in a subcontext that corresponds to the associ-
ated resource factory type. For example, a JMS queue reference named MyQueue should have a
resource-env-ref-name of jms/MyQueue.

• A resource-env-ref-type element that specifies the fully qualified class name of the referenced
object. For example, in the case of a JMS queue, the value would be javax.jms.Queue.

Listing 3-13 provides an example resource-ref-env element declaration by a session bean. Listing 3-
14 gives a code fragment that illustrates

LISTING 3-13. An example ejb-jar.xml resource-env-ref fragment

<session>
 <ejb-name>MyBean</ejb-name>
JBoss Administration and Development 137

Naming on JBoss - The JNDI Naming Service
 ...
 <resource-env-ref>
 <description>This is a reference to a JMS queue used in the
 processing of Stock info
 </description>
 <resource-env-ref-name>jms/StockInfo</resource-env-ref-name>
 <resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
 </resource-env-ref>
...
</session>

LISTING 3-14. ENC resource-env-ref access code fragment

InitialContext iniCtx = new InitialContext();
javax.jms.Queue q = (javax.jms.Queue)
 envCtx.lookup(“java:comp/env/jms/StockInfo”);

RESOURCE ENVIRONMENT REFERENCES AND JBOSS.XML, JBOSS-WEB.XML

The purpose of the JBoss jboss.xml EJB deployment descriptor and jboss-web.xml Web application
deployment descriptor is to provide the link from the logical name defined by the resource-env-ref-
name element to the JNDI name of the administered object deployed in JBoss. This is accomplished
by providing a resource-env-ref element in the jboss.xml or jboss-web.xml descriptor. The JBoss
resource-env-ref element consists of the following child elements:

• A resource-env-ref-name element that must match the resource-env-ref-name of a corresponding
resource-env-ref element from the ejb-jar.xml or web.xml standard descriptors

• A jndi-name element that specifies the JNDI name of the resource as deployed in JBoss

Listing 3-15 provides a sample jboss.xml descriptor fragment that shows a sample mapping for the
resource-env-ref element given in Listing 3-13.

LISTING 3-15. A sample jboss.xml resource-env-ref descriptor fragment

<session>
 <ejb-name>MyBean</ejb-name>
 ...
 <resource-env-ref>
 <resource-env-ref-name>jms/StockInfo</resource-env-ref-name>
 <jndi-name>queue/StockInfoQue</jndi-name>
 </resource-env-ref>
...
</session>
138 JBoss Administration and Development

The JBossNS Architecture
The JBossNS Architecture
The JBossNS architecture is a Java socket/RMI based implementation of the javax.naming.Context
interface. It is a client/server implementation that can be accessed remotely. The implementation is
optimized so that access from within the same VM in which the JBossNS server is running does not
involve sockets. Same VM access occurs through an object reference available as a global
singleton.Figure 3-5 illustrates some of the key classes in the JBossNS implementation and their
relationships.

FIGURE 3-5. Key components in the JBossNS architecture.

We will start with the NamingService MBean. The NamingService MBean provides the JNDI naming
service. This is a key service used pervasively by the J2EE technology components. The configurable
attributes for the NamingService are as follows:

• Port: The jnp protocol listening port for the NamingService. If not specified default is 1099, the
same as the RMI registry default port.

• RmiPort: The RMI port on which the RMI Naming implementation will be exported. If not speci-
fied the default is 0 which means use any available port.
JBoss Administration and Development 139

Naming on JBoss - The JNDI Naming Service
• BindAddress: the specific address the NamingService listens on. This can be used on a multi-
homed host for a java.net.ServerSocket that will only accept connect requests on one of its
addresses.

• Backlog: The maximum queue length for incoming connection indications (a request to connect)
is set to the backlog parameter. If a connection indication arrives when the queue is full, the con-
nection is refused.

• ClientSocketFactory: An optional custom java.rmi.server.RMIClientSocketFactory implementa-
tion class name. If not specified the default RMIClientSocketFactory is used.

• ServerSocketFactory: An optional custom java.rmi.server.RMIServerSocketFactory implementa-
tion class name. If not specified the default RMIServerSocketFactory is used.

• JNPServerSocketFactory, An optional custom javax.net.ServerSocketFactory implementation
class name. This is the factory for the ServerSocket used to bootstrap the download of the JBossNS
Naming interface. If not specified the javax.net.ServerSocketFactory.getDefault() method value is
used.

The NamingService also creates the java:comp context such that access to this context is isolated
based on the context ClassLoader of the thread that accesses the java:comp context. This provides the
application component private ENC that is required by the J2EE specs. The segregation of java:comp
by ClassLoader is accomplished by binding a javax.naming.Reference to a Context that uses the
org.jboss.naming.ENCFactory as its javax.naming.ObjectFactory. When a client performs a lookup of
java:comp, or any subcontext, the ENCFactory checks the thread context ClassLoader, and performs
a lookup into a map using the ClassLoader as the key. If a Context instance does not exist for the
ClassLoader instance, one is created and associated with the ClassLoader in the ENCFactory map.
Thus, correct isolation of an application component’s ENC relies on each component receiving a
unique ClassLoader that is associated with the component threads of execution.The NamingService
delegates its functionality to an org.jnp.server.Main MBean. The reason for the duplicate MBeans is
because JBossNS started out as a stand-alone JNDI implementation, and can still be run as such. The
NamingService MBean embeds the Main instance into the JBoss server so that usage of JNDI with
the same VM as the JBoss server does not incur any socket overhead. The configurable attributes of
the NamingService are really the configurable attributes of the JBossNS Main MBean. The setting of
any attributes on the NamingService MBean simply set the corresponding attributes on the Main
MBean the NamingService contains. When the NamingService is started, it starts the contained Main
MBean to activate the JNDI naming service. In addition, the NamingService exposes the Naming
interface operations through a JMX detyped invoke operation. This allows the naming service to be
accessed via arbitrary protocol to JMX adaptors. We will look at an example of how HTTP can be
used to access the naming service using the invoke operation later in this chapter.

The details of threads and the thread context class loader won’t be explored here, but the JNDI tuto-
rial provides a concise discussion that is applicable. See http://java.sun.com/products/jndi/tuto-
rial/beyond/misc/classloader.html for the details.

When the Main MBean is started, it performs the following tasks:

• Instantiates an org.jnp.naming.NamingService instance and sets this as the local VM server
instance. This is used by any org.jnp.interfaces.NamingContext instances that are created within
the JBoss server VM to avoid RMI calls over TCP/IP.
140 JBoss Administration and Development

http://java.sun.com/products/jndi/tutorial/beyond/misc/classloader.html
http://java.sun.com/products/jndi/tutorial/beyond/misc/classloader.html

The JBossNS Architecture
• Exports the NamingServer instance’s org.jnp.naming.interfaces.Naming RMI interface using the
configured RmiPort, ClientSocketFactory, ServerSocketFactory attributes.

• Creates a socket that listens on the interface given by the BindAddress and Port attributes.
• Spawns a thread to accept connections on the socket.

The Naming InitialContext Factories
The JBoss JNDI provider currently supports three different InitialContext factory implementations.
The most commonly used factory is the org.jnp.interfaces.NamingContextFactory implementation. Its
properties include:

• java.naming.factory.initial (or Context.INITIAL_CONTEXT_FACTORY), The name of the
environment property for specifying the initial context factory to use. The value of the property
should be the fully qualified class name of the factory class that will create an initial context. If it is
not specified, a javax.naming.NoInitialContextException will be thrown when an InitialContext
object is created.

• java.naming.provider.url (or Context.PROVIDER_URL), The name of the environment prop-
erty for specifying the location of the JBoss JNDI service provider the client will use. The
NamingContextFactory class uses this information to know which JBossNS server to connect to.
The value of the property should be a URL string. For JBossNS the URL format is jnp://host:port/
[jndi_path]. The jnp: portion of the URL is the protocol and refers to the socket/RMI based proto-
col used by JBoss. The jndi_path portion of the URL is an option JNDI name relative to the root
context, for example, "apps" or "apps/tmp". Everything but the host component is optional. The
following examples are equivalent because the default port value is 1099:
• jnp://www.jboss.org:1099/
• www.jboss.org:1099
• www.jboss.org

• java.naming.factory.url.pkgs (or Context.URL_PKG_PREFIXES), The name of the environ-
ment property for specifying the list of package prefixes to use when loading in URL context fac-
tories. The value of the property should be a colon-separated list of package prefixes for the class
name of the factory class that will create a URL context factory. For the JBoss JNDI provider this
must be org.jboss.naming:org.jnp.interfaces. This property is essential for locating the jnp: and
java: URL context factories of the JBoss JNDI provider.

• jnp.socketFactory, The fully qualified class name of the javax.net.SocketFactory implementation
to use to create the bootstrap socket. The default value is org.jnp.interfaces.TimedSocketFactory.
The TimedSocketFactory is a simple SocketFactory implementation that supports the specification
of a connection and read timeout. These two properties are specified by:

• jnp.timeout, The connection timeout in milliseconds. The default value is 0 which means the con-
nection will block until the VM TCP/IP layer times out.

• jnp.sotimeout, The connected socket read timeout in milliseconds. The default value is 0 which
means reads will block. This is the value passed to the Socket.setSoTimeout on the newly con-
nected socket.

When a client creates an InitialContext with these JBossNS properties available, the
org.jnp.interfaces.NamingContextFactory object is used to create the Context
JBoss Administration and Development 141

Naming on JBoss - The JNDI Naming Service
instance that will be used in subsequent operations. The NamingContextFactory is the
JBossNS implementation of the javax.naming.spi.InitialContextFactory interface.
When the NamingContextFactory class is asked to create a Context, it creates an
org.jnp.interfaces.NamingContext instance with the InitialContext environment
and name of the context in the global JNDI namespace. It is the NamingContext instance that
actually performs the task of connecting to the JBossNS server, and implements the Context inter-
face. The Context.PROVIDER_URL information from the environment indicates from which
server to obtain a NamingServer RMI reference.

The association of the NamingContext instance to a NamingServer instance is done in a lazy
fashion on the first Context operation that is performed. When a Context operation is performed
and the NamingContext has no NamingServer associated with it, it looks to see if its environ-
ment properties define a Context.PROVIDER_URL. A Context.PROVIDER_URL defines the
host and port of the JBossNS server the Context is to use.. If there is a provider URL, the
NamingContext first checks to see if a Naming instance keyed by the host and port pair has
already been created by checking a NamingContext class static map. It simply uses the existing
Naming instance if one for the host port pair has already been obtained. If no Naming instance has
been created for the given host and port, the NamingContext connects to the host and port using a
java.net.Socket, and retrieves a Naming RMI stub from the server by reading a
java.rmi.MarshalledObject from the socket and invoking its get method. The newly
obtained Naming instance is cached in the NamingContext server map under the host and port
pair. If no provider URL was specified in the JNDI environment associated with the context, the
NamingContext simply uses the in VM Naming instance set by the Main MBean.

The NamingContext implementation of the Context interface delegates all operations to the
Naming instance associated with the NamingContext. The NamingServer class that imple-
ments the Naming interface uses a java.util.Hashtable as the Context store. There is one
unique NamingServer instance for each distinct JNDI Name for a given JBossNS server. There are
zero or more transient NamingContext instances active at any given moment that refers to a
NamingServer instance. The purpose of the NamingContext is to act as a Context to the
Naming interface adaptor that manages translation of the JNDI names passed to the NamingCon-
text. Because a JNDI name can be relative or a URL, it needs to be converted into an absolute name
in the context of the JBossNS server to which it refers. This translation is a key function of the
NamingContext.

Naming Discovery in Clustered Environments
When running in a clustered JBoss environment, you can choose not to specify a Con-
text.PROVIDER_URL value and let the client query the network for available naming services.
This only works with JBoss servers running with the all configuration, or an equivalent configuration
that has org.jboss.ha.framework.server.ClusterPartition and
org.jboss.ha.jndi.HANamingService services deployed. The discovery process consists
of sending a multicast request packet to the discovery address/port and waiting for any node to
respond. The response is a HA-RMI version of the Naming interface. The following Initial-
Context proerties affect the discovery configuration:
142 JBoss Administration and Development

The JBossNS Architecture
• jnp.partitionName, The cluster partition name discovery should be restricted to. If you are run-
ning in an environment with multiple clusters, you may want to restrict the naming discovery to a
particular cluster. There is no default value, meaning that any cluster response will be accepted.

• jnp.discoveryGroup, The multicast IP/address to which the discovery query is sent. The default is
230.0.0.4.

• jnp.discoveryPort, The port to which the discovery query is sent. The default is 1102.
• jnp.discoveryTimeout, The time in milliseconds to wait for a discovery query response. The

default value is 5000 (5 seconds).
• jnp.disableDiscovery, A flag indicating if the discovery process should be avoided. Discovery

occurs when either no Context.PROVIDER_URL is specified, or no valid naming service could
be located among the URLs specified. If the jnp.disableDiscovery flag is true, then discovery will
not be attempted.

The HTTP InitialContext Factory Implementation
As of JBoss-3.0.2, support exists for accessing the JNDI naming service over HTTP. From a JNDI cli-
ent’s perspective this is a transparent change as they continue to use the JNDI Context interface.
Operations through the Context interface are translated into HTTP posts to a servlet that passes the
request to the NamingService using its JMX invoke operation. Advantages of using HTTP as the
access protocol include better access through firewalls and proxies setup to allow HTTP, as well as
the ability to secure access to the JNDI service using standard servlet role based security.

To access JNDI over HTTP you use the org.jboss.naming.HttpNamingContextFactory as the factory
implementation. The complete set of support InitialContext environment properties for this factory
are:

• java.naming.factory.initial (or Context.INITIAL_CONTEXT_FACTORY), The name of the
environment property for specifying the initial context factory, which must be
org.jboss.naming.HttpNamingContextFactory.

• java.naming.provider.url (or Context.PROVIDER_URL), This must be set to the http URL of
the JMX invoker servlet. It depends on the configuration of the http-invoker.sar and its contained
war, but the default setup places the JMX invoker servlet under /invoker/JMXInvokerServlet. The
full http URL would be the public URL of the JBoss servlet container + “/invoker/JMXInvok-
erServlet“. Examples include
• http://www.jboss.org:8080/invoker/JMXInvokerServlet
• http://www.jboss.org/invoker/JMXInvokerServlet
• https://www.jboss.org/invoker/JMXInvokerServlet

where the first accesses the servlet using the port 8080, the second uses the standar HTTP port 80, and the third uses an
SSL encrypted connection to the standard HTTPS port 443.

• java.naming.factory.url.pkgs (or Context.URL_PKG_PREFIXES), For all JBoss JNDI pro-
vider this must be org.jboss.naming:org.jnp.interfaces. This property is essential
for locating the jnp: and java: URL context factories of the JBoss JNDI provider.

The JNDI Context implementation returned by the HttpNamingContextFactory is a proxy
that delegates invocations made on it to a bridge servlet which forwards the invocation to the
NamingService through the JMX bus, and marshalls the reply back over HTTP. The proxy needs
JBoss Administration and Development 143

Naming on JBoss - The JNDI Naming Service
to know what the URL of the bridge servlet is in order to operate. This value may have been bound on
the server side if the JBoss web server has a well known public interface. If the JBoss web server is
sitting behind one or more firewalls or proxies, the proxy cannot know what URL is required. In this
case, the proxy will be associated with a system property value that must be set in the client VM. For
more information on the operation of JNDI over HTTP See “Accessing JNDI over HTTP” on
page 144.

The Login InitialContext Factory Implementation
Historically JBoss has not supported providing login information via the IntialContext factory envi-
ronment. The reason being that JAAS provides a much more flexible framework. For simplicity and
migration from other application server environment that do make use of this mechanism, JBoss-
3.0.3 adds a new InitialContext factory implementation that allows this. JAAS is still used
under in the implementation, but there is no manifest use of the JAAS interfaces in the client applica-
tion.

The factory class that provides this capability is the org.jboss.security.jndi.LoginIni-
tialContextFactory. The complete set of support InitialContext environment properties for
this factory are:

• java.naming.factory.initial (or Context.INITIAL_CONTEXT_FACTORY), The name of the
environment property for specifying the initial context factory, which must be
org.jboss.security.jndi.LoginInitialContextFactory.

• java.naming.provider.url (or Context.PROVIDER_URL), This must be set to a Naming-
ContextFactory provider URL. The LoginIntialContext is really just a wrapper around
the NamingContextFactory that adds a JAAS login to the existing NamingContextFac-
tory behavior.

• java.naming.factory.url.pkgs (or Context.URL_PKG_PREFIXES), For all JBoss JNDI pro-
vider this must be org.jboss.naming:org.jnp.interfaces. This property is essential
for locating the jnp: and java: URL context factories of the JBoss JNDI provider.

• java.naming.security.principal (or Context.SECURITY_PRINCIPAL), The principal to
authenticate. This may be either a java.security.Principal implementation or a string
representing the name of a principal.

Context.SECURITY_CREDENTIALS

• java.naming.security.credentials (or Context.SECURITY_CREDENTIALS), The credentials
that should be used to authenticate the principal, e.g., password, session key, etc.

• java.naming.security.protocol (or Context.SECURITY_PROTOCOL), This gives the name of
the JAAS login module to use for the authentication of the principal and credentials.

Accessing JNDI over HTTP
In addition to the legacy RMI/JRMP with a socket bootstrap protocol, JBoss-3.0.3 provides support
for accessing its JNDI naming service using HTTP. This capability is provided by the http-invoker.sar
deployment and its contained services and servlets. The structure of the http-invoker.sar is:
http-invoker.sar
+- META-INF/jboss-service.xml
144 JBoss Administration and Development

The JBossNS Architecture
+- invoker.war
| +- WEB-INF/jboss-web.xml
| +- WEB-INF/classes/org/jboss/invocation/http/servlet/InvokerServlet.class
| +- WEB-INF/classes/org/jboss/invocation/http/servlet/NamingFactoryServlet.class
| +- WEB-INF/classes/org/jboss/invocation/http/servlet/ReadOnlyAccessFilter.class
| +- WEB-INF/classes/roles.properties
| +- WEB-INF/classes/users.properties
| +- WEB-INF/web.xml
| +- META-INF/MANIFEST.MF
+- META-INF/MANIFEST.MF

The http-invoker.sar jboss-service.xml descriptor defines the HttpInvoker and HttpInvokerHA
MBeans. These services handle the routing of methods invocations that are sent via HTTP to the
approriate target MBean on the JMX bus.

The http-invoker.war web application contains servlets that handle the details of the HTTP transport.
The NamingFactoryServlet handles creation requests for the JBoss JNDI naming service
javax.naming.Context implementation. The InvokerServlet handles invocations made
by RMI/HTTP clients. The ReadOnlyAccessFilter allows one to secure the JNDI naming ser-
vice while making a single JNDI context available for read-only access by unauthenticated clients.

FIGURE 3-6. The HTTP invoker proxy/server structure for a JNDI Context

Before looking at the configurations let’s overview the operation of the http-invoker services.
Figure 3-6 shows a logical view of the structure of a JBoss JNDI proxy and its relationship to the
JBoss server side components of the http-invoker. The proxy is obtained from the NamingFacto-
ryServlet using an InitialContext with the Context.INITIAL_CONTEXT_FACTORY
property set to org.jboss.naming.HttpNamingContextFactory, and the Con-
text.PROVIDER_URL property set to the http URL of the NamingFactoryServlet. The
resulting proxy is embedded in an org.jnp.interfaces.NamingContext instance that pro-
vides the Context interface implementation.
JBoss Administration and Development 145

Naming on JBoss - The JNDI Naming Service
The proxy is an instance of org.jboss.invocation.http.interfaces.HttpInvoker-
Proxy, and implements the org.jnp.interfaces.Naming interface. Internally the HttpIn-
vokerProxy contains an invoker that marshalls the Naming interface method invocations to the
InvokerServlet via HTTP posts. The InvokerServlet translates these posts into JMX invo-
cations to the NamingService, and returns the invocation response back to the proxy in the HTTP
post reponse.

There are several configuration values that need to be set to tie all of these components together and
Figure 3-7 illustrates the relationship between configuration files and the corresponding components.

FIGURE 3-7. The relationship between configuration files and JNDI/HTTP component

The http-invoker.sar/META-INF/jboss-service.xml descriptor defines the HttpProxyFactory
that creates the HttpInvokerProxy for the NamingService. The attributes that need to be
configured for the HttpProxyFactory include:

• InvokerName, the JMX ObjectName of the NamingService defined in the conf/jboss-ser-
vice.xml descriptor. The standard setting used in the JBoss distributions is “jboss:service=Nam-
ing”.

• InvokerURL, or InvokerURLPrefix + InvokerURLSuffix + UseHostName. You can specify
the full http URL to the InvokerServlet using the InvokerURL attribute, or you can specify the
hostname independent parts of the URL and have the HttpProxyFactory fill them in. An example
InvokerURL value would be “http://jbosshost1.dot.com:8080/invoker/JMXInvokerServlet”. This
can be broken down into:
146 JBoss Administration and Development

The JBossNS Architecture
• InvokerURLPrefix, the url prefix prior to the hostname. Typically this will be “http://” or
“https://” is SSL is to be used. For the example InvokerURL value the InvokerURLPrefix would
be “http://” without the quotes.
• InvokerURLSuffix, the url suffix after the hostname. This will include the port number of the
web server as well as the deployed path to the InvokerServlet. For the example
InvokerURL value the InvokerURLSuffix would be “:8080/invoker/JMXInvokerServlet” without
the quotes. The port number is determined by the web container service settings. The path to the
InvokerServlet is specified in the http-invoker.sar/invoker.war/WEB-INF/web.xml descriptor.
• UseHostName, a flag indicating if the hostname or host IP address should be used when
building the hostname portion of the full InvokerURL. If true, InetAddress.getLocal-
Host().getHostName method will be used, else, the InetAddress.getLocal-
Host().getHostAddress() method is used.

• ExportedInterface, is the org.jnp.interfaces.Naming interface the proxy will expose to
clients. The actual client of this proxy is the JBoss JNDI implementation NamingContext class,
which JNDI client obtain from InitialContext lookups when using the JBoss JNDI provider.

• JndiName, is the name in JNDI under which the proxy is bound. This needs to be set to a blank/
empty string to indicate the interface should not be bound into JNDI. We can’t use the JNDI to
bootstrap itself. This is the role of the NamingFactoryServlet.

The http-invoker.sar/invoker.war/WEB-INF/web.xml descriptor defines the mappings of the Naming-
FactoryServlet and InvokerServet along with their initialzation parameters. The configuration of the
NamingFactoryServlet relevant to JNDI/HTTP is the JNDIFactory entry which defines:

• A namingProxyMBean initialzation parameter that maps to the HttpProxyFactory MBean
name. This is used by the NamingFactoryServlet to obtain the Naming proxy which it will
return in response to http posts. For the default http-invoker.sar/META-INF/jboss-service.xml set-
tings the name “jboss:service=invoker,type=http,target=Naming”.

• A proxy initialzation parameter that defines the name of the namingProxyMBean attribute to
query for the Naming proxy value. This defaults to an attribute name of “Proxy”.

• The servlet mapping for the JNDIFactory configuration. The default setting for the unsecured
mapping is “/JNDIFactory/*”. This is relative to the context root of the http-invoker.sar/
invoker.war, which by default is the war name minus the “.war” suffix.

The configuration of the InvokerServlet relevant to JNDI/HTTP is the JMXInvokerServlet
which defines:

• The servlet mapping of the InvokerServlet. The default setting for the unsecured mapping is “/
JMXInvokerServlet/*”. This is relative to the context root of the http-invoker.sar/invoker.war,
which by default is the war name minus the “.war” suffix.

Accessing JNDI over HTTPS
To be able to access JNDI over HTTP/SSL you need to enable an SSL connector on the web con-
tainer. The details of this are convered in the “Integrating Servlet Containers” chapter for both Jetty
and Tomcat. We will demonstrate the use of HTTPS with a simple example client that uses an https
URL as the JNDI provider URL. We will provide an SSL connector configuration for the example, so
unless you are interested in the details of the SSL connector setup, the example is self contained.
JBoss Administration and Development 147

Naming on JBoss - The JNDI Naming Service
At a minimum, a JNDI client using HTTPS requires setting up a https URL protocol handler. We will
be using the Java Secure Socket Extension (JSSE) for HTTPS. The JSSE documentation does a good
job of describing what is necessary to use https, and the following steps were needed to configure the
example client shown in Listing 3-16:

1. A protocol handler for https URLs must be made available to Java. The JSSE release includes an
https handler in the com.sun.net.ssl.internal.www.protocol package. To enable the use of https
URLs you include this package in the standard URL protocol handler search property, java.proto-
col.handler.pkgs. We set the java.protocol.handler.pkgs property in the Ant script.

2. The JSSE security provider must be installed in order for SSL to work. This can be done either by
installing the JSSE jars as an extension package, or programatically. We use the programatic
approach in the example since this is less intrusive. Line 18 of the ExClient code demonstrates
how this is done.

3. The JNDI provider URL must use https as the protocol. Lines 24-25 of the ExClient code specify
an HTTP/SSL connection to the localhost on port 8443. The hostname and port are defined by the
web container SSL connector.

4. The validation of the https URL hostname against the server certificate must be disabled. By
default, the JSSE https protocol handler employs a strict validation of the hostname portion of the
https URL against the common name of the server certificate. This is the same check done by web
browsers when you connect to secured web site. We are using a self-signed server certificate that
uses a common name of “Chapter8 SSL Example” rather than a particular hostname, and this is
likely to be common in development environments or intranets. The JBoss HttpInvokerProxy will
override the default hostname checking if a org.jboss.security.ignoreHttpsHost system property
exists and has a value of true. We set the org.jboss.security.ignoreHttpsHost property to true in the
Ant script.

LISTING 3-16. A JNDI client that uses HTTPS as the transport

1 package org.jboss.chap3.ex1;
2
3 import java.security.Security;
4 import java.util.Properties;
5 import javax.naming.Context;
6 import javax.naming.InitialContext;
7
8 /** A simple JNDI client that uses HTTPS as the transport.
9 *
10 * @author Scott.Stark@jboss.org
11 * @version $Revision: 1.1 $
12 */
13 public class ExClient
14 {
15 public static void main(String args[]) throws Exception
16 {
17 // Install the Sun JSSE provider since we may not have JSSE installed
18 Security.addProvider(new com.sun.net.ssl.internal.ssl.Provider());
19 System.out.println("Added JSSE security provider");
20
21 Properties env = new Properties();
22 env.setProperty(Context.INITIAL_CONTEXT_FACTORY,
148 JBoss Administration and Development

The JBossNS Architecture
23 "org.jboss.naming.HttpNamingContextFactory");
24 env.setProperty(Context.PROVIDER_URL,
25 "https://localhost:8443/invoker/JNDIFactory");
26 Context ctx = new InitialContext(env);
27 System.out.println("Created InitialContext, env="+env);
28 Object data = ctx.lookup("jmx/rmi/RMIAdaptor");
29 System.out.println("lookup(jmx/rmi/RMIAdaptor): "+data);
30 }
31 }

To test the client given in Listing 3-16 , first build the chapter 3 example to create the chap3 configu-
ration fileset as follows:
examples 1107>ant -Dchap=3 config
Buildfile: build.xml

config:

config:
 [echo] Preparing chap3 configuration fileset
 [mkdir] Created dir: C:\tmp\JBoss\jboss-3.0.5\server\chap3
 [copy] Copying 125 files to C:\tmp\JBoss\jboss-3.0.5\server\chap3
 [copy] Copying 1 file to C:\tmp\JBoss\jboss-3.0.5\server\chap3\conf
 [copy] Copying 1 file to C:\tmp\JBoss\jboss-3.0.5\server\chap3\conf
 [copy] Copying 1 file to C:\tmp\JBoss\jboss-
3.0.5\server\chap3\deploy\jbossweb.sar\META-INF

BUILD SUCCESSFUL
Total time: 1 second

Next, start the JBoss server using the chap3 configuration fileset:
11:10:08.79>run -c chap3
===
.
 JBoss Bootstrap Environment
....

And finally, run the ExClient using:
examples 645>ant -Dchap=3 -Dex=1 run-example
Buildfile: build.xml

validate:
 [java] JBoss version is: 3.0.4

fail_if_not_valid:

init:
 [echo] Using jboss.dist=/tmp/JBoss/jboss-3.0.4

compile:
 [javac] Compiling 1 source file to C:\Scott\JBoss\Books\AdminDevel\education
\books\admin-devel\examples\output\classes
JBoss Administration and Development 149

Naming on JBoss - The JNDI Naming Service
run-example:

run-example1:
 [java] Added JSSE security provider
 [java] Created InitialContext, env={java.naming.provider.url=https://localh
ost:8443/invoker/JNDIFactory, java.naming.factory.initial=org.jboss.naming.HttpN
amingContextFactory}
 [java] lookup(jmx/rmi/RMIAdaptor): org.jboss.jmx.adaptor.rmi.RMIAdaptorImpl
_Stub[RemoteStub [ref: [endpoint:[169.254.71.81:3951](remote),objID:[88e6c:f16a3
d7a45:-8000, 3]]]]

BUILD SUCCESSFUL
Total time: 10 seconds

Securing Access to JNDI over HTTP
One benefit to accessing JNDI over HTTP is that it is easy to secure access to the JNDI InitialContext
factory as well as the naming operations using standard web declarative security. This is possible
because the server side handling of the JNDI/HTTP transport is implemented with two servlets.
These servlets are included in the http-invoker.sar/invoker.war directory found in the default and all
configuration deploy directories as shown previously. To enable secured access to JNDI you need to
edit the invoker.war/WEB-INF/web.xml descriptor and remove all unsecured servlet mappings. For
example, the web.xml descriptor shown in Listing 3-17 only allows access to the invoker.war servlets
if the user has been authenticated and has a role of HttpInvoker.

LISTING 3-17. An example web.xml descriptor for secured access to the JNDI servlets

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
<!-- ### Servlets -->
 <servlet>
 <servlet-name>JMXInvokerServlet</servlet-name>
 <servlet-class>org.jboss.invocation.http.servlet.InvokerServlet</servlet-
class>
 <load-on-startup>1</load-on-startup>
 </servlet>

 <servlet>
 <servlet-name>JNDIFactory</servlet-name>
 <servlet-class>org.jboss.invocation.http.servlet.NamingFactoryServlet</
servlet-class>
 <init-param>
 <param-name>namingProxyMBean</param-name>
 <param-value>jboss:service=invoker,type=http,target=Naming</param-
value>
 </init-param>
 <init-param>
150 JBoss Administration and Development

The JBossNS Architecture
 <param-name>proxyAttribute</param-name>
 <param-value>Proxy</param-value>
 </init-param>
 <load-on-startup>2</load-on-startup>
 </servlet>

<!-- ### Servlet Mappings -->
 <servlet-mapping>
 <servlet-name>JNDIFactory</servlet-name>
 <url-pattern>/restricted/JNDIFactory/*</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>JMXInvokerServlet</servlet-name>
 <url-pattern>/restricted/JMXInvokerServlet/*</url-pattern>
 </servlet-mapping>

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>HttpInvokers</web-resource-name>
 <description>An example security config that only allows users with the
 role HttpInvoker to access the HTTP invoker servlets
 </description>
 <url-pattern>/restricted/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>HttpInvoker</role-name>
 </auth-constraint>
 </security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>JBoss HTTP Invoker</realm-name>
 </login-config>

 <security-role>
 <role-name>HttpInvoker</role-name>
 </security-role>
</web-app>

The web.xml descriptor only defines which sevlets are secured, and which roles are allowed to access
the secured servlets. You must additionally define the security domain that will handle the authentica-
tion and authorization for the war. This is done through the jboss-web.xml descriptor, and an example
that uses the “http-invoker” security domain is given in .

An example jboss-web.xml descriptor to assign the
<jboss-web>
 <security-domain>java:/jaas/http-invoker</security-domain>
</jboss-web>

The security-domain element defines the name of the security domain that will be used for the JAAS
login module configuration used for authentication and authorization. See “Enabling Declarative
JBoss Administration and Development 151

Naming on JBoss - The JNDI Naming Service
Security in JBoss” on page 276 for additional details on the meaning and configuration of the security
domain name.

Securing Access to JNDI with a Read-Only Unsecured Context
Another feature available for the JNDI/HTTP naming service is the ability to define a context that can
be accessed by unauthenticated users in read-only mode. This can be important for services used by
the authentication layer. For example, the SRPLoginModule needs to lookup the SRP server interface
used to perform authentication. To enable this, some additional web.xml descriptor settings are
needed. Listing 3-18 shows the necessary elements.

LISTING 3-18. The additional web.xml descriptor elements needed for read-only access

<web-app>
 <filter>
 <filter-name>ReadOnlyAccessFilter</filter-name>
 <filter-class>org.jboss.invocation.http.servlet.ReadOnlyAccessFilter</
filter-class>
 <init-param>
 <param-name>readOnlyContext</param-name>
 <param-value>readonly-context</param-value>
 </init-param>
 <init-param>
 <param-name>invokerName</param-name>
 <param-value>jboss:service=Naming</param-value>
 </init-param>
 </filter>

 <filter-mapping>
 <filter-name>ReadOnlyAccessFilter</filter-name>
 <url-pattern>/readonly/*</url-pattern>
 </filter-mapping>

 <servlet>
 <servlet-name>ReadOnlyJNDIFactory</servlet-name>
 <servlet-class>org.jboss.invocation.http.servlet.NamingFactoryServlet</
servlet-class>
 <init-param>
 <param-name>namingProxyMBean</param-name>
 <param-
value>jboss:service=invoker,type=http,target=Naming,readonly=true</param-value>
 </init-param>
 <init-param>
 <param-name>proxyAttribute</param-name>
 <param-value>Proxy</param-value>
 </init-param>
 <load-on-startup>2</load-on-startup>
 </servlet>

 <!-- A mapping for the JMXInvokerServlet that only allows invocations
152 JBoss Administration and Development

The JBossNS Architecture
 of lookups under a read-only context. This is enforced by the
 ReadOnlyAccessFilter
 -->
 <servlet-mapping>
 <servlet-name>JMXInvokerServlet</servlet-name>
 <url-pattern>/readonly/JMXInvokerServlet/*</url-pattern>
 </servlet-mapping>

With these settings, one may perform Context.lookup operations on the “readonly-context” or its sub-
contexts, but no other operations on this context. Also, no operations of any kind may be performed
on other contexts. Here is a code fragment for a lookup of the “readonly-context/data” binding:
Properties env = new Properties();
env.setProperty(Context.INITIAL_CONTEXT_FACTORY,

"org.jboss.naming.HttpNamingContextFactory");
env.setProperty(Context.PROVIDER_URL,

"http://localhost:8080/invoker/ReadOnlyJNDIFactory");
Context ctx2 = new InitialContext(env);
Object data = ctx2.lookup("readonly-context/data");

Additional Naming MBeans
In addition to the NamingService MBean that configures an embedded JBossNS server within
JBoss, there are three additional MBean services related to naming that ship with JBoss. They are the
ExternalContext, NamingAlias, and JNDIView.

org.jboss.naming.ExternalContext MBean

The ExternalContext MBean allows you to federate external JNDI contexts into the JBoss
server JNDI namespace. The term external refers to any naming service external to the JBossNS nam-
ing service running inside of the JBoss server VM. You can incorporate LDAP servers, file systems,
DNS servers, and so on, even if the JNDI provider root context is not serializable. The federation can
be made available to remote clients if the naming service supports remote access.

To incorporate an external JNDI naming service, you have to add a configuration of the ExternalCon-
text MBean service to the jboss.jcml configuration file. The configurable attributes of the External-
Context service are as follows:

• JndiName—The JNDI name under which the external context is to be bound.
• RemoteAccess—A boolean flag indicating if the external InitialContext should be bound using a

Serializable form that allows a remote client to create the external InitialContext. When a remote
client looks up the external context via the JBoss JNDI InitialContext, they effectively create an
instance of the external InitialContext using the same env properties passed to the ExternalContext
MBean. This will only work if the client could do a 'new InitialContext(env)' remotely. This
requires that the Context.PROVIDER_URL value of env is resolvable in the remote VM that is
accessing the context. This should work for the LDAP example. For the file system example this
most likely won't work unless the file system path refers to a common network path. If this prop-
erty is not given it defaults to false.
JBoss Administration and Development 153

Naming on JBoss - The JNDI Naming Service
• CacheContext—The cacheContext flag. When set to true, the external Context is only created
when the MBean is started and then stored as an in memory object until the MBean is stopped. If
cacheContext is set to false, the external Context is created on each lookup using the MBean prop-
erties and InitialContext class. When the uncached Context is looked up by a client, the client
should invoke close() on the Context to prevent resource leaks.

• InitialContext—The fully qualified class name of the InitialContext implementation to use. Must
be one of: javax.naming.InitialContext, javax.naming.directory.InitialDirContext or javax.nam-
ing.ldap.InitialLdapContext. In the case of the InitialLdapContext, a null Controls array is used.
The default is javax.naming.InitialContex.

• Properties—Set the jndi.properties information for the external InitialContext. This is either a
URL string or a classpath resource name. Examples are as follows:
• file:///config/myldap.properties
• http://config.mycompany.com/myldap.properties
• /conf/myldap.properties
• myldap.properties

The jboss.jcml fragment shown in Listing 3-19 shows two configurations—one for an LDAP server,
and the other for a local file system directory.

LISTING 3-19. ExternalContext MBean configurations

<!-- Bind a remote LDAP server -->
<mbean code="org.jboss.naming.ExternalContext"
 name="jboss.jndi:service=ExternalContext,jndiName=external/ldap/jboss">
 <attribute name="JndiName">external/ldap/jboss</attribute>
 <attribute name="Properties">jboss.ldap</attribute>
 <attribute name="InitialContext">
 javax.naming.ldap.InitialLdapContext
 </attribute>
 <attribute name="RemoteAccess">true</attribute>
</mbean>
<!-- Bind the /usr/local file system directory -->
<mbean code="org.jboss.naming.ExternalContext"
 name="jboss.jndi:service=ExternalContext,jndiName=external/fs/usr/local" >
 <attribute name="JndiName">external/fs/usr/local</attribute>
 <attribute name="Properties">local.props</attribute>
 <attribute name="InitialContext">javax.naming.InitialContext</attribute>
</mbean>

The first configuration describes binding an external LDAP context into the JBoss JNDI namespace
under the name “external/ldap/jboss”. An example jboss.ldap properties file is as follows:

java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory
java.naming.provider.url=ldap://ldaphost.jboss.org:389/o=jboss.org
java.naming.security.principal=cn=Directory Manager
java.naming.security.authentication=simple
java.naming.security.credentials=secret
154 JBoss Administration and Development

The JBossNS Architecture
With this configuration, you can access the external LDAP context located at ldap://lda-
phost.jboss.org:389/o=jboss.org from within the JBoss VM using the following code fragment:
InitialContext iniCtx = new InitialContext();
LdapContext ldapCtx = iniCtx.lookup("external/ldap/jboss");

Using the same code fragment outside of the JBoss server VM will work in this case because the
RemoteAccess property was set to true. If it were set to false, it would not work because the remote
client would receive a Reference object with an ObjectFactory that would not be able to recreate the
external IntialContext.

The second configuration describes binding a local file system directory /usr/local into the JBoss
JNDI namespace under the name “external/fs/usr/local”. An example local.props properties file is:
java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory
java.naming.provider.url=file:///usr/local

With this configuration, you can access the external file system context located at file:///usr/local
from within the JBoss VM using the following code fragment:
InitialContext iniCtx = new InitialContext();
Context ldapCtx = iniCtx.lookup("external/fs/usr/local");

The org.jboss.naming.NamingAlias MBean
The NamingAlias MBean is a simple utility service that allows you to create an alias in the form of a
JNDI javax.naming.LinkRef from one JNDI name to another. This is similar to a symbolic link in the
Unix file system. To an alias you add a configuration of the NamingAlias MBean to the jboss.jcml
configuration file. The configurable attributes of the NamingAlias service are as follows:

• FromName, The location where the LinkRef is bound under JNDI.
• ToName, The to name of the alias. This is the target name to which the LinkRef refers. The name

is a URL, or a name to be resolved relative to the InitialContext, or if the first character of the
name is., the name is relative to the context in which the link is bound.

An example that provides a mapping of the JNDI name “QueueConnectionFactory” to the name
“ConnectionFactory” file is as follows:
<mbean code="org.jboss.naming.NamingAlias"
name="jboss.mq:service=NamingAlias,fromName=QueueConnectionFactory">
 <attribute name="ToName">ConnectionFactory</attribute>
 <attribute name="FromName">QueueConnectionFactory</attribute>
</mbean>

The org.jboss.naming.JNDIView MBean
The JNDIView MBean allows the user to view the JNDI namespace tree as it exists in the JBoss
server using the JMX agent view interface. All that is required to use the JNDIView service is to add
a configuration to jboss.jcml file. The JNDIView service has no configurable attributes, and so a suit-
able configuration is:

<mbean code="org.jboss.naming.JNDIView" name="jboss:service=JNDIView"/>
JBoss Administration and Development 155

Naming on JBoss - The JNDI Naming Service
To view the JBoss JNDI namespace using the JNDIView MBean, you connect to the JMX Agent
View using the http interface. The default settings put this at http://localhost:8080/jmx-console/. On
this page you will see a section that lists the registered MBeans by domain. It should look something
like that shown in Figure 3-8, The HTTP JMX agent view of the configured JBoss MBeans., where
the JNDIView MBean is under the mouse cursor.

FIGURE 3-8. The HTTP JMX agent view of the configured JBoss MBeans.

Selecting the JNDIView link takes you to the JNDIView MBean view, which will have a list of the
JNDIView MBean operations. This view should look similar to that shown in Figure 3-9, The HTTP
JMX MBean view of the JNDIView MBean..
156 JBoss Administration and Development

http://localhost:8080/jmx-console/

The JBossNS Architecture
FIGURE 3-9. The HTTP JMX MBean view of the JNDIView MBean.

The list operation dumps out the JBoss server JNDI namespace as an html page using a simple text
view. As an example, invoking the list operation for the default JBoss-3.0.1 distribution server pro-
duced the view shown in Figure 3-10 .
JBoss Administration and Development 157

Naming on JBoss - The JNDI Naming Service
FIGURE 3-10. The HTTP JMX view of the JNDIView list operation output.
158 JBoss Administration and Development

CHAPTER 4 Transactions on JBoss - The
JTA Transaction Service
This chapter discusses transaction management in JBoss and the JBossTX architecture. The JBossTX
architecture allows for any Java Transaction API (JTA) transaction manager implementation to be
used. JBossTX includes a fast in-VM implementation of a JTA compatible transaction manager that is
used as the default transaction manager. We will first provide an overview of the key transaction con-
cepts and notions in the JTA to provide sufficient background for the JBossTX architecture discus-
sion. We will then discuss the interfaces that make up the JBossTX architecture and conclude with a
discussion of the MBeans available for integration of alternate transaction managers.

Transaction/JTA Overview
For the purpose of this discussion, we can define a transaction as a unit of work containing one or
more operations involving one or more shared resources having ACID properties. ACID is an acro-
nym for Atomicity, Consistency, Isolation and Durability, the four important properties of transac-
tions. The meanings of these terms is:

• Atomicity: A transaction must be atomic. This means that either all the work done in the transac-
tion must be performed, or none of it must be performed. Doing part of a transaction is not
allowed.

• Consistency: When a transaction is completed, the system must be in a stable and consistent condi-
tion.

• Isolation: Different transactions must be isolated from each other. This means that the partial work
done in one transaction is not visible to other transactions until the transaction is committed, and
that each process in a multi-user system can be programmed as if it was the only process accessing
the system.

• Durability: The changes made during a transaction are made persistent when it is committed.
When a transaction is committed, its changes will not be lost, even if the server crashes afterwards.
JBoss Administration and Development 159

Transactions on JBoss - The JTA Transaction Service
To illustrate these concepts, consider a simple banking account application. The banking application
has a database with a number of accounts. The sum of the amounts of all accounts must always be 0.
An amount of money M is moved from account A to account B by subtracting M from account A and
adding M to account B. This operation must be done in a transaction, and all four ACID properties are
important.

The atomicity property means that both the withdrawal and deposit is performed as an indivisible
unit. If, for some reason, both cannot be done nothing will be done.

The consistency property means that after the transaction, the sum of the amounts of all accounts
must still be 0.

The isolation property is important when more than one bank clerk uses the system at the same time.
A withdrawal or deposit could be implemented as a three-step process: First the amount of the
account is read from the database; then something is subtracted from or added to the amount read
from the database; and at last the new amount is written to the database. Without transaction isolation
several bad things could happen. For example, if two processes read the amount of account A at the
same time, and each independently added or subtracted something before writing the new amount to
the database, the first change would be incorrectly overwritten by the last.

The durability property is also important. If a money transfer transaction is committed, the bank must
trust that some subsequent failure cannot undo the money transfer.

Pessimistic and optimistic locking
Transactional isolation is usually implemented by locking whatever is accessed in a transaction.
There are two different approaches to transactional locking: Pessimistic locking and optimistic lock-
ing.

The disadvantage of pessimistic locking is that a resource is locked from the time it is first accessed in
a transaction until the transaction is finished, making it inaccessible to other transactions during that
time. If most transactions simply look at the resource and never change it, an exclusive lock may be
overkill as it may cause lock contention, and optimistic locking may be a better approach.With pessi-
mistic locking, locks are applied in a fail-safe way. In the banking application example, an account is
locked as soon as it is accessed in a transaction. Attempts to use the account in other transactions
while it is locked will either result in the other process being delayed until the account lock is
released, or that the process transaction will be rolled back. The lock exists until the transaction has
either been committed or rolled back.

With optimistic locking, a resource is not actually locked when it is first is accessed by a transaction.
Instead, the state of the resource at the time when it would have been locked with the pessimistic
locking approach is saved. Other transactions are able to concurrently access to the resource and the
possibility of conflicting changes is possible. At commit time, when the resource is about to be
updated in persistent storage, the state of the resource is read from storage again and compared to the
state that was saved when the resource was first accessed in the transaction. If the two states differ, a
conflicting update was made, and the transaction will be rolled back.
160 JBoss Administration and Development

Transaction/JTA Overview
In the banking application example, the amount of an account is saved when the account is first
accessed in a transaction. If the transaction changes the account amount, the amount is read from the
store again just before the amount is about to be updated. If the amount has changed since the transac-
tion began, the transaction will fail itself, otherwise the new amount is written to persistent storage.

The components of a distributed transaction
There are a number of participants in a distributed transaction. These include:

• Transaction Manager: This component is distributed across the transactional system. It manages
and coordinates the work involved in the transaction. The transaction manager is exposed by the
javax.transaction.TransactionManager interface in JTA.

• Transaction Context: A transaction context identifies a particular transaction. In JTA the corre-
sponding interface is javax.transaction.Transaction.

• Transactional Client: A transactional client can invoke operations on one or more transactional
objects in a single transaction. The transactional client that started the transaction is called the
transaction originator. A transaction client is either an explicit or implicit user of JTA interfaces
and has no interface representation in the JTA.

• Transactional Object: A transactional object is an object whose behavior is affected by operations
performed on it within a transactional context. A transactional object can also be a transactional
client. Most Enterprise Java Beans are transactional objects.

• Recoverable Resource: A recoverable resource is a transactional object whose state is saved to sta-
ble storage if the transaction is committed, and whose state can be reset to what it was at the begin-
ning of the transaction if the transaction is rolled back. At commit time, the transaction manager
uses the two-phase XA protocol when communicating with the recoverable resource to ensure
transactional integrity when more than one recoverable resource is involved in the transaction
being committed. Transactional databases and message brokers like JBossMQ are examples of
recoverable resources. A recoverable resource is represented using the javax.transaction.xa.XARe-
source interface in JTA.

The two-phase XA protocol
When a transaction is about to be committed, it is the responsibility of the transaction manager to
ensure that either all of it is committed, or that all of is rolled back. If only a single recoverable
resource is involved in the transaction, the task of the transaction manager is simple: It just has to tell
the resource to commit the changes to stable storage.

When more than one recoverable resource is involved in the transaction, management of the commit
gets more complicated. Simply asking each of the recoverable resources to commit changes to stable
storage is not enough to maintain the atomic property of the transaction. The reason for this is that if
one recoverable resource has committed and another fails to commit, part of the transaction would be
committed and the other part rolled back.

To get around this problem, the two-phase XA protocol is used. The XA protocol involves an extra
prepare phase before the actual commit phase. Before asking any of the recoverable resources to
JBoss Administration and Development 161

Transactions on JBoss - The JTA Transaction Service
commit the changes, the transaction manager asks all the recoverable resources to prepare to commit.
When a recoverable resource indicates it is prepared to commit the transaction, it has ensured that it
can commit the transaction. The resource is still able to rollback the transaction if necessary as well.

So the first phase consists of the transaction manager asking all the recoverable resources to prepare
to commit. If any of the recoverable resources fails to prepare, the transaction will be rolled back. But
if all recoverable resources indicate they were able to prepare to commit, the second phase of the XA
protocol begins. This consists of the transaction manager asking all the recoverable resources to com-
mit the transaction. Because all the recoverable resources have indicated they are prepared, this step
cannot fail.

Heuristic exceptions
In a distributed environment communications failures can happen. If communication between the
transaction manager and a recoverable resource is not possible for an extended period of time, the
recoverable resource may decide to unilaterally commit or rollback changes done in the context of a
transaction. Such a decision is called a heuristic decision. It is one of the worst errors that may happen
in a transaction system, as it can lead to parts of the transaction being committed while other parts are
rolled back, thus violating the atomicity property of transaction and possibly leading to data integrity
corruption.

Because of the dangers of heuristic exceptions, a recoverable resource that makes a heuristic decision
is required to maintain all information about the decision in stable storage until the transaction man-
ager tells it to forget about the heuristic decision. The actual data about the heuristic decision that is
saved in stable storage depends on the type of recoverable resource and is not standardized. The idea
is that a system manager can look at the data, and possibly edit the resource to correct any data integ-
rity problems.

There are several different kinds of heuristic exceptions defined by the JTA. The javax.transac-
tion.HeuristicCommitException is thrown when a recoverable resource is asked to rollback to report
that a heuristic decision was made and that all relevant updates have been committed. On the opposite
end is the javax.transaction.HeuristicRollbackException, which is thrown by a recoverable resource
when it is asked to commit to indicate that a heuristic decision was made and that all relevant updates
have been rolled back.

The javax.transaction.HeuristicMixedException is the worst heuristic exception. It is thrown to indi-
cate that parts of the transaction were committed, while other parts were rolled back. The transaction
manager throws this exception when some recoverable resources did a heuristic commit, while other
recoverable resources did a heuristic rollback.

Transaction IDs and branches
In JTA, the identity of transactions is encapsulated in objects implementing the javax.transac-
tion.xa.Xid interface. The transaction ID is an aggregate of three parts:
162 JBoss Administration and Development

JBoss Transaction Internals
• The format identifier indicates the transaction family and tells how the other two parts should be
interpreted.

• The global transaction id identified the global transaction within the transaction family.
• The branch qualifier denotes a particular branch of the global transaction.

Transaction branches are used to identify different parts of the same global transaction. Whenever the
transaction manager involves a new recoverable resource in a transaction it creates a new transaction
branch.

JBoss Transaction Internals
The JBoss application server is written to be independent of the actual transaction manager used.
JBoss uses the JTA javax.transaction.TransactionManager interface as its view of the server transac-
tion manager. Thus, JBoss may use any transaction manager which implements the JTA Transaction-
Manager interface. Whenever a transaction manager is used it is obtained from the well-known JNDI
location "java:/TransactionManager". This is the globally available access point for the server trans-
action manager.

If transaction contexts are to be propagated with RMI/JRMP calls, the transaction manager must also
implement two simple interfaces for the import and export of transaction propagation contexts
(TPCs). The interfaces are org.jboss.tm.TransactionPropagationContextImporter, and
org.jboss.tm.TransactionPropagationContextFactory.

Being independent of the actual transaction manager used also means that JBoss does not specify the
format of type of the transaction propagation contexts used. In JBoss, a TPC is of type Object, and the
only requirement is that the TPC must implementation the java.io.Serializable interface.

When using the RMI/JRMP protocol for remote calls, the TPC is carried as a field in the
org.jboss.ejb.plugins.jrmp.client.RemoteMethodInvocation class that is used to forward remote
method invocation requests.

Adapting a Transaction Manager to JBoss
A transaction manager has to implement the Java Transaction API to be easily integrated with JBoss.
As almost everything in JBoss, the transaction manager is managed as an MBean. Like all JBoss ser-
vices it should implement org.jboss.system.ServiceMBean to ensure proper life-cycle management.

The primary requirement of the transaction manager service on startup is that it binds its implementa-
tion of the three required interfaces into JNDI. These interfaces and their JNDI locations are:
JBoss Administration and Development 163

Transactions on JBoss - The JTA Transaction Service
• The javax.transaction.TransactionManager interface. This interface is used by the application
server to manage transactions on behalf of the transactional objects that use container managed
transactions. It must be bound under the JNDI name “java:/TransactionManager”.

• The transaction propagation context factory interface org.jboss.tm.TransactionPropagationContex-
tFactory. It is called by JBoss whenever a transaction propagation context is needed for for trans-
porting a transaction with a remote method call. It must be bound under the JNDI name "java:/
TransactionPropagationContextImporter".

• The transaction propagation context importer interface org.jboss.tm.TransactionPropagationCon-
textImporter. This interface is called by JBoss whenever a transaction propagation context from an
incoming remote method invocation has to be converted to a transaction that can be used within
the receiving JBoss server VM.

Establishing these JNDI bindings is all the transaction manager service needs to do to install its
implementation as the JBoss server transaction manager.

The Default Transaction Manager
JBoss is by default configured to use the fast in-VM transaction manager. This transaction manager is
very fast, but does have two limitations:

• It does not do transactional logging, and is thus incapable of automated recovery after a server
crash.

• While it does support propagating transaction contexts with remote calls, it does not support prop-
agating transaction contexts to other virtual machines, so all transactional work must be done in
the same virtual machine as the JBoss server.

The corresponding default transaction manager MBean service is the org.jboss.tm.TransactionMan-
agerService MBeanIt has two configurable attributes:

• TransactionTimeout: The default transaction timeout in seconds. The default value is 300 sec-
onds or 5 minutes.

• XidFactory: The JMX ObjectName of the MBean service that provides the org.jboss.tm.XidFac-
toryMBean implementation. The XidFactoryMBean interface is used to create javax.transac-
tion.xa.Xid instances. This is a workaround for XA JDBC drivers that only work with their own
Xid implementation. Examples of such drivers are the older Oracle XA drivers. If not specified a
JBoss implementation of the Xid interface is used.

org.jboss.tm.XidFactory
The XidFactory MBean is a factory for javax.transaction.xa.Xid instances in the form of
org.jboss.tm.XidImpl. The XidFactory allows for customization of the XidImpl that it constructs
through the following attributes:

• BaseGlobalId: This is used for building globally unique transaction identifiers. This must be set
individually if multiple jboss instances are running on the same machine. The default value is the
host name of the JBoss server, followed by a slash.

• GlobalIdNumber: A long value used as initial transaction id. The default is 0.
164 JBoss Administration and Development

JBoss Transaction Internals
• Pad: The pad value determines whether the byte[] returned by the Xid getGlobalTransactionId and
getBranchQualifier methods should be equal to maximum 64 byte length or a variable value <=
64. Some resource managers(Oracle for example) require ids that are max length in size.

UserTransaction Support
The JTA javax.transaction.UserTransaction interface allows applications to explicitly control transac-
tions. For enterprise session beans that manage transaction themselves (BMT), a UserTransaction can
be obtained by calling the getUserTransaction method on the bean context object, javax.ejb.Session-
Context.

Note: For BMT beans, do not obtain the UserTransaction interface using a JNDI
lookup. Doing this violates the EJB specification, and the returned UserTransaction
object does not have the hooks the EJB container needs to make important checks.

To use the UserTransaction interface in other places, the org.jboss.tm.usertx.server.ClientUserTrans-
actionService MBean must be configured and started. This MBean publishes a UserTransaction
implementation under the JNDI name "UserTransaction". This MBean is configured by default in the
standard JBoss distributions and has no configurable attributes.

When the UserTransaction is obtained with a JNDI lookup from a stand-alone client (ie. a client oper-
ating in a virtual machine than the server’s), a very simple UserTransaction suitable for thin clients is
returned. This UserTransaction implementation only controls the transactions on the server the User-
Transaction object was obtained from. Local transactional work done in the client is not done within
the transactions started by this UserTransaction object.

When a UserTransaction object is obtained by looking up JNDI name "UserTransaction" in the same
virtual machine as JBoss, a simple interface to the JTA TransactionManager is returned. This is suit-
able for web components running in web containers embedded in JBoss. When components are
deployed in an embedded web server, the deployer will make a JNDI link from the standard
"java:comp/UserTransaction" ENC name to the global "UserTransaction" binding so that the web
components can lookup the UserTranaction instance under JNDI name as specified by the J2EE.
JBoss Administration and Development 165

Transactions on JBoss - The JTA Transaction Service
166 JBoss Administration and Development

CHAPTER 5 EJBs on JBoss - The EJB
Container Configuration and
Architecture
The JBoss 3.0 EJB container architecture is a fourth generation design that emphasizes a modular
plug-in approach. All key aspects of the EJB container may be replaced by custom versions of a plug-
in by a developer. This approach allows for fine tuned customization of the EJB container behavior to
optimally suite your needs. Most of the EJB container behavior is configurable through the EJB jar
META-INF/jboss.xml descriptor and the default server-wide equivalent standardjboss.xml descrip-
tor. We will look at various configuration capabilities throughout this chapter as we explore the con-
tainer architecture.

The EJB Client Side View
We will begin our tour of the EJB container by looking at the client view of an EJB through the home
and remote proxies. It is the responsibility of the container provider to generate the
javax.ejb.EJBHome and javax.ejb.EJBObject for an EJB implementation. A client never
references an EJB bean instance directly, but rather references the EJBHome which implements the
bean home interface, and the EJBObject which implements the bean remote interface.

Figure 5-1 shows the composition of an EJB home proxy and its relation to the EJB deployment.
JBoss Administration and Development 167

EJBs on JBoss - The EJB Container Configuration and Architecture
FIGURE 5-1. The composition of an EJBHome proxy in JBoss.

The numbered items in the figure are:

1. The EJBDeployer (org.jboss.ejb.EJBDeployer) is invoked to deploy an EJB jar.
For each EJB defined in the deployment an EJBModule (org.jboss.ejb.EJBModule) is
created to encapsulate the deployment metadata.
2. The create phase of the EJBModule life cycle creates a ProxyFactory
(org.jboss.proxy.ejb.ProxyFactory) that manages the creation of EJB home and
remote interface proxies based on the EJBModule metadata.
3. The ProxyFactory constructs the logical proxies and binds the homes into JNDI. A logical
proxy is composed of a dynamic Proxy (java.lang.reflect.Proxy), the home inter-
faces of the EJB that the Proxy exposes and the ProxyHandler
(java.lang.reflect.InvocationHandler) implementation in the form of the Cli-
entContainer.
4. The Proxy created by the ProxyFactory is a JDK 1.3+ dynamic proxy. It is a serializable
object that proxies the EJB home interfaces as defined in the EJBModule metadata. The Proxy
translates requests made through the strongly typed home interfaces into a detyped invocation
using the ClientContainer handler associated with the Proxy. It is the dynamic Proxy
instance that is bound into JNDI as the EJB home interface that clients lookup. When a client does
a lookup of an EJB home, the home Proxy is transported into the client VM along with the
ProxyHandler. The use of dynamic proxies avoids the EJB specific compilation step required
by many other EJB containers.
5. The EJB home interface is declared in the ejb-jar.xml descriptor and available from the EJB-
Module metadata. A key property of dynamic proxies is that they are seen to implement the inter-
faces they expose. This is true in the sense of Java’s strongly typed system. A proxy can be cast to
any of the home interfaces and reflection on the proxy provides the full details of the interfaces it
proxies.
6. The Proxy delegates calls made through any of its interfaces to its ProxyHandler. The
single method required of the handler is:
168 JBoss Administration and Development

The EJB Client Side View

public Object invoke(Object proxy, Method m, Object[] args) throws Throwable

The ProxyFactory creates a ClientContainer (org.jboss.proxy.ClientCon-
tainer) and assigns this as the ProxyHandler. The ClientContainer’s state consists of
an InvocationContext (org.jboss.invocation.InvocationContext) and a
chain of interceptors (org.jboss.proxy.Interceptor). The InvocationContext
contains:
• the JMX ObjectName of the EJB container MBean the Proxy is associated with
• the javax.ejb.EJBMetaData for the EJB
• the JNDI name of the EJB home interface
• the transport specific invoker (org.jboss.invocation.Invoker)
• The interceptor chain consists of the functional units that make up the EJB home or remote
interface behavior. This is a configurable aspect of an EJB as we will see when we discuss the
jboss.xml descriptor, and the interceptor makeup is contained in the EJBModule metadata. Inter-
ceptors (org.jboss.proxy.Interceptor) handle the different EJB types, security, trans-
actions and transport. You can add your own interceptors as well.

The configuration of the client side interceptors is done using the jboss.xml client-interceptors ele-
ment. Figure 5-2 shows the subset of the jboss.xml DTD for the client interceptors.When the Cli-
entContainer invoke method is called it creates an untyped Invocation
(org.jboss.invocation.Invocation) to encapsulate request. This is then passed through
the interceptor chain. The last interceptor in the chain will be the transport handler that knows how to
get the request to the server and obtain the reply, taking care of the transport specific details.

FIGURE 5-2. The jboss.xml descriptor client side interceptor configuration elements.
JBoss Administration and Development 169

EJBs on JBoss - The EJB Container Configuration and Architecture
As an example of the client interceptor configuration usage, consider the default stateless session
bean configuration found in the server/default/standardjboss.xml descriptor. Listing 5-1shows the cli-
ent-interceptors configuration for the “Standard Stateless SessionBean”.

LISTING 5-1. The client-interceptors from the “Standard Stateless SessionBean” configuration.

<container-configuration>
 <container-name>Standard Stateless SessionBean</container-name>
 <call-logging>false</call-logging>
 <container-invoker>org.jboss.proxy.ejb.ProxyFactory</container-invoker>
 <container-interceptors>
 ...
 </container-interceptors>
 <client-interceptors>
 <home>
 <interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
 <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
 <interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
 <interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>
 </home>
 <bean>
 <interceptor>org.jboss.proxy.ejb.StatelessSessionInterceptor</interceptor>
 <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
 <interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
 <interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>
 </bean>
 </client-interceptors>
 ...
</container-configuration>

This is the client interceptor configuration for stateless session beans that is used in the absence of an
EJB jar META-INF/jboss.xml configuration that overrides these settings. The functionality provided
by each interceptor is:

• org.jboss.proxy.ejb.HomeInterceptor, this handles the toString, equals,
hashCode, getHomeHandle, getEJBMetaData, and remove methods of the EJBHome
interface locally in the client VM. Any other methods are propagated to the next interceptor.
• org.jboss.proxy.ejb.StatelessSessionInterceptor, this handles the
toString, equals, hashCode, getHandle, getEJBHome and isIdentical methods
of the EJBObject interface locally in the client VM. Any other methods are propagated to the
next interceptor.
• org.jboss.proxy.SecurityInterceptor, this associates the current Securit-
yAssociation context with the method invocation for use by other interceptors or the server.
• org.jboss.proxy.TransactionInterceptor, this associates any active transac-
tion with the invocation method invocation for use by other interceptors.
• org.jboss.invocation.InvokerInterceptor, this interceptor encapsulates the
dispatch of the method invocation to the transport specific invoker. It knows if the client is exe-
cuting in the same VM as the server and will optimally route the invocation to a by reference
invoker in this situation. When the client is external to the server VM this interceptor delegates
the invocation to the transport invoker associated with the invocation context.
170 JBoss Administration and Development

The EJB Server Side View
The EJB Server Side View
Every EJB invocation must end up at a JBoss server hosted EJB container. In this section we will look
at how invocations are transported to the JBoss server VM and find their way to the EJB container via
the JMX bus.

Detached Invokers - The Transport Middlemen
We have seen that the last point of contact with the client architecture is an Invoker instance which
is an implementation of the org.jboss.invocation.Invoker interface. This is a trival inter-
face, the signature of which is given in Listing 5-2.

LISTING 5-2. The org.jboss.invocation.Invoker interface

package org.jboss.invocation;

import java.rmi.Remote;
import org.jboss.proxy.Interceptor;

public interface Invoker extends Remote
{
 /** A free form String identifier for this delegate invoker, can be clustered
 or target node. This should evolve in a more advanced meta-inf object
 */
 public String getServerHostName() throws Exception;

 /** The invoke with an Invocation Object the delegate can handle network
protocols
 on behalf of proxies (proxies delegate to these puppies)
 *
 * @param invocation A pointer to the invocation object
 * @return the value of method invocation.
 *
 * @throws Exception any invoke method exception.
 */
 public Object invoke(Invocation invocation) throws Exception;
}

Although the interface is an RMI Remote interface, this has no implications with regard to requiring
the use of RMI or any specific RMI based protocol. An Invoker simply represents a detyped trans-
port handler that is compatible with RMI. JBoss 3.0 provides invokers for in VM call-by-reference,
RMI/JRMP, RMI/IIOP and RMI/HTTP transports. The generic view of the invoker architecture is
presented in Figure 5-3.
JBoss Administration and Development 171

EJBs on JBoss - The EJB Container Configuration and Architecture
FIGURE 5-3. The transport invoker server side architecture

For each type of home proxy there is a binding to an invoker and its associated transport protocol. In
3.2+ a container will be able to have multiple invocation protocols active simultaneously. In 3.0.x a
container can only have a single protocol associated with it, but this can be any protocol. The
jboss.xml DTD configuration fragment for the container invoker configuration is given in Figure 5-4.
The bean-invoker and home-invoker values are the JMX ObjectNames of the MBean that provides
the Invoker implementation to use with the remote and home client interceptor chains respectively.
These should be set to the same value as it makes little sense in general to have separate invokers for
the remote and home interface methods.

FIGURE 5-4. The jboss.xml descriptor container invoker configuration elements.

The LocalInvoker - In VM transport
org.jboss.invocation.local.LocalInvoker is an MBean service that provides an in
VM call-by-reference implementation of the Invoker interface that has no configurable attributes.
172 JBoss Administration and Development

The EJB Server Side View
When it receives an invocation it simply looks up the address of the target EJB container in the form
of its JMX ObjectName and then sends the invocation to the EJB container via the MBeanS-
erver.

The JRMPInvoker - RMI/JRMP Transport
The org.jboss.invocation.jrmp.server JRMPInvoker class is an MBean service
that provides the RMI/JRMP implementation of the Invoker interface. The JRMPInvoker
exports itself as an RMI server so that when it is used as the Invoker in a remote client the JRMP-
Invoker stub is sent to the client instead and invocations use the RMI/JRMP protocol.

The JRMPInvoker MBean supports a number of attribute to configure the RMI/JRMP transport
layer. Its configurable attributes are:

• RMIObjectPort: sets the RMI server socket listening port number. This is the port RMI cli-
ents will connect to when communicating through the EJB home interface. The default setting in
the jboss-service.xml descriptor is 4444, and if not specified, the attribute defaults to 0 to indicate
an anonymous port should be used.
• RMIClientSocketFactory: specifies a fully qualified class name for the
java.rmi.server.RMIClientSocketFactory interface to use during export of the
EJB home interface.
• RMIServerSocketFactory: specifies a fully qualified class name for the
java.rmi.server.RMIServerSocketFactory interface to use during export of the
EJB home interface.
• ServerAddress: specifies the interface address that will be used for the RMI server socket lis-
tening port. This can be either a DNS hostname or a dot-decimal Internet address. Since the
RMIServerSocketFactory does not support a method that accepts an InetAddress
object, this value is passed to the RMIServerSocketFactory implementation class using
reflection. A check for the existence of a:
 public void setBindAddress(java.net.InetAddress addr)
method is made, and if one exists, the RMIServerSocketAddr value is passed to the RMISer-
verSocketFactory implementation. If the RMIServerSocketFactory implementation does
not support such a method, the ServerAddress value will be ignored.
• SecurityDomain: specifies the JNDI name of an org.jboss.security.Security-
Domain interface implementation to associate with the RMIServerSocketFactory imple-
mentation. The value will be passed to the RMIServerSocketFactory using reflection to
locate a method with a signature of:
 public void setSecurityDomain(org.jboss.security.SecurityDomain d)
If no such method exists the SecurityDomain value will be ignored.

An example of using a custom JRMPInvoker MBean can be found in the org.jboss.test.jrmp pack-
age of the testsuite. Listing 5-3 illustrates the custom JRMPInvoker configuration and its mapping
to a stateless session bean.

LISTING 5-3. A custom JRMPInvoker example that enables compressed sockets for session
bean.
JBoss Administration and Development 173

EJBs on JBoss - The EJB Container Configuration and Architecture
// The custom JRMPInvoker jboss-service.xml descriptor
<server>
 <mbean code="org.jboss.invocation.jrmp.server.JRMPInvoker"
 name="jboss:service=invoker,type=jrmp,socketType=CompressionSocketFactory">
 <attribute name="RMIObjectPort">4445</attribute>
 <attribute name="RMIClientSocketFactory">
 org.jboss.test.jrmp.ejb.CompressionClientSocketFactory
 </attribute>
 <attribute name="RMIServerSocketFactory">
 org.jboss.test.jrmp.ejb.CompressionServerSocketFactory
 </attribute>
 </mbean>
</server>
// The jboss.xml descriptor using the custom invoker
<jboss>
 <enterprise-beans>
 <session>
 <ejb-name>StatelessSession</ejb-name>
 <configuration-name>Standard Stateless SessionBean</configuration-name>
 <home-invoker>
 jboss:service=invoker,type=jrmp,socketType=CompressionSocketFactory
 </home-invoker>
 <bean-invoker>
 jboss:service=invoker,type=jrmp,socketType=CompressionSocketFactory
 </bean-invoker>
 </session>
 </enterprise-beans>
</jboss>

Here the default JRMPInvoker has been customized to bind to port 4445 and to use custom socket
factories that enable compression at the transport level.

The HttpInvoker - RMI/HTTP Transport
The org.jboss.invocation.http.server.HttpInvoker MBean service provides the
provides support for making invocations into the JMX bus over HTTP. Unlike the JRMPInvoker,
the HttpInvoker is not an implementation of Invoker, but it does implement the
Invoker.invoke method. The HttpInvoker is accessed indirectly by issuing an HTTP POST
against the org.jboss.invocation.http.servlet.InvokerServlet. The HttpIn-
voker exports a client side proxy in the form of the org.jboss.invocation.http.inter-
faces.HttpInvokerProxy class, which is an implementation of Invoker, and is serializable.
The HttpInvoker is a drop in replacement for the JRMPInvoker as the target of the bean-
inovker and home-invoker EJB configuration elements. The HttpInvoker and InvokerServ-
let are deployed in the http-inovker.sar discussed previously in the JNDI chapter in the section enti-
tled “Accessing JNDI over HTTP” on page 144.

The HttpInvoker supports the following attributes:

• InvokerURL: This is either the http URL to the InvokerServlet mapping, or the name
of a system property that will be resolved inside the client VM to obtain the http URL to the
InvokerServlet. This value can itself be a reference to a system property resolved in the
server if the value is of the form ${x} where x is the name of the system property. This allows the
174 JBoss Administration and Development

The EJB Server Side View
URL or client side system property to be set in one place and reused in the HttpInvoker con-
fig as well as the InvokerServlet config.
• InvokerURLPrefix: If there is no invokerURL set, then one will be constructed via the con-
catenation of invokerURLPrefix + the local host + invokerURLSuffix. An example prefix is
“http://”, and this is the default.
• InvokerURLSuffix: If there is no invokerURL set, then one will be constructed via the con-
catenation of invokerURLPrefix + the local host + invokerURLSuffix. An example suffix is
“:8080/invoker/JMXInvokerServlet” and this is the default.
• UseHostName: A boolean flag if the InetAddress.getHostName() or getHostAd-
dress() method should be used as the host component of invokerURLPrefix + host +
invokerURLSuffix. If true getHostName() is used, false getHostAddress().

An example of using the HttpInvoker to configure a stateless session bean to use the RMI/HTTP
protocol can be found in the org.jboss.test.hello testsuite package.Listing 5-4 illsutrates
the custom settings.

LISTING 5-4. A sample jboss.xml descriptor for enabling RMI/HTTP for a stateless session
bean.

<jboss>
 <!-- A custom container configuration for RMI/HTTP -->
 <container-configurations>
 <container-configuration extends="Standard Stateless SessionBean">
 <container-name>HTTP Stateless SessionBean</container-name>
 <home-invoker>jboss:service=invoker,type=http</home-invoker>
 <bean-invoker>jboss:service=invoker,type=http</bean-invoker>
 </container-configuration>
 </container-configurations>

 <enterprise-beans>
 <session>
 <ejb-name>HelloWorldViaHTTP</ejb-name>
 <configuration-name>HTTP Stateless SessionBean</configuration-name>
 <jndi-name>helloworld/HelloHTTP</jndi-name>
 </session>
 </enterprise-beans>
</jboss>

Here an extension of the standardjboss.xml “Standard Stateless SessionBean” container configuration
is defined with the name “HTTP Stateless SessionBean”. It overrides the home-invoker and bean-
invoker settings to use the HttpInvoker MBean. The “jboss:service=invoker,type=http” name is
the default name of the HttpInvoker MBean as found in the http-inovker.sar/META-INF/jboss-
service.xml descriptor.

The HA JRMPInvoker - Clustered RMI/JRMP Transport
The org.jboss.invocation.jrmp.server.JRMPInvokerHA service is an extension of
the JRMPInovker that is a cluster aware invoker. As of JBoss-3.0.3, the JRMPInvokerHA fully
JBoss Administration and Development 175

EJBs on JBoss - The EJB Container Configuration and Architecture
supports all of the attributes of the JRMPInovker. This means that customized bindings of the port,
interface and socket transport are available to clustered RMI/JRMP as well. For additional informa-
tion on the clustering architecture and the implementation of the HA RMI proxies see the JBoss Clus-
tering docs.

The HA HttpInvoker - Clustered RMI/HTTP Transport
The RMI/HTTP layer added in JBoss-3.0.2 has been extended to allow for software load balancing of
the invocations in a clustered environment in JBoss-3.0.3. An HA capable extension of the HTTP
invoker has been added that borrows much of its functionality from the HA-RMI/JRMP clustering.

To enable HA-RMI/HTTP you need to configure the invokers for the EJB container. This is done
through either a jboss.xml descriptor, or the standardjboss.xml descriptor. Listing 5-5 shows is an
example of a stateless session configuration taken from the org.jboss.test.hello testsuite package.

LISTING 5-5. A jboss.xml stateless session configuration for HA-RMI/HTTP

<jboss>
 <container-configurations>
 <!-- A custom container configuration for HA-RMI/HTTP -->
 <container-configuration extends="Clustered Stateless SessionBean">
 <container-name>HA HTTP Stateless SessionBean</container-name>
 <home-invoker>jboss:service=invoker,type=httpHA</home-invoker>
 <bean-invoker>jboss:service=invoker,type=httpHA</bean-invoker>
 </container-configuration>
 </container-configurations>

 <session>
 <ejb-name>HelloWorldViaClusteredHTTP</ejb-name>
 <configuration-name>HA HTTP Stateless SessionBean</configuration-name>
 <jndi-name>helloworld/HelloHA-HTTP</jndi-name>
 </session>
 </enterprise-beans>
</jboss>

The referenced “jboss:service=invoker,type=httpHA” invoker service is configured in the http-
invoker.sar. Its default configuration from the sar descriptor is:
 <mbean code="org.jboss.invocation.http.server.HttpInvokerHA"
 name="jboss:service=invoker,type=httpHA">
 <!-- Use a URL of the form
 http://<hostname>:8080/invoker/EJBInvokerHAServlet
 where <hostname> is InetAddress.getHostname value on which the server
 is running.
 -->
 <attribute name="InvokerURLPrefix">http://</attribute>
 <attribute name="InvokerURLSuffix">:8080/invoker/EJBInvokerHAServlet
 </attribute>
 <attribute name="UseHostName">true</attribute>
 </mbean>
176 JBoss Administration and Development

The EJB Server Side View
The URL used by the invoker proxy is the EJBInvokerHAServlet mapping as deployed on the cluster
node. The HttpInvokerHA instances across the cluster form a collection of candidate http URLs
that are made available to the client side proxy for failover and/or load balancing.

HttpProxyFactory - Building Dynamic HTTP Proxies
The org.jboss.invocation.http.server.HttpProxyFactory MBean service is a
proxy factory that can expose any interface with RMI compatible semantics for access to remote cli-
ents using HTTP as the transport.

The HttpProxyFactory supports the following attributes:

• InvokerName: The server side MBean that exposes the invoke operation for the exported
interface. The name is embedded into the HttpInvokerProxy context as the target to which the
invocation should be forwarded by the HttpInvoker.
• JndiName: The JNDI name under which the HttpInvokerProxy will be bound. This is the
name clients lookup to obtain the dynamic proxy that exposes the service interfaces and marshalls
invocations over HTTP. This may be specified as an empty value to indicate that the proxy should
not be bound into JNDI.
• InvokerURL: This is either the http URL to the InvokerServlet mapping, or the name
of a system property that will be resolved inside the client VM to obtain the http URL to the
InvokerServlet. This value can itself be a reference to a system property resolved in the
server if the value is of the form ${x} where x is the name of the system property.
• InvokerURLPrefix: If there is no invokerURL set, then one will be constructed via the con-
catenation of invokerURLPrefix + the local host + invokerURLSuffix. An example prefix is
“http://”, and this is the default.
• InvokerURLSuffix: If there is no invokerURL set, then one will be constructed via the con-
catenation of invokerURLPrefix + the local host + invokerURLSuffix. An example suffix is
“:8080/invoker/JMXInvokerServlet” and this is the default.
• UseHostName: A boolean flag if the InetAddress.getHostName() or getHostAd-
dress() method should be used as the host component of invokerURLPrefix + host +
invokerURLSuffix. If true getHostName() is used, false getHostAddress().
• ExportedInterface: The name of the RMI compatible interface that the HttpInvoker-
Proxy implements.

Steps to Expose Any RMI Interface HTTP
Using the HttpProxyFactory MBean and JMX, you can expose any interface for access using
HTTP as the transport. The interface to expose does not have to be an RMI interface, but it does have
to be compatible with RMI in that all method parameters and return values are serializable. There is
also no support for converting RMI interfaces used as method paramters or return values into their
stubs.

The three steps to making your object invocable via HTTP are:
JBoss Administration and Development 177

EJBs on JBoss - The EJB Container Configuration and Architecture
1. Create a mapping of longs to the RMI interface Methods using the MarshalledInvoca-
tion.calculateHash method. Here for example, is the proceedure for an RMI SRPRe-
moteServerInterface interface:

import java.lang.reflect.Method;
import java.util.HashMap;
import org.jboss.invocation.MarshalledInvocation;

 HashMap marshalledInvocationMapping = new HashMap();

 // Build the Naming interface method map
 Method[] methods = SRPRemoteServerInterface.class.getMethods();
 for(int m = 0; m < methods.length; m ++)
 {
 Method method = methods[m];
 Long hash = new Long(MarshalledInvocation.calculateHash(method));
 marshalledInvocationMapping.put(hash, method);
 }

2. Either create or extend an existing mbean to support an invoke operation. Its signature is
Object invoke(Invocation invocation) throws Exception, and the steps it
performs are as shown here for the SRPRemoteServerInterface interface. Note that this
uses the marshalledInvocationMapping from step 1 to map from the Long method
hashes in the MarshalledInvocation to the Method for the interface.

import org.jboss.invocation.Invocation;
import org.jboss.invocation.MarshalledInvocation;

 public Object invoke(Invocation invocation) throws Exception
 {
 SRPRemoteServerInterface theServer = <the_actual_rmi_server_object>;
 // Set the method hash to Method mapping
 if (invocation instanceof MarshalledInvocation)
 {
 MarshalledInvocation mi = (MarshalledInvocation) invocation;
 mi.setMethodMap(marshalledInvocationMapping);
 }
 // Invoke the Naming method via reflection
 Method method = invocation.getMethod();
 Object[] args = invocation.getArguments();
 Object value = null;
 try
 {
 value = method.invoke(theServer, args);
 }
 catch(InvocationTargetException e)
 {
 Throwable t = e.getTargetException();
 if(t instanceof Exception)
 throw (Exception) e;
 else
 throw new UndeclaredThrowableException(t, method.toString());
 }

 return value;
 }
178 JBoss Administration and Development

The EJB Container
3. Create a configuration of the HttpProxyFactory MBean to make the RMI/HTTP proxy
available through JNDI. For example:

 <!-- Expose the SRP service interface via HTTP -->
 <mbean code="org.jboss.invocation.http.server.HttpProxyFactory"
 name="jboss.security.tests:service=SRP/HTTP">
 <attribute name="InvokerURL">http://localhost:8080/invoker/JMXInvokerServlet
 </attribute>
 <attribute name="InvokerName">jboss.security.tests:service=SRPService
 </attribute>
 <attribute name="ExportedInterface">
 org.jboss.security.srp.SRPRemoteServerInterface
 </attribute>
 <attribute name="JndiName">srp-test-http/SRPServerInterface</attribute>
 </mbean>

Any client may now lookup the RMI interface from JNDI using the name specified in the Http-
ProxyFactory (e.g., srp-test-http/SRPServerInterface) and use the obtain proxy in exactly the
same manner as the RMI/JRMP version.

Currently the HttpProxyFactory only allows for a single interface, and customization of the cli-
ent side interceptors is not exposed. Future versions will support both features.

The EJB Container
An EJB container is the component that manages a particular class of EJB. In JBoss there is one
instance of the org.jboss.ejb.Container created for each unique configuration of an EJB
that is deployed. The actual object that is instantiated is a subclass of Container and the creation of
the container instance is managed by the EJBDeployer MBean.

EJBDeployer MBean
The org.jboss.ejb.EJBDeployer MBean is responsible for the creation of EJB containers.
Given an EJB-jar that is ready for deployment, the EJBDeployer will create and initialize the neces-
sary EJB containers, one for each type of EJB. The configurable attributes of the EJBDeployer are:

• VerifyDeployments: a boolean flag indicating if the EJB verifer should be run. This validates
that the EJBs in a deployment unit conform to the EJB 2.0 specification. Setting this to true is use-
ful for ensuring your deployments are valid.
• ValidateDTDs: a boolean flag that indicates if the ejb-jar.xml and jboss.xml descriptors
should be validated against their declared DTDs. Setting this to true is useful for ensuring your
deployment descriptors are valid.
• MetricsEnabled: a boolean flag that controls whether container interceptors marked with an
metricsEnabled=true attribute should be included in the configuration. This allows one to define a
JBoss Administration and Development 179

EJBs on JBoss - The EJB Container Configuration and Architecture
container interceptor configuration that includes metrics type interceptors that can be toggled on
and off.

The deployer contains two central methods: deploy and undeploy. The deploy method takes a
URL, which either points to an EJB-jar, or to a directory whose structure is the same as a valid EJB-
jar (which is convenient for development purposes). Once a deployment has been made, it can be
undeployed by calling undeploy on the same URL. A call to deploy with an already deployed
URL will cause an undeploy, followed by deployment of the URL, such as a re-deploy. JBoss has
support for full re-deployment of both implementation and interface classes, and will reload any
changed classes. This will allow you to develop and update EJBs without ever stopping a running
server.

During the deployment of the EJB jar the EJBDeployer and its associated classes perform three
main functions, verify the EJBs, create a container for each unique EJB, initialize the container with
the deployment configuration information. We will talk about each function in the following sections.

Verifying EJB deployments
When the VerifyDeployments attribute of the that the EJBDeployer is true, the deployer performs
a verification of EJBs in the deployment. The verification checks that an EJB meets EJB specification
compliance. This entails validating that the EJB deployment unit contains the required home and
remote, local-home and local interfaces, and that the objects appearing in these interfaces are of the
proper types, and that the required methods are present in the implementation class. This is a useful
behavior that is enabled by default since there are a number of steps that an EJB developer and
deployer must perform correctly to construct a proper EJB jar and, it is easy to make a mistake. The
verification stage attempts to catch any errors and fail the deployment with an error that indicates
what needs to be corrected.

Probably the most problematic aspect of writing EJBs is the fact that there is a discon-
nection between the bean implementation and its remote and home interfaces, as well
as its deployment descriptor configuration. It is easy to have these separate elements
get out of synch. One tool that helps eliminate this problem is XDoclet, an extension of
the standard JavaDoc Doclet engine. It works off of custom JavaDoc tags in the EJB
bean implementation class and creates the remote and home interfaces as well as the
deployment descriptors. See the XDoclet home page here http://sourceforge.net/
projects/xdoclet for additional details.

Deploying EJBs Into Containers
The most important role performed by the EJBDeployer is the creation of an EJB container and the
deployment of the EJB into the container. The deployment phase consists of iterating over EJBs in an
EJB jar, and extracting the bean classes and their metadata as described by the ejb-jar.xml and
jboss.xml deployment descriptors. For each EJB in the EJB jar, the following steps are performed:

1. Create subclass of org.jboss.ejb.Container depending on the type of the EJB, State-
less, Stateful, BMP Entity, CMP Entity, or MessageDriven. The container is assigned a unique
ClassLoader from which it can load local resources. The uniqueness of the ClassLoader is
also used to isolate the standard “java:comp” JNDI namespace from other J2EE components.
180 JBoss Administration and Development

The EJB Container
2. Set all container configurable attributes from a merge of the jboss.xml and standardjboss.xml
descriptors.
3. Create and add the container interceptors as configured for the container.
4. Associate the container with an application object. This application object represents a J2EE
enterprise application and may contain multiple EJBs and web contexts.

If all EJBs are successfully deployed, the application is started which in turn starts all containers and
makes the EJBs available to clients. If any EJB fails to deploy, a deployment exception is thrown and
the deployment module is failed.

Container configuration information
JBoss externalizes most if not all of the setup of the EJB containers using an XML file that conforms
to the jboss_3_0.dtd. The section of the jboss_3_0 DTD that relates to container configuration infor-
mation is shown in Figure 5-5 .

FIGURE 5-5. The jboss_3_0 DTD elements related to container configuration.

The container-configurations element and its subelements specify container configuration settings for
a type of container as given by the container-name element. Each configuration specifies information
such as container invoker type, the container interceptor makeup, instance caches/pools and their
sizes, persistence manager, security, and so on. Because this is a large amount of information that
requires a detailed understanding of the JBoss container architecture, JBoss ships with a standard
configuration for the four types of EJBs. This configuration file is called standardjboss.xml and it is
JBoss Administration and Development 181

EJBs on JBoss - The EJB Container Configuration and Architecture
located in the conf directory of any configuration file set that uses EJBs. Listing 5-6 gives a sample of
a configuration from the standardjboss.xml.

LISTING 5-6. An example of a complex container-configuration element from the server/default/
conf/standardjboss.xml file.

<?xml version = "1.0" encoding = "UTF-8"?>
<!DOCTYPE jboss PUBLIC
 "-//JBoss//DTD JBOSS 3.0//EN"
 "http://www.jboss.org/j2ee/dtd/jboss_3_0.dtd">
<jboss>
...
 <container-configurations>
 <container-configuration>
 <container-name>Standard CMP 2.x EntityBean</container-name>
 <call-logging>false</call-logging>
 <container-invoker>org.jboss.proxy.ejb.ProxyFactory</container-invoker>
 <container-interceptors>
 <interceptor>org.jboss.ejb.plugins.LogInterceptor</interceptor>
 <interceptor>org.jboss.ejb.plugins.SecurityInterceptor</interceptor>
 <interceptor>org.jboss.ejb.plugins.TxInterceptorCMT</interceptor>
 <interceptor metricsEnabled =
"true">org.jboss.ejb.plugins.MetricsInterceptor</interceptor>
 <interceptor>org.jboss.ejb.plugins.EntityCreationInterceptor</
interceptor>
 <interceptor>org.jboss.ejb.plugins.EntityLockInterceptor</interceptor>
 <interceptor>org.jboss.ejb.plugins.EntityInstanceInterceptor</
interceptor>

<interceptor>org.jboss.resource.connectionmanager.CachedConnectionInterceptor</
interceptor>
 <interceptor>org.jboss.ejb.plugins.EntitySynchronizationInterceptor</
interceptor>
 <interceptor>org.jboss.ejb.plugins.cmp.jdbc.JDBCRelationInterceptor</
interceptor>
 </container-interceptors>
 <client-interceptors>
 <home>
 <interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
 <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
 <interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
 <interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>
 </home>
 <bean>
 <interceptor>org.jboss.proxy.ejb.EntityInterceptor</interceptor>
 <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
 <interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
 <interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>
 </bean>
 <list-entity>
 <interceptor>org.jboss.proxy.ejb.ListEntityInterceptor</interceptor>
 <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
 <interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
 <interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>
182 JBoss Administration and Development

The EJB Container
 </list-entity>
 </client-interceptors>
 <instance-pool>org.jboss.ejb.plugins.EntityInstancePool</instance-pool>
 <instance-cache>org.jboss.ejb.plugins.EntityInstanceCache</instance-cache>
 <persistence-manager>org.jboss.ejb.plugins.cmp.jdbc.JDBCStoreManager</
persistence-manager>
 <transaction-manager>org.jboss.tm.TxManager</transaction-manager>
 <locking-policy>org.jboss.ejb.plugins.lock.QueuedPessimisticEJBLock</
locking-policy>
 <container-cache-conf>
 <cache-policy>org.jboss.ejb.plugins.LRUEnterpriseContextCachePolicy</
cache-policy>
 <cache-policy-conf>
 <min-capacity>50</min-capacity>
 <max-capacity>1000000</max-capacity>
 <overager-period>300</overager-period>
 <max-bean-age>600</max-bean-age>
 <resizer-period>400</resizer-period>
 <max-cache-miss-period>60</max-cache-miss-period>
 <min-cache-miss-period>1</min-cache-miss-period>
 <cache-load-factor>0.75</cache-load-factor>
 </cache-policy-conf>
 </container-cache-conf>
 <container-pool-conf>
 <MaximumSize>100</MaximumSize>
 </container-pool-conf>
 <commit-option>B</commit-option>
 </container-configuration>
...
 </container-configurations>
</jboss>

 Figure 5-5and Listing 5-6 demonstrate how extensive the container configuration options are. The
container configuration information can be specified at two levels. The first is in the standardj-
boss.xml file contained in the configuration set directory. The second is at the ejb-jar level. By plac-
ing a jboss.xml file in the ejb-jar META-INF directory, you can specify either overrides for container
configurations in the standardjboss.xml file, or entirely new named container configurations. This
provides great flexibility in the configuration of containers. As you have seen, all container configu-
ration attributes have been externalized and as such are easily modifiable. Knowledgeable developers
can even implement specialized container components, such as instance pools or caches, and easily
integrate them with the standard container configurations to optimize behavior for a particular appli-
cation or environment.
JBoss Administration and Development 183

EJBs on JBoss - The EJB Container Configuration and Architecture
FIGURE 5-6. The jboss.xml descriptor EJB to container configuration mapping elements

How an EJB deployment .chooses its container configuration is based on the explicit or implict jboss/
enterprise-beans/<type>/configuration-name element.Figure 5-6 shows the jboss.xml DTD fragment
that shows how an EJB can declare which container configuration it should use.

The configuration-name element is a link to a container-configurations/container-configuration ele-
ment in Figure 5-5. It specifies which container configuration to use for the referring EJB. The link is
from a configuration-name element to a container-name element. You are able to specify container
configurations per class of EJB by including a container-configuration element in the EJB definition.
Typically one does not define completely new container configurations, although this is supported.
The typical usage of a jboss.xml level container-configuration is to override one or more aspects of a
container-configuration coming from the standardjboss.xml descriptor. This is done by specifying
conatiner-configuration that references the name of an existing standardjboss.xml container-configu-
ration/container-name as the value for the container-configuration/extends attribute. Listing 5-7
shows an example of defining a new “Secured Stateless SessionBean” configuration that is an exten-
sion of the standard stateless session configuration whose name is “Standard Stateless SessionBean”.

LISTING 5-7. An example of overriding the standardjboss.xml container stateless session beans
configuration to enable secured access.

<?xml version="1.0"?>
<jboss>
 <enterprise-beans>
 <session>
 <ejb-name>EchoBean</ejb-name>
 <configuration-name>Secured Stateless SessionBean</configuration-name>
 ...
 </session>
 </enterprise-beans>
184 JBoss Administration and Development

The EJB Container
 <container-configurations>
 <container-configuration extends=”Standard Stateless SessionBean”>
 <container-name>Secured Stateless SessionBean</container-name>
 <!-- Override the container socket factories -->
 <security-domain>java:/jaas/my-security-domain</security-domain>
 </container-configuration>
 </container-configurations>
</jboss>

If an EJB does not provide a container configuration specification in the deployment unit ejb-jar, the
container factory chooses a container configuration from the standardjboss.xml descriptor based on
the type of the EJB. So, in reality there is an implicit configuration-name element for every type of
EJB, and the mappings from the EJB type to default container configuration name are as follows:

• container-managed persistence entity version 2.0 = Standard CMP 2.x EntityBean
• container-managed persistence entity version 1.1 = Standard CMP EntityBean
• bean-managed persistence entity = Standard BMP EntityBean
• stateless session = Standard Stateless SessionBean
• stateful session = Standard Stateful SessionBean
• message driven = Standard Message Driven Bean

So, it is not necessary to indicate which container configuration an EJB is using if you want to use the
default based on the bean type. It probably provides for a more self-contained descriptor to include
the configuration-name element, but this is a matter of style.

Now that you know how to specify which container configuration an EJB is using, and that you can
define a deployment unit level override, the question is what are all of those container-configuration
child elements? This question will be addressed element by element in the following sections. A
number of the elements specify interface class implementations whose configuration is affected by
other elements, so before starting in on the configuration elements you need to understand the
org.jboss.metadata.XmlLoadable interface.

The XmlLoadable interface is a simple interface that consists of a single method. The interface
definition is:
import org.w3c.dom.Element;
public interface XmlLoadable
{
 public void importXml(Element element) throws Exception;
}

Classes implement this interface to allow their configuration to be specified via an XML document
fragment. The root element of the document fragment is what would be passed to the importXml
method. You will see a few examples of this as the container configuration elements are described in
the following sections.

THE CONTAINER-NAME ELEMENT
JBoss Administration and Development 185

EJBs on JBoss - The EJB Container Configuration and Architecture
The container-name element specifies a unique name for a given configuration. EJBs link to a partic-
ular container configuration by setting their configuration-name element to the value of the container-
name for the container configuration.

THE CALL-LOGGING ELEMENT

The call-logging element expects a boolean (true or false) as its value to indicate whether or not the
LogInterceptor should log method calls to a container. This is somewhat obsolete with the
change to log4j, which provides a fine-grained logging API.

THE CONTAINER-INVOKER AND CONTAINER-INVOKER-CONF ELEMENTS

The container-invoker element specifies the class name of the factory that sets up the binding
between the home proxy and the client interceptor invoker. Examples of available choices include
org.jboss.proxy.ejb.ProxyFactory for RMI/JRMP,
org.jboss.proxy.ejb.ProxyFactoryHA, org.jboss.ejb.plugins.jms.JMS-
ContainerInvoker for JMS access to message driven beans, org.jboss.ejb.plu-
gins.iiop.server.IIOPContainerInvoker for RMI/IIOP.

The container-invoker class is configured using the container-invoker-conf element, provided that the
class that implements the org.jboss.ejb.ContainerInvoker interface also implements the
XmlLoadable interface. If it does, it is simply passed the XML document container-invoker-conf
element to use as it chooses. As of 3.0.1 only the JMSContainerInvoker makes use of the
invoker-conf, and the following child elements are meaningful:

• JMSProviderAdapterJNDI, specifies the JNDI name of the
org.jboss.jms.jndi.JMSProviderAdapter implementation to use to setup the JMS
layer.
• ServerSessionPoolFactoryJNDI, specifies the JNDI name of the
org.jboss.jms.asf.ServerSessionPoolFactory implementation to use for creat-
ing the javax.jms.ServerSessionPool which will be used to manage the concurrency of
the MDBs.
• MaximumSize, specifies the upper limit to the number of concurrent MDBs that will be
allowed for the JMS destination associated with a given MDB deployment. This defaults to 15 if
not specified.
• MaxMessages, specifies the maxMessages parameter value for the createConnection-
Consumer method of javax.jms.QueueConnection and javax.jms.TopicCon-
nection interfaces, as well as the maxMessages parameter value for the
createDurableConnectionConsumer method of javax.jms.TopicConnection.
It is the maximum number of messages that can be assigned to a server session at one time. This
defaults to 1 if not specified. This value should not be modified from the default unless your JMS
provider indicates this is supported.

In JBoss 3.2 the invoker architecture will be further extended to support multiple active invokers for a
given EJB deployment.

THE CONTAINER-INTERCEPTORS ELEMENT
186 JBoss Administration and Development

The EJB Container
The container-interceptors element specifies one or more interceptor elements that are to be config-
ured as the method interceptor chain for the container. The value of the interceptor element is a fully
qualified class name of an org.jboss.ejb.Interceptor interface implementation. The con-
tainer interceptors form a linked-list like structure through which EJB method invocations pass. The
first interceptor in the chain is invoked when ContainerInvoker passes a method invocation to
the container. The last interceptor invokes the business method on the bean. We will discuss the
Interceptor interface latter in this chapter when we talk about the container plugin framework.
Generally, care must be taken when changing an existing standard EJB interceptor configuration as
the EJB contract regarding security, transactions, persistence, and thread safety derive from the inter-
ceptors.

THE INSTANCE-POOL AND CONTAINER-POOL-CONF ELEMENTS

The instance-pool element specifies the fully qualified class name of an
org.jboss.ejb.InstancePool interface implementation to use as the container Instance-
Pool. We will discuss the InstancePool interface in detail latter in this chapter when we talk
about the container plugin framework.

The container-pool-conf is passed to the InstancePool implementation class given by the
instance-pool element if it implements XmlLoadable interface. All current JBoss Instance-
Pool implementations derive from the org.jboss.ejb.plugins.AbstractInstance-
Pool class and it provides support for the MinimumSize and MaximumSize container-pool-conf
child elements. The MinimumSize element gives the minimum number of instances to keep in the
pool, while the MaximumSize specifies the maximum number of pool instances that are allowed. The
default use of MaxiumSize may not be what you expect. The pool MaximumSize is the maximum
number of EJB instances that are kept available, but additional instances can be created if the number
of concurrent requests exceeds the MaximumSize value. If you want to limit the maximum concur-
rency of an EJB to the pool MaximumSize, you need to set the strictMaximumSize element to true.
When strictMaximumSize is true, only MaximumSize EJB instances may be active. When there are
MaximumSize active instances, any subsequent requests will be blocked until an instance is freed
back to the pool. The default value for strictMaximumSize is false. How long a request blocks wait-
ing for an instance pool object is controlled by the strictTimeout: element. It defines the time in milli-
seconds to wait for an instance to be returned to the pool when there are MaximumSize active
instances. A value less than or equal to 0 will mean not to wait at all. When a request times out wait-
ing for an instance a java.rmi.ServerException is generated and the call aborted. This is
parsed as an Integer so that max wait time is 2147483647 or just under 25 days, and this is the default
value.

The Synchronized child element is a true/false flag used by the specialty org.jboss.ejb.plu-
gins.SingletonStatelessSessionInstancePool class that supports a single stateless
session instance or a singleton pattern. If Synchronized is true only one method invocation thread at a
time is allowed to access the singleton session bean. If Synchronized is false then the singleton may
have multiple method invocation threads active at any given moment and the session bean would
have to be coded in a thread-safe manner.

THE INSTANCE-CACHE AND CONTAINER-CACHE-CONF ELEMENTS
JBoss Administration and Development 187

EJBs on JBoss - The EJB Container Configuration and Architecture
The instance-cache element specifies the fully qualified class name of the
org.jboss.ejb.InstanceCache interface implementation. This element is only meaningful
for entity and stateful session beans as these are the only EJB types that have an associated identity.
We will discuss the InstanceCache interface in detail latter in this chapter when we talk about the
container plugin framework.

The container-cache-conf element is passed to the InstanceCache implementation if it supports
the XmlLoadable interface. All current JBoss InstanceCache implementations derive from the
org.jboss.ejb.plugins.AbstractInstanceCache class and it provides support for the
XmlLoadable interface and uses the cache-policy child element as the fully qualified class name of
an org.jboss.util.CachePolicy implementation that acts as the instance cache store. The
cache-policy-conf child element is passed to the CachePolicy implementation if it supports the
XmlLoadable interface. If it does not, the cache-policy-conf will silently be ignored.

There are two JBoss implementations of CachePolicy used by the standardjboss.xml configura-
tion that support the current array of cache-policy-conf child elements. The classes are
org.jboss.ejb.plugins.LRUEnterpriseContextCachePolicy and
org.jboss.ejb.plugins.LRUStatefulContextCachePolicy. The LRUEnter-
priseContextCachePolicy is used by entity bean containers while the LRUStatefulCon-
textCachePolicy is used by stateful session bean containers. Both cache policies support the
following cache-policy-conf child elements:

• min-capacity, specifies the minimum capacity of this cache
• max-capacity, specifies the maximum capacity of the cache, which cannot be less than min-
capacity.
• overager-period, specifies the period in seconds between runs of the overager task. The pur-
pose of the overager task is to see if the cache contains beans with an age greater than the max-
bean-age element value. Any beans meeting this criterion will be passivated.
• max-bean-age, specifies the maximum period of inactivity in seconds a bean can have before
it will be passivated by the overager process.
• resizer-period, specifies the period in seconds between runs of the resizer task. The purpose
of the resizer task is to contract or expand the cache capacity based on the remaining three ele-
ment values in the following way. When the resizer task executes it checks the current period
between cache misses, and if the period is less than the min-cache-miss-period value the cache is
expanded up to the max-capacity value using the cache-load-factor. If instead the period
between cache misses is greater than the max-cache-miss-period value the cache is contracted
using the cache-load-factor.
• max-cache-miss-period, specifies the time period in seconds in which a cache miss should
signal that the cache capacity be contracted. It is equivalent to the minimum miss rate that will be
tolerated before the cache is contracted.
• min-cache-miss-period, specifies the time period in seconds in which a cache miss should
signal that the cache capacity be expanded. It is equivalent to the maximum miss rate that will be
tolerated before the cache is expanded.
• cache-load-factor, specifies the factor by which the cache capacity is contracted and
expanded. The factor should be less than 1. When the cache is contracted the capacity is reduced
so that the current ratio of beans to cache capacity is equal to the cache-load-factor value. When
188 JBoss Administration and Development

The EJB Container
the cache is expanded the new capacity is determined as current-capacity * 1/cache-load-factor.
The actual expansion factor may be as high as 2 based on an internal algorithm based on the num-
ber of cache misses. The higher the cache miss rate the closer the true expansion factor will be to
2.

The LRUStatefulContextCachePolicy also supports the remaining child elements:

• remover-period, specifies the period in seconds between runs of the remover task. The
remover task removes passivated beans that have not been accessed in more than max-bean-life
seconds. This task prevents stateful session beans that were not removed by users from filling up
the passivation store.
• max-bean-life, specifies the maximum period of inactivity in seconds that a bean can exist
before being removed from the passivation store.

An alternative cache policy implementation is the org.jboss.ejb.plugins.NoPassiva-
tionCachePolicy class, which simply never passivates instances. It uses an in-memory Hash-
Map implementation that never discards instances unless they are explicitly removed. This class does
not support any of the cache-policy-conf configuration elements.

THE PERSISTENCE-MANAGER ELEMENT

The persistence-manager element value specifies the fully qualified class name of the persistence
manager implementation. The type of the implementation depends on the type of EJB. For stateful
session beans it must be an implementation of the org.jboss.ejb.StatefulSessionPersistenceManager
interface. For BMP entity beans it must be an implementation of the org.jboss.ejb.EntityPersistence-
Manager interface, while for CMP entity beans it must be an implementation of the
org.jboss.ejb.EntityPersistenceStore interface.

THE TRANSACTION-MANAGER ELEMENT

The transaction-manager element is now obsolete and no longer used as the JTA implementation
class is obtained from the well-known JNDI location “java:/TransactionManager”. See “Transactions
on JBoss - The JTA Transaction Service” on page 159. for information on integrating an alternate
JTA transaction manager.

THE LOCKING-POLICY ELEMENT

The locking-policy element gives the fully qualified class name of the EJB lock implementation to
use. This class must implement the org.jboss.ejb.BeanLock interface. The current JBoss
versions include:

• org.jboss.ejb.plugins.lock.MethodOnlyEJBLock, an implementation that
does not perform any pessimistic transactional locking. It does provide locking for single-
threaded non-reentrant beans. This locking policy is no longer supported as of 3.0.4.
• org.jboss.ejb.plugins.lock.QueuedPessimisticEJBLock, an implementa-
tion that holds threads awaiting the transactional lock to be freed in a fair FIFO queue. Non-trans-
actional threads are also put into this wait queue as well. Unlike the
SimplePessimisticEJBLock that notifies all threads on transaction completion, this class
JBoss Administration and Development 189

EJBs on JBoss - The EJB Container Configuration and Architecture
pops the next waiting transaction from the queue and notifies only those threads waiting associ-
ated with that transaction. This class should perform better than SimplePessimisticE-
JBLock when contention is high. This implementation is the current default used by the standard
configurations.
• org.jboss.ejb.plugins.lock.SimplePessimisticEJBLock, an implementa-
tion that is similar to QueuedPessimisticEJBLock, but threads simply are blocked by wait-
ing on the lock and are notified using the notifyAll broadcast.

We will talk in more detail about the locking policy usage in section “Entity Bean Locking and Dead-
lock Detection” on page 202.

THE COMMIT-OPTION AND OPTIOND-REFRESH-RATE ELEMENT

The commit-option value specifies the EJB entity bean persistent storage commit option. It must be
one of A, B, C or D. The meaning of the option values is:

• A, the container caches the beans state between transactions. This option assumes that the
container is the only user accessing the persistent store. This assumption allows the container to
synchronize the in-memory state from the persistent storage only when absolutely necessary. This
occurs before the first business method executes on a found bean or after the bean is passivated
and reactivated to serve another business method. This behavior is independent of whether the
business method executes inside a transaction context.
• B, the container caches the bean state between transactions. However, unlike option A the
container does not assume exclusive access to the persistent store. Therefore, the container will
synchronize the in-memory state at the beginning of each transaction. Thus, business methods
executing in a transaction context don't see much benefit from the container caching the bean,
whereas business methods executing outside a transaction context (transaction attributes Never,
NotSupported or Supports) access the cached (and potentially invalid) state of the bean.
• C, the container does not cache bean instances. The in-memory state must be synchronized on
every transaction start. For business methods executing outside a transaction the synchronization
is still performed, but the ejbLoad executes in the same transaction context as that of the caller.
• D, is a JBoss specific feature which is not described in the EJB specification. It is a lazy read
scheme where bean state is cached between transactions as with option A, but the state is periodi-
cally resynchronized with that of the persistent store. The default time between reloads is 30 sec-
onds, but may configured using the optiond-refresh-rate element.

THE SECURITY-DOMAIN ELEMENT

Inside the EJB org.jboss.ejb.Container classThe security-domain element specifies the JNDI name of
the object that implements the org.jboss.security.AuthenticationManager and org.jboss.secu-
rity.RealmMapping interfaces. Usually one specifies the security-domain globally under the jboss
root element so that all EJBs in a given deployment are secured. The details of the security manager
interfaces and configuring the security layer are discussed in “Security on JBoss - J2EE Security Con-
figuration and Architecture” on page 267..

The JBoss EJB container uses a framework pattern that allows one to change implementations of var-
ious aspects of the container behavior. The container itself does not perform any significant work
190 JBoss Administration and Development

The EJB Container
other than connecting the various behavioral components together. Implementations of the behavioral
components are referred to as plugins, because you can plug in a new implementation by changing a
container configuration. Examples of plug-in behavior you may want to change include persistence
management, object pooling, object caching, container invokers and interceptors. There are four sub-
classes of the org.jboss.ejb.Container class, each one implementing a particular bean type:

• org.jboss.ejb.EntityContainer handles javax.ejb.EntityBean types
• org.jboss.ejb.StatelessSessionContainer handles Stateless
javax.ejb.SessionBean types
• org.jboss.ejb.StatefulSessionContainer handles Stateful
javax.ejb.SessionBean types
• org.jboss.ejb.MessageDrivenContainer handles javax.ejb.Mes-
sageDrivenBean types

Container Plug-in Framework
The EJB container delegates much of its behavior to components known as container plug-ins. The
interfaces that make up the container plugin points include the following:

org.jboss.ejb.ContainerPlugin

org.jboss.ejb.ContainerInvoker

org.jboss.ejb.Interceptor

org.jboss.ejb.InstancePool

org.jboss.ejb.InstanceCache

org.jboss.ejb.EntityPersistanceManager

org.jboss.ejb.EntityPersistanceStore

org.jboss.ejb.StatefulSessionPersistenceManager

The container's main responsibility is to manage its plug-ins. This means ensuring that the plug-ins
have all the information they need to implement their functionality.

org.jboss.ejb.ContainerPlugin
The ContainerPlugin interface is the parent interface of all container plug-in interfaces. It pro-
vides a callback that allows a container to provide each of its plug-ins a pointer to the container the
plug-in is working on behalf of. The ContainerPlugin interface is given in Listing 5-8.

LISTING 5-8. The org.jboss.ejb.ContainerPlugin interface

public interface ContainerPlugin extends org.jboss.system.Service
{
 /** This callback is set by the container so that the plugin
 * may access its container
JBoss Administration and Development 191

EJBs on JBoss - The EJB Container Configuration and Architecture
 *
 * @param con the container which owns the plugin
 */
 public void setContainer(Container con);
}

org.jboss.ejb.Interceptor
The Interceptor interface enables one to build a chain of method interceptors through which each EJB
method invocation must pass. The Interceptor interface is given in Listing 5-9.

LISTING 5-9. The org.jboss.ejb.Interceptor interface

import org.jboss.invocation.Invocation;

public interface Interceptor extends ContainerPlugin
{
 public void setNext(Interceptor interceptor);
 public Interceptor getNext();
 public Object invokeHome(Invocation mi) throws Exception;
 public Object invoke(Invocation mi) throws Exception;
}

All interceptors defined in the container configuration are created and added to the container intercep-
tor chain by the EJBDeployer. The last interceptor is not added by the deployer but rather by the con-
tainer itself because this is the interceptor that interacts with the EJB bean implementation.

The order of the interceptor in the chain is important. The idea behind ordering is that interceptors
that are not tied to a particular EnterpriseContext instance are positioned before interceptors that
interact with caches and pools.

Implementers of the Interceptor interface form a linked-list like structure through which the Invoca-
tion object is passed. The first interceptor in the chain is invoked when an invoker passes a Invocation
to the container via the JMX bus. The last interceptor invokes the business method on the bean. There
are usually on the order of five interceptors in a chain depending on the bean type and container con-
figuration. Interceptor semantic complexity ranges from simple to complex. An example of a simple
interceptor would be LoggingInterceptor, while a complex example is EntitySynchronizationInter-
ceptor.

One of the main advantages of an interceptor pattern is flexibility in the arrangement of interceptors.
Another advantage is the clear functional distinction between different interceptors. For example,
logic for transaction and security is cleanly separated between the TXInterceptor and SecurityInter-
ceptor respectively.

If any of the interceptors fail, the call is terminated at that point. This is a fail-quickly type of seman-
tic. For example, if a secured EJB is accessed without proper permissions, the call will fail as the
SecurityInterceptor before any transactions are started or instances caches are updated.
192 JBoss Administration and Development

The EJB Container
org.jboss.ejb.InstancePool
An InstancePool is used to manage the EJB instances that are not associated with any identity. The
pools actually manage subclasses of the org.jboss.ejb.EnterpriseContext objects that aggregate unas-
sociated bean instances and related data. Listing 5-10 gives the InstancePool interface.

LISTING 5-10. The org.jboss.ejb.InstancePool interface

public interface InstancePool extends ContainerPlugin
{
 /** Get an instance without identity. Can be used
 * by finders and create-methods, or stateless beans
 *
 * @return Context /w instance
 * @exception RemoteException
 */
 public EnterpriseContext get() throws Exception;

 /** Return an anonymous instance after invocation.
 *
 * @param ctx
 */
 public void free(EnterpriseContext ctx);

 /** Discard an anonymous instance after invocation.
 * This is called if the instance should not be reused,
 * perhaps due to some exception being thrown from it.
 *
 * @param ctx
 */
 public void discard(EnterpriseContext ctx);

 /**
 * Return the size of the pool.
 *
 * @return the size of the pool.
 */
 public int getCurrentSize();

 /**
 * Get the maximum size of the pool.
 *
 * @return the size of the pool.
 */
 public int getMaxSize();
}

Depending on the configuration, a container may choose to have a certain size of the pool contain
recycled instances, or it may choose to instantiate and initialize an instance on demand.
JBoss Administration and Development 193

EJBs on JBoss - The EJB Container Configuration and Architecture
The pool is used by the InstanceCache implementation to acquire free instances for activation, and it
is used by interceptors to acquire instances to be used for Home interface methods (create and finder
calls).

org.jboss.ebj.InstanceCache
The container InstanceCache implementation handles all EJB-instances that are in an active state,
meaning bean instances that have an identity attached to them. Only entity and stateful session beans
are cached, as these are the only bean types that have state between method invocations. The cache
key of an entity bean is the bean primary key. The cache key for a stateful session bean is the session
id. Listing 5-11 gives the InstanceCache interface.

LISTING 5-11. The org.jboss.ejb.InstanceCache interface

public interface InstanceCache extends ContainerPlugin
{
 /**
 * Gets a bean instance from this cache given the identity.
 * This method may involve activation if the instance is not
 * in the cache.
 * Implementation should have O(1) complexity.
 * This method is never called for stateless session beans.
 *
 * @param id the primary key of the bean
 * @return the EnterpriseContext related to the given id
* @exception RemoteException in case of illegal calls
 * (concurrent / reentrant), NoSuchObjectException if
* the bean cannot be found.
 * @see #release
 */
 public EnterpriseContext get(Object id)
 throws RemoteException, NoSuchObjectException;

 /**
 * Inserts an active bean instance after creation or activation.
 * Implementation should guarantee proper locking and O(1) complexity.
 *
 * @param ctx the EnterpriseContext to insert in the cache
 * @see #remove
 */
 public void insert(EnterpriseContext ctx);

 /**
 * Releases the given bean instance from this cache.
 * This method may passivate the bean to get it out of the cache.
 * Implementation should return almost immediately leaving the
 * passivation to be executed by another thread.
 *
 * @param ctx the EnterpriseContext to release
 * @see #get
 */
 public void release(EnterpriseContext ctx);
194 JBoss Administration and Development

The EJB Container
 /** Removes a bean instance from this cache given the identity.
 * Implementation should have O(1) complexity and guarantee
* proper locking.
 *
 * @param id the pimary key of the bean
 * @see #insert
 */
 public void remove(Object id);

 /** Checks whether an instance corresponding to a particular
 * id is active
 *
 * @param id the pimary key of the bean
 * @see #insert
 */
 public boolean isActive(Object id);

}

In addition to managing the list of active instances, the InstanceCache is also responsible for activat-
ing and passivating instances. If an instance with a given identity is requested, and it is not currently
active, the InstanceCache must use the InstancePool to acquire a free instance, followed by the persis-
tence manager to activate the instance. Similarly, if the InstanceCache decides to passivate an active
instance, it must call the persistence manager to passivate it and release the instance to the Instance-
Pool.

org.jboss.ejb.EntityPersistenceManager

The EntityPersistenceManager is responsible for the persistence of EntityBeans. This includes the
following:

• Creating an EJB instance in a storage
• Loading the state of a given primary key into an EJB instance
• Storing the state of a given EJB instance
• Removing an EJB instance from storage
• Activating the state of an EJB instance
• Passivating the state of an EJB instance

Listing 5-12 gives the EntityPersistenceManager interface.

LISTING 5-12. The org.jboss.ejb.EntityPersistenceManager interface

public interface EntityPersistenceManager extends ContainerPlugin
{
 /**
 * Returns a new instance of the bean class or a subclass of the bean class.
 *
 * @return the new instance
 */
JBoss Administration and Development 195

EJBs on JBoss - The EJB Container Configuration and Architecture
 Object createBeanClassInstance() throws Exception;

 /**
 * This method is called whenever an entity is to be created. The
 * persistence manager is responsible for calling the ejbCreate method
 * on the instance and to handle the results properly wrt the persistent
 * store.
 *
 * @param m the create method in the home interface that was
 * called
 * @param args any create parameters
 * @param instance the instance being used for this create call
 */
 void createEntity(Method m,
 Object[] args,
 EntityEnterpriseContext instance)
 throws Exception;

 /**
 * This method is called whenever an entity is to be created. The
 * persistence manager is responsible for calling the ejbPostCreate method
 * on the instance and to handle the results properly wrt the persistent
 * store.
 *
 * @param m the create method in the home interface that was
 * called
 * @param args any create parameters
 * @param instance the instance being used for this create call
 */
 void postCreateEntity(Method m,
 Object[] args,
 EntityEnterpriseContext instance)
 throws Exception;

 /**
 * This method is called when single entities are to be found. The
 * persistence manager must find out whether the wanted instance is
 * available in the persistence store, and if so it shall use the
 * ContainerInvoker plugin to create an EJBObject to the instance, which
 * is to be returned as result.
 *
 * @param finderMethod the find method in the home interface that was
 * called
 * @param args any finder parameters
 * @param instance the instance to use for the finder call
 * @return an EJBObject representing the found entity
 */
 Object findEntity(Method finderMethod,
 Object[] args,
 EntityEnterpriseContext instance)
 throws Exception;

 /**
 * This method is called when collections of entities are to be found. The
 * persistence manager must find out whether the wanted instances are
196 JBoss Administration and Development

The EJB Container
 * available in the persistence store, and if so it shall use the
 * ContainerInvoker plugin to create EJBObjects to the instances, which are
 * to be returned as result.
 *
 * @param finderMethod the find method in the home interface that was
 * called
 * @param args any finder parameters
 * @param instance the instance to use for the finder call
 * @return an EJBObject collection representing the found
 * entities
 */
 Collection findEntities(Method finderMethod,
 Object[] args,
 EntityEnterpriseContext instance)
 throws Exception;

 /**
 * This method is called when an entity shall be activated. The persistence
 * manager must call the ejbActivate method on the instance.
 *
 * @param instance the instance to use for the activation
 *
 * @throws RemoteException thrown if some system exception occurs
 */
 void activateEntity(EntityEnterpriseContext instance)
 throws RemoteException;

 /**
 * This method is called whenever an entity shall be load from the
 * underlying storage. The persistence manager must load the state from
 * the underlying storage and then call ejbLoad on the supplied instance.
 *
 * @param instance the instance to synchronize
 *
 * @throws RemoteException thrown if some system exception occurs
 */
 void loadEntity(EntityEnterpriseContext instance)
 throws RemoteException;

 /**
 * This method is used to determine if an entity should be stored.
 *
 * @param instance the instance to check
 * @return true, if the entity has been modified
 * @throws Exception thrown if some system exception occurs
 */
 boolean isModified(EntityEnterpriseContext instance) throws Exception;

 /**
 * This method is called whenever an entity shall be stored to the
 * underlying storage. The persistence manager must call ejbStore on the
 * supplied instance and then store the state to the underlying storage.
 *
 * @param instance the instance to synchronize
 *
JBoss Administration and Development 197

EJBs on JBoss - The EJB Container Configuration and Architecture
 * @throws RemoteException thrown if some system exception occurs
 */
 void storeEntity(EntityEnterpriseContext instance)
 throws RemoteException;

 /**
 * This method is called when an entity shall be passivate. The persistence
 * manager must call the ejbPassivate method on the instance.
 *
 * @param instance the instance to passivate
 *
 * @throws RemoteException thrown if some system exception occurs
 */
 void passivateEntity(EntityEnterpriseContext instance)
 throws RemoteException;

 /**
 * This method is called when an entity shall be removed from the
 * underlying storage. The persistence manager must call ejbRemove on the
 * instance and then remove its state from the underlying storage.
 *
 * @param instance the instance to remove
 *
 * @throws RemoteException thrown if some system exception occurs
 * @throws RemoveException thrown if the instance could not be removed
 */
 void removeEntity(EntityEnterpriseContext instance)
 throws RemoteException, RemoveException;
}

As per the EJB 2.0 specification, JBoss supports two entity bean persistence semantics: Container
Managed Persistence (CMP) and Bean Managed Persistence (BMP). The CMP implementation uses
an implementation of the org.jboss.ejb.EntityPersistanceStore interface. By default this is the
org.jboss.ejb.plugins.cmp.jdbc.JDBCStoreManager which is the entry point for the CMP2 persistence
engine. Listing 5-13 gives the EntityPersistanceStore interface.

LISTING 5-13. The org.jboss.ejb.EntityPersistanceStore interface

public interface EntityPersistenceStore extends ContainerPlugin
{
 /**
 * Returns a new instance of the bean class or a subclass of the bean class.
 *
 * @return the new instance
 *
 * @throws Exception
 */
 Object createBeanClassInstance() throws Exception;

 /**
 * Initializes the instance context.
 *
 * <p>This method is called before createEntity, and should
198 JBoss Administration and Development

The EJB Container
 * reset the value of all cmpFields to 0 or null.
 *
 * @param ctx
 *
 * @throws RemoteException
 */
 void initEntity(EntityEnterpriseContext ctx);

 /**
 * This method is called whenever an entity is to be created.
 * The persistence manager is responsible for handling the results properly
 * wrt the persistent store.
 *
 * @param m the create method in the home interface that was
 * called
 * @param args any create parameters
 * @param instance the instance being used for this create call
 * @return The primary key computed by CMP PM or null for BMP
 *
 * @throws Exception
 */
 Object createEntity(Method m,
 Object[] args,
 EntityEnterpriseContext instance)
 throws Exception;

 /**
 * This method is called when single entities are to be found. The
 * persistence manager must find out whether the wanted instance is
 * available in the persistence store, if so it returns the primary key of
 * the object.
 *
 * @param finderMethod the find method in the home interface that was
 * called
 * @param args any finder parameters
 * @param instance the instance to use for the finder call
 * @return a primary key representing the found entity
 *
 * @throws RemoteException thrown if some system exception occurs
 * @throws FinderException thrown if some heuristic problem occurs
 */
 Object findEntity(Method finderMethod,
 Object[] args,
 EntityEnterpriseContext instance)
 throws Exception;

 /**
 * This method is called when collections of entities are to be found. The
 * persistence manager must find out whether the wanted instances are
 * available in the persistence store, and if so it must return a
 * collection of primaryKeys.
 *
 * @param finderMethod the find method in the home interface that was
 * called
 * @param args any finder parameters
JBoss Administration and Development 199

EJBs on JBoss - The EJB Container Configuration and Architecture
 * @param instance the instance to use for the finder call
 * @return an primary key collection representing the found
 * entities
 *
 * @throws RemoteException thrown if some system exception occurs
 * @throws FinderException thrown if some heuristic problem occurs
 */
 Collection findEntities(Method finderMethod,
 Object[] args,
 EntityEnterpriseContext instance)
 throws Exception;

 /**
 * This method is called when an entity shall be activated.
 *
 * <p>With the PersistenceManager factorization most EJB calls should not
 * exists However this calls permits us to introduce optimizations in
 * the persistence store. Particularly the context has a
 * "PersistenceContext" that a PersistenceStore can use (JAWS does for
 * smart updates) and this is as good a callback as any other to set it
 * up.

 * @param instance the instance to use for the activationThread 1 *
 *
 * @throws RemoteException thrown if some system exception occurs
 */
 void activateEntity(EntityEnterpriseContext instance)
 throws RemoteException;

 /**
 * This method is called whenever an entity shall be load from the
 * underlying storage. The persistence manager must load the state from
 * the underlying storage and then call ejbLoad on the supplied instance.
 *
 * @param instance the instance to synchronize
 *
 * @throws RemoteException thrown if some system exception occurs
 */
 void loadEntity(EntityEnterpriseContext instance)
 throws RemoteException;

 /**
 * This method is used to determine if an entity should be stored.
 *
 * @param instance the instance to check
 * @return true, if the entity has been modified
 * @throws Exception thrown if some system exception occurs
 */
 boolean isModified(EntityEnterpriseContext instance) throws Exception;

 /**
 * This method is called whenever an entity shall be stored to the
 * underlying storage. The persistence manager must call ejbStore on the
 * supplied instance and then store the state to the underlying storage.
 *
 * @param instance the instance to synchronize
200 JBoss Administration and Development

The EJB Container
 *
 * @throws RemoteException thrown if some system exception occurs
 */
 void storeEntity(EntityEnterpriseContext instance)
 throws RemoteException;

 /**
 * This method is called when an entity shall be passivate. The persistence
 * manager must call the ejbPassivate method on the instance.
 *
 * <p>See the activate discussion for the reason for exposing EJB callback
 * calls to the store.
 *
 * @param instance the instance to passivate
 *
 * @throws RemoteException thrown if some system exception occurs
 */
 void passivateEntity(EntityEnterpriseContext instance)
 throws RemoteException;

 /**
 * This method is called when an entity shall be removed from the
 * underlying storage. The persistence manager must call ejbRemove on the
 * instance and then remove its state from the underlying storage.
 *
 * @param instance the instance to remove
 *
 * @throws RemoteException thrown if some system exception occurs
 * @throws RemoveException thrown if the instance could not be removed
 */
 void removeEntity(EntityEnterpriseContext instance)
 throws RemoteException, RemoveException;
}

The default BMP implementation of the EntityPersistenceManager interface is org.jboss.ejb.plu-
gins.BMPPersistenceManager. The BMP persistence manager is fairly simple since all persistence
logic is in the entity bean itself. The only duty of the persistence manager is to perform container call-
backs.

org.jboss.ejb.StatefulSessionPersistenceManager
The StatefulSessionPersistenceManager is responsible for the persistence of stateful SessionBeans.
This includes the following:

• Creating stateful sessions in a storage
• Activating stateful sessions from a storage
• Passivating stateful sessions to a storage
• Removing stateful sessions from a storage

Listing 5-14 gives the StatefulSessionPersistenceManager interface.

LISTING 5-14. The org.jboss.ejb.StatefulSessionPersistenceManager interface
JBoss Administration and Development 201

EJBs on JBoss - The EJB Container Configuration and Architecture
public interface StatefulSessionPersistenceManager extends
 ContainerPlugin
{
 public void createSession(Method m, Object[] args,
 StatefulSessionEnterpriseContext ctx)
 throws Exception;

 public void activateSession(StatefulSessionEnterpriseContext ctx)
 throws RemoteException;

 public void passivateSession(StatefulSessionEnterpriseContext ctx)
 throws RemoteException;

 public void removeSession(StatefulSessionEnterpriseContext ctx)
 throws RemoteException, RemoveException;

 public void removePassivated(Object key);
}

The default implementation of the StatefulSessionPersistenceManager interface is org.jboss.ejb.plu-
gins.StatefulSessionFilePersistenceManager. As its name implies, StatefulSessionFilePersistenceM-
anager utilizes the file system to persist stateful session beans. More specifically, the persistence
manager serializes beans in a flat file whose name is composed of the bean name and session id with
a .ser extension. The persistence manager restores a bean’s state during activation and respectively
stores its state during passivation from the bean’s .ser file.

Entity Bean Locking and Deadlock
Detection
Bill Burke

This section provides information on what entity bean locking is and how entity beans are accessed
and locked within JBoss 3.0. It also describes the problems you may encounter as you use Entity
Beans within your system and how to combat these issues. Deadlocking is formally defined and
examined. And, finally, we walk you through how to fine tune your system in terms of Entity Bean
locking.

Why JBoss Needs Locking
Locking is all about protecting the integrity of your data. Sometimes you need to be sure that only
one user can update critical data at one time. Sometimes, access to sensitive objects in your system
need to be serialized so that data is not corrupted by concurrent reads and writes. Databases tradition-
ally provide this sort of functionality with transactional scopes and table and row locking facilities.
202 JBoss Administration and Development

Entity Bean Locking and Deadlock Detection
Entity Beans are a great way to provide an object-oriented interface to relational data. Beyond that,
they can improve performance by taking the load off of the database through caching and delaying
updates until absolutely needed so that the database efficiency can be maximized. But, with caching,
data integrity is a problem, so some form of application server level locking is needed for Entity
Beans to provide the transaction isolation properties that you are used to with traditional databases.

Entity Bean Lifecycle
With the default configuration of JBoss there is only one active instance of a given Entity Bean in
memory at one time. This applies for every cache configuration and every type of commit-option.
The lifecycle for this instance is different for every commit-option though.

• For commit-option ‘A’, this instance is cached and used between transactions.
• For commit-optoin ‘B’, this instance is cached and used between transactions, but is marked
as ‘dirty’ at the end of a transaction. This means that at the start of a new transaction ejbLoad
must be called.
• For commit-option ‘C’, this instance is marked as ‘dirty’, released from the cache, and
marked for passivation at the end of a transaction.
• For commit-option ‘D’, a background refresh thread periodically calls ejbLoad on stale beans
within the cache. Otherwise, this option works in the same way as ‘A’.

Marked for passivation means that the bean is placed within a queue. Each Entity Bean container has
a Passivation Thread that periodically passivates beans that have been placed in the queue. A bean is
pulled out of the passivation queue and reused if the application requests access to a bean of the same
primary key.

On an exception or transaction rollback, the entity bean instance is thrown out of cache entirely and is
not even put in the passivation queue and is not reused by an instance pool. Except for the passiva-
tion queue, there is no Entity Bean instance pooling. This created too many problems and bugs in the
system so it was removed.

Default Locking Behavior
Since JBoss 2.4.1, Entity Bean locking has been totally decoupled from the Entity Bean instance.
The logic for locking is totally isolated and managed in a separate lock object. This allows for funk-
ier implementations of the Entity Bean lifecycle that is described later in this section.

Because there is only one allowed instance of a given Entity Bean active at one time, JBoss employs
two types of locks to ensure data integrity and to conform to the EJB spec.

Method Lock

The method lock ensures that only one thread of execution at a time can invoke on a given Entity Bean.
This is required by the EJB spec. But, this single-threadedness, can be overridden by marking the bean
reentrant in its deployment descriptor.
JBoss Administration and Development 203

EJBs on JBoss - The EJB Container Configuration and Architecture
Transaction Lock
A transaction lock ensures that only one transaction at a time has access to a give Entity Bean. This
ensures the ACID properties of transactions at the application server level. Since, by default, there is
only one active instance of any given Entity Bean at one time, JBoss must protect this instance from
dirty reads and dirty writes. So, the default Entity Bean locking behavior will lock an Entity Bean
within a transaction until it completes. This means that if any method at all is invoked on an Entity
Bean within a transaction, no other transaction can have access to this bean until the holding trans-
action commits or is rolled back.

Pluggable Interceptors and Locking Policy
We saw that the basic Entity Bean lifecyle and behavior is defined by the container configuration
defined in standardjboss.xml descriptor. Listing 5-15 shows the container-interceptors defintion for
the “Standard CMP 2.x EntityBean” configuration.

LISTING 5-15. The “Standard CMP 2.x EntityBean” interceptor definition

<container-configuration>
 <container-name>Standard CMP 2.x EntityBean</container-name>
…
 <container-interceptors>
 <interceptor>org.jboss.ejb.plugins.LogInterceptor</interceptor>
 <interceptor>org.jboss.ejb.plugins.SecurityInterceptor</interceptor>
 <interceptor>org.jboss.ejb.plugins.TxInterceptorCMT</interceptor>
 <interceptor>org.jboss.ejb.plugins.MetricsInterceptor</interceptor>
 <interceptor>org.jboss.ejb.plugins.EntityCreationInterceptor</interceptor>
 <interceptor>org.jboss.ejb.plugins.EntityLockInterceptor</interceptor>
 <interceptor>org.jboss.ejb.plugins.EntityInstanceInterceptor</interceptor>

<interceptor>org.jboss.resource.connectionmanager.CachedConnectionInterceptor</
interceptor>
 <interceptor>org.jboss.ejb.plugins.EntitySynchronizationInterceptor</
interceptor>
 <interceptor>org.jboss.ejb.plugins.cmp.jdbc.JDBCRelationInterceptor</
interceptor>
 </container-interceptors>

The interceptors shown above define most of the behavior of the Entity Bean. Below is an explana-
tion of the interceptors that are relevant to this section.

EntityLockInterceptor. This interceptor’s role is to schedule any locks that must be acquired before
the invocation is allowed to proceed. This interceptor is very lightweight and delegates all locking
behavior to a pluggable locking policy.

EntityInstanceInterceptor. The job of this interceptor is to find the Entity Bean within the cache or
create a new one. This interceptor also ensures that there is only one active instance of a bean in
memory at one time.
204 JBoss Administration and Development

Entity Bean Locking and Deadlock Detection
EntitySynchronizationInterceptor. The role of this interceptor is to synchronize the state of the
cache with the underlying storage. It does this with the ejbLoad and ejbStore semantics of the EJB
specification. In the presence of a transaction this is triggered by transaction demarcation. It registers
a callback with the underlying transaction monitor through the JTA interfaces. If there is no transac-
tion the policy is to store state upon returning from invocation. The synchronization polices A,B,C of
the specification are taken care of here as well as the JBoss specific commit-option ‘D’.

Deadlock
Finding deadlock problems and resolving them is the topic of this section. We will describe what dea-
dlocking means, how you can detect it within your application, and how you can resolve deadlocks.
Deadlock can occur when when two or more threads have locks on shared resources. For example
Figure 5-7 illustrates a simple deadlock scenario. Here, Thread 1 has the lock for Bean A, and Thread
2 has the lock for Bean B. At a later time, Thread 1 tries to lock Bean B and blocks because Thread 2
has it. Likewise, as Thread 2 tries to lock A it also blocks because Thread 1 has the lock. At this point
both threads are deadlocked waiting for access to the resource already locked by the other thread.

FIGURE 5-7. Deadlock definition example

The default locking policy of JBoss is to lock an Entity bean when an invocation occurs in the context
of a transaction until the transaction completes. Because of this, it is very easy to encounter deadlock
if you have long running transactions that access many Entity Beans, or if you are not careful about
ordering the access to them. Various techniques and advanced configurations can be used to avoid
deadlocking problems. They are discussed later in this section.

Dedlock Detection
Fortunately, with JBoss 2.4.5 and greater, a deadlock detection algoritm has been introduced in the
code base. JBoss holds a global internal graph of waiting transactions and what transactions they are
blocking on. Whenever a thread determines that it cannot acquire an Entity Bean lock, it figures out
what transaction currently holds the lock on the bean and add itself to the blocked transaction graph.
An example of what the graph may look like is given in Table 5-1.
JBoss Administration and Development 205

EJBs on JBoss - The EJB Container Configuration and Architecture
TABLE 5-1. An example blocked transaction table

Before the thread actually blocks it tries to detect whether there is deadlock problem. It does this by
traversing the block transaction graph. As it traverses the graph, it keeps track of what transactions
are blocked. If it sees a blocked node more than once in the graph, then it knows there is deadlock
and will throw an ApplicationDeadlockException. This exception will cause a transaction rollback
which will cause all locks that transaction holds to be released. The algorithm for the deadlock dec-
tion is found in the BeanLockSupport deadlockDetection method. The code for this method is shown
in Listing 5-16.

LISTING 5-16. The org.jboss.ejb.plugins.lock.BeanLockSupport deadlockDetection method

 // This following is for deadlock detection
 protected static HashMap waiting = new HashMap();

 public void deadlockDetection(Transaction miTx) throws Exception
 {
 HashSet set = new HashSet();
 set.add(miTx);

 Object checkTx = this.tx;
 synchronized(waiting)
 {

 while (checkTx != null)
 {
 Object waitingFor = waiting.get(checkTx);
 if (waitingFor != null)
 {
 if (set.contains(waitingFor))
 {

 log.error("Application deadlock detected: " + miTx + " has deadlock
conditions");

 throw new ApplicationDeadlockException("application deadlock
detected");

 }
 set.add(waitingFor);
 }
 checkTx = waitingFor;
 }

 }
 }

CATCHING APPLICATIONDEADLOCKEXCEPTION

Blocking TX Tx that holds needed lock
Tx1 Tx2
Tx3 Tx4
Tx4 Tx1
206 JBoss Administration and Development

Entity Bean Locking and Deadlock Detection
Since JBoss can detect application deadlock, you should write your application so that it can retry a
transaction if the invocation fails because of the ApplicationDeadlockException. Unfortunately, this
exception can be deeply embedded within a RemoteException, so you have to search for it in your
catch block. For example:

try
{
 …
}
catch (RemoteException ex)
{
 Throwable cause = null;
 RemoteException rex = ex;
 while (rex.detail != null)
 {
 cause = rex.detail;
 if (cause instanceof ApplicationDeadlockException)
 {
 // … We have deadlock, force a retry of the transaction.
 break;
 }
 if (cause instanceof RemoteException)
 {
 dex = (RemoteException)cause;
 }
 }
}

VIEWING LOCK INFORMATION

A new org.jboss.monitor.EntityLockMonitor MBean service was added in JBoss 3.0.4 that allows one
to view basic locking statistics as well as printing out the state of the transaction locking table. To
enable this monitor uncomment its configuration in the conf/jboss-service.xml:
 <mbean code="org.jboss.monitor.EntityLockMonitor"
 name="jboss.monitor:name=EntityLockMonitor"/>

The EntityLockMonitor has no configurable attributes. It does have the following read-only
attributes:

• MedianWaitTime: The median value of all times threads had to wait to acquire a lock.
• AverageContenders: The ratio of the total number of contentions to the sum of all threads
that had to wait for a lock.
• TotalContentions: The total number of threads that had to wait to acquire the transaction
lock. This happens when a thread attempts to acquire a lock that is associated with another trans-
action
• MaxContenders: The maximum number of threads that were waiting to acquire the transac-
tion lock.

It also has the following operations:

• clearMonitor: This operation resets the lock monitor state by zeroing all counters.
JBoss Administration and Development 207

EJBs on JBoss - The EJB Container Configuration and Architecture
• printLockMonitor: This operation prints out a table of all ejb locks that lists the ejbName of
the bean, the total time spent waiting for the lock, the count of times the lock was waited on and
the number of transactions that timed out waiting for the lock.

Advanced Configurations and Optimizations
The default locking behavior of Entity Beans can cause deadlock. Since access to an Entity Bean
locks the bean into the transaction, this also can present a huge performance/throughput problem for
your application. This section walks through various techniques and configurations that you can use
to optimize performance and reduce the possibility of deadlock.

Short-lived Transactions
Make your transactions as short-lived and fine-grained as possible. The shorter the transaction you
have, the less likelihood you will have concurrent access collisions and your application throughput
will go up.

Ordered Access
Ordering the access to your entity beans can help lessen the likelihood of deadlock. This means mak-
ing sure that the entity beans in your system are always accessed in the same exact order. In most
cases, user applications are just too complicated to use this approach and more advanced configura-
tions are needed.

Read-Only Beans
In JBoss 3.0, Entity Beans can be marked as read-only. When a bean is marked as read-only, it never
takes part in a transaction. This means that it is never transactionally locked. Using commit-option
‘D’ with this option is sometimes very useful when your read-only bean’s data is sometimes updated
by an external source.

To mark a bean as read-only, use the <read-only> flag in the jboss.xml deployment descriptor

LISTING 5-17. Marking an entity bean read-only using jboss.xml

<jboss>
 <enterprise-beans>
 <entity>
 <ejb-name>MyEntityBean</ejb-name>
 <jndi-name>MyEntityHomeRemote</jndi-name>
 <read-only>True</read-only>
 </entity>
 </enterprise-beans>
</jboss>
208 JBoss Administration and Development

Entity Bean Locking and Deadlock Detection
Explicitly Defining Read-Only Methods
After reading and understanding the default locking behavior of Entity Beans, you’re probably won-
dering, “Why lock the bean if its not modifying the data?” JBoss 3.0 allows you to define what meth-
ods on your Entity Bean are read-only so that it will not lock the bean within the transaction if only
these types of methods are called. You can define these read-only methods within a jboss.xml deploy-
ment descriptor. Wildcards are allowed for method names. Listing 5-18 shows an example of declar-
ing all getter methods and the anotherReadOnlyMethod as read-only.

LISTING 5-18. Defining entity bean methods as read-only

<jboss>
 <enterprise-beans>
 <entity>
 <ejb-name>nextgen.EnterpriseEntity</ejb-name>
 <jndi-name>nextgen.EnterpriseEntity</jndi-name>
 <method-attributes>
 <method>
 <method-name>get*</method-name>
 <read-only>true</read-only>
 </method>
 <method>
 <method-name>anotherReadOnlyMethod</method-name>
 <read-only>true</read-only>
 </method>
 </method-attributes>
 </entity>
 </enterprise-beans>
</jboss>

Instance Per Transaction Policy
The Instance Per Transaction policy is an advanced configuration that can totally wipe away dead-
lock and throughput problems caused by JBoss’s default locking policy. The default Entity Bean
locking policy is to only allow one active instance of a bean. The Instance Per Transaction policy
breaks this requirement by allocating a new instance of a bean per transaction and dropping this
instance at the end of the transaction. Because each transaction has its own copy of the bean, there is
no need for transaction based locking.

This option does sound great but does have some drawbacks right now. First, the transactional isola-
tion behavior of this option is equivalent to READ_COMMITTED. This can create repeatable reads
when they are not desired. In other words, a transaction could have a copy of a stale bean. Second,
this configuration option currently requires commit-option ‘B’ or ‘C’ which can be a performance
drain since an ejbLoad must happen at the beginning of the transaction. But, if your application cur-
rently requires commit-option ‘B’ or ‘C’ anyways, then this is the way to go. The JBoss developers
are currently exploring ways to allow commit-option ‘A’ as well (which would allow the use of cach-
ing for this option).
JBoss Administration and Development 209

EJBs on JBoss - The EJB Container Configuration and Architecture
JBoss 3.0.1 and higher has container configurations named “Instance Per Transaction CMP 2.x Enti-
tyBean” and “Instance Per Transaction BMP EntityBean” defined in the standardjboss.xml that
implement this locking policy. To use this configuration, you just have to reference the name of the
container configuration to use with your bean in the jboss.xml deployment descriptor as show in
Listing 5-19.

LISTING 5-19. An example of using the Instance Per Transaction policy available in JBoss 3.0.1+.

<jboss>
 <enterprise-beans>
 <entity>
 <ejb-name>MyCMP2Bean</ejb-name>
 <jndi-name>MyCMP2</jndi-name>
 <configuration-name>Instance Per Transaction CMP 2.x EntityBean</
configuration-name>
 </entity>
 <entity>
 <ejb-name>MyBMPBean</ejb-name>
 <jndi-name>MyBMP</jndi-name>
 <configuration-name>Instance Per Transaction BMP EntityBean</configuration-
name>
 </entity>
 </enterprise-beans>
</jboss>

If you’re using JBoss 3.0.0, you’ll have to setup the configuration yourself within the jboss.xml
descriptor. The highlighted code shown in Listing 5-20 is what is new in the configuration.

LISTING 5-20. The Instance Per Transaction configuration

<jboss>
<container-configurations>
 <container-configuration>
 <container-name>Instance Per Transaction CMP 2.x EntityBean</container-name>
 <call-logging>false</call-logging>
 <container-invoker>org.jboss.proxy.ejb.ProxyFactory</container-invoker>
 <container-interceptors>
 <interceptor>org.jboss.ejb.plugins.LogInterceptor</interceptor>
 <interceptor>org.jboss.ejb.plugins.SecurityInterceptor</interceptor>
 <interceptor>org.jboss.ejb.plugins.TxInterceptorCMT</interceptor>
 <interceptor metricsEnabled =
“true">org.jboss.ejb.plugins.MetricsInterceptor</interceptor>
 <interceptor>org.jboss.ejb.plugins.EntityCreationInterceptor</interceptor>
 <interceptor>org.jboss.ejb.plugins.EntityLockInterceptor</interceptor>
 <interceptor>org.jboss.ejb.plugins.EntityMultiInstanceInterceptor</
interceptor>
 <interceptor>org.jboss.resource.connectionmanager.CachedConnectionInterceptor</
interceptor>

<interceptor>org.jboss.ejb.plugins.EntityMultiInstanceSynchronizationInterceptor
</interceptor>
210 JBoss Administration and Development

Entity Bean Locking and Deadlock Detection
 <interceptor>org.jboss.ejb.plugins.cmp.jdbc.JDBCRelationInterceptor</
interceptor>
 </container-interceptors>
 <client-interceptors>
 <home>
 <interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
 <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
 <interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
 <interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>
 </home>
 <bean>
 <interceptor>org.jboss.proxy.ejb.EntityInterceptor</interceptor>
 <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
 <interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
 <interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>
 </bean>
 <list-entity>
 <interceptor>org.jboss.proxy.ejb.ListEntityInterceptor</interceptor>
 <interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
 <interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
 <interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>
 </list-entity>
 </client-interceptors>
 <instance-pool>org.jboss.ejb.plugins.EntityInstancePool</instance-pool>
 <instance-cache>org.jboss.ejb.plugins.EntityInstanceCache</instance-cache>
 <persistence-manager>org.jboss.ejb.plugins.cmp.jdbc.JDBCStoreManager</
persistence-manager>
 <transaction-manager>org.jboss.tm.TxManager</transaction-manager>
 <locking-policy>org.jboss.ejb.plugins.lock.MethodOnlyEJBLock</locking-policy>
 <container-cache-conf>
 <cache-policy>org.jboss.ejb.plugins.LRUEnterpriseContextCachePolicy</cache-
policy>
 <cache-policy-conf>
 <min-capacity>50</min-capacity>
 <max-capacity>1000000</max-capacity>
 <overager-period>300</overager-period>
 <max-bean-age>600</max-bean-age>
 <resizer-period>400</resizer-period>
 <max-cache-miss-period>60</max-cache-miss-period>
 <min-cache-miss-period>1</min-cache-miss-period>
 <cache-load-factor>0.75</cache-load-factor>
 </cache-policy-conf>
 </container-cache-conf>
 <container-pool-conf>
 <MaximumSize>100</MaximumSize>
 </container-pool-conf>
 <commit-option>B</commit-option>
 <container-configuration>

Running Within a Cluster
Currently there is no distributed locking capability for Entity Beans within the cluster. This function-
ality has been delegated to the database and must be supported by the application developer. For
JBoss Administration and Development 211

EJBs on JBoss - The EJB Container Configuration and Architecture
clustered Entity Beans, it is suggested to use commit-option ‘B’ or ‘C’ in combination with a row
locking mechanism. For CMP, there is a <row-locking> configuration option. This option will use
“SELECT … FOR UPDATE” when the bean is loaded from the database. With commit-option ‘B’ or
‘C’, this implements a transactional lock that can be used across the cluster. For BMP, you must
explicity implement the “SELECT … FOR UPDATE” invocation within the BMP’s ejbLoad method.

Troubleshooting
This section will describe some common locking problems and their solution.

Locking Behavior Not Working
There are many emails on the the JBoss User email list which sometimes state that the locking is not
working and they are having concurrent access to their beans, and thus dirty reads. Here are some
common reasons for this:

• If you are upgrading from JBoss 2.4.0 or lower and you have custom <container-con-
figurations>, make sure you have updated these configurations because 2.4.0 and lower
does not have the EntityLockInterceptor.
• Make absolutely sure that you have implemented equals and hashCode correctly from custom/
complex primary key classes.
• Make absolutely sure that your custom/complex primary key classes serialize correctly. One
common mistake is assuming that member variable initializations will be executed when a pri-
mary key is unmarshalled.

IllegalStateException
Sometimes, people get:

java.lang.IllegalStateException: removing bean lock and it has tx set!

This usually means that you have not implemented equals and/or hashCode correctly for your cus-
tom/complex primary key class, or that your primary key class is not implemented correctly for seri-
alization.

Hangs and Transaction Timeouts
One long outstanding bug of JBoss is that on a transaction timeout, that transaction is only “marked”
for a rollback and not actually rolled back. This responsibility is delegated to the invocation thread.
This can cause major problems if the invocation thread hangs indefinitely since things like Entity
Bean locks will never be released. The solution to this problem is not a good one. You really just
need to avoid doing stuff within a transaction that could hang indefinitely. One common no-no is
making connections across the internet or running a web-crawler within a transaction.
212 JBoss Administration and Development

CHAPTER 6 Messaging on JBoss - JMS
Configuration and Architecture
The JMS API stands for Java™ Message Service Application Programming Interface, and it is used
by applications to send asynchronous “business quality” messages to other applications. In the JMS
world, messages are not sent directly to other applications. Instead, messages are sent to destinations,
also known as “queues” or “topics”. Applications sending messages do not need to worry if the
receiving applications are up and running, and conversely, receiving applications do not need to
worry about the sending application’s status. Both senders, and receivers only interact with the desti-
nations.

The JMS API is the standardized interface to a JMS provider, sometimes called a Message Oriented
Middleware (MOM) system. JBoss comes with a JMS 1.0.2b compliant JMS provider called JBoss
Messaging or JBossMQ. When you use the JMS API with JBoss, you are using the JBoss Messaging
engine transparently. JBoss Messaging fully implements the JMS specification. Therefore, the best
JBoss Messaging user guide is the JMS specification! For more information about the JMS API
please visit the JMS Tutorial or JMS Downloads & Specifications.

This chapter focuses on the JBoss specific aspects of using JMS and message driven beans as well as
the JBoss Messaging configuration and MBeans.

JMS Examples
Scott Stark

In this section we discuss the basics needed to use the JBoss JMS implementation. JMS leaves the
details of accessing JMS connection factories and destinations as provider specific details. What you
need to know to use the JBoss Messaging layer is:
JBoss Administration and Development 213

http://java.sun.com/products/jms/tutorial/1_3_1-fcs/doc/copyright.html
http://java.sun.com/products/jms/docs.html

Messaging on JBoss - JMS Configuration and Architecture
• The location of the javax.jms.QueueConnectionFactory and javax.jms.Top-
icConnectionFactory. In JBoss both connection factory implementations are located under
the JNDI name “ConnectionFactory”.
• How to lookup JMS destinations (javax.jmx.Queue and javax.jms.Topic). Desti-
nations are configured via MBeans as we will see when we discuss the messaging MBeans. Sev-
eral default queues are defined and are located at the JNDI names: .”queue/testQueue”, “queue/
ex”. “queue/A”, “queue/B”, “queue/C”, and “queue/D”. The default topics are located at the JNDI
names: “topic/testTopic”, “topic/securedTopic”, and “topic/testDurableTopic”.
• The JBoss Messaging jars. These include concurrent.jar, jbossmq-client.jar, jboss-common-
client.jar, jboss-system-client.jar, jnp-client.jar, log4j.jar and jboss.net.jar (only for JDK 1.3)

In the following subsections we will look at examples of the various JMS messaging models and mes-
sage driven beans. The chapter example source is located under the src/main/org/jboss/chap6 direc-
tory of the book examples.

A Point-To-Point Example
Let’s start out with a point-to-point (P2P) example. In the P2P model, a sender delivers messages to a
queue and a single receiver pulls the message off of the queue. The receiver does not need to be lis-
tening to the queue at the time the message is sent. Listing 6-1 shows a complete P2P example that
sends a javax.jms.TextMessage to a the queue “queue/testQueue” and asynchronously
receives the message from the same queue.

LISTING 6-1. A P2P JMS client example

package org.jboss.chap6.ex1;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Queue;
import javax.jms.QueueConnection;
import javax.jms.QueueConnectionFactory;
import javax.jms.QueueReceiver;
import javax.jms.QueueSender;
import javax.jms.QueueSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import EDU.oswego.cs.dl.util.concurrent.CountDown;

/** A complete JMS client example program that sends a
TextMessage to a Queue and asynchronously receives the
message from the same Queue.

@author Scott.Stark@jboss.org
@version $Revision:$
*/
214 JBoss Administration and Development

JMS Examples
public class SendRecvClient
{
 static CountDown done = new CountDown(1);
 QueueConnection conn;
 QueueSession session;
 Queue que;

 public static class ExListener implements MessageListener
 {
 public void onMessage(Message msg)
 {
 done.release();
 TextMessage tm = (TextMessage) msg;
 try
 {
 System.out.println("onMessage, recv text="
 + tm.getText());
 }
 catch(Throwable t)
 {
 t.printStackTrace();
 }
 }
 }

 public void setupPTP()
 throws JMSException, NamingException
 {
 InitialContext iniCtx = new InitialContext();
 Object tmp = iniCtx.lookup("ConnectionFactory");
 QueueConnectionFactory qcf = (QueueConnectionFactory) tmp;
 conn = qcf.createQueueConnection();
 que = (Queue) iniCtx.lookup("queue/testQueue");
 session = conn.createQueueSession(false,
 QueueSession.AUTO_ACKNOWLEDGE);
 conn.start();
 }

 public void sendRecvAsync(String text)
 throws JMSException, NamingException
 {
 System.out.println("Begin sendRecvAsync");
 // Setup the PTP connection, session
 setupPTP();
 // Set the async listener
 QueueReceiver recv = session.createReceiver(que);
 recv.setMessageListener(new ExListener());
 // Send a text msg
 QueueSender send = session.createSender(que);
 TextMessage tm = session.createTextMessage(text);
 send.send(tm);
 System.out.println("sendRecvAsync, sent text="
 + tm.getText());
 send.close();
 System.out.println("End sendRecvAsync");
JBoss Administration and Development 215

Messaging on JBoss - JMS Configuration and Architecture
 }

 public void stop() throws JMSException
 conn.stop(); {
 session.close();
 conn.close();
 }

 public static void main(String args[]) throws Exception
 {
 SendRecvClient client = new SendRecvClient();
 client.sendRecvAsync("A text msg");
 client.done.acquire();
 client.stop();
 System.exit(0);
 }

}

The client may be run using the following command line:
examples 792>ant -Dchap=6 -Dex=1p2p run-example
Buildfile: build.xml
...
run-example1p2p:
 [java] Begin SendRecvClient, now=1027380633296
 [java] Begin sendRecvAsync
 [java] sendRecvAsync, sent text=A text msg
 [java] End sendRecvAsync
 [java] onMessage, recv text=A text msg
 [java] End SendRecvClient

BUILD SUCCESSFUL

Total time: 5 seconds

A Pub-Sub Example
The JMS publish/subscribe (Pub-Sub) message model is a one-to-many model. A publisher sends a
message to a topic and all active subscribers of the topic receive the message. Subscribers that are not
actively listening to the topic will miss the published message. shows a complete JMS client that
sends a javax.jms.TextMessage to a topic and asynchronously receives the message from the
same topic.

LISTING 6-2. A Pub-Sub JMS client example

package org.jboss.chap6.ex1;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Topic;
216 JBoss Administration and Development

JMS Examples
import javax.jms.TopicConnection;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicPublisher;
import javax.jms.TopicSubscriber;
import javax.jms.TopicSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import EDU.oswego.cs.dl.util.concurrent.CountDown;

/** A complete JMS client example program that sends a
TextMessage to a Topic and asynchronously receives the
message from the same Topic.

@author Scott.Stark@jboss.org
@version $Revision:$
*/
public class TopicSendRecvClient
{
 static CountDown done = new CountDown(1);
 TopicConnection conn = null;
 TopicSession session = null;
 Topic topic = null;

 public static class ExListener implements MessageListener
 {
 public void onMessage(Message msg)
 {
 done.release();
 TextMessage tm = (TextMessage) msg;
 try
 {
 System.out.println("onMessage, recv text="
 + tm.getText());
 }
 catch(Throwable t)
 {
 t.printStackTrace();
 }
 }
 }

 public void setupPubSub()
 throws JMSException, NamingException
 {
 InitialContext iniCtx = new InitialContext();
 Object tmp = iniCtx.lookup("ConnectionFactory");
 TopicConnectionFactory tcf = (TopicConnectionFactory) tmp;
 conn = tcf.createTopicConnection();
 topic = (Topic) iniCtx.lookup("topic/testTopic");
 session = conn.createTopicSession(false,
 TopicSession.AUTO_ACKNOWLEDGE);
 conn.start();
 }
JBoss Administration and Development 217

Messaging on JBoss - JMS Configuration and Architecture
 public void sendRecvAsync(String text)
 throws JMSException, NamingException
 {
 System.out.println("Begin sendRecvAsync");
 // Setup the PubSub connection, session
 setupPubSub();
 // Set the async listener

 TopicSubscriber recv = session.createSubscriber(topic);
 recv.setMessageListener(new ExListener());
 // Send a text msg
 TopicPublisher send = session.createPublisher(topic);
 TextMessage tm = session.createTextMessage(text);
 send.publish(tm);
 System.out.println("sendRecvAsync, sent text="
 + tm.getText());
 send.close();
 System.out.println("End sendRecvAsync");
 }

 public void stop() throws JMSException
 {
 conn.stop();
 session.close();
 conn.close();
 }

 public static void main(String args[]) throws Exception
 {
 System.out.println("Begin TopicSendRecvClient,
now="+System.currentTimeMillis());
 TopicSendRecvClient client = new TopicSendRecvClient();
 client.sendRecvAsync("A text msg, now="+System.currentTimeMillis());
 client.done.acquire();
 client.stop();
 System.out.println("End TopicSendRecvClient");
 System.exit(0);
 }

}

The client may be run using the following command line:
examples 796>ant -Dchap=6 -Dex=1ps run-example
Buildfile: build.xml
...
run-example1ps:
 [java] Begin TopicSendRecvClient, now=1027381995265
 [java] Begin sendRecvAsync
 [java] sendRecvAsync, sent text=A text msg, now=1027381995265
 [java] End sendRecvAsync
 [java] onMessage, recv text=A text msg, now=1027381995265
 [java] End TopicSendRecvClient
218 JBoss Administration and Development

JMS Examples
BUILD SUCCESSFUL

Total time: 10 seconds

Now let’s break the publisher and subscribers into separate programs to demonstrate that subscribers
only receive messages while they are listening to a topic. Listing 6-3 shows a variation of the previ-
ous Pub-Sub client that only publishes messages to the “topic/testTopic” topic. The subscriber only
client is shown in Listing 6-4.

LISTING 6-3. A JMS publisher client

package org.jboss.chap6.ex1;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Topic;
import javax.jms.TopicConnection;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicPublisher;
import javax.jms.TopicSubscriber;
import javax.jms.TopicSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

/** A JMS client example program that sends a TextMessage to a Topic

@author Scott.Stark@jboss.org
@version $Revision:$
*/
public class TopicSendClient
{
 TopicConnection conn = null;
 TopicSession session = null;
 Topic topic = null;

 public void setupPubSub()
 throws JMSException, NamingException
 {
 InitialContext iniCtx = new InitialContext();
 Object tmp = iniCtx.lookup("ConnectionFactory");
 TopicConnectionFactory tcf = (TopicConnectionFactory) tmp;
 conn = tcf.createTopicConnection();
 topic = (Topic) iniCtx.lookup("topic/testTopic");
 session = conn.createTopicSession(false,
 TopicSession.AUTO_ACKNOWLEDGE);
 conn.start();
 }

 public void sendAsync(String text)
 throws JMSException, NamingException
 {
JBoss Administration and Development 219

Messaging on JBoss - JMS Configuration and Architecture
 System.out.println("Begin sendAsync");
 // Setup the pub/sub connection, session
 setupPubSub();
 // Send a text msg
 TopicPublisher send = session.createPublisher(topic);
 TextMessage tm = session.createTextMessage(text);
 send.publish(tm);
 System.out.println("sendAsync, sent text="
 + tm.getText());
 send.close();
 System.out.println("End sendAsync");
 }

 public void stop() throws JMSException
 {
 conn.stop();
 session.close();
 conn.close();
 }

 public static void main(String args[]) throws Exception
 {
 System.out.println("Begin TopicSendClient,
now="+System.currentTimeMillis());
 TopicSendClient client = new TopicSendClient();
 client.sendAsync("A text msg, now="+System.currentTimeMillis());
 client.stop();
 System.out.println("End TopicSendClient");
 System.exit(0);
 }

}

LISTING 6-4. A JMS subscriber client

package org.jboss.chap6.ex1;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Topic;
import javax.jms.TopicConnection;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicPublisher;
import javax.jms.TopicSubscriber;
import javax.jms.TopicSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

/** A JMS client example program that synchronously receives a message a Topic

@author Scott.Stark@jboss.org
@version $Revision:$
220 JBoss Administration and Development

JMS Examples
*/
public class TopicRecvClient
{
 TopicConnection conn = null;
 TopicSession session = null;
 Topic topic = null;

 public void setupPubSub()
 throws JMSException, NamingException
 {
 InitialContext iniCtx = new InitialContext();
 Object tmp = iniCtx.lookup("ConnectionFactory");
 TopicConnectionFactory tcf = (TopicConnectionFactory) tmp;
 conn = tcf.createTopicConnection();
 topic = (Topic) iniCtx.lookup("topic/testTopic");
 session = conn.createTopicSession(false,
 TopicSession.AUTO_ACKNOWLEDGE);
 conn.start();
 }

 public void recvSync()
 throws JMSException, NamingException
 {
 System.out.println("Begin recvSync");
 // Setup the pub/sub connection, session
 setupPubSub();
 // Wait upto 5 seconds for the message
 TopicSubscriber recv = session.createSubscriber(topic);
 Message msg = recv.receive(5000);
 if(msg == null)
 System.out.println("Timed out waiting for msg");
 else
 System.out.println("TopicSubscriber.recv, msgt="+msg);
 }

 public void stop() throws JMSException
 {
 conn.stop();
 session.close();
 conn.close();
 }

 public static void main(String args[]) throws Exception
 {
 System.out.println("Begin TopicRecvClient,
now="+System.currentTimeMillis());
 TopicRecvClient client = new TopicRecvClient();
 client.recvSync();
 client.stop();
 System.out.println("End TopicRecvClient");
 System.exit(0);
 }

}

JBoss Administration and Development 221

Messaging on JBoss - JMS Configuration and Architecture
Run the TopicSendClient followed by the TopicRecvClient as follows:
examples 800>ant -Dchap=6 -Dex=1ps2 run-example
Buildfile: build.xml
...
run-example1ps2:
 [java] Begin TopicSendClient, now=1027382545921
 [java] Begin sendAsync
 [java] sendAsync, sent text=A text msg, now=1027382545921
 [java] End sendAsync
 [java] End TopicSendClient
 [java] Begin TopicRecvClient, now=1027382548781
 [java] Begin recvSync
 [java] Timed out waiting for msg
 [java] End TopicRecvClient

BUILD SUCCESSFUL

Total time: 21 seconds

The output shows that the topic subscriber client (TopicRecvClient) fails to receive the message sent
by the publisher.

A Pub-Sub With Durable Topic Example
JMS supports a messaging model that is a cross between the P2P and Pub-Sub models. When a Pub-
Sub client wants to receive all messages posted to the topic it subscribes to even when it is not
actively listening to the topic, the client may achieve this behavior using a durable topic. Let’s look at
a variation of the preceding subscriber client that uses a durable topic to ensure that it receives all
messages, include those published when the client is not listening to the topic. Listing 6-5 shows the
durable topic client with the key differences between the Listing 6-4 client highlighted in bold.

LISTING 6-5. A durable topic JMS client example

package org.jboss.chap6.ex1;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Topic;
import javax.jms.TopicConnection;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicPublisher;
import javax.jms.TopicSubscriber;
import javax.jms.TopicSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

/** A JMS client example program that synchronously receives a message a Topic
222 JBoss Administration and Development

JMS Examples
@author Scott.Stark@jboss.org
@version $Revision:$
*/
public class DurableTopicRecvClient
{
 TopicConnection conn = null;
 TopicSession session = null;
 Topic topic = null;

 public void setupPubSub()
 throws JMSException, NamingException
 {
 InitialContext iniCtx = new InitialContext();
 Object tmp = iniCtx.lookup("ConnectionFactory");
 TopicConnectionFactory tcf = (TopicConnectionFactory) tmp;
 conn = tcf.createTopicConnection("john", "needle");
 topic = (Topic) iniCtx.lookup("topic/testTopic");
 session = conn.createTopicSession(false,
 TopicSession.AUTO_ACKNOWLEDGE);
 conn.start();
 }

 public void recvSync()
 throws JMSException, NamingException
 {
 System.out.println("Begin recvSync");
 // Setup the pub/sub connection, session
 setupPubSub();
 // Wait upto 5 seconds for the message
 TopicSubscriber recv = session.createDurableSubscriber(topic, "chap6-
ex1dtps");
 Message msg = recv.receive(5000);
 if(msg == null)
 System.out.println("Timed out waiting for msg");
 else
 System.out.println("DurableTopicRecvClient.recv, msgt="+msg);
 }

 public void stop() throws JMSException
 {
 conn.stop();
 session.close();
 conn.close();
 }

 public static void main(String args[]) throws Exception
 {
 System.out.println("Begin DurableTopicRecvClient,
now="+System.currentTimeMillis());
 DurableTopicRecvClient client = new DurableTopicRecvClient();
 client.recvSync();
 client.stop();
 System.out.println("End DurableTopicRecvClient");
 System.exit(0);
JBoss Administration and Development 223

Messaging on JBoss - JMS Configuration and Architecture
 }

}

Now run the previous topic publisher with the durable topic subscriber as follows:
examples 802>ant -Dchap=6 -Dex=1psdt run-example
Buildfile: build.xml
...
run-example1psdt:
 [java] Begin DurableTopicSetup
 [java] End DurableTopicSetup
 [java] Begin TopicSendClient, now=1027383022625
 [java] Begin sendAsync
 [java] sendAsync, sent text=A text msg, now=1027383022625
 [java] End sendAsync
 [java] End TopicSendClient
 [java] Begin DurableTopicRecvClient, now=1027383024000
 [java] Begin recvSync
 [java] DurableTopicRecvClient.recv, msgt=org.jboss.mq.SpyTextMessage {
 [java] Header {
 [java] jmsDestination : TOPIC.testTopic.DurableSubscriberExample.chap6-
ex1dtps
 [java] jmsDeliveryMode : 2
 [java] jmsExpiration : 0
 [java] jmsPriority : 4
 [java] jmsMessageID : ID:1-10273818977181
 [java] jmsTimeStamp : 1027381897718
 [java] jmsCorrelationID: null
 [java] jmsReplyTo : null
 [java] jmsType : null
 [java] jmsRedelivered : false
 [java] jmsPropertiesReadWrite:false
 [java] msgReadOnly : true
 [java] producerClientId: ID:1
 [java] }
 [java] Body {
 [java] text :A text msg, now=1027381896187
 [java] }
 [java] }
 [java] End DurableTopicRecvClient

BUILD SUCCESSFUL

Total time: 8 seconds

Items of note for the durable topic example include:

• The TopicConnectionFactory creation in the durable topic client used a username and
password, and the TopicSubscriber creation was done using the createDurableSub-
scriber(Topic, String) method. This is a requirement of durable topic subscribers. The
messaging server needs to know what client is requesting the durable topic and what the name of
the durable topic subscription is. We will discuss the details of durable topic setup in the configu-
ration section.
224 JBoss Administration and Development

JMS Examples
• An org.jboss.chap6.DurableTopicSetup client was run prior to the Topic-
SendClient. The reason for this is a durable topic subscriber must have registered a subscrip-
tion at some point in the past in order for the messaging server to save messages. JBoss supports
dynamic durable topic subscribers and the DurableTopicSetup client simply creates a dura-
ble subscription receiver and then exits. This leaves an active durable topic subscriber on the
“topic/testTopic” and the messaging server knows that any messages posted to this topic must be
saved for latter delivery.
• The TopicSendClient does not change for the durable topic. The notion of a durable
topic is a subscriber only notion.
• The DurableTopicRecvClient sees the message published to the “topic/testTopic”
even though it was not listening to the topic at the time the message was published.

A Point-To-Point With MDB Example
The EJB 2.0 specification added the notion of message driven beans (MDB). A MDB is a business
component that may be invoked asynchronously. As of the EJB 2.0 specification, JMS was the only
mechanism by which MDBs could be accessed.Listing 6-6 shows an MDB that transforms the Text-
Messages it receives and sends the transformed messages to the queue found in the incoming message
JMSReplyTo header.

LISTING 6-6. A TextMessage processing MDB

package org.jboss.chap6.ex2;

import javax.ejb.MessageDrivenBean;
import javax.ejb.MessageDrivenContext;
import javax.ejb.EJBException;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Queue;
import javax.jms.QueueConnection;
import javax.jms.QueueConnectionFactory;
import javax.jms.QueueSender;
import javax.jms.QueueSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

/** An MDB that transforms the TextMessages it receives and send the transformed
 messages to the Queue found in the incoming message JMSReplyTo header.

 @author Scott.Stark@jboss.org
 @version $Revision:$
 */
public class TextMDB implements MessageDrivenBean, MessageListener
{
 private MessageDrivenContext ctx = null;
 private QueueConnection conn;
JBoss Administration and Development 225

Messaging on JBoss - JMS Configuration and Architecture
 private QueueSession session;

 public TextMDB()
 {
 System.out.println("TextMDB.ctor, this="+hashCode());
 }

 public void setMessageDrivenContext(MessageDrivenContext ctx)
 {
 this.ctx = ctx;
 System.out.println("TextMDB.setMessageDrivenContext, this="+hashCode());
 }

 public void ejbCreate()
 {
 System.out.println("TextMDB.ejbCreate, this="+hashCode());
 try
 {
 setupPTP();
 }
 catch(Exception e)
 {
 throw new EJBException("Failed to init TextMDB", e);
 }
 }
 public void ejbRemove()
 {
 System.out.println("TextMDB.ejbRemove, this="+hashCode());
 ctx = null;
 try
 {
 if(session != null)
 session.close();
 if(conn != null)
 conn.close();
 }
 catch(JMSException e)
 {
 e.printStackTrace();
 }
 }

 public void onMessage(Message msg)
 {
 System.out.println("TextMDB.onMessage, this="+hashCode());
 try
 {
 TextMessage tm = (TextMessage) msg;
 String text = tm.getText() + "processed by: "+hashCode();
 Queue dest = (Queue) msg.getJMSReplyTo();
 sendReply(text, dest);
 }
 catch(Throwable t)
 {
 t.printStackTrace();
226 JBoss Administration and Development

JMS Examples
 }
 }

 private void setupPTP()
 throws JMSException, NamingException
 {
 InitialContext iniCtx = new InitialContext();
 Object tmp = iniCtx.lookup("java:comp/env/jms/QCF");
 QueueConnectionFactory qcf = (QueueConnectionFactory) tmp;
 conn = qcf.createQueueConnection();
 session = conn.createQueueSession(false,
 QueueSession.AUTO_ACKNOWLEDGE);
 conn.start();
 }
 private void sendReply(String text, Queue dest)
 throws JMSException
 {
 System.out.println("TextMDB.sendReply, this="+hashCode()
 +", dest="+dest);
 QueueSender sender = session.createSender(dest);
 TextMessage tm = session.createTextMessage(text);
 sender.send(tm);
 sender.close();
 }

}

The MDB ejb-jar.xml and jboss.xml deployment descriptors are shown in Listing 6-7.

LISTING 6-7. The MDB ejb-jar.xml and jboss.xml descriptors

// The ejb-jar.xml descriptor
<?xml version="1.0"?>
<!DOCTYPE ejb-jar
 PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
 "http://java.sun.com/dtd/ejb-jar_2_0.dtd"
>

<ejb-jar>
 <enterprise-beans>
 <message-driven>
 <ejb-name>TextMDB</ejb-name>
 <ejb-class>org.jboss.chap6.ex2.TextMDB</ejb-class>
 <transaction-type>Container</transaction-type>
 <acknowledge-mode>AUTO_ACKNOWLEDGE</acknowledge-mode>
 <message-driven-destination>
 <destination-type>javax.jms.Queue</destination-type>
 </message-driven-destination>
 <res-ref-name>jms/QCF</res-ref-name> <resource-ref>
 <res-type>javax.jms.QueueConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 </message-driven>
 </enterprise-beans>
JBoss Administration and Development 227

Messaging on JBoss - JMS Configuration and Architecture
</ejb-jar>

// The jboss.xml descriptor
<?xml version="1.0"?>
<jboss>
 <enterprise-beans>
 <message-driven>
 <ejb-name>TextMDB</ejb-name>
 <destination-jndi-name>queue/B</destination-jndi-name>
 <resource-ref>
 <res-ref-name>jms/QCF</res-ref-name>
 <jndi-name>ConnectionFactory</jndi-name>
 </resource-ref>
 </message-driven>
 </enterprise-beans>
</jboss>

 Listing 6-8 shows a variation of the P2P client that sends several messages to the “queue/B” destina-
tion and asynchronously receives the messages as modified by TextMDB from Queue A.

LISTING 6-8. A JMS client that interacts with the TextMDB

package org.jboss.chap6.ex2;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Queue;
import javax.jms.QueueConnection;
import javax.jms.QueueConnectionFactory;
import javax.jms.QueueReceiver;
import javax.jms.QueueSender;
import javax.jms.QueueSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import EDU.oswego.cs.dl.util.concurrent.CountDown;

/** A complete JMS client example program that sends N
TextMessages to a Queue B and asynchronously receives the
messages as modified by TextMDB from Queue A.

@author Scott.Stark@jboss.org
@version $Revision:$
*/
public class SendRecvClient
{
 static final int N = 10;
 static CountDown done = new CountDown(N);
 QueueConnection conn;
 QueueSession session;
 Queue queA;
228 JBoss Administration and Development

JMS Examples
 Queue queB;

 public static class ExListener implements MessageListener
 {
 public void onMessage(Message msg)
 {
 done.release();
 TextMessage tm = (TextMessage) msg;
 try
 {
 System.out.println("onMessage, recv text="+tm.getText());
 }
 catch(Throwable t)
 {
 t.printStackTrace();
 }
 }
 }

 public void setupPTP()
 throws JMSException, NamingException
 {
 InitialContext iniCtx = new InitialContext();
 Object tmp = iniCtx.lookup("ConnectionFactory");
 QueueConnectionFactory qcf = (QueueConnectionFactory) tmp;
 conn = qcf.createQueueConnection();
 queA = (Queue) iniCtx.lookup("queue/A");
 queB = (Queue) iniCtx.lookup("queue/B");
 session = conn.createQueueSession(false,
 QueueSession.AUTO_ACKNOWLEDGE);
 conn.start();
 }

 public void sendRecvAsync(String textBase)
 throws JMSException, NamingException, InterruptedException
 {
 System.out.println("Begin sendRecvAsync");
 // Setup the PTP connection, session
 setupPTP();
 // Set the async listener for queA
 QueueReceiver recv = session.createReceiver(queA);
 recv.setMessageListener(new ExListener());
 // Send a few text msgs to queB
 QueueSender send = session.createSender(queB);
 for(int m = 0; m < 10; m ++)
 {
 TextMessage tm = session.createTextMessage(textBase+"#"+m);
 tm.setJMSReplyTo(queA);
 send.send(tm);
 System.out.println("sendRecvAsync, sent text="+tm.getText());
 }
 System.out.println("End sendRecvAsync");
 }

 public void stop() throws JMSException
JBoss Administration and Development 229

Messaging on JBoss - JMS Configuration and Architecture
 {
 conn.stop();
 session.close();
 conn.close();
 }

 public static void main(String args[]) throws Exception
 {
 System.out.println("Begin SendRecvClient,now="+System.currentTimeMillis());
 SendRecvClient client = new SendRecvClient();
 client.sendRecvAsync("A text msg");
 client.done.acquire();
 client.stop();
 System.exit(0);
 System.out.println("End SendRecvClient");
 }

}

Run the client as follows:
examples 804>ant -Dchap=6 -Dex=2 run-example
Buildfile: build.xml
...
chap6-ex2-jar:
 [jar] Building jar: G:\JBossDocs\AdminDevel\examples\output\chap6\chap6-
ex2.jar

run-example2:
 [copy] Copying 1 file to D:\usr\JBoss3.0\jboss-all\build\output\jboss-
3.0.1RC1\server\default\deploy
 [echo] Waiting 5 seconds for deploy...
 [java] Begin SendRecvClient, now=1027385360031
 [java] Begin sendRecvAsync
 [java] sendRecvAsync, sent text=A text msg#0
 [java] sendRecvAsync, sent text=A text msg#1
 [java] sendRecvAsync, sent text=A text msg#2
 [java] sendRecvAsync, sent text=A text msg#3
 [java] sendRecvAsync, sent text=A text msg#4
 [java] sendRecvAsync, sent text=A text msg#5
 [java] sendRecvAsync, sent text=A text msg#6
 [java] sendRecvAsync, sent text=A text msg#7
 [java] sendRecvAsync, sent text=A text msg#8
 [java] sendRecvAsync, sent text=A text msg#9
 [java] End sendRecvAsync
 [java] onMessage, recv text=A text msg#1processed by: 4245685
 [java] onMessage, recv text=A text msg#4processed by: 3332063
 [java] onMessage, recv text=A text msg#0processed by: 2972067
 [java] onMessage, recv text=A text msg#2processed by: 6826579
 [java] onMessage, recv text=A text msg#7processed by: 8256600
 [java] onMessage, recv text=A text msg#6processed by: 5767514
 [java] onMessage, recv text=A text msg#5processed by: 3740851
 [java] onMessage, recv text=A text msg#9processed by: 1506732
 [java] onMessage, recv text=A text msg#8processed by: 8032804
 [java] onMessage, recv text=A text msg#3processed by: 1095232
230 JBoss Administration and Development

JMS Examples
BUILD SUCCESSFUL

Total time: 11 seconds

The corresponding JBoss server console output is:
17:49:16,765 INFO [MainDeployer] Starting deployment of package: file:/D:/usr/J
Boss3.0/jboss-all/build/output/jboss-3.0.1RC1/server/default/deploy/chap6-
ex2.jar
17:49:17,578 INFO [EjbModule] Creating
17:49:17,609 INFO [EjbModule] Deploying TextMDB
17:49:17,718 INFO [JMSContainerInvoker] Creating
17:49:17,781 INFO [DLQHandler] Creating
17:49:18,031 INFO [DLQHandler] Created
17:49:18,218 WARN [SecurityManager] No SecurityMetadadata was available for B
adding default security conf
17:49:18,234 INFO [JMSContainerInvoker] Created
17:49:18,234 INFO [EjbModule] Created
17:49:18,234 INFO [EjbModule] Starting
17:49:18,250 INFO [JMSContainerInvoker] Starting
17:49:18,250 INFO [DLQHandler] Starting
17:49:18,250 INFO [DLQHandler] Started
17:49:18,250 INFO [JMSContainerInvoker] Started
17:49:18,250 INFO [EjbModule] Started
17:49:18,250 INFO [MainDeployer] Deployed package: file:/D:/usr/JBoss3.0/jboss-
all/build/output/jboss-3.0.1RC1/server/default/deploy/chap6-ex2.jar
17:49:21,015 WARN [SecurityManager] No SecurityMetadadata was available for A
adding default security conf
17:49:21,218 INFO [STDOUT] TextMDB.ctor, this=1095232
17:49:21,218 INFO [STDOUT] TextMDB.ctor, this=6826579
17:49:21,218 INFO [STDOUT] TextMDB.ctor, this=2972067
17:49:21,234 INFO [STDOUT] TextMDB.ctor, this=3332063
17:49:21,234 INFO [STDOUT] TextMDB.ctor, this=8032804
17:49:21,234 INFO [STDOUT] TextMDB.ctor, this=5767514
17:49:21,234 INFO [STDOUT] TextMDB.ctor, this=1506732
17:49:21,234 INFO [STDOUT] TextMDB.ctor, this=4245685
17:49:21,234 INFO [STDOUT] TextMDB.ctor, this=8256600
17:49:21,234 INFO [STDOUT] TextMDB.ctor, this=3740851
17:49:21,234 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=3332063
17:49:21,234 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=5767514
17:49:21,250 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=2972067
17:49:21,250 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=8032804
17:49:21,250 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=6826579
17:49:21,250 INFO [STDOUT] TextMDB.ejbCreate, this=3332063
17:49:21,250 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=4245685
17:49:21,250 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=8256600
17:49:21,250 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=3740851
17:49:21,250 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=1506732
17:49:21,250 INFO [STDOUT] TextMDB.setMessageDrivenContext, this=1095232
17:49:21,250 INFO [STDOUT] TextMDB.ejbCreate, this=5767514
17:49:21,250 INFO [STDOUT] TextMDB.ejbCreate, this=2972067
17:49:21,265 INFO [STDOUT] TextMDB.ejbCreate, this=8032804
17:49:21,343 INFO [STDOUT] TextMDB.ejbCreate, this=6826579
17:49:21,343 INFO [STDOUT] TextMDB.ejbCreate, this=4245685
JBoss Administration and Development 231

Messaging on JBoss - JMS Configuration and Architecture
17:49:21,359 INFO [STDOUT] TextMDB.ejbCreate, this=8256600
17:49:21,375 INFO [STDOUT] TextMDB.ejbCreate, this=3740851
17:49:21,375 INFO [STDOUT] TextMDB.ejbCreate, this=1506732
17:49:21,375 INFO [STDOUT] TextMDB.ejbCreate, this=1095232
17:49:21,421 INFO [STDOUT] TextMDB.onMessage, this=6826579
17:49:21,421 INFO [STDOUT] TextMDB.sendReply, this=6826579, dest=QUEUE.A
17:49:21,421 INFO [STDOUT] TextMDB.onMessage, this=5767514
17:49:21,421 INFO [STDOUT] TextMDB.sendReply, this=5767514, dest=QUEUE.A
17:49:21,453 INFO [STDOUT] TextMDB.onMessage, this=4245685
17:49:21,453 INFO [STDOUT] TextMDB.sendReply, this=4245685, dest=QUEUE.A
17:49:21,468 INFO [STDOUT] TextMDB.onMessage, this=3332063
17:49:21,468 INFO [STDOUT] TextMDB.sendReply, this=3332063, dest=QUEUE.A
17:49:21,468 INFO [STDOUT] TextMDB.onMessage, this=8256600
17:49:21,484 INFO [STDOUT] TextMDB.sendReply, this=8256600, dest=QUEUE.A
17:49:21,484 INFO [STDOUT] TextMDB.onMessage, this=2972067
17:49:21,484 INFO [STDOUT] TextMDB.sendReply, this=2972067, dest=QUEUE.A
17:49:21,562 INFO [STDOUT] TextMDB.onMessage, this=3740851
17:49:21,562 INFO [STDOUT] TextMDB.sendReply, this=3740851, dest=QUEUE.A
17:49:21,578 INFO [STDOUT] TextMDB.onMessage, this=1506732
17:49:21,578 INFO [STDOUT] TextMDB.sendReply, this=1506732, dest=QUEUE.A
17:49:21,578 INFO [STDOUT] TextMDB.onMessage, this=8032804
17:49:21,578 INFO [STDOUT] TextMDB.sendReply, this=8032804, dest=QUEUE.A
17:49:21,578 INFO [STDOUT] TextMDB.onMessage, this=1095232
17:49:21,593 INFO [STDOUT] TextMDB.sendReply, this=1095232, dest=QUEUE.A

Items of note in this example include:

• The JMS client has no explicit knowledge that it is dealing with an MDB. The client simply
uses the standard JMS APIs to send messages to a queue and receive messages from another
queue.
• The MDB declares whether it will listen to a queue or topic in the ejb-jar.xml descriptor. The
name of the queue or topic must be specified using a jboss.xml descriptor. In this example the
MDB also sends messages to a JMS queue. MDBs may act as queue senders or topic publishers
within their onMessage callback.
• The messages received by the client include a “processed by: NNN” suffix, where NNN is the
hashCode value of the MDB instance that processed the message. This shows that many MDBs
may actively process messages posted to a destination. Concurrent processing is one of the bene-
fits of MDBs.

JBoss Messaging Overview
Hiram Chirino

JBossMQ is composed of several subsystems working together to provide JMS API level services to
client applications. To obtain a deeper understanding of the JBossMQ server, and how to optimize it
its subsystem will be reviewed in this section.
232 JBoss Administration and Development

JBoss Messaging Overview
Invocation Layer
The Invocation Layer (IL) is the subsystem that is responsible for defining the communications proto-
col that allows clients to send messages to a destination and vice versa. JBossMQ can support run-
ning different types of Invocation Layers concurrently. All Invocation Layers have a dual channel
nature that allows clients to send messages as it concurrently receives messages from the server.

Each different type of Invocation Layer will bind a JMS ConnectionFactory (configured to use the
IL) to a different location in the JNDI tree. Clients can pick the protocol they wish to use by looking
up the correct JNDI location.

JBossMQ currently supports four different invocation layers. This section will further examine these
ILs.

RMI IL
The first Invocation Layer that was developed was based on Java’s Remote Method Invocation
(RMI). This is a very robust IL since it is based on standard RMI technology. The RMI IL should be
used when your client application has multiple threads sharing one connection.

NOTE: This IL will try to establish a TCP/IP socket from the server to the client.
Therefore, clients that sit behind firewalls or have security restrictions prohibiting the
use of SeverSockets should not use this IL.

OIL IL
The next Invocation Layer that was developed was the “Optimized” IL (OIL). The OIL uses a cus-
tom TCP/IP protocol and serialization protocol that has very low overhead. This was the recom-
mended socket based protocol until the addition of the UIL2 protocol.

NOTE: This IL will try to establish a TCP/IP socket from the server to the client.
Therefore, clients that sit behind firewalls or have security restrictions prohibiting the
use of SeverSockets should not use this IL.

UIL IL
The Unified Invocation Layer (UIL) was developed to allow Applet clients to connect to the server.
It is almost identical to the OIL protocol except that a multiplexing layer is used to provide the dual
channel characteristics of the IL. The multiplexing layer creates two virtual sockets over one physi-
cal socket. This IL is slower than the OIL due to the higher overhead incurred by the multiplexing
layer.

UIL2 IL
The Unified version 2 Invocation Layer (UIL2) is a new variation of the UIL protocol that also uses a
single socket between the client and server. However, unlike both the UIL and OIL protocols which
use a blocking round-trip message at the socket level, the UIL2 protocol uses a true asynchrounous
JBoss Administration and Development 233

Messaging on JBoss - JMS Configuration and Architecture
send and receive messaging at the transport level. This provides for improved throughput and utiliza-
tion and as such it is the preferred socket invocation layer.

JVM IL
The Java Virtual Machine (JVM) Invocation Layer was developed to cut out the TCP/IP overhead
when the JMS client is running in the same JVM as the server. This IL uses direct method calls for
the server to service the client requests. This increases efficiency since no sockets are created and
there is no need for the associated worker threads. This is the IL that should be used by Message
Driven Beans (MDB) or any other component that runs in the same virtual machine as the server such
as servlets or MBeans.

Security Manager
The JBossMQ Security Manager is the subsystem that enforces an Access Control List to guard
access to your destinations. This subsystem works closely with the State Manager subsystem, which
will be discussed later.

Destination Manager
The Destination Manager can be thought as being the central sever for JBossMQ. It keeps track of all
the destinations that have been created on the server. It also keeps track of the other server sub-
systems such as the Message Cache, State Manager, and Persistence Manager.

Message Cache
Messages created in the server are subsequently passed to the Message Cache for memory manage-
ment. JVM memory usage goes up as messages are added to a destination that does not have any
receivers. These messages are held in the main memory until the receiver picks them up. If the Mes-
sage Cache notices that the JVM memory usage starts passing the defined limits, the Message Cache
starts moving those messages from memory to persistent storage on disk. The Message Cache uses a
Least Recently Used algorithm to determine which messages should go to disk.

State Manager
The State Manager (SM) is in charge of keeping track of who is allowed to log into the server and
what their durable subscriptions are.

Persistence Manager
The Persistence Manager (PM) is used by a destination to store messages marked as being persistent.
JBossMQ has several different implementations of the Persistent Manager, but only one can be
234 JBoss Administration and Development

JBoss Messaging Overview
enabled per server instance. You should enable the Persistence Manager that best matches your
requirements.

This section will give you a brief description of the three types of PMs.

File PM
The File PM is the one of the most robust Persistence Manager that comes with JBossMQ. It creates
separate directories for each of the destination created on the server. It then stores the each persistent
message as a separate file in the appropriate directory. It does not have the best performance charac-
teristics since it is frequently opening and closing files.

Rolling Logged PM
The Rolling Logged PM is also a file based Persistence Manager but it has better performance than
the File PM because it stores multiple messages in one file reducing the file opening and closing over-
head. This is a very fast PM but it is less transactionally reliable than the File PM due to its reliance
on the FileOutputStream.flush() method call. On some operating systems/JVMs the FileOutput-
Stream.flush() method does not guarantee that the data has been written to disk by the time the call
returns.

JDBC2 PM
The JDBC2 PM is the second version of the original JDBC PM in JBossMQ 2.4.x. It has been sub-
stantially simplified and improved. This PM allows you to store persistent messages to relational
database using JDBC. The performance of this PM is directly related to the performance that can be
obtained from the database. This PM has a very low memory overhead compared to the other Persis-
tence Managers. Furthermore it is also highly integrated with the Message Cache to provide efficient
persistence on a system that has a very active Message Cache.

Destinations
A Destination is the object on the JBossMQ server that clients use to send and receive messages.
There are two types of destination objects, Queues and Topics. References to the destinations created
by JBossMQ are stored in JNDI.

Queues
Clients that are in the Point-to-Point paradigm typically use Queues. They expect that message sent
to a Queue will be receive by only one other client “once and only once”. If multiple clients are
receiving messages from a single queue, the messages will be load balanced across the receivers.
Queue objects, by default, will be stored under the JNDI “queue/” sub context.
JBoss Administration and Development 235

Messaging on JBoss - JMS Configuration and Architecture
Topics
Topics are used in the Publish-Subscribe paradigm. When a client publishes a message to a topic, he
expects that a copy of the message will be delivered to each client that has subscribed to the topic.
Topic messages are delivered in the same manner a television show is delivered. Unless you have
the TV on and are watching the show, you will miss it. Similarly, if the client is not up, running and
receiving messages from the topics, it will miss messages published to the topic. To get around this
problem of missing messages, clients can start a durable subscription. This is like having a VCR
record a show you are missing, so that you can see what you missed when you turn your TV back on.

JBoss Messaging Configuration and
MBeans
Hiram Chirino

Like all JBoss components the JBoss Messaging layer is configured using MBeans. The configura-
tion files that make up the default JBoss Messaging include:

• conf/jbossmq-state.xml: the configuration file read by the org.jboss.mq.sm.file.DynamicState-
Manager MBean. This controls the valid username/passwords as well as the active durable topic
subscriptions.
• deploy/jbossmq-destinations-service.xml: the default JMS queue and topic destination config-
urations.
• deploy/jbossmq-service.xml: the service descriptor for the core JBoss Messaging MBeans.
• deploy/jms-ra.rar: a JCA resource adaptor for JMS providers.
• deploy/jms-service.xml: the JMS provider integration services descriptor setup to configure
JBoss Messaging as the JMS provider.

We will look at the details of these configuration files as we discuss the associated MBeans in the fol-
lowing subsections. All JBoss JMS objects and sever subsystems are configured via JMX MBeans.
Like most other services running in the JBoss micro-kernel architecture, an XML file deployed to the
server/default/deploy controls the configuration of the service.

The sever subsystems are configured in the jbossmq-service.xml file. Unless you are an advanced
user, you should not have to edit this file. Adjusting this file allows you to optimize and change how
the server operates. For more details on how to configure this file see the section below. If you edit
this file, you should restart the JBoss server for the changes to correctly take effect.

Most users will need to edit the jbossmq-destinations-service.xml file. This file allows you to define
the destinations that your applications need. If you edit this file, you should restart the JBoss server
for the changes to correctly take effect.
236 JBoss Administration and Development

JBoss Messaging Configuration and MBeans
This section can be used as your reference guide to the jbossmq-service.xml file. This file uses the
standard JBoss service XML format that is used to configure MBeans in the JBoss server.Server Sub-
system MBeans

org.jboss.mq.il.jvm.JVMServerILService
The org.jboss.mq.il.jvm.JVMServerILService MBean is used to configure the JVM IL. The config-
urable attributes are as follows:

• Invoker: The JMX Object Name of the Invoker that is used to pass client requests to the Des-
tination Manager. This attribute should be setup via a <depends optional-attribute-
name="Invoker"> XML tag.
• ConnectionFactoryJNDIRef: The JNDI location that this IL will bind a ConnectionFactory
setup to use this IL.
• XAConnectionFactoryJNDIRef: The JNDI location that this IL will bind a XAConnection-
Factory setup to use this IL.
• PingPeriod: How often, in milliseconds, the client should send a ping message to the server
to validate that the connection is still valid. If this is set to zero, then no ping message will be
sent. Since it is impossible for JVM IL connection to go bad, it is recommended that you keep
this set to “0”.

org.jboss.mq.il.rmi.RMIServerILService
The org.jboss.mq.il.rmi.RMIServerILService is used to configure the RMI IL. The configurable
attributes are as follows:

• Invoker: The JMX Object Name of the Invoker that is used to pass client requests to the Des-
tination Manager. This attribute should be setup via a <depends optional-attribute-
name="Invoker"> XML tag.
• ConnectionFactoryJNDIRef: The JNDI location that this IL will bind a ConnectionFactory
setup to use this IL.
• XAConnectionFactoryJNDIRef: The JNDI location that this IL will bind a XAConnection-
Factory setup to use this IL.
• PingPeriod: How often, in milliseconds, the client should send a ping message to the server
to validate that the connection is still valid. If this is set to zero, then no ping message will be
sent.

org.jboss.mq.il.oil.OILServerILService
The org.jboss.mq.il.oil.OILServerILService is used to configure the OIL IL. The configurable
attributes are as follows:
JBoss Administration and Development 237

Messaging on JBoss - JMS Configuration and Architecture
• Invoker: The JMX Object Name of the Invoker that is used to pass client requests to the Des-
tination Manager. This attribute should be setup via a <depends optional-attribute-
name="Invoker"> XML tag.
• ConnectionFactoryJNDIRef: The JNDI location that this IL will bind a ConnectionFactory
setup to use this IL.
• XAConnectionFactoryJNDIRef: The JNDI location that this IL will bind a XAConnection-
Factory setup to use this IL.
• PingPeriod: How often, in milliseconds, the client should send a ping message to the server
to validate that the connection is still valid. If this is set to zero, then no ping message will be
sent.
• ServerBindPort: The protocol listening port for this IL. If not specified default is 0, which
means that a random port will be chosen.
• BindAddress: The specific address this IL listens on. This can be used on a multi-homed host
for a java.net.ServerSocket that will only accept connection requests on one of its addresses.
• EnableTcpNoDelay: If set to true, then the TcpNodDelay option is enabled. This improves
request response times since TCP/IP packets are sent a soon as the request is flushed. Otherwise
request packets may be buffered by the operating system to create larger IP packets.
• ServerSocketFactory: The the javax.net.ServerSocketFactory implementation class name to
use to create the service java.net.ServerSocket. If not specified the default factory will be
obtained from javax.net.ServerSocketFactory.getDefault().
• ClientSocketFactory: The javax.net.SocketFactory implementation class name to use on the
client. If not specified the default factory will be obtained from javax.net.SocketFactory.getDe-
fault().
• SecurityDomain: Specify the security domain name to use with JBoss SSL aware socket fac-
tories. This is the JNDI name of the security manager implementation as described for the secu-
rity-domain element of the jboss.xml and jboss-web.xml descriptors.

org.jboss.mq.il.uil.UILServerILService
The org.jboss.mq.il.uil.UILServerILService is used to configure the UIL IL. The configurable
attributes are as follows:

• Invoker: The JMX Object Name of the Invoker that is used to pass client requests to the Des-
tination Manager. This attribute should be setup via a <depends optional-attribute-
name="Invoker"> XML tag.
• ConnectionFactoryJNDIRef: The JNDI location that this IL will bind a ConnectionFactory
setup to use this IL.
• XAConnectionFactoryJNDIRef: The JNDI location that this IL will bind a XAConnection-
Factory setup to use this IL.
• PingPeriod: How often, in milliseconds, the client should send a ping message to the server
to validate that the connection is still valid. If this is set to zero, then no ping message will be
sent.
• ServerBindPort: The protocol listening port for this IL. If not specified default is 0, which
means that a random port will be chosen.
238 JBoss Administration and Development

JBoss Messaging Configuration and MBeans
• BindAddress: The specific address this IL listens on. This can be used on a multi-homed host
for a java.net.ServerSocket that will only accept connection requests on one of its addresses.
• EnableTcpNoDelay: If set to true, then the TcpNodDelay option is enabled. This improves
request response times since TCP/IP packets are sent a soon as the request is flushed. Otherwise
request packets may be buffered by the operating system to create larger IP packets.
• ServerSocketFactory: The the javax.net.ServerSocketFactory implementation class name to
use to create the service java.net.ServerSocket. If not specified the default factory will be
obtained from javax.net.ServerSocketFactory.getDefault().
• ClientSocketFactory: The javax.net.SocketFactory implementation class name to use on the
client. If not specified the default factory will be obtained from javax.net.SocketFactory.getDe-
fault().
• SecurityDomain: Specify the security domain name to use with JBoss SSL aware socket fac-
tories. This is the JNDI name of the security manager implementation as described for the secu-
rity-domain element of the jboss.xml and jboss-web.xml descriptors.

org.jboss.mq.il.uil2.UILServerILService
The org.jboss.mq.il.uil2.UILServerILService is used to configure the UIL2 IL. The configurable
attributes are as follows:

• Invoker: The JMX Object Name of the Invoker that is used to pass client requests to the Des-
tination Manager. This attribute should be setup via a <depends optional-attribute-
name="Invoker"> XML tag.
• ConnectionFactoryJNDIRef: The JNDI location that this IL will bind a ConnectionFactory
setup to use this IL.
• XAConnectionFactoryJNDIRef: The JNDI location that this IL will bind a XAConnection-
Factory setup to use this IL.
• PingPeriod: How often, in milliseconds, the client should send a ping message to the server
to validate that the connection is still valid. If this is set to zero, then no ping message will be
sent.
• ReadTimeout: The period in milliseconds is passed onto as the SoTimeout value of the UIL2
socket. This allows detetion of dead sockets that are not responsive and are not capable of receiv-
ing ping msgs. Note that this setting should be longer in duration than the PingPeriod setting.
• BufferSize: The size in bytes used as the buffer over the basic socket streams. This corre-
sponds to the java.io.BufferedOutputStream buffer size.
• ChunkSize: The size in bytes between stream listener notifications. The UIL2 layer uses the
org.jboss.util.stream.NotifyingBufferedOutputStream and NotifyingBufferedInputStream imple-
mentations that support the notion of a heartbeat that is triggered based on data read/written to the
stream. Whenever ChunkSize bytes are read/written to a stream. This allows serves as a ping or
keepalive notification when large reads or writes require a duration greater than the PingPeriod.
• ServerBindPort: The protocol listening port for this IL. If not specified default is 0, which
means that a random port will be chosen.
• BindAddress: The specific address this IL listens on. This can be used on a multi-homed host
for a java.net.ServerSocket that will only accept connection requests on one of its addresses.
JBoss Administration and Development 239

Messaging on JBoss - JMS Configuration and Architecture
• EnableTcpNoDelay: If set to true, then the TcpNodDelay option is enabled. This improves
request response times since TCP/IP packets are sent a soon as the request is flushed. Otherwise
request packets may be buffered by the operating system to create larger IP packets.
• ServerSocketFactory: The the javax.net.ServerSocketFactory implementation class name to
use to create the service java.net.ServerSocket. If not specified the default factory will be
obtained from javax.net.ServerSocketFactory.getDefault().
• ClientSocketFactory: The javax.net.SocketFactory implementation class name to use on the
client. If not specified the default factory will be obtained from javax.net.SocketFactory.getDe-
fault().
• SecurityDomain: Specify the security domain name to use with JBoss SSL aware socket fac-
tories. This is the JNDI name of the security manager implementation as described for the secu-
rity-domain element of the jboss.xml and jboss-web.xml descriptors.

org.jboss.mq.server.jmx.Invoker
The org.jboss.mq.server.jmx.Invoker is used to pass Invocation Layer (IL) requests down to the Des-
tination Manager through an Interceptor Chain. The configurable attributes are as follows:

• NextInterceptor: The JMX object name of the next request Interceptor. This attribute is used
by all the Interceptors to create the Interceptor Chain. The last interceptor in the chain should be
the DestinationManager. This attribute should be setup via a <depends optional-attribute-
name="NextInterceptor"> XML tag.

org.jboss.mq.server.jmx.InterceptorLoader
The org.jboss.mq.server.jmx.InterceptorLoader is used to load a Generic Interceptor and make it part
of the Interceptor Chain. This MBean is typically used to load the org.jboss.mq.server.TracingInter-
ceptor, which is used to efficiently log all client requests via trace level log messages. The config-
urable attributes are as follows:

• NextInterceptor: The JMX object name of the next request interceptor. This attribute in all
the interceptors is forms the chain. The last interceptor in the chain should be the Destination-
Manager. This attribute should be setup via a <depends optional-attribute-name="NextIntercep-
tor"> XML tag.
• InterceptorClass: The class name of the interceptor that will be loaded and made part of the
Interceptor Chain. This class specified here must extend the org.jboss.mq.server.JMSServer-
Interceptor java class.

org.jboss.mq.security.SecurityManager
If the org.jboss.mq.security.SecurityManager is part of the Interceptor Chain, then it will enforce the
access control lists assigned to the destinations. The Security Manager uses JAAS, and as such
requires that at application policy be setup for in the JBoss login-config.xml file. The default config-
uration is shown in Listing 6-9 .
240 JBoss Administration and Development

JBoss Messaging Configuration and MBeans
LISTING 6-9. The default login-config.xml configuration for JBoss messaging

 <application-policy name = "jbossmq">
 <authentication>
 <login-module code = "org.jboss.mq.sm.file.DynamicLoginModule"
 flag = "required">
 <module-option name="unauthenticatedIdentity">guest</module-option>
 <module-option
 name="sm.objectnam">jboss.mq:service=StateManager</module-option>
 </login-module>
 </authentication>
 </application-policy>

The default configuration maps any unauthenticated JBossMQ client to the “guest” role. The config-
urable attributes are as follows:

• NextInterceptor: The JMX object name of the next request interceptor. This attribute in all
the interceptors is forms the chain. The last interceptor in the chain should be the Destination-
Manager. This attribute should be setup via a <depends optional-attribute-name="NextIntercep-
tor"> XML tag.

org.jboss.mq.server.jmx.DestinationManager
The org.jboss.mq.server.jmx.DestinationManager must be the last Interceptor in the Interceptor
Chain. The configurable attributes are as follows:

• PersistenceManager: The JMX object name of the Persistence Manager you want the server
to use. This attribute should be setup via a <depends optional-attribute-name="PersistenceMan-
ager"> XML tag.
• StateManager: The JMX object name of the State Manager you want the server to use. This
attribute should be setup via a <depends optional-attribute-name="StateManager"> XML tag.

org.jboss.mq.server.MessageCache
The server determines when to move messages to secondary storage by using the
org.jboss.mq.server.MessageCache MBean. The configurable attributes are as follows:

• CacheStore: The JMX object name of an Object that will act as the Cache Store. The Cache
Store is used by the MessageCache to move messages to persistent storage. The value you set
here typically depends on the type of Persistence Manager you are using. This attribute should be
setup via a <depends optional-attribute-name="CacheStore"> XML tag.
• HighMemoryMark: The amount of JVM heap memory in megabytes that must be reached
before the Message Cache starts to move messages to secondary storage.
• MaxMemoryMark: The maximum amount of JVM heap memory in megabytes that the
Message Cache considers to be the Max Memory Mark. As memory usage approaches the Max
Memory Mark, the Message Cache will move messages to persistent storage so that the number
of messagea kept in memory approaches zero.
JBoss Administration and Development 241

Messaging on JBoss - JMS Configuration and Architecture
org.jboss.mq.pm.file.CacheStore
The org.jboss.mq.pm.file.CacheStore MBean should be used as the Cache Store for the Message
Cache when you are using the File or Rolling Logged PM. The configurable attributes are as follows:

• DataDirectory: The directory used to store messages for the Message Cache.

org.jboss.mq.sm.file.DynamicStateManager
The org.jboss.mq.sm.file.DynamicStateManager MBean should be used as the State Manager
assigned to the Destination Manager. The configurable attributes are as follows:

• StateFile: The file used to store state information such as created durable subscriptions. The
StateFile is in XML format that the server reads and writes data to. You should never edit the
XML file while the server is running.

org.jboss.mq.pm.file.PersistenceManager
The org.jboss.mq.pm.file.PersistenceManager should be used as the Persistence Manager assigned to
the Destination Manager if you wish to use the File PM. The configurable attributes are as follows:

• MessageCache: The JMX object name of the MessageCache that has been assigned to the
Destination Manager. This attribute should be setup via a <depends optional-attribute-
name="MessageCache"> XML tag.
• DataDirectory: The directory used to store persistent messages.

org.jboss.mq.pm.rollinglogged.PersistenceManager
The org.jboss.mq.pm.rollinglogged.PersistenceManager should be used as the Persistence Manager
assigned to the Destination Manager if you wish to use the Rolling Logged PM. The configurable
attributes are as follows:

• MessageCache: The JMX object name of the MessageCache that has been assigned to the
Destination Manager. This attribute should be setup via a <depends optional-attribute-
name="MessageCache"> XML tag.
• DataDirectory: The directory used to store persistent messages.

org.jboss.mq.pm.jdbc2.PersistenceManager
The org.jboss.mq.pm.file.PersistenceManager should be used as the Persistence Manager assigned to
the Destination Manager if you wish to use the JDBC2 PM. This PM has been tested against the
HypersonSQL Database. The configurable attributes are as follows:
242 JBoss Administration and Development

JBoss Messaging Configuration and MBeans
• MessageCache: The JMX object name of the MessageCache that has been assigned to the
Destination Manager. This attribute should be setup via a <depends optional-attribute-
name="MessageCache"> XML tag.
• DataSource: The JMX object name of the JCA data source that will be used to obtain JDBC
connections. This attribute should be setup via a <depends optional-attribute-name="Data-
Source"> XML tag. You may also need to add another <depends> XML tag to wait for the data
source Connection Manager to be started before this PM is started.
• SqlProperties: A property list is used to define the SQL Queries and other JDBC2 Persis-
tence Manager options. You will need to adjust these properties if you which to run against
another database other than HypersonicSQL. See Listing 6-10 for default setting for this
attribute.

LISTING 6-10. Default SqlProperties

 <attribute name="SqlProperties">
 BLOB_TYPE=OBJECT_BLOB
 INSERT_TX = INSERT INTO JMS_TRANSACTIONS (TXID) values(?)
 INSERT_MESSAGE = INSERT INTO JMS_MESSAGES (MESSAGEID, DESTINATION, \
 MESSAGEBLOB, TXID, TXOP) VALUES(?,?,?,?,?)
 SELECT_ALL_UNCOMMITED_TXS = SELECT TXID FROM JMS_TRANSACTIONS
 SELECT_MAX_TX = SELECT MAX(TXID) FROM JMS_MESSAGES
 SELECT_MESSAGES_IN_DEST = SELECT MESSAGEID, MESSAGEBLOB FROM JMS_MESSAGES \
 WHERE DESTINATION=?
 SELECT_MESSAGE = SELECT MESSAGEID, MESSAGEBLOB FROM JMS_MESSAGES WHERE \
 MESSAGEID=? AND DESTINATION=?
 MARK_MESSAGE = UPDATE JMS_MESSAGES SET (TXID, TXOP) VALUES(?,?) WHERE \
 MESSAGEID=? AND DESTINATION=?
 DELETE_ALL_MESSAGE_WITH_TX = DELETE FROM JMS_MESSAGES WHERE TXID=?
 DELETE_TX = DELETE FROM JMS_TRANSACTIONS WHERE TXID = ?
 DELETE_MARKED_MESSAGES = DELETE FROM JMS_MESSAGES WHERE TXID=? AND TXOP=?
 DELETE_MESSAGE = DELETE FROM JMS_MESSAGES WHERE MESSAGEID=? AND
DESTINATION=?
 CREATE_MESSAGE_TABLE = CREATE TABLE JMS_MESSAGES (MESSAGEID INTEGER NOT
NULL, \
 DESTINATION VARCHAR(50) NOT NULL, TXID INTEGER, TXOP CHAR(1), \
 MESSAGEBLOB OBJECT, PRIMARY KEY (MESSAGEID, DESTINATION))
 CREATE_TX_TABLE = CREATE TABLE JMS_TRANSACTIONS (TXID INTEGER)
 </attribute>

Destination MBeans
This section can be used as your reference guide to the jbossmq-destinations-service.xml file. This
uses the standard JBoss service XML format, which is used to configure MBeans in the JBoss server.
JBoss Administration and Development 243

Messaging on JBoss - JMS Configuration and Architecture
org.jboss.mq.server.jmx.Queue
The org.jboss.mq.server.jmx.Queue is used to define a Queue Destination on the JBossMQ server.
The “name” attribute of the JMX object name of this MBean is used to determine the destination
name. For example, if the JMX MBean begins with:

<mbean code="org.jboss.mq.server.jmx.Queue"
 name="jboss.mq.destination:service=Queue,name=testQueue">

Then, the JMX object name is “jboss.mq.destination:service=Queue,name=testQueue” and the name
of the queue is “testQueue”. The configurable attributes are as follows:

• DestinationManager: The JMX object name of the Destination Manager configured for the
server. This attribute should be setup via a <depends optional-attribute-name="DestinationMan-
ager"> XML tag.
• SecurityManager: The JMX object name of the Security Manager that is being used to vali-
date client requests. This attribute should be setup via a <depends optional-attribute-
name="SecurityManager"> XML tag.
• SecurityConf: An XML based description of an access control list that will be used by the
SecurityManager to authorize client operations against the Destination. See Listing 6-11 for an
example of the configuration.
• JNDIName: The location in JNDI to which the queue object will be bound. If this is not set it
will default to “queue/queue-name”.

org.jboss.mq.server.jmx.Topic
The org.jboss.mq.server.jmx.Topic is used to define a Topic Destination on the JBossMQ server. The
“name” attribute of the JMX object name of this MBean is used to determine the destination name.
For example, if the JMX MBean begins with:
<mbean code="org.jboss.mq.server.jmx.Topic"
 name="jboss.mq.destination:service=Topic,name=testTopic">

Then, the JMX object name is “jboss.mq.destination:service=Topic,name=testTopic” and the name of
the topic is “testTopic”. The configurable attributes are as follows:

• DestinationManager: The JMX object name of the Destination Manager configured for the
server. This attribute should be setup via a <depends optional-attribute-name="DestinationMan-
ager"> XML tag.
• SecurityManager: The JMX object name of the Security Manager that is being used to vali-
date client requests. This attribute should be setup via a <depends optional-attribute-
name="SecurityManager"> XML tag.
• SecurityConf: An XML based description of an access control list that will be used by the
SecurityManager to authorize client operations against the Destination. See Listing 6-11 for an
example of the configuration.
• JNDIName: The location in JNDI to which the queue object will be bound. If this is not set it
will default to “topic/topic-name”.
244 JBoss Administration and Development

JBoss Messaging Configuration and MBeans
Destination Security Configuration
To apply role based Access Control List to a Destination, setup the list via the SecurityConf MBean
attribute on the Destination MBeans. It should contain a “security” XML element with zero or more
“role” sub elements. A sample configuration is show in Listing 6-11.

LISTING 6-11. Sample Destination Security Configuration

 <attribute name="SecurityConf">
 <security>
 <role name="guest" read="false" write="true"/>
 <role name="durablesub" read="true" write="false" create="true"/>
 </security>
 </attribute>

The configuration in Listing 6-11 sets up two roles. The first is a guest role that is allowed to only
write to the destination. The second role is only allowed to read from the destination and create a
durable subscription. The attributes that can be set on the role element are:

• name: The name of the role that you are adding a security permission for.
• read: set to true or false. False if not set. Set to true to allow any clients who have the named
role to receive messages from the destination.
• write: set to true or false. False if not set. Set to true to allow any clients who have the named
role to send or publish messages to the destination.
• create: set to true or false. False if not set. Set to true to allow any clients who have the
named role to create durable subscriptions for the destination.

Administration Via JMX
JBossMQ statistics and several management functions are accessible via JMX. JMX can be accessed
interactively via a Web Application or programmatically via the JMX API. It is recommended that
you use the http://localhost:8080/jmx-console web application to get familiar with all the JBossMQ
JMX MBeans running inside the server and how to invoke methods on those MBeans via the jmx-
console web application. This section will outline the most common runtime management tasks that
administrators must perform.

Creating Queues At Runtime
Applications that require the dynamic creation of queues at runtime can use the Destination Man-
ager’s MBean createQueue method:

void createQueue(String name, String jndiLocation)
This method creates a queue with the given name and binds it in JNDI at the jndiLocation. Queues
created via this method exist until the server is restarted.

To destroy a previously created Queue, you would issue a:
JBoss Administration and Development 245

http://localhost:8080/jmx-console

Messaging on JBoss - JMS Configuration and Architecture
void destroyQueue(String name)

Creating Topics At Runtime
Applications that require the dynamic creation of topics at runtime can use the Destination Manager’s
MBean createTopic method:
void createTopic(String name, String jndiLocation)

This method creates a topic with the given name and binds it in JNDI at the jndiLocation. Topics cre-
ated via this method exist until the server is restarted.

To destroy a previously created Topic, you would issue a:

void destroyTopic(String name)

Managing a JBossMQ User IDs at Runtime
The org.jboss.mq.sm.file.DynamicStateManager’s MBean can be used to add and remove user ids
and roles at runtime. To add a user id, you would use:
void addUser(String name, String password, String clientID)

This method creates a user id with the given name and password and configures him to have the given
clientID.

To remove a previously created user id, you would call the following method:
void removeUser(String name)

To manage the roles that the user ids belong to, you would use the following set of methods to create
roles, remove roles, add users to roles, and remove users from roles:
void addRole(String name)
void removeRole(String name)
void addUserToRole(String roleName, String user)
void removeUserFromRole(String roleName, String user)

Checking how many messages are on a Queue
The org.jboss.mq.server.jmx.Queue MBeans provides a QueueDepth attribute which reflects the cur-
rent number of messages sitting the on the given queue.

Checking to see how the Message Cache is performing
The Message Cache exposes several attributes for you to monitor the performance of the Message
Cache. The attributes that can be viewed via JMX are:

• HardRefCacheSize: The number of messages the Message Cache forcing to stay inn memory
by using a hard reference.
246 JBoss Administration and Development

JBoss Messaging Configuration and MBeans
• SoftRefCacheSize: The number of messages the Message Cache has persisted but is still lin-
gering around in memory as soft references due to the garbage collector not being eager to free up
space.
• TotalCacheSize: The total number of messages that are being managed by the Cache Man-
ager.
• CacheHits: The number of times a message was requested and it was found to be in memory.
• CacheMisses: The number of times a message was requested and it was not found in memory
so a read from persistent storage was required to retrieve the message.
JBoss Administration and Development 247

Messaging on JBoss - JMS Configuration and Architecture
248 JBoss Administration and Development

CHAPTER 7 Connectors on JBoss - The JCA
Configuration and Architecture
This chapter discusses the JBoss server implementation of the J2EE Connector Architecture (JCA). JCA is
a resource manager integration API whose goal is to standardize access to non-relational resources in the
same way the JDBC API standardized access to relational data. The purpose of this chapter is to introduce
the utility of the JCA APIs and then describe the architecture of JCA in JBoss 3.0.x.

JCA Overview
J2EE 1.3 contains a connector architecture (JCA) specification that allows for the integration of trans-
acted and secure resource adaptors into a J2EE application server environment. The full JCA specifi-
cation is available from the JCA home page here: http://java.sun.com/j2ee/connector/. The JCA
specification describes the notion of such resource managers as Enterprise Information Systems
(EIS). Examples of EIS systems include enterprise resource planning packages, mainframe transac-
tion processing, non-Java legacy applications, etc.

The reason for focusing on EIS is primarily because the notions of transactions, security, and scalabil-
ity are requirements in enterprise software systems. However, the JCA is applicable to any resource
that needs to integrate into JBoss in a secure, scalable and transacted manner. In this introduction we
will focus on resource adapters as a generic notion rather than something specific to the EIS environ-
ment.

The connector architecture defines a standard SPI (Service Provider Interface) for integrating the
transaction, security and connection management facilities of an application server with those of a
resource manager. The SPI defines the system level contract between the resource adaptor and the
application server.
JBoss Administration and Development 249

http://java.sun.com/j2ee/connector/

Connectors on JBoss - The JCA Configuration and Architecture
The connector architecture also defines a Common Client Interface (CCI) for accessing resources.
The CCI is targeted at EIS development tools and other sophisticated users of integrated resources.
The CCI provides a way to minimize the EIS specific code required by such tools. Typically J2EE
developers will access a resource using such a tool, or a resource specific interface rather than using
CCI directly. The reason is that the CCI is not a type specific API. To be used effectively it must be
used in conjunction with metadata that describes how to map from the generic CCI API to the
resource manager specific data types used internally by the resource manager.

The purpose of the connector architecture is to enable a resource vendor to provide a standard adaptor
for its product. A resource adaptor is a system-level software driver that is used by a Java application
to connect to resource. The resource adaptor plugs into an application server and provides connectiv-
ity between the resource manager, the application server, and the enterprise application. A resource
vendor need only implement a JCA compliant adaptor once to allow use of the resource manager in
any JCA capable application server.

An application server vendor extends its architecture once to support the connector architecture and is
then assured of seamless connectivity to multiple resource managers. Likewise, a resource manager
vendor provides one standard resource adaptor and it has the capability to plug in to any application
server that supports the connector architecture.
250 JBoss Administration and Development

JCA Overview
FIGURE 7-1. The relationship between a J2EE application server and a JCA resource adaptor

 Figure 7-1 illustrates that the application server is extended to provide support for the JCA SPI to
allow a resource adaptor to integrate with the server connection pooling, transaction management and
security management facilities. This integration API defines a system contract that consists of:

• Connection management: a contract that allows the application server to pool resource con-
nections. The purpose of the pool management is to allow for scalability. Resource connections
are typically expense objects to create and pooling them allows for more effective reuse and man-
agement.
• Transaction Management: a contract that allows the application server transaction manager to
manage transactions that engage resource managers.
• Security Management: a contract that enables secured access to resource managers.

The resource adaptor implements the resource manager side of the system contract. This entails using
the application server connection pooling, providing transaction resource information and using the
security integration information. The resource adaptor also exposes the resource manager to the
application server components. This can be done using the CCI and/or a resource adaptor specific
API.

The application component integrates into the application server using a standard J2EE container to
component contract. For an EJB component this contract is defined by the EJB specification. The
application component interacts with the resource adaptor in the same way as it would with any other
standard resource factory, for example, a javax.sql.DataSource JDBC resource factory. The only dif-
ference with a JCA resource adaptor is that the client has the option of using the resource adaptor
independent CCI API if the resource adaptor supports this.

Figure 6.0 of the JCA 1.0 specification illustrates the relationship between the JCA architecture par-
ticipants in terms of how they relate to the JCA SPI, CCI and JTA packages. This figure is recreated
here as Figure 7-2.
JBoss Administration and Development 251

Connectors on JBoss - The JCA Configuration and Architecture
FIGURE 7-2. The JCA 1.0 specification class diagram for the connection management
architecture.

The JBossCX architecture provides the implementation of the application server specific classes.
Figure 7-2 shows that this comes down to the implementation of the
javax.resource.spi.ConnectionManager and javax.resource.spi.Connec-
tionEventListener interfaces. The key aspects of this implementation are discussed in the fol-
lowing section on the JBossCX architecture.
252 JBoss Administration and Development

An Overview of the JBossCX Architecture
An Overview of the JBossCX Architecture
The JBossCX framework provides the application server architecture extension required for the use
of JCA resource adaptors. This is primarily a connection pooling and management extension along
with a number of MBeans for loading resource adaptors into the JBoss server. Figure 7-3 expands the
generic view given by Figure 7-2 to illustrate how the JBoss JCA layer implements the application
server specific extension along with an example file system resource adaptor that we will look at lat-
ter in this chapter.

FIGURE 7-3. The JBoss JCA implementation components

There are three coupled MBeans that make up a RAR deployment. These are the
org.jboss.resource.RARDeployment , org.jboss.resource. connectionman-
ager.RARDeployment, and org.jboss.resource.connectionman-
ager.BaseConnectionManager2. The org.jboss.resource.RARDeployment is
JBoss Administration and Development 253

Connectors on JBoss - The JCA Configuration and Architecture
simply an encapsulation of the metadata of a RAR META-INF/ra.xml descriptor. It exposes this
information as a DynamicMBean simply to make it available to the
org.jboss.resource.connectionmanager.RARDeployment MBean.

The RARDeployer service handles the deployment of archives files containing resource adaptors
(RARs). It creates the org.jboss.resource.RARDeployment MBeans when a RAR file is
deployed. Deploying the RAR file is the first step in making the resource adaptor available to applica-
tion components. For each deployed RAR, one or more connection factories must be configured and
bound into JNDI. This task performed using a JBoss service descriptor that sets up a
org.jboss.resource.connectionmanager.BaseConnectionManager2 MBean
implementation with a org.jboss.resource.connectionmgr.RARDeployment depen-
dent.

BaseConnectionManager2 MBean
The org.jboss.resource.connectionmanager.BaseConnectionManager2 MBean
is a base class for the various types of connection managers required by the JCA spec. Subclasses
include org.jboss.resource.connectionmanager.NoTxConnectionManager,
org.jboss.resource.connectionmanager.LocalTxConnectionManager and
org.jboss.resource.connectionmanager.XATxConnectionManager , and these
correspond to resource adapators that support no transactions, local transaction and XA transaction
respectively. You choose which subclass to use based on the type of transaction semantics you want,
provided the JCA resource adaptor supports the corresponding transaction capability.

The common attributes supported by the BaseConnectionManager2 MBean are:

• ManagedConnectionFactoryName: This specifies the ObjectName of the MBean that cre-
ates javax.resource.spi.ManagedConnectionFactory instances. Normally this is
configured as embedded mbean in a depends element rather than a separate mbean reference
using the org.jboss.resource.connectionmanager.RARDeployment MBean.
The MBean must provide an operation with the following signature:
javax.resource.spi.ManagedConnectionFactory startManagedConnectionFac-

tory(javax.resource.spi.ConnectionManager)

• ManagedConnectionPool: This specifies the ObjectName of the MBean representing the
pool for this connection manager. The MBean must have an ManagedConnectionPool attribute
that is an implementation of the org.jboss.resource.connectionmanager.Man-
agedConnectionPool interface. Normally it will be an embedded mbean in a depends tag
rather than an ObjectName reference to an existing mbean. The default MBean for use is the
org.jboss.resource.connectionmanager.JBossManagedConnectionPool.
Its configurable attribute are discussed below.
• CachedConnectionManager: This specifies the ObjectName of the
org.jboss.resource.connectionmanager.CachedConnectionManager
MBean implementation used by the connection manager. Normally this will be a specified using a
depends tag with the ObjectName of the unique CachedConnectionManager for the
server. The name “jboss.jca:service=CachedConnectionManager” is the standard setting to use.
254 JBoss Administration and Development

An Overview of the JBossCX Architecture
• SecurityDomainJndiName: This specifies the JNDI name of the security domain to use for
authentication and authorization of resource connections. This is typically of the form “java:/jaas/
<domain>” where the <domain> value is the name of an entry in the conf/login-config.xml JAAS
login module configuration file. This defines which JAAS login modules execute to perform
authentication. See Chapter 8 for more information on the security settings.
• JaasSecurityManagerService: This is the ObjectName of the security manager service.
This should be set to the security manager MBean name as defined in the conf/jboss-service.xml
descriptor, and currently this is “jboss.security:service=JaasSecurityManager”. This attribute will
likely be removed in the future.

RARDeployment MBean
The org.jboss.resource.connectionmanager.RARDeployment MBean manages
configuration and instantiation ManagedConnectionFactory instance. It does this using the
resource adaptor metadata settings from the RAR META-INF/ra.xml descriptor along with the
RARDeployment attributes. The configurable attributes are:

• OldRarDeployment: This is the ObjectName of the org.jboss.resource.RarDeployment
MBean that contains the resource adaptor metadata. The form of this name is “jboss.jca:ser-
vice=RARDeployment,name=<ra-display-name>” where the <ra-display-name> is the ra.xml
descriptor display-name attribute value. This is created by the RARDeployer when it deploys a
RAR file. This attribute will likely be removed in the future.
• ManagedConnectionFactoryProperties: This is a collection of (name, type, value) tripples
that define attributes of the ManagedConnectionFactory instance. Therefore, the names of
the attributes depend on the resource adaptor ManagedConnectionFactory instance. The
structure of the content of this attribute is:
<properties>
 <config-property>
 <config-property-name>Attr0Name</config-property-name>
 <config-property-type>Attr0Type</config-property-type>
 <config-property-value>Attr0Value</config-property-value>
 </config-property>
 <config-property>
 <config-property-name>Attr1Name</config-property-name>
 <config-property-type>Attr2Type</config-property-type>
 <config-property-value>Attr2Value</config-property-value>
 </config-property>
...
</properties>

where AttrXName is the Xth attribute name, AttrXType is the fully qualified Java type of the
attribute, and AttrXValue is the string representation of the value. The conversion from string to
AttrXType is done using the java.beans.PropertyEditor class for the AttrXType.
• JndiName: This is the JNDI name under which the will be made available. Clients of the
resource adaptor use this name to obtain either the javax.resource.cci.Connection-
Factory or resource adaptor specific connection factory. The full JNDI name will be “java:/
<JndiName>” meaning that the JndiName attribute value will be prefixed with “java:/”. This pre-
JBoss Administration and Development 255

Connectors on JBoss - The JCA Configuration and Architecture
vents use of the connection factory outside of the JBoss server VM. In the future this restriction
may be configurable.

JBossManagedConnectionPool MBean
The org.jboss.resource.connectionmanager.JBossManagedConnectionPool
MBean is a connection pooling MBean. It is typically used as the embedded MBean value of the
BaseConnectionManger2 ManagedConnectionPool attribute. When you setup a connection
manager MBean you typically embed the pool configuration in the connection manager descriptor.
The configurable attributes of the JBossManagedConnectionPool are:

• MinSize: This attribute indicates the minimum number of connections this pool should hold.
These are not created until a Subject is known from a request for a connection. MinSize connec-
tions will be created for each sub-pool.
• MaxSize: This attribute indicates the maximum number of connections for a pool. No more
than MaxSize connections will be created in each sub-pool.
• BlockingTimeoutMillis: This attribute indicates the maximum time to blockwhile waiting for
a connection before throwing an exception. Note that this blocks only while waiting for a permit
for a connection, and will never throw an exception if creating a new connection takes an inordi-
nately long time.
• IdleTimeoutMinutes: This attribute indicates the maximum time a connection may be idle
before being closed. The actual maximum time depends also on the idle remover thread scan time,
which is 1/2 the smallest idle timeout of any pool.
• Criteria: This attribute indicates if the JAAS javax.security.auth.Subject from security
domain associated with the connection, or app supplied parameters (such as from getConnec-
tion(user, pw)) are used to distinguish connections in the pool. The allowed values are:

• ByContainerAndApplication (use both),
• ByContainer (use Subject),
• ByApplication (use app supplied params only),
• ByNothing (all connections are equivalent, usually if adapter supports reauthentication)

CachedConnectionManager MBean
The org.jboss.resource.connectionmanager.CachedConnectionManager
MBean manages associations between meta-aware objects (those accessed through interceptor
chains) and connection handles, as well as between user transactions and connection handles. Nor-
mally there should only be one such MBean, and this is configured in the core jboss-service.xml
descriptor. It is used by org.jboss.resource.connectionmanager.CachedConnec-
tionInterceptor, JTA javax.transaction.UserTransaction implementation, and
all BaseConnectionManager2 instances. The CachedConnectionManager MBean has no
configurable attributes.
256 JBoss Administration and Development

An Overview of the JBossCX Architecture
A Sample Skeleton JCA Resource Adaptor
To conclude our discussion of the JBoss JCA framework we will create and deploy a single non-
transacted resource adaptor that simply provides a skeleton implementation that stubs out the required
interfaces and logs all method calls. We will not discuss the details of the requirements of a resource
adaptor provider as these are discussed in detail in the JCA specification. The purpose of the adaptor
is to demonstrate the steps required to create and deploy a RAR in JBoss, and to see how JBoss inter-
acts with the adaptor.

The adaptor we will create could be used as the starting point for a non-transacted file system adaptor.
The source to the example adaptor can be found in the src/main/org/jboss/chap7/ex1 directory of the
book examples. A class diagram that shows the the mapping from the required javax.resource.spi
interfaces to the resource adaptor implementation is given in Figure 7-4.

FIGURE 7-4. The file system RAR class diagram

We will build the adaptor, deploy it to the JBoss server and then run an example client against an EJB
that uses the resource adaptor to demonstrate the basic steps in a complete context. We’ll then take a
look at the JBoss server log to see how the JBoss JCA framework interacts with the resource adaptor
to help you better understand the components in the JCA system level contract.

To build the example and deploy the RAR to the JBoss server deploy/lib directory, execute the fol-
lowing ant command in the book examples directory:
examples 917>ant -Dchap=7 build-chap
Buildfile: build.xml

...
JBoss Administration and Development 257

Connectors on JBoss - The JCA Configuration and Architecture
chap7-ex1-rar:
 [jar] Building jar: /JBossDocs/examples/output/chap7/chap7-ex1.rar

prepare:

chap7-ex1-jar:
 [jar] Building jar: /JBossDocs/examples/output/chap7/chap7-ex1.jar
 [copy] Copying 1 file to /tmp/jboss-3.0.1RC1/server/default/deploy
[copy] Copying 1 file to /tmp/jboss-3.0.1RC1/server/default/deploy

BUILD SUCCESSFUL

Total time: 6 seconds

The deployed files include a chap7-ex1.sar and a notxfs-service.xml service descriptor. The example
resource adaptor deployment descriptor is shown in Listing 7-1 while the connection manager
MBeans service descriptor is shown in Listing 7-2.

LISTING 7-1. The nontransactional file system resource adaptor deployment descriptor.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE connector PUBLIC
 "-//Sun Microsystems, Inc.//DTD Connector 1.0//EN"
 "http://java.sun.com/dtd/connector_1_0.dtd">

<connector>
 <display-name>File System Adapter</display-name>
 <vendor-name>JBoss Group</vendor-name>
 <spec-version>1.0</spec-version>
 <version>1.0</version>
 <eis-type>FileSystem</eis-type>
 <license>
 <description>LGPL</description>
 <license-required>false</license-required>
 </license>
 <resourceadapter>
 <managedconnectionfactory-
class>org.jboss.chap7.ex1.ra.FSMangedConnectionFactory
 </managedconnectionfactory-class>
 <connectionfactory-interface>org.jboss.chap7.ex1.ra.DirContextFactory
 </connectionfactory-interface>
 <connectionfactory-impl-class>org.jboss.chap7.ex1.ra.DirContextFactoryImpl
 </connectionfactory-impl-class>
 <connection-interface>javax.naming.directory.DirContext
 </connection-interface>
 <connection-impl-class>org.jboss.chap7.ex1.ra.FSDirContext
 </connection-impl-class>
 <transaction-support>NoTransaction</transaction-support>
 <config-property>
 <config-property-name>FileSystemRootDir</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>/tmp/db/fs_store</config-property-value>
258 JBoss Administration and Development

An Overview of the JBossCX Architecture
 </config-property>
 <config-property>

 <config-property-name>UserName</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value></config-property-value>

 </config-property>
 <config-property>

 <config-property-name>Password</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value></config-property-value>

 </config-property>
 <authentication-mechanism>

 <authentication-mechanism-type>BasicPassword</authentication-mechanism-
type>

 <credential-interface>javax.resource.security.PasswordCredential</
credential-interface>
 </authentication-mechanism>
 <reauthentication-support>true</reauthentication-support>
 <security-permission>
 <description>Read/Write access is required to the contents of
 the FileSystemRootDir</description>
 <security-permission-spec>permission java.io.FilePermission
 "/tmp/db/fs_store/*", "read,write";</security-permission-spec>
 </security-permission>
 </resourceadapter>
</connector>

LISTING 7-2. The nontransactional file system resource adaptor MBeans service descriptor.

<!-- The non-transaction FileSystem resource adaptor service configuration
-->
<server>
 <mbean code="org.jboss.resource.connectionmanager.NoTxConnectionManager"
 name="jboss.jca:service=NoTxCM,name=filesystem">
 <depends>jboss.jca:service=RARDeployer</depends>
 <depends optional-attribute-name="ManagedConnectionFactoryName">
 <mbean code="org.jboss.resource.connectionmanager.RARDeployment"
 name="jboss.jca:service=NoTxFS,name=filesystem">
 <depends optional-attribute-name="OldRarDeployment">
 jboss.jca:service=RARDeployment,name=File System Adapter
 </depends>

 <attribute name="ManagedConnectionFactoryProperties">
 <properties>
 <config-property>
 <config-property-name>FileSystemRootDir</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>/tmp/db/fs_store</config-property-
value>
 </config-property>
 </properties>
 </attribute>
 <attribute name="JndiName">NoTransFS</attribute>
 </mbean>
JBoss Administration and Development 259

Connectors on JBoss - The JCA Configuration and Architecture
 </depends>

 <depends optional-attribute-name="ManagedConnectionPool">
 <mbean
code="org.jboss.resource.connectionmanager.JBossManagedConnectionPool"
 name="jboss.jca:service=NoTxPool,name=filesystem">
 <attribute name="MinSize">0</attribute>
 <attribute name="MaxSize">50</attribute>
 <attribute name="BlockingTimeoutMillis">5000</attribute>
 <attribute name="IdleTimeoutMinutes">15</attribute>
 <attribute name="Criteria">ByContainer</attribute>
 </mbean>
 </depends>
 <depends optional-attribute-name="CachedConnectionManager">
 jboss.jca:service=CachedConnectionManager
 </depends>
 <depends optional-attribute-name="JaasSecurityManagerService">
 jboss.security:service=JaasSecurityManager
 </depends>
 </mbean>
</server>

The key items in the resource adaptor deployment descriptor are highlighted in bold. These define the
classes of the resource adaptor, and the elements are:

• display-name: Recall from our discussion of the connection manager factory MBeans that the
association between the factory and the resource adaptor classes was done via a RARDeployment
DynamicMBean located by name. The name was based on the display-name value found in the
ra.xml descriptor. Here the name is “File System Adaptor” and we will use it in the connection
manager service descriptor.
• managedconnectionfactory-class: The implementation of the
javax.resource.spi.ManagedConnectionFactory interface,
org.jboss.chap7.ex1.ra.FSMangedConnectionFactory
• connectionfactory-interface: The interface that clients will obtain when they lookup the con-
nection factory instance from JNDI, here a proprietary resource adaptor value,
org.jboss.chap7.ex1.ra.DirContextFactory
• connectionfactory-impl-class: The class that provides the implementation of the connection-
factory-interface, org.jboss.chap7.ex1.ra.DirContextFactoryImpl
• connection-interface: The interface for the connections returned by the resource adpator con-
nection factory, here the JNDI javax.naming.directory.DirContext interface.
• connection-impl-class: The class that provides the connection-interface implementation,
org.jboss.chap7.ex1.ra.FSDirContext
• transaction-support: The level of transaction support, here defined as NoTransaction, mean-
ing the file system resource adaptor does not do transactional work.

See the JCA 1.0 spec, or the book “J2EE Connector Architecture and Enterprise Application Integra-
tion” by Sharma, Stearns and Ng for the full details of the ra.xml descriptor elements.
260 JBoss Administration and Development

An Overview of the JBossCX Architecture
The RAR classes and deployment descriptor only define a resource adaptor. To use the resource adap-
tor it must be integrated into the JBoss application server. As we have discussed this is done with a
connection factory MBeans. The various mbean element tags are highlighted in bold in Listing 7-2,
and the following notes apply.

• The main MBean is the org.jboss.resource.connectionmanager.NoTxCon-
nectionManager. This is the subclass of BaseConnectionManager2 that provides no
support for transactions, and this was selected because of the lack of transaction support in the
resource adaptor. Its name is ObjectName “jboss.jca:service=NoTxCM,name=filesystem”. The
configuration contains two nested mbean elements for the setup of the connection factory binding
and connection pooling.
• The first nested mbean element associated with the ManagedConnectionFactoryName
attribute is the org.jboss.resource.connectionmanager.RARDeployment
MBean. This sets up the file system connection manager factory binding in JNDI. Its attributes
are:

• OldRarDeployment, specifies which resource adaptor the connection factory is associated
with. This is done using the org.jboss.resource.RARDeployment ObjectName
pattern discussed previously. The name “jboss.jca:service=RARDeployment,name=File Sys-
tem Adaptor” ties the connection manager to the RAR descriptor of because of Listing 7-1 the
“File System Adaptor” link from the name property of the ObjectName to the display-name
element of the ra.xml descriptor.
• The ManagedConnectionFactoryProperties attribute provides non-default settings to
apply to the resource adaptor connection factory. Here the FileSystemRootDir attribute is
being set to “/tmp/db/fs_store”.
• JndiName=NoTransFS, declares that the adaptor factory will be bound into JNDI under
the name "java:/NoTransFS".

• The next nested mbean element associated with the ManagedConnectionPool attribute is the
org.jboss.resource.connectionmanager.JBossManagedConnectionPool. This configures the man-
ner in which connection will be pooled.

You have already deployed this RAR and connection manager to the JBoss server. Now startup the
JBoss server and the console should show output similar to the following a little before the final star-
tup time line:
15:13:05,265 INFO [MainDeployer] Starting deployment of package: .../notxfs-
service.xml
15:13:05,359 WARN [ServiceController] jboss.jca:service=NoTxFS,name=filesystem
does not implement any Service methods
15:13:05,359 INFO [JBossManagedConnectionPool] Creating
15:13:05,359 INFO [JBossManagedConnectionPool] Created
15:13:05,359 INFO [JBossManagedConnectionPool] Starting
15:13:05,359 INFO [JBossManagedConnectionPool] Started
15:13:05,375 INFO [MainDeployer] Deployed package: .../notxfs-service.xml
...
15:13:05,593 INFO [MainDeployer] Starting deployment of package: ...chap7-
ex1.rar
15:13:05,703 INFO [RARMetaData] License terms present. See deployment
descriptor.
15:13:05,781 WARN [ServiceController] jboss.jca:service=RARDeployment,name=File
 System Adapter does not implement any Service methods
JBoss Administration and Development 261

Connectors on JBoss - The JCA Configuration and Architecture
15:13:05,781 WARN [ServiceController] jboss.jca:service=NoTxFS,name=filesystem
does not implement any Service methods
15:13:05,781 INFO [NoTxConnectionManager] Creating
15:13:05,843 INFO [NoTxConnectionManager] Created
15:13:05,906 INFO [NoTxConnectionManager] Starting
15:13:06,000 INFO [NoTransFS] Bound connection factory for resource adapter 'Fi
le System Adapter' to JNDI name 'java:/NoTransFS'
15:13:06,015 INFO [NoTxConnectionManager] Started
15:13:06,015 INFO [MainDeployer] Deployed package: .../deploy/chap7-ex1.rar

This indicates that the resource adaptor has been successfully deployed and its connection factory has
been bound into JNDI under the name “java:/NoTransFS”. You can ignore the warning messages
about the RARDeployment MBeans not implementing any Service methods. Its fine as they are not
used as JBoss services, just standard MBeans.

Now we want to test access of the resource adaptor by a J2EE component. To do this we have created
a trivial stateless session bean that has a single method called echo. Inside of the echo method the
EJB accesses the resource adaptor connection factory, creates a connection, and then immediately
closes the connection. The echo method code is shown in Listing 7-3.

LISTING 7-3. The stateless session bean echo method code which shows the access of the resource
adaptor connection factory.

public String echo(String arg)
{
 log.debug("echo, arg="+arg);
 try
 {
 InitialContext iniCtx = new InitialContext();
 Context enc = (Context) iniCtx.lookup("java:comp/env");
 Object ref = enc.lookup("ra/DirContextFactory");
 log.debug("echo, ra/DirContextFactory="+ref);
 DirContextFactory dcf = (DirContextFactory) ref;
 log.debug("echo, found dcf="+dcf);
 DirContext dc = dcf.getConnection();
 log.debug("echo, lookup dc="+dc);
 dc.close();
 }
 catch(NamingException e)
 {
 log.error("Failed during JNDI access", e);
 }
 return arg;
}

The EJB is not using the CCI interface to access the resource adaptor. Rather, it is using the resource
adaptor specific API based on the proprietary DirContextFactory interface that returns a JNDI
DirContext object as the connection object. The example EJB is simply exercising the system
contract layer by looking up the resource adaptor connection factory, creating a connection to the
resource and closing the connection. The EJB does not actually do anything with the connection, as
262 JBoss Administration and Development

An Overview of the JBossCX Architecture
this would only exercise the resource adaptor implementation since this is a non-transactional
resource.

Run the test client which calls the EchoBean.echo method by running ant as follows from the
examples directory:
examples 920>ant -Dchap=7 -Dex=1 run-example
Buildfile: build.xml

...

run-example1:
 [copy] Copying 1 file to /tmp/jboss-3.0.1RC1/server/default/deploy
 [echo] Waiting for deploy...
 [java] Created Echo
 [java] Echo.echo('Hello') = Hello

Now let’s look at the output that has been logged by the resource adaptor to understand the interaction
between the adaptor and the JBoss JCA layer. The output is in the server/default/log/server.log file of
the JBoss server distribution. We’ll summarize the events seen in the log using a sequence diagram.

Those are the steps involved with making the resource adaptor connection factory available to appli-
cation server components. The remaining log messages are the result of the example client invoking
the EchoBean.echo method and this method's interaction with the resource adaptor connection fac-
tory. Figure 7-5 is a sequence diagram that summarizes the events that occur when the EchoBean
accesses the resource adaptor connection factory from JNDI and creates a connection.
JBoss Administration and Development 263

Connectors on JBoss - The JCA Configuration and Architecture
FIGURE 7-5. A sequence diagram illustrating the key interactions between the JBossCX
framework and the example resource adaptor that result when the EchoBean accesses the
resource adaptor connection factory.

The starting point is the client’s invocation of the EchoBean.echo method. For the sake of con-
ciseness of the diagram, the client is shown directly invoking the EchoBean.echo method when in
reality the JBoss EJB container handles the invocation. There are three distinct interactions between
the EchoBean and the resource adaptor; the lookup of the connection factory, the creation of a con-
nection, and the close of the connection.

The lookup of the resource adaptor connection factory is illustrated by the 1.1 sequences of events.
The events are:

• 1, the echo method invokes the getConnection method on the resource adaptor connec-
tion factory obtained from the JNDI lookup on the “java:comp/env/ra/DirContextFactory” name
which is a link to the “java:/NoTransFS” location.
• 1.1, the DirContextFactoryImpl class asks its associated ConnectionManager to
allocate a connection. It passes in the ManagedConnectionFactory and FSRequest-
Info that were associated with the DirContextFactoryImpl during its construction.
• 1.1.1, the ConnectionManager invokes its getManagedConnection method with
the current Subject and FSRequestInfo.
• 1.1.1.1, the ConnectionManager asks its object pool for a connection object. The JBoss-
ManagedConnectionPool$BasePool is get the key for the connection and then asks the matching
InternalPool for a connection.
• 1.1.1.1.1, Since no connections have been created the pool must create a new connection. This
is done by requesting a new managed connection from the ManagedConnectionFactory.
The Subject associated with the pool as well as the FSRequestInfo data are passed as argu-
ments to the createManagedConnection method invocation.
• 1.1.1.1.1.1, the FSManagedConnectionFactory creates a new FSManagedConnec-
tion instance and passes in the Subject and FSRequestInfo data.
• 1.1.1.2, a javax.resource.spi.ConnectionListener instance is created. The
type of listener created is based on the type of ConnectionManager. In this case it is an
org.jboss.resource.connectionmgr.BaseConnectionManager2$NoTrans-
actionListener instance.
• 1.1.1.2.1, the listener registers as a javax.resource.spi.ConnectionEventLis-
tener with the ManagedConnection instance created in 1.2.1.1.
• 1.1.2, the ManagedConnection is asked for the underlying resource manager connection. The
Subject and FSRequestInfo data are passed as arguments to the getConnection
method invocation.
• The resulting connection object is cast to a javax.naming.directory.DirContext
instance since this is the public interface defined by the resource adaptor.
• After the EchoBean has obtained the DirContext for the resource adaptor, it simply closes
the connection to indicate its interaction with the resource manager is complete.
264 JBoss Administration and Development

An Overview of the JBossCX Architecture
This concludes the resource adaptor example. Our investigation into the interaction between the
JBossCX layer and a trivial resource adaptor should give you sufficient understanding of the steps
required to configure any resource adaptor. The example adaptor can also serve as a starting point for
the creation of your own custom resource adaptors if you need to integrate non-JDBC resources into
the JBoss server environment.

Example Configurations
Example configurations of many third-party JDBC datasources is included in the JBOSS_DIST/docs/
examples/jca directory. Current example configurations include:

• db2-service.xml
• firebird-service.xml
• hsqldb-service.xml
• informix-service.xml
• informix-xa-service.xml
• jdatastore-service.xml
• jsql-service.xml
• jsql-xa-service.xml
• lido-versant-service.xml
• msaccess-service.xml
• mssql-service.xml
• mssql-xa-service.xml
• mysql-service.xml
• oracle-service.xml
• oracle-xa-service.xml
• postgres-service.xml
• sapdb-service.xml
• sapr3-service.xml
• solid-service.xml
• sybase-service.xml
JBoss Administration and Development 265

Connectors on JBoss - The JCA Configuration and Architecture
266 JBoss Administration and Development

CHAPTER 8 Security on JBoss - J2EE
Security Configuration and
Architecture
Security is a fundamental part of any enterprise application. You need to be able to restrict who is
allowed to access your applications and control what operations application users may perform. The
J2EE specifications define a simple role-based security model for EJBs and Web components. The
JBoss component framework that handles security is the JBossSX extension framework. The
JBossSX security extension provides support for both the role-based declarative J2EE security model
as well as integration of custom security via a security proxy layer. The default implementation of the
declarative security model is based on Java Authentication and Authorization Service (JAAS) login
modules and subjects. The security proxy layer allows custom security that cannot be described using
the declarative model to be added to an EJB in a way that is independent of the EJB business object.
Before getting into the JBoss security implementation details, we will review the EJB 2.0, the Servlet
2.2 specification security model, and JAAS to establish the foundation for these details.

J2EE Declarative Security Overview
The security model advocated by the J2EE specification is a declarative model. It is declarative in that
you describe the security roles and permissions using a standard XML descriptor rather than embed-
ding security into your business component. This isolates security from business-level code because
security tends to be a more a function of where the component is deployed, rather than an inherent
aspect of the component’s business logic. For example, consider an ATM component that is to be used
to access a bank account. The security requirements, roles and permissions will vary independent of
how one accesses the bank account based on what bank is managing the account, where the ATM
machine is deployed, and so on.

Securing a J2EE application is based on the specification of the application security requirements via
the standard J2EE deployment descriptors. You secure access to EJBs and Web components in an
enterprise application by using the ejb-jar.xml and web.xml deployment descriptors. Figure 8-1 and
JBoss Administration and Development 267

Security on JBoss - J2EE Security Configuration and Architecture
Figure 8-2 illustrate the security-related elements in the EJB 2.0 and Servlet 2.2 deployment descrip-
tors, respectively.

FIGURE 8-1. A subset of the EJB 2.0 deployment descriptor content model that shows the
security related elements.
268 JBoss Administration and Development

J2EE Declarative Security Overview
FIGURE 8-2. A subset of the Servlet 2.2 deployment descriptor content model that shows the
security related elements.

The purpose and usage of the various security elements given in Figure 8-1 and Figure 8-2 is dis-
cussed in the following subsections.

Security References
Both EJBs and servlets may declare one or more security-role-ref elements. This element is used to
declare that a component is using the role-name value as an argument to the isCallerInRole(String)
method. Using the isCallerInRole method, a component can verify if the caller is in a role that has
been declared with a security-role-ref/role-name element. The role-name element value must link to a
security-role element through the role-link element. The typical use of isCallerInRole is to perform a
security check that cannot be defined using the role based method-permissions elements. However,
use of isCallerInRole is discouraged because this results in security logic embedded inside of the
JBoss Administration and Development 269

Security on JBoss - J2EE Security Configuration and Architecture
component code. Example descriptor fragments that illustrate security-role-ref usage are presented in
Listing presented in Listing 8-1.

LISTING 8-1. An example ejb-jar.xml and web.xml descriptor fragments which illustrate the
security-role-ref element usage.

<!-- A sample ejb-jar.xml fragment -->
<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>ASessionBean</ejb-name>
 ...
 <security-role-ref>
 <role-name>TheRoleICheck</role-name>
 <role-link>TheApplicationRole</role-link>
 </security-role-ref>
 </session>
 </enterprise-beans>
...
</ejb-jar>

<!-- A sample web.xml fragment -->
<web-app>
 <servlet>
 <servlet-name>AServlet</servlet-name>
 ...
 <security-role-ref>
 <role-name>TheServletRole</role-name>
 <role-link>TheApplicationRole</role-link>
 </security-role-ref>
 </servlet>
...
</web-app>

Security Identity
EJBs can optionally declare a security-identity element. New to EJB 2.0 is the capability to specify
what identity an EJB should use when it invokes methods on other components. The invocation iden-
tity can be that of the current caller, or a specific role. The application assembler uses the security-
identity element with a use-caller-identity child element to indicate the current caller’s identity should
be propagated as the security identity for method invocations made by the EJB. Propagation of the
caller’s identity is the default used in the absence of an explicit security-identity element declaration.

Alternatively, the application assembler can use the run-as/role-name child element to specify that a
specific security role given by the role-name value should be used as the security identity for method
invocations made by the EJB. Note that this does not change the caller’s identity as seen by EJBCon-
text.getCallerPrincipal(). Rather, the caller’s security roles are set to the single role specified by the
run-as/role-name element value. One use case for the run-as element is to prevent external clients
from accessing internal EJBs. This is accomplished by assigning the internal EJB method-permission
elements that restrict access to a role never assigned to an external client. EJBs that need to use inter-
270 JBoss Administration and Development

J2EE Declarative Security Overview
nal EJB are then configured with a run-as/role-name equal to the restricted role. An example descrip-
tor fragment that illustrates security-identity element usage is presented in Listing 8-2.

LISTING 8-2. An example ejb-jar.xml descriptor fragment which illustrates the security-identity
element usage.

<!-- A sample ejb-jar.xml fragment -->
<ejb-jar>
<enterprise-beans>
 <session>
 <ejb-name>ASessionBean</ejb-name>
 ...
 <security-identity>
 <use-caller-identity/>
 </security-identity>
 </session>
 <session>
 <ejb-name>RunAsBean</ejb-name>
 ...
 <security-identity>
 <run-as>
 <description>A private internal role</description>
 <role-name>InternalRole</role-name>
 </run-as>
 </security-identity>
 </session>
</enterprise-beans>
...
</ejb-jar>

The same security identity capability has been introduced for servlets as of the J2EE 2.3 servlet spec-
ification but this capability is currently unsupported in JBoss 3.0.

Security roles
The security role name referenced by either the security-role-ref or security-identity element needs to
map to one of the application’s declared roles. An application assembler defines logical security roles
by declaring security-role elements. The role-name value is a logical application role name like
Administrator, Architect, SalesManager, etc.

What is a role? The J2EE specifications note that it is important to keep in mind that
the security roles in the deployment descriptor are used to define the logical security
view of an application. Roles defined in the J2EE deployment descriptors should not
be confused with the user groups, users, principals, and other concepts that exist in the
target enterprise’s operational environment. The deployment descriptor roles are
application constructs with application domain specific names. For example, a bank-
ing application might use role names like BankManager, Teller, and Customer.
JBoss Administration and Development 271

Security on JBoss - J2EE Security Configuration and Architecture
In JBoss, a security-role is only used to map security-role-ref/role-name values to the logical role that
the component role referenced. The user’s assigned roles are a dynamic function of the application’s
security manager, as you will see when we discuss the JBossSX implementation details. JBoss does
not require the definition of security-roles in order to declare method permissions. Therefore, the
specification of security-role elements is simply a good practice to ensure portability across applica-
tion servers and for deployment descriptor maintenance. Example descriptor fragments that illustrate
security-role usage are presented in Listing 8-3.

LISTING 8-3. An example ejb-jar.xml and web.xml descriptor fragments which illustrate the
security-role element usage.

<!-- A sample ejb-jar.xml fragment -->
<ejb-jar>
...
<assembly-descriptor>
 <security-role>
 <description>The single application role</description>
 <role-name>TheApplicationRole</role-name>
 </security-role>
</assembly-descriptor>
</ejb-jar>

<!-- A sample web.xml fragment -->
<web-app>
 ...
 <security-role>
 <description>The single application role</description>
 <role-name>TheApplicationRole</role-name>
 </security-role>
</web-app>

EJB method permissions
An application assembler can set the roles that are allowed to invoke an EJB’s home and remote inter-
face methods through method-permission element declarations. Each method-permission element
contains one or more role-name child elements that define the logical roles allowed access the EJB
methods as identified by method child elements. As of EJB 2.0, you can now specify an unchecked
element instead of the role-name element to declare that any authenticated user can access the meth-
ods identified by method child elements. In addition, you can declare that no one should have access
to a method with the exclude-list element. If an EJB has methods that have not been declared as
accessible by a role using a method-permission element, the EJB methods default to being excluded
from use. This is equivalent to defaulting the methods into the exclude-list.

There are three supported styles of method element declarations.

• Style 1, is used for referring to all of the home and component interface methods of the named
enterprise bean.
<method>
 <ejb-name>EJBNAME</ejb-name>
272 JBoss Administration and Development

J2EE Declarative Security Overview
 <method-name>*</method-name>
</method>

• Style 2, is used for referring to a specified method of the home or component interface of the
named enterprise bean. If there are multiple methods with the same overloaded name, this style
refers to all of the overloaded methods.
<method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>METHOD</method-name>
</method>

• Style 3, is used to refer to a specified method within a set of methods with an overloaded
name. The method must be defined in the specified enterprise bean’s home or remote interface.
The method-param element values are the fully qualified name of the corresponding method
parameter type. If there are multiple methods with the same overloaded signature, the permission
applies to all of the matching overloaded methods.
<method>
 <ejb-name>EJBNAME</ejb-name>
 <method-name>METHOD</method-name>
 <method-params>
 <method-param>PARAMETER_1</method-param>
 ...
 <method-param>PARAMETER_N</method-param>
 </method-params>
</method>

The optional method-intf element can be used to differentiate methods with the same name and signa-
ture that are defined in both the home and remote interfaces of an enterprise bean.Listing 8-4 provides
examples of the method-permission element usage.

LISTING 8-4. An example ejb-jar.xml descriptor fragment which illustrates the method-
permission element usage.

<ejb-jar>
 <assembly-descriptor>
 <method-permission>
 <description>The employee and temp-employee roles may
 access any method of the EmployeeService bean
 </description>
 <role-name>employee</role-name>
 <role-name>temp-employee</role-name>
 <method>
 <ejb-name>EmployeeService</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>

 <method-permission>
 <description>The employee role may access the
 findByPrimaryKey, getEmployeeInfo, and the
 updateEmployeeInfo(String) method of the AardvarkPayroll
 bean
 </description>
JBoss Administration and Development 273

Security on JBoss - J2EE Security Configuration and Architecture
 <role-name>employee</role-name>
 <method>
 <ejb-name>AardvarkPayroll</ejb-name>
 <method-name>findByPrimaryKey</method-name>
 </method>

 <method>
 <ejb-name>AardvarkPayroll</ejb-name>
 <method-name>getEmployeeInfo</method-name>
 </method>

 <method>
 <ejb-name>AardvarkPayroll</ejb-name>
 <method-name>updateEmployeeInfo</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 </method-params>
 </method>
 </method-permission>

 <method-permission>
 <description>The admin role may access any method
 of the EmployeeServiceAdmin bean
 </description>
 <role-name>admin</role-name>
 <method>
 <ejb-name>EmployeeServiceAdmin</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>

 <method-permission>
 <description>Any authenticated user may access any method
 of the EmployeeServiceHelp bean
 </description>
 <unchecked/>
 <method>
 <ejb-name>EmployeeServiceHelp</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>

 <exclude-list>
 <description>No fireTheCTO methods of the EmployeeFiring
 bean may be used in this deployment
 </description>
 <method>
 <ejb-name>EmployeeFiring</ejb-name>
 <method-name>fireTheCTO</method-name>
 </method>
 </exclude-list>
 </assembly-descriptor>
</ejb-jar>
274 JBoss Administration and Development

J2EE Declarative Security Overview
Web Content Security Constraints
In a Web application, security is defined by the roles allowed access to content by a URL pattern that
identifies the protected content. This set of information is declared using the web.xml security-con-
straint element. The content to be secured is declared using one or more web-resource-collection ele-
ments. Each web-resource-collection element contains an optional series of url-pattern elements
followed by an optional series of http-method elements. The url-pattern element value specifies a
URL pattern against which a request URL must match for the request to correspond to an attempt to
access secured content. The http-method element value specifies a type of HTTP request to allow.

The optional user-data-constraint element specifies the requirements for the transport layer of the cli-
ent to server connection. The requirement may be for content integrity (preventing data tampering in
the communication process) or for confidentiality (preventing reading while in transit). The transport-
guarantee element value specifies the degree to which communication between client and server
should be protected. Its values are NONE, INTEGRAL, or CONFIDENTIAL. A value of NONE
means that the application does not require any transport guarantees. A value of INTEGRAL means
that the application requires the data sent between the client and server be sent in such a way that it
can’t be changed in transit. A value of CONFIDENTIAL means that the application requires the data
be transmitted in a fashion that prevents other entities from observing the contents of the transmis-
sion. In most cases, the presence of the INTEGRAL or CONFIDENTIAL flag indicates that the use
of SSL is required.

The optional login-config is used to configure the authentication method that should be used, the
realm name that should be used for this application, and the attributes that are needed by the form
login mechanism. The auth-method child element specifies the authentication mechanism for the Web
application. As a prerequisite to gaining access to any Web resources that are protected by an authori-
zation constraint, a user must have authenticated using the configured mechanism. Legal values for
auth-method are BASIC, DIGEST, FORM, or CLIENT-CERT. The realm-name child element speci-
fies the realm name to use in HTTP BASIC and DIGEST authorization. The form-login-config child
element specifies the log in as well as error pages that should be used in form-based login. If the auth-
method value is not FORM, form-login-config and its child elements are ignored.

As an example, the web.xml descriptor fragment given in Listing 8-5 indicates that any URL lying
under the web application “/restricted” path requires an AuthorizedUser role. There is no required
transport guarantee and the authentication method used for obtaining the user identity is BASIC
HTTP authentication.

LISTING 8-5. A web.xml descriptor fragment which illustrates the use of the security-constraint
and related elements.

<web-app>
...
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>Secure Content</web-resource-name>
 <url-pattern>/restricted/*</ url-pattern></
 <web-resource-collection>
 <auth-constraint>
JBoss Administration and Development 275

Security on JBoss - J2EE Security Configuration and Architecture
 <role-name>AuthorizedUser</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>NONE</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
...
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>The Restricted Zone</realm-name>
 </login-config>
...
 <security-role>
 <description>The role required to access restricted content
 </description>
 <role-name>AuthorizedUser</role-name>
 </security-role>
</web-app>

Enabling Declarative Security in JBoss
The J2EE security elements that have been covered describe only the security requirements from the
application’s perspective. Since J2EE security elements declare logical roles, the application deployer
maps the roles from the application domain onto the deployment environment. The J2EE specifica-
tions omit these application-server-specific details. In JBoss, mapping the application roles onto the
deployment environment entails specifying a security manager that implements the J2EE security
model using JBoss server specific deployment descriptors. We will avoid discussion the details of this
step for now. The details behind the security configuration will be discussed when we describe the
generic JBoss server security interfaces in the section “The JBoss Security Model” on page 281 .

An Introduction to JAAS
The default implementation of the JBossSX framework is based on the JAAS API. Because this is a
relatively new API, one which has not seen wide spread use, its important that you understand the
basic elements of the JAAS API to understand the implementation details of JBossSX. This section
provides an introduction to JAAS to prepare you for the JBossSX architecture discussion.

Additional details on the JAAS package can be found at the JAAS home page at: http://
java.sun.com/products/jaas/.

What is JAAS?
The JAAS 1.0 API consists of a set of Java packages designed for user authentication and authoriza-
tion. It implements a Java version of the standard Pluggable Authentication Module (PAM) frame-
276 JBoss Administration and Development

http://java.sun.com/products/jaas/
http://java.sun.com/products/jaas/

An Introduction to JAAS
work and compatibly extends the Java 2 Platform’s access control architecture to support user-based
authorization. JAAS was first released as an extension package for JDK 1.3 and is bundled with JDK
1.4+. Because the JBossSX framework uses only the authentication capabilities of JAAS to imple-
ment the declarative role-based J2EE security model, this introduction focuses on only that topic.

Much of this section’s material is derived from the JAAS 1.0 Developers Guide, so if you are familiar
with its content you can skip ahead to the JBossSX architecture discussion section “The JBoss Secu-
rity Extension Architecture” on page 289

JAAS authentication is performed in a pluggable fashion. This permits Java applications to remain
independent from underlying authentication technologies and allows the JBossSX security manager
to work in different security infrastructures. Integration with a security infrastructure can be achieved
without changing the JBossSX security manager implementation. All that needs to change is the con-
figuration of the authentication stack that JAAS uses.

The JAAS Core Classes
The JAAS core classes can be broken down into three categories: common, authentication, and autho-
rization. The following list presents only the common and authentication classes because these are the
specific classes used to implement the functionality of JBossSX covered in this chapter.

Common classes:

• Subject (javax.security.auth.Subject)
• Principal (java.security.Principal)

Authentication classes:

• Callback (javax.security.auth.callback.Callback)
• CallbackHandler (javax.security.auth.callback.CallbackHandler)
• Configuration (javax.security.auth.login.Configuration)
• LoginContext (javax.security.auth.login.LoginContext)
• LoginModule (javax.security.auth.spi.LoginModule)

SUBJECT AND PRINCIPAL

To authorize access to resources, applications first need to authenticate the request’s source. The
JAAS framework defines the term subject to represent a request’s source. The Subject class is the
central class in JAAS. A Subject represents information for a single entity, such as a person or ser-
vice. It encompasses the entity’s principals, public credentials, and private credentials. The JAAS
APIs use the existing Java 2 java.security.Principal interface to represent a principal,
which is essentially just a typed name.

During the authentication process, a Subject is populated with associated identities, or Princi-
pals. A Subject may have many Principals. For example, a person may have a name Prin-
cipal (John Doe) and a social security number Principal (123-45-6789), and a username
JBoss Administration and Development 277

Security on JBoss - J2EE Security Configuration and Architecture
Principal (johnd), all of which help distinguish the Subject from other Subjects. To retrieve
the Principals associated with a Subject, two methods are available:
{
...
 public Set getPrincipals() {...}
 public Set getPrincipals(Class c) {...}
}

The first method returns all Principals contained in the Subject. The second method only
returns those Principals that are instances of Class c or one of its subclasses. An empty set will
be returned if the Subject has no matching Principals. Note that the java.secu-
rity.acl.Group interface is a subinterface of java.security.Principal, and so an
instance in the principals set may represent a logical grouping of other principals or groups of princi-
pals.

AUTHENTICATION OF A SUBJECT

Authentication of a Subject requires a JAAS login. The login procedure consists of the following
steps:

1. An application instantiates a LoginContext passing in the name of the login configuration
and a CallbackHandler to populate the Callback objects as required by the configuration
LoginModules.
2. The LoginContext consults a Configuration to load all of the LoginModules
included in the named login configuration. If no such named configuration exists the “other” con-
figuration is used as a default.
3. The application invokes the LoginContext.login method.
4. The login method invokes all the loaded LoginModules. As each LoginModule attempts
to authenticate the Subject, it invokes the handle method on the associated Callback-
Handler to obtain the information required for the authentication process. The required infor-
mation is passed to the handle method in the form of an array of Callback objects. Upon
success, the LoginModules associate relevant Principals and credentials with the Sub-
ject.
5. The LoginContext returns the authentication status to the application. Success is repre-
sented by a return from the login method. Failure is represented through a LoginException
being thrown by the login method.
6. If authentication succeeds, the application retrieves the authenticated Subject using the
LoginContext.getSubject method.
7. After the scope of the Subject authentication is complete, all Principals and related
information associated with the Subject by the login method may be removed by invoking
the LoginContext.logout method.

The LoginContext class provides the basic methods for authenticating Subjects and offers a
way to develop an application independent of the underlying authentication technology. The Login-
Context consults a Configuration to determine the authentication services configured for a
particular application. LoginModules classes represent the authentication services. Therefore, you
can plug in different LoginModules into an application without changing the application itself.
278 JBoss Administration and Development

An Introduction to JAAS
Listing 8-6 provides code fragments that illustrate the steps required by an application to authenticate
a Subject.

LISTING 8-6. An illustration of the steps of the authentication process from the application
perspective.

CallbackHandler handler = new MyHandler();
LoginContext lc = new LoginContext(“some-config”, handler);
try
{
 lc.login();
 Subject subject = lc.getSubject();
}
catch(LoginException e)
{
 System.out.println(“authentication failed”);
 e.printStackTrace();
}

// Perform work as authenticated Subject
 ...

// Scope of work complete, logout to remove authentication info
try
{
 lc.logout();
}
catch(LoginException e)
{
 System.out.println(“logout failed”);
 e.printStackTrace();
}

// A sample MyHandler class
class MyHandler implements CallbackHandler
{
 public void handle(Callback[] callbacks) throws
 IOException, UnsupportedCallbackException
 {
 for (int i = 0; i < callbacks.length; i++)
 {
 if (callbacks[i] instanceof NameCallback)
 {
 NameCallback nc = (NameCallback)callbacks[i];
 nc.setName(username);
 }
 else if (callbacks[i] instanceof PasswordCallback)
 {
 PasswordCallback pc = (PasswordCallback)callbacks[i];
 pc.setPassword(password);
 }
 else
 {
 throw new UnsupportedCallbackException(callbacks[i],
JBoss Administration and Development 279

Security on JBoss - J2EE Security Configuration and Architecture
 “Unrecognized Callback”);
 }
 }
 }
}

Developers integrate with an authentication technology by creating an implementation of the Log-
inModule interface. This allows different authentication technologies to be plugged into an applica-
tion by administrator. Multiple LoginModules can be chained together to allow for more than one
authentication technology as part of the authentication process. For example, one LoginModule
may perform username/password-based authentication, while another may interface to hardware
devices such as smart card readers or biometric authenticators. The life cycle of a LoginModule is
driven by the LoginContext object against which the client creates and issues the login method.
The process consists of a two phases. The steps of the process are as follows:

1. The LoginContext creates each configured LoginModule using its public no-arg con-
structor.
2. Each LoginModule is initialized with a call to its initialize method. The Subject
argument is guaranteed to be non-null. The signature of the initialize method is:
public void initialize(Subject subject, CallbackHandler callback-
Handler, Map sharedState, Map options);
3. The login method is then called to start the authentication process. An example method
implementation might prompt the user for a username and password, and then verify the informa-
tion against data stored in a naming service such as NIS or LDAP. Alternative implementations
might interface to smart cards and biometric devices, or simply extract user information from the
underlying operating system. The validation of user identity by each LoginModule is consid-
ered phase 1 of JAAS authentication. The signature of the login method is:
boolean login() throws LoginException;
Failure is indicated by throwing a LoginException. A return of true indicates that the method
succeeded, while a return of false indicates that the login module should be ignored.
4. If the LoginContext’s overall authentication succeeds, commit is invoked on each Log-
inModule. If phase 1 succeeded for a LoginModule, then the commit method continues
with phase 2: associating relevant Principals, public credentials, and/or private credentials
with the Subject. If phase 1 fails for a LoginModule, then commit removes any previously
stored authentication state, such as usernames or passwords. The signature of the commit
method is:
boolean commit() throws LoginException;
Failure to complete the commit phase is indicated by throwing a LoginException. A return of true
indicates that the method succeeded, while a return of false indicates that the login module should
be ignored.
5. If the LoginContext’s overall authentication failed, then the abort method is invoked on
each LoginModule. The abort method removes/destroys any authentication state created by the
login or initialize methods. The signature of the abort method is:
boolean abort() throws LoginException;
Failure to complete the abort phase is indicated by throwing a LoginException. A return of true
indicates that the method succeeded, while a return of false indicates that the login module should
be ignored.
280 JBoss Administration and Development

The JBoss Security Model
6. Removal of the authentication state after a successful login is accomplished when the applica-
tion invokes logout on the LoginContext. This in turn results in a logout method invoca-
tion on each LoginModule. The logout method removes the Principals and credentials
originally associated with the Subject during the commit operation. Credentials should be
destroyed upon removal. The signature of the logout method is:
boolean logout() throws LoginException;
Failure to complete the logout process is indicated by throwing a LoginException. A return of
true indicates that the method succeeded, while a return of false indicates that the login module
should be ignored.

When a LoginModule must communicate with the user to obtain authentication information, it
uses a CallbackHandler object. Applications implement the CallbackHandler interface and
pass it to the LoginContext, which forwards it directly to the underlying LoginModules. Log-
inModules use the CallbackHandler both to gather input from users, such as a password or
smart-card PIN number, and to supply information to users, such as status information. By allowing
the application to specify the CallbackHandler, underlying LoginModules remain indepen-
dent from the different ways applications interact with users. For example, a CallbackHandler’s
implementation for a GUI application might display a window to solicit user input. On the other hand,
a CallbackHandler’s implementation for a non-GUI environment, such as an application server,
might simply obtain credential information using an application server API. The CallbackHan-
dler interface has one method to implement:

void handle(Callback[] callbacks)
throws java.io.IOException, UnsupportedCallbackException;

The last authentication class to cover is the Callback interface. This is a tagging interface for
which several default implementations are provided, including NameCallback and Password-
Callback that were used in Listing 8-6. LoginModules use a Callback to request information
required by the authentication mechanism the LoginModule encapsulates. LoginModules pass
an array of Callbacks directly to the CallbackHandler.handle method during the authenti-
cation’s login phase. If a CallbackHandler does not understand how to use a Callback object
passed into the handle method, it throws an UnsupportedCallbackException to abort the
login call.

The JBoss Security Model
Similar to the rest of the JBoss architecture, security at the lowest level is defined as a set of interfaces
for which alternate implementations may be provided. There are three basic interfaces that define the
JBoss server security layer: org.jboss.security.AuthenticationManager,
org.jboss.security.RealmMapping, and org.jboss.security.SecurityProxy.
Figure 8-3 shows a class diagram of the security interfaces and their relationship to the EJB container
architecture.
JBoss Administration and Development 281

Security on JBoss - J2EE Security Configuration and Architecture
FIGURE 8-3. The key security model interfaces and their relationship to the JBoss server EJB
container elements.

The light blue classes represent the security interfaces while the yellow classes represent the EJB con-
tainer layer. The two interfaces required for the implementation of the J2EE security model are the
org.jboss.security.AuthenticationManager and org.jboss.secu-
rity.RealmMapping. The roles of the security interfaces presented in Figure 8-3 are summarized
in the following list.

• AuthenticationManager is an interface responsible for validating credentials associ-
ated with principals. Principals are identities and examples include usernames, employee num-
bers, social security numbers, and so on. Credentials are proof of the identity and examples
include passwords, session keys, digital signatures, and so on. The isValid method is invoked
to see if a user identity and associated credentials as known in the operational environment are
valid proof of the user identity..
• RealmMapping is an interface responsible for principal mapping and role mapping. The
getPrincipal method takes a user identity as known in the operational environment and
returns the application domain identity. The doesUserHaveRole method validates that the
user identity in the operation environment has been assigned the indicated role from the applica-
tion domain.
282 JBoss Administration and Development

The JBoss Security Model
• SecurityProxy is an interface describing the requirements for a custom Securi-
tyProxyInterceptor plugin. A SecurityProxy allows for the externalization of custom
security checks on a per-method basis for both the EJB home and remote interface methods.
• SubjectSecurityManager is a subinterface of AuthenticationManager that sim-
ply adds accessor methods for obtaining the security domain name of the security manager and
the current thread’s authenticated Subject. In future releases this interface will simply be inte-
grated into the SecurityDomain interface.
• SecurityDomain is an extension of the AuthenticationManager, RealmMap-
ping, and SubjectSecurityManager interfaces. It is a move to a comprehensive security
interface based on the JAAS Subject, a java.security.KeyStore, and the JSSE
com.sun.net.ssl.KeyManagerFactory and com.sun.net.ssl.TrustMan-
agerFactory interfaces. This interface is still a work in progress that will be the basis of a
multi-domain security architecture that will better support ASP style deployments of applications
and resources.

Note that the AuthenticationManager, RealmMapping and SecurityProxy interfaces
have no association to JAAS related classes. Although the JBossSX framework is heavily dependent
on JAAS, the basic security interfaces required for implementation of the J2EE security model are
not. The JBossSX framework is simply an implementation of the basic security plug-in interfaces that
are based on JAAS. The component diagram presented in Figure 8.4 illustrates this fact. The implica-
tion of this plug-in architecture is that you are free to replace the JAAS-based JBossSX implementa-
tion classes with your own custom security manager implementation that does not make use of JAAS,
if you so desire. You’ll see how to do this when you look at the JBossSX MBeans available for the
configuration of JBossSX in Figure 8-4.
JBoss Administration and Development 283

Security on JBoss - J2EE Security Configuration and Architecture
FIGURE 8-4. The relationship between the JBossSX framework implementation classes and the
JBoss server EJB container layer.

Enabling Declarative Security in JBoss Revisited
Recall that our discussion of the J2EE standard security model ended with a requirement for the use
of JBoss server specific deployment descriptor to enable security. The details of this configuration is
presented here, as this is part of the generic JBoss security model. Figure 8-5 shows the JBoss-spe-
cific EJB and Web application deployment descriptor’s security-related elements.
284 JBoss Administration and Development

The JBoss Security Model
FIGURE 8-5. The security element subsets of the JBoss server jboss.xml and jboss-web.xml
deployment descriptors.

The value of a security-domain element specifies the JNDI name of the security manager interface
implementation that JBoss uses for the EJB and Web containers. This is an object that implements
both of the AuthenticationManager and RealmMapping interfaces. When specified as a
JBoss Administration and Development 285

Security on JBoss - J2EE Security Configuration and Architecture
top-level element it defines what security domain in effect for all EJBs in the deployment unit. This is
the typical usage because mixing security managers within a deployment unit complicates inter-com-
ponent operation and administration.

To specify the security-domain for an individual EJB, you specify the security-domain at the con-
tainer configuration level. This will override any top-level security-domain element..

The unauthenticated-principal element specifies the name to use for the Principal
object returned by the EJBContext.getUserPrincpal method when an unauthenticated user
invokes an EJB. Note that this conveys no special permissions to an unauthenticated caller. Its pri-
mary purpose is to allow unsecured servlets and JSP pages to invoke unsecured EJBs and allow the
target EJB to obtain a non-null Principal for the caller using the getUserPrincipal method.
This is a J2EE specification requirement.

The security-proxy element identifies a custom security proxy implementation that allows per-request
security checks outside the scope of the EJB declarative security model without embedding security
logic into the EJB implementation. This may be an implementation of the org.jboss.secu-
rity.SecurityProxy interface, or just an object that implements methods in the home, remote,
local home or local interfaces of the EJB to secure without implementing any common interface. If
the given class does not implement the SecurityProxy interface, the instance must be wrapped in
a SecurityProxy implementation that delegates the method invocations to the object. The
org.jboss.security.SubjectSecurityProxy is an example SecurityProxy imple-
mentation used by the default JBossSX installation.

Take a look at a simple example of a custom SecurityProxy in the context of a trivial stateless
session bean. The custom SecurityProxy validates that no one invokes the bean's echo method
with a four-letter word as its argument. This is a check that is not possible with role-based security;
you cannot define a FourLetterEchoInvoker role because the security context is the method argument,
not a property of the caller. The code for the custom SecurityProxy is given in Listing 8-7, and
the full source code is available in the src/main/org/jboss/chap8/ex1 directory of the book examples.
The associated jboss.xml descriptor that installs the EchoSecurityProxy as the custom proxy for
the EchoBean is given in Listing 8-8.

LISTING 8-7. The example 1 custom EchoSecurityProxy implementation that enforces the echo
argument-based security constraint.

package org.jboss.chap8.ex1;

import java.lang.reflect.Method;
import javax.ejb.EJBContext;

import org.apache.log4j.Category;

import org.jboss.security.SecurityProxy;

/** A simple example of a custom SecurityProxy implementation
that demonstrates method argument based security checks.

 * @author Scott.Stark@jboss.org
286 JBoss Administration and Development

The JBoss Security Model
 * @version $Revision:$
 */
public class EchoSecurityProxy implements SecurityProxy
{
 Category log = Category.getInstance(EchoSecurityProxy.class);
 Method echo;

 public void init(Class beanHome, Class beanRemote,
 Object securityMgr)
 throws InstantiationException
 {
 log.debug("init, beanHome="+beanHome
 + ", beanRemote="+beanRemote
 + ", securityMgr="+securityMgr);
 // Get the echo method for equality testing in invoke
 try
 {
 Class[] params = {String.class};
 echo = beanRemote.getDeclaredMethod("echo", params);
 }
 catch(Exception e)
 {
 String msg = "Failed to finde an echo(String) method";
 log.error(msg, e);
 throw new InstantiationException(msg);
 }
 }
 public void setEJBContext(EJBContext ctx)
 {
 log.debug("setEJBContext, ctx="+ctx);
 }
 public void invokeHome(Method m, Object[] args)
 throws SecurityException
 {
 // We don't validate access to home methods
 }
 public void invoke(Method m, Object[] args, Object bean)
 throws SecurityException
 {
 log.debug("invoke, m="+m);
 // Check for the echo method
 if(m.equals(echo))
 {
 // Validate that the msg arg is not 4 letter word
 String arg = (String) args[0];
 if(arg == null || arg.length() == 4)
 throw new SecurityException("No 4 letter words");
 }
 // We are not responsible for doing the invoke
 }
}

LISTING 8-8. The jboss.xml descriptor which configures the EchoSecurityProxy as the custom
security proxy for the EchoBean.
JBoss Administration and Development 287

Security on JBoss - J2EE Security Configuration and Architecture
<jboss>
 <security-domain>java:/jaas/other</security-domain>

 <enterprise-beans>
 <session>
 <ejb-name>EchoBean</ejb-name>
 <security-proxy>org.jboss.chap8.ex1.EchoSecurityProxy
 </security-proxy>
 </session>
 </enterprise-beans>
</jboss>

The EchoSecurityProxy checks that the method to be invoked on the bean instance corresponds
to the echo(String) method loaded the init method. If there is a match, the method argument is
obtained and its length compared against 4 or null. Either case results in a SecurityException
being thrown. Certainly this is a contrived example, but only in its application. It is a common
requirement that applications must perform security checks based on the value of method arguments.
The point of the example is to demonstrate how custom security beyond the scope of the standard
declarative security model can be introduced independent of the bean implementation. This allows
the specification and coding of the security requirements to be delegated to security experts. Since the
security proxy layer can be done independent of the bean implementation, security can be changed to
match the deployment environment requirements.

Now test the custom proxy by running a client that attempts to invoke the EchoBean.echo method
with the arguments “Hello” and “Four” as illustrated in this fragment:
public class ExClient
{
 public static void main(String args[]) throws Exception
 {
 Logger log = Logger.getLogger("ExClient");
 log.info("Looking up EchoBean");
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();
 log.info("Created Echo");
 log.info("Echo.echo('Hello') = "+echo.echo("Hello"));
 log.info("Echo.echo('Four') = "+echo.echo("Four"));
 }
}

The first call should succeed, while the second should fail due to the fact that “Four” is a four-letter
word. Run the client as follows using Ant from the examples directory:
examples 817>ant -Dchap=8 -Dex=1 run-example
Buildfile: build.xml

...
chap8-ex1-jar:

run-example1:
[copy] Copying 1 file to C:\tmp\JBoss\jboss-3.0.4\server\default\deploy
288 JBoss Administration and Development

The JBoss Security Extension Architecture
[echo] Waiting for 5 seconds for deploy...
[java] [INFO,ExClient] Looking up EchoBean
[java] [INFO,ExClient] Created Echo
[java] [INFO,ExClient] Echo.echo('Hello') = Hello
[java] java.rmi.ServerException: RemoteException occurred in server thread;
 nested exception is:
[java] java.rmi.ServerException: No 4 letter words; nested exception is:
[java] java.lang.SecurityException: No 4 letter words
[java] java.rmi.ServerException: No 4 letter words; nested exception is:
[java] java.lang.SecurityException: No 4 letter words
[java] java.lang.SecurityException: No 4 letter words
[java] at
...sport.StreamRemoteCall.exceptionReceivedFromServer(StreamRemoteCall.java:240
)
[java] at
sun.rmi.transport.StreamRemoteCall.executeCall(StreamRemoteCall.java:215)
[java] at sun.rmi.server.UnicastRef.invoke(UnicastRef.java:117)
[java] at org.jboss.invocation.jrmp.server.JRMPInvoker_Stub.invoke(Unknown
Source)
[java]
at....invocation.jrmp.interfaces.JRMPInvokerProxy.invoke(JRMPInvokerProxy.java:
128)
[java] at
org.jboss.invocation.InvokerInterceptor.invoke(InvokerInterceptor.java:108)
[java] at
org.jboss.proxy.TransactionInterceptor.invoke(TransactionInterceptor.java:73)
[java] at
org.jboss.proxy.SecurityInterceptor.invoke(SecurityInterceptor.java:76)
[java] at
....ejb.StatelessSessionInterceptor.invoke(StatelessSessionInterceptor.java:111
)
[java] at org.jboss.proxy.ClientContainer.invoke(ClientContainer.java:76)
[java] at $Proxy1.echo(Unknown Source)
[java] at org.jboss.chap8.ex1.ExClient.main(ExClient.java:23)
[java] Exception in thread "main"
[java] Java Result: 1

The result is that the echo('Hello') method call succeeds as expected and the echo('Four')
method call results in a rather messy looking exception, which is also expected. The above output has
been truncated to fit in the book. The key part to the exception is that the SecurityExcep-
tion(“No 4 letter words”) generated by the EchoSecurityProxy was thrown to abort
the attempted method invocation as desired.

The JBoss Security Extension Architecture
The preceding discussion of the general JBoss security layer has stated that the JBossSX security
extension framework is an implementation of the security layer interfaces. This is the primary pur-
pose of the JBossSX framework. The details of the implementation are interesting in that it offers a
JBoss Administration and Development 289

Security on JBoss - J2EE Security Configuration and Architecture
great deal of customization for integration into existing security infrastructures. A security infrastruc-
ture can be anything from a database or LDAP server to a sophisticated security software suite. The
integration flexibility is achieved using the pluggable authentication model available in the JAAS
framework.

The heart of the JBossSX framework is org.jboss.security.plugins.JaasSecurity-
Manager. This is the default implementation of the AuthenticationManager and Realm-
Mapping interfaces. Figure 8-6 shows how the JaasSecurityManager integrates into the EJB
and Web container layers based on the security-domain element of the corresponding component
deployment descriptor.
290 JBoss Administration and Development

The JBoss Security Extension Architecture
FIGURE 8-6. The relationship between the security-domain component deployment descriptor
value, the component container and the JaasSecurityManager.

Figure 8-6 depicts an enterprise application that contains both EJBs and Web content secured under
the security domain jwdomain. The EJB and Web containers have a request interceptor architecture
JBoss Administration and Development 291

Security on JBoss - J2EE Security Configuration and Architecture
that includes a security interceptor, which enforces the container security model. At deployment time,
the security-domain element value in the jboss.xml and jboss-web.xml descriptors is used to obtain
the security manager instance associated with the container. The security interceptor then uses the
security manager to perform its role. When a secured component is requested, the security interceptor
delegates security checks to the security manager instance associated with the container.

The JBossSX JaasSecurityManager implementation, shown in Figure 8-6 as the JaasSecuri-
tyMgr component, performs security checks based on the information associated with the Subject
instance that results from executing the JAAS login modules configured under the name matching the
security-domain element value. We will drill into the JaasSecurityManager implementation
and its use of JAAS in the following section.

How the JaasSecurityManager Uses JAAS
The JaasSecurityManager uses the JAAS packages to implement the Authentication-
Manager and RealmMapping interface behavior. In particular, its behavior derives from the exe-
cution of the login module instances that are configured under the name that matches the security
domain to which the JaasSecurityManager has been assigned. The login modules implement
the security domain’s principal authentication and role-mapping behavior. Thus, you can use the
JaasSecurityManager across different security domains simply by plugging in different login
module configurations for the domains.

To illustrate the details of the JaasSecurityManager’s usage of the JAAS authentication pro-
cess, you will walk through a client invocation of an EJB home method invocation. The prerequisite
setting is that the EJB has been deployed in the JBoss server and its home interface methods have
been secured using method-permission elements in the ejb-jar.xml descriptor, and it has been
assigned a security domain named "jwdomain" using the jboss.xml descriptor security-domain ele-
ment.
292 JBoss Administration and Development

The JBoss Security Extension Architecture
FIGURE 8-7. An illustration of the steps involved in the authentication and authorization of a
secured EJB home method invocation.

Figure 8-7 provides a view of the client to server communication we will discuss. The numbered
steps shown in Figure 8-7 are:

1. The client first has to perform a JAAS login to establish the principal and credentials for
authentication, and this is labeled Client Side Login in Figure 8-7. This is how clients establish
their login identities in JBoss. Support for presenting the login information via JNDI Initial-
Context properties is provided via an alternate configuration as described in “The Login Initial-
Context Factory Implementation” on page 144. A JAAS login entails creating a
JBoss Administration and Development 293

Security on JBoss - J2EE Security Configuration and Architecture
LoginContext instance and passing the name of the configuration to use. In Figure 8.7, the
configuration name is “other”. This one-time login associates the login principal and credentials
with all subsequent EJB method invocations. Note that the process might not authenticate the
user. The nature of the client-side login depends on the login module configuration that the client
uses. In Figure 8.7, the “other” client-side login configuration entry is set up to use the ClientLog-
inModule module (an org.jboss.security.ClientLoginModule). This is the default
client side module that simply binds the username and password to the JBoss EJB invocation
layer for later authentication on the server. The identity of the client is not authenticated on the
client.
2. Later, the client obtains the EJB home interface and attempts to create a bean. This event is
labeled as Home Method Invocation in Figure 8-7 . This results in a home interface method invo-
cation being sent to the JBoss server. The invocation includes the method arguments passed by
the client along with the user identity and credentials from the client-side JAAS login performed
in step 1.
3. On the server side, the security interceptor first requires authentication of the user invoking
the call, which, as on the client side, involves a JAAS login.
4. The security domain under which the EJB is secured determines the choice of login modules.
The security domain name is used as the login configuration entry name passed to the LoginCon-
text constructor. In Figure 8-7, the EJB security domain is “jwdomain”. If the JAAS login authen-
ticates the user, a JAAS Subject is created that contains the following in its PrincipalsSet:

This usage pattern of the Subject Principals set is the standard usage that JBossSX expects of server
side login modules. To ensure proper conformance to this pattern any custom login module you write
should subclass the JBossSX AbstractServerLoginModule class or one of its subclasses, or at least
follow the pattern as documented in the custom login module section “Writing Custom Login Mod-
ules” on page 310

• A java.security.Principal that corresponds to the client identity as known in the
deployment security environment.
• A java.security.acl.Group named "Roles" that contains the role names from the
application domain to which the user has been assigned. org.jboss.security.Simple-
Principal objects are used to represent the role names; SimplePrincipal is a simple
string-based implementation of Principal. These roles are used to validate the roles assigned
to methods in ejb-jar.xml and the EJBContext.isCallerInRole(String) method
implementation.
• An optional java.security.acl.Group named "CallerPrincipal", which contains a
single org.jboss.security.SimplePrincipal that corresponds to the identity of the
application domain’s caller. The "CallerPrincipal" sole group member will be the value returned
by the EJBContext.getCallerPrincipal() method. The purpose of this mapping is to
allow a Principal as known in the operational security environment to map to a Principal
with a name known to the application. In the absence of a "CallerPrincipal" mapping the deploy-
ment security environment principal is used as the getCallerPrincipal method value. That
is, the operational principal is the same as the application domain principal.
• The final step of the security interceptor check is to verify that the authenticated user has per-
mission to invoke the requested method This is labeled as Server Side Authorization in 8-7. Per-
forming the authorization this entails the following steps:
294 JBoss Administration and Development

The JBoss Security Extension Architecture
• Obtain the names of the roles allowed to access the EJB method from the EJB container. The
role names are determined by ejb-jar.xml descriptor role-name elements of all method-permission
elements containing the invoked method.
• If no roles have been assigned, or the method is specified in an exclude-list element, then
access to the method is denied. Otherwise, the JaasSecurityManager.doesUserHav-
eRole(Principal, Set) method is invoked by the security interceptor to see if the caller
has one of the assigned role names. The doesUserHaveRole method implementation iterates
through the role names and checks if the authenticated user's Subject "Roles" group contains a
SimplePrincipal with the assigned role name. Access is allowed if any role name is a mem-
ber of the "Roles" group. Access is denied if none of the role names are members.
• If the EJB was configured with a custom security proxy, the method invocation is delegated to
it. If the security proxy wants to deny access to the caller, it will throw a java.lang.Secu-
rityException. If no SecurityException is thrown, access to the EJB method is
allowed and the method invocation passes to the next container interceptor. Note that the Secu-
rityProxyInterceptor handles this check and this interceptor is not shown in Figure 8-7.

Every secured EJB method invocation, or secured Web content access, requires the authentication
and authorization of the caller because security information is handled as a stateless attribute of the
request that must be presented and validated on each request. This can be an expensive operation if
the JAAS login involves client-to-server communication. Because of this, the JaasSecurity-
Manager supports the notion of an authentication cache that is used to store principal and credential
information from previous successful logins. You can specify the authentication cache instance to use
as part of the JaasSecurityManager configuration as you will see when the associated MBean
service is discussed in following section. In the absence of any user-defined cache, a default cache
that maintains credential information for a configurable period of time is used.

The JaasSecurityManagerService MBean
The JaasSecurityManagerService MBean service manages security managers. Although its
name begins with Jaas, the security managers it handles need not use JAAS in their implementation.
The name arose from the fact that the default security manager implementation is the JaasSecu-
rityManager. The primary role of the JaasSecurityManagerService is to externalize the
security manager implementation. You can change the security manager implementation by providing
an alternate implementation of the AuthenticationManager and RealmMapping interfaces.
Of course this is optional because, by default, the JaasSecurityManager implementation is
used.

The second fundamental role of the JaasSecurityManagerService is to provide a JNDI
javax.naming.spi.ObjectFactory implementation to allow for simple code-free manage-
ment of the JNDI name to security manager implementation mapping. It has been mentioned that
security is enabled by specifying the JNDI name of the security manager implementation via the
security-domain deployment descriptor element. When you specify a JNDI name, there has to be an
object-binding there to use. To simplify the setup of the JNDI name to security manager bindings, the
JaasSecurityManagerService manages the association of security manager instances to
names by binding a next naming system reference with itself as the JNDI ObjectFactory under the
name "java:/jaas". This allows one to use a naming convention of the form "java:/jaas/XYZ" as the
JBoss Administration and Development 295

Security on JBoss - J2EE Security Configuration and Architecture
value for the security-domain element, and the security manager instance for the "XYZ" security
domain will be created as needed for you. The security manager for the domain "XYZ" is created on
the first lookup against the "java:/jaas/XYZ" binding by creating an instance of the class specified by
the SecurityManagerClassName attribute using a constructor that takes the name of the security
domain. For example, consider the following container security configuration snippet:
<jboss>
 <!-- Configure all containers to be secured under the
 "hades" security domain -->
 <security-domain>java:/jaas/hades</security-domain>
 ...
</jboss>

Any lookup of the name "java:/jaas/hades" will return a security manager instance that has been asso-
ciated with the security domain named "hades". This security manager will implement the Authen-
ticationManager and RealmMapping security interfaces and will be of the type specified by
the JaasSecurityManagerService SecurityManagerClassName attribute.

The JaasSecurityManagerService MBean is configured by default for use in the standard
JBoss distribution, and you can often use the default configuration as is. The configurable attributes
of the JaasSecurityManagerService include:

• SecurityManagerClassName: The name of the class that provides the security manager
implementation. The implementation must support both the org.jboss.secu-
rity.AuthenticationManager and org.jboss.security.RealmMapping inter-
faces. If not specified this defaults to the JAAS-based
org.jboss.security.plugins.JaasSecurityManager.
• CallbackHandlerClassName: The name of the class that provides the javax.secu-
rity.auth.callback.CallbackHandler implementation used by the JaasSecurityManager. You
can override the handler used by the JaasSecurityManager if the default implementation
(org.jboss.security.auth.callback.SecurityAssociationHandler) does
not meet your needs. This is a rather deep configuration that generally should not be set unless
you know what you are doing.
• SecurityProxyFactoryClassName: The name of the class that provides the
org.jboss.security.SecurityProxyFactory implementation. If not specified this
defaults to org.jboss.security.SubjectSecurityProxyFactory.
• AuthenticationCacheJndiName: Specifies the location of the security credential cache pol-
icy. This is first treated as an ObjectFactory location capable of returning CachePolicy
instances on a per-security-domain basis. This is done by appending the name of the security
domain to this name when looking up the CachePolicy for a domain. If this fails, the location
is treated as a single CachePolicy for all security domains. As a default, a timed cache policy
is used.
• DefaultCacheTimeout: Specifies the default timed cache policy timeout in seconds. The
default value is 1800 seconds (30 minutes). The value you use for the timeout is a tradeoff
between frequent authentication operations and how long credential information may be out of
synch with respect to the security information store. If you want to disable caching of security
credentials, set this to 0 to force authentication to occur every time. This has no affect if the
AuthenticationCacheJndiName has been changed from the default value.
296 JBoss Administration and Development

The JBoss Security Extension Architecture
• DefaultCacheResolution: Specifies the default timed cache policy resolution in seconds.
This controls the interval at which the cache current timestamp is updated and should be less than
the DefaultCacheTimeout in order for the timeout to be meaningful. The default resolution is 60
seconds(1 minute). This has no affect if the AuthenticationCacheJndiName has been changed
from the default value.

The JaasSecurityManagerService also supports a number of useful operations. These
include flushing any security domain authentication cache at runtime, getting the list of active users
in a security domain authentication cache, and any of the security manager interface methods.

Flushing a security domain authentication cache can be used to drop all cached credentials when the
underlying store has been updated and you want the store state to be used immediately. The MBean
operation signature is as follows:
public void flushAuthenticationCache(String securityDomain);

This can be invoked programmatically using the following code snippet:
MBeanServer server = ...;
String jaasMgrName = "jboss.security:service=JaasSecurityManager";
ObjectName jaasMgr = new ObjectName(jaasMgrName);
Object[] params = {domainName};
String[] signature = {"java.lang.String"};
server.invoke(jaasMgr, "flushAuthenticationCache", params, signature);

Getting the list of active users provides a snapshot of the Principals keys in a security domain authen-
tication cache that are not expired. The MBean operation signature is:
public List getAuthenticationCachePrincipals(String securityDomain);

This can be invoked programmatically using the following code snippet:
MBeanServer server = ...;
String jaasMgrName = "jboss.security:service=JaasSecurityManager";
ObjectName jaasMgr = new ObjectName(jaasMgrName);
Object[] params = {domainName};
String[] signature = {"java.lang.String"};
List users = (List) server.invoke(jaasMgr, "getAuthenticationCachePrincipals",
params, signature);

The security manager access method added in 3.0.5 have the following operation signatures:
public boolean isValid(String securityDomain, Principal principal,

Object credential);
public Principal getPrincipal(String securityDomain, Principal principal);
public boolean doesUserHaveRole(String securityDomain, Principal principal,

Set roles);
public Set getUserRoles(String securityDomain, Principal principal);

They provide access to the corresponding AuthenticationManager and RealmMapping
interface method of the associated security domain named by the securityDomain argument.
JBoss Administration and Development 297

Security on JBoss - J2EE Security Configuration and Architecture
An Extension to JaasSecurityManager, the
JaasSecurityDomain MBean
The org.jboss.security.plugins.JaasSecurityDomain is an extension of JaasSe-
curityManager that adds the notion of a KeyStore, and JSSE KeyManagerFactory and
TrustManagerFactory for supporting SSL and other cryptographic use cases. The additional
configurable attributes of the JaasSecurityDomain include:

• KeyStoreType: The type of the KeyStore implementation. This is the type argument passed
to the java.security.KeyStore.getInstance(String type) factory method.
• KeyStoreURL: A URL to the location of the KeyStore database. This is used to obtain a
java.io.InputStream using the URL.openStream() method to load the contents of a
KeyStore instance.
• KeyStorePass: The password associated with the KeyStore database contents. This is used
when the KeyStore instance is loaded from the KeyStoreURL contents. The Key-
Store.load(InputStream, char[]) method. If this is not specified, a null password
will be used and the integrity of the database will not be checked.
• LoadSunJSSEProvider: A flag indicating if the Sun com.sun.net.ssl.inter-
nal.ssl.Provider security provider should be loaded on startup. This is needed when using
the Sun JSSE jars without them installed as an extension with JDK 1.3. This should be set to false
with JDK 1.4 or when using an alternate JSSE provider. This flag currently defaults to true.
• ManagerServiceName: Sets the JMX object name string of the security manager service
MBean. This is used to register the defaults to register the JaasSecurityDomain as a the
security manager under java:/jaas/<domain> where <domain> is the name passed to the MBean
constructor. The name defaults to “jboss.security:service=JaasSecurityManager”.

An XML JAAS Login Configuration MBean

JBoss 3 uses a custom implementation of the javax.security.auth.login.Configura-
tion class that is provided by the org.jboss.security.auth.login.XMLLoginConfig
MBean. This configuration implementation uses an XML format that conforms to the DTD given by
Figure 8-8.
298 JBoss Administration and Development

The JBoss Security Extension Architecture
FIGURE 8-8. The XMLLoginConfig DTD

The name attribute of the application-policy is the login configuration name. This corresponds to the
portion of the jboss.xml and jboss-web.xml security-domain element value after the “java:/jaas/” pre-
fix. The code attribute of the login-module element specifies the class name of the login module
implementation. The flag attribute controls the overall behavior of the authentication stack. The
allowed values and measnings are:

• required: the LoginModule is required to succeed. If it succeeds or fails, authentication still
continues to proceed down the LoginModule list.
• requisite: the LoginModule is required to succeed. If it succeeds, authentication continues
down the LoginModule list. If it fails, control immediately returns to the application (authentica-
tion does not proceed down the LoginModule list).
• sufficient: the LoginModule is not required to succeed. If it does succeed, control immedi-
ately returns to the application (authentication does not proceed down the LoginModule list). If it
fails, authentication continues down the LoginModule list.
• optional: the LoginModule is not required to succeed. If it succeeds or fails, authentication
still continues to proceed down the LoginModule list.

Zero or more module-option elements may be specified as child elements of a login-module. These
define name/value string pairs that are made available to the login module during initialization. The
name attribute specifies the option name while the module-option body provides the value. An exam-
ple login configuration is given in Listing 8-9.

LISTING 8-9. A sample login module configuration suitable for use with XMLLoginConfig

<policy>
 <application-policy name="srp-test">
 <authentication>
 <login-module code="org.jboss.security.srp.jaas.SRPCacheLoginModule"
 flag="required">
JBoss Administration and Development 299

Security on JBoss - J2EE Security Configuration and Architecture
 <module-option name="cacheJndiName">srp-test/AuthenticationCache
 </module-option>
 </login-module>

 <login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule"
 flag="required">
 <module-option name="password-stacking">useFirstPass</module-option>
 </login-module>

 </authentication>
 </application-policy>
</policy>

The XMLLoginConfig MBean supports the following attributes:

• ConfigURL: specifies the URL of the XML login configuration file that should be loaded by
this mbean on startup. This must be a valid URL string representation.
• ConfigResource: specifies the resource name of the XML login configuration file that should
be loaded by this mbean on startup. The name is treated as a classpath resource for which a URL
is located using the thread context class loader.
• ValidateDTD: a flag indicating if the XML configuration should be validated against its
DTD. This defaults to true.

The MBean also supports the following operations that allow one to dynamically extend the login
configurations at runtime. Note that any operation that attempts to alter login configuration requires a
javax.security.auth.AuthPermission("refreshLoginConfiguration") when
running with a security manager.

• void addAppConfig(String appName, AppConfigurationEntry[] entries); this adds the given
login module configuration stack to the current configuration under the given appName. This
replaces any existing entry under that name.
• void removeAppConfig(String appName); this removes the login module configuration regis-
tered under the given appName.
• String[] loadConfig(URL configURL) throws Exception; this loads one or more login config-
urations from a URL representing either an XML or legacy Sun login configuration file. Note that
all login configurations must be added or none will be added. It returns the names of the login
configurations that were added.
• void removeConfigs(String[] appNames); this removes the login configurations specified
appNames array.
• String displayAppConfig(String appName); this operation displays a simple string format of
the named configuration if it exists.

The JAAS Login Configuration Management MBean
The installation of the custom javax.security.auth.login.Configuration is managed
by the org.jboss.security.plugins.SecurityConfig MBean. The configurable
attribute of the
300 JBoss Administration and Development

The JBoss Security Extension Architecture
• LoginConfig: Specifies the JMX ObjectName string of the that provides the default JAAS
login configuration. When the SecurityConfig is started, this mean is queried for its
javax.security.auth.login.Configuration by calling its getConfigura-
tion(Configuration currentConfig) operation. If the LoginConfig attribute is not
specified then the default Sun Configuration implementation described in the Configu-
ration class javadocs is used.

In addition to allowing for a custom JAAS login configuration implementation, this service allows
configurations to be chained together in a stack at runtime. This allows one to push a login configura-
tion onto the stack and latter pop it. This is a feature used by the security unit tests to install custom
login configurations into a default JBoss installation. Pusing a new configuration is done using:
public void pushLoginConfig(String objectName) throws JMException,
MalformedObjectNameException;

The objectName parameters specifies an MBean similar to the LoginConfig attribute. The current
login configuration may be removed using:
public void popLoginConfig() throws JMException;

Using and Writing JBossSX Login Modules
The JaasSecurityManager implementation allows complete customization of the authentication
mechanism using JAAS login module configurations. By defining the login module configuration
entry that corresponds to the security domain name you have used to secure access to your J2EE com-
ponents, you define the authentication mechanism and integration implementation.

The JBossSX framework includes a number of bundled login modules suitable for integration with
standard security infrastructure store protocols such as LDAP and JDBC. It also includes standard
base class implementations that help enforce the expected LoginModule to Subject usage pat-
tern that was described in the “Writing Custom Login Modules” on page 310 These implementations
allow for easy integration of your own authentication protocol, if none of the bundled login modules
prove suitable. In this section we will first describe the useful bundled login modules and their con-
figuration, and then end with a discussion of how to create your own custom LoginModule imple-
mentations for use with JBoss.

org.jboss.security.auth.spi.IdentityLoginModule
The IdentityLoginModule is a simple login module that associates the principal specified in
the module options with any subject authenticated against the module. It creates a SimplePrinci-
pal instance using the name specified by the "principal" option. Although this is certainly not an
appropriate login module for production strength authentication, it can be of use in development envi-
ronments when you want to test the security associated with a given principal and associated roles.

The supported login module configuration options include:

• principal=string, The name to use for the SimplePrincipal all users are authenticated as. The
principal name defaults to "guest" if no principal option is specified.
JBoss Administration and Development 301

Security on JBoss - J2EE Security Configuration and Architecture
• roles=string-list, The names of the roles that will be assigned to the user principal. The value
is a comma-delimited list of role names.
• password-stacking=useFirstPass, When password-stacking option is set, this module first
looks for a shared username under the property name "javax.security.auth.login.name" in the
login module shared state Map. If found this is used as the principal name. If not found the princi-
pal name set by this login module is stored under the property name "javax.secu-
rity.auth.login.name".

A sample login configuration entry that would authenticate all users as the principal named "jduke"
and assign role names of "TheDuke", and "AnimatedCharacter" is:
testIdentity {
 org.jboss.security.auth.spi.IdentityLoginModule required
 principal=jduke
 roles=TheDuke,AnimatedCharater;
};

To add this entry to a JBoss server login cofiguration found in the default configuration file set you
would modify the conf/default/auth.conf file of the JBoss distribution.

org.jboss.security.auth.spi.UsersRolesLoginModule
The UsersRolesLoginModule is another simple login module that supports multiple users and
user roles, and is based on two Java Properties formatted text files. The username-to-password map-
ping file is called "users.properties" and the username-to-roles mapping file is called "roles.proper-
ties". The properties files are loaded during initialization using the initialize method thread
context class loader. This means that these files can be placed into the J2EE deployment jar, the JBoss
configuration directory, or any directory on the JBoss server or system classpath. The primary pur-
pose of this login module is to easily test the security settings of multiple users and roles using prop-
erties files deployed with the application.

The users.properties file uses a "username=password" format with each user entry on a separate line
as show here:
username1=password1
username2=password2
...

The roles.properties file uses as "username=role1,role2,..." format with an optional group name value.
For example:
username1=role1,role2,...
username1.RoleGroup1=role3,role4,...
username2=role1,role3,...

The "username.XXX" form of property name is used to assign the username roles to a particular
named group of roles where the XXX portion of the property name is the group name. The "user-
name=..." form is an abbreviation for "username.Roles=...", where the "Roles" group name is the
standard name the JaasSecurityManager expects to contain the roles which define the users permis-
sions.
302 JBoss Administration and Development

The JBoss Security Extension Architecture
The following would be equivalent definitions for the jduke username:
jduke=TheDuke,AnimatedCharacter
jduke.Roles=TheDuke,AnimatedCharacter

The supported login module configuration options include the following:

• unauthenticatedIdentity=name, Defines the principal name that should be assigned to
requests that contain no authentication information. This can be used to allow unprotected serv-
lets to invoke methods on EJBs that do not require a specific role. Such a principal has no associ-
ated roles and so can only access either unsecured EJBs or EJB methods that are associated with
the unchecked permission constraint.
• password-stacking=useFirstPass, When password-stacking option is set, this module first
looks for a shared username and password under the property names "javax.secu-
rity.auth.login.name" and "javax.security.auth.login.password" respectively in the login module
shared state Map. If found these are used as the principal name and password. If not found the
principal name and password are set by this login module and stored under the property names
"javax.security.auth.login.name" and "javax.security.auth.login.password" respectively.
• hashAlgorithm=string: The name of the java.security.MessageDigest algorithm to use to
hash the password. There is no default so this option must be specified to enable hashing. When
hashAlgorithm is specified, the clear text password obtained from the CallbackHandler is hashed
before it is passed to UsernamePasswordLoginModule.validatePassword as the inputPassword
argument. The expectedPassword as stored in the users.properties file must be comparably
hashed.
• hashEncoding=base64|hex: The string format for the hashed pass and must be either
"base64" or "hex". Base64 is the default.
• hashCharset=string: The encoding used to convert the clear text password to a byte array.
The platform default encoding is the default.
• usersProperties=string: (2.4.5+) The name of the properties resource containing the user-
name to password mappings. This defaults to users.properties.
• rolesProperties=string: (2.4.5+) The name of the properties resource containing the user-
name to roles mappings. This defaults to roles.properties.

A sample login configuration entry that assigned unauthenticated users the principal name "nobody"
and contains based64 encoded, MD5 hashes of the passwords in a "usersb64.properties" file is:
testUsersRoles {
 org.jboss.security.auth.spi.UsersRolesLoginModule required
 usersProperties=usersb64.properties
 hashAlgorithm=MD5
 hashEncoding=base64
 unauthenticatedIdentity=nobody
 ;
};

org.jboss.security.auth.spi.LdapLoginModule
The LdapLoginModule is a LoginModule implementation that authenticates against an LDAP
server using JNDI login using the login module configuration options. You would use the LdapLog-
JBoss Administration and Development 303

Security on JBoss - J2EE Security Configuration and Architecture
inModule if your username and credential information are store in an LDAP server that is accessi-
ble using a JNDI LDAP provider.

The LDAP connectivity information is provided as configuration options that are passed through to
the environment object used to create JNDI initial context. The standard LDAP JNDI properties used
include the following:

• java.naming.factory.initial, The classname of the InitialContextFactory implementation.
This defaults to the Sun LDAP provider implementation com.sun.jndi.ldap.LdapCtx-
Factory.
• java.naming.provider.url, The ldap URL for the LDAP server
• java.naming.security.authentication, The security level to use. This defaults to "simple".
• java.naming.security.protocol, The transport protocol to use for secure access, such as, ssl
• java.naming.security.principal, The principal for authenticating the caller to the service.
This is built from other properties as described below.
• java.naming.security.credentials, The value of the property depends on the authentication
scheme. For example, it could be a hashed password, clear-text password, key, certificate, and so
on.

The supported login module configuration options include the following:

• principalDNPrefix=string, A prefix to add to the username to form the user distinguished
name. See principalDNSuffix for more info.
• principalDNSuffix=string, A suffix to add to the username when forming the user distigu-
ished name. This is useful if you prompt a user for a username and you don't want the user to have
to enter the fully distinguished name. Using this property and principalDNSuffix the userDN will
be formed as:
String userDN = principalDNPrefix + username + principalDNSuffix;

• useObjectCredential=true|false, Indicates that the credential should be obtained as an
opaque Object using the org.jboss.security.auth.callback.ObjectCallback
type of Callback rather than as a char[] password using a JAAS PasswordCallback. This
allows for passing non-char[] credential information to the LDAP server.
• rolesCtxDN=string, The fixed distinguished name to the context to search for user roles.
• userRolesCtxDNAttributeName=string, The name of an attribute in the user object that
contains the distinguished name to the context to search for user roles. This differs from
rolesCtxDN in that the context to search for a user's roles can be unique for each user.
• roleAttributeID=string, The name of the attribute that contains the user roles. If not speci-
fied this defaults to “roles”.
• roleAttributeIsDN=string: A flag indicating whether the roleAttributeID contains the fully
distinguished name of a role object, or the role name. If false, the role name is taken from the
value of roleAttributeID. If true, the role attribute represents the distinguished name of a role
object. The role name is taken from the value of the roleNameAttributeId attribute of the context
name by the distinguished name. In certain directory schemas (e.g., MS ActiveDirectory), role
attributes in the user object are stored as DNs to role objects instead of as simple names, in which
case, this property should be set to true. The default is false.
304 JBoss Administration and Development

The JBoss Security Extension Architecture
• roleNameAttributeID=string: The name of the attribute of the in the context pointed to by
the roleCtxDN distiguished name value which contains the role name. If the roleAttributeIsDN
property is set to true, this property is used to find the role object's name attribute. The default is
“group”.
• uidAttributeID=string, The name of the attribute in the object containing the user roles that
corresponds to the userid. This is used to locate the user roles. If not specified this defaults to
"uid".
• matchOnUserDN=true|false, A flag indicating if the search for user roles should match on
the user's fully distinguished name. If false, just the username is used as the match value against
the uidAttributeName attribute. If true, the full userDN is used as the match value.
• unauthenticatedIdentity=string, The principal name that should be assigned to requests that
contain no authentication information. This behavior is inherited from the UsernamePassword-
LoginModule superclass.
• password-stacking=useFirstPass, When the password-stacking option is set, this module
first looks for a shared username and password under the property names "javax.secu-
rity.auth.login.name" and "javax.security.auth.login.password" respectively in the login module
shared state Map. If found these are used as the principal name and password. If not found the
principal name and password are set by this login module and stored under the property names
"javax.security.auth.login.name" and "javax.security.auth.login.password" respectively.
• hashAlgorithm=string: The name of the java.security.MessageDigest algorithm
to use to hash the password. There is no default so this option must be specified to enable hashing.
When hashAlgorithm is specified, the clear text password obtained from the CallbackHan-
dler is hashed before it is passed to UsernamePasswordLoginModule.validate-
Password as the inputPassword argument. The expectedPassword as stored in the LDAP server
must be comparably hashed.
• hashEncoding=base64|hex: The string format for the hashed pass and must be either
"base64" or "hex". Base64 is the default.
• hashCharset=string: The encoding used to convert the clear text password to a byte array.
The platform default encoding is the default.
• allowEmptyPasswords: A flag indicating if empty(length==0) passwords should be passed
to the ldap server. An empty password is treated as an anonymous login by some ldap servers and
this may not be a desirable feature. Set this to false to reject empty passwords, true to have the
ldap server validate the empty password. The default is true.

The authentication of a user is performed by connecting to the LDAP server based on the login mod-
ule configuration options. Connecting to the LDAP server is done by creating an InitialLdapContext
with an environment composed of the LDAP JNDI properties described previously in this section.
The Context.SECURITY_PRINCIPAL is set to the distinguished name of the user as obtained by
the callback handler in combination with the principalDNPrefix and principalDNSuffix option val-
ues, and the Context.SECURITY_CREDENTIALS property is either set to the String password
or the Object credential depending on the useObjectCredential option.

Once authentication has succeeded by virtue of being able to create an InitialLdapContext
instance, the user's roles are queried by performing a search on the rolesCtxDN location with search
JBoss Administration and Development 305

Security on JBoss - J2EE Security Configuration and Architecture
attributes set to the roleAttributeName and uidAttributeName option values. The roles names are
obtaining by invoking the toString method on the role attributes in the search result set.

A sample login configuration entry is:
testLdap {
 org.jboss.security.auth.spi.LdapLoginModule required
 java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory
 java.naming.provider.url="ldap://ldaphost.jboss.org:1389/"
 java.naming.security.authentication=simple
 principalDNPrefix=uid=
 uidAttributeID=userid
 roleAttributeID=roleName
 principalDNSuffix=,ou=People,o=jboss.org
 rolesCtxDN=cn=JBossSX Tests,ou=Roles,o=jboss.org
};

To help you understand all of the options of the LdapLoginModule, consider the sample LDAP server
data shown in Figure 8-9. This figure corresponds to the testLdap login configuration just shown.

FIGURE 8-9. An LDAP server configuration compatible with the testLdap sample
configuration.

Take a look at the testLdap login module configuration in comparision to the Figure 8-9 schema. The
java.naming.factory.initial, java.naming.factory.url and java.nam-
ing.security options indicate the Sun LDAP JNDI provider implementation will be used, the
LDAP server is located on host ldaphost.jboss.org on port 1389, and that simple username and pass-
word will be used to authenticate clients connecting to the LDAP server.

When the LdapLoginModule performs authentication of a user, it does so by connecting to the
LDAP server specified by the java.naming.factory.url. The java.naming.secu-
306 JBoss Administration and Development

The JBoss Security Extension Architecture
rity.principal property is built from the principalDNPrefix, passed in username and princi-
palDNSuffix as described above. For the testLdap configuration example and a username of 'jduke',
the java.naming.security.principal string would be 'uid=jduke,ou=People,o=jboss.org'.
This corresponds to the LDAP context on the lower right of Figure 8-9 labeled as Principal Context.
The java.naming.security.credentials property would be set to the passed in password
and it would have to match the userPassword attribute of the Principal Context. How a secured
LDAP context stores the authentication credential information depends on the LDAP server, so your
LDAP server may handle the validation of the java.naming.security.credentials prop-
erty differently.

Once authentication succeeds, the roles on which authorization will be based are retrieved by per-
forming a JNDI search of the LDAP context whose distinguished name is given by the rolesCtxDN
option value. For the testLdap configuration this is 'cn=JBossSX Tests,ou=Roles,o=jboss.org' and
corresponds to the LDAP context on the lower left of Figure 8-9 labeled Roles Context. The search
attempts to locate any subcontexts that contain an attribute whose name is given by the uidAt-
tributeID option, and whose value matches the username passed to the login module. For any match-
ing context, all values of the attribute whose name is given by the roleAttributeID option are
obtained. For the testLdap configuration the attribute name that contains the roles is called roleName.
The resulting roleName values are stored in the JAAS Subject associated with the LdapLoginModule
as the Roles group principals that will be used for role-based authorization. For the LDAP schema
shown in Figure 8-9, the roles that will be assigned to the user 'jduke' are 'TheDuke' and 'Animated-
Character'.

org.jboss.security.auth.spi.DatabaseServerLoginModule

The DatabaseServerLoginModule is a JDBC based login module that supports authentication
and role mapping. You would use this login module if you have your username, password and role
information in a JDBC accessible database. The DatabaseServerLoginModule is based on
two logical tables:
Table Principals(PrincipalID text, Password text)
Table Roles(PrincipalID text, Role text, RoleGroup text)

The Principals table associates the user PrincipalID with the valid password and the Roles table asso-
ciates the user PrincipalID with its role sets. The roles used for user permissions must be contained in
rows with a RoleGroup column value of Roles. The tables are logical in that you can specify the SQL
query that the login module uses. All that is required is that the java.sql.ResultSet has the
same logical structure as the Principals and Roles tables described previously. The actual names of
the tables and columns are not relevant as the results are accessed based on the column index. To clar-
ify this notion, consider a database with two tables, Principals and Roles, as already declared. The fol-
lowing statements build the tables to contain a PrincipalID 'java' with a Password of 'echoman' in the
Principals table, a PrincipalID 'java' with a role named 'Echo' in the 'Roles' RoleGroup in the Roles
table, and a PrincipalID 'java' with a role named 'caller_java' in the 'CallerPrincipal' RoleGroup in the
Roles table:
INSERT INTO Principals VALUES('java', 'echoman')
INSERT INTO Roles VALUES('java', 'Echo', 'Roles')
INSERT INTO Roles VALUES('java', 'caller_java', 'CallerPrincipal')
JBoss Administration and Development 307

Security on JBoss - J2EE Security Configuration and Architecture
The supported login module configuration options include the following:

• dsJndiName: The JNDI name for the DataSource of the database containing the logical
"Principals" and "Roles" tables. If not specified this defaults to "java:/DefaultDS".
• principalsQuery: The prepared statement query equivalent to: "select Password from Princi-
pals where PrincipalID=?". If not specified this is the exact prepared statement that will be used.
• rolesQuery: The prepared statement query equivalent to: "select Role, RoleGroup from
Roles where PrincipalID=?". If not specified this is the exact prepared statement that will be used.
• unauthenticatedIdentity=string, The principal name that should be assigned to requests that
contain no authentication information.
• password-stacking=useFirstPass, When password-stacking option is set, this module first
looks for a shared username and password under the property names "javax.secu-
rity.auth.login.name" and "javax.security.auth.login.password" respectively in the login module
shared state Map. If found these are used as the principal name and password. If not found the
principal name and password are set by this login module and stored under the property names
"javax.security.auth.login.name" and "javax.security.auth.login.password" respectively.
• hashAlgorithm=string: The name of the java.security.MessageDigest algorithm to use to
hash the password. There is no default so this option must be specified to enable hashing. When
hashAlgorithm is specified, the clear text password obtained from the CallbackHandler is hashed
before it is passed to UsernamePasswordLoginModule.validatePassword as the inputPassword
argument. The expectedPassword as obtained from the database must be comparably hashed.
• hashEncoding=base64|hex: The string format for the hashed pass and must be either
"base64" or "hex". Base64 is the default.
• hashCharset=string: The encoding used to convert the clear text password to a byte array.
The platform default encoding is the default

As an example DatabaseServerLoginModule configuration, consider a custom table schema
like the following:
CREATE TABLE Users(username VARCHAR(64) PRIMARY KEY, passwd VARCHAR(64))
CREATE TABLE UserRoles(username VARCHAR(64), userRoles VARCHAR(32))

The corresponding DatabaseServerLoginModule configuration would be:
testDB {
 org.jboss.security.auth.spi.DatabaseServerLoginModule required
 dsJndiName="java:/MyDatabaseDS"
 principalsQuery="select passwd from Users username where username=?"
 rolesQuery="select userRoles, 'Roles' from UserRoles where username=?"
 ;
};

org.jboss.security.auth.spi.ProxyLoginModule
The ProxyLoginModule is a login module that loads a delegate LoginModule using the current
thread context class loader. The purpose of this module is to work around the current JAAS 1.0 class
loader limitation that requires LoginModules to be on the system classpath1. Some custom Log-
inModules use classes that are loaded from the JBoss server lib/ext directory and these are not
308 JBoss Administration and Development

The JBoss Security Extension Architecture
available if the LoginModule is placed on the system classpath. To work around this limitation you
use the ProxyLoginModule to bootstrap the custom LoginModule. The ProxyLoginModule
has one required configuration option called moduleName. It specifies the fully qualified class name
of the LoginModule implementation that is to be bootstrapped. Any number of additional configura-
tion options may be specified, and they will be passed to the bootstrapped login module.

As an example, consider a custom login module that makes use of some service that is loaded from
the JBoss lib/ext directory. The class name of the custom login module is com.biz.CustomServiceL-
oginModule. A suitable ProxyLoginModule configuration entry for bootstrapping this custom
login module would be:
testProxy {
 org.jboss.security.auth.spi.ProxyLoginModule required
 moduleName=com.biz.CustomServiceLoginModule
 customOption1=value1
 customOption2=value2
 customOption3=value3;
};

org.jboss.security.auth.spi.RunAsLoginModule
New in JBoss-3.0.3 is a helper login module called RunAsLoginModule. It pushes a run as role
for the duration of the login phase of authentication, and pops the run as role in either the commit or
abort phase. The purpose of this login module is to provide a role for other login modules that need to
access secured resources in order to perform their authentication. An example would be a login mod-
ule that accesses an secured EJB. This login module must be configured ahead of the login module(s)
that need a run as role established.

The only login module configuration option is:

• roleName: the name of the role to use as the run as role during login phase. If not specified a
default of “nobody” is used.

org.jboss.security.ClientLoginModule
The ClientLoginModule is an implementation of LoginModule for use by JBoss clients for
the establishment of the caller identity and credentials. This simply sets the org.jboss.secu-
rity.SecurityAssociation.principal to the value of the NameCallback filled in by
the CallbackHandler, and the org.jboss.security.SecurityAssociation.cre-
dential to the value of the PasswordCallback filled in by the CallbackHandler. This is
the only supported mechanism for a client to establish the current thread's caller. Both stand-alone cli-
ent applications and server environments, acting as JBoss EJB clients where the security environment
has not been configured to use JBossSX transparently, need to use the ClientLoginModule. Of
course, you could always set the org.jboss.security.SecurityAssociation informa-
tion directly, but this is considered an internal API that is subject to change without notice.

1. The ProxyLoginModule is generally not needed in JBoss3.x since we have our own JAAS implementation that solves this issue. The
ProxyLoginModule remains for backward compatability.
JBoss Administration and Development 309

Security on JBoss - J2EE Security Configuration and Architecture
Note that this login module does not perform any authentication. It merely copies the login informa-
tion provided to it into the JBoss server EJB invocation layer for subsequent authentication on the
server. If you need to perform client-side authentication of users you would need to configure another
login module in addition to the ClientLoginModule.

The supported login module configuration options include the following:

• multi-threaded=true|false, When the multi-threaded option is set to true, each login thread
has its own principal and credential storage. This is useful in client environments where multiple
user identities are active in separate threads. When true, each separate thread must perform its
own login. When set to false the login identity and credentials are global variables that apply to all
threads in the VM. The default for this option is false.
• password-stacking=useFirstPass, When password-stacking option is set, this module first
looks for a shared username and password using "javax.security.auth.login.name" and
"javax.security.auth.login.password" respectively in the login module shared state Map. This
allows a module configured prior to this one to establish a valid username and password that
should be passed to JBoss. You would use this option if you want to perform client-side authenti-
cation of clients using some other login module such as the LdapLoginModule.

A sample login configuration for ClientLoginModule is the default configuration entry found in
the JBoss distribution client/auth.conf file. The configuration is:
other {
 // Put your login modules that work without jBoss here

 // jBoss LoginModule
 org.jboss.security.ClientLoginModule required;

 // Put your login modules that need jBoss here
};

Writing Custom Login Modules
If the login modules bundled with the JBossSX framework do not work with your security environ-
ment, you can write your own custom login module implementation that does.

Recall from the section on the JaasSecurityManager architecture that the JaasSecurity-
Manager expected a particular usage pattern of the Subject principals set. You need to understand
the JAAS Subject class's information storage features and the expected usage of these features to
be able to write a login module that works with the JaasSecurityManager. This section exam-
ines this requirement and introduces two abstract base LoginModule implementations that can help
you implement your own custom login modules.

You can obtain security information associated with a Subject in six ways using the following
methods:
java.util.Set getPrincipals()
java.util.Set getPrincipals(java.lang.Class c)
java.util.Set getPrivateCredentials()
310 JBoss Administration and Development

The JBoss Security Extension Architecture
java.util.Set getPrivateCredentials(java.lang.Class c)
java.util.Set getPublicCredentials()
java.util.Set getPublicCredentials(java.lang.Class c)

For Subject identities and roles, JBossSX has selected the most natural choice: the principals sets
obtained via getPrincipals() and getPrincipals(java.lang.Class). The usage pat-
tern is as follows:

• User identities (username, social security number, employee ID, and so on) are stored as
java.security.Principal objects in the Subject Principals set. The Principal
implementation that represents the user identity must base comparisons and equality on the name
of the principal. A suitable implementation is available as the org.jboss.security.Sim-
plePrincipal class. Other Principal instances may be added to the Subject Principals
set as needed.
• The assigned user roles are also stored in the Principals set, but they are grouped in named
role sets using java.security.acl.Group instances. The Group interface defines a col-
lection of Principals and/or Groups, and is a subinterface of java.security.Princi-
pal. Any number of role sets can be assigned to a Subject. Currently, the JBossSX framework
uses two well-known role sets with the names "Roles" and "CallerPrincipal". The "Roles" Group
is the collection of Principals for the named roles as known in the application domain under
which the Subject has been authenticated. This role set is used by methods like the EJBCon-
text.isCallerInRole(String), which EJBs can use to see if the current caller belongs
to the named application domain role. The security interceptor logic that performs method per-
mission checks also uses this role set. The "CallerPrincipal" Group consists of the single Prin-
cipal identity assigned to the user in the application domain. The
EJBContext.getCallerPrincipal() method uses the "CallerPrincipal" to allow the
application domain to map from the operation environment identity to a user identity suitable for
the application. If a Subject does not have a "CallerPrincipal" Group, the application identity
is the same as operational environment identity.

Support for the Subject Usage Pattern
To simplify correct implementation of the Subject usage patterns described in the preceding sec-
tion, JBossSX includes two abstract login modules that handle the population of the authenticated
Subject with a template pattern that enforces correct Subject usage. The most generic of the two is the
org.jboss.security.auth.spi.AbstractServerLoginModule class. It provides a
concrete implementation of the javax.security.auth.spi.LoginModule interface and
offers abstract methods for the key tasks specific to an operation environment security infrastructure.
The key details of the class are highlighted in the following class fragment. The Javadoc comments
detail the responsibilities of subclasses.
package org.jboss.security.auth.spi;
/** This class implements the common functionality required for a
JAAS server-side LoginModule and implements the JBossSX standard
Subject usage pattern of storing identities and roles. Subclass
this module to create your own custom LoginModule and override the
login(), getRoleSets(), and getIdentity() methods.
*/
public abstract class AbstractServerLoginModule
 implements javax.security.auth.spi.LoginModule
JBoss Administration and Development 311

Security on JBoss - J2EE Security Configuration and Architecture
{
 protected Subject subject;
 protected CallbackHandler callbackHandler;
 protected Map sharedState;
 protected Map options;
 protected Logger log;
 /** Flag indicating if the shared credential should be used */
 protected boolean useFirstPass;
 /** Flag indicating if the login phase succeeded. Subclasses that override
 the login method must set this to true on successful completion of login
 */
 protected boolean loginOk;

 ...
 /**
 * Initialize the login module. This stores the subject, callbackHandler
 * and sharedState and options for the login session. Subclasses should
override
 * if they need to process their own options. A call to super.initialize(...)
 * must be made in the case of an override.
 * <p>
 * The options are checked for the password-stacking parameter.
 * If this is set to "useFirstPass", the login identity will be taken from the
 * <code>javax.security.auth.login.name</code> value of the sharedState map,
 * and the proof of identity from the
 * <code>javax.security.auth.login.password</code> value of the sharedState
map.
 *
 * @param subject the Subject to update after a successful login.
 * @param callbackHandler the CallbackHandler that will be used to obtain the
 * the user identity and credentials.
 * @param sharedState a Map shared between all configured login module
instances
 * @param options the parameters passed to the login module.
 */
 public void initialize(Subject subject,
 CallbackHandler callbackHandler,
 Map sharedState,
 Map options)
 {
 ...
 }

 /** Looks for javax.security.auth.login.name and
javax.security.auth.login.password
 values in the sharedState map if the useFirstPass option was true and returns
 true if they exist. If they do not or are null this method returns false.

 Note that subclasses that override the login method must set the loginOk
 ivar to true if the login succeeds in order for the commit phase to
 populate the Subject. This implementation sets loginOk to true if the
 login() method returns true, otherwise, it sets loginOk to false.
 */
 public boolean login() throws LoginException
 {
312 JBoss Administration and Development

The JBoss Security Extension Architecture
 ...
 }

 /** Overridden by subclasses to return the Principal that
 corresponds to the user primary identity.
 */
 abstract protected Principal getIdentity();

 /** Overridden by subclasses to return the Groups that
 correspond to the role sets assigned to the user. Subclasses
 should create at least a Group named "Roles" that contains
 the roles assigned to the user.
 A second common group is "CallerPrincipal," which provides
 the application identity of the user rather than the security
 domain identity.
 @return Group[] containing the sets of roles
 */
 abstract protected Group[] getRoleSets() throws LoginException;
}

One key change in JBoss-3.0.3 was the addition of the loginOk instance variable. This must be set to
true if the login succeeds, false otherwise by any subclasses that override the login method. Failure to
set this variable correctly will result in the commit method either not updating the Subject when it
should, or updating the Subject when it should not. Tracking the outcome of the login phase was
added to allow login module to be chained together with control flags that do not require that the
login module succeed in order for the overall login to succeed.

The second abstract base login module suitable for custom login modules is the
org.jboss.security.auth.spi.UsernamePasswordLoginModule. The login mod-
ule further simplifies custom login module implementation by enforcing a string-based username as
the user identity and a char[] password as the authentication credential. It also supports the map-
ping of anonymous users (indicated by a null username and password) to a Principal with no
roles. The key details of the class are highlighted in the following class fragment. The Javadoc com-
ments detail the responsibilities of subclasses.
package org.jboss.security.auth.spi;
/** An abstract subclass of AbstractServerLoginModule that imposes
 a an identity == String username, credentials == String password
 view on the login process. Subclasses override the
 getUsersPassword() and getUsersRoles() methods to return the
 expected password and roles for the user.
*/
public abstract class UsernamePasswordLoginModule
 extends AbstractServerLoginModule
{
 /** The login identity */
 private Principal identity;
 /** The proof of login identity */
 private char[] credential;
 /** The principal to use when a null username and password
 are seen */
 private Principal unauthenticatedIdentity;
 /** The message digest algorithm used to hash passwords. If null then
JBoss Administration and Development 313

Security on JBoss - J2EE Security Configuration and Architecture
 plain passwords will be used. */
 private String hashAlgorithm = null;
 /** The name of the charset/encoding to use when converting the password
 String to a byte array. Default is the platform's default encoding.
 */
 private String hashCharset = null;
 /** The string encoding format to use. Defaults to base64. */
 private String hashEncoding = null;

 ...

 /** Override the superclass method to look for an
 unauthenticatedIdentity property. This method first invokes
 the super version.
 @param options,
 @option unauthenticatedIdentity: the name of the principal
 to assign and authenticate when a null username and password
 are seen.
 */
 public void initialize(Subject subject,
 CallbackHandler callbackHandler,
 Map sharedState,
 Map options)
 {
 super.initialize(subject, callbackHandler, sharedState,
 options);
 // Check for unauthenticatedIdentity option.
 Object option = options.get("unauthenticatedIdentity");
 String name = (String) option;
 if(name != null)
 unauthenticatedIdentity = new SimplePrincipal(name);
 }

 ...

 /** A hook that allows subclasses to change the validation of
 the input password against the expected password. This version
 checks that neither inputPassword or expectedPassword are null
 and that inputPassword.equals(expectedPassword) is true;
 @return true if the inputPassword is valid, false otherwise.
 */
 protected boolean validatePassword(String inputPassword,
 String expectedPassword)
 {
 if(inputPassword == null || expectedPassword == null)
 return false;
 return inputPassword.equals(expectedPassword);
 }

 /** Get the expected password for the current username
 available via the getUsername() method. This is called from
 within the login() method after the CallbackHandler has
 returned the username and candidate password.
 @return the valid password String
 */
314 JBoss Administration and Development

The JBoss Security Extension Architecture
 abstract protected String getUsersPassword()
 throws LoginException;
}

The choice of subclassing the AbstractServerLoginModule versus UsernamePassword-
LoginModule is simply based on whether a String based username and String credential are
usable for the authentication technology you are writing the login module for. If the string based
semantic is valid, then subclass UsernamePasswordLoginModule, else subclass Abstract-
ServerLoginModule.

The steps you are required to perform when writing a custom login module are summerized in the fol-
lowing depending on which base login module class you choose. When writing a custom login mod-
ule that integrates with your security infrastructure, you should start by subclassing
AbstractServerLoginModule or UsernamePasswordLoginModule to ensure that your
login module provides the authenticated Principal information in the form expected by the
JBossSX security manager.

When subclassing the AbstractServerLoginModule, you need to override the following:

• void initialize(Subject, CallbackHandler, Map, Map); if you have
custom options to parse.
• boolean login(); to perform the authentication activity. Be sure to set the loginOk
instance variable to true if login succeeds, false if it fails.
• Principal getIdentity(); to return the Principal object for the user authenticated by
the log() step.
• Group[] getRoleSets(); to return at least one Group named "Roles" that contains the
roles assigned to the Principal authenticated during login(). A second common Group is named
"CallerPrincipal" and provides the user's application identity rather than the security domain iden-
tity.

When subclassing the UsernamePasswordLoginModule, you need to override the following:

• void initialize(Subject, CallbackHandler, Map, Map); if you have
custom options to parse.
• Group[] getRoleSets(); to return at least one Group named "Roles" that contains
the roles assigned to the Principal authenticated during login(). A second common
Group is named "CallerPrincipal" and provides the user's application identity rather than the
security domain identity.
• String getUsersPassword(); to return the expected password for the current user-
name available via the getUsername() method. The getUsersPassword() method is
called from within login() after the CallbackHandler returns the username and candidate
password.

A Custom LoginModule Example
In this section we will develop a custom login module example. It will extend the UsernamePass-
wordLoginModule and obtains a user’s password and role names from a JNDI lookup. The idea is
that there is a JNDI context that will return a user’s password if you perform a lookup on the context
JBoss Administration and Development 315

Security on JBoss - J2EE Security Configuration and Architecture
using a name of the form “password/<username>” where <username> is the current user being
authenticated. Similary, a lookup of the form “roles/<username>” returns the requested user’s roles.

The source code for the example is located in the src/main/org/jboss/chap8/ex2 directory of the book
examples. Listing 8-10 shows the source code for the JndiUserAndPass custom login module.
Note that because this extends the JBoss UsernamePasswordLoginModule, all the Jndi-
UserAndPass does is obtain the user’s password and roles from the JNDI store. The Jndi-
UserAndPass does not concern itself with the JAAS LoginModule operations.

LISTING 8-10. A JndiUserAndPass custom login module

package org.jboss.chap8.ex2;

import java.security.acl.Group;
import java.util.Map;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.security.auth.Subject;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.login.LoginException;

import org.jboss.security.SimpleGroup;
import org.jboss.security.SimplePrincipal;
import org.jboss.security.auth.spi.UsernamePasswordLoginModule;

/** An example custom login module that obtains passwords and roles for a user
from a JNDI lookup.

@author Scott.Stark@jboss.org
@version $Revision$
*/
public class JndiUserAndPass extends UsernamePasswordLoginModule
{
 /** The JNDI name to the context that handles the password/<username> lookup */
 private String userPathPrefix;
 /** The JNDI name to the context that handles the roles/<username> lookup */
 private String rolesPathPrefix;

 /** Override to obtain the userPathPrefix and rolesPathPrefix options.
 */
 public void initialize(Subject subject, CallbackHandler callbackHandler,
 Map sharedState, Map options)
 {
 super.initialize(subject, callbackHandler, sharedState, options);
 userPathPrefix = (String) options.get("userPathPrefix");
 rolesPathPrefix = (String) options.get("rolesPathPrefix");
 }

 /** Get the roles the current user belongs to by querying the
 rolesPathPrefix + '/' + super.getUsername() JNDI location.
 */
 protected Group[] getRoleSets() throws LoginException
 {
316 JBoss Administration and Development

The JBoss Security Extension Architecture
 try
 {
 InitialContext ctx = new InitialContext();
 String rolesPath = rolesPathPrefix + '/' + super.getUsername();
 String[] roles = (String[]) ctx.lookup(rolesPath);
 Group[] groups = {new SimpleGroup("Roles")};
 log.info("Getting roles for user="+super.getUsername());
 for(int r = 0; r < roles.length; r ++)
 {
 SimplePrincipal role = new SimplePrincipal(roles[r]);
 log.info("Found role="+roles[r]);
 groups[0].addMember(role);
 }
 return groups;
 }
 catch(NamingException e)
 {
 log.error("Failed to obtain groups for user="+super.getUsername(), e);
 throw new LoginException(e.toString(true));
 }
 }

 /** Get the password of the current user by querying the
 userPathPrefix + '/' + super.getUsername() JNDI location.
 */
 protected String getUsersPassword() throws LoginException
 {
 try
 {
 InitialContext ctx = new InitialContext();
 String userPath = userPathPrefix + '/' + super.getUsername();
 log.info("Getting password for user="+super.getUsername());
 String passwd = (String) ctx.lookup(userPath);
 log.info("Found password="+passwd);
 return passwd;
 }
 catch(NamingException e)
 {
 log.error("Failed to obtain password for user="+super.getUsername(), e);
 throw new LoginException(e.toString(true));
 }
 }

}

The details of the JNDI store are found in the org.jboss.chap8.ex2.service.JndiStore
MBean. This service binds an ObjectFactory that returns a javax.naming.Context proxy into
JNDI. The proxy handles lookup operations done against it by checking the prefix of the lookup name
against “password” and “roles”. When the name begins with “password”, a user’s password is being
requested. When the name begins with “roles” the user’s roles are being requested. The example
implementation always returns a password of “theduke” and an array of roles names equal to
{“TheDuke”, “Echo”} regardless of what the username is. You can experiment with other implemen-
tations as you wish.
JBoss Administration and Development 317

Security on JBoss - J2EE Security Configuration and Architecture
The example code includes a simple session bean for testing the custom login module. To build,
deploy and run the example, execute the following command from the examples directory. Make sure
you have the JBoss server running. The key lines from the client are given in Listing 8-11while the
server side operation of the is shown in Listing 8-12.

LISTING 8-11. The chap8-ex2 secured client access output

examples 940>ant -Dchap=8 -Dex=2 run-example
Buildfile: build.xml
...
run-example2:
 [copy] Copying 1 file to C:\tmp\JBoss\jboss-3.0.4\server\default\deploy
 [echo] Waiting for 5 seconds for deploy...
 [java] [INFO,ExClient] Login with username=jduke, password=theduke
 [java] [INFO,ExClient] Looking up EchoBean2
 [java] [INFO,ExClient] Created Echo
 [java] [INFO,ExClient] Echo.echo('Hello') = Hello

BUILD SUCCESSFUL

Total time: 12 seconds

LISTING 8-12. The chap8-ex2 server side behavior of the JndiUserAndPass

15:12:27,515 INFO [MainDeployer] Starting deployment of package: file:/C:/tmp/J
Boss/jboss-3.0.4/server/default/deploy/chap8-ex2.jar
15:12:27,835 INFO [SecurityConfig] Creating
15:12:27,835 INFO [SecurityConfig] Created
15:12:27,895 INFO [EjbModule] Creating
15:12:27,905 INFO [EjbModule] Deploying EchoBean2
15:12:27,925 INFO [EjbModule] Created
15:12:27,925 INFO [JndiStore] Start, bound security/store
15:12:27,925 INFO [SecurityConfig] Starting
15:12:27,925 INFO [SecurityConfig] Using JAAS AuthConfig: jar:file:/C:/tmp/JBos
s/jboss-3.0.4/server/default/tmp/deploy/server/default/deploy/chap8-ex2.jar/
61.c
hap8-ex2.jar-contents/chap8-ex2.sar!/META-INF/login-config.xml
15:12:27,935 INFO [SecurityConfig] Started
15:12:27,935 INFO [EjbModule] Starting
15:12:27,955 INFO [EjbModule] Started
15:12:27,955 INFO [MainDeployer] Deployed package: file:/C:/tmp/JBoss/jboss-3.0
.4/server/default/deploy/chap8-ex2.jar
15:12:32,181 INFO [JndiUserAndPass] Getting password for user=jduke
15:12:32,202 INFO [JndiStore] lookup, name=password/jduke
15:12:32,202 INFO [JndiUserAndPass] Found password=theduke
15:12:32,212 INFO [JndiStore] lookup, name=roles/jduke
15:12:32,212 INFO [JndiUserAndPass] Getting roles for user=jduke
15:12:32,212 INFO [JndiUserAndPass] Found role=TheDuke
15:12:32,212 INFO [JndiUserAndPass] Found role=Echo
318 JBoss Administration and Development

The Secure Remote Password (SRP) Protocol
The choice of using the JndiUserAndPass custom login module for the server side authentication
of the user is determined by the login configuration for the example security domain. The ejb-jar
META-INF/jboss.xml descriptor sets the security domain and the sar META-INF/login-config.xml
descriptor defines the login module configuration. The contents of these descriptors are shown in
Listing 8-13.

LISTING 8-13. The chap8-ex2 security domain and login module configuration

The chap8-ex2 jboss.xml descriptor security domain settings
<?xml version="1.0"?>
<jboss>
 <security-domain>java:/jaas/chap8-ex2</security-domain>
</jboss>

The login-config.xml configuration fragment for the chap8-ex2 application
 <application-policy name = "chap8-ex2">
 <authentication>
 <login-module code = "org.jboss.chap8.ex2.JndiUserAndPass"
 flag = "required">
 <module-option name = "userPathPrefix">/security/store/password</
module-option>
 <module-option name = "rolesPathPrefix">/security/store/roles</module-
option>
 </login-module>
 </authentication>
 </application-policy>

The Secure Remote Password (SRP)
Protocol
The SRP protocol is an implementation of a public key exchange handshake described in the Internet
standards working group request for comments 2945(RFC2945). The RFC2945 abstract states:

This document describes a cryptographically strong network authentication mecha-
nism known as the Secure Remote Password (SRP) protocol. This mechanism is suit-
able for negotiating secure connections using a user-supplied password, while
eliminating the security problems traditionally associated with reusable passwords.
This system also performs a secure key exchange in the process of authentication,
allowing security layers (privacy and/or integrity protection) to be enabled during the
session. Trusted key servers and certificate infrastructures are not required, and cli-
ents are not required to store or manage any long-term keys. SRP offers both security
and deployment advantages over existing challenge-response techniques, making it an
ideal drop-in replacement where secure password authentication is needed.
JBoss Administration and Development 319

Security on JBoss - J2EE Security Configuration and Architecture
Note: The complete RFC2945 specification can be obtained from http://www.rfc-edi-
tor.org/rfc.html. Additional information on the SRP algorithm and its history can be
found here: http://www-cs-students.stanford.edu/~tjw/srp/.

SRP is similar in concept and security to other public key exchange algorithms, such as Diffie-Hell-
man and RSA. SRP is based on simple string passwords in a way that does not require a clear text
password to exist on the server. This is in contrast to other public key-based algorithms that require
client certificates and the corresponding certificate management infrastructure.

Algorithms like Diffie-Hellman and RSA are known as public key exchange algorithms. The concept
of public key algorithms is that you have two keys, one public that is available to everyone, and one
that is private and known only to you. When someone wants to send encrypted information to you,
then encrpyt the information using your public key. Only you are able to decrypt the information
using your private key. Contrast this with the more traditional shared password based encryption
schemes that require the sender and receiver to know the shared password. Public key algorithms
eliminate the need to share passwords. For more information on public key algorithms as well as
numerous other cryptographic algorithms, see "Applied Cryptography, Second Edition" by Bruce
Schneier, ISBN 0-471-11709-9.

The JBossSX framework includes an implementation of SRP that consists of the following elements:

• An implementation of the SRP handshake protocol that is independent of any particular client/
server protocol
• An RMI implementation of the handshake protocol as the default client/server SRP imple-
mentation
• A client side JAAS LoginModule implementation that uses the RMI implementation for use
in authenticating clients in a secure fashion
• A JMX MBean for managing the RMI server implementation. The MBean allows the RMI
server implementation to be plugged into a JMX framework and externalizes the configuration of
the verification information store. It also establishes an authentication cache that is bound into the
JBoss server JNDI namespace.
• A server side JAAS LoginModule implementation that uses the authentication cache managed
by the SRP JMX MBean.

Figure 8-10 gives a diagram of the key components involved in the JBossSX implementation of the
SRP client/server framework.
320 JBoss Administration and Development

The Secure Remote Password (SRP) Protocol
FIGURE 8-10. The JBossSX components of the SRP client-server framework.

On the client side, SRP shows up as a custom JAAS LoginModule implementation that communi-
cates to the authentication server through an org.jboss.security.srp.SRPServerInterface proxy. A cli-
ent enables authentication using SRP by creating a login configuration entry that includes the
org.jboss.security.srp.jaas.SRPLoginModule. This module supports the following configuration
options:

• principalClassName: This option is no longer supported. The principal class is now always
org.jboss.security.srp.jaas.SRPPrincipal.
• srpServerJndiName: The JNDI name of the SRPServerInterface object to use for communi-
cating with the SRP authentication server. If both srpServerJndiName and srpServerRmiUrl
options are specified, the srpServerJndiName is tried before srpServerRmiUrl.
• srpServerRmiUrl: The RMI protocol URL string for the location of the SRPServerInterface
proxy to use for communicating with the SRP authentication server.
JBoss Administration and Development 321

Security on JBoss - J2EE Security Configuration and Architecture
• externalRandomA: A true/false flag indicating if the random component of the client public
key A should come from the user callback. This can be used to input a strong cyrptographic ran-
dom number coming from a hardware token for example.
• hasAuxChallenge: A true/false flag indicating an that a string will be sent to the server as an
additional challenge for the server to validate. If the client session supports an encryption cipher
then a temporary cipher will be created using the session private key and the challenge object sent
as a javax.crypto.SealedObject.
• multipleSessions: a true/false flag indicating if a given client may have multiple SRP login
sessions active simultaneously.

Any other options passed in that do not match one of the previous named options is treated as a JNDI
property to use for the environment passed to the IntialContext constructor. This is useful if the SRP
server interface is not available from the default IntialContext.

The SRPLoginModule needs to be configured along with the standard ClientLoginModule to
allow the SRP authentication credentials to be used for validation of access to security J2EE compo-
nents. An example login configuration entry that demonstrates such a setup is:
srp {
 org.jboss.security.srp.jaas.SRPLoginModule required

srpServerJndiName="SRPServerInterface"
;

 org.jboss.security.ClientLoginModule required
password-stacking="useFirstPass"
;

};

On the JBoss server side, there are two MBeans that manage the objects that collectively make up the
SRP server. The primary service is the org.jboss.security.srp.SRPService MBean, and
it is responsible for exposing an RMI accessible version of the SRPServerInterface as well as
updating the SRP authentication session cache. The configurable SRPService MBean attributes
include the following:

• JndiName: The JNDI name from which the SRPServerInterface proxy should be
available. This is the location where the SRPService binds the serializable dynamic proxy to
the SRPServerInterface. If not specified it defaults to "srp/SRPServerInterface".
• VerifierSourceJndiName: The JNDI name of the SRPVerifierSource implementation
that should be used by the SRPService. If not set it defaults to "srp/DefaultVerifierSource".
• AuthenticationCacheJndiName: The JNDI name under which the authentication
org.jboss.util.CachePolicy implementation to be used for caching authentication
information is bound. The SRP session cache is made available for use through this binding. If not
specified it defaults to "srp/AuthenticationCache".
• ServerPort: RMI port for the SRPRemoteServerInterface. If not specified it defaults
to 10099.
• ClientSocketFactory: An optional custom java.rmi.server.RMIClientSocket-
Factory implementation class name used during the export of the SRPServerInterface.
If not specified the default RMIClientSocketFactory is used.
322 JBoss Administration and Development

The Secure Remote Password (SRP) Protocol
• ServerSocketFactory: An optional custom java.rmi.server.RMIServerSocket-
Factory implementation class name used during the export of the SRPServerInterface.
If not specified the default RMIServerSocketFactory is used.
• AuthenticationCacheTimeout: Specifies the timed cache policy timeout in seconds. If not
specified this defaults to 1800 seconds(30 minutes).
• AuthenticationCacheResolution: Specifies the timed cache policy resolution in seconds.
This controls the interval between checks for timeouts. If not specified this defaults to 60 sec-
onds(1 minute).
• RequireAuxChallenge: Set if the client must supply an auxillary challenge as part of the ver-
ify phase. This gives control over whether the SRPLoginModule configuration used by the client
must have the useAuxChallenge option enabled.
• OverwriteSessions: A flag indicating if a successful user auth for an existing session should
overwrite the current session. This controls the behavior of the server SRP session cache when
clients have not enabled the multiple session per user mode. The default is false meaning that the
second attempt by a user to authentication will succeeed, but the resulting SRP session will not
overwrite the previous SRP session state.

The one input setting is the VerifierSourceJndiName attribute. This is the location of the SRP pass-
word information store implementation that must be provided and made available through JNDI. The
org.jboss.security.srp SRPVerifierStoreService is an example MBean service
that binds an implementation of the SRPVerifierStore interface that uses a file of serialized
objects as the persistent store. Although not realistic for a production environment, it does allow for
testing of the SRP protocol and provides an example of the requirements for an SRPVerifier-
Store service. The configurable SRPVerifierStoreService MBean attributes include the
following:

• JndiName: The JNDI name from which the SRPVerifierStore implementation should
be available. If not specified it defaults to "srp/DefaultVerifierSource ".
• StoreFile: The location of the user password verifier serialized object store file. This can be
either a URL or a resource name to be found in the classpath. If not specified it defaults to
"SRPVerifierStore.ser".

The SRPVerifierStoreService MBean also supports addUser and delUser operations for
addition and deletion of users. The signatures are:
public void addUser(String username, String password) throws IOException;
public void delUser(String username) throws IOException;

An example configuration of these services is presented in the section “The Secure Remote Password
(SRP) Protocol” on page 319.

Providing Password Information for SRP
The default implementation of the SRPVerifierStore interface is not likely to be suitable for
you production security environment as it requires all password hash information to be available as a
file of serialized objects. You need to provide an MBean service that provides an implementation of
JBoss Administration and Development 323

Security on JBoss - J2EE Security Configuration and Architecture
the SRPVerifierStore interface that integrates with your existing security information stores.
The SRPVerifierStore interface is shown in .

LISTING 8-14. The SRPVerifierStore interface

package org.jboss.security.srp;

import java.io.IOException;
import java.io.Serializable;
import java.security.KeyException;

public interface SRPVerifierStore
{
 public static class VerifierInfo implements Serializable
 {
 /** The username the information applies to. Perhaps redundant but it
 makes the object self contained.
 */
 public String username;
 /** The SRP password verifier hash */
 public byte[] verifier;
 /** The random password salt originally used to verify the password */
 public byte[] salt;
 /** The SRP algorithm primitive generator */
 public byte[] g;
 /** The algorithm safe-prime modulus */
 public byte[] N;
 }

 /** Get the indicated user's password verifier information.
 */
 public VerifierInfo getUserVerifier(String username)
 throws KeyException, IOException;
 /** Set the indicated users' password verifier information. This is equivalent
 to changing a user's password and should generally invalidate any existing
 SRP sessions and caches.
 */
 public void setUserVerifier(String username, VerifierInfo info)
 throws IOException;

 /** Verify an optional auxillary challenge sent from the client to the server.
 The auxChallenge object will have been decrypted if it was sent encrypted from
 the client. An example of a auxillary challenge would be the validation of a
 hardware token (SafeWord, SecureID, iButton) that the server validates to
 further strengthen the SRP password exchange.
 */
 public void verifyUserChallenge(String username, Object auxChallenge)
 throws SecurityException;
}

The primary function of a SRPVerifierStore implementation is to provide access to the
SRPVerifierStore.VerifierInfo object for a given username. The getUserVeri-
324 JBoss Administration and Development

The Secure Remote Password (SRP) Protocol
fier(String) method is called by the SRPService at that start of a user SRP session to obtain
the parameters needed by the SRP algorithm. The elements of the VerifierInfo objects are:

• username: The user’s name or id used to login.
• verifier: This is the one-way hash of the password or PIN the user enters as proof of their
identity. The org.jboss.security.Util class has a calculateVerifier method that
performs that password hashing algorithm. The output password H(salt | H(username | ':' | pass-
word)) as defined by RFC2945. Here H is the SHA secure hash function. The username is con-
verted from a string to a byte[] using the UTF-8 encoding.
• salt: This is a random number used to increase the difficulty of a brute force dictionary attack
on the verifier password database in the event that the database is compromised. It is a value that
should be generated from a cyrptographically strong random number algorithm when the user’s
existing clear-text password is hashed.
• g:The SRP algorithm primitive generator. In general this can be a well known fixed parameter
rather than a per-user setting. The org.jboss.security.srp.SRPConf utility class pro-
vides several settings for g including a good default which can obtained via SRPConf.getDe-
faultParams().g().
• N: The SRP algorithm safe-prime modulus . In general this can be a well known fixed param-
eter rather than a per-user setting. The org.jboss.security.srp.SRPConf utility class
provides several settings for N including a good default which can obtained via SRPConf.get-
DefaultParams().N().

So, step 1 of integrating your existing password store is the creation of a hashed version of the pass-
word information. If your passwords are already store in an irreversible hashed form, then this can
only be done on a per-user basis as part of an upgrade proceedure for example. Note that the set-
UserVerifier(String, VerifierInfo) method is not used by the current SRPSerivce
and may be implemented as noop method, or even one that throws an exception stating that the store
is read-only.

Step 2 is the creation of the custom SRPVerifierStore interface implementation that knows how
to obtain the VerifierInfo from the store you created in step 1. The verifyUserChal-
lenge(String, Object) method of the interface is only called if the client SRPLoginMod-
ule configuration specifies the hasAuxChallenge option. This can be used to integrate existing
hardware token based schemes like SafeWord or Radius into the SRP algorithm.

Step 3 is the creation of an MBean that makes the step 2 implementation of the SRPVerifier-
Store interface available via JNDI, and exposes any configurable parameters you need. In addition
to the default org.jboss.security.srp.SRPVerifierStoreService example, the SRP
example presented later in this chapter provides a Java properties file based SRPVerifierStore
implementation. Between the two examples you should have enough to integrate your security store.

Inside of the SRP algorithm
The appeal of the SRP algorithm is that is allows for mutual authentication of client and server using
simple text passwords without a secure communication channel. You might be wondering how this is
JBoss Administration and Development 325

Security on JBoss - J2EE Security Configuration and Architecture
done. Figure 8-11 presents a sequence diagram of the authentication protocol as implemented by
JBossSX.

FIGURE 8-11. The SRP client-server authentication algorithm sequence diagram.

The highlights of what is taking place for the key message exchanges presented in Figure 8-11 are as
follows. If you want the complete details and theory behind the algorithm, refer to the SRP references
mentioned in a note earlier. There are six steps that are performed to complete authentication:

1. The client side SRPLoginModule retrieves the SRPServerInterface instance for the
remote authentication server from the naming service.
2. The client side SRPLoginModule next requests the SRP parameters associated with the
username attempting the login. There are a number of parameters involved in the SRP algorithm
that must be chosen when the user password is first transformed into the verifier form used by the
SRP algorithm. Rather than hard-coding the parameters (which could be done with minimal secu-
rity risk), the JBossSX implementation allows a user to retrieve this information as part of the
326 JBoss Administration and Development

The Secure Remote Password (SRP) Protocol
exchange protocol. The getSRPParameters(username) call retrieves the SRP parameters
for the given username.
3. The client side SRPLoginModule begins an SRP session by creating an SRPClientSes-
sion object using the login username, clear-text password, and SRP parameters obtained from
step 2. The client then creates a random number A that will be used to build the private SRP ses-
sion key. The client then initializes the server side of the SRP session by invoking the SRPServ-
erInterface.init method and passes in the username and client generated random number
A. The server returns its own random number B. This step corresponds to the exchange of public
keys.
4. The client side SRPLoginModule obtains the private SRP session key that has been gener-
ated as a result of the previous messages exchanges. This is saved as a private credential in the
login Subject. The server challenge response M2 from step 4 is verified by invoking the SRP-
ClientSession.verify method. If this succeeds, mutual authentication of the client to
server, and server to client have been completed.The client side SRPLoginModule next creates
a challenge M1 to the server by invoking SRPClientSession.response method passing
the server random number B as an argument. This challenge is sent to the server via the SRPS-
erverInterface.verify method and server's response is saved as M2. This step corre-
sponds to an exchange of challenges. At this point the server has verified that the user is who they
say they are.
5. The client side SRPLoginModule saves the login username and M1 challenge into the
LoginModule sharedState Map. This is used as the Principal name and credentials by the
standard JBoss ClientLoginModule. The M1 challenge is used in place of the password as
proof of identity on any method invocations on J2EE components. The M1 challenge is a crypto-
graphically strong hash associated with the SRP session. Its interception via a third partly cannot
be used to obtain the user's password.
6. At the end of this authentication protocol, the SRPServerSession has been placed into
the SRPService authentication cache for subsequent use by the SRPCacheLoginModule

Although SRP has many interesting properties, it is still an evolving component in the JBossSX
framework and has some limitations of which you should be aware. Issues of note include the follow-
ing:

• Because of how JBoss detaches the method transport protocol from the component container
where authentication is performed, an unauthorized user could snoop the SRP M1 challenge and
effectively use the challenge to make requests as the associated username. Custom interceptors
that encrypt the challenge using the SRP session key can be used to prevent this issue.
• The SRPService maintains a cache of SRP sessions that time out after a configurable period.
Once they time out, any subsequent J2EE component access will fail because there is currently no
mechanism for transparently renegotiating the SRP authentication credentials. You must either set
the authentication cache timeout very long (up to 2,147,483,647 seconds, or approximately 68
years), or handle re-authentication in your code on failure.
• By default there can only be one SRP session for a given username. Because the negotiated
SRP session produces a private session key that can be used for encryption/decryption between
the client and server, the session is effectively a stateful one. Support for multiple SRP sessions
per user has been added as of JBoss-3.0.3, but you cannot encrypt data with one session key and
then decrypt it with another.
JBoss Administration and Development 327

Security on JBoss - J2EE Security Configuration and Architecture
To use end-to-end SRP authentication for J2EE component calls, you need to configure the security
domain under which the components are secured to use the org.jboss.secu-
rity.srp.jaas.SRPCacheLoginModule. The SRPCacheLoginModule has a single con-
figuration option named cacheJndiName that sets the JNDI location of the SRP authentication
CachePolicy instance. This must correspond to the AuthenticationCacheJndiName attribute value
of the SRPService MBean. The SRPCacheLoginModule authenticates user credentials by
obtaining the client challenge from the SRPServerSession object in the authentication cache and
comparing this to the challenge passed as the user credentials. Figure 8-12 illustrates the operation of
the SRPCacheLoginModule.login method implementation.

FIGURE 8-12. A sequence diagram illustrating the interaction of the SRPCacheLoginModule
with the SRP session cache.

An SRP example
We have covered quite a bit of material on SRP and now its time to demonstrate SRP in practice with
an example. The example demonstrates client side authentication of the user via SRP as well as sub-
sequent secured access to a simple EJB using the SRP session challenge as the user credential. The
test code deploys an ejb-jar that includes a sar for the configuration of the server side login module
configuration and SRP services. As in the previous examples we will dynamically install the server
side login module configuration using the SecurityConfig MBean. In this example we also use a
custom implementation of the SRPVerifierStore interface that uses an in memory store that is
seeded from a Java properties file rather than a serialized object store as used by the SRPVerifi-
erStoreService. This custom service is org.jboss.chap8.ex3.service.Proper-
328 JBoss Administration and Development

The Secure Remote Password (SRP) Protocol
tiesVerifierStore. Listing 8-15 shows the contents of the jar that contains the example EJB
and SRP services.

LISTING 8-15. The chap8-ex3 jar contents

examples 992>java -cp output/classes ListJar output/chap8/chap8-ex3.jar
output/chap8/chap8-ex3.jar
+- META-INF/MANIFEST.MF
+- META-INF/ejb-jar.xml
+- META-INF/jboss.xml
+- org/jboss/chap8/ex3/Echo.class
+- org/jboss/chap8/ex3/EchoBean.class
+- org/jboss/chap8/ex3/EchoHome.class
+- roles.properties
+- users.properties
+- chap8-ex3.sar (archive)
| +- META-INF/MANIFEST.MF
| +- META-INF/jboss-service.xml
| +- META-INF/login-config.xml
| +- org/jboss/chap8/ex3/service/PropertiesVerifierStore$1.class
| +- org/jboss/chap8/ex3/service/PropertiesVerifierStore.class
| +- org/jboss/chap8/ex3/service/PropertiesVerifierStoreMBean.class
| +- org/jboss/chap8/service/SecurityConfig.class
| +- org/jboss/chap8/service/SecurityConfigMBean.class

The key SRP related items in this example are the SRP MBean services configuration, and the SRP
login module configurations. The jboss-service.xml descriptor of the chap8-ex3.sar is given in
Listing 8-16, while Listing 8-17 gives the example client side and server side login module configu-
rations.

LISTING 8-16. The chap8-ex3.sar jboss-service.xml descriptor for the SRP services

<server>
 <!-- The custom JAAS login configuration that installs
 a Configuration capable of dynamically updating the
 config settings
 -->
 <mbean code="org.jboss.chap8.service.SecurityConfig"
 name="jboss.docs.chap8:service=LoginConfig-EX3">
 <attribute name="AuthConfig">META-INF/login-config.xml</attribute>
 <attribute name="SecurityConfigName">jboss.security:name=SecurityConfig</
attribute>
 </mbean>

 <!-- The SRP service that provides the SRP RMI server and server side
 authentication cache -->
 <mbean code="org.jboss.security.srp.SRPService"

 name="jboss.docs.chap8:service=SRPService">
 <attribute name="VerifierSourceJndiName">srp-test/chap8-ex3</attribute>
 <attribute name="JndiName">srp-test/SRPServerInterface</attribute>
JBoss Administration and Development 329

Security on JBoss - J2EE Security Configuration and Architecture
 <attribute name="AuthenticationCacheJndiName">srp-test/AuthenticationCache</
attribute>
 <attribute name="ServerPort">0</attribute>
 <depends>jboss.docs.chap8:service=PropertiesVerifierStore</depends>
 </mbean>

 <!-- The SRP store handler service that provides the user password verifier
 information -->
 <mbean code="org.jboss.chap8.ex3.service.PropertiesVerifierStore"

 name="jboss.docs.chap8:service=PropertiesVerifierStore">
 <attribute name="JndiName">srp-test/chap8-ex3</attribute>
 </mbean>
</server>

LISTING 8-17. The chap8-ex3 client side and server side SRP login module configurations

// Client side standard JAAS configuration fragment
srp {
 org.jboss.security.srp.jaas.SRPLoginModule required

srpServerJndiName="srp-test/SRPServerInterface"
;

 org.jboss.security.ClientLoginModule required
password-stacking="useFirstPass"
;

};

// Server side XMLLoginConfig configuration fragment
<application-policy name = "chap8-ex3">
 <authentication>
 <login-module code = "org.jboss.security.srp.jaas.SRPCacheLoginModule"
 flag = "required">
 <module-option name = "cacheJndiName">srp-test/AuthenticationCache</
module-option>
 </login-module>
 <login-module code = "org.jboss.security.auth.spi.UsersRolesLoginModule"
 flag = "required">
 <module-option name = "password-stacking">useFirstPass</module-option>
 </login-module>
 </authentication>
</application-policy>

The example services are the ServiceConfig and the PropertiesVerifierStore and
SRPService MBeans. Note that the JndiName attribute of the PropertiesVerifierStore is
equal to the VerifierSourceJndiName attribute of the SRPService, and that the SRPService
depends on the PropertiesVerifierStore. This is required because the SRPService needs
an implementation of the SRPVerifierStore interface for accessing user password verification
information.

The client side login module configuration of Listing 8-17 makes use of the SRPLoginModule
with a srpServerJndiName option value that corresponds to the JBoss server component SRPSer-
vice JndiName attribute value(“srp-test/SRPServerInterface”). Also needed is the ClientLog-
330 JBoss Administration and Development

The Secure Remote Password (SRP) Protocol
inModule configured with the password-stacking=“useFirstPass” value to propagate the user
authentication credentials generated by the SRPLoginModule to the EJB invocation layer.

There are two issues to note about the server side login module configuration. First, note the cacheJn-
diName=srp-test/AuthenticationCache configuration option tells the SRPCacheLoginModule the
location of the CachePolicy that contains the SRPServerSession for users who have authen-
ticated against the SRPService. This value corresponds to the SRPService Authentication-
CacheJndiName attribute value. Second, the configuration includes a UsersRolesLoginModule
with the password-stacking=useFirstPass configuration option. It is required to use a second login
module with the SRPCacheLoginModule because SRP is only an authentication technology. A
second login module needs to be configured that accepts the authentication credentials validated by
the SRPCacheLoginModule to set the principal's roles that determines the principal's permis-
sions. The UsersRolesLoginModule is augmenting the SRP authentication with properties file
based authorization. The user’s roles are coming the roles.properties file included in the EJB jar.

Now, run the example 3 client by executing the following command from the book examples direc-
tory:
examples 1177>ant -Dchap=8 -Dex=3 run-example
Buildfile: build.xml
...
run-example3:
 [copy] Copying 1 file to C:\tmp\JBoss\jboss-3.0.5\server\default\deploy
 [echo] Waiting for 5 seconds for deploy...
 [java] Logging in using the 'srp' configuration
 [java] Created Echo
 [java] Echo.echo()#1 = This is call 1
 [java] Echo.echo()#2 = This is call 2

In the examples/logs directory you will find a file called ex3-trace.log. This is a detailed trace of the
client side of the SRP algorithm. The traces show step-by-step the construction of the public keys,
challenges, session key and verification.

Note that the client has taken a long time to run relative to the other simple examples. The reason for
this is the construction of the client's public key. This involves the creation of a cryptographically
strong random number, and this process takes quite a bit of time the first time it occurs. If you were to
log out and log in again within the same VM, the process would be much faster. Also note that
"Echo.echo()#2" fails with an Authentication exception. The client code sleeps for 15 seconds after
making the first call to demonstrate the behavior of the SRPService cache expiration. The SRPS-
ervice cache policy timeout has been set to a mere 10 seconds to force this issue. As stated earlier,
you need to make the cache timeout very long, or handle re-authentication on failure.
JBoss Administration and Development 331

Security on JBoss - J2EE Security Configuration and Architecture
Running JBoss with a Java 2 security
manager
By default the JBoss server does not start with a Java 2 security manager. If you want to restrict priv-
ileges of code using Java 2 permissions you need to configure the JBoss server to run under a security
manager. This is done by configuring the Java VM options in the run.bat or run.sh scripts in the JBoss
server distribution bin directory. The two required VM options are as follows:

• java.security.manager: This is used without any value to specify that the default security
manager should be used. This is the preferred security manager. You can also pass a value to the
java.security.manager option to specify a custom security manager implementation. The value
must be the fully qualified class name of a subclass of java.lang.SecurityManager. This form
specifies that the policy file should augment the default security policy as configured by the VM
installation.

java.security.policy: This is used to specify the policy file that will augment the default security policy information
for the VM. This option takes two forms:
java.security.policy=policyFileURL java.security.policy==policyFileURL

The first form specifies that the policy file should augment the default security policy as configured by the VM instal-
lation. The second form specifies that only the indicated policy file should be used. The policyFileURL value can be
any URL for which a protocol handler exists, or a file path specification.

Listing 8-18 illustrates a fragment of the standard run.bat start script for Win32 that shows the addi-
tion of these two options to the command line used to start JBoss.

LISTING 8-18. The modifications to the Win32 run.bat start script to run JBoss with a Java 2
security manager.

...

set CONFIG=%1
@if "%CONFIG%" == "" set CONFIG=default
set PF=../conf/%CONFIG%/server.policy
set OPTS=-Djava.security.manager
set OPTS=%OPTS% -Djava.security.policy=%PF%
echo JBOSS_CLASSPATH=%JBOSS_CLASSPATH%
java %JAXP% %OPTS% -classpath "%JBOSS_CLASSPATH%" org.jboss.Main %*

Listing 8-19 shows a fragment of the standard run.sh start script for UNIX/Linux systems that shows
the addition of these two options to the command line used to start JBoss.

LISTING 8-19. The modifications to the UNIX/Linux run.sh start script to run JBoss with a Java
2 security manager.

...

CONFIG=$1
332 JBoss Administration and Development

Running JBoss with a Java 2 security manager
if ["$CONFIG" == ""]; then CONFIG=default; fi
PF=../conf/$CONFIG/server.policy
OPTS=-Djava.security.manager
OPTS="$OPTS -Djava.security.policy=$PF"
echo JBOSS_CLASSPATH=$JBOSS_CLASSPATH
java $HOTSPOT $JAXP $OPTS -classpath $JBOSS_CLASSPATH org.jboss.Main $@

Both start scripts are setting the security policy file to the server.policy file located in the JBoss con-
figuration file set directory that corresponds to the configuration name passed as the first argument to
the script. This allows one maintain a security policy per configuration file set without having to
modify the start script.

Enabling Java 2 security is the easy part. The difficult part of Java 2 security is establishing the
allowed permissions. If you look at the server.policy file that is contained in the default configuration
file set, you'll see that it contains the following permission grant statement:
grant {
 // Allow everything for now
 permission java.security.AllPermission;
};

This effectively disables security permission checking for all code as it says any code can do any-
thing, which is not a reasonable default. What is a reasonable set of permissions is entirely up to you.

The current set of JBoss specific java.lang.RuntimePermissions that are required include:

 To conclude this discussion, here is a little-known tidbit on debugging security policy settings. There
are various debugging flag that you can set to determine how the security manager is using your secu-

TABLE 8-1.

TargetName What the permission allows Risks
org.jboss.security.SecurityAsso-
ciation.getPrincipalInfo

Access to the org.jboss.security.Securit-
yAssociation getPrincipal() and getCre-
dentials() methods.

The ability to see the
current thread caller
and credentials.

org.jboss.security.SecurityAsso-
ciation.setPrincipalInfo

Access to the org.jboss.security.Securit-
yAssociation setPrincipal() and setCreden-
tials() methods.

The ability to set the
current thread caller
and credentials.

org.jboss.security.SecurityAsso-
ciation.setServer

Access to the org.jboss.security.Securit-
yAssociation setServer method.

The ability to enable
or disable multithread
storage of the caller
principal and creden-
tial.

org.jboss.security.SecurityAsso-
ciation.setRunAsRole

Access to the org.jboss.security.Securit-
yAssociation pushRunAsRole and popRu-
nAsRole methods.

The ability to change
the current caller run-
as role principal.
JBoss Administration and Development 333

Security on JBoss - J2EE Security Configuration and Architecture
rity policy file as well as what policy files are contributing permissions. Running the VM as follows
shows the possible debugging flag settings:
bin 1205>java -Djava.security.debug=help

all turn on all debugging
access print all checkPermission results
jar jar verification
policy loading and granting
scl permissions SecureClassLoader assigns

The following can be used with access:

stack include stack trace
domain dumps all domains in context
failure before throwing exception, dump stack
 and domain that didn't have permission

Running with -Djava.security.debug=all provides the most output, but the output volume is torrential.
This might be a good place to start if you don't understand a given security failure at all. A less ver-
bose setting that helps debug permission failures is to use -Djava.security.debug=access,failure. This
is still relatively verbose, but not nearly as bad as the all mode as the security domain information is
only displayed on access failures.

Using SSL with JBoss using JSSE
JBoss uses JSSE the Java Secure Socket Extension (JSSE) . JSSE is bundled with JBoss and it comes
with JDK 1.4. For more information on JSSE see: http://java.sun.com/products/jsse/index.html. A
simple test that you can use the JSSE as bundled with JBoss works is to run a program like the follow-
ing:
import java.net.*;
import javax.net.ServerSocketFactory;
import javax.net.ssl.*;

public class JSSE_install_check
{
 public static void main(String[] args) throws Exception
 {
 Security.addProvider(new com.sun.net.ssl.internal.ssl.Provider());
 ServerSocketFactory factory =
 SSLServerSocketFactory.getDefault();
 SSLServerSocket sslSocket = (SSLServerSocket)
 factory.createServerSocket(12345);

 String [] cipherSuites = sslSocket.getEnabledCipherSuites();
 for(int i = 0; i < cipherSuites.length; i++)
 {
 System.out.println("Cipher Suite " + i +
334 JBoss Administration and Development

http://java.sun.com/products/jsse/index.html

Using SSL with JBoss using JSSE
 " = " + cipherSuites[i]);
 }
 }
}

The book examples includes a testcase for this which can be run using the following command. This
will produce a lot of output as the -Djavax.net.debug=all option is passed to the VM.
examples 1052>java -version
java version "1.3.1_03"
Java(TM) 2 Runtime Environment, Standard Edition (build 1.3.1_03-b03)
Java HotSpot(TM) Client VM (build 1.3.1_03-b03, mixed mode)
examples 1053>ant -Dchap=8 -Dex=4a run-example
Buildfile: build.xml
...
run-example4a:
 [echo] Testing JSSE availablility
 [java] keyStore is :
 [java] keyStore type is : jks
 [java] init keystore
 [java] init keymanager of type SunX509
 [java] trustStore is:
D:\usr\local\Java\jdk1.3.1_03\jre\lib\security\cacerts
 [java] trustStore type is : jks
 [java] init truststore
...
 [java] trigger seeding of SecureRandom
 [java] done seeding SecureRandom
 [java] Cipher Suite 0 = SSL_DHE_DSS_WITH_DES_CBC_SHA
 [java] Cipher Suite 1 = SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA
 [java] Cipher Suite 2 = SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA
 [java] Cipher Suite 3 = SSL_RSA_WITH_RC4_128_MD5
 [java] Cipher Suite 4 = SSL_RSA_WITH_RC4_128_SHA
 [java] Cipher Suite 5 = SSL_RSA_WITH_DES_CBC_SHA
 [java] Cipher Suite 6 = SSL_RSA_WITH_3DES_EDE_CBC_SHA
 [java] Cipher Suite 7 = SSL_RSA_EXPORT_WITH_RC4_40_MD5

The JSSE jars include the jcert.jar, jnet.jar and jsse.jar in the JBOSS_DIST/client directory.

Once you have tested that JSSE runs, you need a public key/private key pair in the form of an X509
certificate for use by the SSL server sockets. For the purpose of this example we have created a self-
signed certificate using the JDK 1.3 keytool and included the resulting keystore file in the chap8
source directory as chap8.keystore. It was created using the following command and input:
examples 1121>keytool -genkey -alias rmi+ssl -keyalg RSA
 -keystore chap8.keystore -validity 3650
Enter keystore password: rmi+ssl
What is your first and last name?
 [Unknown]: Chapter8 SSL Example
What is the name of your organizational unit?
 [Unknown]: JBoss Book
What is the name of your organization?
 [Unknown]: JBoss Group, LLC
JBoss Administration and Development 335

Security on JBoss - J2EE Security Configuration and Architecture
What is the name of your City or Locality?
 [Unknown]: Issaquah
What is the name of your State or Province?
 [Unknown]: WA
What is the two-letter country code for this unit?
 [Unknown]: US
Is <CN=Chapter8 SSL Example, OU=JBoss Book, O="JBoss Group, LLC", L=Issaquah, ST
 [no]: yes=WA, C=US> correct?

Enter key password for <rmi+ssl>
 (RETURN if same as keystore password):

This produces a keystore file called chap8.keystore. A keystore is a database of security keys. There
are two different types of entries in a keystore:

• key entries: each entry holds very sensitive cryptographic key information, which is stored in
a protected format to prevent unauthorized access. Typically, a key stored in this type of entry is a
secret key, or a private key accompanied by the certificate "chain" for the corresponding public
key. The keytool and jarsigner tools only handle the later type of entry, that is private keys and
their associated certificate chains.
• trusted certificate entries: each entry contains a single public key certificate belonging to
another party. It is called a "trusted certificate" because the keystore owner trusts that the public
key in the certificate indeed belongs to the identity identified by the "subject" (owner) of the cer-
tificate. The issuer of the certificate vouches for this, by signing the certificate.

Listing the src/main/org/jboss/chap8/chap8.keystore examples file contents using the keytool shows
one self-signed certificate:
bin 1054>keytool -list -v -keystore src/main/org/jboss/chap8/chap8.keystore
Enter keystore password: rmi+ssl

Keystore type: jks
Keystore provider: SUN

Your keystore contains 1 entry:

Alias name: rmi+ssl
Creation date: Thu Nov 08 19:50:23 PST 2001
Entry type: keyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=Chapter8 SSL Example, OU=JBoss Book, O="JBoss Group, LLC",
 L=Issaquah, ST=WA, C=US
Issuer: CN=Chapter8 SSL Example, OU=JBoss Book, O="JBoss Group, LLC",
 L=Issaquah, ST=WA, C=US
Serial number: 3beb5271
Valid from: Thu Nov 08 19:50:09 PST 2001 until: Sun Nov 06
 19:50:09 PST 2011
Certificate fingerprints:
 MD5: F6:1B:2B:E9:A5:23:E7:22:B2:18:6F:3F:9F:E7:38:AE
 SHA1: F2:20:50:36:97:86:52:89:71:48:A2:C3:06:C8:F9:2D:F7:79:00:36

336 JBoss Administration and Development

Using SSL with JBoss using JSSE

With JSSE working and a keystore with the certificate you will use for the JBoss server, your are
ready to configure JBoss to use SSL for EJB access. This is done by configuring the EJB invoker
RMI socket factories. The JBossSX framework includes implementations of the
java.rmi.server.RMIServerSocketFactory and java.rmi.server.RMIClient-
SocketFactory interfaces that enable the use of RMI over SSL encrypted sockets. The imple-
mentation classes are org.jboss.security.ssl.RMISSLServerSocketFactory and
org.jboss.security.ssl.RMISSLClientSocketFactory respectively. There are two
steps to enable the use of SSL for RMI access to EJBs. The first is to enable the use of a keystore as
the database for the SSL server certificate, which is done by configuring an org.jboss.secu-
rity.plugins.JaasSecurityDomain MBean. The jboss-service.xml descriptor in the
chap8/ex4 directory includes the JaasSecurityDomain definition shown in Listing 8-20.

LISTING 8-20. A sample JaasSecurityDomain config for RMI/SSL

 <!-- The SSL domain setup -->
 <mbean code="org.jboss.security.plugins.JaasSecurityDomain"
 name="jboss.security:service=JaasSecurityDomain,domain=RMI+SSL">
 <constructor>
 <arg type="java.lang.String" value="RMI+SSL"/>
 </constructor>
 <attribute name="KeyStoreURL">chap8.keystore</attribute>
 <attribute name="KeyStorePass">rmi+ssl</attribute>
 </mbean>

The JaasSecurityDomain is a subclass of the standard JaasSecurityManager class that
adds the notions of a keystore as well JSSE KeyManagerFactory and TrustManagerFactory access. It
extends the basic security manager to allow support for SSL and other cryptographic operations that
require security keys. This configuration simply loads the chap8.keystore from the example 4 MBean
sar using the indicated password.

The second step is to define an EJB invoker configuration that uses the JBossSX RMI socket factories
that support SSL. To do this you need to define a custom configuration for the JRMPInvoker we
saw in Chapter “EJBs on JBoss - The EJB Container Configuration and Architecture” on page 167 ,
as well as an EJB setup that makes use of this invoker. The configuration required to enable RMI over
SSL access to stateless session bean is provided for you in Listing 8-21. The top of the listing shows
the jboss-service.xml descriptor that defines the custom JRMPInovker, and the bottom shows the
example 4 “EchoBean4” configuration needed to use the SSL invoker. You will use this configuration
in a stateless session bean example.

LISTING 8-21. The jboss-service.xml and jboss.xml configurations to enable SSL with the
example 4 stateless session bean.

// The jboss-service.xml SSL JRMPInvoker MBean Configuration
 <mbean code="org.jboss.invocation.jrmp.server.JRMPInvoker"
 name="jboss:service=invoker,type=jrmp,socketType=SSL">
 <attribute name="RMIObjectPort">4445</attribute>
JBoss Administration and Development 337

Security on JBoss - J2EE Security Configuration and Architecture
 <attribute name="RMIClientSocketFactory">
 org.jboss.security.ssl.RMISSLClientSocketFactory
 </attribute>
 <attribute name="RMIServerSocketFactory">
 org.jboss.security.ssl.RMISSLServerSocketFactory
 </attribute>
 <attribute name="SecurityDomain">java:/jaas/RMI+SSL</attribute>
 <depends>jboss.security:service=JaasSecurityDomain,domain=RMI+SSL</depends>
 </mbean>

// The jboss.xml session bean configuration to use the SSL invoker
<?xml version="1.0"?>
<jboss>
 <enterprise-beans>
 <session>
 <ejb-name>EchoBean4</ejb-name>
 <configuration-name>Standard Stateless SessionBean</configuration-name>
 <home-invoker>jboss:service=invoker,type=jrmp,socketType=SSL
 </home-invoker>
 <bean-invoker>jboss:service=invoker,type=jrmp,socketType=SSL
 </bean-invoker>
 </session>
 </enterprise-beans>
</jboss>

The example 4 code is located under the src/main/org/jboss/chap8/ex4 directory of the book exam-
ples. This is another simple stateless session bean with an echo method that returns its input argu-
ment. It is hard to tell when SSL is in use unless it fails, so we'll run the example 4 client in two
different ways to demonstrate that the EJB deployment is in fact using SSL. Start the JBoss server
using the default configuration and then run example 4b as follows:
examples 514>ant -Dchap=8 -Dex=4b run-example
Buildfile: build.xml
...
run-example4b:
 [copy] Copying 1 file to C:\tmp\JBoss\jboss-3.0.5RC2\server\chap3\deploy
 [echo] Waiting for 15 seconds for deploy...
 [java] java.rmi.MarshalException: Error marshaling transport header; nested
exception is:
 [java] javax.net.ssl.SSLException: untrusted server cert chain
 [java] javax.net.ssl.SSLException: untrusted server cert chain
 [java] at com.sun.net.ssl.internal.ssl.SSLSocketImpl.a(DashoA6275)
 [java] at com.sun.net.ssl.internal.ssl.ClientHandshaker.a(DashoA6275)
 [java] at
com.sun.net.ssl.internal.ssl.ClientHandshaker.processMessage(DashoA6275)
 [java] at
com.sun.net.ssl.internal.ssl.Handshaker.process_record(DashoA6275)
 [java] at com.sun.net.ssl.internal.ssl.SSLSocketImpl.a(DashoA6275)
 [java] at com.sun.net.ssl.internal.ssl.SSLSocketImpl.a(DashoA6275)
 [java] at
com.sun.net.ssl.internal.ssl.AppOutputStream.write(DashoA6275)
 [java] at
java.io.BufferedOutputStream.flushBuffer(BufferedOutputStream.java:67)
338 JBoss Administration and Development

Using SSL with JBoss using JSSE
 [java] at
java.io.BufferedOutputStream.flush(BufferedOutputStream.java:125)
 [java] at java.io.DataOutputStream.flush(DataOutputStream.java:99)
 [java] at
sun.rmi.transport.tcp.TCPChannel.createConnection(TCPChannel.java:198)
 [java] at
sun.rmi.transport.tcp.TCPChannel.newConnection(TCPChannel.java:169)
 [java] at sun.rmi.server.UnicastRef.invoke(UnicastRef.java:78)
 [java] at
org.jboss.invocation.jrmp.server.JRMPInvoker_Stub.invoke(Unknown Source)
 [java] at
org.jboss.invocation.jrmp.interfaces.JRMPInvokerProxy.invoke(JRMPInvokerProxy.j
ava:138)
 [java] at
org.jboss.invocation.InvokerInterceptor.invoke(InvokerInterceptor.java:108)
 [java] at
org.jboss.proxy.TransactionInterceptor.invoke(TransactionInterceptor.java:77)
 [java] at
org.jboss.proxy.SecurityInterceptor.invoke(SecurityInterceptor.java:80)
 [java] at
org.jboss.proxy.ejb.HomeInterceptor.invoke(HomeInterceptor.java:198)
 [java] at
org.jboss.proxy.ClientContainer.invoke(ClientContainer.java:76)
 [java] at $Proxy0.create(Unknown Source)
 [java] at org.jboss.chap8.ex4.ExClient.main(ExClient.java:31)
 [java] Exception in thread "main"
 [java] Java Result: 1

BUILD SUCCESSFUL
Total time: 23 seconds

The resulting exception is expected, and is the purpose of the 4b version of the example. Note that the
exception stack trace has been edited to fit into the book format, so expect some difference. The key
item to notice about the exception is it clearly shows you are using the Sun JSSE classes to communi-
cate with the JBoss EJB container. The exception is saying that the self-signed certificate you are
using as the JBoss server certificate cannot be validated as signed by any of the default certificate
authorities. This is expected because the default certificate authority keystore that ships with the JSSE
package only includes well known certificate authorities such as VeriSign, Thawte, and RSA Data
Security. To get the EJB client to accept your self-signed certificate as valid, you need to tell the JSSE
classes to use your chap8.keystore as its truststore. A truststore is just a keystore that contains public
key certificates used to sign other certificates. To do this, run example 4 using -Dex=4 rather than -
Dex=4b to pass the location of the correct truststore using the javax.net.ssl.trustStore system prop-
erty:
examples 516>ant -Dchap=8 -Dex=4 run-example
Buildfile: build.xml
...
run-example4:
 [copy] Copying 1 file to C:\tmp\JBoss\jboss-3.0.5RC2\server\chap3\deploy
 [echo] Waiting for 5 seconds for deploy...
 [java] 0 [Thread-0] DEBUG org.jboss.security.ssl.RMISSLClientSocketFactory
 - SSL handshakeCompleted, cipher=SSL_RSA_WITH_RC4_128_SHA, peerHost=172.17.66.5
5

JBoss Administration and Development 339

Security on JBoss - J2EE Security Configuration and Architecture
 [java] Created Echo
 [java] Echo.echo()#1 = This is call 1

BUILD SUCCESSFUL
Total time: 15 seconds

This time the only indication that an SSL socket is involved is because of the "SSL handshakeCom-
pleted" message. This is coming from the RMISSLClientSocketFactory class as a debug level
log message. If you did not have the client configured to print out log4j debug level messages, there
would be no direct indication that SSL was involved. If you note the run times and the load on your
system CPU, there definitely is a difference. SSL, like SRP, involves the use of cryptographically
strong random numbers that take time to seed the first time they are used. This shows up as high CPU
utilization and start up times.

One consequence of this is that if you are running on a system that is slower than the one used to run
the examples for the book, such as when running example 4b, you may seen an exception similar to
the following:
javax.naming.NameNotFoundException: EchoBean not bound
 at sun.rmi.transport.StreamRemoteCall.exceptionReceivedFromServer
 at sun.rmi.transport.StreamRemoteCall.executeCall
 at sun.rmi.server.UnicastRef.invoke
 at org.jnp.server.NamingServer_Stub.lookup
 at org.jnp.interfaces.NamingContext.lookup
 at org.jnp.interfaces.NamingContext.lookup
 at javax.naming.InitialContext.lookup
 at org.jboss.chap8.ex3.ExClient.main(ExClient.java:23)
Exception in thread "main"
Java Result: 1

The problem is that the JBoss server has not finished deploying the example EJB in the time the client
allowed. This is due to the initial setup time of the secure random number generator used by the SSL
server socket. If you see this issue, simply rerun the example again or increase the deployment wait
time in the chap8 build.xml Ant script.
340 JBoss Administration and Development

CHAPTER 9 Integrating Servlet Containers
This chapter describes the steps for integrating a third party Web container into the JBoss application
server framework. A Web container is a J2EE server component that enables access to servlets and
JSP pages. Example servlet containers include Tomcat and Jetty.

Integrating a servlet container into JBoss consists of mapping web-app.xml JNDI information into the
JBoss JNDI namespace using an optional jboss-web.xml descriptor as well as delegating authentica-
tion and authorization to the JBoss security layer. The org.jboss.web.AbstractWebCon-
tainer class exists to simplify these tasks. The focus of the first part of this chapter is how to
integrate a Web container using the AbstractWebContainer class. The chapter concludes with a
discussion on how to configure the use of secure socket layer (SSL) encryption with the JBoss/Tom-
cat bundle, as well as how to configure Apache with the JBoss/Tomcat bundle.

The AbstractWebContainer Class
The org.jboss.web.AbstractWebContainer class is an implementation of a template pat-
tern for web container integration into JBoss. Web container providers wishing to integrate their con-
tainer into a JBoss server should create a subclass of AbstractWebContainer and provide the
web container specific setup and war deployment steps. The AbstractWebContainer provides
support for parsing the standard J2EE web.xml web application deployment descriptor JNDI and
security elements as well as support for parsing the JBoss specific jboss-web.xml descriptor. Parsing
of these deployment descriptors is performed to generate an integrated JNDI environment and secu-
rity context. We have already seen the most of the elements of the jboss-web.xml descriptor in other
chapters. Figure 9-1 provides a complete view of the jboss-web.xml descriptor DTD for reference.
The complete DTD with comments can be found in xxx.
JBoss Administration and Development 341

Integrating Servlet Containers
FIGURE 9-1. The complete jboss-web.xml descriptor DTD.

The two elements that have not been discussed are the context-root and virtual-host. The context-root
element allows one to specify the prefix under which web application is located. This is only applica-
ble to stand-alone web application deployment as a WAR file. Web applications included as part of an
EAR must set the root using the context-root element of the EAR application.xml descriptor. The vir-
tual-host element specifies the DNS name of the virtual host to which the web application should be
deployed. The details of setting up virtual hosts for servlet contexts depends on the particular servlet
container. We will look at examples of using the virtual-host element when we look at the Tomcat and
Jetty servlet containers later in this chapter.

The AbstractWebContainer Contract
The AbstractWebContainer is an abstract class that implements the
org.jboss.web.AbstractWebContainerMBean interface used by the JBoss J2EE deployer
to delegate the task of installing war files needing to be deployed. Listing 9-1 presents some of the
key AbstractWebContainer methods.

LISTING 9-1. Key methods of the AbstractWebContainer class.

160:public abstract class AbstractWebContainer
161: extends SubDeployerSupport
162: implements AbstractWebContainerMBean
342 JBoss Administration and Development

The AbstractWebContainer Class
163:{
164: public static interface WebDescriptorParser
165: {
186: public void parseWebAppDescriptors(ClassLoader loader, WebMetaData
metaData) throws Exception;
187: }
197: public boolean accepts(DeploymentInfo sdi)
198: {
199: String warFile = sdi.url.getFile();
200: return warFile.endsWith("war") || warFile.endsWith("war/");
201: }
270: public synchronized void start(DeploymentInfo di) throws
DeploymentException
271: {
272: Thread thread = Thread.currentThread();
273: ClassLoader appClassLoader = thread.getContextClassLoader();
274: try
275: {
276: // Create a classloader for the war to ensure a unique ENC
277: URL[] empty = {};
278: URLClassLoader warLoader = URLClassLoader.newInstance(empty, di.ucl);
279: thread.setContextClassLoader(warLoader);
280: WebDescriptorParser webAppParser = new DescriptorParser(di);
281: String webContext = di.webContext;
282: if(webContext != null)
283: {
284: if(webContext.length() > 0 && webContext.charAt(0) != '/')
285: webContext = "/" + webContext;
286: }
287: // Get the war URL
288: URL warURL = di.localUrl != null ? di.localUrl : di.url;
290: if (log.isDebugEnabled())
291: {
292: log.debug("webContext: " + webContext);
293: log.debug("warURL: " + warURL);
294: log.debug("webAppParser: " + webAppParser);
295: }
297: // Parse the web.xml and jboss-web.xml descriptors
298: WebMetaData metaData = parseMetaData(webContext, warURL);
299: WebApplication warInfo = new WebApplication(metaData);
300: performDeploy(warInfo, warURL.toString(), webAppParser);
301: deploymentMap.put(warURL.toString(), warInfo);
302: }
311: finally
312: {
313: thread.setContextClassLoader(appClassLoader);
314: }
315: }
330: protected abstract void performDeploy(WebApplication webApp, String
warUrl,
331: WebDescriptorParser webAppParser) throws Exception;
338: public synchronized void stop(DeploymentInfo di)
339: throws DeploymentException
340: {
341: String warUrl = di.localUrl.toString();
JBoss Administration and Development 343

Integrating Servlet Containers
342: try
343: {
344: performUndeploy(warUrl);
345: // Remove the web application ENC...
346: deploymentMap.remove(warUrl);
347: }
352: catch(Exception e)
353: {
354: throw new DeploymentException("Error during deploy", e);
355: }
356: }
365: protected abstract void performUndeploy(String warUrl) throws Exception;
366:
405: public void setConfig(Element config)
406: {
407: }
416: protected void parseWebAppDescriptors(DeploymentInfo di, ClassLoader
loader,
418: throws Exception417: WebMetaData metaData)
419: {
421: InitialContext iniCtx = new InitialContext();
422: Context envCtx = null;
423: ClassLoader currentLoader =
Thread.currentThread().getContextClassLoader();
424: try
425: {
426: // Create a java:comp/env environment unique for the web application
434: Thread.currentThread().setContextClassLoader(loader);
435: envCtx = (Context) iniCtx.lookup("java:comp");
437: // Add a link to the global transaction manager
438: envCtx.bind("UserTransaction", new LinkRef("UserTransaction"));
440: envCtx = envCtx.createSubcontext("env");
441: }
442: finally
443: {
444: Thread.currentThread().setContextClassLoader(currentLoader);
445: }
446:
447: Iterator envEntries = metaData.getEnvironmentEntries();
449: addEnvEntries(envEntries, envCtx);
450: Iterator resourceEnvRefs = metaData.getResourceEnvReferences();
452: linkResourceEnvRefs(resourceEnvRefs, envCtx);
453: Iterator resourceRefs = metaData.getResourceReferences();
455: linkResourceRefs(resourceRefs, envCtx);
456: Iterator ejbRefs = metaData.getEjbReferences();
458: linkEjbRefs(ejbRefs, envCtx, di);
459: Iterator ejbLocalRefs = metaData.getEjbLocalReferences();
461: linkEjbLocalRefs(ejbLocalRefs, envCtx, di);
462: String securityDomain = metaData.getSecurityDomain();
464: linkSecurityDomain(securityDomain, envCtx);
466: }
468: protected void addEnvEntries(Iterator envEntries, Context envCtx)
469: throws ClassNotFoundException, NamingException
470: {
479: }
344 JBoss Administration and Development

The AbstractWebContainer Class
480:
481: protected void linkResourceEnvRefs(Iterator resourceEnvRefs, Context
envCtx)
482: throws NamingException
483: {
510: }
512: protected void linkResourceRefs(Iterator resourceRefs, Context envCtx)
513: throws NamingException
514: {
539: }
619: protected void linkEjbRefs(Iterator ejbRefs, Context envCtx,
DeploymentInfo di)
620: throws NamingException
621: {
638: }
640: protected void linkEjbLocalRefs(Iterator ejbRefs, Context envCtx,
DeploymentInfo di)
641: throws NamingException
642: {
655: }
666: protected void linkSecurityDomain(String securityDomain, Context envCtx)
667: throws NamingException
668: {
686: }
732: public String[] getCompileClasspath(ClassLoader loader)
733: {
764: }
947:}

Lines 197-201 correspond to the accepts method implemented by JBoss deployers to indicate
which type of deployments they accepts. The AbstractWebContainer handles the deployments of
WARs as jars or unpacked directories.

Lines 15-38 correspond to the start method. This method is a template pattern method implemen-
tation. The argument to the deploy method is the WAR deployment info object. This contains the
URL to the WAR, the UnifiedClassLoader for the WAR, the parent archive such as an EAR,
and the J2EE application.xml context-root if the WAR is part of an EAR.

The first step of the start method is to save the current thread context ClassLoader and then
create another URLClassCloader (warLoader) using the WAR UnifiedClassLoader as its
parent. This warLoader is used to ensure a unique JNDI ENC (enterprise naming context) for the
WAR will be created. This is done by the code on lines 277-278. Chapter 3 mentioned that the
java:comp context's uniqueness was determined by the ClassLoader that created the java:comp
context. The warLoader ClassLoader is set as the current thread context ClassLoader, on line
279, before the performDeploy call is made. Next, the web.xml and jboss-web.xml descriptors
are parsed by calling parseMetaData on line 298. Next, the Web container-specific subclass is
asked to perform the actual deployment of the WAR through the performDeploy call on line 300.
The WebApplication object for this deployment is stored in the deployed application map using
the warUrl as the key on line 301. The final step at line 313 is to restore the thread context Class-
Loader to the one that existed at the start of the method.
JBoss Administration and Development 345

Integrating Servlet Containers
Lines 330-331 give the signature for the abstract performDeploy method. This method is called
by the start method and must be overridden by subclasses to perform the Web container specific
deployment steps. A WebApplication is provided as an argument, and this contains the metadata
from the web.xml descriptor, and the jboss-web.xml descriptor. The metadata contains the context-
root value for the web module from the J2EE application.xml descriptor, or if this is a stand-alone
deployment, the jboss-web.xml descriptor. The metadata also contains any jboss-web.xml descriptor
virtual-host value. On return from performDeploy, the WebApplication must be populated
with the ClassLoader of the servlet context for the deployment. The warUrl argument is the
string for the URL of the Web application WAR to deploy. The webAppParser argument is a callback
handle the subclass must use to invoke the parseWebAppDescriptors method to set up the Web
application JNDI environment. This callback provides a hook for the subclass to establish the Web
application JNDI environment before any servlets are created that are to be loaded on startup of the
WAR. A subclass' performDeploy method implementation needs to be arranged so that it can call
the parseWebAppDescriptors before starting any servlets that need to access JNDI for JBoss
resources like EJBs, resource factories, and so on. One important setup detail that needs to be handled
by a subclass implementation is to use the current thread context ClassLoader as the parent
ClassLoader for any Web container-specific ClassLoader created. Failure to do this results in
problems for Web applications that attempt to access EJBs or JBoss resources through the JNDI ENC.

Lines 338-356 correspond to the stop method. This is a template pattern method implementation.
Line 344 of this method calls the subclass performUndeploy method to perform the container-
specific undeployment steps. Next, at line 346, the warUrl is unregistered from the deployment map.
The warUrl argument is the string URL of the WAR as originally passed to the performDeploy
method.

Line 365 gives the signature of the abstract performUndeploy method. This method is called as
part of the stop method template as shown on line 344. A call to performUndeploy asks the sub-
class to perform the Web container-specific undeployment steps.

Lines 405-407 correspond to the setConfig method. This method is a stub method that subclasses
can override if they want to support an arbitrary extended configuration beyond that which is possible
through MBean attributes. The config argument is the parent DOM element for an arbitrary hierar-
chy given by the child element of the Config attribute in the mbean element specification of the jboss-
service.xml descriptor of the web container service. You'll see an example use of this method and
config value when you look at the MBean that supports embedding Tomcat into JBoss.

Lines 416- 466 correspond to the parseWebAppDescriptors method. This is invoked from
within the subclass performDeploy method when it invokes the webAppParser.parseWe-
bAppDescriptors callback to setup Web application ENC (java:comp/env) env-entry, resource-
env-ref, resource-ref, local-ejb-ref and ejb-ref element values declared in the web.xml descriptor. The
creation of the env-entry values does not require a jboss-web.xml descriptor. The creation of the
resource-env-ref, resource-ref, and ejb-ref elements does require a jboss-web.xml descriptor for the
JNDI name of the deployed resources/EJBs. Because the ENC context is private to the Web applica-
tion, the Web application ClassLoader is used to identify the ENC. The loader argument is the
ClassLoader for the Web application, and may not be null. The metaData argument is the Web-
MetaData argument passed to the subclass performDeploy method. The implementation of the
346 JBoss Administration and Development

The AbstractWebContainer Class
parseWebAppDescriptors uses the metadata information from the WAR deployment descrip-
tors and then creates the JNDI ENC bindings by calling methods shown on lines 447-464.

The addEnvEntries method on lines 468-479 creates the java:comp/env Web application env-
entry bindings that were specified in the web.xml descriptor.

The linkResourceEnvRefs method on lines 481-510 maps the java:comp/env/xxx Web applica-
tion JNDI ENC resource-env-ref web.xml descriptor elements onto the deployed JNDI names using
the mappings specified in the jboss-web.xml descriptor.

The linkResourceRefs method on lines 512-539 maps the java:comp/env/xxx Web application
JNDI ENC resource-ref web.xml descriptor elements onto the deployed JNDI names using the map-
pings specified in the jboss-web.xml descriptor.

The linkEjbRefs method on lines 619-638 maps the java:comp/env/ejb Web application JNDI
ENC ejb-ref web.xml descriptor elements onto the deployed JNDI names using the mappings speci-
fied in the jboss-web.xml descriptor.

The linkEjbLocalRefs method on lines 640-655 maps the java:comp/env/ejb Web application
JNDI ENC ejb-local-ref web.xml descriptor elements onto the deployed JNDI names using the ejb-
link mappings specified in the web.xml descriptor.

The linkSecurityDomain method on lines 666-686 creates a java:comp/env/security context
that contains a securityMgr binding pointing to the AuthenticationManager implementation
and a realmMapping binding pointing to the RealmMapping implementation that is associated with
the security domain for the Web application. Also created is a subject binding that provides dynamic
access to the authenticated Subject associated with the request thread. If the jboss-web.xml
descriptor contained a security-domain element, the bindings are javax.naming.LinkRefs to
the JNDI name specified by the security-domain element, or subcontexts of this name. If there was no
security-domain element, the bindings are to org.jboss.security.plugins.NullSecu-
rityManager instance that simply allows all authentication and authorization checks.

Lines 732-764 correspond to the getCompileClasspath method. This is a utility method avail-
able for Web containers to generate a classpath that walks up the ClassLoader chain starting at the
given loader and queries each ClassLoader for the URLs it serves to build a complete classpath of
URL strings. This is needed by some JSP compiler implementations (Jasper for one) that expect to be
given a complete classpath for compilation.

Creating an AbstractWebContainer Subclass
To integrate a web container into JBoss you need to create a subclass of AbstractWebCon-
tainer and implement the required performDeploy(WebApplication, String, Web-
DescriptorParser) and performUndeploy(String) methods as described in the
preceding section. The following additional integration points should be considered as well.
JBoss Administration and Development 347

Integrating Servlet Containers
Use the Thread Context Class Loader
Although this issue was noted in the performDeploy method description, we'll repeat it here since
it is such a critical detail. During the setup of a WAR container, the current thread context Class-
Loader must be used as the parent ClassLoader for any web container specific ClassLoader
that is created. Failure to do this will result in problems for web applications that attempt to access
EJBs or JBoss resources through the JNDI ENC.

Integrate Logging Using log4j
JBoss uses the Apache log4j logging API as its internal logging API. For a web container to integrate
well with JBoss it needs to provide a mapping between the web container logging abstraction to the
log4j API. As a subclass of AbstractWebContainer, your integration class has access to the
log4j interface via the super.log instance variable or equivalently, the superclass getLog method.
This is an instance of the org.jboss.logging.Logger class that wraps the log4j category. The
name of the log4j category is the name of the container subclass.

Delegate web container authentication and authorization to JBossSX
Ideally both web application and EJB authentication and authorization are handled by the same secu-
rity manager. To enable this for your web container you must hook into the JBoss security layer. This
typically requires a request interceptor that maps from the web container security callouts to the
JBoss security API. Integration with the JBossSX security framework is based on the establishment
of a “java:comp/env/security” context as described in the linkSecurityDomain method com-
ments in the previous section. The security context provides access to the JBossSX security manager
interface implementations associated with the web application for use by subclass request intercep-
tors. An outline of the steps for authenticating a user using the security context is presented in
Listing 9-2 in quasi pseudo-code. Listing 9-3 provides the equivalent process for the authorization of
a user.

LISTING 9-2. A pseudo-code description of authenticating a user via the JBossSX API and the
java:comp/env/security JNDI context.

// Get the username and password from the request context...
HttpServletRequest request = ...;
String username = getUsername(request);
String password = getPassword(request);
// Get the JBoss security manager from the ENC context
InitialContext iniCtx = new InitialContext();
AuthenticationManager securityMgr = (AuthenticationManager)
 iniCtx.lookup("java:comp/env/security/securityMgr");
SimplePrincipal principal = new SimplePrincipal(username);
if(securityMgr.isValid(principal, password))
{
 // Indicate the user is allowed access to the web content...
 // Propagate the user info to JBoss for any calls into made by the servlet
 SecurityAssociation.setPrincipal(principal);
 SecurityAssociation.setCredential(password.toCharArray());
}

348 JBoss Administration and Development

JBoss/Tomcat-4.0.x bundle notes
else
{
 // Deny access...
}

LISTING 9-3. A pseudo-code description of authorization a user via the JBossSX API and the
java:comp/env/security JNDI context.

// Get the username & required roles from the request context...
HttpServletRequest request = ...;
String username = getUsername(request);
String[] roles = getContentRoles(request);
// Get the JBoss security manager from the ENC context
InitialContext iniCtx = new InitialContext();
RealmMapping securityMgr = (RealmMapping)
 iniCtx.lookup("java:comp/env/security/realmMapping");
SimplePrincipal principal = new SimplePrincipal(username);
Set requiredRoles = new HashSet(java.util.Arrays.asList(roles));
if(securityMgr.doesUserHaveRole(principal, requiredRoles))
{
 // Indicate user has the required roles for the web content...
}
else
{
 // Deny access...
}

JBoss/Tomcat-4.0.x bundle notes
In this section we'll discuss configuration issues specific to the JBoss/Tomcat-4.x integration bundle.
The Tomcat-4.x release, which is also known by the name Catalina, is the latest Apache Java servlet
container. It supports the Servlet 2.3 and JSP 1.2 specifications. The JBoss/Tomcat integration layer is
controlled by the JBoss MBean service configuration. The MBean used to embed the Tomcat-4.x
series of web containers is the org.jboss.web.catalina.EmbeddedCatalinaSer-
viceSX service, and it is a subclass of the AbstractWebContainer class. Its configurable
attributes include:

• CatalinaHome, sets the value to use for the catalina.home System property. This is used to
point to a catalina distribution outside of the jboss structure. If not specified this will be deter-
mined based on the location of the jar containing the org.apache.catalina.startup.Embedded class
assuming a standard catalina distribution structure.
• CatalinaBase, sets the value to use for the catalina.base System property. This is used to
resolve relative paths. If not specified the CatalinaHome attribute value will be used.
• Java2ClassLoadingCompliance, enables the standard Java2 parent delegation class loading
model rather than the servlet 2.3 load from war first model. This is true by default as loading from
wars that include client jars with classes used by EJBs causes class loading conflicts. If you
JBoss Administration and Development 349

Integrating Servlet Containers
enable the servlet 2.3 class loading model by setting this flag to false, you will need to organize
your deployment package to avoid duplicate classes in the deployment.
• DeleteWorkDirs: set the delete work directories on undeployment flag. By default catalina
does not delete its working directories when a context is stopped and this can cause jsp pages in
redeployments to not be recompiled if the timestamp of the file in the war has not been updated.
This defaults to true.
• SnapshotMode: Set the snapshot mode in a clustered environment. This must be one of
“instant” or “interval”. In instant mode changes to a clustered session are instantly propagated
whenever a modification is made. In interval mode all modifications are collected over the Snap-
shotInterval attribute value and periodically propagated.
• SnapshotInterval: Set the snapshot interval in ms for the “interval” snapshot mode. The
default is 1000 or 1 second.
• Config, an attribute that provides support for extended configuration using constructs from
the standard Tomcat server.xml file to specify additional connectors, and so on. Note that this is
the only mechanism for configuring the embedded Tomcat servlet container as none of the Tom-
cat configuration files such as the conf/server.xml file are used. An outline of the configuration
DTD that is currently supported is given in Figure 9-2, and the elements are described in the fol-
lowing section.
350 JBoss Administration and Development

JBoss/Tomcat-4.0.x bundle notes
FIGURE 9-2. An overview of the Tomcat-4.0.6 configuration DTD supported by the
EmbeddedCatalinaServiceSX Config attribute.

The integration of Tomcat with JBoss depends on the tomcat4-service.xml descriptor found in the
deploy directories of the default and all configuration file sets. You will only find this descriptor in
the bundled release of JBoss/Tomcat. This bundle also include the full Tomcat distribution as the
JBOSS_DIST/catalina directory. Currently this is the jakarta-tomcat-4.0.6-LE-jdk14 distribution.

The Embedded Tomcat Configuration Elements
This section provides an overview of the Tomcat configuration elements that may appear as child ele-
ments of the EmbeddedCatalinaSX Config attribute.
JBoss Administration and Development 351

Integrating Servlet Containers
Server
The Server element is the root element of the Tomcat servlet container configuration. There are no
attributes of this element that are supported by the embedded service.

Service
A Service is a container of one or more Connectors and a single Engine. The only supported attribute
is:

• name, a unique name by which the service is known.

Connector
A Connector element configures a transport mechanism that allows clients to send requests and
receive responses from the Service it is associated with. Connectors forward requests to the Ser-
vice Engine and return the results to the requesting client. There are currently three connector
implementations, HTTP, AJP and Warp. All connectors support these attributes:

• className, the fully qualified name of the class of the connector implementation. The class
must implement the org.apache.catalina.Connector interface. The embedded service
defaults to the org.apache.catalina.connector.http.HttpConnector, which is
the HTTP connector implementation.
• enableLookups, a flag that enables DNS resolution of the client hostname as accessed via the
ServletRequest.getRemoteHost method. This flag defaults to false.
• redirectPort, the port to which non-SSL requests will be redirected when a request for con-
tent secured under a transport confidentiality or integrity constraint is received. This defaults to
the standard https port of 443.
• secure, sets the ServletRequest.isSecure method value flag to indicate whether or
not the transport channel is secure. This flag defaults to false.scheme, sets the protocol name as
accessed by the ServletRequest.getScheme method. The scheme defaults to http.

THE HTTP CONNECTOR

The HTTP connector is an HTTP 1.1 protocol connector that allows Tomcat to function as a stand-
alone web server. The key attributes specific to this connector are:

• port, the listening port number on which connections will be accepted. This defaults to 8080.
• address, the IP address of the interface the connector listening port will be bound to. This
defaults to all available interfaces.
• connectionTimeout, the time in milliseconds the connector will wait for data in any given
read. This value is passed as the Socket.setSoTimeout value. This defaults to 60000 or 1 minute.

Additional attribute descriptions may be found in the Tomcat website document: http://
jakarta.apache.org/tomcat/tomcat-4.0-doc/config/http11.html

THE AJP CONNECTOR
352 JBoss Administration and Development

JBoss/Tomcat-4.0.x bundle notes
The AJP connector supports versions 1.3 and 1.4 of the Apache AJP protocols and allows Tomcat to
handle requests from an Apache web server. The key attributes specific to this connector are:

• className, must be set toAJP connection implementation class
org.apache.ajp.tomcat4.Ajp13Connector.
• port, the listening port number on which connections will be accepted. This defaults to 8009.
• address, the IP address of the interface the connector listening port will be bound to. This
defaults to all available interfaces.
• connectionTimeout, the time in milliseconds the connector will wait for data in any given
read. This value is passed as the Socket.setSoTimeout value. This defaults to -1, or never
timeout.

Additional attribute descriptions along with the required Apache configuration setup may be found in
the Tomcat website document http://jakarta.apache.org/tomcat/tomcat-4.0-doc/config/ajp.html. We
will also go through an example of configuring an AJP connnector and an Apache web server later in
this chapter.

THE WARP CONNECTOR

The Warp connector supports the Apache WARP protocol and allows Tomcat to handle requests from
an Apache web server. Only limited success has been achieved with configuring this connector and
the required mod_webapp Apache module is not yet available or easily built on all platforms.
Because of this we don’t really support this connector. If you want to try it out, a good starting point
is the following howto available on the Sun Dot-Com Builder site: http://dcb.sun.com/practices/how-
tos/tomcat_apache.jsp. If you get the Warp connector to work well, post message to the JBoss devel-
oper list at jboss-development@lists.sourceforge.net with the details.

Engine
Each Service must have a single Engine configuration. An Engine handles the requests submitted to a
Service via the configured connectors. The child elements supported by the embedded service include
Host, Logger, DefaultContext, Valve and Listener. The supported attributes include:

• className, the fully qualified class name of the org.apache.catalina.Engine interface imple-
mentation to use. If not specifies this defaults to org.apache.catalina.core.StandardEngine.
• defaultHost, the name of a Host configured under the Engine that will handle requests with
host names that do not match a Host configuration.
• name, a logical name to assign the Engine. It will be used in log messages produced by the
Engine.

Additional information on the Engine element may be found in the Tomcat website document http:/
/jakarta.apache.org/tomcat/tomcat-4.0-doc/config/engine.html.
JBoss Administration and Development 353

Integrating Servlet Containers
Host
A Host element represents a virtual host configuration. It is a container for web applications with a
specified DNS hostname. The child elements supported by the embedded service include Alias,
Logger, DefaultContext, Valve and Listener. The supported attributes include:

• className, the fully qualified class name of the org.apache.catalina.Host inter-
face implementation to use. If not specifies this defaults to org.apache.cat-
alina.core.StandardHost.
• name, the DNS name of the virtual host. At least one Host element must be configured with a
name that corresponds to the defaultHost value of the containing Engine.

Additional information on the Host element may be found in the Tomcat website document http://
jakarta.apache.org/tomcat/tomcat-4.0-doc/config/host.html.

ALIAS

The Alias elment is an optional child element of the Host element. Each Alias content specifies
an alternate DNS name for the enclosing Host.

DefaultContext
The DefaultContext element is a configuration template for web application contexts. It may be
defined at the Engine or Host level. The child elements supported by the embedded service
include WrapperLifecycle, InstanceListener, WrapperListener, and Manager.
The supported attributes include:

• className, the fully qualified class name of the org.apache.cat-
alina.core.DefaultContext implementation. This defaults to org.apache.cat-
alina.core.DefaultContext and if overriden must be a subclass of
.DefaultContext.
• cookies, a flag indicating if sessions will be tracked using cookies. The default is true.
• crossContext, A flag indicating if the ServletContext.getContext(String
path) method should return contexts for other web applications deployed in the calling web
application’s virtual host. The default is false.

MANAGER

The Manager element is an optional child of the DefaultContext configuration that defines a session
manager. The supported attributes include:

• className, the fully qualified class name of the org.apache.catalina.Manager interface imple-
mentation. This defaults to org.apache.catalina.session.StandardManager.

Logger
The Logger element specifies a logging configuration for Engine, Hosts, and DefaultCon-
texts. The supported attributes include:
354 JBoss Administration and Development

JBoss/Tomcat-4.0.x bundle notes
• className, the fully qualified class name of the org.apache.catalina.Logger inter-
face implementation. This defaults to org.jboss.web.catalina.Log4jLogger. and
should be used for integration with JBoss server log4j system.

Valve
A Valve element configures a request pipeline element. A Valve is an implementation of the
org.apache.catalina.Valve interface, and several standard Valves are available for use.
The most commonly used Valve allows one to log access requests. Its supported attributes include:

• className, the fully qualified class name of the org.apache.catalina.Valve inter-
face implementation. This must be org.jboss.web.catalina.valves.Access-
LogValue.
• directory, the directory path into which the access log files will be created.
• pattern, a pattern specifier that defines the format of the log messages. This defaults to “com-
mon”.
• prefix, the prefix to add to each log file name. This defaults to “access_log”.
• suffix, the suffix to add to each log file name. This default to the empty string “” meaning that
no suffix will be added.

Additional information on the Valve element and the available valve implementations may be found
in the Tomcat website document http://jakarta.apache.org/tomcat/tomcat-4.0-doc/config/valve.html.

Listener
A Listener element configures a component life-cycle listener. You add a life-cycle listener using
a Listener element with a className attribute giving the fully qualified name of the
org.apache.catalina.LifecycleListener interface along with any additional properties
supported by the listener implementation.

Using SSL with the JBoss/Tomcat bundle
There are two ways one can configure HTTP over SSL for the embedded Tomcat servlet container. If
you want to only allow access over SSL encrypted connections then you can configure the primary
connector using the EmbeddedCatalinaServiceSX SecurityDomain attribute. You set this to
the JNDI name of the org.jboss.security.SecurityDomain implementation that JSSE
should obtain the SSL KeyStore from. This requires establishing a SecurityDomain using the
org.jboss.security.plugins.JaasSecurityDomain MBean. These two steps are sim-
ilar to the procedure we used in Chapter 8 to enable RMI with SSL encryption. A tomcat4-ser-
vice.xml configuration file that illustrates the setup of SSL via this approach is given in Listing 9-
4.This configuration includes the same JaasSecurityDomain setup as Chapter 8, but since the
descriptor is not being deployed as part of a SAR that includes the chap8.keystore, you need to copy
the chap8.keystore to the server/default/conf directory.
JBoss Administration and Development 355

Integrating Servlet Containers
LISTING 9-4. The JaasSecurityDoman and EmbeddedCatalinaSX MBean configurations for
setting up Tomcat-4.x to use SSL as its primary connector protocol.

<?xml version="1.0" encoding="UTF-8"?>
<!-- An example tomcat config that only uses SSL connectors.
-->
<!DOCTYPE server [
 <!ENTITY catalina.home "../catalina">
]>

<!-- The service configuration for the embedded Tomcat4 web container
-->
<server>

 <classpath codebase="file:&catalina.home;/common/lib/" archives="*"/>
 <classpath codebase="file:&catalina.home;/server/lib/" archives="*"/>
 <classpath codebase="file:&catalina.home;/bin/" archives="*"/>
 <classpath codebase="file:&catalina.home;/lib/" archives="*"/>
 <classpath codebase="." archives="tomcat4-service.jar"/>

 <!-- The SSL domain setup -->
 <mbean code="org.jboss.security.plugins.JaasSecurityDomain"
 name="Security:name=JaasSecurityDomain,domain=RMI+SSL">
 <constructor>
 <arg type="java.lang.String" value="RMI+SSL"/>
 </constructor>
 <attribute name="KeyStoreURL">chap8.keystore</attribute>
 <attribute name="KeyStorePass">rmi+ssl</attribute>
 </mbean>

 <!-- The embedded Tomcat-4.x(Catalina) service configuration -->
 <mbean code="org.jboss.web.catalina.EmbeddedCatalinaServiceSX"
 name="DefaultDomain:service=EmbeddedCatalinaSX">
 <attribute name="CatalinaHome">&catalina.home;</attribute>
 <attribute name="Config">
 <Server>
 <Service name = "JBoss-Tomcat">
 <Engine name="MainEngine" defaultHost="localhost">
 <Logger className = "org.jboss.web.catalina.Log4jLogger"
 verbosityLevel = "trace" category =
"org.jboss.web.localhost.Engine"/>
 <Host name="localhost">
 <Valve className = "org.apache.catalina.valves.AccessLogValve"
 prefix = "localhost_access" suffix = ".log"
 pattern = "common" directory = "../server/default/log" />
 <DefaultContext cookies = "true" crossContext = "true" override =
"true" />
 </Host>
 </Engine>

 <!-- SSL/TLS Connector configuration using the SSL domain keystore -->
 <Connector className =
"org.apache.catalina.connector.http.HttpConnector"
 port = "443" scheme = "https" secure = "true">
356 JBoss Administration and Development

JBoss/Tomcat-4.0.x bundle notes
 <Factory className =
"org.jboss.web.catalina.security.SSLServerSocketFactory"
 securityDomainName = "java:/jaas/RMI+SSL" clientAuth = "false"
 protocol = "TLS"/>
 </Connector>
 </Service>
 </Server>
 </attribute>
 </mbean>

</server>

A quick test of this config can be made by accessing the JMX console web application using this
URL https://localhost/jmx-console/index.jsp.

Note: if your running on a *nix system (Linux, Solaris, OS X) that only allows root to
open ports below 1024 you will need to change the port number above to something
like 8443.

Alternatively, if one wants to support both access using non-SSL and SSL, you can do this by adding
a Connector configuration to the EmbeddedCatalinaSX MBean. This can be done using a JBoss spe-
cific connector socket factory that allows one to obtain the JSSE server certificate information from a
JBossSX SecurityDomain. A tomcat4-service.xml configuration file that illustrates such a setup of
SSL is given in Listing 9-5.

LISTING 9-5. The JaasSecurityDoman and EmbeddedCatalinaSX MBean configurations for
setting up Tomcat-4.x to use both non-SSL and SSL enabled HTTP connectors.

<?xml version="1.0" encoding="UTF-8"?>
<!-- An example tomcat config that only uses both SSL and non-SSL connectors.
-->
<!DOCTYPE server [
 <!ENTITY catalina.home "../catalina">
]>

<!-- The service configuration for the embedded Tomcat4 web container
-->
<server>

 <classpath codebase="file:&catalina.home;/common/lib/" archives="*"/>
 <classpath codebase="file:&catalina.home;/server/lib/" archives="*"/>
 <classpath codebase="file:&catalina.home;/bin/" archives="*"/>
 <classpath codebase="file:&catalina.home;/lib/" archives="*"/>
 <classpath codebase="." archives="tomcat4-service.jar"/>

 <!-- The SSL domain setup -->
 <mbean code="org.jboss.security.plugins.JaasSecurityDomain"
 name="Security:name=JaasSecurityDomain,domain=RMI+SSL">
 <constructor>
 <arg type="java.lang.String" value="RMI+SSL"/>
 </constructor>
 <attribute name="KeyStoreURL">chap8.keystore</attribute>
JBoss Administration and Development 357

Integrating Servlet Containers
 <attribute name="KeyStorePass">rmi+ssl</attribute>
 </mbean>

 <!-- The embedded Tomcat-4.x(Catalina) service configuration -->
 <mbean code="org.jboss.web.catalina.EmbeddedCatalinaServiceSX"
 name="DefaultDomain:service=EmbeddedCatalinaSX">
 <attribute name="CatalinaHome">&catalina.home;</attribute>
 <attribute name="Config">
 <Server>
 <Service name = "JBoss-Tomcat">
 <Engine name="MainEngine" defaultHost="localhost">
 <Logger className = "org.jboss.web.catalina.Log4jLogger"
 verbosityLevel = "trace" category =
"org.jboss.web.localhost.Engine"/>
 <Host name="localhost">
 <Valve className = "org.apache.catalina.valves.AccessLogValve"
 prefix = "localhost_access" suffix = ".log"
 pattern = "common" directory = "../server/default/log" />
 <DefaultContext cookies = "true" crossContext = "true" override =
"true" />
 </Host>
 </Engine>

 <!-- HTTP Connector configuration -->
 <Connector className =
"org.apache.catalina.connector.http.HttpConnector"
 port = "8080" redirectPort = "443"/>
 <!-- SSL/TLS Connector configuration using the SSL domain keystore -->
 <Connector className =
"org.apache.catalina.connector.http.HttpConnector"
 port = "443" scheme = "https" secure = "true">
 <Factory className =
"org.jboss.web.catalina.security.SSLServerSocketFactory"
 securityDomainName = "java:/jaas/RMI+SSL" clientAuth = "false"
 protocol = "TLS"/>
 </Connector>
 </Service>
 </Server>
 </attribute>
 </mbean>

</server>

Both approaches work so which you choose is a matter of preference. Note that if you try to test this
configuration using the self-signed certificate from the Chapter 8 chap8.keystore and attempt to
access content over an https connection, your browser should display a warning dialog indicating that
it does not trust the certificate authority that signed the certificate of the server you are connecting to.
For example, when the first configuration example was tested, IE 5.5 showed the initial security alert
dialog listed in Figure 9-3. Figure 9-4 shows the server certificate details. This is the expected behav-
ior as anyone can generate a self-signed certificate with any information they want, and a web
browser should warn you when such a secure site is encountered.
358 JBoss Administration and Development

JBoss/Tomcat-4.0.x bundle notes
FIGURE 9-3. The Internet Explorer 5.5 security alert dialog.
JBoss Administration and Development 359

Integrating Servlet Containers
FIGURE 9-4. The Internet Explorer 5.5 SSL certificate details dialog.

Setting up Virtual Hosts with the JBoss/Tomcat-4.x bundle
As of the 2.4.5 release, support for virtual hosts has been added to the servlet container layer. Virtual
hosts allow you to group web applications according to the various DNS names by which the machine
running JBoss is known. As an example, consider the tomcat4-service.xml configuration file given in
Listing 9-6. This configuration defines a default host named localhost and a second host named ban-
shee.starkinternational.com. The banshee.starkinternational.com also has the alias www.starkinterna-
tional.com associated with it.

LISTING 9-6. An example virtual host configuration.
360 JBoss Administration and Development

JBoss/Tomcat-4.0.x bundle notes
 <!-- The embedded Tomcat-4.x(Catalina) service configuration -->
 <mbean code="org.jboss.web.catalina.EmbeddedCatalinaServiceSX"
 name="DefaultDomain:service=EmbeddedCatalinaSX">
 <attribute name="Config">
 <Server>
 <Service name = "JBoss-Tomcat">
 <Engine name="MainEngine" defaultHost="localhost">
 <Logger className = "org.jboss.web.catalina.Log4jLogger"
 verbosityLevel = "debug" category = "org.jboss.web.CatalinaEngine"/>
 <DefaultContext cookies = "true" crossContext = "true" override =
"true" />
 <Host name="localhost">
 <Logger className = "org.jboss.web.catalina.Log4jLogger"
 verbosityLevel = "debug" category =
"org.jboss.web.Host=localhost"/>
 <Valve className = "org.apache.catalina.valves.AccessLogValve"
 prefix = "localhost_access" suffix = ".log"
 pattern = "common" directory = "../server/default/log" />
 </Host>
 <Host name="banshee.starkinternational.com">
 <Alias>www.starkinternational.com</Alias>
 <Logger className = "org.jboss.web.catalina.Log4jLogger"
 verbosityLevel = "debug" category = "org.jboss.web.Host=www"/>
 <Valve className = "org.apache.catalina.valves.AccessLogValve"
 prefix = "www_access" suffix = ".log"
 pattern = "common" directory = "../server/default/log" />
 </Host>
 </Engine>

 <!-- A HTTP Connector on port 8080 -->
 <Connector className =
"org.apache.catalina.connector.http.HttpConnector"
 port = "8080" minProcessors = "3" maxProcessors = "10" enableLookups
= "true"
 acceptCount = "10" connectionTimeout = "60000"/>
 </Service>
 </Server>
 </attribute>
 </mbean>

When a WAR is deployed, it will be by default associated with the virtual host whose name matches
the defaultHost attribute of the containing Engine. To deploy a WAR to a specific virtual host you
need to use the jboss-web.xml descriptor and the virtual-host element. For example, to deploy a WAR
to the virtual host www.starkinternational.com virtual host alias, the following jboss-web.xml
descriptor would be need to be included in the WAR WEB-INF directory. This demonstrates that an
alias of the virtual host can be used in addition to the Host name attribute value.

LISTING 9-7. An example jboss-web.xml descriptor for deploying a WAR to the
www.starkinternational.com virtual host

<jboss-web>
 <context-root>/</context-root>
 <virtual-host>www.starkinternational.com</virtual-host>
JBoss Administration and Development 361

Integrating Servlet Containers
</jboss-web>
When such a WAR is deployed, the server console shows that the WAR is in fact deployed to the
www.starkinternational.com virtual host as seen by the “Host=www” category name in the log state-
ments.

LISTING 9-8. Output from the www.starkinternational.com Host component when the Listing 9-
7 WAR is deployed.

13:11:52,948 INFO [MainDeployer] Starting deployment of package: file:/tmp/
jboss-3.0.1RC1/server/default/deploy/chap9-ex1.war
13:11:52,980 INFO [EmbeddedCatalinaServiceSX] deploy, ctxPath=, warUrl=file:/
tmp/jboss-3.0.1RC1/server/default/tmp/deploy/server/default/deploy/chap9-
ex1.war/78.chap9-ex1.war
13:11:52,982 INFO [EmbeddedCatalinaServiceSX] ClusteredHTTPSessionService not
found
13:11:53,018 INFO [Host=www] WebappLoader[]: Deploying class repositories to
work directory /tmp/jboss-3.0.1RC1/catalina/work/MainEngine/
banshee.starkinternational.com/_
13:11:53,074 INFO [Host=www] StandardManager[]: Seeding of random number
generator has been completed13:11:53,073 INFO [Host=www] StandardManager[]:
Seeding random number generator class java.security.SecureRandom
13:11:53,564 INFO [Host=www] ContextConfig[]: Added certificates -> request
attribute Valve
13:11:53,670 INFO [EmbeddedCatalinaServiceSX] Using Java2 parent classloader
delegation: true
13:11:53,671 INFO [Host=www] StandardWrapper[:default]: Loading container
servlet default
13:11:53,672 INFO [Host=www] default: init
13:11:53,673 INFO [Host=www] StandardWrapper[:invoker]: Loading container
servlet invoker
13:11:53,673 INFO [Host=www] invoker: init
13:11:53,674 INFO [Host=www] jsp: init
13:11:53,803 INFO [MainDeployer] Deployed package: file:/tmp/jboss-3.0.1RC1/
server/default/deploy/chap9-ex1.war

Using Apache with the JBoss/Tomcat-4.x bundle
To enable the use of Apache as a front-end web server that delegates servlet requests to a JBoss/Tom-
cat bundle, you need to configure an appropriate connector in the EmbeddedCatalinaSX MBean defi-
nition. For example, to configure the use of the Ajpv13 protocol connector with the Apache mod_jk
module, you would use a configuration like that given in Listing 9-9.

LISTING 9-9. An example EmbeddedCatalinaSX MBean configuration that supports integration
with Apache using the Ajpv13 protocol connector.

<server>
 <!-- The embedded Tomcat-4.x(Catalina) service configuration -->
 <mbean code="org.jboss.web.catalina.EmbeddedCatalinaServiceSX"
 name="DefaultDomain:service=EmbeddedCatalinaSX">
 <attribute name="Config">
362 JBoss Administration and Development

JBoss/Tomcat-4.0.x bundle notes
 <Server>
 <Service name = "JBoss-Tomcat">
 <Engine name="MainEngine" defaultHost="localhost">
 <Logger className = "org.jboss.web.catalina.Log4jLogger"
 verbosityLevel = "trace" category =
"org.jboss.web.localhost.Engine"/>
 <Host name="localhost">
 <Valve className = "org.apache.catalina.valves.AccessLogValve"
 prefix = "localhost_access" suffix = ".log"
 pattern = "common" directory = "../server/default/log" />
 <DefaultContext cookies = "true" crossContext = "true" override =
"true" />
 </Host>
 </Engine>

 <!-- AJP13 Connector configuration -->
 <Connector className="org.apache.ajp.tomcat4.Ajp13Connector"
 port="8009" minProcessors="5" maxProcessors="75"
 acceptCount="10" />
 </Service>
 </Server>
 </attribute>
 </mbean>
</server>

The configuration of the Apache side proceeds as it normally would as bundling Tomcat inside of
JBoss does not affect the how Apache interacts with Tomcat. For example, a fragment of an
httpd.conf configuration to test the Listing 9-9 setup with a WAR deployed with a context root of “/
jbosstest” might look like:
...
LoadModule jk_module libexec/mod_jk.so
AddModule mod_jk.c

<IfModule mod_jk.c>
 JkWorkersFile /tmp/workers.properties
 JkLogFile /tmp/mod_jk.log
 JkLogLevel debug
 JkMount /jbosstest/* ajp13
</IfModule>

Other Apache to Tomcat configurations would follow the same pattern. All that would change it the
Connector element definition that is placed into the EmbeddedCatalinaSX MBean configuration.

Using Clustering
As of the JBoss 3.0.1 release, there is support for clustering in the Tomcat embedded service. The
steps to setup clustering of Tomcat embedded containers is:

1. If you are using a load balancer, make sure that your setup uses sticky sessions. This means
that if a user that starts a session on node A, all subsequent requests are forwarded to node A as
JBoss Administration and Development 363

Integrating Servlet Containers
long node A is up and running. For configuration of the Apache webserver sticky sessions see
http://www.ubeans.com/tomcat/index.html for details.
2. Make sure that cluster-service.xml and jbossha-httpsession.sar are in your configuration file
set deploy directory, e.g. {JBOSS_HOME}/server/default/deploy. The cluster-service.xml is not
included in the default configuration, but can be found in JBOSS_DIST/server/all/deploy. The
jbossha-httpsession.sar can be found in the JBOSS_DIST/docs/examples/clustering directory.
You also need the javagroups20.jar. This can be found in the JBOSS_DIST/server/all/lib direc-
tory.
3. Start JBoss to check if your setup works. Look at the JMX management console (http://
localhost:8080/jmx-console/). Find the MBean jboss:service=ClusteredHttpSession. The
"StateString" must be "Started". If it is "Stopped" look in the server's logfile.
4. To enable clustering of your web applications you must mark them as distributable using the
servlet 2.3 web.xml descriptor. For example:
<?xml version="1.0"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <distributable/>
...
</web-app>

5. Deploy your war as usual and it should not be clustered.

JBoss/Jetty-4.0.0 Bundle Notes
Jetty is a pure Java web server and servlet container compliant to the HTTP1.1, Servlet 2.3 & JSP 1.2
specifications developed by Mort Bay Consulting (http://www.mortbay.com). It has been designed
to be fast, lightweight, extensible, and embeddable. This section discusses the embedding of Jetty
within JBoss, but for more general information on Jetty, visit the Jetty website (http://jetty.mort-
bay.org).

Integration with JBoss
Jetty is fully integrated with the JBoss environment in terms of:

• In-JVM optimized calls.The overhead of RMI is avoided when the servlet and EJB containers
are run in the same JVM.
• Implementing a web container service. The Jetty integration extends the
org.jboss.web.AbstraceWebContainer class to enable Jetty to conform to the standard JBoss web
container service interface. This allows the Jetty Service to be stopped and restarted, to hot-
deploy webapps and for those webapps to be able to reference EJBs, resources and other objects
in the J2EE JNDI environment.
364 JBoss Administration and Development

http://www.ubeans.com/tomcat/index.html
http://localhost:8080/jmx-console/
http://localhost:8080/jmx-console/
http://java.sun.com/dtd/web-app_2_3.dtd
http://www.mortbay.com/
http://jetty.mortbay.org/
http://jetty.mortbay.org/

JBoss/Jetty-4.0.0 Bundle Notes
• Logging. Debug and informational log output from the Jetty Service is adapted to the standard
JBoss logging service.
• Security. The Jetty integration classes adapt the servlet security environment to the JBoss
security environment. This allows webapps performing basic or form based authentication to
transparently access the JBossSX framework.
• JMX. As a compliant JBoss service, Jetty can be controlled from the jmx-console web appli-
cation available on port 8080. Jetty makes available each of its constituent components as
mbeans allowing detailed management of configuration, debugging and statistics gathering.
Additionally, Jetty creates an mbean for every deployed web application context, allowing indi-
vidual contexts to be stopped and (re)started without undeploying the webapp itself.
• Clustered Sessions. The clustered HTTP Session service can be used to provide distributed
sessions.

Deployment
Jetty is packaged as a service archive file called jbossweb.sar. It deploys automatically with
JBoss with a default configuration:

1. it will listen on port 8080 for HTTP requests (note that as no demonstration webapp is pro-
vided, hitting localhost:8080/ will result in your receiving a "404 NotFound")
2. the HTTP request log is written to the standard JBoss log directory as files with names of the
form yyyy_mm_dd.request.log which rollover daily
3. output from Jetty such as debug and informational messages are directed to the standard JBoss
log

Configuration
The default configuration can be modified by editing the Jetty configuration file found inside the sar
as jbossweb.sar/META-INF/jboss-service.xml. JBoss will reload and restart Jetty
with it's new configuration when you save the jboss-service.xml file. Alternatively, for non-perma-
nent configuration changes, you can use the JMX Agent on port 8082.

The default Jetty jboss-service.xml file looks like:

LISTING 9-10. Standard Jetty service configuration file jboss-service.xml

<?xml version="1.0" encoding="UTF-8"?>
<server>
 <!-- == -->
 <!-- Web Container -->
 <!-- == -->

 <!--
 | Be sure to check that the configuration values are valid for your
 | environment.
JBoss Administration and Development 365

Integrating Servlet Containers
 -->

 <mbean code="org.jboss.jetty.JettyService" name="jboss.web:service=Jetty">

 <!-- === -->
 <!-- Uncomment the following line ONLY if you want to provide a custom -->
 <!-- webdefault.xml file in place of the standard one. Place your -->
 <!-- file in the src/etc directory to have it automatically included -->
 <!-- in the build. -->
 <!-- === -->

 <!--
 <attribute name="WebDefault">webdefault.xml</attribute>
 -->

 <!-- == -->
 <!-- If true, .war files are unpacked to a temporary directory. This -->
 <!-- is useful with JSPs. -->
 <!-- == -->

 <attribute name="UnpackWars">true</attribute>

 <!-- == -->
 <!-- If true, Jetty first delegates loading a class to the webapp's -->
 <!-- parent class loader (a la Java 2). If false, Jetty follows the -->
 <!-- Servlet 2.3 specification, and tries the webapp's own loader -->
 <!-- first (for "non-system" classes) -->
 <!-- == -->

 <attribute name="Java2ClassLoadingCompliance">true</attribute>

 <!-- === -->
 <!-- Configuring Jetty. The XML fragment contained in the -->
 <!-- name="ConfigurationElement" attribute is a Jetty-style -->
 <!-- configuration specification. It is used to configure Jetty with -->
 <!-- a listener on port 8080, and a HTTP request log location. -->
 <!-- The placement here of other Jetty XML configuration statements -->
 <!-- for deploying webapps etc is not encouraged: if you REALLY NEED -->
 <!-- something extra, place it in WEB-INF/jetty-web.xml files -->
 <!-- === -->

 <attribute name="ConfigurationElement">
 <Configure class="org.mortbay.jetty.Server">

 <!-- === -->
 <!-- Add the listener -->

 <!-- === -->
 <Call name="addListener">
 <Arg>
 <New class="org.mortbay.http.SocketListener">
 <Set name="Port"><SystemProperty name="jetty.port" default="8080"/
></Set>
 <Set name="MinThreads">5</Set>
 <Set name="MaxThreads">255</Set>
 <Set name="MaxIdleTimeMs">30000</Set>
366 JBoss Administration and Development

JBoss/Jetty-4.0.0 Bundle Notes
 <Set name="MaxReadTimeMs">10000</Set>
 <Set name="MaxStopTimeMs">5000</Set>
 <Set name="LowResourcePersistTimeMs">5000</Set>
 </New>
 </Arg>
 </Call>

 <!-- === -->
 <!-- Add the HTTP request log -->

 <!-- === -->
 <Set name="RequestLog">
 <New class="org.mortbay.http.NCSARequestLog">
 <Arg><SystemProperty name="jboss.server.home.dir"/><SystemProperty
name="jetty.log" default="/log"/>/yyyy_mm_dd.request.log

 </Arg>
 <Set name="retainDays">90</Set>
 <Set name="append">true</Set>
 <Set name="extended">true</Set>
 <Set name="LogTimeZone">GMT</Set>
 </New>
 </Set>

 <!-- === -->
 <!-- Uncomment and set at least the Keystore, Password and -->

 <!-- KeyPassword fields to configure an SSL listener -->
 <!-- === -->

 <!--
 <Call name="addListener">
 <Arg>
 <New class="org.mortbay.http.SunJsseListener">
 <Set name="Port">8443</Set>
 <Set name="MinThreads">5</Set>
 <Set name="MaxThreads">255</Set>
 <Set name="MaxIdleTimeMs">30000</Set>
 <Set name="MaxReadTimeMs">10000</Set>
 <Set name="MaxStopTimeMs">5000</Set>
 <Set name="LowResourcePersistTimeMs">2000</Set>
 <Set name="Keystore"><SystemProperty name="jetty.home"
default="."/>/etc/demokeystore</Set>
 <Set name="Password">dummy</Set>
 <Set name="KeyPassword">dummy</Set>
 </New>
 </Arg>
 </Call>
 -->
 </Configure>
 </attribute>

 <!-- === -->
 <!-- Options for distributed session management are: -->
 <!-- org.jboss.jetty.session.CoarseDistributedStore -->
 <!-- org.jboss.jetty.session.ClusteredStore -->
 <!-- === -->
JBoss Administration and Development 367

Integrating Servlet Containers
 <attribute
name="HttpSessionStorageStrategy">org.jboss.jetty.session.ClusteredStore</
attribute>

 <!-- === -->
 <!-- Options for synchronizing distributed sessions: -->
 <!-- never/idle/request/<num-seconds> -->
 <!-- === -->

 <attribute name="HttpSessionSnapshotFrequency">never</attribute>

 <!-- === -->
 <!-- Options for the notification of HttpSessionActivationListeners -->
 <!-- around snapshotting are: -->
 <!-- neither -->
 <!-- activate -->
 <!-- passivate -->
 <!-- both -->
 <!-- === -->

 <attribute name="HttpSessionSnapshotNotificationPolicy">neither</attribute>

 <!-- === -->
 <!-- If you require JAAS authentication, configure the name of the -->
 <!-- attribute in which you expect to find the JAAS active subject: -->
 <!-- -->
 <!-- Commenting out this configuration will disable JAAS support -->
 <!-- === -->

 <attribute name="SubjectAttributeName">j_subject</attribute>
 </mbean>
 <!-- == -->
 <!-- == -->

</server>

UNPACKING WARS ON DEPLOYMENT

By default, Jetty will unpack your war as it is deployed. This is because JSP compilers typically can
only compile unpacked classes. To change this behaviour, set the following property:
<attribute name="UnpackWars">false</attribute>

CLASSLOADING BEHAVIOUR

By default, Jetty follows the Java 2 specification for class loading. That is, when loading a class,
Jetty first delegates to the webapp's parent class loader. This should be the norm within JBoss to take
advantage of the unified class loading mechanism. However, it is possible to force Jetty to follow the
Servlet 2.3 class loading specification, whereby Jetty first tries the webapp's own loader when loading
''non-system'' classes. If you are sure you need this kind of behavior, set the following:
<attribute name="Java2ClassLoadingCompliance">false</attribute>
368 JBoss Administration and Development

JBoss/Jetty-4.0.0 Bundle Notes

CHANGING THE DEFAULT HTTP LISTENER PORT

By default, Jetty listens on port 8080. To change this, modify the Port property of the addLis-
tener element:
 <Set name="Port"><SystemProperty name="jetty.port" default="9090"/></Set>

CHANGING OTHER HTTP LISTENER PORT ATTRIBUTES

The jboss-service.xml file specifies several extra attributes for the operation of Jetty which
you may find useful to customise to your environment:

LISTING 9-11. Jetty listener port attributes

<Call name="addListener">
 <Arg>
 <New class="org.mortbay.http.SocketListener">
 <Set name="Port"><SystemProperty name="jetty.port" default="8080"/></Set>
 <Set name=”Address”>localhost</Set>
 <Set name="MinThreads">5</Set>
 <Set name="MaxThreads">255</Set>
 <Set name="MaxIdleTimeMs">30000</Set>
 <Set name="MaxReadTimeMs">10000</Set>
 <Set name="MaxStopTimeMs">5000</Set>
 <Set name="LowResourcePersistTimeMs">5000</Set>
 </New>
 </Arg>
</Call>

USING SSL
The jboss-service.xml file includes a commented out example of how to set up Jetty for SSL:
 <!-- Uncomment and set at least the Keystore, Password and -->
 <!-- KeyPassword fields to configure an SSL listener -->

Attribute Description
MinThreads The minimum number of threads allowed.
MaxThreads The maximum number of threads allowed.
MaxIdleTimeMs Time in MS that a thread can be idle before it may expire.
MaxReadTimeMs The maximum time in milliseconds that a read can be idle.
MaxStopTimeMs Time in MS that a thread is allowed to run when stopping.
LowResourcePersistTimeMs Time in ms to persist idle connections if low on resources.
IntegralPort Port to redirect to for integral connections specified in a security

constraint.
IntegralScheme Protocol to use for integral redirections.
ConfidentialPort Port to redirect to for confidential connections. 0 if not sup-

ported.
ConfidentialScheme Protocol to use for confidential redirections.
LingerTimeSecs The maximum time in seconds that a connection lingers during

close handshaking.
JBoss Administration and Development 369

Integrating Servlet Containers
 <!-- === -->
 <!--
 <Call name="addListener">
 <Arg>
 <New class="org.mortbay.http.SunJsseListener">
 <Set name="Port">8443</Set>
 <Set name="MinThreads">5</Set>
 <Set name="MaxThreads">255</Set>
 <Set name="MaxIdleTimeMs">30000</Set>
 <Set name="MaxReadTimeMs">10000</Set>
 <Set name="MaxStopTimeMs">5000</Set>
 <Set name="LowResourcePersistTimeMs">2000</Set>
 <Set name="Keystore">
<SystemProperty name="jetty.home" default="."/>/etc/demokeystore</Set>
 <Set name="Password">dummy</Set>
 <Set name="KeyPassword">dummy</Set>
 </New>
 </Arg>
 </Call>
 -->

Additional tips on the use of this SSL setup can be found on the Jetty website at http://jetty.mort-
bay.org/jetty/doc/SslListener.html.

As of JBoss-3.0.2, an alternate SSL listener exists that integrates with the JaasSecurityDomain
MBean used by the Tomcat, and RMI/SSL configurations. Instead of supplying the keystore location
and passwords, you specifiy the name of the security domain associated with the JaasSecurityDomain
MBean. Listing 9-12 shows an example of how to configure an SSL listener that uses the same key-
store configured in the RMI/SSL example configuration of Listing 8-20.

LISTING 9-12. Using the SecurityDomainListener configure SSL for Jetty

 <Call name="addListener">
 <Arg>
 <New class="org.jboss.jetty.http.SecurityDomainListener">
 <Set name="Address">thestore.dom.com</Set>
 <Set name="Port">8443</Set>
 <Set name="MinThreads">5</Set>
 <Set name="MaxThreads">255</Set>
 <Set name="MaxIdleTimeMs">30000</Set>
 <Set name="MaxReadTimeMs">10000</Set>
 <Set name="MaxStopTimeMs">5000</Set>
 <Set name="LowResourcePersistTimeMs">2000</Set>
 <Set name="SecurityDomain">java:/jaas/RMI+SSL</Set>
 </New>
 </Arg>
 </Call>

USING JAAS
JAAS support is configurable across the JettyService instance via specifying the JAAS name of the
attribute in which the active subject is transported:
370 JBoss Administration and Development

JBoss/Jetty-4.0.0 Bundle Notes
 <attribute name="SubjectAttributeName">j_subject</attribute>

USING DISTRIBUTED HTTPSESSIONS

An HttpSession is an object used in a webapp to store conversational state between requests. It is
configured in the webapp by specifying 'distributable' in it's WEB-INF/web.xml.

The J2EE specification requires that a 'distributable' application may be 'migrated' between nodes of a
cluster - i.e. taken down on one node and brought up on another. Extant HttpSessions must con-
tinue to be available to the new webapp instance. Many appservers extend this functionality from
simply allowing migration to providing failover i.e. if a webapp is not undeployed from it's node
cleanly (e.g. the node crashes, hangs, becomes overloaded) it's HttpSessions are still made
available to other instances of the same webapp within the cluster.

This extension is problematic since J2EE requires that on being undeployed, a distributed webapp
should notify HttpSession attributes implementing HttpSessionActivationListener
before passivation/distributing them. When the webapp has been re-deployed and it re-activates an
HttpSession, the same attributes must be notified again. If, because of the reuse of this function-
ality to provide fail-over, attributes do not receive passivation events on one node before receipt of
activation events on another, an asymmetry - which would not happen on a fully compliant appserver
- occurs.

The Jetty integration allows the user to specify whether this extended behavior (called 'snapshotting')
is required and, if so, exactly what combination of events attributes should expect.

Configuring Session Distribution

In order to use distributed http sessions, you need to perform the following series of steps:

1. Edit the jbossweb.sar/META-INF/jboss-service.xml file:
1.Ensure the following property is set (as it is by default):

<attribute name="HttpSessionStorageStrategy">
org.jboss.jetty.session.ClusteredStore

</attribute>

2. Set the snapshot frequency which affects the synchronization of distributed sessions:
<attribute name="HttpSessionSnapshotFrequency">never</attribute>.

Options for the value are:

• never
• idle
• request
• <number of seconds>
3. Set the snapshot notification policy, which will affect when HttpSessionActivation-
Listeners are notified:

 <attribute name="HttpSessionSnapshotNotificationPolicy">neither</attribute>

Options for the value are:
• never
JBoss Administration and Development 371

Integrating Servlet Containers
• activate
• passivate
• both

Other Jetty Configuration Tips

Deploying a war to context '/'
Deploying a webapp called foo.war will result in it being deployed at context /foo. To deploy it
instead to the root context, choose one of the following mechanisms:

1. The standard J2EE way: wrap your .war in an .ear and in the .ear's META-INF/
application.xml you can specify the required context.
2. The proprietary JBoss extension: put a jboss-web.xml into your .war's WEB-INF direc-
tory and specify the context root in that.

Using virtual hosts
This is supported as of JBoss2.4.5 and higher via a proprietary extension mechanism.

To define a virtual host, add a line of the following form to your webapp's WEB-INF/jboss-
web.xml file (and set up your DNS to route requests for this hostname):
<virtual-host>myvirtualhost</virtual-host>

You can also specify a context path in the WEB-INF/jboss-web.xml file like so:
<context-root>/mycontextpath</context-root>

You should be careful as a context path specification in a META-INF/application.xml file
will take precedence over the WEB-INF/jboss-web.xml specification.

RUNNING ON PORT 80
As port 80 is a privileged port, it is usually better to set up a mapping from it to a non-privileged port
(such as 8080) where the HTTP server is running. The set-up required is operating system specific.
For a how-to for Unix systems, see http://jetty.mortbay.org/jetty/doc/User80.html.

RUNNING WITH APACHE FRONT-ENDING JETTY

It is not necessary to configure Apache to use Jetty, as Jetty is a fully featured HTTP server. However,
if you have a special requirement for Apache, you can layer it in front of Jetty. Instructions for doing
this can be found at http://jetty.mortbay.com/jetty/doc/JettyWithApache.html
372 JBoss Administration and Development

CHAPTER 10 MBean Services Miscellany
This chapter discusses useful MBean services that are not discussed elsewhere as they are utility ser-
vices not necessary for running JBoss.

System Properties Management
The management of system properties can be done using the org.jboss.varia.property.SystemProper-
tiesService MBean. It supports setting of the VM global property values just as java.lang.System.set-
Property method and the -Dproperty=value VM command line arguments do.

Its configurable attributes include:

• Properties: a specification of multiple property name=value pairs using the java.util.Proper-
ites.load(java.io.InputStream) method format. Each property=value statement is given on a sepa-
rate line within the body of the Properties attribute element.
• URLList: a comma seperated list of URL strings from which to load properties file formatted
content. If a component in the list is a relative path rather than a URL it will be treated as a file
path relative to the <jboss-dist>/server/<config> directory. For example, a component of “conf/
local.properties” would be treated as a file URL that points to the <jboss-dist>/server/default/
conf/local.properties file when running with the “default” configuration file set.

Both attributes are illustrated in Listing 10-1.

LISTING 10-1. An example SystemPropertiesService jboss-service descriptor

<server>
 <mbean code="org.jboss.varia.property.SystemPropertiesService"
JBoss Administration and Development 373

MBean Services Miscellany
 name="jboss.util:type=Service,name=SystemProperties">

 <!-- Load properties from each of the given comma seperated URLs -->
 <attribute name="URLList">
 http://somehost/some-location.properties,
 ./conf/somelocal.properties
 </attribute>

 <!-- Set propertuies using the properties file style. -->
 <attribute name="Properties">
 property1=This is the value of my property
 property2=This is the value of my other property
 </attribute>

 </mbean>
</server>

Property Editor Management
Support for managing java.bean.PropertyEditor instances is available through the
org.jboss.varia.property.PropertyEditorManagerService MBean. This is a simple service that help
define PropertyEditors using the java.bean.PropertyEditorManager class. As of JBoss-3.0.3, this ser-
vice is used in the main jboss-service.xml file to preload the custom JBoss PropertyEditor implemen-
tations. This is necessary for some JDK1.3.0 VMs that will only load PropertyEditors from the
system classpath.

Its supported attributes include:

• BootstrapEditors: This is a listing of property_editor_class=editor_value_type_class pairs
defining the PropertyEditor to type mappings that should be preloaded into the PropertyEditor-
Manager class using its registerEditor(Class targetType, Class editorClass) method. The
value type of this attribute is a string so that it may be set from a string without requiring a custom
PropertyEditor.
• Editors: This serves the same function as the BootstrapEditors attribute, but its type is a
java.util.Properties class, and so setting this from a string value requires a custom PropertyEditor
for Properties. In situations where custom PropertyEditors can be loaded from the thread context
class loader, this may be used instead of the BootstrapEditors attribute.
• EditorSearchPath: This attribute allows one to set the PropertyEditorManager editor pack-
ages search path.
374 JBoss Administration and Development

Services Binding Management
Services Binding Management
With all of the independently deployed services available in JBoss, running multiple instances on a
given machine can be a tedious exercise in configuration file editing. New to the 3.0.5 release is a
binding service, org.jboss.services.binding.ServiceBindingManager, that allows
one to map service attribute values from a central location. After a service’s descriptor file is parsed
and the initial attribute value have been applied to the service, the ServiceConfigurator que-
ries the ServiceBindingManager to apply any overrides that may exist for the service. The
ServicesBindingManager acts a coordinator between the ServiceConfigurator, a store
of configuration overrides, the service configuration, and a configuration delegate that knows how to
apply a configuration to a service. The classes in this act are shown in Figure 10-1.

FIGURE 10-1. Class diagram for the org.jboss.services.binding package of the
ServiceBindingManager

The first thing to note about the ServiceBindingManager is that it implements the JMX
MBeanRegistration interface methods as its life cycle notification interface rather than the
JBoss service interface. This is necessary because the ServiceBindingManager operates on
other services attribute values. Attributes are set before any JBoss service life cycle methods are
called, and so the ServiceBindingManager must be active as soon as it is registered with the
JBoss Administration and Development 375

MBean Services Miscellany
MBeanServer. The setup of the ServiceBindingManager occurs in the postRegis-
ter(Boolean) callback method.

The ServiceBindingManager is associated with a ServicesStore through a Service-
sStoreFactory. The ServicesStoreFactory is set through an attribute of the Service-
BindingManager. The set of configurable attributes of the ServiceBindingManager
include:

• ServerName: The name of the server this manager is associated with. This is a logical name
used to lookup ServiceConfigs from the ServicesStore.
• StoreFactoryClassName: The name of the class that implements the ServicesStoreFa-
tory interface. You may provide your own implementation, or use the default XML based store
org.jboss.services.binding.XMLServicesStoreFactory.
• StoreURL: The URL of the configuration store contents. This is passed to the load(URL)
method of the ServicesStore instance obtained from the ServicesStoreFactory.

A ServicesStore is just a collection of ServiceConfig objects keyed by a JBoss instance
name and the JMX ObjectName of the service. A ServiceConfig is a collection of Service-
Binding objects and a ServicesConfigDelegate that knows how to map a Service-
Binding onto a target MBean. The ServiceConfig may also contain an arbitrary configuration
for the delegate. A ServiceBinding is a named (interface, port) pair.

So what happens when the ServiceBindingManager is asked to override a service’s configuration?
The sequence of events is illustrated by Figure 10-2.

FIGURE 10-2. How the ServiceConfigurator queries the ServiceBindingManager

1. The ServiceConfigurator queries the ServiceBindingManager to apply any
configuration overrides for the MBean given by the applyServiceConfig method JMX
ObjectName.
376 JBoss Administration and Development

Services Binding Management
2. The ServiceBindingManager queries the ServicesStore for the ServiceConfig for
the named service, specifying the identity of the JBoss server instance in which it is operating.
This is an attribute of the ServiceBindingManager, and can be taken from a system prop-
erty as we will see in an example. If the ServicesStore contains a configuration override for
the indicated <serverName, serviceName> pair, it returns the ServiceConfig.
3. If there was a ServiceConfig, the ServiceBindingManager queries it for the name
of the class implementing the ServicesConfigDelegate interface.
4. The ServicesConfigDelegate class is loaded using the thread context class loader and
an instance is created.
5. The ServicesConfigDelegate instance is then asked to apply the ServiceConfig
using the provided MBeanServer. The delegate would using the delegate config information
along with the binding(s) to override the indicated attributes of the service by invoking attribute
setters, or even operations on the service using the MBeanServer. The target service name is
available in the ServiceConfig.

That is the generic overview of the ServiceBindingManager. Let’s take a look at how you can
use this service to bring up two JBoss instances of the default configuration set of services on the
same machine to make this more concrete.

Running Two JBoss Instances
JBoss 3.0.5 ships with a service configuration ServiceBindingManager for the along with a
sample ServicesStore XML file for starting two JBoss instances on the same host. Here we will
walk the steps to bring up the two instances and look at the sample configuration. Start by making
two server configuration file sets called jboss0 and jboss1 by running the following command from
the book examples directory:
examples 868>ant -Dchap=10 -Dex=1 run-example
Buildfile: build.xml
...
run-example1:
 [echo] Preparing jboss0 configuration fileset
 [mkdir] Created dir: C:\tmp\jboss-3.0.5RC2\server\jboss0
 [copy] Copying 171 files to C:\tmp\jboss-3.0.5RC2\server\jboss0
 [copy] Copied 37 empty directories to C:\tmp\jboss-3.0.5RC2\server\jboss0
 [copy] Copying 1 file to C:\tmp\jboss-3.0.5RC2\server\jboss0\conf
 [echo] Preparing jboss1 configuration fileset
 [mkdir] Created dir: C:\tmp\jboss-3.0.5RC2\server\jboss1
 [copy] Copying 171 files to C:\tmp\jboss-3.0.5RC2\server\jboss1
 [copy] Copied 37 empty directories to C:\tmp\jboss-3.0.5RC2\server\jboss1

BUILD SUCCESSFUL
Total time: 16 seconds

This creates a duplicates of the server/default configuration file sets as server/jboss0 and server/
jboss1, and then replaces the conf/jboss-service.xml descriptor with one that has the ServiceBind-
ingManager configuration enabled as follows:
 <mbean code="org.jboss.services.binding.ServiceBindingManager"
JBoss Administration and Development 377

MBean Services Miscellany
 name="jboss.system:service=ServiceBindingManager">
 <attribute name="ServerName">${jboss.server.name}</attribute>
 <attribute name="StoreURL">${jboss.home.url}/docs/examples/binding-service/
sample-bindings.xml</attribute>
 <attribute name="StoreFactoryClassName">
 org.jboss.services.binding.XMLServicesStoreFactory
 </attribute>
 </mbean>

The attribute values are:

• ServerName: This is the unique name for the JBoss server instance that will be used to distin-
guish what configuration overrides to apply. Here the ${jboss.server.name} variable reference
is the configuration file set directory name, either jboss0 or jboss1 in this example.
• StoreURL: This is the location of the ServicesStore configuration data that defines the
overrides for the jboss0 and jboss1 instances. The ${jboss.home.url} variable reference is the
URL to the root of the JBoss distribution, for example, file:/tmp/jboss-3.0.5. So we are using the
docs/examples/binding-service/sample-bindings.xml that ships with the distribution.
• StoreFactoryClassName: This the default XML based ServicesStore implement ion.

The sample-bindings.xml file contents is given in Listing 10-2. Two server configurations named
jboss0 and jboss1 are given. The jboss0 configuration uses the default settings for the ports, while the
jboss1 configuration adds 10000 to each port number.

LISTING 10-2. The docs/examples/binding-service/sample-bindings.xml file

1 <!DOCTYPE service-bindings [
2
3 <!ELEMENT service-bindings (server+)>
4
5 <!ELEMENT server (service-config+)>
6
7 <!ATTLIST server name CDATA #REQUIRED>
8
9 <!ELEMENT service-config (delegate-config? , binding+)>
10 <!ATTLIST service-config name CDATA #REQUIRED
11 delegateClass CDATA "org.jboss.services.binding.AttributeMappingDelegate" >
12
13 <!ELEMENT binding EMPTY>
14
15 <!ATTLIST binding name CDATA #IMPLIED
16 host CDATA #IMPLIED
17 port CDATA "0" >
18
19 <!ELEMENT delegate-config ANY>
20
21 <!ATTLIST delegate-config hostName CDATA #IMPLIED
22 portName CDATA #IMPLIED >
23]>
24
25 <service-bindings>
26 <server name="jboss0">
378 JBoss Administration and Development

Services Binding Management
27 <service-config name="jboss:service=Naming"
28 delegateClass="org.jboss.services.binding.AttributeMappingDelegate"
29 >
30 <delegate-config portName="Port"/>
31 <binding port="1099" />
32 </service-config>
33 <service-config name="jboss:service=Webserver"
34 delegateClass="org.jboss.services.binding.AttributeMappingDelegate"
35 >
36 <delegate-config portName="Port"/>
37 <binding port="8083" />
38 </service-config>
39 <service-config name="jboss:service=invoker,type=jrmp"
40 delegateClass="org.jboss.services.binding.AttributeMappingDelegate"
41 >
42 <delegate-config portName="RMIObjectPort"/>
43 <binding port="4444" />
44 </service-config>
45
46 <!-- Hypersonic related services -->
47 <service-config name="jboss.jca:service=LocalTxDS,name=DefaultDS"
48 delegateClass="org.jboss.services.binding.XSLTConfigDelegate"
49 >
50 <delegate-config>
51 <xslt-config configName="ManagedConnectionFactoryProperties"><![CDATA[
52 <xsl:stylesheet
53 xmlns:xsl='http://www.w3.org/1999/XSL/Transform' version='1.0'>
54
55 <xsl:output method="xml" />
56 <xsl:param name="host"/>
57 <xsl:param name="port"/>
58
59 <xsl:template match="/">
60 <xsl:apply-templates/>
61 </xsl:template>
62
63 <xsl:template match="config-property[@name='ConnectionURL']">
64 <config-property type="java.lang.String"
name="ConnectionURL">jdbc:hsqldb:hsql://<xsl:value-of select='$host'/
>:<xsl:value-of select='$port'/></config-property>
65 </xsl:template>
66 <xsl:template match="*|@*">
67 <xsl:copy>
68 <xsl:apply-templates select="@*|node()"/>
69 </xsl:copy>
70 </xsl:template>
71 </xsl:stylesheet>
72]]>
73 </xslt-config>
74 </delegate-config>
75 <binding host="localhost" port="1476" />
76 </service-config>
77 <service-config name="jboss:service=Hypersonic"
78 delegateClass="org.jboss.services.binding.AttributeMappingDelegate"
79 >
JBoss Administration and Development 379

MBean Services Miscellany
80 <delegate-config portName="Port" />
81 <binding port="1476" />
82 </service-config>
83
84 <!-- JMS related services -->
85 <service-config name="jboss.mq:service=InvocationLayer,type=OIL"
86 delegateClass="org.jboss.services.binding.AttributeMappingDelegate"
87 >
88 <delegate-config portName="ServerBindPort" />
89 <binding port="8090" />
90 </service-config>
91 <service-config name="jboss.mq:service=InvocationLayer,type=UIL"
92 delegateClass="org.jboss.services.binding.AttributeMappingDelegate"
93 >
94 <delegate-config portName="ServerBindPort" />
95 <binding port="8091" />
96 </service-config>
97
98 <!-- Jetty -->
99 <service-config name="jboss.web:service=JBossWeb"
100 delegateClass="org.jboss.services.binding.XSLTConfigDelegate"
101 >
102 <!-- This transforms the ConfigurationElement attribute document
103 -->
104 <delegate-config>
105 <xslt-config configName="ConfigurationElement"><![CDATA[
106 <xsl:stylesheet
107 xmlns:xsl='http://www.w3.org/1999/XSL/Transform' version='1.0'>
108
109 <xsl:output method="xml" />
110 <xsl:param name="host"/>
111 <xsl:param name="port"/>
112
113 <xsl:template match="/">
114 <xsl:apply-templates/>
115 </xsl:template>
116
117 <xsl:template match="SystemProperty[@name='jetty.port']">
118 <SystemProperty default="{$port}" name="jetty.port" />
119 </xsl:template>
120 <xsl:template match="New[@class='org.mortbay.http.ajp.AJP13Listener']">
121 <New class="org.mortbay.http.ajp.AJP13Listener">
122 <Set name="Port">8009</Set>
123 <Set name="MinThreads">5</Set>
124 <Set name="MaxThreads">255</Set>
125 <Set name="MaxIdleTimeMs">30000</Set>
126 <Set name="confidentialPort">443</Set>
127 </New>
128 </xsl:template>
129 <xsl:template match="*|@*">
130 <xsl:copy>
131 <xsl:apply-templates select="@*|node()"/>
132 </xsl:copy>
133 </xsl:template>
134 </xsl:stylesheet>
380 JBoss Administration and Development

Services Binding Management
135]]>
136 </xslt-config>
137 </delegate-config>
138 <binding port="8080" />
139 </service-config>
140 </server>
141
142 <!-- Every port is jboss0 + 10,000 -->
143 <server name="jboss1">
144 <service-config name="jboss:service=Naming"
145 delegateClass="org.jboss.services.binding.AttributeMappingDelegate"
146 >
147 <delegate-config portName="Port"/>
148 <binding port="11099" />
149 </service-config>
150 <service-config name="jboss:service=Webserver"
151 delegateClass="org.jboss.services.binding.AttributeMappingDelegate"
152 >
153 <delegate-config portName="Port"/>
154 <binding port="18083" />
155 </service-config>
156 <service-config name="jboss:service=invoker,type=jrmp"
157 delegateClass="org.jboss.services.binding.AttributeMappingDelegate"
158 >
159 <delegate-config portName="RMIObjectPort"/>
160 <binding port="14444" />
161 </service-config>
162
163 <!-- Hypersonic related services -->
164 <service-config name="jboss.jca:service=LocalTxDS,name=DefaultDS"
165 delegateClass="org.jboss.services.binding.XSLTConfigDelegate"
166 >
167 <delegate-config>
168 <xslt-config
configName="ManagedConnectionFactoryProperties"><![CDATA[
169 <xsl:stylesheet
170 xmlns:xsl='http://www.w3.org/1999/XSL/Transform' version='1.0'>
171
172 <xsl:output method="xml" />
173 <xsl:param name="host"/>
174 <xsl:param name="port"/>
175
176 <xsl:template match="/">
177 <xsl:apply-templates/>
178 </xsl:template>
179
180 <xsl:template match="config-property[@name='ConnectionURL']">
181 <config-property type="java.lang.String"
name="ConnectionURL">jdbc:hsqldb:hsql://<xsl:value-of select='$host'/
>:<xsl:value-of select='$port'/></config-property>
182 </xsl:template>
183 <xsl:template match="*|@*">
184 <xsl:copy>
185 <xsl:apply-templates select="@*|node()"/>
186 </xsl:copy>
JBoss Administration and Development 381

MBean Services Miscellany
187 </xsl:template>
188 </xsl:stylesheet>
189]]>
190 </xslt-config>
191 </delegate-config>
192 <binding host="localhost" port="11476" />
193 </service-config>
194 <service-config name="jboss:service=Hypersonic"
195 delegateClass="org.jboss.services.binding.AttributeMappingDelegate"
196 >
197 <delegate-config portName="Port" />
198 <binding port="11476" />
199 </service-config>
200
201 <!-- JMS related services -->
202 <service-config name="jboss.mq:service=InvocationLayer,type=OIL"
203 delegateClass="org.jboss.services.binding.AttributeMappingDelegate"
204 >
205 <delegate-config portName="ServerBindPort" />
206 <binding port="18090" />
207 </service-config>
208 <service-config name="jboss.mq:service=InvocationLayer,type=UIL"
209 delegateClass="org.jboss.services.binding.AttributeMappingDelegate"
210 >
211 <delegate-config portName="ServerBindPort" />
212 <binding port="18091" />
213 </service-config>
214
215 <!-- Jetty -->
216 <service-config name="jboss.web:service=JBossWeb"
217 delegateClass="org.jboss.services.binding.XSLTConfigDelegate"
218 >
219 <!-- This transforms the ConfigurationElement attribute document
220 -->
221 <delegate-config>
222 <xslt-config configName="ConfigurationElement"><![CDATA[
223 <xsl:stylesheet
224 xmlns:xsl='http://www.w3.org/1999/XSL/Transform' version='1.0'>
225
226 <xsl:output method="xml" />
227 <xsl:param name="host"/>
228 <xsl:param name="port"/>
229
230 <xsl:template match="/">
231 <xsl:apply-templates/>
232 </xsl:template>
233
234 <xsl:template match="SystemProperty[@name='jetty.port']">
235 <SystemProperty default="{$port}" name="jetty.port" />
236 </xsl:template>
237 <xsl:template match="New[@class='org.mortbay.http.ajp.AJP13Listener']">
238 <New class="org.mortbay.http.ajp.AJP13Listener">
239 <Set name="Port">18009</Set>
240 <Set name="MinThreads">5</Set>
241 <Set name="MaxThreads">255</Set>
382 JBoss Administration and Development

Services Binding Management
242 <Set name="MaxIdleTimeMs">30000</Set>
243 <Set name="confidentialPort">443</Set>
244 </New>
245 </xsl:template>
246
247 <xsl:template match="*|@*">
248 <xsl:copy>
249 <xsl:apply-templates select="@*|node()"/>
250 </xsl:copy>
251 </xsl:template>
252 </xsl:stylesheet>
253]]>
254 </xslt-config>
255 </delegate-config>
256 <binding port="18080" />
257 </service-config>
258 </server>
259 </service-bindings>

The embedded DTD is the one supported by the XMLServicesStoreFactory class. The ele-
ments are:

• service-bindings: the root element of the configuration file. It contains one or more server
elements.
• server: This is the base of a JBoss server instance configuration. It has a required name
attribute that defines the JBoss instance name to which it applies. This is the name that correlates
with the ServiceBindingManager ServerName attribute value. The server element content
consists of one or more service-config elements.
• service-config: This element represents a configuration override for an MBean service. It has
a required name attribute that is the JMX ObjectName string of the MBean service the configu-
ration applies to. It also has a required delegateClass name attribute that specifies the class name
of the ServicesConfigDelegate implementation that knows how to handle bindings for
the target service. Its contents consists of an optional delegate-config element and one or more
binding elements.
• binding: A binding element specifies a named port, address pair. It has an optional name that
can be used to provide multiple binding for a service. An example would be multiple virtual hosts
for a web container. The port and address are specified via the optional port and host attributes
respectively. If the port is not specified it defaults to 0 meaning choose an anonymous port. If the
host is not specified it defaults to null meaning any address.
• delegate-config: The delegate-config element is an arbitrary XML fragment for use by the
ServicesConfigDelegate implementation. The hostName and portName attributes only
apply to the AttributeMappingDelegate of the example and are there to prevent DTD
aware editors from complaining about their existence in the AttributeMappingDelegate
configurations. Generally both the attributes and content of the delegate-config is arbitrary, but
there is no way to specify and a element can have any number of attributes with a DTD.

The two ServicesConfigDelegate implementations referenced in Listing 10-2, and the only
two currently bundled with JBoss, are AttributeMappingDelegate and XSLTConfigDel-
JBoss Administration and Development 383

MBean Services Miscellany
egate. The AttributeMappingDelegate class is an implementation of the ServicesCon-
figDelegate that expects a delegate-config element of the form:
 <delegate-config portName="portAttrName" hostName="hostAttrName">
 ...
 </delegate-config>

where the portAttrName is the attribute name of the MBean service to which the binding port value
should be applied, and the hostAttrName is the attribute name of the MBean service to which the
binding host value should be applied. If the portName attribute is not specified then the binding port
is not applied. Likewise, if the hostName attribute is not specified then the binding host is not applied.
From the sample, lines 27-32 illustrate an example of the AttributeMappingDelegate usage:
 <service-config name="jboss:service=Naming"
 delegateClass="org.jboss.services.binding.AttributeMappingDelegate"
 >
 <delegate-config portName="Port"/>
 <binding port="1099" />
 </service-config>

Here the “jboss:service=Naming” MBean service has its Port attribute value overridden to 1099. The
corresponding setting from the jboss1 server configuration overrides the port to 11099.

The XSLTConfigDelegate class is an implementation of the ServicesConfigDelegate
that expects a delegate-config element of the form:
 <delegate-config>
 <xslt-config configName="ConfigurationElement"><![CDATA[
 Any XSL document contents...
]]>
 </xslt-config>
 </delegate-config>

The xslt-config child element content specifies an arbitrary XSL script fragment that is to be applied
to the MBean service attribute named by the configName attribute. The named attribute must be of
type org.w3c.dom.Element. The XSLTConfigDelegate is used to transform services
whose port/interface configuration is specified using a nested XML fragment. In the Listing 10-2
sample, lines 216-257 illustrate an example from the jboss1 server section which maps the Jetty serv-
let container listening port to 18080 and replaces the entire AJP13Listener configuration with a new
one:
 <service-config name="jboss.web:service=JBossWeb"
 delegateClass="org.jboss.services.binding.XSLTConfigDelegate"
 >
 <!-- This transforms the ConfigurationElement attribute document
 -->
 <delegate-config>
 <xslt-config configName="ConfigurationElement"><![CDATA[
<xsl:stylesheet
 xmlns:xsl='http://www.w3.org/1999/XSL/Transform' version='1.0'>

 <xsl:output method="xml" />
 <xsl:param name="host"/>
384 JBoss Administration and Development

Services Binding Management
 <xsl:param name="port"/>

 <xsl:template match="/">
 <xsl:apply-templates/>
 </xsl:template>

 <xsl:template match="SystemProperty[@name='jetty.port']">
 <SystemProperty default="{$port}" name="jetty.port" />
 </xsl:template>
 <xsl:template match="New[@class='org.mortbay.http.ajp.AJP13Listener']">
 <New class="org.mortbay.http.ajp.AJP13Listener">
 <Set name="Port">18009</Set>
 <Set name="MinThreads">5</Set>
 <Set name="MaxThreads">255</Set>
 <Set name="MaxIdleTimeMs">30000</Set>
 <Set name="confidentialPort">443</Set>
 </New>
 </xsl:template>

 <xsl:template match="*|@*">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:template>
</xsl:stylesheet>
]]>
 </xslt-config>
 </delegate-config>
 <binding port="18080" />
 </service-config>

To test the sample configuration, start two JBoss instances using the jboss0 and jboss1 configuration
file sets created previously by running the chap10 example1 build. Looking at the console for the ser-
vice port numbers you should see the overridden mappings. For the jboss1 server for example, here
are some of the non-standard ports that show up:
19:40:56.89>run -c jboss1
===
...
19:41:07,483 INFO [WebService] Started webserver with address: null port: 18083
19:41:07,483 INFO [WebService] Codebase set to: http://banshee:18083/
19:41:07,483 INFO [WebService] Started
19:41:07,483 INFO [NamingService] Starting
19:41:07,493 INFO [NamingService] Starting jnp server
19:41:07,663 INFO [NamingService] Started jnpPort=11099, rmiPort=0, backlog=50,
...
19:41:11,048 INFO [jbossweb] Starting Jetty/4.1.4
19:41:11,058 INFO [jbossweb] Started org.mortbay.http.NCSARequestLog@3301f2
19:41:11,068 INFO [jbossweb] Started SocketListener on 0.0.0.0:18080
19:41:11,088 INFO [jbossweb] Started AJP13Listener on 0.0.0.0:18009
19:41:11,098 INFO [jbossweb] NOTICE: AJP13 is not a secure protocol. Please
protect the port 0.0.0.0:18009
...
19:41:12,450 INFO [OILServerILService] JBossMQ OIL service available at :
0.0.0.0/0.0.0.0:18090
JBoss Administration and Development 385

MBean Services Miscellany
Scheduling Tasks
Java includes a simple timer based capability through the java.util.Timer and
java.util.TimerTask utility classes. JMX also includes a mechanism for scheduling JMX
notifications at a given time with an optional repeat interval as the javax.manage-
ment.timer.TimerMBean agent service.

JBoss includes two variations of the JMX timer service in the org.jboss.varia.sched-
uler.Scheduler and org.jboss.varia.scheduler.ScheduleManager MBeans.
Both MBeans rely on the JMX timer service for the basic scheduling. They extend the behavior of the
timer service as described in the following sections.

org.jboss.varia.scheduler.Scheduler

The Scheduler differs from the TimerMBean in that the Scheduler directly invokes a callback on an
instance of a user defined class, or an operation of a user specified MBean.

• InitialStartDate: Date when the initial call is scheduled. It can be either:
• NOW: date will be the current time plus 1 seconds
• A number representing the milliseconds since 1/1/1970
• Date as String able to be parsed by SimpleDateFormat with default format pattern
“M/d/yy h:mm a”.If the date is in the past the Scheduler will search a start date in the future
with respect to the initial repetitions and the period between calls. This means that when you
restart the MBean (restarting JBoss etc.) it will start at the next scheduled time. When no start
date is available in the future the Scheduler will not start.
For example, if you start your Schedulable everyday at Noon and you restart your JBoss
server then it will start at the next Noon (the same if started before Noon or the next day if
start after Noon).

• InitialRepetitions: The number of times the scheduler will invoke the target’s callback. If -1
then the callback will be repeated until the server is stopped.
• StartAtStartup: A flag that determines if the Scheduler will start when it receives its
startService life cycle notification. If true the Scheduler starts on its startup. If false, an
explicit startSchedule operation must be invoked on the Scheduler to begin.
• SchedulePeriod: The interval between scheduled calls in milliseconds. This value must be
bigger than 0.
• SchedulableClass: The fully qualified class name of the org.jboss.varia.sched-
uler.Schedulable interface implementation that is to be used by the Scheduler. The
SchedulableArguments and SchedulableArgumentTypes must be populated to correspond to the
constructor of the Schedulable implementation.
• SchedulableArguments: A comma seperated list of arguments for the Schedulable
implementation class constructor. Only primitive data types, String and classes with a con-
structor that accepts a String as its sole aregument are supported.
386 JBoss Administration and Development

Scheduling Tasks
• SchedulableArgumentTypes: A comma seperated list of argument types for the Schedu-
lable implementation class constructor. This will be used to find the correct constructor via
reflection. Only primitive data types, String and classes with a constructor that accepts a
String as its sole aregument are supported.
• SchedulableMBean: Specifies the fully qualified JMX ObjectName name of the schedula-
ble MBean to be called. If the MBean is not available it will not be called but the remaining repe-
titions will be decremented. When using SchedulableMBean the SchedulableMBeanMethod must
also be specified.
• SchedulableMBeanMethod: Specifies the operation name to be called on the schedulable
MBean. It can optionally be followed by an opening bracket, a comma seperated list of parameter
keywords, and a closing bracket. The supported parameter keywords include:

• NOTIFICATION which will be replaced by the timers notification instance (javax.man-
agement.Notification)
• DATE which will be replaced by the date of the notification call (java.util.Date)
• REPETITIONS which will be replaced by the number of remaining repetitions (long)
• SCHEDULER_NAME which will be replaced by the ObjectName of the Scheduler
• Any fully qualified class name which the Scheduler will set to null. This allows

A given Scheduler instance only support a single schedulable instance. If you need to configure
multiple scheduled events you would use multiple Scheduler instances, each with a unique
ObjectName. 10-2 gives an example of configuring a Scheduler to call a Schedulable
implementation as well as a configuration for calling a MBean.

LISTING 10-3. An example Scheduler jboss-service descriptor

<server>

 <mbean code="org.jboss.varia.scheduler.Scheduler"
 name="jboss.docs.chap10:service=Scheduler">
 <attribute name="StartAtStartup">true</attribute>
 <attribute name="SchedulableClass">org.jboss.chap10.ex2.ExSchedulable</
attribute>
 <attribute name="SchedulableArguments">TheName,123456789</attribute>
 <attribute name="SchedulableArgumentTypes">java.lang.String,long</attribute>

 <attribute name="InitialStartDate">NOW</attribute>
 <attribute name="SchedulePeriod">300000</attribute>
 <attribute name="InitialRepetitions">-1</attribute>
 </mbean>

</server>

The SchedulableClass org.jboss.chap10.ex2.ExSchedulable example class is given in
Listing 10-4.

LISTING 10-4. The Listing 10-3 ExSchedulable class code
JBoss Administration and Development 387

MBean Services Miscellany
package org.jboss.chap10.ex2;

import java.util.Date;
import org.jboss.varia.scheduler.Schedulable;

import org.apache.log4j.Logger;

/** A simple Schedulable example.
 * @author Scott.Stark@jboss.org
 * @version $Revision: 1.1 $
 */
public class ExSchedulable implements Schedulable
{
 private static final Logger log = Logger.getLogger(ExSchedulable.class);

 private String name;
 private long value;

 public ExSchedulable(String name, long value)
 {
 this.name = name;
 this.value = value;
 log.info("ctor, name: " + name + ", value: " + value);
 }

 public void perform(Date now, long remainingRepetitions)
 {
 log.info("perform, now: " + now +
 ", remainingRepetitions: " + remainingRepetitions +
 ", name: " + name + ", value: " + value);
 }
}

388 JBoss Administration and Development

Appendix A The JBoss Group and Our
LGPL License
About The JBoss Group
JBoss Group LLC, is an Atlanta-based professional services company, created by Marc Fleury,
founder and lead developer of the JBoss J2EE-based Open Source web application server. JBoss
Group brings together core JBoss developers to provide services such as training, support and con-
sulting, as well as management of the JBoss software and services affiliate programs. These commer-
cial activities subsidize the development of the free core JBoss server. For additional information on
the JBoss Group see the JBoss site http://www.jboss.org/services/services.jsp.

The GNU Lesser General Public License
(LGPL)
The JBoss source code is licensed under the LGPL (see http://www.gnu.org/copyleft/lesser.txt).
This includes all code in the org.jboss.* package namespace. Listing 11-1gives the complete text of
the LGPL license.

LISTING 11-1. The GNU lesser general public license text

 GNU LESSER GENERAL PUBLIC LICENSE
 Version 2.1, February 1999

 Copyright (C) 1991, 1999 Free Software Foundation, Inc.
 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 Everyone is permitted to copy and distribute verbatim copies
JBoss Administration and Development 389

http://www.jboss.org/services/services.jsp
http://www.gnu.org/copyleft/lesser.txt

 of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
 as the successor of the GNU Library Public License, version 2, hence
 the version number 2.1.]

 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

 This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.

 When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.

 To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.

 For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

 We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.

 To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.

 Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
390 JBoss Administration and Development

The GNU Lesser General Public License (LGPL)
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.

 Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.

 When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.

 We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.

 For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.

 In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
non-free programs enables many more people to use the whole GNUfree software. For
example, permission to use the GNU C Library in
operating system, as well as its variant, the GNU/Linux operating
system.

 Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.

 The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the later must
be combined with the library in order to run.

 GNU LESSER GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
JBoss Administration and Development 391

 0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".

 A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.

 The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)

 "Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.

 Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.

 1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.

 You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.

 2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) The modified work must itself be a software library.

 b) You must cause the files modified to carry prominent notices
 stating that you changed the files and the date of any change.
392 JBoss Administration and Development

The GNU Lesser General Public License (LGPL)
 c) You must cause the whole of the work to be licensed at no
 charge to all third parties under the terms of this License.

 d) If a facility in the modified Library refers to a function or a
 table of data to be supplied by an application program that uses
 the facility, other than as an argument passed when the facility
 is invoked, then you must make a good faith effort to ensure that,
 in the event an application does not supply such function or
 table, the facility still operates, and performs whatever part of
 its purpose remains meaningful.

 (For example, a function in a library to compute square roots has
 a purpose that is entirely well-defined independent of the
 application. Therefore, Subsection 2d requires that any
 application-supplied function or table used by this function must
 be optional: if the application does not supply it, the square
 root function must still compute square roots.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.

In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.

 Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

 This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
JBoss Administration and Development 393

 4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.

 If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

 5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.

 However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

 When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.

 If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

 Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.

 6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.

 You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
394 JBoss Administration and Development

The GNU Lesser General Public License (LGPL)
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:

 a) Accompany the work with the complete corresponding
 machine-readable source code for the Library including whatever
 changes were used in the work (which must be distributed under
 Sections 1 and 2 above); and, if the work is an executable linked
 with the Library, with the complete machine-readable "work that
 uses the Library", as object code and/or source code, so that the
 user can modify the Library and then relink to produce a modified
 executable containing the modified Library. (It is understood
 that the user who changes the contents of definitions files in the
 Library will not necessarily be able to recompile the application
 to use the modified definitions.)

 b) Use a suitable shared library mechanism for linking with the
 Library. A suitable mechanism is one that (1) uses at run time a
 copy of the library already present on the user's computer system,
 rather than copying library functions into the executable, and (2)
 will operate properly with a modified version of the library, if
 the user installs one, as long as the modified version is
 interface-compatible with the version that the work was made with.

 c) Accompany the work with a written offer, valid for at
 least three years, to give the same user the materials
 specified in Subsection 6a, above, for a charge no more
 than the cost of performing this distribution.

 d) If distribution of the work is made by offering access to copy
 from a designated place, offer equivalent access to copy the above
 specified materials from the same place.

 e) Verify that the user has already received a copy of these
 materials or that you have already sent this user a copy.

 For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

 It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.

 7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
JBoss Administration and Development 395

the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:

 a) Accompany the combined library with a copy of the same work
 based on the Library, uncombined with any other library
 facilities. This must be distributed under the terms of the
 Sections above.

 b) Give prominent notice with the combined library of the fact
 that part of it is a work based on the Library, and explaining
 where to find the accompanying uncombined form of the same work.

 8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

 9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

 10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.

 11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any
396 JBoss Administration and Development

The GNU Lesser General Public License (LGPL)
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

 12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

 13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.

 14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

 NO WARRANTY

 15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
JBoss Administration and Development 397

 16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Libraries

 If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).

 To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.

 <one line to give the library's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This library is free software; you can redistribute it and/or
 License as published by the Free Software Foundation; either modify it
under the terms of the GNU Lesser General Public
 version 2.1 of the License, or (at your option) any later version.

 This library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public
 License along with this library; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the
 library `Frob' (a library for tweaking knobs) written by James Random Hacker.

 <signature of Ty Coon>, 1 April 1990
 Ty Coon, President of Vice
398 JBoss Administration and Development

The GNU Lesser General Public License (LGPL)
That's all there is to it!
JBoss Administration and Development 399

400 JBoss Administration and Development

Appendix B The JBoss DTDs
This appendix provides the common JBoss DTDs for reference. Note that all DTDs used by JBoss are
included in the <jboss-dist>/docs/dtds directory so check there for the latest version for a given
release.

The jboss_3_0.dtd
<?xml version='1.0' encoding='UTF-8' ?>

<!--Generated by XML Authority-->

<!--
This is the XML DTD for the JBoss 3.0 EJB deployment descriptor.
The DOCTYPE is:
 <!DOCTYPE jboss PUBLIC
 "-//JBoss//DTD JBOSS 3.0//EN"
 "http://www.jboss.org/j2ee/dtd/jboss_3_0.dtd">

$Id: jboss_3_0.dtd,v 1.5.2.4 2002/08/24 00:39:47 starksm Exp $
$Revision: 1.5.2.4 $

Overview of the architecture of jboss.xml

<jboss>

 <enforce-ejb-restrictions />
 <security-domain />
 <unauthenticated-principal />

 <enterprise-beans>
JBoss Administration and Development 401

 <entity>
 <ejb-name />
 <jndi-name />
 <local-jndi-name />
 <read-only>
 <home-invoker>
 <bean-invoker>
 <configuration-name>
 <security-proxy>
 <ejb-ref>
 <resource-ref>
 <res-ref-name />
 <resource-name />
 </resource-ref>
 <resource-env-ref>
 <clustered />
 <cluster-config>
 </entity>

 <session>
 <ejb-name />
 <jndi-name />
 <local-jndi-name />
 <home-invoker>
 <bean-invoker>
 <configuration-name>
 <security-proxy>
 <ejb-ref>
 <resource-ref>
 <res-ref-name />
 <resource-name />
 </resource-ref>
 <resource-env-ref>
 <clustered />
 <cluster-config>
 </session>

 <message-driven>
 <ejb-name>
 <destination-jndi-name>
 <mdb-user>
 <mdb-passwd>
 <mdb-client-id>
 <mdb-subscription-id>
 <configuration-name>
 <security-proxy>
 <ejb-ref>
 <resource-ref>
 <resource-env-ref>
 </message-driven>

 </enterprise-beans>

 <resource-managers>
402 JBoss Administration and Development

The jboss_3_0.dtd
 <resource-manager>
 <res-name />
 <res-jndi-name />
 </resource-manager>

 <resource-manager>
 <res-name />
 <res-url />
 </resource-manager>

 </resource-managers>

 <container-configurations>

 <container-configuration>
 <container-name />
 <container-invoker />
 <container-interceptors />
 <client-interceptors />
 <instance-pool />
 <instance-cache />
 <persistence-manager />
 <transaction-manager />
 <web-class-loader />
 <locking-policy />
 <container-invoker-conf />
 <container-cache-conf />
 <container-pool-conf />
 <commit-option />
 <optiond-refresh-rate />
 <security-domain/>
 </container-configuration>

 </container-configurations>

</jboss>
-->
<!--
 The jboss element is the root element of the jboss.xml file. It
 contains all the information used by jboss but not described in the
 ejb-jar.xml file. All of it is optional.

 1- the application assembler can define custom container configurations
 for the beans. Standard configurations are provided in standardjboss.xml
 2- the deployer can override the jndi names under which the beans are
 deployed
 3- the deployer can specify runtime jndi names for resource managers.

-->
<!ELEMENT jboss (enforce-ejb-restrictions? , security-domain? , unauthenticated-
principal? , enterprise-beans? , resource-managers? , container-configurations?)>

<!--
JBoss Administration and Development 403

 The enforce-ejb-restrictions element tells the container to enforce ejb1.1
restrictions
 It must be one of the following :
 <enforce-ejb-restrictions>true</enforce-ejb-restrictions>
 <enforce-ejb-restrictions>false</enforce-ejb-restrictions>

 Used in: jboss
-->
<!ELEMENT enforce-ejb-restrictions (#PCDATA)>

<!--
 The security-domain element specifies the JNDI name of the security
 manager that implements the EJBSecurityManager and RealmMapping for
 the domain. When specified at the jboss level it specifies the security
 domain for all j2ee components in the deployment unit.
 One can override the global security-domain at the container
 level using the security-domain element at the container-configuration
 level.

 Used in: jboss, container-configuration
-->
<!ELEMENT security-domain (#PCDATA)>

<!--
 The unauthenticated-principal element specifies the name of the principal
 that will be returned by the EJBContext.getCallerPrincipal() method if there
 is no authenticated user. This Principal has no roles or privaledges to call
 any other beans.
-->
<!ELEMENT unauthenticated-principal (#PCDATA)>

<!--
 The enterprise-beans element contains additional information about
 the beans. These informations, such as jndi names, resource managers and
 container configurations, are specific to jboss and not described in
 ejb-jar.xml.

 jboss will provide a standard behaviour if no enterprise-beans element
 is found, see container-configurations, jndi-name and resource-managers
 for defaults.

 Used in: jboss
-->
<!ELEMENT enterprise-beans (session | entity | message-driven)+>

<!--
 The entity element holds information specific to jboss and not declared
 in ejb-jar.xml about an entity bean, such as jndi name, container
 configuration, and resource managers. (see tags for details)
 The bean should already be declared in ejb-jar.xml, with the same
 ejb-name.

 Used in: enterprise-beans
-->
404 JBoss Administration and Development

The jboss_3_0.dtd
<!ELEMENT entity (ejb-name , jndi-name? , local-jndi-name? , read-only? , home-
invoker? , bean-invoker? ,
configuration-name? , security-proxy? , ejb-ref* , resource-ref* , resource-env-
ref* ,
clustered? , cluster-config?)>

<!--
 The session element holds information specific to jboss and not declared
 in ejb-jar.xml about a session bean, such as jndi name, container
 configuration, and resource managers. (see tags for details)
 The bean should already be declared in ejb-jar.xml, with the same
 ejb-name.

 Used in: enterprise-beans
-->
<!ELEMENT session (ejb-name , jndi-name? , local-jndi-name? , home-invoker? ,
bean-invoker? ,
configuration-name? , security-proxy? , ejb-ref* , resource-ref* , resource-env-
ref* ,
clustered? , cluster-config?)>

<!--
 The message-driven element holds information specific to jboss and not declared
 in ejb-jar.xml about a message-driven bean, such as container
 configuration and resources.
 The bean should already be declared in ejb-jar.xml, with the same
 ejb-name.

 Used in: enterprise-beans
-->
<!ELEMENT message-driven (ejb-name , destination-jndi-name , mdb-user? , mdb-
passwd? , mdb-client-id?,
mdb-subscription-id? , configuration-name? , security-proxy? , ejb-ref* ,
resource-ref* ,
resource-env-ref*)>

<!--
 The ejb-name element gives the name of the bean, it must correspond to
 an ejb-name element in ejb-jar.xml

 Used in: entity, session, and message-driven
-->
<!ELEMENT ejb-name (#PCDATA)>

<!--
 The jndi-name element gives the actual jndi name under which
 the bean will be deployed when used in the entity, session and
 message-driven elements. If it is not provided jboss will assume
 "jndi-name" = "ejb-name"

 When used in the ejb-ref, resource-ref, resource-env-ref elements
 this specifies the jndi name to which the reference should link.

 Used in: entity, session and message-driven
 ejb-ref, resource-ref, resource-env-ref
JBoss Administration and Development 405

-->
<!ELEMENT jndi-name (#PCDATA)>

<!--
 The JNDI name under with the local home interface should be bound

 Used in: entity and session
-->
<!ELEMENT local-jndi-name (#PCDATA)>

<!--
 The read-only element flags an entity bean as read only.
 The bean will never be ejbStored. Defaults to false.
 It must be one of the following :
 <read-only>true</read-only>
 <read-only>false</read-only>

 Used in: entity
-->
<!ELEMENT read-only (#PCDATA)>

<!--
 The home-invoker and bean-invoker elements define the Invoker MBean to use
 for Home Proxies and Bean Proxies. When specified at the container configuration
 level this specifies the default invoker for all beans using the container
 configuration.

 Used in: container-configuration, entity and session
-->
<!ELEMENT home-invoker (#PCDATA)>

<!ELEMENT bean-invoker (#PCDATA)>

<!--
 The configuration-name element gives the name of the container
 configuration for this bean. It must match one of the container-name
 tags in the container-configurations section, or one of the standard
 configurations. If no element is provided, jboss will automatically use the
 right standard configuration, see container-configurations.

 Note: unlike earlier releases, this element may not be specified as an
 empty element to achieve the same effect as not specifying the element.

 Used in: entity, session, and message-driven
-->
<!ELEMENT configuration-name (#PCDATA)>

<!ELEMENT destination-jndi-name (#PCDATA)>

<!ELEMENT mdb-user (#PCDATA)>

<!ELEMENT mdb-passwd (#PCDATA)>

<!ELEMENT mdb-client-id (#PCDATA)>
406 JBoss Administration and Development

The jboss_3_0.dtd
<!ELEMENT mdb-subscription-id (#PCDATA)>

<!-- The security-proxy gives the class name of the security proxy implementation.
 This may be an instance of org.jboss.security.SecurityProxy, or an
 just an object that implements methods in the home or remote interface
 of an EJB without implementating any common interface.

 Used in: entity, session, and message-driven
-->
<!ELEMENT security-proxy (#PCDATA)>

<!--
 The ejb-ref element is used to give the jndi-name of an external
 ejb reference. In the case of an external ejb reference, you don't
 provide a ejb-link element in ejb-jar.xml, but you provide a jndi-name
 in jboss.xml

 Used in: entity, session, and message-driven
-->
<!ELEMENT ejb-ref (ejb-ref-name , jndi-name)>

<!--
 The ejb-ref-name element is the name of the ejb reference as given in
 ejb-jar.xml.

 Used in: ejb-ref
-->
<!ELEMENT ejb-ref-name (#PCDATA)>

<!--
 The resource-env-ref element gives a mapping between the "code name"
 of a env resource (res-ref-name, provided by the Bean Developer) and
 its deployed JNDI name.

 Used in: session, entity, message-driven
-->
<!ELEMENT resource-env-ref (resource-env-ref-name , jndi-name)>

<!--
 The resource-env-ref-name element gives the "code name" of a resource. It is
 provided by the Bean Developer.

 Used in: resource-env-ref
-->
<!ELEMENT resource-env-ref-name (#PCDATA)>

<!--
 The clustered element indicates if this bean will run in a cluster of JBoss
instances.
 It is provided by the deployer. If not, jboss will assume clustered = False
 Possible values: "True", "False" (default)

 Used in: entity and session
-->
<!ELEMENT clustered (#PCDATA)>
JBoss Administration and Development 407

<!--
 The cluster-config element allows to specify cluster specific settings.
 WARNING: session-state-manager-jndi-name is only for SFSB.

 Used in: session, entity
-->
<!ELEMENT cluster-config (partition-name? , home-load-balance-policy? , bean-
load-balance-policy? ,
session-state-manager-jndi-name?)>

<!--
 The partition-name element indicates the name of the HAPartition to be used
 by the container to exchange clustering information. This is a name and *not*
 a JNDI name. Given name will be prefixed by "/HASessionState/" by the container
to get
 the actual JNDI name of the HAPartition. If not, jboss will assume partition-
name = "DefaultPartition".

 Used in: entity and session (in clustered-config element)
-->
<!ELEMENT partition-name (#PCDATA)>

<!--
 The home-load-balance-policy element indicates the java class name to be used
 to load balance calls in the home proxy.
 If not, jboss will assume home-load-balance-policy =
"org.jboss.ha.framework.interfaces.RoundRobin".

 Used in: entity and session (in clustered-config element)
-->
<!ELEMENT home-load-balance-policy (#PCDATA)>

<!--
 The bean-load-balance-policy element indicates the java class name to be used
 to load balance calls in the bean proxy.
 If not, jboss will assume :
 - for EB and SFSB : bean-load-balance-policy =
"org.jboss.ha.framework.interfaces.RoundRobin"
 - for SLSB : bean-load-balance-policy =
"org.jboss.ha.framework.interfaces.RoundRobin"

 Used in: entity and session (in clustered-config element)
-->
<!ELEMENT bean-load-balance-policy (#PCDATA)>

<!--
 The session-state-manager-jndi-name element indicates the name of the
HASessionState to be used
 by the container as a backend for state session management in the cluster.
 This *is* a JNDI name (not like the partition-name element).
 If not, jboss will assume partition-name = "/HASessionState/Default".

 Used in: session (in clustered-config element)
-->
408 JBoss Administration and Development

The jboss_3_0.dtd
<!ELEMENT session-state-manager-jndi-name (#PCDATA)>

<!--
 The resource-ref element gives a mapping between the "code name"
 of a resource (res-ref-name, provided by the Bean Developer) and
 its "xml name" (resource-name, provided by the Application Assembler).
 If no resource-ref is provided, jboss will assume that
 "xml-name" = "code name"

 See resource-managers.

 Used in: entity, session, and message-driven
-->
<!ELEMENT resource-ref (res-ref-name , (resource-name | jndi-name | res-url))>

<!--
 The res-ref-name element gives the "code name" of a resource. It is
 provided by the Bean Developer. See resource-managers for the actual
 configuration of the resource.

 Used in: resource-ref
-->
<!ELEMENT res-ref-name (#PCDATA)>

<!--
 The resource-name element gives the "xml name" of the resource. It is
 provided by the Application Assembler. See resource-managers for the
 actual configuration of the resource.

 Used in: resource-ref
-->
<!ELEMENT resource-name (#PCDATA)>

<!--
 The resource-managers element is used to declare resource managers.

 A resource has 3 names:
 - the "code name" is the name used in the code of the bean, supplied by
 the Bean Developer in the resource-ref section of the ejb-jar.xml file

 - the "xml name" is an intermediary name used by the Application Assembler
 to identify resources in the XML file.

 - the "runtime jndi name" is the actual jndi-name or url of the deployed
 resource, it is supplied by the Deployer.

 The mapping between the "code name" and the "xml name" is given
 in the resource-ref section for the bean. If not, jboss will assume that
 "xml name" = "code name".

 The mapping between the "xml name" and the "runtime jndi name" is given in
 a resource-manager section. If not, and if the datasource is of type
 javax.sql.DataSource, jboss will look for a javax.sql.DataSource in the jndi
 tree.

JBoss Administration and Development 409

 Used in: jboss
-->
<!ELEMENT resource-managers (resource-manager*)>

<!--
 The resource-manager element is used to provide a mapping between the
 "xml name" of a resource (res-name) and its "runtime jndi name"
 (res-jndi-name or res-url according to the type of the resource).
 If it is not provided, and if the type of the resource is
 javax.sql.DataSource, jboss will look for a javax.sql.DataSource in the
 jndi tree.

 See resource-managers.

 Used in: resource-managers
-->
<!ELEMENT resource-manager (res-name , (res-jndi-name | res-url))>

<!--
 The res-name element gives the "xml name" of a resource, it is provided
 by the Application Assembler. See resource-managers.

 Used in: resource-manager
-->
<!ELEMENT res-name (#PCDATA)>

<!--
 The res-jndi-name element is the "deployed jndi name" of a resource, it
 is provided by the Deployer. See resource-managers.

 Used in: resource-manager
-->
<!ELEMENT res-jndi-name (#PCDATA)>

<!--
 The res-url element is the "runtime jndi name" as a url of the resource.
 It is provided by the Deployer. See resource-managers.

 Used in: resource-manager
-->
<!ELEMENT res-url (#PCDATA)>

<!--
 The container-configurations element declares the different possible
 container configurations that the beans can use. standardjboss.xml
 provides 15 standard configurations with the following container-names:
 - Standard CMP 2.x EntityBean
 - Standard CMP EntityBean
 - Clustered CMP 2.x EntityBean
 - Clustered CMP EntityBean
 - IIOP CMP 2.x EntityBean
 - IIOP CMP EntityBean
 - jdk 1.2.2 CMP EntityBean
 - Standard Stateless SessionBean
 - Clustered Stateless SessionBean
410 JBoss Administration and Development

The jboss_3_0.dtd
 - IIOP Stateless SessionBean
 - jdk 1.2.2 Stateless SessionBean
 - Standard Stateful SessionBean
 - Clustered Stateful SessionBean
 - IIOP Stateful SessionBean
 - jdk 1.2.2 Stateful SessionBean
 - Standard BMP EntityBean
 - Clustered BMP EntityBean
 - IIOP BMP EntityBean
 - jdk 1.2.2 BMP EntityBean
 - Standard message Driven Bean

 The standard configurations will automatically be used if no custom
 configuration is specified.

 The jdk 1.2.2 configurations are defined for backwards compatability.

 The application assembler can define advanced custom configurations here.

 Used in: jboss
-->
<!ELEMENT container-configurations (container-configuration*)>

<!--
 The container-configuration element describes a configuration for the
 container.
 The different plugins to use are declared here, as well as their
 configurations. The configuration-class attribute is no longer used.

 Used in: container-configurations
-->
<!ELEMENT container-configuration (container-name , call-logging? , container-
invoker?,
home-invoker?, bean-invoker?, container-interceptors? , client-interceptors? ,
instance-pool? ,
instance-cache? , persistence-manager? , transaction-manager? , web-class-loader?
, locking-policy? ,
container-invoker-conf? , container-cache-conf? , container-pool-conf? , commit-
option? ,
optiond-refresh-rate? , security-domain?, cluster-config?)>

<!-- The extends attribute gives the container-name value of the configuration the
container-configuration
is extending. This allows one to specify an extension configuration without having
to reiterate all of
the other duplicate configuration info.

 <container-configuration extends="Standard Stateful SessionBean">
 <container-name>Secure Stateless SessionBean</container-name>
 <security-domain>java:/jaas/other</security-domain>
 </container-configuration>

-->
<!ATTLIST container-configuration extends CDATA #IMPLIED>
JBoss Administration and Development 411

<!--
 The container-name element gives the name of the configuration being
 defined. Beans may refer to this name in their configuration-name tag.

 Used in: container-configuration
-->
<!ELEMENT container-name (#PCDATA)>

<!--
 The call-logging element tells if the container must log every method
 invocation for this bean or not. Its value must be trus or false.

 Used in: container-configuration
-->
<!ELEMENT call-logging (#PCDATA)>

<!--
 The container-invoker element gives the class name of the container
 invoker jboss must use for in this configuration. This class must
 implement the org.jboss.ejb.ContainerInvoker interface. The default is
 org.jboss.proxy.ejb.ProxyFactory for entity and session beans and
 org.jboss.ejb.plugins.jms.JMSContainerInvoker for message driven beans.
 Containers supporting clustering use org.jboss.proxy.ejb.ProxyFactoryHA.

 Used in: container-configuration
-->
<!ELEMENT container-invoker (#PCDATA)>

<!--
 The container-interceptors element gives the chain of Interceptors
 (instances of org.jboss.ejb.Interceptor) that are associated with the
container.
 The declared order of the interceptor elements corresponds to the order of the
 interceptor chain.

 Used in: container-configuration
-->
<!ELEMENT container-interceptors (interceptor+)>

<!--
The client-interceptors defines the home and bean client side interceptor chain

 Used in: container-configuration
-->
<!ELEMENT client-interceptors (home , bean)>

<!--
The home element gives the chain of interceptors
(instances of org.jboss.proxy.Interceptor) that are associated with the home
proxy and operate in the client VM. The declared order of the interceptor
elements corresponds to the order of the interceptor chain.

 Used in: client-interceptors
-->
<!ELEMENT home (interceptor+)>
412 JBoss Administration and Development

The jboss_3_0.dtd
<!--
The bean element gives the chain of interceptors
(instances of org.jboss.proxy.Interceptor) that are associated with the remote
proxy and operate in the client VM. The declared order of the interceptor
elements corresponds to the order of the interceptor chain.

 Used in: client-interceptors
-->
<!ELEMENT bean (interceptor+)>

<!--
 The interceptor element specifies an instance of org.jboss.ejb.Interceptor
 that is to be added to the container interceptor stack.

 Used in: container-interceptors
-->
<!ELEMENT interceptor (#PCDATA)>

<!--
 The transaction attribute is used to indicate what type of container its
 interceptor applies to. It is an enumerated value that can take on one of: Bean,
 Container or Both. A value of Bean indicates that the interceptor should only be
 added to a container for bean-managed transaction.
 A value of Container indicates that the interceptor should only be added to a
 container for container-managed transactions.
 A value of Both indicates that the interceptor should be added to all
 containers. This is the default value if the transaction attribute is not
 explictlygiven.
-->
<!ATTLIST interceptor transaction (Bean | Container | Both) "Both">

<!--
 The metricsEnabled attributes is used to indicate if the interceptor
 should only be included when the org.jboss.ejb.ContainerFactory metricsEnabled
 flag is set to true. The allowed values are true and false with false being the
 default if metricsEnabled is not explicitly given.
-->
<!ATTLIST interceptor metricsEnabled (true | false) "false">

<!--
 The instance-pool element gives the class name of the instance pool
 jboss must use for in this configuration. This class must implement
 the org.jboss.ejb.InstancePool interface. The defaults are:
 - org.jboss.ejb.plugins.EntityInstancePool for entity beans
 - org.jboss.ejb.plugins.StatelessSessionInstancePool for stateless
 session beans.
 - no pool is used for stateful session beans

 Used in: container-configuration
-->
<!ELEMENT instance-pool (#PCDATA)>

<!--
 The instance-cache element gives the class name of the instance cache
JBoss Administration and Development 413

 jboss must use for in this configuration. This class must implement
 the org.jboss.ejb.InstanceCache interface. The defaults are:
 - org.jboss.ejb.plugins.NoPassivationEntityInstanceCache for entity beans
 - org.jboss.ejb.plugins.NoPassivationStatefulSessionInstanceCache for
 stateful session beans.
 - no cache is used for stateless session beans

 Used in: container-configuration
-->
<!ELEMENT instance-cache (#PCDATA)>

<!--
 The persistence-manager element gives the class name of the persistence
 manager / persistence store jboss must use for in this configuration.
 This class must implement:
 - org.jboss.ejb.EntityPersistenceStore for CMP Entity Beans (default is
 org.jboss.ejb.plugins.jaws.JAWSPersistenceManager)
 - org.jboss.ejb.EntityPersistenceManager for BMP entity beans (default
 is org.jboss.ejb.plugins.BMPPersistenceManager)
 - org.jboss.ejb.StatefulSessionPersistenceManager for stateless session
 beans.
 - no persistence-manager is used for stateless session beans

 Used in: container-configuration
-->
<!ELEMENT persistence-manager (#PCDATA)>

<!--
 The locking-policy element gives the class name of the EJB lock
 implementation JBoss must use for in this configuration. This class must
 implement the org.jboss.ejb.BeanLock interface. The default is
 org.jboss.ejb.plugins.lock.QueuedPessimisticEJBLock.

 Used in: container-configuration
-->
<!ELEMENT locking-policy (#PCDATA)>

<!--
 The transaction-manager element gives the class name of the transaction
 manager jboss must use for in this configuration. This class must implement
 the javax.transaction.TransactionManager interface. The default is
 org.jboss.tm.TxManager.

 Used in: container-configuration
-->
<!ELEMENT transaction-manager (#PCDATA)>

<!--
 The web-class-loader element gives the class name of the web classloader
 jboss must use for in this configuration. This class must be a subclass
 of org.jboss.web.WebClassLoader. The default is org.jboss.web.WebClassLoader.

 Used in: container-configuration
-->
<!ELEMENT web-class-loader (#PCDATA)>
414 JBoss Administration and Development

The jboss_3_0.dtd
<!--
 The container-invoker-conf element holds configuration data for the
 container invoker.
 jboss does not read directly the subtree for this element: instead,
 it is passed to the container invoker instance (if it implements
 org.jboss.metadata.XmlLoadable) for it to load its parameters.

 The Optimized tag described here only relates to the default container
 invokers, ProxyFactory, ProxyFactoryHA and JMSContainerInvoker.

 Used in: container-configuration
-->
<!ELEMENT container-invoker-conf (JMSProviderAdapterJNDI? ,
ServerSessionPoolFactoryJNDI? , MaximumSize? , MaxMessages? , MDBConfig?)>

<!--
 Used in: container-invoker-conf for JMSContainerInvoker
-->
<!ELEMENT JMSProviderAdapterJNDI (#PCDATA)>

<!--
 Used in: container-invoker-conf for JMSContainerInvoker
-->
<!ELEMENT ServerSessionPoolFactoryJNDI (#PCDATA)>

<!--
 Used in: container-invoker-conf for JMSContainerInvoker
-->
<!ELEMENT MaxMessages (#PCDATA)>

<!--
 Used in: container-invoker-conf for JMSContainerInvoker
-->
<!ELEMENT MDBConfig (ReconnectIntervalSec , DLQConfig?)>

<!--
 Used in: MDBConfig
-->
<!ELEMENT ReconnectIntervalSec (#PCDATA)>

<!--
 Used in: MDBConfig
-->
<!ELEMENT DLQConfig (DestinationQueue , MaxTimesRedelivered , TimeToLive)>

<!--
 Used in: DLQConfig
-->
<!ELEMENT DestinationQueue (#PCDATA)>

<!--
 Used in: DLQConfig
-->
<!ELEMENT MaxTimesRedelivered (#PCDATA)>
JBoss Administration and Development 415

<!--
 Used in: DLQConfig
-->
<!ELEMENT TimeToLive (#PCDATA)>

<!--
 The container-cache-conf element holds dynamic configuration data
 for the instance cache.
 jboss does not read directly the subtree for this element: instead,
 it is passed to the instance cache instance (if it implements
 org.jboss.metadata.XmlLoadable) for it to load its parameters.

 Used in: container-configuration
-->
<!ELEMENT container-cache-conf (cache-policy? , cache-policy-conf?)>

<!--
 The implementation class for the cache policy, which controls
 when instances will be passivated, etc.

 Used in: container-cache-conf
-->
<!ELEMENT cache-policy (#PCDATA)>

<!--
 The configuration settings for the selected cache policy. This
 is currently only valid for the LRU cache.
 When the cache is the LRU one for the stateful container, the elements
 remover-period and max-bean-life specifies the period of the remover
 task that removes stateful beans (that normally have been passivated)
 that have age greater than the specified max-bean-life element.

 Used in: container-cache-conf (when cache-policy is the LRU cache)
-->
<!ELEMENT cache-policy-conf (min-capacity , max-capacity , remover-period? , max-
bean-life? , overager-period , max-bean-age , resizer-period , max-cache-miss-
period , min-cache-miss-period , cache-load-factor)>

<!--
 The minimum capacity of this cache
-->
<!ELEMENT min-capacity (#PCDATA)>

<!--
 The maximum capacity of this cache
-->
<!ELEMENT max-capacity (#PCDATA)>

<!--
 The period of the overager's runs
-->
<!ELEMENT overager-period (#PCDATA)>

<!--
416 JBoss Administration and Development

The jboss_3_0.dtd
 The period of the remover's runs
-->
<!ELEMENT remover-period (#PCDATA)>

<!--
 The max-bean-life specifies the period of the remover
 task that removes stateful beans (that normally have been passivated)
 that have age greater than the specified max-bean-life element.
-->
<!ELEMENT max-bean-life (#PCDATA)>

<!--
 The period of the resizer's runs
-->
<!ELEMENT resizer-period (#PCDATA)>

<!--
 The age after which a bean is automatically passivated
-->
<!ELEMENT max-bean-age (#PCDATA)>

<!--
 Shrink cache capacity if there is a cache miss every or more
 this member's value
-->
<!ELEMENT max-cache-miss-period (#PCDATA)>

<!--
 Enlarge cache capacity if there is a cache miss every or less
 this member's value
-->
<!ELEMENT min-cache-miss-period (#PCDATA)>

<!--
 The resizer will always try to keep the cache capacity so that
 the cache is this member's value loaded of cached objects
-->
<!ELEMENT cache-load-factor (#PCDATA)>

<!--
 The container-pool-conf element holds configuration data for the
 instance pool.
 jboss does not read directly the subtree for this element: instead,
 it is passed to the instance pool instance (if it implements
 org.jboss.metadata.XmlLoadable) for it to load its parameters.

 The default instance pools, EntityInstancePool and
 StatelessSessionInstancePool, both accept the following configuration.

 Used in: container-configuration
-->
<!ELEMENT container-pool-conf (MaximumSize , feeder-policy , feeder-policy-conf)>

<!--
 The capacity of the Pool. The pool feeder will feed the pool with new
JBoss Administration and Development 417

 instances, the pool size being limited by this value. For pools where
 reclaim is possible, the pool will also be feed when the instance is
 free to be reused.
 This is not an hard limit, if instances are needed when the pool is at
 its MaximumSize, new instances will be created following the demand.

 Used in: container-pool-conf
-->
<!ELEMENT MaximumSize (#PCDATA)>

<!--
 This element is only valid if the instance pool is a subclass of
 AbstractInstancePool.

 The feeder-policy element gives the Class that implements InstancePoolFeeder
 and is responsible to feed the pool with new instances of bean.
 If not present, no thread are started and the pool will have a size of 1.

 TimedInstancePoolFeeder is the first implementation available.

 Used in: container-pool-conf for AbstractInstancePool subclasses
-->
<!ELEMENT feeder-policy (#PCDATA)>

<!--
 This element describes properties that the InstancePoolFeeder implementation
 will read to configure itself (XmlLoadable).

 Note: the 3 attributes are hardcoded here for TimedInstancePoolFeeder.

 Used in: container-pool-conf for InstancePoolFeeder implementations
-->
<!ELEMENT feeder-policy-conf (increment , period)>

<!--
 The pool feeder will feed the pool with this number of new instances at
 a regular period.

 Used in: feeder-policy-conf
-->
<!ELEMENT increment (#PCDATA)>

<!--
 The interval of time (in milliseconds) the pool feeder look if the pool
 has come to its maximum size (capacity) and if not, will feed it with
 a particular number of new instances (increment).

 Used in: feeder-policy-conf
-->
<!ELEMENT period (#PCDATA)>

<!--
 This option is only used for entity container configurations.

418 JBoss Administration and Development

The jbosscmp-jdbc_3_0.dtd DTD
 The commit-option element tells the container which option to use for
transactions.
 Its value must be A, B C, or D.

 - option A: the entiry instance has exclusive access to the database. The
instance
 stays ready after a transaction.
 - option B: the entity instance does not have exclusive access to the database.
 The state is loaded before the next transaction.
 - option C: same as B, except the container does not keep the instance after
commit:
 a passivate is immediately performed after the commit.

 - option D: a lazy update. default is every 30 secs.
 can be updated with <optiond-refresh-rate>

 See ejb1.1 specification for details (p118).

 Used in: container-configuration
-->
<!ELEMENT commit-option (#PCDATA)>

<!--
 This element is used to specify the refresh rate of commit option d
-->
<!ELEMENT optiond-refresh-rate (#PCDATA)>

The jbosscmp-jdbc_3_0.dtd DTD
<?xml version='1.0' encoding='UTF-8' ?>

<!--
This is the XML DTD for the jbosscmp-jdbc deployment descriptor.
 <!DOCTYPE jbosscmp-jdbc PUBLIC
 "-//JBoss//DTD JBOSSCMP-JDBC 3.0//EN"
 "http://www.jboss.org/j2ee/dtd/jbosscmp-jdbc_3_0.dtd">
-->

<!--
The root element of JBossCMP-JDBC configuration files.
-->
<!ELEMENT jbosscmp-jdbc (defaults?, enterprise-beans?, relationships?,
 dependent-value-classes?, type-mappings?)>

<!--
The optional defaults elements contains the default values for
entities, and relationships.
-->
<!ELEMENT defaults ((datasource, datasource-mapping)?, create-table?,
 remove-table?, read-only?, read-time-out?, row-locking?,
JBoss Administration and Development 419

 pk-constraint?, fk-constraint?, preferred-relation-mapping?,
 read-ahead?, list-cache-max?, fetch-size?)>

<!--
The optional datasource element contains the jndi-name used to lookup
the datasource. All database connections used by an entity or relation table are
obtained from the datasource.
-->
<!ELEMENT datasource (#PCDATA)>

<!--
The optional datasource-mapping element contains the name of the type mapping
that will be used for this datasource.
-->
<!ELEMENT datasource-mapping (#PCDATA)>

<!--
Should the persistence manager attempt to create tables if they are
not present?

The create-table element must be one of the two following:
 <create-table>true</create-table>
 <create-table>false</create-table>
-->
<!ELEMENT create-table (#PCDATA)>

<!--
Should the persistence manager attempt to remove tables during shutdown?

The remove-table element must be one of the two following:
 <remove-table>true</remove-table>
 <remove-table>false</remove-table>
-->
<!ELEMENT remove-table (#PCDATA)>

<!--
Is the entity or cmp-field read-only?

The read-only element must be one of the two following:
 <read-only>true</read-only>
 <read-only>false</read-only>
-->
<!ELEMENT read-only (#PCDATA)>

<!--
Specifies the ammount of time that a read-only field is considered
valid (milliseconds).
-->
<!ELEMENT read-time-out (#PCDATA)>
420 JBoss Administration and Development

The jbosscmp-jdbc_3_0.dtd DTD
<!--
Should select statements the SELECT ... FOR UPDATE syntax?

The row-locking element must be one of the two following:
 <row-locking>true</row-locking>
 <row-locking>false</row-locking>
-->
<!ELEMENT row-locking (#PCDATA)>

<!--
Should a foreign key constraint be added for this relationship role?

The fk-constraint element must be one of the two following:
 <fk-constraint>true</fk-constraint>
 <fk-constraint>false</fk-constraint>
-->
<!ELEMENT fk-constraint (#PCDATA)>

<!--
Should a primary key constraint be added when creating tables?

The pk-constraint element must be one of the two following:
 <pk-constraint>true</pk-constraint>
 <pk-constraint>false</pk-constraint>
-->
<!ELEMENT pk-constraint (#PCDATA)>

<!--
Specifies the preferred mapping style for relationships.

The preferred-relation-mapping element must be one of the two following:
 <preferred-relation-mapping>foreign-key</preferred-relation-mapping>
 <preferred-relation-mapping>relation-table</preferred-relation-mapping>
-->
<!ELEMENT preferred-relation-mapping (#PCDATA)>

<!--
Specifies the read ahead strategy.

 <read-ahead>
 <strategy>on-load</strategy>
 <page-size>255</page-size>
 <eager-load-group>*</eager-load-group>
 </read-ahead>
-->
<!ELEMENT read-ahead (strategy, page-size?, eager-load-group?)>

<!--
Specifies the strategy used to read-ahead data in queries.
JBoss Administration and Development 421

The strategy element must be one of the two following:
 <strategy>none</strategy>
 <strategy>on-load</strategy>
 <strategy>on-find</strategy>
-->
<!ELEMENT strategy (#PCDATA)>

<!--
Specifies the number of entities that will be read in a single
read-ahead load query.
-->
<!ELEMENT page-size (#PCDATA)>

<!--
Specifies the number of simultaneous queries that can be tracked by
the cache for an entity.
-->
<!ELEMENT list-cache-max (#PCDATA)>

<!--
Specifies the number of entities to read in one round-trip to
the underlying datastore.
-->
<!ELEMENT fetch-size (#PCDATA)>

<!--
The enterprise-beans element contains the entity elements that will
be configured.
-->
<!ELEMENT enterprise-beans (entity+)>

<!--
The entity element contains the configuration of an entity
-->
<!ELEMENT entity (ejb-name, (datasource, datasource-mapping)?, create-table?,
 remove-table?, read-only?, read-time-out?, row-locking?,
 pk-constraint?, read-ahead?, list-cache-max?, fetch-size?, table-name?,
 cmp-field*, load-groups?, eager-load-group?, lazy-load-groups?,
 query*)>

<!--
Name of the entity being configured. This must match an entity declared
in the ejb-jar.xml file.
-->
<!ELEMENT ejb-name (#PCDATA)>

<!--
This is the name of the table that will hold data for this entity.
Each entity instance will be stored in one row of this table.
422 JBoss Administration and Development

The jbosscmp-jdbc_3_0.dtd DTD
-->
<!ELEMENT table-name (#PCDATA)>

<!--
The cmp-field element contains the configuration of a cmp-field.
-->
<!ELEMENT cmp-field (field-name, read-only?, read-time-out?,
 column-name?, not-null?, ((jdbc-type, sql-type) | (property+))?)>

<!--
Name of the cmp-field being configured. This must match a cmp-field
declared for this entity in the ejb-jar.xml file.
-->
<!ELEMENT field-name (#PCDATA)>

<!--
The name of the column that will hold the data for this field.
-->
<!ELEMENT column-name (#PCDATA)>

<!--
If present the field will not allow a field value.
-->
<!ELEMENT not-null EMPTY>

<!--
This is the JDBC type that is used when setting parameters in a JDBC
PreparedStatement or loading data from a JDBC ResultSet for this
cmp-field. The valid types are defined in java.sql.Types.
-->
<!ELEMENT jdbc-type (#PCDATA)>

<!--
This is the SQL type that is used in create table statements for
this field. Valid sql-types are only limited by your database vendor.
-->
<!ELEMENT sql-type (#PCDATA)>

<!--
The property element contains the configuration of a dependent
value class property of a cmp-field that is the type of a dependent
value class.
-->
<!ELEMENT property (property-name, column-name?, not-null?,
 (jdbc-type, sql-type)?)>

<!--
JBoss Administration and Development 423

Name of the property being configured. In a dependent-value-class
element this must match a JavaBean property of the class. In a
cmp-field element this must match a flattened propety of the
dependent-value-class field type.
-->
<!ELEMENT property-name (#PCDATA)>

<!--
Contains the named load groups.
-->
<!ELEMENT load-groups (load-group+)>

<!--
A named group of fields that will be loaded together.
-->
<!ELEMENT load-group (description?, load-group-name, field-name+)>

<!--
Contains the name of a load group.
-->
<!ELEMENT load-group-name (#PCDATA)>

<!--
Contains the name of the load group that will eager loaded for this entity.
-->
<!ELEMENT eager-load-group (#PCDATA)>

<!--
Contains the names of the groups that will be lazy loaded together.
-->
<!ELEMENT lazy-load-groups (load-group-name+)>

<!--
Descriptive text.
-->
<!ELEMENT description (#PCDATA)>

<!--
The query element contains the configuration of a query.
-->
<!ELEMENT query (description?, query-method,
 (jboss-ql | dynamic-ql | declared-sql)?, read-ahead?)>

<!--
The query method that being configured. This must match a
query-method declared for this entity in the ejb-jar.xml file.
-->
<!ELEMENT query-method (method-name, method-params)>
424 JBoss Administration and Development

The jbosscmp-jdbc_3_0.dtd DTD
<!--
The name of the query method that is being configured.
-->
<!ELEMENT method-name (#PCDATA)>

<!--
The method-parameters contains the parameters of the method that is
being configured. Method parameters must be in the same order as the
method and have the same type.
-->
<!ELEMENT method-params (method-param*)>

<!--
The java class of one parameter for a query.

An example follows:
 <method-param>java.lang.String</method-param>
-->
<!ELEMENT method-param (#PCDATA)>

<!--
JBossQL query. JBossQL is a superset of EJB-QL.
-->
<!ELEMENT jboss-ql (#PCDATA)>

<!--
Dynamic JBossQL query. The JBossQL is passed to the query and compiled
on the fly.
-->
<!ELEMENT dynamic-ql EMPTY>

<!--
Explicitly declared sql fragments.
-->
<!ELEMENT declared-sql (select?, from?, where?, order?, other?)>

<!--
Delcares what is to be selected. A finder may only have the distinct element.
-->
<!ELEMENT select (distinct?, (ejb-name, field-name?)?, alias?)>

<!--
Delared additional SQl to append to the generated from clause.

Example: <from>, FullAddressEJB as a</from>
-->
<!ELEMENT from (#PCDATA)>
JBoss Administration and Development 425

<!--
If the empty distinct element is present, the SELECT DISTINCT
syntax will be used. This syntax is used by default for ejbSelect
methods that return a java.util.Set.
-->
<!ELEMENT distinct EMPTY>

<!--
Declares the where clause for the query.

Example: <where>TITLE={0} OR ARTIST={0} OR TYPE={0} OR NOTES={0}</where>
-->
<!ELEMENT where (#PCDATA)>

<!--
Declares the order clause for the query.

Example: <order>TITLE</order>
-->
<!ELEMENT order (#PCDATA)>

<!--
Declares the other sql that is appended to the end of a query.

Example: <other>LIMIT 100 OFFSET 200</other>
-->
<!ELEMENT other (#PCDATA)>

<!--
Declare the alias to use for the main select table.

Example: <alias>my_table</alias>
-->
<!ELEMENT alias (#PCDATA)>

<!--
The relationships element contains the ejb-relation elements that will
be configured.
-->
<!ELEMENT relationships (ejb-relation+)>

<!--
The ejb-relation element contains the configuration of an
ejb-relation.
-->
<!ELEMENT ejb-relation (ejb-relation-name, read-only?, read-time-out?,
 (foreign-key-mapping | relation-table-mapping)?,
 (ejb-relationship-role, ejb-relationship-role)?)>
426 JBoss Administration and Development

The jbosscmp-jdbc_3_0.dtd DTD
<!--
Name of the ejb-relation being configured. This must match an
ejb-relation declared in the ejb-jar.xml file.
-->
<!ELEMENT ejb-relation-name (#PCDATA)>

<!--
Specifies that the ejb-relation should be mapped with foreign-keys.
This mapping is not available for many-to-many relationships.
-->
<!ELEMENT foreign-key-mapping EMPTY>

<!--
Specifies that the ejb-relation should be mapped with a relation-table.
-->
<!ELEMENT relation-table-mapping (table-name?,
 (datasource, datasource-mapping)?, create-table?, remove-table?,
 row-locking?, pk-constraint?)>

<!--
The ejb-rejationship-role element contains the configuration of an
ejb-relationship-role.
-->
<!ELEMENT ejb-relationship-role (ejb-relationship-role-name,
 fk-constraint?, key-fields?, read-ahead?)>

<!--
Name of the ejb-relationship-role being configured. This must match
an ejb-relationship-role declared for this ejb-relation in the
ejb-jar.xml file.
-->
<!ELEMENT ejb-relationship-role-name (#PCDATA)>

<!--
Contains the key fields. The interperation of the key fields depends
on the mapping style of the relationship.
-->
<!ELEMENT key-fields (key-field*)>

<!--
The key-field element declared the configuration of a key field.
The field-name element must match the field-name of one of the
primary key fields of the this entity.
-->
<!ELEMENT key-field (field-name,
 ((column-name, (jdbc-type, sql-type)?) | (property*))
)>
JBoss Administration and Development 427

<!--
Contains the known dependent value classes.
-->
<!ELEMENT dependent-value-classes (dependent-value-class*)>

<!--
The dependent-value-class element contains the configuration of a
dependent value class.
-->
<!ELEMENT dependent-value-class (description?, class, property+)>

<!--
Name of the java class to which the dependent value class configuration
applies.
-->
<!ELEMENT class (#PCDATA)>

<!--
The type-mappings element contains the java to sql mappings.
-->
<!ELEMENT type-mappings (type-mapping+)>

<!--
The type-mapping element contains a named java to sql mapping.
This includes both type mapping and function mapping.
-->
<!ELEMENT type-mapping (name, row-locking-template, pk-constraint-template,
 fk-constraint-template, alias-header-prefix, alias-header-suffix,
 alias-max-length, subquery-supported, true-mapping, false-mapping,
 function-mapping*, mapping+)>

<!--
Name of the type-mapping.
-->
<!ELEMENT name (#PCDATA)>

<!--
This is the template used to create a row lock on the selected rows. The
arguments supplied are as follows:

1. Select clause
2. From clasue; the order of the tables is currently not guarenteed
3. Where clause

If row locking is not supported in select statement this element should be
empty. The most common form of row locking is select for update as in the
example that follows:

SELECT ?1 FROM ?2 WHERE ?3 FOR UPDATE
-->
<!ELEMENT row-locking-template (#PCDATA)>
428 JBoss Administration and Development

The jbosscmp-jdbc_3_0.dtd DTD
<!--
This is the template used to create a primary key constraint in the create
table statement. The arguments supplied are as follows:

1. Primary key constraint name; which is always pk_{table-name}
2. Comma sepperated list of primary key column names

If a primary key constraint clause is not supported in a create table statement
this element should be empty. The most common form of a primary key constraint
follows:

CONSTRAINT ?1 PRIMARY KEY (?2)
-->
<!ELEMENT pk-constraint-template (#PCDATA)>

<!--
This is the template used to create a foreign key constraint in sepperate
statement. The arguments supplied are as follows:

1. Table name
2. Foreign key constraint name; which is always fk_{table-name}_{cmr-field-name}
3. Comma sepperated list of foreign key column names
4. References table name
5. Comma sepperated list of the referenced primary key column names

If the datasource does not support foreign key constraints this element should
be empty. The most common form of a foreign key constraint follows:

ALTER TABLE ?1 ADD CONSTRAINT ?2 FOREIGN KEY (?3) REFERENCES ?4 (?5)
-->
<!ELEMENT fk-constraint-template (#PCDATA)>

<!--
An alias header is prepended to a generated table alias by the EJB-QL compiler
to prevent name collisions. An alias header is constructed as folows:

alias-header-prefix + int_counter + alias-header-suffix
-->
<!ELEMENT alias-header-prefix (#PCDATA)>
<!ELEMENT alias-header-suffix (#PCDATA)>
<!ELEMENT alias-max-length (#PCDATA)>

<!--
Does this type-mapping support subqueries. Some EJB-QL opperators are mapped
to exists subqueries. If subquery is false the EJB-QL compiler will use a
left join and is null.

The subquery-supported element must be one of the two following:
 <create-table>true</create-table>
 <create-table>false</create-table>
-->
<!ELEMENT subquery-supported (#PCDATA)>

<!--
The true and false mappings are the mappings for true and false in EJB-QL
JBoss Administration and Development 429

queries.
-->
<!ELEMENT true-mapping (#PCDATA)>
<!ELEMENT false-mapping (#PCDATA)>

<!--
Specifies the mapping from a java type to a jdbc and a sql type.
-->
<!ELEMENT mapping (java-type, jdbc-type, sql-type)>

<!--
Specifies the java class type to be mapped.
-->
<!ELEMENT java-type (#PCDATA)>

<!--
Specifies the mapping from an EJB-QL function to a sql function.
-->
<!ELEMENT function-mapping (function-name, function-sql)>

<!--
The name of the function to be mapped.
-->
<!ELEMENT function-name (#PCDATA)>

<!--
The sql to which the function is mapped. The sql can contain
parameters specified with a question mark followed by the base one
parameter number. For example, function mapping for concat in Oracle
follows:

<function-mapping>
 <function-name>concat</function-name>
 <function-sql>(?1 || ?2)</function-sql>
</function-mapping>
-->
<!ELEMENT function-sql (#PCDATA)>

The jboss-web_3_0.dtd DTD
<?xml version='1.0' encoding='UTF-8' ?>

<!-- The JBoss specific elements used to integrate the servlet 2.3 web.xml
elements into a JBoss deployment. This version applies to the JBoss 3.x
releases.

DOCTYPE jboss-web
 PUBLIC "-//JBoss//DTD Web Application 2.3//EN"
 "http://www.jboss.org/j2ee/dtd/jboss-web_3_0.dtd"
-->
430 JBoss Administration and Development

The jboss-web_3_0.dtd DTD
<!-- The jboss-web element is the root element.
-->
<!ELEMENT jboss-web (security-domain?, context-root?, virtual-host?,
resource-env-ref*, resource-ref* , ejb-ref*)>

<!-- The context-root element specifies the context root of a web
application. This is normally specified at the ear level using the standard
J2EE application.xml descriptor, but it may be given here for standalone wars.
This should not override the application.xml level specification.
-->
<!ELEMENT context-root (#PCDATA)>

<!-- The security-domain element allows one to specify a module wide
security manager domain. It specifies the JNDI name of the security
manager that implements the org.jboss.security.AuthenticationManager and
org.jboss.security.RealmMapping interfaces for the domain.
-->
<!ELEMENT security-domain (#PCDATA)>

<!-- The virtual-host element allows one to specify which virtual host the war
should be deployed to. Example, to specify that a war should be deployed to the
www.jboss-store.org virtual host add the following virtual-host element:
 <virtual-host>www.jboss-store.org</virtual-host>
-->
<!ELEMENT virtual-host (#PCDATA)>

<!--The resource-env-ref element maps from the servlet ENC relative name
of the resource-env-ref to the deployment environment JNDI name of
the administered object resource.
Example:
 <resource-env-ref>
 <resource-env-ref-name>jms/NewsTopic</resource-env-ref-name>
 <jndi-name>topic/NewsTopic</jndi-name>
 </resource-env-ref>
-->
<!ELEMENT resource-env-ref (resource-env-ref-name , jndi-name)>

<!-- The resource-env-ref-name specifies the name of the web.xml
resource-env-ref-name element which this mapping applies.
-->
<!ELEMENT resource-env-ref-name (#PCDATA)>

<!--The resource-ref element maps from the servlet ENC relative name
of the resource-ref to the deployment environment JNDI name of
the resource manager connection factory.
Example:
 <resource-ref>
 <res-ref-name>jdbc/TheDataSource</res-ref-name>
 <jndi-name>java:/DefaultDS</jndi-name>
 </resource-ref>
-->
<!ELEMENT resource-ref (res-ref-name , jndi-name)>

<!-- The res-ref-name specifies the name of the web.xml res-ref-name element
JBoss Administration and Development 431

which this mapping applies.
-->
<!ELEMENT res-ref-name (#PCDATA)>

<!-- The ejb-ref element maps from the servlet ENC relative name
of the ejb reference to the deployment environment JNDI name of
the bean.
Example:
 <ejb-ref>
 <ejb-ref-name>ejb/Bean0</ejb-ref-name>
 <jndi-name>deployed/ejbs/Bean0</jndi-name>
 </ejb-ref>
-->
<!ELEMENT ejb-ref (ejb-ref-name , jndi-name)>

<!-- The ejb-ref-name element gives the ENC relative name used
in the web.xml ejb-ref-name element.

Used in: ejb-ref
-->
<!ELEMENT ejb-ref-name (#PCDATA)>

<!-- The jndi-name element specifies the JNDI name of the deployed
object to which the servlet ENC binding will link to via a JNDI
LinkRef.

Used in: resource-ref, resource-env-ref, ejb-ref
-->
<!ELEMENT jndi-name (#PCDATA)>

The security_config.dtd DTD
<?xml version='1.0' encoding='UTF-8' ?>

<!--Generated by XML Authority-->

<!-- This is the XML DTD for the JBoss 3.0 security policy configuration.
The DOCTYPE is:
 <!DOCTYPE policy PUBLIC
 "-//JBoss//DTD JBOSS Security Config 3.0//EN"
 "http://www.jboss.org/j2ee/dtd/security_config.dtd">

$Id: security_config.dtd,v 1.1.2.2 2002/06/27 19:21:28 starksm Exp $
$Revision: 1.1.2.2 $

The outline of the application-policy is:
<policy>
 <application-policy name="security-domain-name">
 <authentication>
 <login-module code="login.module1.class.name" flag="control_flag">
432 JBoss Administration and Development

The security_config.dtd DTD
 <module-option name = "option1-name">option1-value</module-option>
 <module-option name = "option2-name">option2-value</module-option>
 ...
 </login-module>

 <login-module code="login.module2.class.name" flag="control_flag">
 ...
 </login-module>
 ...
 </authentication>
 </application-policy>
</policy>
-->
<!-- The root element of the security policy configuration -->
<!ELEMENT policy (application-policy+)>

<!-- An application-policy defines the security configuration for an application
domain.
Currently this consists of only the login module configurations specified in the
authentication -->
<!ELEMENT application-policy (authentication)>

<!-- The application-policy name attribute gives the name of the security domain.
-->
<!ATTLIST application-policy name CDATA #REQUIRED>

<!-- The authentication element contains the login module stack configuration.
Each
login module configuration is specified using a login-module element.
-->
<!ELEMENT authentication (login-module+)>

<!-- The login-module element defines a JAAS login module configuration entry.
Each
entry must have a code and flag attribute along with zero or more login module
options
specified via the module-option element.
-->
<!ELEMENT login-module (module-option*)>

<!-- The flag attribute controls how a login module participates in the overall
authentication proceedure.
Required - The LoginModule is required to succeed.

If it succeeds or fails, authentication still continues
to proceed down the LoginModule list.

Requisite - The LoginModule is required to succeed.
If it succeeds, authentication continues down the
LoginModule list. If it fails,
control immediately returns to the application
(authentication does not proceed down the
LoginModule list).

Sufficient - The LoginModule is not required to
succeed. If it does succeed, control immediately
JBoss Administration and Development 433

returns to the application (authentication does not
proceed down the LoginModule list).
If it fails, authentication continues down the
LoginModule list.

Optional - The LoginModule is not required to
succeed. If it succeeds or fails,
authentication still continues to proceed down the
LoginModule list.

The overall authentication succeeds only if all required and requisite
LoginModules succeed. If a sufficient
LoginModule is configured and succeeds, then only the required and requisite
LoginModules prior to that
sufficient LoginModule need to have succeeded for the overall authentication to
succeed. If no required or
requisite LoginModules are configured for an application, then at least one
sufficient or optional LoginModule
must succeed.
-->
<!ATTLIST login-module flag (required | requisite | sufficient | optional)
#REQUIRED>

<!-- The code attribute gives the fully qualifed class name of the
javax.security.auth.spi.LoginModule
interface implementation for the login module.
-->
<!ATTLIST login-module code CDATA #REQUIRED>

<!-- A module option defines a name, value pair of strings that are passed to a
LoginModule when it
is initialized during the login proceedure. The name attribute defines the option
name while the
element value is the option string value.
-->
<!ELEMENT module-option (#PCDATA)>

<!-- The name attribute specifies the name of the login module option.
-->
<!ATTLIST module-option name CDATA #REQUIRED>
434 JBoss Administration and Development

Appendix C Book Example Installation
The book comes with the source code for the examples discussed in the book. The examples are
included with the book archive. When you unzip the JBossBook_304.zip archive this creates an
AdminDevel directory that contains an examples subdirectory. This is the examples directory referred
to by the book.

The only customization needed before the examples may be used it to set the location of the JBoss
server distribution. This may be done by editing the examples/build.xml file and changing the
jboss.dist property value. This is shown in bold below:
<project name="JBossBook 3.0 examples" default="build-all" basedir=".">

 <!-- Allow override from local properties file -->
 <property file=".ant.properties" />
 <!-- Override with your JBoss/Web server bundle dist location -->
 <property name="jboss.dist" value="G:/JBossReleases/jboss-3.0.4"/>
 <property name="jboss.deploy.dir" value="${jboss.dist}/server/default/deploy"/>

or by creating a ‘.ant.properties” file in the examples directory that contains a definition for the
jboss.dist property. For example:
jboss.dist=D:/usr/JBoss3.0/jboss-all/build/output/jboss-3.0.4

As of JBoss 3.0.4, part of the verification process validates that the version you are running the exam-
ples against matches what the book examples were tested against. If you have a problem running the
examples first look for the output of the validate target such as the following:
validate:
 [java] JBoss version is: 3.0.2
 [java] WARNING: requested version: 3.0.4 does not match the run.jar version:
3.0.2
 [java] Java Result: 1

This indicates that the version of JBoss is 3.0.2 while the examples were tested against JBoss 3.0.4.
Generally the examples should work against previous versions, but there are no guarantees.
JBoss Administration and Development 435

436 JBoss Administration and Development

.

. .
Index

A
AbstractWebContainer, 341

Subclassing, 347
Apache

and AJP connector, 362
and Tomcat, 362

ApplicationDeadlockException, 206, 207
Authentication, 276
Authentication and authorization, 276
Authorization, 276

B
BMP, 212

C
Catalina See Tomcat-4.x
Class Loading

and Deployers, 115
and WARs, 116
ClassCastExceptions, 46
Debugging tips, 58
Displaying information on a class, 63
IllegalAccessExceptions, 51
Java type system, 46
JBoss3.x architecture, 60
LinkageErrors, 53
Versioning, 63
Viewing the class loaders for a packge, 62

ClassLoaders
Architecture, 46

Classpath
Maintaining ordering of jars, 437

ClientLoginModule, 309
cluster, 211
CMP, 204, 212
commit-option, 203

D
Database

Example configurations, 265
DatabaseServerLoginModule, 307
Deadlock

detection, 205
deadlock, 205
Deployment

Dependencies, 87, 100
Ordering, 100

Descriptions, 35
dirty reads, 204
Dynamic MBeans, 43

example, 101
Dynamic proxies, 167

E
EJB

Container cache configuration, 187
Container commit option configuration, 190
Container configuration, 184
Container interceptor configuration, 186
Container locking policy configuration, 189
Container persistence configuration, 189
Container plugin framework, 191
DTD validation, 179
Instance pool configuration, 187
local references See ejb-local-ref
method permissions, 272
references See ejb-ref
Verifier, 180

ejb-jar.xml
ENC elements, 124
Security elements, 267

ejb-local-ref, 133
ejb-ref, 130

and JBoss descriptors, 132
Beta draft Using HyperBolic I-437

I N D E X
EmbeddedCatalinaServiceSX, 349
ENC, 122

and UserTransactions, 165
ENC See Also JNDI Application Component
Environment
env-entry, 129

H
Hot deployment, 99
HTTP

Exposing an interface, 177
RMI over HTTP for EJBs, 174
using with JNDI, 144

HTTPS
configuring for use in a client, 148

I
IdentityLoginModule, 301
Instance Per Transaction, 209
Inteceptors

Client sid, 167
Invoker

Clustered RMI/JRMP, 175, 176
In VM, 172
RMI/HTTP, 174
RMI/JRMP, 173

J
JAAS

Authentication, 278
Introduction to, 276
Login code, 279
LoginModule, 280
Principal, 277
Subject, 277

JBoss
and JMX, 78
Enabling declarative security, 276
Installing the binary, 22
license, 389
Security model, 281

JBoss Group
About, 389

JBoss Messaging
Client jars, 214
Default destinations, 214

JBossCX
Architecture, 253

JBossNS
Architecture, 139

JBossSecurity, 289
Architecture, 289

jboss-service.xml
DTD, 81

JBossSX
Custom security proxy, 286
Login modules, 301
MBeans, 295
Subject usage pattern, 311

JBossTX
Adapting a Transaction Manager, 163
Internals, 163

jboss-web.xml
context-root, 342
DTD Graphic, 341
ENC elements, 128
virtual-host, 342

jboss.xml, 167, 181, 183
bean-invoker, 172
client-interceptors, 169
commit-option, 190
Container configuration, 184
container-configuration element, 204
container-interceptors, 186
container-invoker, 186
ENC elements, 127
instance-cache, 187
instance-pool, 187
locking-policy, 189
row-locking, 212
security-domain, 190

JCA, 249
Common Client Interface, 250
Overview, 249
Sample adaptor, 257

JDBC
Eample DataSource configurations, 265
Using for authentication/authorization, 307
I-438 JBoss Administration and Development

. .
 .

. .

I N D E X
Jetty, 364
and Apache, 372
and virtual hosts, 372
Clustering, 371
Configuration, 365
Setting up SSL, 369

JMS
Connection factory names, 214
Destination management, 243
Examples, 213

JMX
Connecting using RMI, 71
console application, 67
MBeans, 43
securing the console application, 69

JNDI
Application Component Environment, 122
Discovery in a clustered environment, 142
ENC conventions, 123
ENC See JNDI Application Component Environment
ExternalContext MBean, 153
InitialContext Factory, 141
JBoss jndi.properties settings, 141, 142
Logging in with, 144
MBeans, 153
NamingAlias MBean, 155
NamingService MBean, 139
Over HTTP, 144
Overview, 119
Securing, 150
Securing and read-only, 152
Viewer MBean, 155

JSSE
jars, 335
JBoss and SSL, 334

JTA
Default MBean, 164
UserTransaction, 165
XidFactory MBean, 164

J2EE
declarative security overview, 267

K
keystore, 336

L
LDAP

and MS ActiveDirectory, 304
Using for authentication/authorization, 303

LdapLoginModule, 303
LGPL, 389
Log Files

location, 25
Login module

introduction, 280
Login modules

Writing custom login modules, 310
Login modules See JAAS

M
MBean

and using EJBs, 100
attributes and PropertyEditor, 82
JBoss Services, 80
JBoss services See MBean Services
org.jboss.deployment.SARDeployer, 80
org.jboss.deployment.scanner.URLDeploymentScanner,

99
org.jboss.ejb.EJBDeployer, 179
org.jboss.invocation.http.server.HttpInvoker, 174
org.jboss.invocation.jrmp.server JRMPInvoker, 173
org.jboss.invocation.jrmp.server.JRMPInvokerHA, 175
org.jboss.invocation.server.HttpProxyFactory, 177
org.jboss.logging.Log4jService, 98
org.jboss.mq.il.jvm.JVMServerILService, 237
org.jboss.mq.il.oil.OILServerILService, 237
org.jboss.mq.il.rmi.RMIServerILService, 237
org.jboss.mq.il.uil.UILServerILService, 238
org.jboss.mq.pm.file.CacheStore, 242
org.jboss.mq.pm.file.PersistenceManager, 242
org.jboss.mq.pm.jdbc2.PersistenceManager, 242
org.jboss.mq.pm.rollinglogged.PersistenceManager, 242
org.jboss.mq.security.SecurityManager, 240
org.jboss.mq.server.jmx.DestinationManager, 241
org.jboss.mq.server.jmx.InterceptorLoader, 240
org.jboss.mq.server.jmx.Invoker, 240
org.jboss.mq.server.jmx.Queue, 244
org.jboss.mq.server.jmx.Topic, 244
org.jboss.mq.server.MessageCache, 241
JBoss Administration and Development I-439

I N D E X
org.jboss.mq.sm.file.DynamicStateManager, 242
org.jboss.naming.ExternalContext, 153
org.jboss.naming.JNDIView, 155
org.jboss.naming.NamingAlias, 155
org.jboss.naming.NamingService, 139
org.jboss.resource.connectionmanager.BaseConnection

Manager2, 254
org.jboss.resource.connectionmanager.CachedConnectio

nManager, 256
org.jboss.resource.connectionmanager.JBossManagedC

onnectionPool, 256
org.jboss.resource.connectionmanager.LocalTxConnecti

onManager, 254
org.jboss.resource.connectionmanager.NoTxConnection

Manager, 254
org.jboss.resource.connectionmanager.RARDeployment

, 254
org.jboss.resource.connectionmanager.XATxConnection

Manager, 254
org.jboss.resource.RARDeployer, 254
org.jboss.security.auth.login.XMLLoginConfig, 298
org.jboss.security.plugins.JaasSecurityDomain, 298
org.jboss.security.plugins.JaasSecurityManagerService,

296
org.jboss.security.plugins.SecurityConfig, 300
org.jboss.security.srp SRPVerifierStoreService, 323
org.jboss.security.srp.SRPService, 322
org.jboss.services.binding.ServiceBindingManager, 375
org.jboss.system.ServiceController, 85
org.jboss.tm.TransactionManagerService, 164
org.jboss.tm.usertx.server.ClientUserTransactionService

, 165
org.jboss.tm.XidFactory, 164
org.jboss.varia.property.SystemPropertiesService, 373
org.jboss.varia.scheduler.Scheduler, 386
org.jboss.web.catalina.EmbeddedCatalinaServiceSX,

349
org.jboss.web.WebService, 99
Referencing system properties in attribute values, 82
Specifying dependencies, 87

MBean Services, 80, 84
Deployment descriptor DTD, 81

MBeans
Inspecting dependency status, 89

method permission, 272

Model MBeans, 43

O
Open MBeans, 43

P
Passivation

timeout setting, 188
Properties

Managing, 373
System, 373

ProxyLoginModule, 308

R
read-only, 208, 209
repeatable reads, 209
Resource adaptors See JBossCX
resource-env-ref, 137

and JBoss descriptors, 138
resource-ref, 135

and JBoss descriptors, 136
RFC2945 See SRP
RMI

HTTP example config, 175
JRMP compressed socket example, 173
Over SSL, 334

rollback, 203, 206
RunAsLoginModule, 309

S
SAR

definition, 81
Scheduling, 386
Security

and JDBC, 307
Disabling caching, 296
EJB permissions, 272
Enabling for EJBs and WARs, 284
Enabling in JBoss, 276
Extending login configurations, 300, 437
Flushing authentication info, 297
Introduction to JAAS, 276
I-440 JBoss Administration and Development

. .
 .

. .

I N D E X
JBoss architecture, 289
J2EE, 267
Listing active users in a security domain, 297
Setting caching policy, 296
The JBoss model, 281
Using LDAP, 303
Web content permissions, 275

Security Manager
Running with, 332

security-constraint, 275
security-identity, 270
security-role, 271
security-role-ref, 269
Servlet Containers

Integrating, 341
SRP, 319

Algorithm, 325
Example, 328
Integrating your security data, 323
JBossSX features, 320
JBossSX implementation, 320
login modules, 321
Sample login config, 322
SRPLoginModule options, 321

SRPLoginModule, 321
SSL

and EJBs, 334
and JaasSecurityDomain, 298
and Tomcat-4.x, 355
JSSE, 334

Standard MBeans, 43
standardjboss.xml, 167, 181, 183
Startup

Process, 79

T
Timers, 386
Tomcat

Service descriptor, 351
tomcat4-service.xml, 351
Tomcat-4.x, 349

and Apache, 362
and virtual hosts, 360
Clustering, 363

Configuring, 351
Setting up SSL, 355

Transaction
Overview, 159

transaction, 203, 204

U
UCL. See UnfiedClassLoader3
UnifiedClassLoader3, 60
UnifiedLoaderRepository3, 60
UsersRolesLoginModule, 302
UserTransaction

Support, 165

V
virtual-host See jboss-web.xml

W
web.xml

ENC elements, 125
Security elements, 267

Symbols
_Ref14147311, 88
_Ref14316631, 168
_Ref531881900, 39
_Ref531881929, 39
_Ref531882336, 1
_Ref531882343, 39
_Ref531882356, 39
_Ref531884791, 1
_Ref531888440, 129
_Ref531889085, 131
_Ref531889588, 136
_Ref531893049, 1
_Ref531893050, 1
_Ref531894198, 39
_Ref531894211, 39
_Ref531894298, 39
_Ref531894299, 39
_Ref531894553, 39
JBoss Administration and Development I-441

I N D E X
_Ref531894559, 39
_Ref531980767, 1
_Ref532057444, 1
_Ref532057463, 1
_Ref532115599, 1
_Toc12954346, 203
_Toc16371419, 88
_Toc16371429, 122
_Toc16371433, 131
_Toc16371439, 136
_Toc16371531, 129
_Toc16371567, 1
_Toc16371640, 69
_Toc16371645, 80
_Toc16371672, 127
_Toc16371675, 130
_Toc16371676, 132
_Toc16371677, 133
_Toc16371678, 135
_Toc16371679, 136
_Toc16371680, 137
_Toc16371681, 138
_Toc16371682, 139
_Toc16371683, 141
_Toc16371684, 153
_Toc16371685, 153
_Toc16371701, 167
_Toc16371702, 171
_Toc16371704, 172
_Toc16371705, 173
_Toc16371706, 179
_Toc16371707, 179
_Toc16371732, 203
_Toc524956939, 39
_Toc524956993, 172
_Toc524956997, 179
_Toc524956998, 179
_Toc524957006, 187
_Toc525010750, 39
_Toc525010824, 172
_Toc525010828, 179
_Toc525010829, 179

_Toc525010837, 187
_Toc531624252, 1
_Toc531879907, 1
_Toc532053731, 1
_Toc532053785, 179
_Toc532053791, 139
_Toc532053792, 141
_Toc532053793, 153
_Toc532053794, 153
10382

Listing
LISTING 5-7. The org.jboss.ejb.In-

stancePool interface, 193
10447

Listing
LISTING 8-13. The chap8-ex2 secu-

rity domain and login module
configuration, 319

10813
Listing

LISTING 8-4. An example ejb-
jar.xml descriptor fragment
which illustrates the method-,
273

11440
Figure

FIGURE 2-13. An illustration of the
class loaders involved with an
EAR deployment, 116

11874
Listing

LISTING 8-19. A sample JaasSecuri-
tyDomain config for RMI/SSL,
337

12041
Figure

FIGURE 6-1. The relationship be-
tween a J2EE application server
and a JCA resource adaptor,
I-442 JBoss Administration and Development

. .
 .

. .

I N D E X
251
12597

Figure
FIGURE 3-3. The ENC elements in

the JBoss 3.0 jboss.xml deploy-
ment descriptor., 128

12640
Listing

LISTING 11-1. The GNU lesser gen-
eral public license text, 389

12746
Heading3

JBoss MBean Services, 80
13862

Listing
LISTING 2-7. An example of using

the depends element to specify
the complete configuration of,
88

14283
Figure

FIGURE 8-9. An LDAP server con-
figuration compatible with the
testLdap sample, 306

14316
ChapterTitle

CHAPTER 5 EJBs on JBoss - The EJB
Container Configuration and,
167

14640
Heading2

Accessing JNDI over HTTP, 144
15100

Listing
LISTING 2-11. The default jboss-ser-

vice.xml configuration file
from the standard JBoss, 94

15928
Figure

FIGURE 2-11. The deployment layer
classes, 113

16550
Listing

LISTING 8-11. The chap8-ex2 se-
cured client access output, 318

16738
Listing

LISTING 9-1. Key methods of the
AbstractWebContainer class.,
342

16968
Listing

LISTING 2-3. The RMIAdaptor in-
terface, 71

17588
Figure

FIGURE 2-1. The JBoss JMX inte-
gration bus and the standard
JBoss components., 40

17642
Heading1

The JBoss Security Model, 281
18906

Figure
FIGURE 2-5. The MBean view for

the “jboss.system
type=Server” MBean, 69

19047
Heading4

Managed Beans or MBeans, 43
19155

Listing
LISTING 3-4. ENC env-entry access

code fragment, 130
19268

Listing
LISTING 6-1. A P2P JMS client ex-

ample, 214
JBoss Administration and Development I-443

I N D E X
19342
Heading1

The Secure Remote Password (SRP)
Protocol, 319

19627
Figure

FIGURE 3-2. The ENC elements in
the standard servlet 2.3
web.xml deployment descrip-
tor., 127

21405
Listing

LISTING 1. An example web.xml de-
scriptor for secured access to
the JNDI servlets, 150

21725
Figure

FIGURE 9-2. An overview of the
Tomcat-4.0.4 configuration
DTD supported by the, 351

22376
Figure

FIGURE 8-1. A subset of the EJB 2.0
deployment descriptor content
model that shows the, 268

22454
Figure

FIGURE 7-5. A sequence diagram il-
lustrating the key interactions
between the JBossCX, 264

22919
Listing

LISTING 2-6. Service descriptor
fragments illustrating the usage
of the depends and depends-list,
88

23401
Figure

FIGURE 1. The HTTP invoker

proxy/server structure for a
JNDI Context, 145

23766
Figure

FIGURE 3-7. The relationship be-
tween configuration files and
JNDI/HTTP component, 146

24414
Listing

LISTING 3-2. ENC access sample
code, 123

24664
Listing

LISTING 6-3. A JMS publisher client,
219

24897
Figure

FIGURE 7-4. The file system RAR
class diagram, 257

25023
Figure

FIGURE 2-8. A sequence diagram
highlighting the main activities
performed by the, 83

25892
Listing

LISTING 3-6. ENC ejb-ref access
code fragment, 132

25932
Listing

LISTING 2-2. The jmx-console.war
web.xml and jboss-web.xml
descriptors with the security, 70

26141
Heading1

Entity Bean Locking and Deadlock De-
tection, 202

26222
Heading2
I-444 JBoss Administration and Development

. .
 .

. .

I N D E X
Connecting to the JMX Server, 67
26246

Listing
LISTING 7-1. The nontransactional

file system resource adaptor de-
ployment descriptor., 258

26596
Listing

LISTING 6-9. login-config.xml
JBossMQ Default settings, 241

27948
Listing

LISTING 5-17. The Instance Per
Transaction configuration , 210

29252
Listing

LISTING 5-12. The “Standard CMP
2.x EntityBean” interceptor
definition, 204

29620
Figure

FIGURE 3-1. The ENC elements in
the standard ejb-jar.xml 2.0 de-
ployment descriptor., 125

29962
Figure

FIGURE 2-4. A complete class loader
view, 65

30000
Listing

LISTING 6-7. The MDB ejb-jar.xml
and jboss.xml descriptors, 227

30566
Heading3

Distributed Services Level, 42
31179

Figure
FIGURE 3-7. The HTTP JMX

MBean view of the JNDIView

MBean., 157
32316

Figure
FIGURE 2-4. The default class Load-

erRepository MBean view in
the JMX console, 62

32696
Listing

LISTING 9-9. An example Embed-
dedCatalinaSX MBean config-
uration that supports
integration, 362

32737
Listing

LISTING 3-15. sample jboss.xml re-
source-env-ref descriptor frag-
ment, 138

32790
Listing

LISTING 3-3. ejb-jar.xml env-entry
fragment, 130

33672
Listing

LISTING 8-1. An example ejb-
jar.xml and web.xml descriptor
fragments which illustrate the,
270

33934
Figure

FIGURE 8-5. The security element
subsets of the JBoss server
jboss.xml and jboss-web.xml,
285

35206
Listing

LISTING 2-1. A ClassCastException
due to duplicate class loaders,
47
JBoss Administration and Development I-445

I N D E X
35417
Heading4

Specifying Service Dependencies, 87
35586

Figure
FIGURE 5-5. The jboss_3_0 DTD el-

ements related to container con-
figuration., 181

35632
Listing

LISTING 8-6. An illustration of the
steps of the authentication pro-
cess from the application, 279

35898
Listing

LISTING 8-12. The chap8-ex2 server
side behavior of the Jndi-
UserAndPass, 318

36191
Listing

LISTING 2-1. An example jboss-
app.xml descriptor for enabled
scoped class loading at the ear,
64

36475
Listing

LISTING 3-9. ENC ejb-local-ref ac-
cess code fragment, 134

37332
Listing

LISTING 5-8. The org.jboss.ejb.In-
stanceCache interface, 194

37449
Listing

LISTING 5-11. The
org.jboss.ejb.StatefulSession-
PersistenceManager interface,
201

37795

Figure
FIGURE 2-6. The jmx-console basic

HTTP login dialog presented
after making the changes, 71

38209
Figure

FIGURE 2-3. The JBoss 3.x core
class loading components, 60

40029
Listing

LISTING 5-2. The org.jboss.invoca-
tion.Invoker interface, 171

40329
Listing

LISTING 5-1. the client-interceptors
from the “Standard Stateless
SessionBean” configuration.,
170

41884
Listing

LISTING 5-15. Defining entity bean
methods as read-only, 209

41888
Figure

FIGURE 1-1. a view of the JBoss
server installation directory
structure with the default serv-
er, 23

42267
Listing

LISTING 5-16. An example of using
the Instance Per Transaction
policy available in JBoss, 210

42354
Listing

LISTING 2-9. An example log4j.xml
configuration fragment for en-
abling verbose class loading, 59

43654
I-446 JBoss Administration and Development

. .
 .

. .

I N D E X
Listing
LISTING 5-3. An example of a com-

plex container-configuration el-
ement from the server/default/,
182

44106
Heading2

Enabling Declarative Security in JBoss,
276

44361
Listing

LISTING 3-12. sample jboss-
web.xml resource-ref descrip-
tor fragment, 137

44848
Listing

LISTING 2-16. The org.jboss.deploy-
ment.SubDeployer interface,
114

45262
Listing

LISTING 3. A jboss.xml stateless ses-
sion configuration for HA-
RMI/HTTP, 176

45732
Figure

FIGURE 8-5. The relationship be-
tween the JBossSX framework
implementation classes and the,
284

46620
Listing

LISTING 6-4. A JMS subscriber cli-
ent, 220

47493
Listing

LISTING 3-16. A JNDI client that
uses HTTPS as the transport,
148

47825
Listing

LISTING 9-5. The JaasSecurity-
Doman and EmbeddedCatali-
naSX MBean configurations
for, 357

48110
Listing

LISTING 3-14. ENC resource-env-
ref access code fragment, 138

49149
Listing

LISTING 2-16. ExternalContext
MBean configurations, 154

49532
Listing

LISTING 9-7. An example jboss-
web.xml descriptor for deploy-
ing a WAR to the, 361

51013
Figure

FIGURE 8-11. The SRP client-server
authentication algorithm se-
quence diagram., 326

51484
Figure

FIGURE 5-6. The jboss.xml descrip-
tor EJB to container configura-
tion mapping elements, 184

51557
Figure

FIGURE 3-1. the ENC elements in the
standard EJB 2.0 ejb-jar.xml
deployment descriptor., 124

51561
Figure

FIGURE 3-6. The HTTP JMX agent
view of the configured JBoss
MBeans., 156
JBoss Administration and Development I-447

I N D E X
51674
Figure

FIGURE 9-1. The complete jboss-
web.xml descriptor DTD., 342

51820
Figure

FIGURE 9-3. The Internet Explorer
5.5 security alert dialog., 359

51995
Figure

FIGURE 5-2. The jboss.xml descrip-
tor client side interceptor con-
figuration elements., 169

52073
Listing

LISTING 8-8. The jboss.xml descrip-
tor which configures the Echo-
SecurityProxy as the custom,
287

52266
Listing

LISTING 3-13. An example ejb-
jar.xml resource-env-ref frag-
ment, 137

53580
Listing

LISTING 8-16. The chap8-ex3 client
side and server side SRP login
module configurations, 330

53590
Figure

FIGURE 3-8. The HTTP JMX view
of the JNDIView list operation
output., 158

53871
Listing

LISTING 5-5. The org.jboss.ejb.Con-
tainerPlugin interface, 191

54539

Listing
LISTING 2-9. JNDIMap MBean in-

terface and implementation
based on the ServiceMBean, 92

55054
Figure

FIGURE 2-7. the DTD for the MBean
service descriptor parsed by the
SARDeployer., 81

55175
Figure

FIGURE 1-3. the testsuite CVS mod-
ule directory structure, 35

55535
Listing

LISTING 9-12. Using the Security-
DomainListener configure SSL
for Jetty, 370

55676
Figure

FIGURE 1-4. An example testsuite
run report status html view as
generated by the testsuite., 38

56639
Listing

LISTING 3-8. An example ejb-
jar.xml ejb-local-ref descriptor
fragment, 134

56689
Listing

LISTING 5-9. The org.jboss.ejb.Enti-
tyPersistenceManager inter-
face, 195

56871
Listing

LISTING 2-13. A DynamicMBean
service that uses and EJB, 101

57439
Listing
I-448 JBoss Administration and Development

. .
 .

. .

I N D E X
LISTING 6-5. A durable topic JMS
client example, 222

57693
Listing

LISTING 2-2. The ExCtx class used
by the ExCCEc example main
class, 48

59049
Figure

FIGURE 10-2. How the ServiceCon-
figurator queries the Service-
BindingManager, 376

59197
TableTitle

TABLE 1-1. The JBoss server installa-
tion top-level directories and
descriptions, 24

59245
Figure

FIGURE 5-3. The transport invoker
server side architecture, 172

59638
Figure

FIGURE 8-7. An illustration of the
steps involved in the authenti-
cation and authorization of a,
293

59799
Figure

FIGURE 6-2. The JCA 1.0 specifica-
tion class diagram for the con-
nection management, 252

60442
Listing

LISTING 2-4. A JMX client that uses
the RMIAdaptor, 75

61643
Listing

LISTING 5-3. A custom JRMPInvok-

er example that enables com-
pressed sockets for session, 173

61878
Listing

LISTING 8-14. The chap8-ex3 jar
contents, 329

61987
Heading3

The Login InitialContext Factory Im-
plementation, 144

62395
Listing

LISTING 2. The additional web.xml
descriptor elements needed for
read-only access, 152

62496
Figure

FIGURE 8-2. A subset of the Servlet
2.2 deployment descriptor con-
tent model that shows the, 269

62688
Listing

LISTING 2-9. Obtaining debugging
information for a Class, 58

63556
ChapterTitle

CHAPTER 4 Transactions on JBoss -
The JTA Transaction Service,
159

64093
Listing

LISTING 10-2. The docs/exam-
ples/binding-service/sample-
bindings.xml file, 378

64551
Listing

LISTING 8-3. An example ejb-
jar.xml and web.xml descriptor
fragments which illustrate the,
JBoss Administration and Development I-449

I N D E X
272
64807

Listing
LISTING 5-4. An example of overrid-

ing the standardjboss.xml con-
tainer stateless session beans,
184

64809
Listing

LISTING 2-15. The DynamicMBean
jboss-service.xml descriptor,
109

65079
Listing

LISTING 7-2. The nontransactional
file system resource adaptor
MBeans service descriptor.,
259

65188
Listing

LISTING 2-8. JNDIMapMBean in-
terface and implementation
based on the service interface,
90

65898
Figure

FIGURE 1-4. an example testsuite run
report status html view as gen-
erated by the tests target, 37

66556
Listing

LISTING 3-7. An example jboss.xml
ejb-ref fragment, 133

67400
Listing

LISTING 8-17. The modifications to
the Win32 run.bat start script to
run JBoss with a Java 2, 332

67429
Listing

LISTING 5-3. A sample jboss.xml de-
scriptor for enabling RMI/HT-
TP for a stateless session, 175

67721
Listing

LISTING 2-7. A concrete example of
a LinkageError, 55

68275
Listing

LISTING 10-4. The Listing 10-3 Ex-
Schedulable class code, 387

70229
Figure

FIGURE 10-1. Class diagram for the
ServiceBindingManager, 375

70291
Listing

LISTING 6-11. Sample Destination
Security Configuration, 245

70394
Figure

FIGURE 5-1. The composition of an
EJBHome proxy in JBoss., 168

72297
Listing

LISTING 2-4. The chap2-ex0c.log
debugging output for the ExObj
classes seen, 50

74006
Listing

LISTING 2-14. the standard MBean
interface for Listing 2-13, 107

74319
Listing

LISTING 8-10. A JndiUserAndPass
custom login module, 316

75378
I-450 JBoss Administration and Development

. .
 .

. .

I N D E X
Listing
LISTING 6-6. A TextMessage pro-

cessing MDB, 225
75813

Heading3
The Core JBoss MBeans, 94

77080
Listing

LISTING 5-13. The org.jboss.ejb.plu-
gins.lock.BeanLockSupport
deadlockDetection method, 206

77219
Listing

LISTING 9-2. A psuedo-code de-
scription of authenticating a
user via the JBossSX API and
the, 348

77544
Listing

LISTING 8-5. A web.xml descriptor
fragment which illustrates the
use of the security-constraint,
275

77905
Figure

FIGURE 5-4. The jboss.xml descrip-
tor container invoker configu-
ration elements., 172

79739
Figure

FIGURE 7-3. The JBoss JCA imple-
mentation components, 253

80884
Listing

LISTING 6-10. Default SqlProper-
ties, 243

81000
Listing

LISTING 5-10. The org.jboss.ejb.En-

tityPersistanceStore interface,
198

81070
Figure

FIGURE 2-5. Key components in the
JBossNS architecture., 139

81355
Listing

LISTING 9-3. A psuedo-code de-
scription of authorization a user
via the JBossSX API and the,
349

81948
Heading2

Writing Custom Login Modules, 310
82667

Listing
LISTING 2-6. Classes demonstrating

the need for loading constraints,
54

82938
Listing

LISTING 2-10. The example 1 JNDI-
Map MBean service descriptor
and a client usage code, 94

83109
Listing

LISTING 7-3. The stateless session
bean echo method code which
shows the access of the re-
source, 262

83598
TableTitle

TABLE 1-2. common subdirectories
used by server configuration
sets, 25

83904
Figure

FIGURE 8-10. The JBossSX compo-
JBoss Administration and Development I-451

I N D E X
nents of the SRP client-server
framework., 321

84580
Figure

FIGURE 8-8. The XMLLoginConfig
DTD, 299

85185
Figure

FIGURE 8-3. The key security model
interfaces and their relationship
to the JBoss server EJB, 282

86686
Figure

FIGURE 2-4. The JBoss JMX console
web application agent view, 68

87045
Figure

FIGURE 2-10. The EjbMBeanAdap-
tor MBean operations JMX
console view, 112

87204
Listing

LISTING 9-6. An example virtual
host configuration., 360

87634
Listing

LISTING 10-3. An example Schedul-
er jboss-service descriptor, 387

88226
Table

TABLE 5-1. An example blocked
transaction graph, 206

89120
Listing

LISTING 3-10. A web.xml resource-
ref descriptor fragment, 135

89276
Heading1

The JBoss Security Extension Archi-

tecture, 289
89326

Figure
FIGURE 8-12. A sequence diagram

illustrating the interaction of
the SRPCacheLoginModule,
328

90675
Figure

FIGURE 2-9. The interaction be-
tween the SARDeployer and
ServiceController to start a ser-
vice., 86

90896
Figure

FIGURE 5-7. Deadlock definition ex-
ample, 205

91455
ChapterTitle

CHAPTER 8 Security on JBoss - J2EE
Security Configuration and, 267

92328
Listing

LISTING 10-1. An example System-
PropertiesService jboss-ser-
vice descriptor, 373

93634
Listing

LISTING 6-8. A JMS client that inter-
acts with the TextMDB, 228

93872
Listing

LISTING 9-4. The JaasSecurity-
Doman and EmbeddedCatali-
naSX MBean configurations
for, 356

94158
Listing

LISTING 8-2. An example ejb-
I-452 JBoss Administration and Development

. .
 .

. .

I N D E X
jar.xml descriptor fragment
which illustrates the security-
identity, 271

94762
Listing

LISTING 8-18. The modifications to
the UNIX/Linux run.sh start
script to run JBoss with a Java,
332

94902
Listing

LISTING 2-5. The org.jboss.sys-
tem.Service interface, 84

96216
Listing

LISTING 8-9. A sample login module
configuration suitable for use
with XMLLoginConfig, 299

96675
Listing

LISTING 8-15. The chap8-ex3.sar
jboss-service.xml descriptor for
the SRP services, 329

96684
Figure

FIGURE 8-6. The relationship be-
tween the security-domain
component deployment de-
scriptor, 291

96980
Listing

LISTING 2-12. An example ear with
an MBean that depends on an
EJB, 100

97158
Listing

LISTING 8-7. The example 1 custom
EchoSecurityProxy implemen-
tation that enforces the echo,
286

97613
Figure

FIGURE 2-2. The Relationship be-
tween the components of the
JMX architecture, 41

97831
ChapterTitle

CHAPTER 9 Integrating Servlet Con-
tainers, 341

98799
Heading5

Scoping Classes Using EARs, 63
98860

Figure
FIGURE 9-4. The Internet Explorer

5.5 SSL certificate details dia-
log., 360

99337
Listing

LISTING 5-6. The org.jboss.ejb.In-
terceptor interface, 192

99701
Listing

LISTING 8-19. The jboss-ser-
vice.xml and jboss.xml config-
urations to enable SSL with the,
337
JBoss Administration and Development I-453

	JBoss Administration and Development Second Edition
	Contents
	List of Listings
	List of Figures

	CHAPTER i Preface
	Forward
	About the Authors
	About Open Source
	About JBoss
	JBoss: A Full J2EE Implementation with JMX
	What this Book Covers

	CHAPTER 1 Installing and Building the JBoss Server
	Getting the Binary
	Prerequisites
	Installing the Binary Package
	Directory Structure

	The Default Server Configuration File Set
	conf/jboss-minimal.xml
	conf/jboss-service.xml
	conf/jbossmq-state.xml
	conf/jndi.properties
	conf/log4j.xml
	conf/login-config.xml
	conf/server.policy
	conf/standardjaws.xml
	conf/standardjbosscmp-jdbc.xml
	conf/standardjboss.xml
	deploy/http-invoker.sar
	deploy/jbossweb.sar
	deploy/jmx-console.war
	deploy/jmx-rmi-adaptor.sar
	deploy/counter-service.xml
	deploy/ejb-management.jar
	deploy/hsqldb-service.xml
	deploy/jboss-jca.sar
	deploy/jboss-local-jdbc.rar
	deploy/jboss-xa.rar
	deploy/jbossmq-destinations-service.xml
	deploy/jbossmq-service.xml
	deploy/jms-ra.rar
	deploy/jms-service.xml
	deploy/jmx-ejb-adaptor.jar, deploy/jmx-ejb-connector-server.sar
	deploy/jmx-invoker-adaptor-servier.sar
	deploy/mail-service.xml
	deploy/properties-service.xml
	deploy/scheduler-service.xml
	deploy/user-service.xml

	Basic Installation Testing
	Building the Server from Source Code
	Accessing the JBoss CVS Repositories at SourceForge
	Understanding CVS
	Anonymous CVS Access
	Obtaining a CVS Client
	Building the JBoss-3.0.7 Distribution Using the Source Code
	Building the JBoss-3.0.7 Distribution Using the CVS Source Code
	Building the JBoss-3.0.7/Tomcat-4.1.24 Integrated Bundle
	An Overview of the JBoss CVS Source Tree

	Using the JBossTest unit testsuite

	CHAPTER 2 The JBoss JMX Microkernel
	JMX
	An Introduction to JMX
	Instrumentation Level
	Agent Level
	Distributed Services Level
	JMX Component Overview
	Managed Beans or MBeans
	Notification Model
	MBean Metadata Classes
	MBean Server
	Agent Services

	JBoss JMX Implementation Architecture
	The JBoss ClassLoader Architecture
	Class Loading and Types in Java
	ClassCastExceptions - I’m Not Your Type
	IllegalAccessException - Doing what you should not
	LinkageErrors - Making Sure You Are Who You Say You Are
	Inside the JBoss Class Loading Architecture

	Connecting to the JMX Server
	Inspecting the Server - the JMX Console Web Application
	Securing the JMX Console

	Connecting to JMX Using RMI

	Using JMX as a Microkernel
	The Startup Process
	JBoss MBean Services
	The SARDeployer MBean
	The Service Life Cycle Interface
	The ServiceController MBean
	Specifying Service Dependencies
	Identitifying Unsatisfied Dependencies

	Writing A JBoss MBean Service
	A Custom MBean Example

	The Core JBoss MBeans
	org.jboss.logging.Log4jService
	org.jboss.web.WebService
	org.jboss.deployment.scanner.URLDeploymentScanner

	Deployment Ordering and Dependencies

	The JBoss Deployer Architecture
	Deployers and ClassLoaders

	CHAPTER 3 Naming on JBoss - The JNDI Naming Service
	An Overview of JNDI
	The JNDI API
	Names
	Contexts
	Obtaining a Context using InitialContext

	J2EE and JNDI - The Application Component Environment
	ENC Usage Conventions
	The ejb-jar.xml ENC Elements
	The web.xml ENC Elements
	The jboss.xml ENC Elements
	The jboss-web.xml ENC Elements
	Environment Entries
	EJB References
	EJB References with jboss.xml and jboss-web.xml
	EJB Local References
	Resource Manager Connection Factory References
	Resource Manager Connection Factory References with jboss.xml and jboss-web.xml
	Resource Environment References
	Resource Environment References and jboss.xml, jboss-web.xml

	The JBossNS Architecture
	The Naming InitialContext Factories
	Naming Discovery in Clustered Environments
	The HTTP InitialContext Factory Implementation
	The Login InitialContext Factory Implementation

	Accessing JNDI over HTTP
	Accessing JNDI over HTTPS

	Securing Access to JNDI over HTTP
	Securing Access to JNDI with a Read-Only Unsecured Context
	Additional Naming MBeans
	org.jboss.naming.ExternalContext MBean
	The org.jboss.naming.NamingAlias MBean
	The org.jboss.naming.JNDIView MBean

	CHAPTER 4 Transactions on JBoss - The JTA Transaction Service
	Transaction/JTA Overview
	Pessimistic and optimistic locking
	The components of a distributed transaction
	The two-phase XA protocol
	Heuristic exceptions
	Transaction IDs and branches

	JBoss Transaction Internals
	Adapting a Transaction Manager to JBoss
	The Default Transaction Manager
	org.jboss.tm.XidFactory

	UserTransaction Support

	CHAPTER 5 EJBs on JBoss - The EJB Container Configuration and Architecture
	The EJB Client Side View
	The EJB Server Side View
	Detached Invokers - The Transport Middlemen
	The LocalInvoker - In VM transport
	The JRMPInvoker - RMI/JRMP Transport
	The HttpInvoker - RMI/HTTP Transport
	The HA JRMPInvoker - Clustered RMI/JRMP Transport
	The HA HttpInvoker - Clustered RMI/HTTP Transport
	HttpProxyFactory - Building Dynamic HTTP Proxies
	Steps to Expose Any RMI Interface HTTP

	The EJB Container
	EJBDeployer MBean
	Verifying EJB deployments
	Deploying EJBs Into Containers
	Container configuration information
	The container-name Element
	The call-logging Element
	The container-invoker and container-invoker-conf Elements
	The container-interceptors Element
	The instance-pool and container-pool-conf Elements
	The instance-cache and container-cache-conf Elements
	The persistence-manager Element
	The transaction-manager Element
	The locking-policy Element
	The commit-option and optiond-refresh-rate Element
	The security-domain Element

	Container Plug-in Framework
	org.jboss.ejb.ContainerPlugin
	org.jboss.ejb.Interceptor
	org.jboss.ejb.InstancePool
	org.jboss.ebj.InstanceCache
	org.jboss.ejb.EntityPersistenceManager
	org.jboss.ejb.StatefulSessionPersistenceManager

	Entity Bean Locking and Deadlock Detection
	Why JBoss Needs Locking
	Entity Bean Lifecycle
	Default Locking Behavior
	Method Lock
	Transaction Lock

	Pluggable Interceptors and Locking Policy
	Deadlock
	Dedlock Detection
	Catching ApplicationDeadlockException
	Viewing Lock Information

	Advanced Configurations and Optimizations
	Short-lived Transactions
	Ordered Access
	Read-Only Beans
	Explicitly Defining Read-Only Methods
	Instance Per Transaction Policy

	Running Within a Cluster
	Troubleshooting
	Locking Behavior Not Working
	IllegalStateException
	Hangs and Transaction Timeouts

	CHAPTER 6 Messaging on JBoss - JMS Configuration and Architecture
	JMS Examples
	A Point-To-Point Example
	A Pub-Sub Example
	A Pub-Sub With Durable Topic Example
	A Point-To-Point With MDB Example

	JBoss Messaging Overview
	Invocation Layer
	RMI IL
	OIL IL
	UIL IL
	UIL2 IL
	JVM IL

	Security Manager
	Destination Manager
	Message Cache
	State Manager
	Persistence Manager
	File PM
	Rolling Logged PM
	JDBC2 PM

	Destinations
	Queues
	Topics

	JBoss Messaging Configuration and MBeans
	org.jboss.mq.il.jvm.JVMServerILService
	org.jboss.mq.il.rmi.RMIServerILService
	org.jboss.mq.il.oil.OILServerILService
	org.jboss.mq.il.uil.UILServerILService
	org.jboss.mq.il.uil2.UILServerILService
	org.jboss.mq.server.jmx.Invoker
	org.jboss.mq.server.jmx.InterceptorLoader
	org.jboss.mq.security.SecurityManager
	org.jboss.mq.server.jmx.DestinationManager
	org.jboss.mq.server.MessageCache
	org.jboss.mq.pm.file.CacheStore
	org.jboss.mq.sm.file.DynamicStateManager
	org.jboss.mq.pm.file.PersistenceManager
	org.jboss.mq.pm.rollinglogged.PersistenceManager
	org.jboss.mq.pm.jdbc2.PersistenceManager
	Destination MBeans
	org.jboss.mq.server.jmx.Queue
	org.jboss.mq.server.jmx.Topic
	Destination Security Configuration

	Administration Via JMX
	Creating Queues At Runtime
	Creating Topics At Runtime
	Managing a JBossMQ User IDs at Runtime
	Checking how many messages are on a Queue
	Checking to see how the Message Cache is performing

	CHAPTER 7 Connectors on JBoss - The JCA Configuration and Architecture
	JCA Overview
	An Overview of the JBossCX Architecture
	BaseConnectionManager2 MBean
	RARDeployment MBean
	JBossManagedConnectionPool MBean
	CachedConnectionManager MBean
	A Sample Skeleton JCA Resource Adaptor
	Example Configurations

	CHAPTER 8 Security on JBoss - J2EE Security Configuration and Architecture
	J2EE Declarative Security Overview
	Security References
	Security Identity
	Security roles
	EJB method permissions
	Web Content Security Constraints
	Enabling Declarative Security in JBoss

	An Introduction to JAAS
	What is JAAS?
	The JAAS Core Classes
	Subject and Principal
	Authentication of a Subject

	The JBoss Security Model
	Enabling Declarative Security in JBoss Revisited

	The JBoss Security Extension Architecture
	How the JaasSecurityManager Uses JAAS
	The JaasSecurityManagerService MBean
	An Extension to JaasSecurityManager, the JaasSecurityDomain MBean
	An XML JAAS Login Configuration MBean
	The JAAS Login Configuration Management MBean
	Using and Writing JBossSX Login Modules
	org.jboss.security.auth.spi.IdentityLoginModule
	org.jboss.security.auth.spi.UsersRolesLoginModule
	org.jboss.security.auth.spi.LdapLoginModule
	org.jboss.security.auth.spi.DatabaseServerLoginModule
	org.jboss.security.auth.spi.ProxyLoginModule
	org.jboss.security.auth.spi.RunAsLoginModule
	org.jboss.security.ClientLoginModule

	Writing Custom Login Modules
	Support for the Subject Usage Pattern
	A Custom LoginModule Example

	The Secure Remote Password (SRP) Protocol
	Providing Password Information for SRP
	Inside of the SRP algorithm
	An SRP example

	Running JBoss with a Java 2 security manager
	Using SSL with JBoss using JSSE

	CHAPTER 9 Integrating Servlet Containers
	The AbstractWebContainer Class
	The AbstractWebContainer Contract
	Creating an AbstractWebContainer Subclass
	Use the Thread Context Class Loader
	Integrate Logging Using log4j
	Delegate web container authentication and authorization to JBossSX

	JBoss/Tomcat-4.0.x bundle notes
	The Embedded Tomcat Configuration Elements
	Server
	Service
	Connector
	The HTTP Connector
	The AJP Connector
	The Warp Connector

	Engine
	Host
	Alias

	DefaultContext
	Manager

	Logger
	Valve
	Listener

	Using SSL with the JBoss/Tomcat bundle
	Setting up Virtual Hosts with the JBoss/Tomcat-4.x bundle
	Using Apache with the JBoss/Tomcat-4.x bundle
	Using Clustering

	JBoss/Jetty-4.0.0 Bundle Notes
	Integration with JBoss
	Deployment
	Configuration
	Unpacking wars on deployment
	Classloading behaviour
	Changing the default HTTP listener port
	Changing other HTTP listener port attributes
	Using SSL
	Using JAAS
	Using Distributed HttpSessions

	Other Jetty Configuration Tips
	Deploying a war to context '/'
	Using virtual hosts
	Running on port 80
	Running with Apache front-ending Jetty

	CHAPTER 10 MBean Services Miscellany
	System Properties Management
	Property Editor Management
	Services Binding Management
	Running Two JBoss Instances

	Scheduling Tasks
	org.jboss.varia.scheduler.Scheduler

	Appendix A The JBoss Group and Our LGPL License
	About The JBoss Group
	The GNU Lesser General Public License (LGPL)

	Appendix B The JBoss DTDs
	The jboss_3_0.dtd
	The jbosscmp-jdbc_3_0.dtd DTD
	The jboss-web_3_0.dtd DTD
	The security_config.dtd DTD

	Appendix C Book Example Installation
	Index

