
Date: 2002-05-26, 11:29:37 AM

SCOTT STARK
The JBoss Group

Using Log4j with
JBoss

Edition

1

P R E F A C E 0 P A G E 1

Page 1 of 29

S C O T T S T A R K , A N D T H E J B O S S G R O U P

Using Log4j with JBoss

© JBoss Group, LLC
2520 Sharondale Dr.

Atlanta, GA 30305 USA
sales@jbossgroup.com

P R E F A C E 0 P A G E 2

Page 2 of 29

Table of Content
PREFACE ... 2

ABOUT THE AUTHORS ... 2
ACKNOWLEDGMENTS ... 2

0. INTRODUCTION TO LOG4J ... 3
WHAT THIS BOOK COVERS.. 3

1. AN OVERVIEW OF THE LOG4J API ... 4
The org.apache.log4j.Category class .. 4
org.apache.log4j.Logger .. 6

The JBoss org.jboss.log.Logger wrapper.. 6
The org.apache.log4j.Appender interface .. 7
The org.apache.log4j.Layout class .. 8
Configuring log4j using org.apache.log4j.PropertyConfigurator... 8
Configuring log4j using org.apache.log4j.xml.DOMConfigurator ... 10
Log4j usage patterns.. 18
The Log4jService MBean ... 19

SUMMARY .. 20
2. USING LOG4J ... 21

EMAIL NOTIFICATIONS BASED ON PRIORITY ... 21
The SMTPAppender .. 21
org.apache.log4j.AsyncAppender... 23

3. INDEX.. 24

P R E F A C E 0 P A G E 3

Page 3 of 29

Table of Listings
Listing 1-1, A summary of the key methods in the log4j Category class. __4
Listing 1-2, A summary of the key methods in the log4j 1.2 Logger class.___6
Listing 1-3, The JBoss Logger class summary.___6
Listing 1-4,Tthe standard JBoss-2.4.x log4j.properties configuration file.__8
Listing 1-5,Tthe standard JBoss-3.0.x log4j.xml configuration file. __14
Listing 2-1, A SMTPAppender configuration sample ___22
Listing 2-2, An AsyncAppender configuration sample that delegates messages to the ErrorNotifications SMTPAppender ________________23

P R E F A C E 0 P A G E 4

Page 4 of 29

Table of Figures
Figure 1-1, The DTD for the configuration documents supported by the log4j version 1.1.3 DOMConfigurator. ________________________12
Figure 1-2, The DTD for the configuration documents supported by the log4j version 1.2.3 DOMConfigurator. ________________________14

I N T R O D U C T I O N T O L O G 4 J — 0 P A G E 1

Page 1 of 29

I N T R O D U C T I O N T O L O G 4 J — 0 P A G E 2

Page 2 of 29

 Preface

About the Authors

Scott Stark , Ph.D., was born in Washington State of the U.S. in 1964. He started out as a
chemical engineer and graduated with a B.S. from the University of Washington, and latter
a PhD from the University of Delaware. While at Delaware it became apparent that
computers and programming were to be his passion and so he made the study of applying
massively parallel computers to difficult chemical engineering problems the subject of his
PhD research. It has been all about distributed programming ever since. Scott currently
serves as the Chief Technology Officer of the JBoss Group, LLC.

JBoss Group LLC, headed by Marc Fleury, is composed of over 1000 developers worldwide
who are working to deliver a full range of J2EE tools, making JBoss the premier Enterprise
Java application server for the Java 2 Enterprise Edition platform.

JBoss is an Open Source, standards-compliant, J2EE application server implemented in
100% Pure Java. The JBossServer and complement of products are delivered under the
LGPL license. With over 1,000,000 downloads, JBoss is the most downloaded J2EE based
server in the industry.

Acknowledgments

Thanks go out to the Log4j developers for establishing and maintaining such a flexible
logging framework.

Preface

i

I N T R O D U C T I O N T O L O G 4 J — 0 P A G E 3

Page 3 of 29

0. Introduction to Log4j
What is Log4j and why do we use it

Logging of messages is a common requirement in all applications. In a server environment it
is a critical feature due to the distributed multi-user interaction that is characteristic of a
server. Many users interact simultaneously with an application server and some degree of
logging of the interactions is essential for support. A unique aspect of an application server is
that many different developers may have contributed code to the applications that comprise
the active components. The logging requirement could vary significantly between the
various components or applications. What is needed is a flexible logging API that supports
these use cases. The JBoss server has standardized on log4j as its logging API. The switch to
log4j has been a gradual one, and as of the 2.4.4 release, log4j is the only logging API used
internally by JBoss. JBoss-2.4.6 includes the log4j 1.1.3 release while JBoss-3.0.0 includes
the log4j 1.2.3 release. The JBoss-2.4.6 version can be used with the log4j 1.2 release by
simply replacing the log4j.jar in the JBoss distribution with the 1.2 version of the log4j.jar.

Although there are many logging APIs, including the JSR47 logging framework that is
bundled with the current JDK 1.4 release, the log4j API appears to the most commonly used
of all available. It is designed to be fast, flexible, and simple. Further, the log4j community is
very active and responsive to both bug reports and feature requests. These are probably the
most important criteria for an application server logging framework.

What this Book Covers

The focus of this book is using Log4j within JBoss. After an overview the Log4j API we go
into the details of configuring and using Log4j. Both the log4j 1.1.3 log4j 1.2.3 releases are
discussed as JBoss 2.4.x uses log4j 1.1.3 while JBoss 3.x uses log4j 1.2.3.

Chapter

0

A N O V E R V I E W O F T H E L O G 4 J A P I

Page 4 of 29

1. An Overview of the Log4j API
What is the Log4j API and how does it fit into JBoss.

Log4j has four fundamental objects: categories, priorities, appenders and layouts. Of these,
API users directly use only categories and maybe priorities. Together these components
allow developers to log messages according to message type and priority, and to control at
runtime how these messages are formatted and where they are reported. We will cover the
basics of log4j to allow you to understand the JBoss log4j configuration and help get you
started using log4j in your components. For additional documentation refer to the log4j
home page, which is located here: http://jakarta.apache.org/log4j/.

The org.apache.log4j.Category class

The central component in the log4j 1.1.3 API is the org.apache.logj4.Category class. A
category is a named entity and its name is a case-sensitive, hierarchical construct whose
naming hierarchy adheres to the following rule, which is taken from the log4j manual:

A category is said to be an ancestor of another category if its name followed by a dot is a prefix of
the descendant category name. A category is said to be a parent of a child category if there are no
ancestors between itself and the descendant category.

This is the same convention as the Java package namespace. There exists a special root
category that simply is, but has no name. It is accessed via a static method of the Category
class. The Category class itself contains a large number of methods, but only the factory,
logging and priority state methods are of general interest. A summary of the Category class
restricted to these methods is summarized in Listing 1-1.

Listing 1-1, A summary of the key methods in the log4j Category class.

public class Category
{
 public static Category getRoot()
 public static Category getInstance(Class clazz)
 public static Category getInstance(String name)

Chapter

1

A N O V E R V I E W O F T H E L O G 4 J A P I

Page 5 of 29

...
 public void debug(Object msg)
 public void debug(Object msg, Throwable t)
 public boolean isDebugEnabled()
 public void info(Object msg)
 public void info(Object msg, Throwable t)
 public boolean isInfoEnabled()
...
 public boolean isEnabledFor(Priority priority)
 public void log(Priority priority, Object msg)
 public void log(Priority priority, Object msg, Throwable t)
}

Before going through the methods we need to define the Priority class that shows up in the
Category method signatures. The org.apache.log4j.Priority object represents the importance
or level of a message. Whenever you log a message it has a Priority associated with it. There
are a small number of Priorities defined by default and are know by the names: FATAL,
ERROR, WARN, INFO and DEBUG. You can extend the set of known priorities by
providing subclasses of the Priority class. The utility of assigning a priority to a message is
that it allows one to filter messages based on their priority or importance. Further, you can
test to see if a given priority has been enabled for a Category to avoid generating log
messages that would have no affect due to the current priority filters. This is important for
high frequency debugging messages whose volume can adversely impact the server. Priority
objects have both a string name and an integer value. The name is simply a mnemonic label
for the priority. The integer value defines a relative order amongst priorities. This allows one
to enable or disable all priorities below a given threshold.

Log4j 1.2 note, the org.apache.log4j.Priority class has been superceded by the
org.apache.log4j.Level class to make the log4j API consistent with the java.util.logging package of
JDK 1.4+. The Level class extends Priority and is the preferred construct for representing
message importance.

The getRoot method is an accessor for the anonymous root of the default category hierarchy.
The getInstance method is a factory method which returns the unique Category instance
associated with the given name. If the category does not exist it will be created. The version
that accepts a Class simply calls getInstance(clazz.getName()).

The debug, isDebugEnabled, info, and isInfoEnabled methods are convenience methods that
invoke the corresponding log or isEnabledFor method with the Priority that corresponds the
priority associated with the convenience method. For example, debug(Object) simply invokes
log(Priority.DEBUG, Object).

The isEnabledFor(Priority) method checks to see if the Category will accept a message of the
indicated Priority. The log(Priority, Object) and log(Priority, Object, Throwable) pass the

A N O V E R V I E W O F T H E L O G 4 J A P I

Page 6 of 29

message onto the appenders associated with the Category provided that the messages pass
the current Priority filter.

org.apache.log4j.Logger

In log4j 1.2, the Category class has been superceded by the org.apache.log4j.Logger class to
be more consistent with the JDK 1.4 java.util.logging package. The Logger class is an
extension of Category that only adds factory methods for obtaining an
org.apache.log4jLogger instance. The key methods of the Logger class are shown in Listing
1-2.

Listing 1-2, A summary of the key methods in the log4j 1.2 Logger class.

public class Logger extends Category
{
 public static Logger getLogger(Class clazz)
 public static Logger getLogger(Class clazz)
 public static Logger getRootLogger()
}

The Category class has been deprecated in log4j 1.2 and its javadoc warns:

This class has been deprecated and replaced by the Logger subclass. It will be kept around to
preserve backward compatibility until mid 2003.

The JBoss org. jboss. log.Logger wrapper

The JBoss server framework actually uses a simple wrapper around the log4j Category. This
wrapper adds support for a custom TRACE level priority and removes the unused Category
methods. This does not interfere with the log4j Category usage in any way. The Logger class
simply provides a collection of explicit log priority convenience methods as well as a factory
method as show in Listing 1-3.

Listing 1-3, The JBoss Logger class summary.

package org.jboss.logging;

import org.apache.log4j.Category;
import org.apache.log4j.Priority;

public class Logger
{
 private Category log;

 public static Logger getLogger(String name)

A N O V E R V I E W O F T H E L O G 4 J A P I

Page 7 of 29

 public static Logger getLogger(Class clazz)

 public Category getCategory()

 public boolean isTraceEnabled()
 public void trace(Object message)
 public void trace(Object message, Throwable t)

 public boolean isDebugEnabled()
 public void debug(Object message)
 public void debug(Object message, Throwable t)

 public boolean isInfoEnabled()
 public void info(Object message)
 public void info(Object message, Throwable t)

 public void warn(Object message)
 public void warn(Object message, Throwable t)

 public void error(Object message)
 public void error(Object message, Throwable t)

 public void fatal(Object message)
 public void fatal(Object message, Throwable t)

 public void log(Priority p, Object message)
 public void log(Priority p, Object message, Throwable t)
}

Not only does this provide direct support for the TRACE level priority used internally by the
JBoss server for high-frequency messages that should not normally be displayed, it also
avoids the problem of introducing a custom Category factory. In previous versions of JBoss,
support for the TRACE priority was done using a custom subclass of Category that added
the trace support methods. The problem with the custom subclass is that it tended to result
in integration problems like ClassCastException errors with custom user services.

You are free to use the JBoss Logger class if you want to take advantage of the TRACE level
priority feature. If you are writing custom MBeans or other services that extend from JBoss
classes it is likely that you inherit a Logger instance for use. If you are writing applications
that should remain independent of the JBoss classes, then use of the JBoss Logger class
should be avoided in place of the standard org.apache.log4j.Category or
org.apache.log4j.Logger.

The org.apache.log4j.Appender interface

The ability to selectively enable or disable logging requests based on their category is only a
request to log a message. The appenders associated with the category that receives the log
message handle the actual rendering of the log message. An appender is a logical message

A N O V E R V I E W O F T H E L O G 4 J A P I

Page 8 of 29

destination. An appender delegates the task of rendering log messages into strings to the
layout instance assigned to the appender. There can be multiple appenders attached to a
category, which means that a given message can be sent to multiple destinations. All
appenders must implement the org.apache.log4j.Appender interface. This interface imposes
the notions of layouts as well as filters and error handlers. A number of appenders are
bundled with the log4j framework, including appenders for consoles, files, GUI components,
remote socket servers, JMS, Windows event loggers, and remote UNIX syslog daemons.
Appenders also exist which allow the rendering of messages to occur asynchronously.

The org.apache.log4j.Layout class

The rendering of a log message into a string representation is delegated to instances of the
org.apache.log4j.Layout class. A Layout is a formatter that transforms an
org.apache.log4j.spi.LoggingEvent object into a string representation. A Layout can also
specify the content type of the string as well as header and footer strings.

Configuring log4j using org.apache.log4j.PropertyConfigurator

That is really all you need to know to use the log4j API to perform logging from components.
One large detail missing so far is how to configure log4j. This entails setting the category
priorities as well as configuration of the appenders associated with categories. The log4j
framework provides support for programmatic configuration as well as configuration using
XML and Java properties files. We'll discuss the Java properties file configuration method as
this is what JBoss uses in its standard configuration.

The Java properties file based configuration of log4j is handled by the
org.apache.log4j.PropertyConfigurator class. The PropertyConfigurator class reads the
configuration information for category priority thresholds, appender definitions, and
category to appender mappings from a Java properties file. The properties file can be
changed at runtime to modify the active log4j configuration. We'll learn the basic syntax of
the PropertyConfigurator properties file by discussing the standard JBoss log4j.properties
file given in Listing 1-4.

Listing 1-4,Tthe standard JBoss-2.4.x log4j.properties configuration file.

A default log4j properties file suitable for JBoss

Appender Settings ###
The server.log file appender
log4j.appender.Default=org.apache.log4j.FileAppender
log4j.appender.Default.File=../log/server.log
log4j.appender.Default.layout=org.apache.log4j.PatternLayout
Use the default JBoss format
log4j.appender.Default.layout.ConversionPattern=[%c{1}] %m%n
Truncate if it aleady exists.

A N O V E R V I E W O F T H E L O G 4 J A P I

Page 9 of 29

log4j.appender.Default.Append=false

The console appender
log4j.appender.Console=org.jboss.logging.log4j.ConsoleAppender
log4j.appender.Console.Threshold=INFO
log4j.appender.Console.layout=org.apache.log4j.PatternLayout
log4j.appender.Console.layout.ConversionPattern=[%c{1}] %m%n

Category Settings ###
log4j.rootCategory=DEBUG, Default, Console

Example of only showing INFO msgs for any categories under
org.jboss.util
#log4j.category.org.jboss.util=INFO

An example of enabling the custom TRACE level priority that is
used by the JBoss internals to diagnose low level details. This
example turns on TRACE level msgs for the org.jboss.ejb.plugins
package and its subpackages. This will produce A LOT of logging
output.
#log4j.category.org.jboss.ejb.plugins=TRACE#org.jboss.logging.TracePriority

The first thing to note is that property names in the file are compound names whose
components are separated by periods. This is a common pattern used in property files to
group properties together. There are really only two classes of properties being defined in
Listing 1-4, appenders (prefix = log4j.appender) and categories (prefix = log4j.category,
log4j.rootCategory is a special case for the default root category).

The first section of the file (### Appender Settings ###) defines the log4j appender
configuration. Property names that begin with the "log4j.appender" prefix specify properties
that apply to Appender instances. The first component in the property name after the
log4j.appender prefix is the name of the appender. Thus, the first appender configuration is
for the appender named "Default". The log4j.appender.Default property defines the type of
appender implementation to use. In this case, the org.apache.log4j.FileAppender is specified.
The FileAppender implementation represents a file destination. All properties with the
log4j.appender.Default prefix define properties on the Default appender instance. The set of
properties one can specify for a given appender depend on the appender type. For the
FileAppender the name of the log file, the Layout instance to use, and whether existing log
files should be appended to are allowed properties. The
log4j.appender.Default.layout.ConversionPattern property is setting the ConversionPattern
property value for the log4j.appender.Default.layout property of the FileAppender. The type
of the Layout instance was specified to be org.apache.log4j.PatternLayout by the
log4j.appender.Default.layout property. Refer to the log4j javadocs for the complete syntax of
the format string the PatternLayout class supports.

The log4j.appender.Console properties configure a second appender named Console. This
appender sends its output to the System.out and System.error streams of the console in

A N O V E R V I E W O F T H E L O G 4 J A P I

Page 10 of 29

which JBoss is run. One feature common to most appenders, and illustrated by the Console
appender configuration, is the ability to filter out log events whose priority is below some
threshold. The log4j.appender.Console.Threshold=INFO setting says that only events with
priorities greater than or equal to INFO should be handled by an appender. All other
messages should simply be ignored.

The second section of the file (###Category Settings ###) defines the appender to category
mappings as well as the category priority thresholds. The root category specification of
threshold priority and associated appenders is a special case of the log4j.category grouping of
properties, which has the following syntax:

log4j.rootCategory=[priority] [(, appenderName)*]

So, the log4j.rootCategory entry in Listing 11.4 states that the root category priority
threshold is set to DEBUG, and its appenders are Default and Console. The general syntax
for the category setting is:

log4j.category.category_name=[priority] [(, appenderName)*]

There are two commented out examples of the general form. The first states that the
org.jboss.util category and its subcategories should filter all messages below the INFO
priority level. The second, states that the org.jboss.ejb.plugins category should filter all
messages below the custom TRACE#org.jboss.logging.TracePriority priority level. Since
log4j does not know which class provides the custom priority implementation, the class must
be specified using the "#classname" suffix added to the name of the priority.

Configuring log4j using org.apache.log4j.xml.DOMConfigurator

The XML based org.apache.log4j.xml.DOMConfigurator configuration class offers more
flexibility and the benefits, and drawbacks, of an XML based configuration. As we'll describe
in the Log4jService MBean configuration section, JBoss supports both the properties file and
XML version of the log4j configuration files. For reference, the DTD for the configuration
documents supported by the DOMConfigurator of Log4j version 1.1.3 is given in Figure 1-1,
and the DTD for Log4j version 1.2.3 is given in Figure 1-2.

A N O V E R V I E W O F T H E L O G 4 J A P I

Page 11 of 29

A N O V E R V I E W O F T H E L O G 4 J A P I

Page 12 of 29

Figure 1-1, The DTD for the configuration documents supported by the log4j version 1.1.3
DOMConfigurator.

A N O V E R V I E W O F T H E L O G 4 J A P I

Page 13 of 29

A N O V E R V I E W O F T H E L O G 4 J A P I

Page 14 of 29

Figure 1-2, The DTD for the configuration documents supported by the log4j version 1.2.3
DOMConfigurator.

We'll learn the basic syntax of the DOMConfigurator properties file by discussing the
standard JBoss log4j.xml file given in Listing 1-4.

Listing 1-5,Tthe standard JBoss-3.0.x log4j.xml configuration file.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE log4j:configuration SYSTEM "log4j.dtd">

<!--
 | For more configuration infromation and examples see the Jakarta Log4j
 | owebsite: http://jakarta.apache.org/log4j
 -->

<log4j:configuration xmlns:log4j="http://jakarta.apache.org/log4j/" debug="false">

 <!-- ================================= -->
 <!-- Preserve messages in a local file -->
 <!-- ================================= -->

 <!-- A time/date based rolling appender -->
 <appender name="FILE" class="org.jboss.logging.appender.DailyRollingFileAppender">
 <param name="File" value="${jboss.server.home.dir}/log/server.log"/>
 <param name="Append" value="false"/>
 <!-- Rollover at midnight each day -->
 <param name="DatePattern" value="'.'yyyy-MM-dd"/>
 <!-- Rollover at the top of each hour
 <param name="DatePattern" value="'.'yyyy-MM-dd-HH"/>
 -->

 <layout class="org.apache.log4j.PatternLayout">
 <!-- The default pattern: Date Priority [Category] Message\n -->
 <param name="ConversionPattern" value="%d %-5p [%c] %m%n"/>
 <!-- The full pattern: Date MS Priority [Category] (Thread:NDC) Message\n
 <param name="ConversionPattern" value="%d %-5r %-5p [%c] (%t:%x) %m%n"/>
 -->
 </layout>
 </appender>

 <!-- A size based file rolling appender
 <appender name="FILE" class="org.jboss.logging.appender.RollingFileAppender">
 <param name="File" value="${jboss.server.home.dir}/log/server.log"/>
 <param name="Append" value="false"/>
 <param name="MaxFileSize" value="500KB"/>
 <param name="MaxBackupIndex" value="1"/>

 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="%d %-5p [%c] %m%n"/>
 </layout>
 </appender>

A N O V E R V I E W O F T H E L O G 4 J A P I

Page 15 of 29

 -->

 <!-- ============================== -->
 <!-- Append messages to the console -->
 <!-- ============================== -->

 <appender name="CONSOLE" class="org.apache.log4j.ConsoleAppender">
 <param name="Threshold" value="INFO"/>
 <param name="Target" value="System.out"/>

 <layout class="org.apache.log4j.PatternLayout">
 <!-- The default pattern: Date Priority [Category] Message\n -->
 <param name="ConversionPattern" value="%d{ABSOLUTE} %-5p [%c{1}] %m%n"/>
 </layout>
 </appender>

 <!-- ====================== -->
 <!-- More Appender examples -->
 <!-- ====================== -->

 <!-- Buffer events and log them asynchronously
 <appender name="ASYNC" class="org.apache.log4j.AsyncAppender">
 <appender-ref ref="FILE"/>
 <appender-ref ref="CONSOLE"/>
 <appender-ref ref="SMTP"/>
 </appender>
 -->

 <!-- EMail events to an administrator
 <appender name="SMTP" class="org.apache.log4j.net.SMTPAppender">
 <param name="Threshold" value="ERROR"/>
 <param name="To" value="admin@myhost.domain.com"/>
 <param name="From" value="nobody@myhost.domain.com"/>
 <param name="Subject" value="JBoss Sever Errors"/>
 <param name="SMTPHost" value="localhost"/>
 <param name="BufferSize" value="10"/>
 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="[%d{ABSOLUTE},%c{1}] %m%n"/>
 </layout>
 </appender>
 -->

 <!-- Syslog events
 <appender name="SYSLOG" class="org.apache.log4j.net.SyslogAppender">
 <param name="Facility" value="LOCAL7"/>
 <param name="FacilityPrinting" value="true"/>
 <param name="SyslogHost" value="localhost"/>
 </appender>
 -->

 <!-- Log events to JMS (requires a topic to be created)
 <appender name="JMS" class="org.apache.log4j.net.JMSAppender">
 <param name="Threshold" value="ERROR"/>
 <param name="TopicConnectionFactoryBindingName" value="java:/ConnectionFactory"/>

A N O V E R V I E W O F T H E L O G 4 J A P I

Page 16 of 29

 <param name="TopicBindingName" value="topic/MyErrorsTopic"/>
 </appender>
 -->

 <!-- ================ -->
 <!-- Limit categories -->
 <!-- ================ -->

 <!-- Limit JBoss categories to INFO
 <category name="org.jboss">
 <priority value="INFO"/>
 </category>
 -->

 <!-- Increase the priority threshold for the DefaultDS category
 <category name="DefaultDS">
 <priority value="FATAL"/>
 </category>
 -->

 <!-- Decrease the priority threshold for the org.jboss.varia category
 <category name="org.jboss.varia">
 <priority value="DEBUG"/>
 </category>
 -->

 <!--
 | An example of enabling the custom TRACE level priority that is used
 | by the JBoss internals to diagnose low level details. This example
 | turns on TRACE level msgs for the org.jboss.ejb.plugins package and its
 | subpackages. This will produce A LOT of logging output.
 If you use replace the log4j 1.2 jar with a 1.1.3 jar you will need to
 change this from XLevel to XPriority.
 <category name="org.jboss.system">
 <priority value="TRACE" class="org.jboss.logging.XLevel"/>
 </category>
 <category name="org.jboss.ejb.plugins">
 <priority value="TRACE" class="org.jboss.logging.XLevel"/>
 </category>
 -->

 <!-- ======================= -->
 <!-- Setup the Root category -->
 <!-- ======================= -->

 <root>
 <appender-ref ref="CONSOLE"/>
 <appender-ref ref="FILE"/>
 </root>

</log4j:configuration>

A N O V E R V I E W O F T H E L O G 4 J A P I

Page 17 of 29

The compound property names of the properties configuration have been replaced by nested
XML elements. This makes the complete specification of an item’s configuration clearer. Just
as in the properties file configuration, in Listing 1-5 there are two types of object being
configured, appenders and categories since the log4j:configuration/root element is a special
case for the default root category.

The first section of the document is defining the log4j appender configurations. The
appender element name attribute defines the name by which the appender may be
referenced and the class attribute gives the fully qualified name of the appender
implementation. The “FILE” org.jboss.logging.appender.DailyRollingFileAppender is a
custom subclass of the org.apache.log4j.DailyRollingFileAppender that simply creates the
path to the configured file if it does not exist. This appenders writes log messages to a file
and rolls the log over based on its configured date pattern. The properties of the “FILE”
appender are specified via child param elements. Each param element gives the name of an
appender attribute and the value of the attribute. Note that system property expansion is
performed so the value attribute of the param element may reference system property
values by enclosing the property name in “${}” as is illustrated by the param element with
name=‘File”. The log4j Layout for an appender is specified using a layout child element. The
class attribute of the layout element gives the fully qualified class name of the Layout
implementation and any attributes of the Layout are specified as nested child param
elements.

An example of an Appender configuration that is only possible using the XML based
configuration is the appender element named “ASYNC”. The
org.apache.log4j.AsyncAppender collects log messages and sends them to all the appenders
that are associated with it using a separate thread. This is useful with appenders that have
high latency like the JavaMail based appender. The appender-ref child elements define the
names of the appenders to which the AsyncAppender will send messages.

Configuration of categories is specified using category elements. This allows you to define
the appender to category mappings as well as the category priority thresholds. In the
standard JBoss configuration there are several examples of setting the priority threshold for
different category names. The priority element value attribute gives the name of the
priority. To specify a custom priority you also need to include the fully qualified name of the
custom Priority implementation, as is done for the “TRACE” priority whose implementation
is org.jboss.logging.XLevel.

Establishing the appenders associated with a category is done using the appender-ref child
elements. The appender-ref ref attribute value specifies the name attribute value of a
previously configured appender element.

A N O V E R V I E W O F T H E L O G 4 J A P I

Page 18 of 29

Log4j usage patterns

The two biggest usage questions regarding log4j from a developer's perspective are what
category names to use, and what message priorities should be used. The pattern used in
JBoss is based on the class name of the component performing the logging. In many cases
this is the category name used. If there are multiple instances of a component, and it is
associated with another meaningful name, this name will be added as a subcategory to the
component class name. For example, the org.jboss.security.plugins.JaasSecurityManager
class uses a base category name equal to its class name. There can be multiple
JaasSecurityManager instances, and each is associated with a security domain name.
Therefore, the complete log4j category name used by the JaasSecurityManager is
"org.jboss.security.plugins.JaasSecurityManager.securityDomain", where the
securityDomain value is the name of the associated security domain.

For message logging priorities, the JBoss usage policy is the following:

� TRACE, use the TRACE level priority for log messages that are directly associated
with activity that corresponds requests. Further, such messages should not be
submitted to a Logger unless the Logger category priority threshold indicates that the
message will be rendered. Use the Logger.isTraceEnabled() method to determine if
the category priority threshold is enabled. The point of the TRACE priority is to allow
for deep probing of the JBoss server behavior when necessary. When the TRACE level
priority is enabled, you can expect the number of messages in the JBoss server log to
grow at in proportion to N, where N is the number of requests received by the server.
The server log may well grow as power of N depending on the request-handling layer
being traced.

� DEBUG, use the DEBUG level priority for log messages that convey extra
information regarding service life-cycle events. Developer or in depth information
required for support is the basis for this priority. The important point is that when
the DEBUG level priority is enabled, the JBoss server log should not grow
proportionally with the number of server requests. Looking at the DEBUG and INFO
messages for a given service category should tell you exactly what state the service is
in, as well as what server resources it is using: ports, interfaces, log files, etc.

� INFO, use the INFO level priority for service life-cycle events and other crucial
related information. Looking at the INFO messages for a given service category
should tell you exactly what state the service is in.

� WARN, use the WARN level priority for events that may indicate a non-critical
service error. Resumable errors, or minor breaches in request expectations fall into
this category. The distinction between WARN and ERROR may be hard to discern

A N O V E R V I E W O F T H E L O G 4 J A P I

Page 19 of 29

and so its up to the developer to judge. The simplest criterion is would this failure
result in a user support call. If it would use ERROR. If it would not use WARN.

� ERROR, use the ERROR level priority for events that indicate a disruption in a
request or the ability to service a request. A service should have some capacity to
continue to service requests in the presence of ERRORs.

� FATAL, use the FATAL level priority for events that indicate a critical failure of a
service. If a service issues a FATAL error it is completely unable to service requests of
any kind.

This usage policy may indirectly affect your choice of priorities if you log events to the JBoss
server appenders. If you do, then you would want to adhere to the above usage policy or you
would lose your ability to effectively filter messages in a consistent manner across
categories. If you introduce your own appenders for your own category namespace, you are
free to choose any priority policy you want as filtering can be done independent from the
JBoss categories.

The Log4jService MBean

JBoss provides a org.jboss.logging.Log4jService MBean that manages the configuration of
the log4j system. The Log4jService can use either the Java properties style configuration file,
or an XML configuration file. The choice between the two is determined solely on the basis of
the configuration file name. If the configuration file ends in “.xml”, the XML configuration is
assumed and the org.apache.log4j.xml.DOMConfigurator class is used. If this is not the case,
the configuration file is assumed to be in the Java properties format and the
org.apache.log4j.PropertyConfigurator class is used.

In JBoss 2.4.x the Log4jService is loaded as a bootstrap MBean using the standard
jboss.conf MLET configuration file, one must specify the service attributes using the MLET
constructor syntax. The format used in the default jboss.conf file is:

<MLET CODE = "org.jboss.logging.Log4jService"
 ARCHIVE="jboss.jar,log4j.jar"
 CODEBASE="../../lib/ext/">
</MLET>

This form uses default values for the log4j configuration file and refresh period. The default
configuration file is named "log4j.properties". The default refresh period is 60 seconds. The
log4j configuration layer will look to see if the configuration file has changed after each
refresh period, and if it has, it will be reloaded. To specify an alternate classpath resource
name for the log4j configuration file use:

<MLET CODE = "org.jboss.logging.Log4jService"
 ARCHIVE="jboss.jar,log4j.jar"

A N O V E R V I E W O F T H E L O G 4 J A P I

Page 20 of 29

 CODEBASE="../../lib/ext/">
 <ARG TYPE="java.lang.String" VALUE="log-config.xml">
</MLET>

To specify both a classpath resource name for the log4j configuration file and the refresh
period use:

<MLET CODE = "org.jboss.logging.Log4jService"
 ARCHIVE="jboss.jar,log4j.jar"
 CODEBASE="../../lib/ext/">
 <ARG TYPE="java.lang.String" VALUE="log-config.xml">
 <ARG TYPE="int" VALUE="180">
</MLET>

In JBoss-3.0.x the Log4jService is loaded from the core services configuration file found in
the server/<name>/config/jboss-service.xml descriptor.

The configurable attributes of the JBoss-3.0.x Log4jService include:

� ConfigurationURL, a URL string specifying location of the

� RefreshPeriod, the period in seconds between checks of the ConfigurationURL for
changes. The ConfigurationURL is queried for its LastModified value to determine if
a change in the configuration has occurred.

� LoggerPriority,

 <mbean code="org.jboss.logging.Log4jService"
 name="jboss.system:type=Log4jService,service=Logging">
 <attribute name="ConfigurationURL">resource:log4j.xml</attribute>
 <attribute name="RefreshPeriod">60</attribute>
 <attribute name="LoggerPriority"></attribute>
 </mbean>

If you need to modify the log4j setup to add your category configuration, you must modify
the JBoss server log4j configuration file to add this information.

Summary

This chapter provided an introduction to using log4j with JBoss and the basic configuration
syntax for properties file based and XML document based configuration. Next we will cover
examples of using log4j to perform monitoring and debugging of the JBoss server.

U S I N G L O G 4 J

Page 21 of 29

2. Using Log4j
Examples of using Log4j with the JBoss server

This chapter will present various Log4j example scenarios to demonstrate the use of Log4j
inside of the JBoss server.

Email Notifications Based on Priority

In this section we will look at how to setup JBoss to send notifications via email when
logging events occur at or above a specified priority level. This is done using the log4j
SMTPAppender.

The SMTPAppender

One very useful Log4j appender is the org.apache.log4j.net.SMTPAppender. This appender
allows log messages to be forwarded to an email address through an SMTP gateway.
Monitoring for errors and failures is a particularly useful application of this filter. To notify
an administrative group you would forward the messages to the group email address. For
log messages that correspond to conditions that need immediate attention, the email address
used could be an admin cell phone or pager since most cell phone and pager services offer
email gateways through which text messages may be sent.

Let’s take a look at the SMTPAppender configuration attributes.

� BufferSize, set the maximum number of logging events to collect in a cyclic buffer.
When the BufferSize is reached, oldest events are deleted as new events are added to
the buffer. By default the size of the cyclic buffer is 512 events.

� EvaluatorClass, set the fully qualified class name of the class implementing the
org.apache.log4j.spi.TriggeringEventEvaluator interface. A corresponding object will
be instantiated and assigned as the triggering event evaluator for the
SMTPAppender. The appender message buffer is sent whenever the
TriggeringEventEvaluator. isTriggeringEvent method returns true. The default
evaluator returns true whenever a logging event has a priority >= ERROR.

Chapter

2

U S I N G L O G 4 J

Page 22 of 29

� From, sets the email address to use as the From header for notification messages.

� SMTPHost, sets the DNS name or address of the SMTP mail gateway host through
which messages will be sent.

� Subject, sets the subject line of the email notification messages.

� To, the email address to which email notifications are to be sent.

� Threshold, sets the minimum priority logging events must have in order to be added
to the appender buffer. Note that is independent of the priority used by the evaluator.

An example configuration fragment for the SMTPAppender is given in Listing 2-1.

Listing 2-1, A SMTPAppender configuration sample

 <!-- Setup the SMTP appender to receive only errors or higher -->
 <appender name="ErrorNotifications" class="org.apache.log4j.net.SMTPAppender">

 <param name="Threshold" value="ERROR"/>
 <param name="From" value="nobody-errors@dot.com"/>
 <param name="SMTPHost" value="mailhost.dot.com"/>
 <param name="Subject" value="Error notification"/>
 <param name="To" value="yourname@some.dot.com"/>

 <layout class="org.apache.log4j.PatternLayout">
 <param name="ConversionPattern" value="[%d{ABSOLUTE},%c{1}] %m%n"/>
 </layout>
 </appender>

This configuration states that only logging events with priorities of ERROR or higher will be
accepted by the appender and that messages will be delivered to “yourname@some.dot.com”
with a subject line of “Error notification” through the SMTP gateway host
“mailhost.dot.com” and will be identified as being from “nobody-errors@dot.com”. Since the
threshold value matches the priority of the default evaluator class, messages will be sent as
they are added to the appender. If the threshold priority were reduced to WARN, any
warning messages would be buffered until an ERROR level message was seen. At that point
all messages in the buffer would be sent. Each message in the buffer is delivered in a
separate email message.

One thing to note is that when a message is added to the SMTPAppender and it is
determined that the message should trigger a send of the current buffer, a mail message is
generated for each message in the buffer and delivered using the JavaMail API. This is a
relatively slow operation that is performed by the thread that issued the logging event. If
this blocking behavior is not what you want, you may use the log4j AsyncAppender to
perform the delivery in a background thread.

U S I N G L O G 4 J

Page 23 of 29

org.apache.log4j.AsyncAppender

When a message is logged against the SMTPAppender, it composes a mail message using
JavaMail. Sending a message is a very slow process compared to logging a message to a file.
Typically you do not want to incur this overhead on every error message because the threads
in which the errors will be severely impacted performance wise. To avoid this you can make
use of the log4j org.apache.log4j.AsyncAppender.

The AsyncAppender configuration attributes include:

� BufferSize, set the maximum number of logging events to collect in a FIFO buffer.
When the BufferSize is reached, the addition of new messages is blocked until the
buffer size falls below the maximum. Therefore, this parameter determines the
degree of asynchronous operation between the threads generating the logging events
and the background thread. By default the size of the buffer is 128 events.

� Threshold, sets the minimum priority logging events must have in order to be added
to the appender buffer. The default is to allow all logging events.

The appenders to which the AsyncAppender will delegate messages delivered to it must also
be specified. Each appender that should render messages is specified using an appender-ref
element in the AsyncAppender configuration. As an example, Listing 2-2 specifies an
AsyncAppender configuration for the STMPAppender defined in Listing 2-1.

Listing 2-2, An AsyncAppender configuration sample that delegates messages to the ErrorNotifications
SMTPAppender

 <appender name="ASYNCH" class="org.apache.log4j.AsyncAppender">
 <appender-ref ref="ErrorNotifications"/>
 </appender>

To control whether logging events are rendered synchronously or asynchronously you need
to attach the appender to a category. Typically this is done globally for all categories by
attaching the appender to the root category. For example:

 <root>
 <appender-ref ref="ASYNCH"/>
 </root>

states that the ASYNCH appender will be sent messages issued through the root category or
its descendents.

U S I N G L O G 4 J

Page 24 of 29

3. Index

A

Appenders
SMTP..21

L

Log4j
Adding your configuration ...20
Appender ..7
Appenders...See Appenders
Category ...4
DOMConfigurator ..10
DOMConfigurator 1.1.3DTD...12
DOMConfigurator 1.2.3DTD...14
JBoss Logger ..6
Layout...8
Logger...6
MBeans...19
PropertyConfigurator..8
Supported versions ...3

Usage patterns .. 18
log4j.properties .. 8
log4j.xml .. 14

N

Notifications
Cell phone, pager ... 21
Email .. 21

P

Pagers ... See Notifications
Priorities

Logging .. 18

S

server.log.. 8

	Preface
	About the Authors
	Acknowledgments

	Introduction to Log4j
	What this Book Covers

	An Overview of the Log4j API
	
	The org.apache.log4j.Category class
	org.apache.log4j.Logger
	The JBoss org.jboss.log.Logger wrapper

	The org.apache.log4j.Appender interface
	The org.apache.log4j.Layout class
	Configuring log4j using org.apache.log4j.PropertyConfigurator
	Configuring log4j using org.apache.log4j.xml.DOMConfigurator
	Log4j usage patterns
	The Log4jService MBean

	Summary

	Using Log4j
	Email Notifications Based on Priority
	The SMTPAppender
	org.apache.log4j.AsyncAppender

	Index

