
Edition

5
Date: 2003-08-03, 7:13:06 AM

SACHA LABOUREY, BILL BURKE
The JBoss Group

JBoss Clustering

S A C H A L A B O U R E Y , B I L L B U R K E , A N D T H E J B O S S G R O U P

JBoss Clustering

© JBoss Group, LLC
2520 Sharondale Dr.

Atlanta, GA 30305 USA
sales@jbossgroup.com

Page 2 of 101

T A B L E O F C O N T E N T P A G E 3

Table of Content
PREFACE ... 8

FORWARD.. 8
ABOUT THE AUTHORS ... 8
DEDICATION.. 8
ACKNOWLEDGMENTS ... 8

0. INTRODUCTION TO CLUSTERING.. 10
WHAT THIS BOOK COVERS.. 10

1. INTRODUCTION .. 11
DEFINITIONS... 11
JBOSS CLUSTERING FEATURES .. 12

2. CLUSTERING IN JBOSS: OVERVIEW ... 14
PARTITIONS .. 14
SUB-PARTITIONS ... 15
SMART PROXIES .. 17
CONSEQUENCES FOR NON-RMI CLIENT ... 19
AUTOMAGIC NODE DISCOVERY.. 20
NETWORK COMMUNICATION .. 20

3. SETTING UP CLUSTERING .. 22

4. HA-JNDI ... 25
JNDI AND HA-JNDI... 25
HA-JNDI SET UP .. 26
HA-JNDI BINDING AND LOOKUP RULES .. 27
HA-JNDI DESIGN NOTE ... 29
HA-JNDI CLIENT AND AUTO-DISCOVERY .. 30
HA-JNDI JNP SPECIFIC PROPERTIES.. 31

5. CLUSTERING EJB .. 32
STATELESS SESSION BEANS .. 32
STATEFUL SESSION BEANS .. 33
ENTITY BEANS... 35

Entity Synchronization.. 36
MESSAGE DRIVEN BEANS .. 37
LOAD-BALANCE POLICIES .. 37

JBoss 3.0.x ... 37
JBoss ≥ 3.2 ... 38

6. HTTP SESSION CLUSTERING ... 40
INTRODUCTION ... 40

Do you really need HTTP Sessions replication?... 41

Page 3 of 101

T A B L E O F C O N T E N T P A G E 4

HTTP SESSION REPLICATION SETUP .. 41
Introduc iont

t

t

t t

... 41
Apache and mod_jk.. 42

Download and install mod_jk binaries .. 42
Configure Apache to load the mod_jk module .. 43
Configure the worker nodes.. 44

Activating Tomca Session Replication .. 45
JETTY CONFIGURATION ... 48

JBoss-Based Replication .. 48
Jetty-Based Replication.. 50
Activate session replica ion in your Web Application.. 52

7. FARMING ... 54

8. CACHE INVALIDATION ... 56
OVERVIEW... 56
FRAMEWORK ARCHITECTURE ... 57
WHAT THE FRAMEWORK IS NOT... 58
EJB INTEGRATION .. 59
EJB CONTAINER CONFIGURATION... 60

EJB Con ainer Configura ion ... 61
Bean Configuration ... 62

BRIDGES ... 64
JMS-based Bridge ... 64
JBossCluster-based Bridge .. 65

USE CASES .. 66
Single JVM RO/RW bean.. 66
RO/RW cluster ... 67

9. CLUSTERING ARCHITECTURE ... 69
OVERVIEW... 69
JBOSS CLUSTERING FRAMEWORK .. 70

HAPartition ... 70
Distributed Replicant Manager (DRM)... 73
Distributed State (DS) .. 75
HA-RMI ... 76

10. CLUSTERING YOUR OWN SERVICES .. 78

11. OTHER CLUSTERING SERVICES.. 79
SINGLETON SERVICE ... 79
SCHEDULER SERVICE ... 84
NOTIFICATION SERVICE .. 87

12. TROUBLE SHOOTING AND LIMITATIONS ... 95
FIRST, ARE YOU A WINDOWS USER? ... 95
TROUBLE SHOOTING ... 96
IF ALL ELSE FAILS… ... 97
LIMITATIONS ... 98

13. INDEX..100

Page 4 of 101

T A B L E O F L I S T I N G S P A G E 5

Table of Listings
Lis ing 3-1. Clus ering MBean definitiont t

t r t

t - . t
t - .

t . r
t

t - . t . f
r f/ f

t - . rt r

___22
Lis ing 3-2. JavaGroups p otocol stack configura ion __23
Listing 4-1. HA-JNDI MBean definition __26
Listing 4-2. Overriding HA-JNDI default values ___27
Listing 4-3. Setting JNDI properties in code to access HA-JNDI ___29
Lis ing 4 4 Sample HA-JNDI property s ring for multiple known servers ___30
Lis ing 5 1 Setting a stateless session bean as clustered __32
Listing 5-2. Session State MBean definition __33
Listing 5-3. Setting a stateful session bean as clustered ___34
Listing 5-4. Setting an entity bean as clustered___36
Lis ing 5-5 Recreating a new remote p oxy for each call __37
Listing 5-6 Reusing a remo e proxy for each call__38
Lis ing 6 1 Including mod_jk’s configura ion file in Apache’s main configuration file (conf/httpd con) _______________________________43
Listing 6-2. mod_jk’s configu ation file (con mod-jk.con) ___43
Lis ing 6 3 conf/workers.prope ies sample file fo 2 workers Servlet container___44
Listing 9-1. Example of clustered code __72
Listing 10-12-1. Non-multicast JavaGroups config __98

Page 5 of 101

1 I N T R O D U C T I O N — 1 P A G E 6

Page 6 of 101

Table of Figures
Figure 1. Partitions ___15
Figure 2. In-memory backup in a two nodes cluster-

. -

.

. t
i

r
t I

t t

tr
t

t

__16
Figure 3. In-memory backup inside sub-partitions __16
Figure 4 Client managed fail-over__17
Figure 5 Dispatcher-managed fail-over ___18
Figure 6. Client proxy-managed fail-over __19
Figure 7 HA-JNDI name resolu ion ___25
Figure 8. HA-JNDI deta led lookup resolution process ___28
Figure 9HTTP Session failover ___40
Figure 10 Cache Invalidation Framework Architecture ___57
Figure 11Cache Invalidation Framework Integration in EJB __60
Figure 12RO/RW Cluster Using Cache Invalidations ___68
Figure 13. JBoss clustering building blocks___69
Figure 14. Replicas in a cluster___71
Figure 15. State t ansfer process ___72
Figure 16. Standard smart-s ub to RM server__76
Figure 17. HARMIServer coupled with a pre-exis ing smart s ub __77
Figure 18. Clustered Singleton Service __80
Figure 19. Con oller MBean View. The MasterNode attribute will have value True on only one of the nodes__________________________83
Figure 20. Sample singleton MBean View. The Mas erNode attribute will have the same value as the MasterNode attribute on the controller
MBean__84
Figure 21. Clustered No ification Service __87

1 I N T R O D U C T I O N — 1 P A G E 7

Page 7 of 101

I N T R O D U C T I O N — 1 P

Page 8 of 101

A G E 8 Preface

i
 Preface

Forward
JBossClustering originally began in April 2001 as a small prototype built on top of JavaGroups
and coded by Sacha Labourey. Bill Burke joined Sacha in August 2001 and together they
redesigned JBossClustering from scratch to its current form in JBoss 3.0.

About the Authors
Sacha Labourey is one of the core developers of JBoss Clustering and frequently gives JBoss
training courses. He owns a master in computer science from the Swiss Federal Institute of
Technology and is the founder of Cogito Informatique, a Swiss company specializing in the
application server and middleware fields.

Bill Burke is one of the core developers of JBoss Clustering and gives regular talks at JBoss
training courses and seminars on the subject. Bill has over 9 years experience implementing and
using middleware in the industry. He was one of the primary developers of Iona Technology’s,
Orbix 2000 CORBA product and has also designed and implemented J2EE applications at
Mercantec, Dow Jones, and Eigner Corporation.

JBoss Group LLC, headed by Marc Fleury, is composed of over 1000 developers worldwide
who are working to deliver a full range of J2EE tools, making JBoss the premier Enterprise Java
application server for the Java 2 Enterprise Edition platform.

JBoss is an Open Source, standards-compliant, J2EE application server implemented in 100%
Pure Java. The JBoss/Server and complement of products are delivered under a public license.
With 50,000 downloads per month, JBoss is the most downloaded J2EE based server in the
industry.

Dedication
All your clustering are belong to us.

Acknowledgments
We’d like to thank the academy.

I N T R O D U C T I O N — 1 P A G E 9

Page 9 of 101

I N T R O D U C T I O N — 1 P

Page 10 of 101

A G E 1 0 Chapter

0
0. Introduction to Clustering
An overview of the introduction.

This is a sample introduction. Introductions are numbered as chapter 0 and are optional. The
first main chapter of the book is chapter 1. Typically an introduction will describe the book.

What this Book Covers
A cluster is a set of nodes. These nodes generally have a common goal. A node can be a computer
or, more simply, a server instance (if it hosts several instances).

In JBoss, nodes in a cluster have two common goals: achieving Fault Tolerance and Load
Balancing through replication. These concepts are often mixed.

The primary focus of this book is the presentation of the standard JBoss components introduced
above, from both the perspective of their configuration and architecture. As a user of a standard
JBoss distribution you will be given an understanding of how to configure the standard
components. In addition, the final chapter presents a detailed discussion of building and
deploying an enterprise application to help you master the details of packaging and deploying
applications with JBoss.

I N T R O D U C T I O N — 1 P

Page 11 of 101

A G E 1 1

1. Introduction
Quick introduction to Clustering terminology in JBoss

The terminology used in clustering is often confused and dependent of the environment in which
it is used. This chapter settles the definitions we will use in this book.

Definitions
A cluster is a set of nodes. These nodes generally have a common goal. A node can be a computer
or, more simply, a server instance (if it hosts several instances).

In JBoss, nodes in a cluster have two common goals: achieving Fault Tolerance and Load
Balancing through replication. These concepts are often mixed.

The availability of a service is the proportion of time for which a particular service is accessible
with reasonable/predictable response times. The term High availability is generally used to
denote a "high" proportion. Nevertheless, this proportion is context-dependent: HA for a critical
system in a space ship is most probably based on higher figure than HA for a regional web site.
The HA proportion thus define the maximal allowed downtime in a particular period. Table 1
presents some maximal allowed downtimes per year depending on the HA proportion.

HA Proportion Maximal allowed cumulated

downtime per year

 98 % 7.3 days

 99 % 87.6 hours

 99.5 % 43.8 hours

 99.9 % 8.76 hours

 99.95 % 4.38 hours

Chapter

1

C L U S T E R I N G I N J B O S S : O V E R V I E W — 2 P A G E 1 2

Page 12 of 101

 99.99 % 53 minutes

 99.999 % 5.25 minutes

 99.9999 % 31 seconds

 99.99999 % 3.1 seconds

Table 1 Sample allowed downtime per HA proportions

It is clear that even if HA Proportion is strictly relative to its associated allowed downtime, cost is
generally not: passing from 99 % to 99.99 % is generally much more expensive than from 98% to
99% even if the difference is bigger in absolute.

For example, the Telco industry generally requires a "5-9" (i.e. 99.999 %) HA level.

Fault tolerance implies High availability. Nevertheless, Highly available data is not necessarily
strictly correct data, whereas a fault tolerant service always guarantees strictly correct behaviour
despite a certain number and type of faults.

Consequently, some systems only require high availability (directory service consisting of static
data for example) whereas others require fault tolerance (banking systems requiring
transactional reliability for example.)

Load balancing is a means to obtain better performance by dispatching incoming requests to
different servers. It does not make any assumption on the level of fault tolerance or availability of
the system. Thus, a web site could use a farm of servers to render complex output based on basic
information stored in a database. If the database is not a bottleneck, load-balancing requests
between servers in the farm would largely improve performances. Nevertheless, the database
represents a single point of failure. A database outage would cause the entire server farm to be
useless. In this case, growing the server farm does not improve the system availability.

Some systems are able to offer fault tolerant behaviour (and, consequently, high availability) and
load balancing for better scalability.

For more information about distributed systems concepts, see 1.

JBoss Clustering Features
JBoss currently supports the following clustering features.

 Automatic discovery. Nodes in a cluster find each other with no additional configuration.

1 Distributed Systems, concepts and design, Coulouris, Dollimore and Kindberg, Addison-Wesley 2001.

C L U S T E R I N G I N J B O S S : O V E R V I E W — 2 P A G E 1 3

Page 13 of 101

 Fail-over and load-balancing features for:

 JNDI,

 RMI (can be used to implement your own clustered services),

 Entity Beans,

 Stateful Session Beans with in memory state replication,

 Stateless Session Beans

 HTTP Session replication with Tomcat (3.0) and Jetty (CVS HEAD)

 Dynamic JNDI discovery. JNDI clients can automatically discover the JNDI
InitialContext.

 Cluster-wide replicated JNDI tree.

 Farming. Distributed cluster-wide hot-deployment. Hot deploy on one box, it gets
farmed to all nodes in the cluster.

 Pluggable RMI load-balance policies.

C L U S T E R I N G I N J B O S S : O V E R V I E W — 2 P A G E 1 4 Chapter

2
2. Clustering in JBoss: Overview
Overview of JBoss clustering architecture choices

This section will introduce the main concepts that form the foundation of the clustering features
in JBoss.

In particular, you will see how clusters are defined, how they are built and how nodes
communicate together.

JBoss currently provides full clustering support for stateless session beans, stateful session beans,
entity beans and JNDI, and partial support for JMS and message driven beans. Replication of
HTTP sessions for web applications is also available.

Partitions
As previously discussed, a cluster is a set of nodes. In JBoss, a node is a JBoss server instance.
Thus, to build a cluster, several JBoss instances have to be grouped in what we call a partition.

The partition is the central concept for clustering in JBoss.

On a same network, we may have different partitions. In order to differentiate them, each
partition must have an individual name.

Page 14 of 101

C L U S T E R I N G I N J B O S S : O V E R V I E W — 2 P A G E 1 5

Page 15 of 101

Partition "C"Partition "B"

Partition "A"

JBoss
Node 1

JBoss
Node 2

JBoss
Node 3

JBoss
Node 4

JBoss
Node 5

JBoss
Node 6

Figure 1. Partitions

In Figure 1, one of the clusters shows a limit case: it is composed of a single node. While this
doesn’t bring any particular interest (no fault tolerance or load balancing is possible), a new node
could be added at any time to this partition which would then become much more interesting.

You will see later that it is possible for a JBoss instance to be part of multiple partitions at the
same time. To simplify our discussion, we will currently consider that a JBoss server is always
part of a single partition though.

If no name is assigned to a partition, it uses a default name. Consequently, simply starting new
nodes without specifying a partition name (like in the default configuration file), will make all
started nodes belong to the same default partition/cluster.

The current partition implementation in JBoss uses the JavaGroups framework2, but any
communication framework offering a comparable semantic could be plugged in.

Sub-partitions
While a partition defines a set of nodes that work toward a same goal, some clustering features
require to sub-partition the cluster to achieve a better scalability. Although JBoss does not
currently support sub-partitioning, it will soon, so let’s discuss it here.

For example, let’s imagine that we want to replicate in memory the state of stateful session beans
on different nodes to provide for fault-tolerant behaviour. In a two nodes cluster, this wouldn’t be
a challenge: each node would own a backup of all beans’ state of the other node.

2 http://www.JavaGroups.com/

C L U S T E R I N G I N J B O S S : O V E R V I E W — 2 P A G E 1 6

Page 16 of 101

Partition "Main"

JBoss
Node 1

JBoss
Node 2

Exchange backups
of beans' state

Figure 2. In-memory backup in a two-nodes cluster

But what if we had a 10-nodes cluster? With the previous scheme, it would mean that each node
has to store a backup of the 9 other nodes. Firstly, this would not scale at all (each node would
need to carry the whole state cluster load) and secondly we can wonder if any application would
require this level of fault tolerance and still use Stateful Session Beans.

You can see from this example that it is probably much better to have some kind of sub-partitions
inside a partition and have beans state exchanged only between nodes that are part of the same
sub-partition.

Sub-partition A

JBoss
Node 1

JBoss
Node 2

Sub-partition B

JBoss
Node 1

JBoss
Node 2

JBoss
Node 2

Partition "Main"

Figure 3. In-memory backup inside sub-partitions

C L U S T E R I N G I N J B O S S : O V E R V I E W — 2 P A G E 1 7

Page 17 of 101

In Figure 3, the “Main” partition has been subdivided in two sub-partitions. The cluster
administrator wanted to have, ideally, sub-partitions containing two nodes. Nevertheless, in this
particular case, if the cluster had strictly followed this requirement, we would have had 3 sub-
partitions with one owning only one node. Thus, this last sub-partition would not have any fault
tolerant behaviour. Consequently, the cluster has decided to temporarily add this otherwise
singleton node in an already full sub-partition. Thus, our fault tolerant objective is safe.

We sometimes name “brother nodes”, nodes belonging to the same sub-partition.

The future JBoss sub-partition implementation will allow the cluster administrator to determine
the optimal size of a sub-partition. The sub-partition topology computation will be done
dynamically by the cluster.

Smart proxies
Independently of the clustering solution you choose, the fail-over and load-balancing mechanism
needs to take place somewhere.

When a client communicates with a node that suddenly fails, some solutions require that the
client try to explicitly reconnect with a running node. While this kind of solution can provide fault
tolerance, it is not transparent to the client.

Node 1

Node 2

Client
2

1

3

Figure 4. Client-managed fail-over

Consequently, we could imagine having some kind of transparent fail-over taking place on the
server: a server receives the call (let’s call it a “dispatcher”), dispatches it to the appropriate
application server and if it fails (and if the semantic allows it), fail-over to another node.
Nevertheless, we still have a problem with the dispatcher: what happens if it fails? This can looks
like a chicken and egg problem…

C L U S T E R I N G I N J B O S S : O V E R V I E W — 2 P A G E 1 8

Page 18 of 101

Node 1

Node 2

Client
1.1

1.3

dispatcher1
1.2

Figure 5. Dispatcher-managed fail-over

Luckily, RMI provides some nice features over many middleware protocols. For example, when a
client gets a stub to a remote object, it is possible to send it a specialised serialised object.
Furthermore, it is even possible to make the client download the class of the stub from any web
server transparently. What happens is that when the client gets the remote reference, it obtains a
serialised object annoted with a URL indicating from where the client RMI subsystem can
download the class definition. Thus, this downloaded object:

 Acts as a stub for the remote reference,

 Can be generated programmatically at runtime and does not necessary needs to be part of
the client libraries (JAR) at runtime (as it can be downloaded),

 Can incorporate some specific behaviour, in the stub code, that will transparently run on
the client side (the client code doesn’t even know about this code).

The first point is important because it represents the contract between the client and the target
object: it expects to be able to make remote invocations on the target object through its reference.

The second point allows EJB applications to be deployed in JBoss without first generating,
compiling and distributing client stubs.

The third point is a key point for the JBoss clustering implementation. It allows making the client
download stub code that will contain the clustering logic i.e. fail-over and load-balancing logic.
Thus, there is no risk to have the dispatcher fails as in the previous example. In this case, the
dispatcher is incorporated in the client code. Thus, client and dispatcher life cycles are highly
related (i.e. if the dispatcher dies, it most probably means that the client code is also dead and will
not be much angry).

C L U S T E R I N G I N J B O S S : O V E R V I E W — 2 P A G E 1 9

Page 19 of 101

Node 1

Node 2

Client
1.1

1.3

P
roxy

1
1.2

class dynamically
downloaded from a node

Figure 6. Client proxy-managed fail-over

In the current implementation, called HA-RMI, the proxy that is downloaded by the client code
contains in particular the list of target nodes that it can access and a plugable load-balancing
policy (round robin, first available, etc.) That means, for example, that a bean deployer can
determine at deployment time how the proxy should behave (in fact, it could even change its
decision while the container is already running).

Furthermore, if the cluster topology (i.e. the member of the partition to which the proxy is linked)
changes, the next time the client performs an invocation, the JBoss server will piggy-back a new
list of targets nodes with the invocation response. The proxy, before returning the response to the
client code, will unpack the list of target nodes from the response, update its list of target nodes
and return the real invocation result to the client code.

These features are available to any service or applications, not only JBoss specific components.
For more architectural information and example on how to use HA-RMI, see section 0, “HA-
RMI”.

Consequences for non-RMI client
Having the clustering logic embedded in RMI proxies has several consequences.

On the positive side, this solution gives a large number of possibilities regarding clustering
policies and behaviour and it is transparent to the client code.

On the negative side, this implies that, at first sight, the solution is highly RMI-dependant. All
non-RMI clients seem to loose JBoss clustering features.

In fact, the situation is not so dark. Looking at it closer, the model can very simply be degraded
for non-RMI clients to the second model presented above: dispatcher-managed fail-over.

C L U S T E R I N G I N J B O S S : O V E R V I E W — 2 P A G E 2 0

Page 20 of 101

On the JBoss side of the (Java!) dispatcher, RMI is used to communicate with the cluster.
Consequently, all features introduced until now apply.

On the client side of the dispatcher, any protocol end-point can be plugged in. The role of the
dispatcher is then to translate this call from one protocol to the other3.

But there is still a problem: how to handle a dispatcher crash. In this case, since JBoss has no
control over the client code, no software solution can be used. Consequently, a redundant
hardware load-balancer has to be used as a front-end to the JBoss instances, to balance calls to
the dispatchers.

Node 1

Node 2

Client

dispatcher

SOAP,
CORBA,

...

dispatcher
SO

AP
IIO

P
SO

AP
IIO

P

Automagic Node Discovery
With JBoss clustering, there is no need to statically define a cluster topology: the only interesting
information is the cluster name i.e. partition name (and not setting a partition name is valid
because it will use a default name). Once the partition name has been set, any node can
dynamically join or leave the partition.

Furthermore, as we have seen in the previous section, clients performing invocation on the
cluster are automagically updated with a new view of the cluster members.

As we will see in the next section, node discovery and communication is highly configurable and
can thus be applied to very different network topologies (LAN, WAN, etc.)

Network communication
Nodes in a cluster need to communicate together for numerous reasons :

 To detect new nodes or nodes that have failed/died,

3 This information needs to be modified : with JBoss 3.0 detached invokers, this point may be completely dump because, thanks to our JMX
bus, every JBoss node is a dispatcher. It already offers this separation.

C L U S T E R I N G I N J B O S S : O V E R V I E W — 2 P A G E 2 1

Page 21 of 101

 To exchange state information,

 To perform some action on a single, some or all distant nodes.

Consequently, several different activities need to take place at the network level.

The JBoss clustering framework has been abstracted in such a way that it should be possible to
plug-in different communication frameworks.

Currently, JBoss uses the JavaGroups reliable communication framework.

This highly configurable framework uses the Channel as its basic building block. A Channel is a
means by which a node can join a group of other nodes and exchange reliable messages in unicast
or multicast. At runtime it is possible to build a new channel and specify, through a property
string à la JDBC connection string (or through an XML snippet), the stack of protocols to use for
this particular Channel: message fragmentation, state transfer, group membership.

Furthermore, at the lowest level, it is possible to decide whether to use TCP, UDP or UDP in
multicast (or any other protocol) for network communications.

On top of the Channel building block, several helper building blocks are available, such as one-to-
many reliable RPC calls.

For more information on the JavaGroups framework, check http://www.javagroups.com/.

H A - J N D I — 4 P A G E

Page 22 of 101

2 2

3. Setting up Clustering
Setting up partitions and configuring applications

As previously discussed, partitions are the basic building block of clustering in JBoss.

Each JBoss node participating in a cluster must at least have one partition. In JBoss terminology,
a partition is equivalent to a cluster. Consequently, a node is able to participate in more than one
cluster by starting more than one partition (each with a different name!) Nevertheless, in most
cases, a node will be part of only one partition. Furthermore, each partition consumes resources
(network bandwidth, CPU and threads), thus limiting the number of partition to a minimum is
probably a good idea.

JBoss 3.0 comes with three different ready-to-use server configurations: minimal, default and
all. Clustering is only enabled in the all configuration. A cluster-service.xml file in the /deploy
folder describes the configuration for the default cluster partition. This xml-snippet from
cluster-service.xml loads the main partition MBean that initializes JavaGroups and other cluster
components.

Listing 3-1. Clustering MBean definition

<mbean code="org.jboss.ha.framework.server.ClusterPartition"
 name="jboss:service=DefaultPartition"/>

In the current version of the clustering, it is not possible to hot-deploy services based on
HAPartition (but it is possible to hot-deploy new partitions and related services if performed at
the same time).

For the HAPartition MBEAN, available attributes are:

Attribute Mandated Default value Description

PartitionName Optional DefaultPartition the name of the partition (which define
the cluster). Every node starting a
partition with the same name form a
cluster

.

DeadlockDetection Optional false Boolean property that tells JavaGroups
to run messa

ge deadlock detection

Chapter

3

H A - J N D I — 4 P A G E 2 3

Page 23 of 101

algorithms with every request.

PartitionConfig Optional See below JavaGroups property string describing
the stack of protocol to be used and
their configuration

.

The PartitionConfig attribute is an XML string that describes and configures the JavaGroups
stack of protocols. For more information about writing your connection string, take a look at the
JavaGroups documentation on http://www.javagroups.com/. The default connection string is:

Listing 3-2. JavaGroups protocol stack configuration

<Config>
 <!-- UDP: if you have a multihomed machine,
 set the bind_addr attribute to the appropriate NIC IP address -->
 <!-- UDP: On Windows machines, because of the media sense feature
 being broken with multicast (even after disabling media sense)
 set the loopback attribute to true -->
 <UDP mcast_addr="228.1.2.3" mcast_port="45566"
 ip_ttl="64" ip_mcast="true"
 mcast_send_buf_size="150000" mcast_recv_buf_size="80000"
 ucast_send_buf_size="150000" ucast_recv_buf_size="80000"
 loopback="false" />
 <PING timeout="2000" num_initial_members="3"
 up_thread="true" down_thread="true" />
 <MERGE2 min_interval="5000" max_interval="10000" />
 <FD up_thread="true" down_thread="true" /> shun="true"
 <VERIFY_SUSPECT timeout="1500"
 up_thread="true" down_thread="true" />
 <pbcast.STABLE desired_avg_gossip="20000"
 up_thread="true" down_thread="true" />
 <pbcast.NAKACK gc_lag="50" retransmit_timeout="300,600,1200,2400,4800"
 up_thread="true" down_thread="true" />
 <UNICAST timeout="5000" window_size="100" min_threshold="10"
 down_thread="true" />
 <FRAG frag_size="8192"
 down_thread="true" up_thread="true" />
 <pbcast.GMS join_timeout="5000" join_retry_timeout="2000"
 " print_local_addr="true" /> shun="true
 <pbcast.STATE_TRANSFER up_thread="true" down_thread="true" />
</Config>

If you are using a Windows server, you must modify the default connection string to
workaround a Windows bug in the MediaSense feature and multicasting. In the above stack,
modify the UDP protocol and set the loopback property to true.

H A - J N D I — 4 P A G E 2 4

Page 24 of 101

If you have a multi-homed machine (a machine with more than one network adapter),
modify the UDP protocol of the above stack and set the bind_addr attribute to the IP address of
the network adapter to be used.

H A - J N D I — 4 P A G E

Page 25 of 101

2 5 Chapter

4
4. HA-JNDI
Naming service and JBoss clustering

Having full-featured clustered EJBs is surely a good thing. Nevertheless, as almost any EJB
access starts with a lookup of its home interface in a JNDI tree, the current clustering features
would be almost useless without a clustered JNDI tree. Luckily, JBoss 3.0 provides such a
feature. The current section will explains how it works and how lookups and bindings are
resolved.

JNDI and HA-JNDI
There is a global, shared, cluster-wide JNDI Context that clients can use to lookup and bind
objects. This is HA-JNDI. Remote Clients connecting to HA-JNDI will get fail-over and load-
balancing. Things they bind to the HA-JNDI Context will also be replicated across the cluster so
that if a node is down, the bound objects will still be available for lookup.

On the server side, new InitialContext(), will be bound to a local-only, non-cluster-wide JNDI
Context(this is actually basic JNDI). So, all EJB homes and such will not be bound to the cluster-
wide JNDI Context, but rather, each home will be bound into the local JNDI.

Node 1

HA-JNDI

JNDI

Node 2

JNDI

Node 3

HA-JNDI

JNDI

HA-JNDI

Partition "Main"

Figure 7. HA-JNDI name resolution

H A - J N D I — 4 P A G E 2 6

Page 26 of 101

When a remote client does a lookup through HA-JNDI, HA-JNDI will delegate to the local JNDI
Context when it cannot find the object within the global cluster-wide Context. So, a EJB home
lookup through HA-JNDI, will always be delegated to the local JNDI instance.

In the current implementation, HA-JNDI works with its own cluster-wide JNDI tree as well as
the local JNDI tree available in JBoss. Please Note! You cannot currently use a non-JNP JNDI
implementation (i.e. LDAP) for your local JNDI implementation if you want to use HA-JNDI.
Nothing prevents you though of using one centralized JNDI server for your whole cluster and
scrapping HA-JNDI and JNP.

HA-JNDI set up
To set up a HA-JNDI service, you need to insert a XML entry in your JBoss configuration file
(either in jboss-services.xml or any configuration file in the /deploy folder. The cluster-
service.xml file already includes such a definition. You can see that this MBean depends on the
DefaultPartition MBean defined above it.

Listing 4-1. HA-JNDI MBean definition

 <mbean code="org.jboss.ha.jndi.HANamingService"
 name="jboss:service=HAJNDI">
 <depends>jboss:service=DefaultPartition</depends>
 </mbean>

Available attributes are:

Attribute Mandated Default value Description

PartitionName Optional e

DefaultPartition the name of the partition (which defin
the cluster) that must be used to make
communicate the different replicated
instances of the HA-JNDI service

BindAddress Optional r

.

Address to which the HA-JNDI serve
will bind waiting for JNP clients. Only
useful for multi-homed computers

Port Optional l
.

1100 Port to which the HA-JNDI server wil
bind waiting for JNP clients

Backlog Optional r
.

50 Backlog value used for the TCP serve
socket waiting for JNP clients

RmiPort Optional 0 Once the JNP client has downloaded
the stub for the HA-JNDI server, they

H A - J N D I — 4 P A G E 2 7

Page 27 of 101

use a standard RMI connection to
communicate together. This attribute
can be used to determine which port
the server should

 use.

AutoDiscoveryAddress Optional I
.

230.0.0.4 Multicast address to listen to for JND
automatic discovery

AutoDiscoveryGroup Optional I
.

1102 Multicast group to listen to for JND
automatic discovery

Consequently, only the PartitionName attribute differentiates the JNDI service from the HA-
JNDI service. In most cases, no attribute needs to be set.

So, if you wanted to hook up HA-JNDI to the example partition you set up in 1.D and change the
binding port, the Mbean descriptor would look as follows.

Listing 4-2. Overriding HA-JNDI default values

 <mbean code="org.jboss.ha.jndi.HANamingService" name="jboss:service=HAJNDI">
 <depends>jboss:service=MySpecialNewPartition</depends>
 <attribute name=”PartitionName”>MySpecialNewPartition</attribute>
 <attribute name=”Port”>56789</attribute>
 </mbean>

HA-JNDI binding and lookup rules
As introduced before, there is a tight coupling between the JNDI and HA-JNDI services on each
node of the cluster.

There are no special interfaces when working with HA-JNDI. When a client does a lookup, it is
transparent to the client whether the bounded object lives in the global JNDI tree or the local
JNDI tree.

Consequently, when a client lookups a name through a HA-JNDI service hosted on node N, 3
cases can arise:

1. the binding has been made through HA-JNDI and is available cluster-wide

2. the binding has been made through local JNDI on node N

3. the binding has been made through a local JNDI residing on a different node.

H A - J N D I — 4 P A G E 2 8

Page 28 of 101

Here are the steps performed by the HA-JNDI service when it receives a lookup query (1):

1. If the binding is available in the cluster-wide JNDI tree and it returns it. (1.1)

2. If the binding is not in the cluster-wide tree, it delegates the lookup query to the local
JNDI service and returns the received answer if available. (1.2)

3. If not available, the HA-JNDI services asks all other nodes in the cluster (1.3 and 1.3’) if
their local JNDI service (1.4 and 1.4’) owns such a binding and returns the an answer
from the set it receives.

4. If no local JNDI service owns such a binding, a NameNotFoundException is finally
raised.

Node 1

HA-JNDI

JNDI

Node 2

JNDI

1.4

HA-JNDI

1.2

Partition "Main"

Client

1. Lookup

1.1
1.3

Node 3

HA-JNDI

JNDI

1.4'

1.3'

JNP Client

Figure 8. HA-JNDI detailed lookup resolution process

What needs to be remembered from this scheme is that:

 If a binding is only made available on a few nodes in the cluster (for example because a
bean is only deployed on a small subset of nodes in the cluster), the probability to lookup a
HA-JNDI server that does not own this binding is higher and the lookup will need to be
forwarded to all nodes in the cluster. Consequently, the query time will be higher than if
the binding would have been available locally. Moral of the story: as much as possible,
cache the result of your JNDI queries in your client.

H A - J N D I — 4 P A G E 2 9

Page 29 of 101

 Using a node’s local JNDI to lookup a name that has been bound through HA-JNDI will
raise a NameNotFoundException exception: HA-JNDI has its own cluster-wide JNDI
tree. If you want to access HA-JNDI from the server side within code, you must explicitly
get an InitialContext by passing in JNDI properties.

Listing 4-3. Setting JNDI properties in code to access HA-JNDI

Properties p = new Properties();
p.put(Context.INITIAL_CONTEXT_FACTORY,
 "org.jnp.interfaces.NamingContextFactory");
p.put(Context.URL_PKG_PREFIXES, "jboss.naming:org.jnp.interfaces");
p.put(Context.PROVIDER_URL, "localhost:1100"); // HA-JNDI port.
return new InitialContext(p);

 As EJB containers bind their home stubs using the local JNDI service:

1. Home stubs are available cluster-wide

2. If different beans (even of the same type, but participating in different partitions)
use the same JNDI name, it means that each JNDI server will have a different
“target” bound (JNDI on node 1 will have a binding for bean A and JNDI on node 2
will have a binding, under the same name, for bean B). Consequently, if a client
performs a HA-JNDI query for this name, the query will be invoked on any JNDI
server of the cluster and will return the locally bound stub. Nevertheless, it may not
be the correct stub that the client is expecting to receive!

 It is possible to start several HA-JNDI services that use different partitions. This can be
used, for example, if a node is part of many clusters/partitions. In this case, take care of
setting a different port or IP address for both services.

HA-JNDI Design Note
This is a short section, but the reasons why there is one global HA-JNDI cluster-wide context and
a local JNDI context on each cluster node is as follows:

 We didn’t want any migration issues with applications already assuming that their JNDI
implementation was local. We wanted clustering to work out-of-the-box with just a few
tweaks of configuration files.

 We needed a clean distinction between locally bound objects and cluster-wide objects.

 In a homogeneous cluster, this configuration actually cuts down on the amount of network
traffic.

H A - J N D I — 4 P A G E 3 0

Page 30 of 101

 Designing it in this way makes the HA-JNDI service an optional service since all
underlying cluster code uses a straight new InitialContext() to lookup/create bindings.

HA-JNDI client and auto-discovery
When working with a single JBoss server, the JNDI configuration of the clients is simplified: they
only need to know the hostname/IP address and port number of the remote JNDI server.

When working with a cluster of JBoss servers, the configuration is not that easy. Which server
will be running when our clients will start? If we had this kind of certitude, clustering would not
be that much necessary. Consequently, the java.naming.provider.url JNDI setting can now accept
a list of urls separated by a comma. Example:

Listing 4-4. Sample HA-JNDI property string for multiple known servers

 java.naming.provier.url=server1:1100,server2:1100,server3:1100,server4:1100

When initialising, the JNP client code will try to get in touch with each server from the list, one
after the other, stopping as soon as one server has been reached. It will then download the HA-
JNDI server stub from this host. The downloaded smart stub contains the logic to fail-over to
another server if necessary and the updated list of currently running servers. Furthermore, each
time a JNDI invocation is made to the server, the list of target is updated (only if the list has
changed since the last call).

Note that this feature is also available for the standard JNDI server. But in this case, the
downloaded smart stub does not know how to fail-over and does not update its view of the cluster
(it simply ignores the notion of cluster).

In highly dynamic environments, where many servers start, stop and are moved, this solution can
still be frustrating to configure. Consequently, a new feature, called “auto-discovery”, has been set
up. If the property string java.naming.provier.url is empty or if all servers it mentions are not
reachable, the JNP client will try to discover a bootstrap HA-JNDI server through a multicast call
on the network. Thus, if you have a LAN or if your WAN is configured to propagate such
multicast datagrams, the client will be able to get a valid HA-JNDI server without any
configuration.

The auto-discovery feature uses multicast group address 230.0.0.4:1102.

This feature is not available with the standard JNDI server (only the HA-JNDI server).

H A - J N D I — 4 P A G E 3 1

Page 31 of 101

HA-JNDI JNP specific properties
When you create a new InitialContext, you can initialize it with a set of properties. By default,
these properties will identify which JNDI Service Provider to use, where is located the target
server (see java.naming.provier.url above), etc.

When using HA-JNDI in a clustered environment you can specify a set of other properties as
well:

Property Description

jnp.disableDiscovery When set to “true”, this property disables the automatic discovery
feature presented in the previous section. Default is “false”.

jnp.partitionName In an environment where multiple HA-JNDI services, bound to distinct
HAPartitions are started, this property allows you to configure which
partition you are looking for when the automatic discovery feature is
used. If you do not use the automatic discovery feature (because you
explicitly provide a list of valid provider in java.naming.provier.url for
example), this property will not be used.

When not set (default), the automatic discovery will select the first HA-
JNDI server that responds, independently of its partition name.

jnp.discoveryTimeout Determines how much time the context will wait for a response to its
automatic discovery packet. Defaults to 5000ms.

jnp.discoveryGroup Determine which multicast group address is used for the automatic
discovery feature. Defaults to 230.0.0.4

jnp.discoveryPort Determine which multicast group port is used for the automatic
discovery feature. Defaults to 1102

C L U S T E R I N G E J B — 5 P A G E

Page 32 of 101

3 2

5. Clustering EJB
Clustering entity and session beans

This section presents how to cluster the different kind of entity beans and the configuration
settings that apply.

Bean clustering requires at least JDK 1.3. JDK 1.2.2 or below is not supported.

While clustering your application, you should keep in mind the following guidelines:

 If your application is composed of many different beans, deploy them all on all nodes.
While it is possible to split the beans on different nodes (B1 and B2 on Node 1 and 2 and
B3 on node 2 and 3 for example), this may have a serious, negative performance impact.
Furthermore, if your JBoss instances are not configured to use the distributed transaction
manager, your calls are very likely to fail.

 Simplest is better: while complicated cluster topology can be built (with nodes
participating in many clusters for example), keeping it simple avoids to fall in an
administrative nightmare.

Stateless Session Beans
Clustering stateless session beans is most probably the easiest case: as no state is involved, calls
can be, à priori, load-balanced on any participating node (i.e. any node that has this specific bean
deployed) of the cluster.

To make a bean clustered, you need to modify its jboss.xml descriptor to contain a <clustered>
tag.

Listing 5-1. Setting a stateless session bean as clustered

<jboss>
 <enterprise-beans>
 <session>
 <ejb-name>nextgen.StatelessSession</ejb-name>
 <jndi-name>nextgen.StatelessSession</jndi-name>
 <clustered>True</clustered>

Chapter

5

C L U S T E R I N G E J B — 5 P A G E 3 3

Page 33 of 101

 <cluster-config>
 <partition-name>DefaultPartition</partition-name>
 <home-load-balance-policy>
 org.jboss.ha.framework.interfaces.RoundRobin
 </home-load-balance-policy>
 <bean-load-balance-policy>

 org.jboss.ha.framework.interfaces.RoundRobin
 </bean-load-balance-policy>
 </cluster-config>
 </session>
 </enterprise-beans>
</jboss>

In the bean configuration, only the <clustered> tag is mandatory to indicate that the bean will
work clustered. All other elements (sub-elements of <cluster-config>) are optional and their
default values are indicated in the sample configuration above.

The <partition-name> tag is used to determine in which cluster the bean will participate. It uses
by default, the default partition.

The <home-load-balance-policy> indicates the class to be used by the home proxy to balance
calls made on the nodes of the cluster. By default, the proxy will load-balance calls in a round-
robin fashion. You can also implement your own load-balance policy class or use the class
org.jboss.ha.framework.interfaces.FirstAvailable that persist to use the first node available that it
meets until it fails.

The <bean-load-balance-policy> indicates the class to be used by the remote proxy to balance
calls made on the nodes of the cluster. By default, the proxy will load-balance calls in a round-
robin fashion. Comments made for the <home-load-balance-policy> tag also apply.

Stateful Session Beans
Clustering stateful session beans has much more implications than clustering stateless beans: we
need to manage state!

In the current implementation we do not use any database or other equivalent mechanism to
replicate and share the state of beans. Instead, we use in-memory replication between nodes. The
state of all SFSBs are replicated and synchronized across the cluster each time the state of a bean
changes.

To manage the Stateful Session Bean state, a cluster-wide distributed service is needed. This
service is a Jboss Mbean called HASessionState:

Listing 5-2. Session State MBean definition

C L U S T E R I N G E J B — 5 P A G E 3 4

Page 34 of 101

 <mbean code="org.jboss.ha.hasessionstate.server.HASessionStateService"
 name="jboss:service=HASessionState">
 </mbean>

Available attributes are:

Attribute Mandated Default value Description

JndiName Optional /HAPartition/Default The JNDI name under
which this HASessionState
will be bound

PartitionName Optional DefaultPartition Name of the partition in
which the current
HASessionState protocol
will work.

BeanCleaningDelay Optional 30*60*1000
(30 minutes)

Number of miliseconds
after which the
HASessionState can clean a
state that has not been
modified. If a node, owning
a bean, crashes, its brother
node will take ownership of
this bean. Nevertheless, the
container cache of the
brother node will not know
about it (because it has
never seen it before) and
will never delete according
to the cleaning settings of
the bean. That is why the
HASessionState service
needs to do this cleanup
sometimes.

Then each stateful session bean needs to modify its jboss.xml descriptor to contain a <clustered>
tag.

Listing 5-3. Setting a stateful session bean as clustered

<jboss>
 <enterprise-beans>

C L U S T E R I N G E J B — 5 P A G E 3 5

Page 35 of 101

 <session>
 <ejb-name>nextgen.StatefulSession</ejb-name>
 <jndi-name>nextgen.StatefulSession</jndi-name>
 <clustered>True</clustered>
 <cluster-config>
 <partition-name>DefaultPartition</partition-name>
 <home-load-balance-policy>
 org.jboss.ha.framework.interfaces.RoundRobin
 </home-load-balance-policy>
 <bean-load-balance-policy>
 org.jboss.ha.framework.interfaces.FirstAvailable
 </bean-load-balance-policy>
 <session-state-manager-jndi-name>
 /HASessionState/Default
 </session-state-manager-jndi-name>
 </cluster-config>
 </session>
 </enterprise-beans>
</jboss>

In the bean configuration, only the <clustered> tag is mandatory to indicate that the bean will
work clustered. All other elements (sub-elements of <cluster-config>) are optional and their
default values are indicated in the sample configuration above.

The <session-state-manager-jndi-name> tag is used to give the JNDI name of the
HASessionState service to be used by this bean. By default it uses the default HASessionState.

The description of the remaining tags is identical to the one for stateless session bean.

Actions on the clustered SFSB’s home interface are by default load-balanced, round-robin. Once
the bean’s remote stub is available to the client, calls will not be load-balanced round-robin any
more and will stay “sticky” to the first node in the list.

As the replication process is a costly operation, you can optimise this behaviour by implementing
in your bean class a method with the following signature:

public boolean isModified ();

Before replicating your bean, the container will detect if your bean implements this method and
possibly call it. If the bean has not bean modified (or not enough to require replication,
depending on your own preferences), the replication will not occur.[>= 3.0.1 only]

Entity Beans
To cluster an entity bean you need to modify its jboss.xml descriptor to contain a <clustered> tag.

C L U S T E R I N G E J B — 5 P A G E 3 6

Page 36 of 101

Listing 5-4. Setting an entity bean as clustered

<jboss>
 <enterprise-beans>
 <entity>
 <ejb-name>nextgen.EnterpriseEntity</ejb-name>
 <jndi-name>nextgen.EnterpriseEntity</jndi-name>
 <clustered>True</clustered>
 <cluster-config>
 <partition-name>DefaultPartition</partition-name>
 <home-load-balance-policy>
 org.jboss.ha.framework.interfaces.RoundRobin
 </home-load-balance-policy>
 <bean-load-balance-policy>
 org.jboss.ha.framework.interfaces.FirstAvailable
 </bean-load-balance-policy>
 </cluster-config>
 </entity>
 </enterprise-beans>
</jboss>

In the entity bean configuration, only the <clustered> tag is mandatory to indicate that the bean
will work clustered. All other elements (sub-elements of <cluster-config>) are optional and their
default values are indicated in the sample configuration above.

The description of the remaining tags is identical to the one for stateless session bean.

Entity Synchronization
Clustered Entity Beans do not currently have a distributed locking mechanism or a distributed
cache. They can only be synchronized by using row-level locking at the database level or by
setting the Transaction Isolation Level of your JDBC driver to be
TRANSACTION_SERIALIZABLE.

If you are using Bean Managed Persistence(BMP), you are going to have to implement
synchronization on your own. The MVCSoft CMP 2.0 persistence engine (see
http://www.jboss.org/jbossgroup/partners.jsp) provides different kinds of optimistic
locking strategies that can work in a JBoss cluster. Also, the JBoss CMP 1.0 (JAWS) and CMP 2.0
implementations have row-locking capabilities under the <row-locking> feature. See CMP
documentation for more details.

Because there is no supported distributed locking mechanism or distributed cache Entity Beans
use Commit Option ‘B’ by default (See standardjboss.xml and the container configurations
Clustered CMP 2.x EntityBean, Clustered CMP EntityBean, or Clustered BMP EntityBean). It is
not recommended that you use Commit Option ‘A’ unless your Entity Bean is read-only. (There
are some design patterns that allow you to use Commit Option ‘A’ with read-mostly beans. You
can also take a look at the Seppuku pattern

http://www.jboss.org/jbossgroup/partners.jsp

C L U S T E R I N G E J B — 5 P A G E 3 7

Page 37 of 101

http://dima.dhs.org/misc/readOnlyUpdates.html. JBoss may incorporate this pattern
into later versions.)

Message Driven Beans
No features currently available.

Load-balance Policies
For each bean, you can decide, for your home and remote proxies, which load-balancing policy
you want to use. This section present the policies.

JBoss 3.0.x
Two policies are available by default:

• Round-Robin (org.jboss.ha.framework.interfaces.RoundRobin): each call is dispatched to
a new node.

• First Available (org.jboss.ha.framework.interfaces.FirstAvailable): one of the available
target nodes is elected as the main target and is used for every call: this elected member is
randomly chosen from the list of targets. When the list of target nodes changes (because
a node starts or dies), the policy will re-elect a target node unless the currently elected
node is still available. Each proxy elects its own target node independently of the other
proxies.

In JBoss 3.0.x, each proxy (home or remote) has its own list of available target nodes.
Consequently, some side-effects can occur.

For example, if you cache your home proxy and re-create a remote proxy for a stateless session
bean (with the Round-Robin policy) each time you need to make an invocation, a new proxy,
containing the list of available targets), will be downloaded for each new remote proxy.
Consequently, as the first target node is always the first in the list, calls will not seemed to be load-
balanced because there is no usage-history between different proxies.

Listing 5-5. Recreating a new remote proxy for each call

…
Home myHome = …;
while (jobToDo)
{
 Remote myRemote = myHome.create (); // get a brand new proxy and its own list of
 // target nodes
 myRemote.doTheJob (…); // load-balance calls starting at position 1

http://dima.dhs.org/misc/readOnlyUpdates.html

H T T P S E S S I O N C L U S T E R I N G — 6
 P A G E 3 8

Page 38 of 101

 // => calls are not load-balanced because only one call
 // is made on each remote proxy
}
…

Listing 5-6 Reusing a remote proxy for each call

…
Home myHome = …;
Remote myRemote = myHome.create (); // get a brand new proxy and its own list of
 // target nodes
while (jobToDo)
{
 myRemote.doTheJob (…); // load-bala calls starting at position 1 nce
 // => calls are load-balanced because each call
 // will use the next available target
}
…

JBoss ≥ 3.2
Three policies are available by default:

• Round-Robin (org.jboss.ha.framework.interfaces.RoundRobin): each call is dispatched to
a new node. The first target node is randomly selected from the list.

• First Available (org.jboss.ha.framework.interfaces.FirstAvailable): one of the available
target nodes is elected as the main target and is used for every call. The elected member is
randomly chosen from the list of targets. When the list of target nodes changes (because
a node starts or dies), the policy will re-elect a target node only if the currently elected
node is no longer available. Each proxy elects its own target node.

• First AvailableIdenticalAllProxies
(org.jboss.ha.framework.interfaces.FirstAvailableIdenticalAllProxies): Same behaviour as
the First-Available policy but the elected target node is shared by all proxies of the same
“family” (see below for more information).

In JBoss 3.2 (and upper), the notion of “Proxy Ffamily” is defined. A Proxy Family is a set of
proxies that all make invocations against the same replicated target. For EJBs for example, all
proxies targeting the same EJB in a given cluster are said to be of the same proxy family. Note
that home and remote proxies of a given EJB are in two different families.

All proxies of a given family share the same list of target nodes (plus some other information such
as the view id, etc.) in a structure called FamilyClusterInfo. This structure can also contain some
arbitrary information stored by the proxies themselves or their associated load-balancing policy.

H T T P S E S S I O N C L U S T E R I N G — 6
 P A G E 3 9

Page 39 of 101

Thus each proxy (home or remote) has a means to share information with other proxies of the
same family. Furthermore, if the cluster topology for a given EJB changes, the new list of target
nodes will only be refreshed once independently of the number of instantiated proxies (Collection
of entity beans returned from a finder for example).

These changes will remove the side-effects that are possible with the solution implemented in
JBoss 3.0. Thus, the code in Listing 5-5 that continuously re-creates remote proxies for each
invocation will correctly load-balance calls with JBoss 3.2 (and upper).

H T T P S E S S I O N C L U S T E R I N G — 6
 P

Page 40 of 101

A G E 4 0 Chapter

6
6. HTTP Session clustering
Clustering HTTP Sessions with Jetty and Tomcat

Introduction
HTTP session replication is used to replicate the state associated with your web clients on other
nodes of a cluster. Thus, in the event one of your node crashes, another node in the cluster will be
able to recover.

Two distinct functions must be performed:

1. Session state replication

2. Load-balance of incoming invocations

Node 1

Node 2

Web
Browser

1.1

1.3

Load-balancer

1
1.2

Sessions
replications

Figure 9HTTP Session failover

State replication is directly handled by JBoss whereas load balancing of invocations requires
additional software or hardware.

As load-balancing is not handled by JBoss itself, this chapter will not specifically focus on calls
load-balancing. Nevertheless, as this is a very common scenario, we will demonstrate how to

H T T P S E S S I O N C L U S T E R I N G — 6
 P A G E 4 1

Page 41 of 101

setup Apache and mod_jk. This activity could be either performed by specialized hardware
switches or routers (Cisco LoadDirector for example) or any other dedicated software4 though.

In the figure above, a load-balancer tracks the HTTP requests and, depending on the session to
which is linked the request, it dispatches the request to the appropriate node. This is called a
load-balancer with sticky-sessions: once a session is created on a node, every future request
will also be processed by the same node. This is an important feature as web applications may
make concurrent calls to the web server (HTML frames for example). Thus, if all concurrent
requests do not go to the same node, each node may concurrently modify the same data thus
breaking the coherency of the HTTP session (the same HTTP session may be different on each
node).

Do you really need HTTP Sessions replication?
As you saw in the previous section, requests load-balancing and state replication are two different
issues. Consequently, you can use a load-balancer without replicating your sessions.

Using a load-balancer that supports sticky-sessions without replicating the sessions allows you to
scale very well without the cost of session state replication: each query will always be handled by
the same node. But in the case a node dies, the state of all client sessions hosted by this node are
lost (the shopping carts for example) and the clients will most probably need to login on another
node and restart with a new session.

In many situations, it is acceptable not to replicate HTTP sessions because all critical state is
stored in the database. In other situations, loosing a client session is not acceptable and, in this
case, session state replication is the price one has to pay.

HTTP Session Replication Setup

Introduction
In the following sections, we will follow the complete trip of an HTTP invocation and sequentially
show how to setup:

• Apache and mod_jk to act as a front-end load-balancer,

• HTTP Session Replication in

o Tomcat or

o Jetty

4 A Jetty software load-balancer has also been implemented, but is not yet fully integrated in JBoss clustering.

H T T P S E S S I O N C L U S T E R I N G — 6
 P A G E 4 2

Page 42 of 101

• Activate session replication in your Web Application

Note that you will either use Tomcat or Jetty replication depending on the servlet container that
you use, but not both at the same time!

Apache and mod_jk
Apache5 is a well-known web server which can be extended by plugging modules. One of these
modules, mod_jk (and the newest mod_jk2) has been specifically designed to allow forward
requests from Apache to a Servlet container. Furthermore, it is also able to load-balance HTTP
calls to a set of Servlet containers while maintaining sticky sessions, and this is what is actually
interesting for us6.

The following sections will guide you through all steps required to install and configure mod_jk:

• Download and install mod_jk binaries

• Configure Apache to load the mod_jk module

• Configure the mod_jk module

• Configure the set of Servlet containers to which mod_jk will forward HTTP requests

In the following section, we don’t differentiate mod_jk from its evolution, mod_jk2 and simply
reference to this module as “mod_jk”. Nevertheless, the examples have been done with mod_jk2.

Download and instal l mod_jk binaries
First of all, make sure that you have Apache installed. You can download Apache directly
from Apache web site at http://httpd.apache.org/. Its installation is pretty straightforward and
requires no specific configuration. As several versions of Apache exist, we advise you to use
version 2.0.x. We will consider, for the next sections, that you have installed Apache in the
APACHE_HOME directory.

Next, download mod_jk binaries. Several versions of mod_jk exist as well; we advise you to
use mod_jk2. It can be downloaded from http://jakarta.apache.org/builds/jakarta-tomcat-

5 Apache runs on lots of different OS/platforms. It can be download here: http://httpd.apache.org/

6 mod_jk also exists for IIS, Domino and Netscape web servers

H T T P S E S S I O N C L U S T E R I N G — 6
 P A G E 4 3

Page 43 of 101

connectors/jk2/release/. Under Windows, it will be a .DLL file, whereas under Linux and Solaris
it will be a .SO fill. To finish this step, simply copy this file under
APACHE_HOME/modules/.

Configure Apache to load the mod_jk module
In this section, we will tell Apache to load the mod_jk module and set mod_jk’s basic settings.

First modify APACHE_HOME/conf/httpd.conf and add a single line at the end of the file:

Listing 6-1. Including mod_jk’s configuration file in Apache’s main configuration file (conf/httpd.conf)

…
#<VirtualHost *>
ServerAdmin webmaster@dummy-host.example.com
DocumentRoot /www/docs/dummy-host.example.com
ServerName dummy-host.example.com
ErrorLog logs/dummy-host.example.com-error_log
CustomLog logs/dummy-host.example.com-access_log common
#</VirtualHost>

Include mod_jk’s specific configuration file
Include conf/mod-jk.conf

Next, create a new file named APACHE_HOME/conf/mod-jk.conf:

Listing 6-2. mod_jk’s configuration file (conf/mod-jk.conf)

Load mod_jk module. Specify the filename
of the mod_jk lib you’ve downloaded and
installed in the previous section
LoadModule jk2_module modules/mod_jk-2.0.43.dll

Where to find workers.properties
JkWorkersFile conf/workers.properties

Where to put jk logs
JkLogFile logs/mod_jk.log

Set the jk log level [debug/error/info]
JkLogLevel info

Select the log format
JkLogStampFormat "[%a %b %d %H:%M:%S %Y] "

JkOptions indicate to send SSL KEY SIZE,
JkOptions +ForwardKeySize +ForwardURICompat -ForwardDirectories

JkRequestLogFormat set the request format
JkRequestLogFormat "%w %V %T"

H T T P S E S S I O N C L U S T E R I N G — 6
 P A G E 4 4

Page 44 of 101

JkMount /* loadbalancer

Two settings are very important:

1. The first one, “LoadModule”, must reference the mod_jk library you have downloaded in
the previous section. You must indicate the exact same name with the “modules” file path
prefix.

2. The last one, “JkMount”, tells Apache which URLs it should forward to the mod_jk
module (and, in turn, to the Servlet containers). In the above file, all requests will be sent
to the mod_jk load-balancer. That is fine if Apache is only use as a load-balancer.
However, if you plan to use Apache to serve static content as well, you would only send
some specific URLs to mod_jk.

You will most probably not change the other settings: they are used to tell mod_jk where to put
its logging file, which logging level to use and so on.

Configure the worker nodes
In this section we will configure mod_jk workers file: conf/workers.properties. This file
specify where are located the different Servlet containers and how calls should be load-balanced
across them.

The configuration file contains one section for each target servlet container and one global
section. For a two nodes setup, the file could look like this:

Listing 6-3. conf/workers.properties sample file for 2 workers Servlet container

Define the first node...
worker.node1.port=8009
worker.node1.host=node1.mycompany.com
worker.node1.type=ajp13
worker.node1.lbfactor=1
worker.node1.local_worker=1
worker.node1.cachesize=10

...and the second node.
worker.node2.port=8009
worker.node2.host=node2.mycompany.com
worker.node2.type=ajp13
worker.node2.lbfactor=1
worker.node2.local_worker=1
worker.node2.cachesize=10

Now we define the load-balancing behaviour

H T T P S E S S I O N C L U S T E R I N G — 6
 P A G E 4 5

Page 45 of 101

worker.loadbalancer.type=lb
worker.loadbalancer.balanced_workers=node1, node2
worker.loadbalancer.sticky_session=1
worker.loadbalancer.local_worker_only=1
worker.list=loadbalancer

First, each node is defined using the worker.XXX naming convention where XXX represents an
arbitrary name you choose for one of the target Servlet container. For each worker, you must give
the host name (or IP address) and port number of the AJP13 connector running in the Servlet
container.

AJP13 is a protocol used between mod_jk and the servlet container to replace straight HTTP. It is
more resource-efficient than straight HTTP and available for both Jetty and Tomcat. Other
protocols are also available for mod_jk to Servlet container communication. See the mod_jk
configuration for more information7.

The lbfactor attribute is the load-balancing factor for this specific worker. It is used to define the
priority (or weight) a node should have over other nodes. The higher this number is, the more
HTTP requests it will receive. This setting can be used to differentiate servers with different
processing power.

The cachesize attribute defines the size of the thread pools associated to the Servlet container
i.e. the number of concurrent requests it will forward to the Servlet container. Make sure this
number does not outnumber the number of threads configured on the AJP13
connector of the Servlet container.

The last part of the conf/workers.properties file defines the loadbalancer worker. The only thing
you must change is the worker.loadbalancer.balanced_workers line: it must list all
workers previously defined in the same file: load-balancing will happen over these workers.

At this point, you have a fully working Apache+mod_jk load-balancer setup that will balance call
to the Servlet containers of your cluster while taking care of session stickiness (clients will always
use the same Servlet container).

Activating Tomcat Session Replication
To activate the HTTP session replication, you must first have a correctly running cluster. The
simplest way is to start JBoss using the “all” configuration:

run.bat –c all
or

7 http://jakarta.apache.org/builds/jakarta-tomcat-connectors/jk2/doc/

H T T P S E S S I O N C L U S T E R I N G — 6
 P A G E 4 6

Page 46 of 101

./run.sh –c all

Specifically, Tomcat HTTP session replication requires the clustering files as well as the jbossha-
httpsession.sar file in /deploy. As this file is already part of the “all” configuration, running this
configuration is enough to enable Tomcat HTTP session replication: no additional step is
required.

HTTP Sessions replication for Tomcat is handled by a JBoss service that is independent of the
Servlet container. The Servlet container in itself doesn’t contain any replication code but, instead,
relies on this service. Consequently, we will see in a next section that it is also possible to use the
exact same service for Jetty.

Now, let’s take a look at Tomcat configuration in deploy/tomcat41-service.xml (the filename may
change depending on the version of Tomcat that you are using):

?xml version="1.0" encoding="UTF-8"?>
…
<!DOCTYPE server [
 <!ENTITY catalina.home "../tomcat-4.1.x">
]>

…
<server>
…
 <mbean code="org.jboss.web.catalina.EmbeddedCatalinaService41"
 name="jboss.web:service=WebServer">
 <attribute name="CatalinaHome">&catalina.home;</attribute>
…
 <attribute name="SnapshotMode">instant</attribute>
 <!-- you may switch to "interval" -->
 <attribute name="SnapshotInterval">2000</attribute>
 …

The first element is the SnapshotMode attribute. It defines when modified sessions should be
replicated to the other nodes of the cluster. By default, Tomcat HTTP session replication uses a
method called “instant snapshotting”: sessions are synchronously replicated after each HTTP
request. To use instant-snapshotting, set the SnapshotMode attribute to “instant” (in this
case, the “SnapshotInterval” attribute is ignored).

Another snapshotting scheme is available; it is called “interval snapshotting”. In this case,
sessions are collected for a given period of time and then replicated en-bloc. This may give you
some performance when you work with HTML-framesets where concurrent requests for the
same ID can occur. Without interval snapshotting every request triggers replication. To use
interval-snapshotting, set the SnapshotMode attribute to “interval” and
“SnapshotInterval” to the interval duration in milliseconds.

 …

H T T P S E S S I O N C L U S T E R I N G — 6
 P A G E 4 7

Page 47 of 101

 <attribute name="Config">
 <Server>
 <Service name = "JBoss-Tomcat">
 <Engine name="MainEngine" defaultHost="localhost">
 <Logger className = "org.jboss.web.catalina.Log4jLogger"
 verbosityLevel = "trace" category =
 "org.jboss.web.localhost.Engine"/>
 <Host name="localhost">

 <!-- Access logger -->
 <Valve className = "org.apache.catalina.valves.AccessLogValve"
 prefix = "localhost_access" suffix = ".log"
 pattern = "common" directory = "../server/default/log" />

 <!-- Default context parameters -->
 <DefaultContext cookies = "true" crossContext = "true"
 override = "true" />

 </Host>
 </Engine>

 <!-- Define a non-SSL Coyote HTTP/1.1 Connector on port 8080 -->
 <Connector className="org.apache.coyote.tomcat4.CoyoteConnector"
 port="8080" minProcessors="5" maxProcessors="75"
 enableLookups="true" redirectPort="8443"
 acceptCount="100" debug="0" connectionTimeout="-1"
 useURIValidationHack="false" disableUploadTimeout="true" />

 <!-- An AJP 1.3 Connector on port 8009. Used by Apache mod_jk -->
 <Connector className="org.apache.coyote.tomcat4.CoyoteConnector"
 port="8009" minProcessors="5" maxProcessors="75"
 enableLookups="true" redirectPort="8443"
 acceptCount="10" debug="0" connectionTimeout="20000"
 useURIValidationHack="false"
 protocolHandlerClassName="org.apache.jk.server.JkCoyoteHandler"/>

 </Service>
 </Server>
 </attribute>
 </mbean>

</server>

At the end of the file, you can see an AJP13 connector being defined. It is the connector that is
required to communicate with the mod_jk connector. The minProcessors and maxProcessors
attributes define the minimum and maximum size of the thread pools that will accepts incoming
query.

 This value of the maxProcessors attribute must at least match the value of the mod_jk
thread pool defined for this worker (worker.nodeXXX.cachesize key in the
APACHE_HOME/conf/workers.properties file)

H T T P S E S S I O N C L U S T E R I N G — 6
 P A G E 4 8

Page 48 of 101

Jetty configuration
Jetty provides two strategies for “distributable” web applications:

1. JBoss-based: full clustering support (session replication) based on the JBoss service
(same as the one used by Tomcat)

2. Jetty-based: full clustering support (session replication) based on a Jetty plugin8 that
provides attribute-by-attribute replication.

Let’s see how they both work.

JBoss-Based Replication
To activate the HTTP session replication, you must first have a correctly running cluster. The
simplest way is to start JBoss using the “all” configuration:

run.bat –c all
or

./run.sh –c all

Specifically, JBoss-based HTTP session replication in Jetty requires the clustering files as well as
the jbossha-httpsession.sar file in /deploy. As these files are already part of the “all”
configuration, running this configuration is the quickest way to enable HTTP session replication.

HTTP Sessions replication for Jetty is handled by a JBoss service that is independent of the
Servlet container. The Servlet container in itself doesn’t contain any replication code but, instead,
relies on this service. Consequently, as you saw in a previous section we use the exact same service
for Tomcat.

Now, you must enable the JBoss-based HTTP session replication strategy. Open Jetty’s main
configuration file deploy/jbossweb.sar/META-INF/jboss-service.xml. At the end of this file,
uncomment the ClusterStore XML snippet:

<?xml version="1.0" encoding="UTF-8"?>

<server>

 <!-- == -->
 <!-- Web Container -->

8 Note that both the JBoss and Jetty clustering plugins are based on JavaGroups (http://www.javagroups.com/)

H T T P S E S S I O N C L U S T E R I N G — 6
 P A G E 4 9

Page 49 of 101

 <!-- == -->

 <mbean code="org.jboss.jetty.JettyService" name="jboss.web:service=WebServer">

 ...

 <!--
 b)
 ClusterStore HTTP session replication scheme
 (i.e <distributable/> support)
 See above for more information. Only run with
 JBoss "all" configuration! -->
 <Set name="store">
 <New class="org.jboss.jetty.session.ClusterStore">
 <Set name="actualMaxInactiveInterval">604800</Set>
 <Set name="scavengerPeriod">3600</Set>
 <Set name="scavengerExtraTime">900</Set>
 </New>
 </Set>

 ...

 </Configure>
 </attribute>

 </mbean>

</server>

Inside the tag, you can specify three different parameters:

• actualMaxInactiveInterval (defaults to 604800, a week): if someone specifies -1 for
their maxInactiveInterval – how long should we really leave the session before GC ? (in
seconds)

• scavengerPeriod (defaults to 3600, 1 hour): how regularly should distributable sessions
with no locally held counterpart be garbage collected

• scavengeExtraTime (defaults to 900, 15 minutes): how much older than its
maxInactiveInterval should the distributable counterpart of a session be, before it is
garbage collected by the ditributable-scavenger ? This should always be more than the
local scavenge period, so that a session is garbage collected locally first.

However, note that these values only specify the scavenge behaviour with regard to distributed
sessions, you must still configure a valid HTTP session timeout value, as for non-distributable
Web applications.

H T T P S E S S I O N C L U S T E R I N G — 6
 P A G E 5 0

Page 50 of 101

You can now use JBoss-based Jetty HTTP session replication.

JBoss-based HTTP session replication has been integrated in Jetty by Jules Gosnell.

Jetty-Based Replication
To activate the HTTP session replication, you must first have a correctly running cluster. The
simplest way is to start JBoss using the “all” configuration:

run.bat –c all
or

./run.sh –c all

While Jetty-based HTTP session replication in Jetty does not require JBoss clustering, it requires
javagroups-2.0.jar in server/xxx/lib (where xxx is the configuration name you plan to use). As
this file is already part of the “all” configuration, running this configuration is the quickest way to
enable Jetty-based HTTP session replication.

Jetty-Based HTTP sessions replication is fully integrated in Jetty’s code. Consequently, it does not
require any JBoss code and can be used with the Jetty standalone distribution as well.

Now, you must enable the Jetty-based HTTP session replication strategy. Open Jetty’s main
configuration file deploy/jbossweb.sar/META-INF/jboss-service.xml. At the end of this file,
uncomment the JGStore XML snippet:

<?xml version="1.0" encoding="UTF-8"?>

<server>

 <!-- == -->
 <!-- Web Container -->
 <!-- == -->

 <mbean code="org.jboss.jetty.JettyService" name="jboss.web:service=WebServer">

 ...

 <!--
 a)
 JGStore HTTP session replication scheme
 (i.e <distributable/> support)
 See above for more information. Only run with
 JBoss "all" configuration! -->
 <Set name="store">
 <New class="org.mortbay.j2ee.session.JGStore">
 <Set name="actualMaxInactiveInterval">604800</Set>
 <Set name="scavengerPeriod">3600</Set>

H T T P S E S S I O N C L U S T E R I N G — 6
 P A G E 5 1

Page 51 of 101

 <Set name="scavengerExtraTime">900</Set>
 <Set name="protocolStack">UDP(mcast_addr=228.8.8.8;
 mcast_port=45566;ip_ttl=32;ucast_recv_buf_size=16000;
 ucast_send_buf_size=16000;mcast_send_buf_size=32000;
 mcast_recv_buf_size=64000;loopback=true):PING(timeout=2000;
 num_initial_members=3):MERGE2(min_interval=5000;
 max_interval=10000):FD_SOCK:VERIFY_SUSPECT(timeout=1500):
 pbcast.STABLE(desired_avg_gossip=20000):pbcast.NAKACK(gc_lag=50;
 retransmit_timeout=300,600,1200,2400,4800;max_xmit_size=8192):
 UNICAST(timeout=2000):FRAG(frag_size=8192;down_thread=false;
 up_thread=false):pbcast.GMS(join_timeout=5000;join_retry_timeout=2000;
 shun=false;print_local_addr=true):pbcast.STATE_TRANSFER</Set>
 <Set name="subClusterName">DefaultSubCluster</Set>
 <Set name="retrievalTimeOut">20000</Set>
 <Set name="distributionTimeOut">5000</Set>
 <Set name="distributionMode">GET_ALL</Set>
 </New>
 </Set>

 ...

 </Configure>
 </attribute>

 </mbean>

</server>

Inside the tag, you can specify eight different parameters:

• actualMaxInactiveInterval (defaults to 604800, a week): if someone specifies -1 for
their maxInactiveInterval – how long should we really leave the session before GC ? (in
seconds)

• scavengerPeriod (defaults to 3600, 1 hour): how regularly should distributable sessions
with no locally held counterpart be garbage collected

• scavengeExtraTime (defaults to 900, 15 minutes): how much older than its
maxInactiveInterval should the distributable counterpart of a session be, before it is
garbage collected by the ditributable-scavenger ? This should always be more than the
local scavenge period, so that a session is garbage collected locally first.

• protocolStack: the definition of a JavaGroup protocol stack. See the JavaGroups
documentation for detailed information: http://www.javagroups.com/

H T T P S E S S I O N C L U S T E R I N G — 6
 P A G E 5 2

Page 52 of 101

• subClusterName: name of the JavaGroup cluster (each JavaGroup cluster has an
individual name). Each node belonging to the same cluster must have the same cluster
name.

• retrievalTimeOut: when a new Jetty instance starts, it must acquires the replicats of the
session from other nodes to initialize its local store. This parameter indicates after how
much time should we consider that a problem occurs and that we cannot get this initial
state successfully.

• distributionTimeOut:

• distributionMode: when a cluster has more than two nodes, we can decide when we
consider that the session state has been successfully replicated:

o GET_ALL: only once all nodes have received the new state

o GET_MAJORITY: only once a majority of all non-faulty members have received
the new state.

o GET_ABS_MAJORITY: only once a majority of all members (faulty or non-
faulty) have received the new state. This may block, waiting for faulty-members to
receive the state.

o GET_FIRST: only once a single node has received the new state.

o GET_NONE: we don’t care to know if the other nodes have received the new state
or not. This is equivalent to an asynchronous replication.

However, note that these values only specify the scavenge behaviour with regard to distributed
sessions, you must still configure a valid HTTP session timeout value, as for non-distributable
Web applications.

You can now use Jetty-based Jetty HTTP session replication.

Jetty-based HTTP session replication has been implemented in Jetty by Jules Gosnell.

Activate session replication in your Web Application
Once your load-balancer and your Servlet container are configured to replicate HTTP sessions,
the last element that must be configured is … your web application itself!

This can be done by declaring a distributable tag at the beginning of the WEB-INF/web.xml file
of your WAR. This tag has no parameter, it is just some kind of placeholder that tells the Servlet
container that session should be replicated:

H T T P S E S S I O N C L U S T E R I N G — 6
 P A G E 5 3

Page 53 of 101

<?xml version="1.0"?>
<!DOCTYPE web-app PUBLIC
 "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <distributable/>
 …
</web-app>

That’s all! You can now test HTTP session clustering.

F A R M I N G — 7 P A G E

Page 54 of 101

5 4

7. Farming
Distributed Hot-Deployment

With JBoss clustering you can hot-deploy across the whole cluster just by plopping your EAR,
WAR, or JAR into the deploy directory of one clustered JBoss instance. Hot-deploying on one
machine will cause that component to be hot-deployed on all instances within the cluster.

Farming is enabled by default in the “all” configuration, so you will not have to set it up yourself.
If you want to do it yourself though, simply create the XML file shown below and copy it to the
JBoss deploy directory $JBOSS_HOME/server/all/deploy.

farm-service.xml

<?xml version="1.0" encoding="UTF-8"?>

<server>

 <classpath codebase="lib" archives="jbossha.jar"/>

 <mbean code="org.jboss.ha.framework.server.FarmMemberService"
 name="jboss:service=FarmMember,partition=DefaultPartition" >
 ...
 <attribute name="PartitionName">DefaultPartition</attribute>
 <attribute name="ScanPeriod">5000</attribute>
 <attribute name="URLs">farm/</attribute>
 </mbean>

</server>

After deploying farm-service.xml you are ready to rumble. Here are the available attributes for
configuring a farm:

Attribute Mandated Default value Description

PartitionName Required DefaultPartition Name of the cluster partition that
this deployed farm belongs to.

Chapter

7

F A R M I N G — 7 P A G E 5 5

Page 55 of 101

URLs Required farm/ Directory where deployer watches
for files to be deployed. This
MBean will create the directory if
it doesn’t already exist. Also “.”
pertains to the configuration
directory, i.e.
$JBOSS_HOME/server/all

ScanPeriod Required 5000 Interval at which the folder must
be scanned for changes.

As the Farming service is an extension of the URLDeploymentScanner that scans deployments in
/deploy, all other attributes have the same meaning. Check in the JBoss administration guide for
more information.

C A C H E I N V A L I D A T I O N — 8 P

Page 56 of 101

A G E 5 6 Chapter

8

8. Cache Invalidation
Automatically Invalidating Specific Cache Entries

This chapter describes the JBoss Cache Invalidation Framework (CIF) that is available since
JBoss 3.2. The framework allows you to link several caches that represent the same underlying
data so that when one of the entities is modified, all concerned caches flush this particular
identity. This mechanism allows them to cache only up-to-date information and very quickly
invalidate any stale data.

Overview
The cache is a well-known and important player of the EJB specification for entity beans. It
allows the container to keep a set of entity beans associated with an identity so that future access
to the same bean will avoid a costly access to the database and the creation and initialisation of a
new entity bean.

To determine the behaviour of caches, the EJB specification specifies 3 “Commit Options”:

• Commit Option A: “I own the DB”. With this setting, you tell the container that it is the
only actor that will modify data in the persistent store. Consequently, it can cache as many
data as it wants because it will always be up-to-date (no other actor is allowed to make
modifications without going through this particular container)

• Commit Option B or C9: “I don’t own the DB”. With this setting, you tell the container that
other actors could potentially modify data without going through this container. They will
not necessarily do this, but they may. Consequently, the container is not allowed to cache
any data across transactions.

9 The slight difference that exists between Commit Options B and C is not really interesting in this case. Commit Option C forces the
container to definitively remove instances from the cache when the transactions commits/rollbacks while in Commit Option B, the container
may simply flag them as invalid. This difference can for example be used to implement Optimistic Locking schemes.

C A C H E I N V A L I D A T I O N — 8 P A G E 5 7

Page 57 of 101

JBoss provides a fourth (proprietary) Commit Option: D. This level works like commit option A
but with a timeout value: once the timeout has elapsed (for example 30 seconds), the instance is
considered as invalid and removed from the cache. This scheme can be very useful when data
does not change frequently or when it is not critical to work with really up-to-date data.

Consequently, to benefit from a cache, Commit Options A or D must be used. The problem is that
Option A can only be very rarely used in production environment and Option D does not fit all
needs: stale data can be used until the timeout has elapsed and non-staled data may be removed
from cache (which is not efficient).

To overcome these restrictions, the Cache Invalidation Framework can be used in conjunction
with Commit Option A: data are kept in cache and only removed when another actor (which may
be another container, another JBoss instance or any other software) invalidates a given identity.

Framework Architecture
The Cache Invalidation Framework is not tight to a specific cache implementation or invalidator.
Instead, it is much more an “invalidation-router” that can route invalidation messages from
specific invalidators to the appropriate(s) invalidation listeners (such as caches).

InvalidatableInvalidatable

Invalidation Manager

InvalidatorInvalidator

Invalidation
Bridge A

Invalidation
Bridge B

JMS Multicast

Invalidation
messages

Invalidation
messages

Figure 10 Cache Invalidation Framework Architecture

Invalidator and Invalidation listeners all work in the focus of a given Invalidation Group. An
Invalidation Group gather all invalidations for a given domain (a specific entity bean for
example). Thus, if we have two distinct entity beans (Customers and Orders) whose caches plug
in the Invalidation Manager, two distinct Invalidation Groups are formed.

C A C H E I N V A L I D A T I O N — 8 P A G E 5 8

Page 58 of 101

While more than one Invalidation Manager could run inside the same JVM, having a single
manager per JVM will fit most if not all needs. Until now, everything that has been described
happens inside the same virtual machine. To allow more than one JBoss instance to exchange
invalidation messages, Invalidation Bridges must be used.

An Invalidation Bridge is a protocol specific component that plugs in an invalidation manager
and can:

• Mass-receive invalidation messages for one or more Invalidation Groups

• Mass-send invalidation message for one or more Invalidation Groups

Consequently, the Cache Invalidation Framework can either work in pure single-JVM
environments or in distributed/clustered environments: the Invalidation Manager doesn’t care. It
is up to the JBoss administrator to (hot-)deploy the appropriate Invalidation Bridges.

Thus, the above architecture is fully generic and not tied to a specific usage. The next section will
describe the integration with EJB containers.

A default Invalidation Manager is started as part of the “default” and “all” configurations:

deploy/cache-invalidation-service.xml

<server>
...
 <mbean code="org.jboss.cache.invalidation.InvalidationManager"
 name="jboss.cache:service=InvalidationManager">
 </mbean>
...
<server>

The Invalidation Manager can perform both asynchronous and synchronous invalidations. By
default, it will perform synchronous invalidations. This behaviour can be change on an
invalidation-messages basis when sending invalidation messages.

What the framework is not
People frequently confuse the following:

• Distributed cache invalidation

• Distributed cache

• Distributed locking

C A C H E I N V A L I D A T I O N — 8 P A G E 5 9

Page 59 of 101

• Distributed transactions

While all these can be related, they are not equal.

A distributed cache keeps a consistent cache across a set of nodes and modifications done on a
given node are generally replicated to other nodes. Furthermore, some implementations can be
temporarily disconnected from the network and work from cache directly. Distributed caches are
frequently provided with a distributed locking mechanism.

Locking is used with entity beans to solve one or both of the following requirements: instance
(non-) concurrency and transaction isolation. When more than one client access a given entity
bean, they same bean instance can only be accessed by a single “transaction” and each client must
have its own view of the instance (isolation). This can be achieved through Pessimistic Locking
for example: as long as one transaction uses a given instance, no other transaction can use it. To
insure that only a single transaction has exclusive access to a given instance, a synchronization
point must be used. Most of the time, this point is the database itself. Nevertheless, sometimes a
distributed locking mechanism is used at the application server directly: containers never directly
lock the data in the database itself but instead lock beans at the application server level through a
Distributed Lock Manager.

Distributed Transactions are used when a given transaction execution spans more than one
node10. In this case, the transaction context must be transported to other nodes and all nodes
participate in the same transaction. The keywords in this context are frequently: XA transactions
(and XA drivers) and 2-Phase-Commits (2PC).

The current invalidation framework does not provide distributed caching, or distributed locking,
or distributed transactions. Consequently, make sure your application does not required
distributed locking.

EJB Integration
To integrate Entity Beans in the Cache Invalidation Framework, to main components have been
added.

First, a extended version of JBoss Entity Bean cache must be used. This implementation knows
how to register in the Invalidation Framework, listen to invalidation messages for a given
Invalidation Group and invalidate these entries from the cache.

10 This definition is not accurate but fits in our case

C A C H E I N V A L I D A T I O N — 8 P A G E 6 0

Page 60 of 101

Invalidation Manager

Invalidation
messages

for Group «MyEntity»

Entity Bean
Container A

in
te

rc
ep

to
rs

cache

Entity Bean
Container B

in
te

rc
ep

to
rs

cache

Figure 11Cache Invalidation Framework Integration in EJB

Second, a new Interceptor must be added to the container. This interceptor will detect when a
specific bean has been modified and send invalidation messages for a specific Invalidation Group
to the Invalidation Manager. It is not enough though: EJB containers are transactional and
invalidation messages can only be sent once/if the transaction successfully commits.
Consequently, when a bean is modified, an invalidation message is not directly sent to the
Manager. Instead, it is kept in a transaction-specific “InvalidationsTxGrouper” instance that will
batch-commit all modifications at commit time.

Furthermore, an InvalidationTxGrouper instance can keep track of invalidation messages for
more than one Invalidation Group used in the context of the same transaction. At commit time, a
single invalidation message containing all invalidations for all invalidation groups is sent to the
manager that will appropriately dispatch them. This represents a potentially great optimisation
for bridges that will be able to broadcast/publish/send all invalidations in a single message
instead of one per invalidation or one per Invalidation Group.

EJB Container Configuration
To use cache invalidations in your beans, two configuration steps are required:

1. Container configuration

2. Bean configuration

C A C H E I N V A L I D A T I O N — 8 P A G E 6 1

Page 61 of 101

EJB Container Configuration
During this step you will define a container configuration that includes the invalidator interceptor
and the extended cache.

If you are using CMP 2.x, then you are done: an example configuration is already provided as part
of standardjboss.xml. This container configuration is called
“Standard CMP 2.x EntityBean with cache invalidation”.

If you do not use CMP 2.x or if you want to build your own container configuration, two
modifications are necessary:

1. Change the <instance-cache> value to
org.jboss.ejb.plugins.InvalidableEntityInstanceCache

2. Add a new interceptor to the end of the interceptor stack. The class of this interceptor
must be
org.jboss.cache.invalidation.triggers.
EntityBeanCacheBatchInvalidatorInterceptor

Here is a sample configuration:

standardjboss.xml

<?xml version="1.0" encoding="UTF-8"?>

 ...
 <container-configuration>
 <container-name
 >Standard CMP 2.x EntityBean with cache invalidation</container-name>
 <call-logging>false</call-logging>
 <container-interceptors>
 <interceptor>org.jboss.ejb.plugins.ProxyFactoryFinderInterceptor</interceptor>
 <interceptor>org.jboss.ejb.plugins.LogInterceptor</interceptor>
 <interceptor>org.jboss.ejb.plugins.SecurityInterceptor</interceptor>
 <interceptor>org.jboss.ejb.plugins.TxInterceptorCMT</interceptor>
 <interceptor metricsEnabled="true"
 >org.jboss.ejb.plugins.MetricsInterceptor</interceptor>
 <interceptor>org.jboss.ejb.plugins.EntityCreationInterceptor</interceptor>
 <interceptor>org.jboss.ejb.plugins.EntityLockInterceptor</interceptor>
 <interceptor>org.jboss.ejb.plugins.EntityInstanceInterceptor</interceptor>
 <interceptor>org.jboss.ejb.plugins.EntityReentranceInterceptor</interceptor>
 <interceptor
 >org.jboss.resource.connectionmanager.CachedConnectionInterceptor</interceptor>
 <interceptor

C A C H E I N V A L I D A T I O N — 8 P A G E 6 2

Page 62 of 101

 >org.jboss.ejb.plugins.EntitySynchronizationInterceptor</interceptor>
 <interceptor
>org.jboss.cache.invalidation.triggers.EntityBeanCacheBatchInvalidatorInterceptor<
 /interceptor>
 <interceptor
 >org.jboss.ejb.plugins.cmp.jdbc.JDBCRelationInterceptor</interceptor>
 </container-interceptors>
 <instance-pool>org.jboss.ejb.plugins.EntityInstancePool</instance-pool>
 <instance-cache
 >org.jboss.ejb.plugins.InvalidableEntityInstanceCache</instance-cache>
 <persistence-manager
 >org.jboss.ejb.plugins.cmp.jdbc.JDBCStoreManager</persistence-manager>
 <transaction-manager>org.jboss.tm.TxManager</transaction-manager>
 <locking-policy
 >org.jboss.ejb.plugins.lock.QueuedPessimisticEJBLock</locking-policy>
 <container-cache-conf>
 <cache-policy
 >org.jboss.ejb.plugins.LRUEnterpriseContextCachePolicy</cache-policy>
 <cache-policy-conf>
 <min-capacity>50</min-capacity>
 <max-capacity>1000000</max-capacity>
 <overager-period>300</overager-period>
 <max-bean-age>600</max-bean-age>
 <resizer-period>400</resizer-period>
 <max-cache-miss-period>60</max-cache-miss-period>
 <min-cache-miss-period>1</min-cache-miss-period>
 <cache-load-factor>0.75</cache-load-factor>
 </cache-policy-conf>
 </container-cache-conf>
 <container-pool-conf>
 <MaximumSize>100</MaximumSize>
 </container-pool-conf>
 <commit-option>A</commit-option>
 </container-configuration>
...

Bean Configuration
For each bean that will fit in the invalidation framework, two things must be defined:

1. The name of container configuration that the bean must use (see previous section)

2. Activate the Invalidation mechanism through the <cache-invalidation> tag

jboss.xml

 <jboss>
 <enterprise-beans>
 <entity>
 <ejb-name>SimpleEJB</ejb-name>

C A C H E I N V A L I D A T I O N — 8 P A G E 6 3

Page 63 of 101

 <configuration-name
 >Standard CMP 2.x EntityBean with cache invalidation</configuration-name>
 <cache-invalidation>True</cache-invalidation>
 </entity>
 </enterprise-beans>
 </jboss>

Please note that these settings will depends on the Commit Option settings of the container
configuration. Thus, the extended cache will only subscribe for invalidation messages if the
container runs in Commit Option A or D. Nevertheless, the Invalidator interceptor will forward
invalidation messages independently of the container’ Commit Option.

At this point, the container will itself decide what is the name of the Invalidation Group by
taking the EJB name and will use the default Invalidation Manager instance. If what you are
trying to achieve is cluster-wise invalidation of caches, then that is fine because the EJB name will
be the same on all nodes, and consequently all EJBs will share the same Invalidation Group
name. But if you want to have two identical EJBs running in the same JBoss instance that
invalidate their respective cache, they will not belong to the same Invalidation Group because
each EJB will have a distinct name. Thus, in this case you will have to assign the same
Invalidation Group name to both EJBs. This can be any arbitrary string:

jboss.xml

 <jboss>
 <enterprise-beans>
 <entity>
 <ejb-name>SimpleEJB</ejb-name>
 <configuration-name
 >Standard CMP 2.x EntityBean with cache invalidation</configuration-name>
 <cache-invalidation>True</cache-invalidation>
 <cache-invalidation-config>
 <invalidation-group-name>MY_IG_FOR_SIMPLE_EJB</invalidation-group-name>
 </cache-invalidation-config>
 </entity>
 <entity>
 <ejb-name>SimpleEJB-Replica</ejb-name>
 <configuration-name
 >Standard CMP 2.x EntityBean with cache invalidation</configuration-name>
 <cache-invalidation>True</cache-invalidation>
 <cache-invalidation-config>
 <invalidation-group-name>MY_IG_FOR_SIMPLE_EJB</invalidation-group-name>
 </cache-invalidation-config>
 </entity>
 </enterprise-beans>
 </jboss>

C A C H E I N V A L I D A T I O N — 8 P A G E 6 4

Page 64 of 101

Bridges
Bridges allows to break the single JVM boundary. They can be used so that cache invalidation
messages span more than one JBoss instance for example or to enable external actors (database
triggers, C programs, etc.) to send invalidation messages to JBoss instances through a specific
protocol.

JBoss comes with two bridges implementation out-of-the-box: JMS-based and JBossCluster-
based bridges.

JMS-based Bridge
The JMS-based bridge uses a JMS topic to dispatch cache invalidation messages. You can find a
default JMS-Bridge configuration commented as part of the “default” configuration:

deploy/cache-invalidation-service.xml

...
 <mbean code="org.jboss.cache.invalidation.bridges.JMSCacheInvalidationBridgeMBean"
 name="jboss.cache:service=InvalidationBridge,type=JMS">
 <depends>jboss.cache:service=InvalidationManager</depends>
 <depends
 >jboss.mq.destination:service=Topic,name=JMSCacheInvalidationBridge</depends>
 <attribute name="InvalidationManager"
 >jboss.cache:service=InvalidationManager</attribute>
 <attribute name="ConnectionFactoryName">java:/ConnectionFactory</attribute>
 <attribute name="TopicName">topic/JMSCacheInvalidationBridge</attribute>
 <attribute name="PropagationMode">1</attribute>
 </mbean>
...

The following attributes can be set on this MBean:

• InvalidationManager: The JMX ObjectName of the InvalidationManager to which this
bridge must bind

• ConnectionFactoryName and TopicName: name of the factory and topic names used to
transmit/receive invalidation messages

• PropagationMode: indicates if the bridge should both send and receive invalidation
messages (1), only receive them (2) or only forward them (3).

The JMS bridge is based on a well known service but has mainly two problems:

C A C H E I N V A L I D A T I O N — 8 P A G E 6 5

Page 65 of 101

• As it is not possible for the bridge to know the list of Invalidation Groups that the other
JMS bridges have locally, all invalidation messages received by the Invalidation Manager
are broadcast, even if other nodes do not use them. This can be a problem for some
deployments. Nevertheless, it is still possible to deploy several Invalidation Managers to
fragments the Invalidation Groups.

• As all bridges must subscribe to the same JMS Topic, the topic represent a single point of
failure

• Due to the asynchronous nature of JSM, the bridge is only able to perform asynchronous
invalidations.

JBossCluster-based Bridge
The JBossCluster-based bridge uses the JBoss clustering framework to dispatch cache
invalidation messages. A default bridge is automatically deployed as part of the “all”
configuration:

deploy/cluster-service.xml

...
 <mbean code="org.jboss.cache.invalidation.bridges.JGCacheInvalidationBridge"
 name="jboss.cache:service=InvalidationBridge,type=JavaGroups">
 <depends>jboss:service=DefaultPartition</depends>
 <depends>jboss.cache:service=InvalidationManager</depends>
 <attribute name="InvalidationManager"
 >jboss.cache:service=InvalidationManager</attribute>
 <attribute name="PartitionName">DefaultPartition</attribute>
 <attribute name="BridgeName">DefaultJGBridge</attribute>
 </mbean>
...

The following attributes can be set on this MBean:

• InvalidationManager: name of the Invalidation Manager to which this bridge will bind

• ParitionName: JMX ObjectName of the clustering partition used to exchange invalidation
messages

• BridgeName: name of this bridge (optional)

C A C H E I N V A L I D A T I O N — 8 P A G E 6 6

Page 66 of 101

While this bridge requires the clustering to be started, it has several advantages over the JMS-
based bridge:

• Each bridge automatically broadcasts (and broadcast updates) of the Invalidation
Groups that it has locally. Thus, bridges are able to only forward invalidation messages
for Invalidation Groups that exist on other nodes. Otherwise, the messages will not
leave the bridge

• As the bridge uses the clustering infrastructure, there is no single point of failure: any
node can die and the invalidation framework will continue to work

• The bridge will use the “synchronous” setting of the Invalidation Manager. Thus, the
bridge is able to do fully synchronous distributed cache invalidations.

Use Cases
The cache invalidation framework can be used in two well known architectures that we describe
in the next sections.

Single JVM RO/RW bean
In this scenario, a given entity bean (Account) is used in two very different scenarios. First, the
web layer must perform a lot of work on it, most exclusively in read-access. At the same time,
some other part of the system must be sure to have exclusive write access to the bean for critical
account activity.

As both needs are very different, a simple solution is to deploy the same bean twice.

The first deployment, AccountRO (account read-only) uses commit-option A (or D if some other
application can directly write to the DB) and has the <read-only> tag set to true. Thus, the web
layer can work very efficiently with the accounts because no locking will occur and every
information can be read from cache.

The second deployment, AcountRW (account read-write), uses commit-option C (or even A if no
other application writes to the DB) and uses pessimistic locking at the JBoss level. Thus, the
critical part of the system can be sure to use up-to-date information and have exclusive access to
it.

The problem now is that as AccountRW is used to modify data, the AccountRO cache will no
more be in-synch. In this case, simply complete the EJB deployment descriptor so that both
beans are linked and share cache invalidation messages:

jboss.xml

C A C H E I N V A L I D A T I O N — 8 P A G E 6 7

Page 67 of 101

 <jboss>
 <enterprise-beans>
 <entity>
 <ejb-name>AccountRW</ejb-name>
 <configuration-name
 >Standard CMP 2.x EntityBean with CI in Commit Option C<
 /configuration-name>
 <cache-invalidation>True</cache-invalidation>
 <cache-invalidation-config>
 <invalidation-group-name>AccountCacheGroup</invalidation-group-name>
 </cache-invalidation-config>
 </entity>
 <entity>
 <ejb-name>AccountRO</ejb-name>
 <configuration-name
 >Standard CMP 2.x EntityBean with cache invalidation</configuration-name>
 <cache-invalidation>True</cache-invalidation>
 <cache-invalidation-config>
 <invalidation-group-name> AccountCacheGroup</invalidation-group-name>
 </cache-invalidation-config>
 </entity>
 </enterprise-beans>
 </jboss>

Thus, each time AccountRW is used to modify an entity, the associated entry in AccountRO’s
cache will be automatically invalidated.

RO/RW cluster
In this scenario, a given entity bean (StockQuote) is not frequently changed but heavily accessed
by web clients in read-only mode (simple display of stock quotes). As the web load is big, a cluster
of JBoss instances is used. In order not to flood the database with identical requests, we want to
be able to use the EJB cache.

C A C H E I N V A L I D A T I O N — 8 P A G E 6 8

Page 68 of 101

Web Layer

StockQuote
RO EJB

cache

Web Layer

StockQuote
RO EJB

cache

Web Layer

StockQuote
RO EJB

cacheIM IM IM

DB

StockQuote
RW EJB

cacheIM
Quotes’ streamCache Invalidation Bus (JBossCluster bridge)

Internet
(Big HTTP requests load)

Figure 12RO/RW Cluster Using Cache Invalidations

In this case all read-only nodes will deploy an optimised StockQuote EJB configuration using
Commit Option A and the <read-only> tag to prevent pessimistic locking performance
degradation.

The read-write node(s) will use a container configuration using Commit Option C and pessimistic
locking.

With such a configuration, the cluster is able to server high request loads without impacting the
database. Without the cache invalidation framework, Commit Option B/C should have been used
(or D in JBoss if serving non totally up-to-date data is not critical) which would have had a big
impact on the database load: each HTTP query would generate at least one database query.

C L U S T E R I N G A R C H I T E C T U R E — 9 P

Page 69 of 101

A G E 6 9 Chapter

9
9. Clustering Architecture
Detailed review of JBoss 3.0 clustering architecture

This section will introduce the main classes that form the clustering framework in JBoss. They
can be used to develop your own clustered services.

Overview
Clustering in JBoss is based on a simple framework of tools that are used to provide all other
services.

This framework is itself based on a communication framework that is completely abstracted.
Consequently, potentially any communication framework providing a strong enough semantic
can be plugged in. The current implementation uses JavaGroups
(http://www.javagroups.com).

HA
EJB

JavaGroups

HA
JNDI

HA
RMI

HA
JMS

HASession
State

Distributed
State

Distributed
Replicant
Manager

HAPartition
(HAP)

Figure 13. JBoss clustering building blocks

http://www.javagroups.com/

C L U S T E R I N G A R C H I T E C T U R E — 9 P A G E 7 0

Page 70 of 101

JBoss Clustering Framework

HAPartition
The HAPartition abstract the communication framework and provide access to a basic set of
communication primitives. You do not directly built an instance of a HAPartition. Instead you use
an MBEAN definition (or equivalent).

First, the HAPartition provides informational data: the name of the cluster and the name of this
node (dynamically built at connection time).

public String getNodeName();
public String getPartitionName();

During the lifetime of the partition, nodes will join and leave the partition. To track this, different
methods are available.

Each time a node leave or join, the cluster topology changes: we call this a view, i.e. a list of
member nodes. Furthermore, each view has an unique identifier.

It is also possible to register to receive a callback each time the membership of the cluster has
changed.

// View and view ID
//
public long getCurrentViewId();
public Vector getCurrentView ();

// Membership callbacks
//
public interface HAMembershipListener
{
public void membershipChanged(Vector deadMembers, Vector newMembers, Vector
allMembers);
}
public void registerMembershipListener(HAMembershipListener listener);
public void unregisterMembershipListener(HAMembershipListener listener);

Now on the communication aspects, two categories of primitives take place in HAPartition: state
transfer and RPC calls.

Different services will use the services of a HAPartition. Consequently, each of these services will
first need to register in the HAPartition with a specific key name:

Services around the network with the same key name that have subscribed in a HAPartition
with the same name, are considered as being services replicas.

C L U S T E R I N G A R C H I T E C T U R E — 9 P A G E 7 1

Page 71 of 101

Node 1

S1

HAP
name=A

S1

Partition "A"

S2

Node 2

S1

HAP
name=A

S2S2

Figure 14. Replicas in a cluster

In the figure above, two nodes belong two the same partition (named “A”). On each node, two
services (S1 and S2) have subscribed to the HAPartition with their corresponding name (“S1” and
“S2”). Consequently, S1 and S2 are now clustered and any RPC call they would made would only
be received by their counterparts that have subscribed with the same service name. Thus, the
HAPartition acts as a service multiplexer.

// (un-)register a new service with this HAPartition
//
public void registerRPCHandler(String objectName, Object handler);
public void unregisterRPCHandler(String objectName, Object subscriber);

// Called only on all members of this partition on all nodes
//
public ArrayList callMethodOnCluster(String objectName, String methodName,
 Object[] args, boolean excludeSelf) throws Exception;
public void callAsynchMethodOnCluster (String objName, String methodName,
 Object[] args, boolean excludeSelf) throws Exception;

Once registered (through registerRPCHandler), a service can receive RPC calls from other nodes.
RPC calls are made through the callMethodOnCluster and callAsynchMethodOnCluster. The first
method returns, in an array, the serialized answers of all other nodes while the second method is
an asynchronous method call that returns directly (and thus provides no answers).

The parameters meaning is as follow:

 objName: the name of the target service.

 methodName: the name of the remote Java Method to be called

 args: the parameters of the method to be called

 excludeSelf: a boolean indicating if the call must also be made on the current node.

C L U S T E R I N G A R C H I T E C T U R E — 9 P A G E 7 2

Page 72 of 101

The following code snipset shows how a service will call a method on remote services:

Listing 9-1. Example of clustered code

public class WordPrinter
{
public WordPrinter (HAPartition myPartition)
{
 myPartition.registerRPCHandler (“WordPrinter”, this);
}

public void printWordOnOtherNodes (String theWord)
{
 Object[] args = {theWord};
 callAsynchMethodOnCluster (“WordPrinter”, “_printWord”, args, true);
}

public void _printWord (String theWord)
{
 System.out.println (“WordPrinter : ” + theWord);
}
}

The second category of primitive concerns state transfer. In clustered systems, state transfers has
an important place. If we describe a node as a system having a set of primitives and a state at time
T1, then, if a new node joins the cluster, it needs to initialise and get the current state to be able to
work coherently with the rest of the cluster.

While some service may be completely stateless, others maintain a clustered state and when a
new node joins, need to inform the same service on the new node of the current state.
Nevertheless, a state transfer operation should not be seen as a standard clustered RPC call: we
need to be certain that the state given by an already running node to the new node fits perfectly in
the sequence of messages (RPC calls, etc.) send to the whole cluster. Because any message may
potentially change the state, the position of the state transfer in the flow of messages is highly
important. In the following sequence, for example, the state transfer is not correct:

Partition "A"

M1 GET_STATE M4 M5Node 1

SET_STATE M4 M5Node 2

time

M3M2

Figure 15. State transfer process

C L U S T E R I N G A R C H I T E C T U R E — 9 P A G E 7 3

Page 73 of 101

The state that Node 1 gives is relative to message M1 (that may have changed the state) and to the
fact that messages M2-5 have not yet been able to modify the state. But the state that Node 2, the
joining node, receives is followed by message M4. Consequently, Node 2 misses messages M2
and M3: this is a problem because we don’t know what could have been their effect on the state.

To subscribe to state transfer, the following part of the interface of HAPartition has to be used:

public interface HAPartitionStateTransfer
{
 public Serializable getCurrentState ();
 public void setCurrentState(Serializable newState);
}

public void subscribeToStateTransferEvents (String objectName,
 HAPartitionStateTransfer subscriber);
public void unsubscribeFromStateTransferEvents (String objectName,
 HAPartitionStateTransfer subscriber);

The following sections introduce the Distributed Replicant Manager and Distributed State
services. As they belong to the clustering framework, access methods are provided from the
HAPartition to these services. This may change in the future.

public DistributedReplicantManager getDistributedReplicantManager();
public DistributedState getDistributedStateService ();

Distributed Replicant Manager (DRM)
The Distributed Replicant Manager is a very useful service used in many parts of the clustering.
Its role is to manage, for a given key, a list of serialised data each owned by a specific node.
Behind this strange definition is something rather simple.

Imagine you want to manage a list of stubs for a given RMI server running on different nodes.
Each node has this RMI server, hence a stub to share with other nodes. The Distributed Replicant
Manager allows to share these stubs in the cluster and know to which node a stub belongs.
Furthermore, one useful feature is that if one node crashes, its entry is automatically removed
from the list of replicated data (and services can register to receive a callback when it happens).

Furthermore, for each key, an id is available (see getReplicantsViewId). This id, for a given set of
replicants, is identical on all nodes of the cluster. Each time the set of replicants changes, this id
also changes. This allows, for example, a client to determine if its view of a particular set of
replicants is up to date.

To manage the replicants, the interface propose a set of methods:

/**
 * Add a replicant, it will be attached to this cluster node
 */

C L U S T E R I N G A R C H I T E C T U R E — 9 P A G E 7 4

Page 74 of 101

public void add(String key, Serializable replicant) throws Exception;

/**
 * remove the entire key from the ReplicationService
 */
public void remove(String key) throws Exception;;

/**
 * Lookup the replicant attached to this cluster node
 */
public Serializable lookupLocalReplicant(String key) throws Exception;

/**
 * Return a list of all replicants.
 */
public List lookupReplicants(String key) throws Exception;

/**
 * Returns an id corresponding to the current view of this set of replicants.
*/
public int getReplicantsViewId(String key);

Furthermore, a subscription mechanism allows to receive a callback when the number of
replicants for a specific key changes:

/**
 * When a particular key in the DistributedReplicantManager table gets modified, all
listeners
 * will be notified of replicant changes for that key.
 */
public interface ReplicantListener
{
 public void replicantsChanged(String key,
 List newReplicants ,
 int newReplicantsViewId);
}

public void registerListener(String key, ReplicantListener subscriber) throws
Exception;
public void unregisterListener(String key, ReplicantListener subscriber) throws
Exception;

In a subsequent section, we will introduce the HARMIServer class that is based on this service.

On last interesting feature is available through the last method:

public boolean isMasterReplica (String key);

C L U S T E R I N G A R C H I T E C T U R E — 9 P A G E 7 5

Page 75 of 101

In your application, if you need to elect a master node from the set of nodes replicating a given
key, you can use this helper method. It will elect only one of the nodes of the cluster that replicate
the given key as being the master node. Thus, although there is no master-slave notion needed in
the DRM service, the service can help you elect one of the replicant nodes.

Distributed State (DS)
The Distributed State Service allows to share cluster-wide a set of dictionary. This service can be
used, for example, to store settings or parameters that should be used by all containers in the
cluster.

The service first proposes methods to add, remove and consult these dictionaries (each dictionary
is identified by a name called a category):

/**
 * Associates a value to a key in a specific category
 */
public void set(String category, String key, Serializable value) throws Exception;

/**
 * remove the entire key from the ReplicationService
 */
public void remove(String category, String key) throws Exception;

/**
 * Lookup the replicant attached to this cluster node
 */
public Serializable get(String category, String key) throws RemoteException;

/**
 * Return a list of all categories.
 */
public Collection getAllCategories() throws RemoteException;

/**
 * Return a list of all keys in a category.
 */
public Collection getAllKeys(String category) throws RemoteException;

/**
 * Return a list of all values in a category.
 */
public Collection getAllValues(String category) throws RemoteException;
The service also proposes a subscription mechanism to be informed when a particular
dictionary changes:
/**
 * When a particular key in the DistributedState table gets modified, all listeners
 * will be notified of replicant changes for that key. Keys are organized in
categories.
 */
public interface DSListener

C L U S T E R I N G A R C H I T E C T U R E — 9 P A G E 7 6

Page 76 of 101

{
 public void valueHasChanged(String category, String key, Serializable value);
 public void keyHasBeenRemoved (String category, String key, Serializable
previousContent);
}

public void registerDSListener(String category, DSListener subscriber)
 throws RemoteException;
public void unregisterDSListener(String category, DSListener subscriber)
 throws RemoteException;

HA-RMI
Through the HAPartition framework, it is possible to provide load-balancing and fail-over
facilities for your RMI Servers.

First, you need to prepare the HARMIServer. You need to tell it which HAPartition to use as its
basis for clustering communication, the name of the current RMI server (i.e. an string identifier
distinct from any other HARMIServer running on the same node) and the target object. Note that
the target object no longer needs to be exported through RMI!

…
HAPartition myPartition = (HAPartition)ctx.lookup(“/HAPartition/” + partitionName);
HARMIServer rmiserver = new HARMIServerImpl(myPartition, "MyService",
 MyService.class, myService);
MyService stub = (MyService)rmiserver.createHAStub(new RoundRobin());
…

The obtained stub can now be obtained (in return from a RMI call or through a JNDI lookup) and
used by any remote client!

But what if, as mentioned above, you already have your own smart stub implemented?

Client
1.1

Y
our sm

art
stub

1

A single node

RMI Server

Figure 16. Standard smart-stub to RMI server

Easy. Instead of using the reference of your Remote server in your smart stub, use the stub
returned by the two lines of code above: we will then have two levels of stubs!

C L U S T E R I N G A R C H I T E C T U R E — 9 P A G E 7 7

Page 77 of 101

Node 1

Client

1.1

Y
our sm

art
stub

1

H
A

R
M

IServer

H
A

R
M

IC
lient

stub

RMI Server

1.2

Node 2
H

A
R

M
IServer

RMI Server
1.2.1

Figure 17. HARMIServer coupled with a pre-existing smart stub

C L U S T E R I N G Y O U R O W N S E R V I C E S — 1 0 P A G E

Page 78 of 101

7 8 Chapter

10
10. Clustering Your Own Services
Use JBoss clustering services to provide clustered
behavior for your applications

To cluster your services, only your imagination is the limit! You can use the clustering framework
services as well as any other helper class (such as HARMIServer for example) or HA-JNDI to
reach your goal.

Nevertheless, try not to forget the following guidelines:

 If you have developed clustered services (MBEANs, etc.) that are very stable, you should
most probably install a new HAPartition for your own usage and leave the default one for
JBoss clustering features.

 When receiving callbacks from the clustering framework, take care to reduce as much as
possible the time spent in the callback method: your code needs to be co-operative with
other services using the same underlying HAPartition.

 State transfer is a costly operation: try to reduce the amount of data you need to transfer
between nodes to the minimum.

O T H E R C L U S T E R I N G S E R V I C E S — 1 1 P A G E 7 9 Chapter

11
11. Other Clustering Services
Other services provided as part of JBoss that can be
used as part of clustering scenarios.

Singleton Service

Provided by Ivelin Ivanov

A clustered singleton is a service that is deployed on multiple nodes in a cluster, but is running on
only one of the nodes. The node running the singleton service is typically called master node.
When the master fails, another master is selected from the remaining nodes and the service is
restarted on the new master.

Page 79 of 101

O T H E R C L U S T E R I N G S E R V I C E S — 1 1 P A G E 8 0

Page 80 of 101

Figure 18. Clustered Singleton Service

In real world applications, there are often times when some task needs to be executed upon
startup or as a result of an application event. While it is fairly easy to implement such a task in a
single JVM, the solution will usually not work immediately in a clustered environment. Even in
the simple case of a task activated upon startup on one of the nodes in a two node cluster, there
are several problems that need to be addressed:

• when the application is started simultaneously on both nodes, which VM should run the
startup task

• when the application is started on the first node and much later on the second, how would
the second node know not to run the startup task again

• when the node that started the task fails, how would the other one know to resume the
task

O T H E R C L U S T E R I N G S E R V I C E S — 1 1 P A G E 8 1

Page 81 of 101

• when the node that started the task fails, but later on comes back up, how to ensure that
the task remains running on only one of the nodes

The logic to solve these problems is unlikely to be included in the design of a single JVM solution.
However a solution can be found to address the case at hand and it can be patched on the startup
task. This is an acceptable approach for a few startup tasks and two node clusters.

Going forward, as the application grows and becomes more successful, there might be a need for
other startup tasks. It may also need to scale to more than two nodes. The clustered singleton
problem can quickly become mind boggling for larger clusters, where the different node startup
scenarios are far not as easy to enumerate as in the two node case. Another factor which
complicates the problem even more is the communication efficiency. While two nodes can
directly connect to each other and negotiate, 10 nodes will have to establish 45 total connections if
they want to use the same technique.

This is where JBoss comes handy. It eliminates most of the complexity and allows application
developers to focus on building singleton services invariant of the cluster topology.

We will illustrate how the JBoss clustered singleton facility works with an example.

First, we will need a service archive descriptor. Let's use the one that ships with JBoss under
server/all/farm/cluster-examples-service.xml. Following is an excerpt from it:

<?xml version="1.0" encoding="UTF-8"?>
<server>
 <!--
 | This MBean is an example of a cluster Singleton
 -->
 <mbean code="org.jboss.ha.singleton.examples.HASingletonMBeanExample"
 name="jboss:service=HASingletonMBeanExample">
 </mbean>

 <!--
 | This is a singleton controller which works similarly to the
 | SchedulerProvider (when a MBean target is used)
 -->
 <mbean code="org.jboss.ha.singleton.HASingletonController"
 name="jboss:service=HASingletonMBeanExample-HASingletonController">
 <depends>jboss:service=DefaultPartition</depends>
 <depends>jboss:service=HASingletonMBeanExample</depends>
 <attribute name="TargetName">jboss:service=HASingletonMBeanExample</attribute>
 <attribute name="TargetStartMethod">startSingleton</attribute>
 <attribute name="TargetStopMethod">stopSingleton</attribute>
 </mbean>
</service>

O T H E R C L U S T E R I N G S E R V I C E S — 1 1 P A G E 8 2

Page 82 of 101

This file declares two MBeans: HASingletonMBeanExample and HASingletonController. The
first one is an example of a singleton service which contains the custom code. It is a simple
JavaBean with the following source code:

public class HASingletonMBeanExample
 implements HASingletonMBeanExampleMBean
{

 private boolean isMasterNode = false;

 public void startSingleton()
 {
 isMasterNode = true;
 }

 public boolean isMasterNode()
 {
 return isMasterNode;
 }

 public void stopSingleton()
 {
 isMasterNode = false;
 }
}

All the custom logic for this particular singleton service is contained within this class. Our
example is not very useful. It simply indicates, via the isMasterNode member variable, whether it
is the master node running the singleton. The value of isMasterNode will be true on only one of
the nodes in the cluster where it is deployed. HASingletonMBeanExampleMBean exposes this
variable as an MBean attribute. It also exposes startSingleton() and stopSingleton() as managed
MBean operations. These methods control the lifecycle of the singleton service. They are invoked
by JBoss automatically when a new master node is elected.

How does JBoss control the singleton lifecycle throughout the cluster? The answer to this
question is in the MBean declarations. Notice that the HASingletonMBeanExample-
HASingletonController MBean is given the name of the sample singleton MBean and its start and
stop methods. On each node in the cluster where these MBeans are deployed, the controller will
work with all the other controllers with the same MBean name deployed in the same cluster
partition and oversee the lifecycle of the singleton. The controllers are responsible for keeping
track of the cluster topology. Their job is to elect the master node of the singleton upon startup as
well as to elect a new master should the current one fail or shut down. In the latter case, when the
master node shuts down gracefully, the controllers will wait for the singleton to stop, before
starting another instance on the new master node.

A singleton service is scoped in a certain cluster partition via its controller. Notice that in the
declaration above the controller MBean is dependent on the MBean service DefaultPartition. If
the partition where the singleton should run is different than the defaul, its name can be provided
to the controller via the MBean attribute - PartitionName.

O T H E R C L U S T E R I N G S E R V I C E S — 1 1 P A G E 8 3

Page 83 of 101

Clustered singletons are usually deployed via the JBoss farming service. To test this example, just
drop the service file above in the server/all/farm directory and go to the JBoss JMX web console.
You should be able to see the following:

Figure 19. Controller MBean View. The MasterNode attribute will have value True on only one of
the nodes

O T H E R C L U S T E R I N G S E R V I C E S — 1 1 P A G E 8 4

Page 84 of 101

Figure 20. Sample singleton MBean View. The MasterNode attribute will have the same value as the
MasterNode attribute on the controller MBean

Scheduler Service

Provided by Ivelin Ivanov

The JBoss 3.x Scheduler service is covered in detail by the JBoss 3.x - Administration and
Development book. It has three interdependent components:

O T H E R C L U S T E R I N G S E R V I C E S — 1 1 P A G E 8 5

Page 85 of 101

• ScheduleManager, which serves as a centralized registry for registering and executing
schedules.

• ScheduleProvider, which abstracts the custom logic that creates schedules

• Schedulable, which represents the abstraction of a task that is executed at scheduled times

Often, applications need to schedule tasks which have to be executed once in the scope of the
application, independent of whether it is running stand alone or in a cluster of multiple nodes.
Examples for such tasks include regular database cleanup, email notifications and scheduled
reports.

All of the JBoss ScheduleProvider services accept an MBean attribute which enables them to
schedule tasks on only one node in the cluster (of one or more nodes). The attribute name is
HASingleton and its value is a boolean type. When set to True, all Schedule provider MBeans
registered with the same name and deployed in the same cluster partition, will coordinate and
make sure that the schedule is only provided to the schedule manager on one of the nodes. When
set to false, each of the schedule providers will act independently and as a result they will all
schedule tasks with their local scheduler managers. The default value of the attribute is true,
which allows transparent transition of stand-alone schedule providers to a clustered
environment.

The name of the partition where a singleton schedule provider service will be deployed can be set
via the PartitionName attribute. By default the value assumes the default JBoss partition name.

Here is an excerpt from the example service archive descriptor cluster-examples-service.xml,
located in the server/all/farm directory in the JBoss installation.

O T H E R C L U S T E R I N G S E R V I C E S — 1 1 P A G E 8 6

Page 86 of 101

 <!--
 | This MBean is an example of an HA Schedule Target
 | which is identical to a regular Schedule Target
 | (the example class is the same, just the MBean has different names)
 - ->
 <mbean code="org.jboss.varia.scheduler.example.SchedulableMBeanExample"
 name="jboss:service=HASchedulableMBeanExample">
 </mbean>
 <!- - -->

 <!--
 | The Schedule Manager has to be started whenever
 | schedules are needed.
 |
 | Uncomment only if not started by
 | another service (e.g. schedule-manager-service.xml)
 - ->
 <mbean code="org.jboss.varia.scheduler.ScheduleManager"
 name="jboss:service=ScheduleManager">
 <attribute name="StartAtStartup">true</attribute>
 </mbean>
 <!- - -->

 <!--
 | This is a single schedule Provider which works like the
 | one in schedule-manager-service.xml
 |
 | The key difference is the explicit use of the HASingleton MBean attribute
 | to make the provider a clustered singleton.
 | When HASingleton is set to true the MBean will usually declare dependency
 | on a cluster partition. In this case it is the DefaultPartition.
 | When not explicitly set the attribute defaults to true.
 |
 | The same attribute can also be used for the other schedule providers as well:
 | DBScheduleProvider and XMLScheduleProvider
 |
 |
 - ->
 <mbean code="org.jboss.varia.scheduler.SingleScheduleProvider"
 name="jboss:service=HASingleScheduleProvider">
 <depends>jboss:service=DefaultPartition</depends>
 <depends>jboss:service=ScheduleManager</depends>
 <depends>jboss:service=HASchedulableMBeanExample</depends>
 <attribute name="HASingleton">true</attribute>
 <attribute
name="ScheduleManagerName">jboss:service=ScheduleManager</attribute>
 <attribute
name="TargetName">jboss:service=HASchedulableMBeanExample</attribute>
 <attribute name="TargetMethod">hit(NOTIFICATION, DATE, REPETITIONS,
SCHEDULER_NAME, java.lang.String)</attribute>
 <attribute name="DateFormat"></attribute>
 <attribute name="StartDate">NOW</attribute>

O T H E R C L U S T E R I N G S E R V I C E S — 1 1 P A G E 8 7

Page 87 of 101

 <attribute name="Period">10000</attribute>
 <attribute name="Repetitions">10</attribute>
 </mbean>
 <!- - -->

The deployment descriptor above is almost identical to the one provided by schedule-manager-
service.xml, but is intended to be deployed via farming. Although not necessary, since true is the
default value, the descriptor specifies the HASingleton attribute of the schedule provider for
illustration of its usage.

Notification Service

Provided by Ivelin Ivanov

When it comes to reliable, mission critical and sophisticated J2EE messaging, there is one API
that stands out - JMS. The JBossMQ service is a robust JMS implementation which meets the
high standards commanded by the API for distributed, transactional and secure messaging. Then
why would we need another notification service?

The most typical clustered applications are deployed in a symmetric, homogeneous environment
where components need to notify each other about various life cycle or domain change events,
much like AWT and Swing widgets exchange events. This is where the JBoss cluster notifications
come in place. They fill the need for reliable, quick and lightweight events. Implemented in
compliance with the JMX notifications API, the cluster notifications do not require new skills
from developers familiar with JMX.

Figure 21. Clustered Notification Service

O T H E R C L U S T E R I N G S E R V I C E S — 1 1 P A G E 8 8

Page 88 of 101

If you have used JMX notifications before, then the clustering extension should be a breeze.
There are two common ways to employ clustered notifications: by extending
HAServiceMBeanSupport or delegating the work to instances of this class.

Let's look at an example which comes with the JBoss distribution.

Here is an excerpt from the familiar descriptor cluster-examples-service.xml, located in the
server/all/farm.

<!--
 | This MBean is an example showing how to extend a cluster notification
 | broadcaster
 | Use the sendNotification() operation to trigger new clustered notifications.
 | Observe the status of each instance of this mbean in the participating
 | cluster partition nodes.
 - ->
 <mbean code="org.jboss.ha.jmx.examples.HANotificationBroadcasterExample"
 name="jboss.examples:service=HANotificationBroadcasterExample">
 <depends>jboss:service=DefaultPartition</depends>
 </mbean>
 <!- - -->

 <!--
 | This MBean is an example that shows how to delegate notification services
 | to a HANotificationBroadcaster.
 | Use the sendNotification() operation to trigger new clustered notifications.
 | Observe the status of each instance of this mbean in the participating
 | cluster partition nodes.
 | ->
 <mbean code="org.jboss.ha.jmx.examples.HANotificationBroadcasterClientExample"
 name="jboss.examples:service=HANotificationBroadcasterClientExample">
 <depends>jboss.examples:service=HANotificationBroadcasterExample</depends>
 <attribute name="HANotificationBroadcasterName"
 >jboss.examples:service=HANotificationBroadcasterExample</attribute>
 </mbean>

The MBean implemented by the HANotificationBroadcasterExample class provides common
clustering services like shared distributed state, replication management and notifications. It is a
convenience class that can be extended and customized or can be used as is. Its most important
attribute is the PartitionName, which fixates the partition of nodes where all MBeans with the
same name will work together.

The other MBean in this example is implemented by the
HANotificationBroadcasterClientExample class. It uses the former MBean's services to broadcast
notifications to the local listeners as well remote cluster listeners that subscribed to the
HANotificationBroadcasterExample MBean. At the same time the client MBean will also receive
all notifications sent through any instance of the broadcaster. Clear as mud?

O T H E R C L U S T E R I N G S E R V I C E S — 1 1 P A G E 8 9

Page 89 of 101

Maybe a picture will help. Here is a screenshot of the client MBean attributes:

The first attributes points to the name of the cluster notification broadcaster we will subscribe to.
The next attribute of interest is ReceivedNotifications. When a message is sent to any of a
deployed instance of the broadcaster MBean on any of the partition nodes, it will be received and
listed in the Value column for this attribute. In the screenshot above, there are 2 received
notifications - "iivanov2" and "mau". Even though it is not obvious from the picture, one of these
messages was received from a remote host.

Now, a screenshot of the MBean operation of interest:

The name is not very friendly, but it is distinct and will do for this example. When this operation
is invoked with a text message as argument, the value will appear in the ReceivedNotification
attribute on each of the client MBeans deployed in the same partition.

Let's look at the code of the client MBean to see that it is actually straightforward. I made an
attempt to annotated the code and keep it simple, so that there is no need for additional analysis.

O T H E R C L U S T E R I N G S E R V I C E S — 1 1 P A G E 9 0

Page 90 of 101

public class HANotificationBroadcasterClientExample
 extends ServiceMBeanSupport
 implements HANotificationBroadcasterClientExampleMBean, NotificationListener
{

 /**
 *
 * On service start, subscribes to notification sent by this
 * broadcaster or its remote peers.
 *
 */
 protected void startService() throws Exception
 {
 super.startService();
 addHANotificationListener(this);
 }

 /**
 *
 * On service stop, unsubscribes to notification sent by this
 * broadcaster or its remote peers.
 *
 */
 protected void stopService() throws Exception
 {
 removeHANotificationListener(this);
 super.stopService();
 }

 /**
 * Broadcasts a notification to the cluster partition.
 *
 * This example does not ensure that a notification sequence number
 * is unique throughout the partition.
 *
 */
 public void sendTextMessageViaHANBExample(String message)
 throws InstanceNotFoundException, MBeanException, ReflectionException
 {
 long now = System.currentTimeMillis();
 Notification notification =
 new Notification(
 "hanotification.example.counter",
 super.getServiceName(),
 now,
 now,
 message);
 server.invoke(
 broadcasterName_,
 "sendNotification",
 new Object[] { notification },
 new String[] { Notification.class.getName() }
);

O T H E R C L U S T E R I N G S E R V I C E S — 1 1 P A G E 9 1

Page 91 of 101

 }

 /**
 * Lists the notifications received on the cluster partition
 */
 public Collection getReceivedNotifications()
 {
 return messages_;
 }

 /**
 * @return the name of the broadcaster MBean
 */
 public String getHANotificationBroadcasterName()
 {
 return broadcasterName_ == null ? null : broadcasterName_.toString();
 }

 /**
 *
 * Sets the name of the broadcaster MBean.
 *
 * @param
 */
 public void setHANotificationBroadcasterName(String newBroadcasterName)
 throws InvalidParameterException
 {
 if (newBroadcasterName == null)
 {
 throw new InvalidParameterException("Broadcaster MBean must be specified");
 }
 try
 {
 broadcasterName_ = new ObjectName(newBroadcasterName);
 }
 catch (MalformedObjectNameException mone)
 {
 log.error("Broadcaster MBean Object Name is malformed", mone);
 throw new InvalidParameterException("Broadcaster MBean is not
 correctly formatted");
 }
 }

 protected void addHANotificationListener(NotificationListener listener)
 throws InstanceNotFoundException
 {
 server.addNotificationListener(broadcasterName_, listener,
 /* no need for filter */ null,
 /* no handback object */ null);
 }

 protected void removeHANotificationListener(NotificationListener listener)
 throws InstanceNotFoundException, ListenerNotFoundException
 {

O T H E R C L U S T E R I N G S E R V I C E S — 1 1 P A G E 9 2

Page 92 of 101

 server.removeNotificationListener(broadcasterName_, listener);
 }

 public void handleNotification(
 Notification notification,
 java.lang.Object handback)
 {
 messages_.add(notification.getMessage());
 }

 // Attributes --

 Collection messages_ = new LinkedList();

 /**
 * The broadcaster MBean that this class listens to and
 * delegates HA notifications to
 */
 ObjectName broadcasterName_ = null;

}

The key points of the code are highlighted. Notice how subscription to the cluster broadcaster is
acomplished via the MBean server API. It is also important to note that the subscription is local,
both the client and the MBean server reside in the same JVM. The invocation to
sendNotification() is also local (in-JVM). The cluster broadcaster hides the implementation
details of working together with its remote peers to deliver notifications throughout all nodes.

If you are not too much concerned with dependency on JBoss specific classes, then you can
directly extend the cluster broadcaster class in which case all method calls will be direct instead of
proxied through the MBean Server. Here is the code for an extended broadcaster:

O T H E R C L U S T E R I N G S E R V I C E S — 1 1 P A G E 9 3

Page 93 of 101

public class HANotificationBroadcasterExample
 extends HAServiceMBeanSupport
 implements HANotificationBroadcasterExampleMBean
{

 /**
 *
 * On service start, subscribes to notification sent by this broadcaster
 * or its remote peers.
 *
 */
 protected void startService() throws Exception
 {
 super.startService();
 addNotificationListener(listener_, /* no need for filter */ null,
 /* no handback object */ null);
 }

 /**
 *
 * On service stop, unsubscribes to notification sent by this
 * broadcaster or its remote peers.
 *
 */
 protected void stopService() throws Exception
 {
 removeNotificationListener(listener_);
 super.stopService();
 }

 /**
 * Broadcasts a notification to the cluster partition.
 *
 * This example does not ensure that a notification sequence number
 * is unique throughout the partition.
 *
 */
 public void sendTextMessage(String message)
 {
 long now = System.currentTimeMillis();
 Notification notification =
 new Notification("hanotification.example.counter", super.getServiceName(),
 now, now, message);
 sendNotification(notification);
 }

 /**
 * Lists the notifications received on the cluster partition
 */
 public Collection getReceivedNotifications()
 {
 return messages_;
 }

O T H E R C L U S T E R I N G S E R V I C E S — 1 1 P A G E 9 4

Page 94 of 101

 Collection messages_ = new LinkedList();

 NotificationListener listener_ = new NotificationListener()
 {
 public void handleNotification(Notification notification,
 java.lang.Object handback)
 {
 messages_.add(notification.getMessage());
 }
 };

}

This class has very similar behavior as the previous one and if you look at its MBean view in the
JMX console, you will notice that it has the same ReceivedNotifications attribute. The messaging
operation is called sendTextMessage().

T R O U B L E S H O O T I N G A N D L I M I T A T I O N S — 1 2

Page 95 of 101

P A G E 9 5 Chapter

12
12. Trouble Shooting and Limitations
Possible problems and limitations

First, are you a Windows user?
Windows (2000, XP, etc.) has an interesting feature called “Media Sense”. This feature detects
when a network cable is (un-)plugged from any NIC. When a cable is unplugged, Media Sense
will automatically remove all IP routes associated with this NIC and restore them once the cable
is re-plugged. This feature is enabled by default on Windows.

The problem with this, is that when the routes associated with the NIC are removed, traffic
between local applications for example becomes impossible. For example, multicast packets send
by a JBoss instance will no more be received by itself!

Microsoft officially provides a way to disable the Media Sense feature
(http://support.microsoft.com/default.aspx?scid=KB;en-us;q239924, “How to Disable Media
Sense for TCP/IP in Windows”). Nevertheless, while disabling the Media Sense feature will no
more remove the IP routes once a cable is unplugged, multicast communication is still
impossible11.

Consequently, to avoid any problem under Windows, you must modify the JavaGroups stack, so
that the UDP protocol enables its “loopback” feature12:

…
 <mbean code="org.jboss.ha.framework.server.ClusterPartition"
 name="jboss:service=DefaultPartition">
 <attribute name="PartitionConfig">
 <Config>
 <!-- UDP: if you have a multihomed machine,
 set the bind_addr attribute to the appropriate NIC IP address -->
 <!-- UDP: On Windows machines, because of the media sense feature

11 Adding a virtual loopback adaptor will not solve the problem as well as the multicast route will not be associated with the loopback
adaptor but with the unplugged adaptor. And if you assign the multicast address to the loopback adaptor, packets will no more be sent out of
the network.

12 This feature is available as of JBoss 3.0.5.

http://support.microsoft.com/default.aspx?scid=KB;en-us;q239924

T R O U B L E S H O O T I N G A N D L I M I T A T I O N S — 1 2
 P A G E 9 6

Page 96 of 101

 being broken with multicast (even after disabling media sense)
 set the loopback attribute to true -->
 <UDP mcast_addr="228.1.2.3" mcast_port="45566"
 ip_ttl="64" ip_mcast="true"
 mcast_send_buf_size="150000" mcast_recv_buf_size="80000"
 ucast_send_buf_size="150000" ucast_recv_buf_size="80000"
 loopback="true" />
 <PING timeout="2000" num_initial_members="3"
 up_thread="false" down_thread="false" />
 <MERGE2 min_interval="5000" max_interval="10000" />
 <FD />
 <VERIFY_SUSPECT timeout="1500"
 up_thread="false" down_thread="false" />
 <pbcast.STABLE desired_avg_gossip="20000"
 up_thread="false" down_thread="false" />
 <pbcast.NAKACK gc_lag="50" retransmit_timeout="300,600,1200,2400,4800"
 up_thread="false" down_thread="false" />
 <UNICAST timeout="5000" window_size="100" min_threshold="10"
 down_thread="false" />
 <FRAG frag_size="8192"
 down_thread="false" up_thread="false" />
 <pbcast.GMS join_timeout="5000" join_retry_timeout="2000"
 shun="false" print_local_addr="true" />
 <pbcast.STATE_TRANSFER up_thread="false" down_thread="false" />
 </Config>
 </attribute>
 </mbean>
…

Trouble Shooting
 Make sure your network switch does not block the multicast IP ranges

 Make sure you have multicast enabled on your box. Here’s some help for Linux:
http://www.tldp.org/HOWTO/Multicast-HOWTO.html

 We have had problems running a clustered node with Win2K machines running VMWare
3.x. If you have VMWare installed on your machine, disable the VMWare Virtual Ethernet
Adapters in the Device Manager

 RedHat Linux, by default, installs a firewall that prevents IP multicast packets from being
distributed. Make sure you don’t have this option installed or disable it.

 On Linux, you may have to add a route for multicast packets. The following command
creates the route for multicast:

$ route add -net 224.0.0.0 netmask 240.0.0.0 dev eth0

T R O U B L E S H O O T I N G A N D L I M I T A T I O N S — 1 2
 P A G E 9 7

Page 97 of 101

If all else fails…
If all else fails then you must use a non-multicast communication stack for JavaGroups. Modify
the “PartitionProperties” attribute to have the following JavaGroups communication stack. For
TCPPING, put your own hosts and ports (host[port]) in for the initial_hosts parameter. DO NOT
put a given node’s own name in this list. So, each machine’s config may have to be different.
Check out the JavaGroups documentation at their website for more configuration information:
http://www.javagroups.com/.

http://www.javagroups.com/

T R O U B L E S H O O T I N G A N D L I M I T A T I O N S — 1 2
 P A G E 9 8

Page 98 of 101

Listing 10-12-1. Non-multicast JavaGroups config

<mbean code="org.jboss.ha.framework.server.ClusterPartition"
 name="jboss:service=DefaultPartition">
 <mbean-ref-list name="SynchronizedMBeans">
 <mbean-ref-list-element>jboss:service=HASessionState</mbean-ref-list-element>
 <mbean-ref-list-element>jboss:service=HAJNDI</mbean-ref-list-element>
 </mbean-ref-list>
 <attribute name="PartitionProperties">
TCP(start_port=7800):TCPPING(initial_hosts=frodo[7800],gandalf[7800];port_range=5;ti
meout=3000;num_initial_members=3;up_thread=true;down_thread=true):VERIFY_SUSPECT(tim
eout=1500;down_thread=false;up_thread=false):pbcast.STABLE(desired_avg_gossip=20000;
down_thread=false;up_thread=false):pbcast.NAKACK(down_thread=true;up_thread=true;gc_
lag=100;retransmit_timeout=3000):pbcast.GMS(join_timeout=5000;join_retry_timeout=200
0;shun=false;print_local_addr=false;down_thread=true;up_thread=true)
 </attribute>
 </mbean>

Limitations
 State transfer that occurs when a new node joins a cluster could be improved. Mainly, if

the partition stores a lot of state (for SFSB for example), the state transfer could take some
time and block SFSB activity while state is exchanged. Some possibilities are already
examined.

 In the current implementation, it is not possible to hot-deploy services based on
HAPartition and that require to participate in the initial state transfer exchange that
occurs when the partition starts (but it is possible to hot-deploy new HAPartitions and
related services if it is performed in a single step).

T R O U B L E S H O O T I N G A N D L I M I T A T I O N S — 1 2
 P A G E 9 9

Page 99 of 101

I N D E X — 1 3 P A G E 1 0 0

Page 100 of 101

13. Index

B

bean-load-balance-policy ...35, 37, 38

C

Cache Invalidation
Architecture ..60
Bridges..67
Commit Options ...59
Distributed cache ..62
Distributed locking ...62
Distributed transactions..62
EJB Integration...63
Invalidation Bridge...61
InvalidationsTxGrouper ...63
JBossCluster-based Bridge...68
JMS-based Bridge ..67
Overview ..59
synchronous invalidations ..61
Use Cases..69

cluster-service.xml..23, 27

D

discovery.. 13, 21, 31, 32
Distributed Replicant Manager ..77, 78
Distributed State Service ..79

E

Entity Beans..13, 38, 39

F

Fail-over..13
Farming...13, 57

H

HAPartition.. 23, 36, 74, 75, 76, 77, 80, 83, 104
home-load-balance-policy..35, 37, 38
homogeneous..31
Hot deploy ..13
HTTP Session...42

Apache ... 42, 43, 44, 45, 46, 48, 50
distributable ..56
Do you really need replication? ...43
JBoss-based Jetty replication ...51
Jetty...50
Jetty-based Jetty replication ...53
mod_jk ... 42, 43, 44, 45, 46, 47, 48, 50
Tomcat Session Replication ...48

J

JavaGroups...8, 15, 22, 23, 24, 73
jboss-services.xml .. 27
JNDI 13, 14, 26, 27, 28, 29, 30, 31, 32, 36, 37, 81, 83

L

Limitations ... 101, 104
Linux .. 102, 103
Load balancing ... 12
Load-Balance Policies ... 39
load-balancing..12, 13, 17, 19, 20, 26, 80

M

Message Driven Beans... 39
multicast ...22, 32, 102, 103, 104

N

NotificationService .. 93

O

Other Clustering Services .. 84

P

partition... 14, 15, 16, 17, 20, 21, 23, 27, 28, 35, 36, 37, 38, 57, 58, 74,
75, 104

proxies .. 17, 20
proxy .. 19, 20, 35

R

RMI ..13, 18, 20, 28, 78, 80, 81
RPC ..22, 74, 75, 76

S

scalability .. 12, 15
Scheduler Service... 90
Singleton Service ... 84
State transfer ..77, 83, 104
Stateful Session Bean... 36
Stateful Session Beans ... 13, 16, 35
Stateless Session Beans ... 13, 34
Synchronization ... 38

T R O U B L E S H O O T I N G A N D L I M I T A T I O N S — 1 2
 P A G E 1 0 1

Page 101 of 101

T

TCPPING ...103, 104
Trouble Shooting..101, 102

V

VMWare ...102

W

Windows
Media-Sense... 101

	Preface
	Forward
	About the Authors
	Dedication
	Acknowledgments

	Introduction to Clustering
	What this Book Covers

	Introduction
	Definitions
	JBoss Clustering Features

	Clustering in JBoss: Overview
	Partitions
	Sub-partitions
	Smart proxies
	Consequences for non-RMI client
	Automagic Node Discovery
	Network communication

	Setting up Clustering
	HA-JNDI
	JNDI and HA-JNDI
	HA-JNDI set up
	HA-JNDI binding and lookup rules
	HA-JNDI Design Note
	HA-JNDI client and auto-discovery
	HA-JNDI JNP specific properties

	Clustering EJB
	Stateless Session Beans
	Stateful Session Beans
	Entity Beans
	Entity Synchronization

	Message Driven Beans
	Load-balance Policies
	JBoss 3.0.x
	JBoss ≥ 3.2

	HTTP Session clustering
	Introduction
	Do you really need HTTP Sessions replication?

	HTTP Session Replication Setup
	Introduction
	Apache and mod_jk
	Download and install mod_jk binaries
	Configure Apache to load the mod_jk module
	Configure the worker nodes

	Activating Tomcat Session Replication

	Jetty configuration
	JBoss-Based Replication
	Jetty-Based Replication
	Activate session replication in your Web Application

	Farming
	Cache Invalidation
	Overview
	Framework Architecture
	What the framework is not
	EJB Integration
	EJB Container Configuration
	EJB Container Configuration
	Bean Configuration

	Bridges
	JMS-based Bridge
	JBossCluster-based Bridge

	Use Cases
	Single JVM RO/RW bean
	RO/RW cluster

	Clustering Architecture
	Overview
	JBoss Clustering Framework
	HAPartition
	Distributed Replicant Manager (DRM)
	Distributed State (DS)
	HA-RMI

	Clustering Your Own Services
	Other Clustering Services
	Singleton Service
	Scheduler Service
	Notification Service

	Trouble Shooting and Limitations
	First, are you a Windows user?
	Trouble Shooting
	If all else fails…
	Limitations

	Index

