
JBoss Application Server

Installation And

Getting Started Guide

by JBoss Community

iii

Introduction .. vii

1. Help Contribute .. vii

1. What's new In JBossAS 5 ... 1

1.1. Overview .. 1

1.2. Component Highlights ... 1

1.3. Major Component Upgrades .. 2

1.4. Project Structure Changes .. 3

1.4.1. SVN Information .. 4

1.4.2. The Project Directories ... 4

1.5. Configuration Notes .. 6

1.5.1. JBoss VFS .. 6

1.5.2. Hibernate Logging .. 7

1.5.3. jbossall-client.jar ... 7

1.5.4. EJB3 .. 7

1.5.5. Other JBossAS ... 7

1.5.6. Clustering .. 8

1.6. New Configurations ... 8

2. Getting Started .. 11

2.1. Pre-Requisites .. 11

2.1.1. Hardware and Operating System Requirements 11

2.1.2. Configuring Your Java Environment .. 11

3. Installation Alternatives ... 15

4. Installation With Binary Download ... 17

4.1. Download and Installation .. 17

5. Installation With Source Download .. 19

5.1. Download and Installation .. 19

5.2. Installing and configuring ANT ... 19

5.3. Building with Apache ANT ... 20

5.4. Java6 Notes ... 22

6. Setting the JBOSS_HOME variable .. 25

6.1. Setting the JBOSS_HOME variable in Linux. ... 25

6.2. Setting the JBOSS_HOME variable in Windows. ... 25

7. Uninstall JBoss .. 27

8. Test your Installation ... 29

9. The JBoss Server - A Quick Tour .. 31

9.1. Server Structure .. 31

9.2. Server Configurations .. 31

9.2.1. Server Configuration Directory Structure .. 33

9.2.2. The "default" Server Configuration File Set .. 34

9.2.3. The "all" Server Configuration File Set ... 43

9.2.4. EJB3 Services .. 43

9.2.5. ... 44

9.3. Starting and Stopping the Server ... 44

9.3.1. Start the Server ... 44

JBoss Application Server

iv

9.3.2. Start the Server With Alternate Configuration ... 45

9.3.3. Using run.sh .. 46

9.3.4. Stopping the Server ... 46

9.3.5. Running as a Service under Microsoft Windows 47

9.4. The JMX Console ... 48

9.5. Hot-deployment of services in JBoss .. 48

9.6. Basic Configuration Issues .. 49

9.6.1. Bootstrap Configuration .. 49

9.6.2. Legacy Core Services .. 49

9.6.3. Logging Service ... 50

9.6.4. Security Service ... 51

9.6.5. Additional Services ... 53

10. EJB3 Caveats in JBoss Application Server 5.0.0 .. 55

10.1. Unimplemented features ... 55

10.2. Referencing EJB3 Session Beans from non-EJB3 Beans 55

11. Sample Applications .. 57

12. Sample JSF-EJB3 Application ... 59

12.1. Data Model ... 59

12.2. JSF Web Pages .. 60

12.3. EJB3 Session Beans ... 63

12.4. Configuration and Packaging ... 65

12.4.1. Building The Application ... 65

12.4.2. Configuration Files .. 66

12.5. The Database ... 68

12.5.1. Creating the Database Schema ... 68

12.5.2. The HSQL Database Manager Tool ... 68

12.6. Deploying the Application .. 69

13. Using Seam .. 71

13.1. Data Model .. 71

13.2. JSF Web Pages - index.xhtml and create.xhtml ... 73

13.3. Data Access using a Session Bean .. 74

13.4. JSF Web Pages - todos.xhtml and edit.xhtml ... 76

13.5. Xml Files ... 78

13.6. Further Information .. 79

14. Using other Databases .. 81

14.1. DataSource Configuration Files .. 81

14.2. Using MySQL as the Default DataSource ... 81

14.2.1. Installing the JDBC Driver and Deploying the datasource 82

14.2.2. Testing the MySQL DataSource .. 82

14.3. Configuring a datasource for Oracle DB ... 83

14.3.1. Installing the JDBC Driver and Deploying the DataSource 83

14.3.2. Testing the Oracle DataSource ... 84

14.4. Configuring a datasource for Microsoft SQL Server 200x 84

14.4.1. Installing the JDBC Driver and Deploying the DataSource 84

v

14.5. Configuring JBoss Messaging Persistence Manager .. 85

14.6. Creating a JDBC client .. 86

A. .. 89

B. Further Information Sources ... 91

vi

vii

Introduction

JBoss Application Server is the open source implementation of the Java EE suite of services. It

comprises a set of offerings for enterprise customers who are looking for preconfigured profiles of

JBoss Enterprise Middleware components that have been tested and certified together to provide

an integrated experience. It's easy-to-use server architecture and high flexibility makes JBoss

the ideal choice for users just starting out with J2EE, as well as senior architects looking for a

customizable middleware platform.

Because it is Java-based, JBoss Application Server is cross-platform, easy to install and use on

any operating system that supports Java. The readily available source code is a powerful learning

tool to debug the server and understand it. It also gives you the flexibility to create customized

versions for your personal or business use.

Installing JBoss Application Server is simple and easy. You can have it installed and running in

no time. This guide will teach you to install and get started with the JBoss Application Server.

1. Help Contribute

If you find a typographical error in the Installation Guide and Getting Started Guide, or if you have

thought of a way to make this manual better, we would love to hear from you! Please submit a

report in JIRA: http://jira.jboss.com against the project JBoss Application Server and component

Docs/Installation and Getting Started Guide.

If you have a suggestion for improving the documentation, try to be as specific as possible when

describing it. If you have found an error, please include the section number and some of the

surrounding text so we can find it easily.

Note

Be sure to give us your name so you can receive full credit.

Note

This content is taken from svn.jboss.org/repos/jbossas/projects/docs/community/5

and has yet to be branched.

To access the content directly and make changes yourself:

 svn co https://svn.jboss.org/repos/jbossas/projects/docs/community/5

 --username yourusername

http://jira.jboss.com

viii

Chapter 1.

1

What's new In JBossAS 5

1.1. Overview

This is the final release of the JBoss 5.0 series for the Java EE5 codebase that fully complies

with the Java EE5 conformance testing certification requirements. It brings us to the end of a 3+

year marathon of redesigning the most popular open-source application server over a completely

new kernel architecture, the JBoss Microcontainer [http://www.jboss.org/jbossmc]. It also marks

the beginning of a new era of innovation for JBoss as we will be exploring the capabilities and

limitations of the new architecture in the releases to come. In our view, JBossAS 5 provides a

healthy foundation and the most advanced and fully extensible, cross component model, aspect

integration, server runtime environment. For information on the APIs that make up Java EE5,

see Java EE APIs [http://java.sun.com/javaee/5/docs/api/]. A tutorial on Java EE 5 can be found

here [http://java.sun.com/javaee/5/docs/tutorial/doc/]. Please visit also the JBoss AS docs [https:/

/www.jboss.org/community/docs/DOC-12898] pages as we'll be updating the documents with the

latest information, and post your questions to the JBossAS 5 User Forum [http://www.jboss.com/

index.html?module=bb&op=viewforum&f=287].

JBossAS 5 is the next generation of the JBoss Application Server build on top of the new JBoss

Microcontainer. The JBoss Microcontainer is a lightweight container for managing POJOs, their

deployment, configuration and lifecycle. It is a standalone project that replaces the famous JBoss

JMX Microkernel of the 3.x and 4.x JBoss series. The Microcontainer integrates nicely with the

JBoss framework for Aspect Oriented Programming, JBoss AOP. Support for JMX in JBoss 5

remains strong and MBean services written against the old Microkernel are expected to work.

Further, it lays the groundwork for JavaEE 6 profiles oriented configurations and JBoss AS

embedded that will allow for fine grained selection of services for both unit testing and embedded

scenarios.

JBossAS 5 is designed around the advanced concept of a Virtual Deployment Framework (VDF),

that takes the aspect oriented design of many of the earlier JBoss containers and applies it to

the deployment layer. Aspectized Deployers operate in a chain over a Virtual File System (VFS),

analyze deployments and produce metadata to be used by the JBoss Microcontainer, which in turn

instantiates and wires together the various pieces of a deployment, controlling their lifecycle and

dependencies. The VDF allows for both customization of existing component modules including

JavaEE and JBoss Microcontainer, as well as introduction of other models such as OSGi and

Spring.

1.2. Component Highlights

Many key features of JBoss 5 are provided by integrating other standalone JBoss projects:

• JBoss Microcontainer [http://www.jboss.org/jbossmc] is the next generation POJO based kernel

that is used as the core of the server. It supports an extensible deployment model and advanced

dependency relationships.

http://www.jboss.org/jbossmc
http://www.jboss.org/jbossmc
http://java.sun.com/javaee/5/docs/api/
http://java.sun.com/javaee/5/docs/api/
http://java.sun.com/javaee/5/docs/tutorial/doc/
http://java.sun.com/javaee/5/docs/tutorial/doc/
https://www.jboss.org/community/docs/DOC-12898
https://www.jboss.org/community/docs/DOC-12898
https://www.jboss.org/community/docs/DOC-12898
http://www.jboss.com/index.html?module=bb&op=viewforum&f=287
http://www.jboss.com/index.html?module=bb&op=viewforum&f=287
http://www.jboss.com/index.html?module=bb&op=viewforum&f=287
http://www.jboss.org/jbossmc
http://www.jboss.org/jbossmc

Chapter 1. What's new In JBos...

2

• The definition of the non-kernel deployers and deployment is now defined a Profile

obtained from the ProfileService [http://www.jboss.org/community/docs/DOC-11694]. The

ProfileService also provides the ManagementView for ManagedDeployments/ManagedObjects

[http://www.jboss.org/community/docs/DOC-11349] used by the OpenConsole admin tool.

• JBoss EJB3 included with JBoss 5 provides the implementation of the latest revision of the

Enterprise Java Beans (EJB) specification. EJB 3.0 is a deep overhaul and simplification of the

EJB specification. EJB 3.0's goals are to simplify development, facilitate a test driven approach,

and focus more on writing plain old java objects (POJOs) rather than coding against complex

EJB APIs.

• JBoss Messaging is a high performance JMS provider in the JBoss Enterprise Middleware Stack

(JEMS), included with JBoss 5 as the default messaging provider. It is also the backbone of

the JBoss ESB infrastructure. JBoss Messaging is a complete rewrite of JBossMQ, which is the

default JMS provider for the JBoss AS 4.x series.

• JBossCache that comes in two flavors. A traditional tree-structured node-based cache and

a PojoCache, an in-memory, transactional, and replicated cache system that allows users to

operate on simple POJOs transparently without active user management of either replication

or persistency aspects.

• JBossWS is the web services stack for JBoss 5 providing Java EE compatible web services,

JAX-WS-2.0.

• JBoss Transactions is the default transaction manager for JBoss 5. JBoss Transactions

is founded on industry proven technology and 18 year history as a leader in distributed

transactions, and is one of the most interoperable implementations available.

• JBoss Web is the Web container in JBoss 5, an implementation based on Apache Tomcat

that includes the Apache Portable Runtime (APR) and Tomcat native technologies to achieve

scalability and performance characteristics that match and exceed the Apache Http server.

• JBoss Security has been updated to support pluggable authorization models including SAML,

XACML and federation.

JBossAS 5 includes features and bug fixes, many of them carried over upstream

from the 4.x codebase. See the Detailed Release Notes [https://sourceforge.net/project/

shownotes.php?release_id=645033&group_id=22866] section for the full details, and Section 1.3,

“Major Component Upgrades” for the major component versions included in JBossAS as well as

their project page locations.

1.3. Major Component Upgrades

Some rather important JBoss project versions are listed below. You are encouraged to browse

the individual project's documentation and view the release notes at www.jboss.org.

• JBoss Microcontainer [http://www.jboss.org/jbossmc] v2.0.2.GA

• JBoss Transactions [http://www.jboss.org/jbosstm] v4.4.0.GA

http://www.jboss.org/community/docs/DOC-11694
http://www.jboss.org/community/docs/DOC-11694
http://www.jboss.org/community/docs/DOC-11349
http://www.jboss.org/community/docs/DOC-11349
https://sourceforge.net/project/shownotes.php?release_id=645033&group_id=22866
https://sourceforge.net/project/shownotes.php?release_id=645033&group_id=22866
https://sourceforge.net/project/shownotes.php?release_id=645033&group_id=22866
http://www.jboss.org/jbossmc
http://www.jboss.org/jbossmc
http://www.jboss.org/jbosstm
http://www.jboss.org/jbosstm

Project Structure Changes

3

• JBoss WebServices [http://www.jboss.org/jbossws] v3.0.4.GA

• JBoss Messaging [http://www.jboss.org/jbossmessaging] v1.4.1.GA

• JBoss Web [http://www.jboss.org/jbossweb] v2.1.1.GA

• JBoss AOP [http://www.jboss.org/jbossaop] v2.0.0.SP1

• JBoss EJB3 [http://www.jboss.org/jbossejb3] v1.0.0-Beta10

• JBoss Security [http://www.jboss.org/jbosssecurity] v2.0.2.SP3

• Hibernate [http://www.hibernate.org/] v3.3.1.GA

• Hibernate Entity Manager [http://www.hibernate.org/] v3.4.0.GA

• Hibernate Annotations [http://www.hibernate.org/] v3.4.0.GA

• JBoss Cache POJO [http://www.jboss.org/jbosscache] v3.0.0.GA

• JBoss Cache Core [http://www.jboss.org/jbosscache] v3.0.1.GA

• JGroups [http://www.jboss.org/jgroups] v.2.6.7.GA

• JGroups [http://www.jboss.org/jgroups] v.2.6.7.GA

• JBoss Remoting [http://www.jboss.org/jbossremoting] v.2.5.0.SP2

For a full list of the JBoss and thirdparty libraries used with JBoss AS 5.0.0.GA check the

pom.xml found in the component-matrix directory of the source code distribution. To see the

maven dependency tree you can run 'mvn dependency:tree' from the thirdparty directory of the

source code distro.

1.4. Project Structure Changes

With the reworking of the server kernel and evolution of various JBoss technologies to indepdnent

projects, the JBossAS project is moving towards becoming largely an integration project. Many key

pieces are now integrated as thirdparty jars that integration code/configuration makes avaialble

as part of a server configuration/profile.

A common theme for JBossAS 5 is the breaking out of internal subsystems into stand-alone

projects and the introduction of SPIs throughout the server codebase. Those changes should

not affect directly the end user but they are an important part of the JBoss strategy for making

available the various EE services as independent projects, so that they can be wired-together

and be consumed à la carte inside different runtime environments and not only inside the JBoss

Application Server. If you are building JBossAS from source you'll notice we are migrating to a

maven2 build. At this point the build is a hybrid one because it declares all JBoss dependencies

as maven2 artifacts, however after the dependencies are resolved/imported the legacy ant based

build is used to compile and build the distribution. This will change to a full maven build at some

point in time. The jboss maven repo can be found here [http://repository.jboss.org/maven2/].

Starting from AS5 CR2, please note how the -sources.jar are also downloaded to thirdparty by

http://www.jboss.org/jbossws
http://www.jboss.org/jbossws
http://www.jboss.org/jbossmessaging
http://www.jboss.org/jbossmessaging
http://www.jboss.org/jbossweb
http://www.jboss.org/jbossweb
http://www.jboss.org/jbossaop
http://www.jboss.org/jbossaop
http://www.jboss.org/jbossejb3
http://www.jboss.org/jbossejb3
http://www.jboss.org/jbosssecurity
http://www.jboss.org/jbosssecurity
http://www.hibernate.org/
http://www.hibernate.org/
http://www.hibernate.org/
http://www.hibernate.org/
http://www.hibernate.org/
http://www.hibernate.org/
http://www.jboss.org/jbosscache
http://www.jboss.org/jbosscache
http://www.jboss.org/jbosscache
http://www.jboss.org/jbosscache
http://www.jboss.org/jgroups
http://www.jboss.org/jgroups
http://www.jboss.org/jgroups
http://www.jboss.org/jgroups
http://www.jboss.org/jbossremoting
http://www.jboss.org/jbossremoting
http://repository.jboss.org/maven2/
http://repository.jboss.org/maven2/

Chapter 1. What's new In JBos...

4

default. To disable downloading of the sources to thirdparty, define the property skip-download-

sources to true either on the command line or in your maven settings.xml.

1.4.1. SVN Information

The project source is rooted at Anonymous SVN [http://anonsvn.jboss.org/repos/jbossas/] for

public access, and Committer SVN [https://svn.jboss.org/repos/jbossas/] for committer access.

The directories under these roots follow the usual svn conventions:

• trunk [http://anonsvn.jboss.org/repos/jbossas/trunk] - the development branch for the next major

version

• branches [http://anonsvn.jboss.org/repos/jbossas/branches] - the location for stable branches

associated with release series.

• Branch_5_0 [http://anonsvn.jboss.org/repos/jbossas/branches/Branch_5_0/] - the branch for

5.0.x series development.

• tags [http://anonsvn.jboss.org/repos/jbossas/tags] - locations for tagged releases

• JBoss_5_0_0_GA [http://anonsvn.jboss.org/repos/jbossas/tags/JBoss_5_0_0_GA/] - The

5.0.0.GA release tag.

1.4.2. The Project Directories

When you checkout the project the resulting subdirectories are:

aspects

Server aspects

bootstrap

The server bootstrap that loads the JBoss Microcontainer

build

The server build directory which contains the main build.xml. See Section 5.3, “Building with

Apache ANT”Building with ANT for more on building the server.

client

A maven project that declares the dependcies for the jboss-all-client.jar

cluster

Clustering related services and integration

component-matrix

A maven project the declares the external dependencies consumed by the server. This is

used to build the thirdparty/* library structure.

connector

JCA implementation and integration code.

http://anonsvn.jboss.org/repos/jbossas/
http://anonsvn.jboss.org/repos/jbossas/
https://svn.jboss.org/repos/jbossas/
https://svn.jboss.org/repos/jbossas/
http://anonsvn.jboss.org/repos/jbossas/trunk
http://anonsvn.jboss.org/repos/jbossas/trunk
http://anonsvn.jboss.org/repos/jbossas/branches
http://anonsvn.jboss.org/repos/jbossas/branches
http://anonsvn.jboss.org/repos/jbossas/branches/Branch_5_0/
http://anonsvn.jboss.org/repos/jbossas/branches/Branch_5_0/
http://anonsvn.jboss.org/repos/jbossas/tags
http://anonsvn.jboss.org/repos/jbossas/tags
http://anonsvn.jboss.org/repos/jbossas/tags/JBoss_5_0_0_GA/
http://anonsvn.jboss.org/repos/jbossas/tags/JBoss_5_0_0_GA/

The Project Directories

5

console

Obsolete admin console. See JBoss Embedded Console [http://www.jboss.org/jopr/]project

for the future direction of the server admin console.

deployment

JSR88 deployment services code.

ejb3

EJB3 integration code.

embedded

Obsolete JBossAS emebedded project that has been moved toSVN

embedded [http://anonsvn.jboss.org/repos/jbossas/projects/embedded/] for further

development. See the Design of Embedded JBoss [http://www.jboss.com/

index.html?module=bb&op=viewforum&f=266] forum for design discussions.

hibernate-int

Hibernate deployment integration code.

iiop

JacORB integration code for IIOP support.

j2se

jbossas

JMX remoting and JTS integration code

jmx

javax.management.* package implementations

jmx-remoting

A javax.management.remote.JMXConnector implementation

main

The main() entry point code

management

JSR77 mbean view generation code

mbeans

JBoss JMX extensions

messaging

JBoss Messaging integration code

pom.xml

The JBossAS root maven pom

profileservice

The ProfileService, ManagementView, and DeploymentManager implementations.

http://www.jboss.org/jopr/
http://www.jboss.org/jopr/
http://anonsvn.jboss.org/repos/jbossas/projects/embedded/
http://anonsvn.jboss.org/repos/jbossas/projects/embedded/
http://anonsvn.jboss.org/repos/jbossas/projects/embedded/
http://www.jboss.com/index.html?module=bb&op=viewforum&f=266
http://www.jboss.com/index.html?module=bb&op=viewforum&f=266
http://www.jboss.com/index.html?module=bb&op=viewforum&f=266

Chapter 1. What's new In JBos...

6

security

JBoss Security integration code

server

The legacy EJB2 containers, deployers and detached invokers

spring-int

Spring bean deployment integration

system

ProfileServiceBootstrap implementation and management code

system-jmx

MBean service component model and deployers

testsuite

The JBossAS testsuite

thirdparty

The maven2 thirdparty project which builds the local thirdparty jars used by the ant build.

tomcat

JBossWeb integration code and deployers

tools

build tool jars

varia

Various misc services

webservices

JBossWS integration code and deployers

1.5. Configuration Notes

This section describes additional changes in JBossAS 5.

1.5.1. JBoss VFS

JBoss VFS provides a set of different switches to control it's internal behavior. JBoss AS sets

boss.vfs.forceCopy=true by default. To see all the provided VFS flags check out the code of the

VFSUtils.java class.

• jboss.vfs.forceCopy, useCopyJarHandler option, force copy handling of nested jars if true.

• jboss.vfs.forceVfsJar, true if forcing fallback to vfsjar from default vfszip

• jboss.vfs.forceNoReaper, noReaper option, true if use of the ZipFileLockReaper background

closing of ZipFiles should be disabled. VFS uses an internal caching mechanism to speed

Hibernate Logging

7

up access to deployment artifacts. This means that files in deploy/ remain open as long

as they are accessed and then closed by a reaper thread after a 5 seconds inactivity. On

window platforms this may cause locking issues if files are re-deployed too quickly. Use

jboss.vfs.forceNoReaper=true to disable reaping.

• jboss.vfs.forceCaseSensitive, true if case sensitivity should be enforced

• jboss.vfs.optimizeForMemory, true if zip streams should be kept in memory with their entries

in ZipEntry.STORED format.

• jboss.vfs.cache, specifies the org.jboss.util.CachePolicy implementation to use for VFSCache

implementations that support an external CachePolicy.

1.5.2. Hibernate Logging

Hibernate-core is now using slf4j-api as a logging facade. To properly integrate that in JBossAS we

have created an slf4j-to-jboss-logging adapter (slf4j-jboss-logging.jar) that creates a static binding

between sl4j and jboss-logging-spi.

1.5.3. jbossall-client.jar

The client/jbossall-client.jar library that used to bundle the majority of jboss client libraries, is now

referencing them instead through the Class-Path manifest entry. This allows swapping included

libraries (e.g. jboss-javaee.jar) without having to re-package jbossall-client.jar. On the other hand,

it requires that you have jbossall-client.jar together with the other client/*.jar libraries, so they can

be found.

1.5.4. EJB3

If using proprietary JBoss/EJB3 annotations, those have moved (since Beta4) into the

org.jboss.ejb3.annotation package, EJBTHREE-1099. Those are now included in a new artifact,

jboss-ejb3-ext-api.jar

Interoperating with previous JBoss EJB3 implementations may present problems due to

serialVersionUIDs issues, EJBTHREE-1118.

Use of JBoss Cache 3.x. has a significantly different API from the 1.x releases used in JBoss AS

4.x and 3.2.x.

@EJB injections should now work from servlets, JBAS-5646.

EJB3 configuration is now controlled by deployers/ejb3.deployer/META-INF/ejb3-deployers-

jboss-beans.xml as described in http://www.jboss.org/community/docs/DOC-12407

1.5.5. Other JBossAS

The ClassPathExtension MBean has been replaced with a VFS classloader definition, see JBAS-

5446.

http://www.jboss.org/community/docs/DOC-12407

Chapter 1. What's new In JBos...

8

The old JMX-based ServiceBindingManager has been replaced by a POJO-based

ServiceBindingManager, see AS5ServiceBindingManager Wiki [http://www.jboss.org/community/

docs/DOC-9038].

The Farm service from 4.x has been removed, and replaced with a

HASingletonDeploymentScanner that integrates with the ProfileService.

JBoss 5 is stricter when it comes to verifying/deploying JavaEE artifacts. EJB3 deployments that

run in AS 4.2 may fail in AS5. We have tried to keep the validation messages as accurate as

possible in order to help you modify your deployment descriptors/annotations to be in-line with

the JavaEE 5 requirements.

A new jboss.server.log.threshold system property can be used to control the log/server.log

threshold. It defaults to DEBUG.

The default conf/jboss-log4j.xml configuration now includes the thread name for entries in log/

server.log (JBAS-5274).

The transaction manager configuration has moved from conf/jboss-service.xml to deploy/

transaction-service.xml.

All the security related configuration files are now grouped under the deploy/security directory

(JBAS-5318). The security configuration changes are further described in SecurityInJBoss5 [http:/

/www.jboss.org/community/docs/DOC-12199] wiki.

1.5.6. Clustering

A new jboss.jgroups.udp.mcast_port property is to control easy configuration of multicast port. It

defaults to ${jboss.jgroups.udp.mcast_port:45688}.

Clustering configurations are now in a deploy/clustering subdirectory

A separate cache is now used for Clustered SSO (JBAS-4676).

Per webapp configuration of useJK, snapshot mode and snapshot interval (JBAS-3460). Default

for useJK is whether jvmRoute is set (JBAS-4961).

Total replication (rather than buddy replication) is the default setting for session replication (JBAS-

5085).

Loopback is now set to true for all JGroups UDP stacks (JBAS-5323).

1.6. New Configurations

JBossAS 5.0.0.GA introduces two new configuration, the standard and the web config. The

standard config is the configuration that has been tested for JavaEE compliance. The major

differences with the existing configurations is that call-by-value and deployment isolation are

enabled by default, along with support for rmiiiop and juddi (taken from the all config). The

configurations that are modified include:

http://www.jboss.org/community/docs/DOC-9038
http://www.jboss.org/community/docs/DOC-9038
http://www.jboss.org/community/docs/DOC-9038
http://www.jboss.org/community/docs/DOC-12199
http://www.jboss.org/community/docs/DOC-12199
http://www.jboss.org/community/docs/DOC-12199

New Configurations

9

• deployers/ear-deployer-jboss-beans.xml has callByValue and isolated properties set to true

• The "jboss:service=Naming" mbean in conf/jboss-service.xml has CallByValue set to true.

• conf/jndi.properties has

java.naming.factory.initial=org.jboss.iiop.naming.ORBInitialContextFactory

• There are additional JacORB configuration files and jars:

• conf/jacorb.properties

• deploy/iiop-service.xml

• lib/avalon-framework.jar

• lib/jacorb.jar

• A UDDI implementation deployed as deploy/juddi-service.sar

The web config is a new experimental lightweight configuration created around JBoss Web that

will follow the developments of the JavaEE 6 web profile. Except for the servlet/jsp container it

provides support for JTA/JCA and JPA. It also limits itself to allowing access to the server only

through the http port. Please note that this configuration is not JavaEE certified and will most likely

change in the following releases.

Another notable change is that the majority of the libraries common to the different configurations

have moved to a new shared location, JBOSS_HOME/common/lib/. This is so we avoid having

multiple copies of the same libraries in the distribution. The location of the common library directory

can be controlled by the following properties:

• jboss.common.base.url defaulting to ${jboss.home.url}/common

• jboss.common.lib.url defaulting to ${jboss.common.base.url}/lib

The common library directory is shared by all the configurations except for the minimal config. It

is referenced in the very beginning of every configuration's conf/jboss-service.xml:

 <classpath codebase="${jboss.server.lib.url}" archives="*"/>

 <classpath codebase="${jboss.common.lib.url}" archives="*"/>

You can see that the library directory of the individual configurations is still in place, although in

some cases it's empty (e.g. JBOSS_HOME/server/default/lib/)

10

Chapter 2.

11

Getting Started

2.1. Pre-Requisites

You must have adequate disk space to install JDK and JBoss Application Server while also

allowing enough space for your applications. Before installing JBoss Application Server you must

have a working installation of Java. Since JBoss is 100% pure Java you can have it working on

any Operating System / Platform that supports Java.

2.1.1. Hardware and Operating System Requirements

For the latest information on supported Operating System / JVM combinations and supported

Database platforms, please refer to http://www.jboss.com.

2.1.2. Configuring Your Java Environment

You must have a working installation of JDK 1.5 or JDK 1.6 before you install JBoss Application

Server. You can install the 32-bit or 64-bit JVM as per your requirements. In this guide we will

show you how to install a 32-bit Sun JDK 5.0 on a Linux Platform and Microsoft Windows Platform.

But before we do that let's take a look at some of the benefits of using a 64-bit JVM.

Benefits of 64-bit JVM on 64-bit OS and Hardware:

• Wider datapath: The pipe between RAM and CPU is doubled, which improves the performance

of memory-bound applications.

• 64-bit memory addressing gives virtually unlimited (1 exabyte) heap allocation. However large

heaps affect garbage collection.

• Applications that run with more than 1.5GB of RAM (including free space for garbage collection

optimization) should utilize the 64-bit JVM.

• Applications that run on a 32-bit JVM and do not require more than minimal heap sizes will gain

nothing from a 64-bit JVM. Barring memory issues, 64-bit hardware with the same relative clock

speed and architecture is not likely to run Java applications faster than their 32-bit cousin.

Installing and Configuring 32-bit Sun JDK 5.0 or JDK 6.0 on Linux

• Download the Sun JDK 5.0 or JDK 6 (Java 2 Development Kit) from Sun's website:

http://java.sun.com/javase/downloads/index_jdk5.jsp for JDK 5.0 or http://java.sun.com/javase/

downloads/ for JDK 6.0. Select the JDK Update <x>" (where x is the latest update number) for

download and then select "RPM in self-extracting" file for Linux1. Read the instructions on Sun's

website for installing the JDK.

• If you do not want to use SysV service scripts you can install the "self-extracting file" for Linux

instead of choosing the "RPM in self-extracting" file. In that case you can skip the next step

mentioned here. But it is recommended to use the SysV service scripts for production servers.

http://www.jboss.com
http://java.sun.com/javase/downloads/index_jdk5.jsp
http://java.sun.com/javase/downloads/
http://java.sun.com/javase/downloads/

Chapter 2. Getting Started

12

• Download and install the appropriate -compat RPM from JPackage here [ftp:/

/jpackage.hmdc.harvard.edu/JPackage/1.7/generic/RPMS.non-free/]. Please ensure you

choose a matching version of the -compat package to the JDK you installed.

• Create an environment variable that points to the JDK installation directory and call it

JAVA_HOME. Add $JAVA_HOME/bin to the system path to be able to run java from the command

line. You can do this by adding the following lines to the .bashrc file in your home directory.

#In this example /usr/java/jdk1.6.0_07 is the JDK installation directory.

 export JAVA_HOME=/usr/java/jdk1.6.0_07

 export PATH=$PATH:$JAVA_HOME/bin

Set this variable for the user account doing the installation and also for the user account that

will run the server.

• If you have more than one version of JVM installed in your machine, make sure you are using

the JDK1.5 or JDK1.6 installation as the default source for the java and javac executables.

You can do this using the alternatives system. The alternatives system allows different versions

of Java, from different sources to co-exist on your system.

Select alternatives for java, javac and java_sdk_1.<x>

• As root, type the following command at the shell prompt and you should see something like

this:

[root@vsr ~]$ /usr/sbin/alternatives --config java

There are 2 programs which provide 'java'.

Selection Command

1 /usr/lib/jvm/jre-1.4.2-gcj/bin/java

*+ 2 /usr/lib/jvm/jre-1.5.0-sun/bin/java

Enter to keep the current selection[+], or type selection number:

Make sure the Sun version [jre-1.5.0-sun in this case] is selected (marked with a '+' in the

output), or select it by entering its number as prompted.

• Repeat the same for javac and java_sdk_1.<x>

[root@vsr ~]$ /usr/sbin/alternatives --config javac

There are 1 programs which provide 'javac'.

ftp://jpackage.hmdc.harvard.edu/JPackage/1.7/generic/RPMS.non-free/
ftp://jpackage.hmdc.harvard.edu/JPackage/1.7/generic/RPMS.non-free/
ftp://jpackage.hmdc.harvard.edu/JPackage/1.7/generic/RPMS.non-free/

Configuring Your Java Environment

13

Selection Command

*+ 1 /usr/lib/jvm/java-1.5.0-sun/bin/javac

Enter to keep the current selection[+], or type selection number:

[root@vsr ~]$ /usr/sbin/alternatives --config java_sdk_1.5.0

There are 1 programs which provide 'java_sdk_1.5.0'.

Selection Command

*+ 1 /usr/lib/jvm/java-1.5.0-sun

Enter to keep the current selection[+], or type selection number:

You should verify that java, javac and java_sdk_1.<x> all point to the same manufacturer

and version.

Note

You can always override this step by setting the JAVA_HOME environment variable

as explained in the previous step.

• Make sure that the java executable is in your path and that you are using an appropriate version.

To verify your Java environment, type java -version at the shell prompt and you should see

something like this:

 [root@vsr ~]$ java -version

 java version "1.5.0_14"

 Java(TM) 2 Runtime Environment, Standard Edition (build 1.5.0_14-b03)

 Java HotSpot(TM) Client VM (build 1.5.0_14-b03, mixed mode, sharing)

Installing and Configuring 32-bit Sun JDK 5.0 or JDK 6.0 on Microsoft

Windows

• Download the Sun JDK 5.0 (Java 2 Development Kit) from Sun's website: http://java.sun.com/

javase/downloads/index_jdk5.jsp for JDK 5.0 or http://java.sun.com/javase/downloads/ for JDK

6.0. Choose the JDK Update <x>" (where x is the latest update number) for download and then

select your Windows Platform options to perform the installation.

http://java.sun.com/javase/downloads/index_jdk5.jsp
http://java.sun.com/javase/downloads/index_jdk5.jsp
http://java.sun.com/javase/downloads/

Chapter 2. Getting Started

14

• Create an environment variable called JAVA_HOME that points to the JDK installation

directory, for example: C:\Program Files\Java\jdk1.5.0_14\. In order to run java from

the command line add the jre\bin directory to your path, for example: C:\Program

Files\Java\jdk1.5.0_14\jre\bin. To do this, open the Control Panel from the Start Menu,

switch to Classic View if necessary, open the System Control Panel applet, select the Advanced

Tab, and click on the Environment Variables button.

Chapter 3.

15

Installation Alternatives
You can install the JBoss Application Server in one of these two modes:

• Binary files download

In this form of installation, simply unzip the downloaded zip file to the directory of your choice.

You can unzip the JBoss Application Server on any operating system that supports the zip

format. The zip file is available on http://labs.jboss.com/jbossas/downloads/. Please ensure you

have met the pre-requisites required before proceeding with your installation. Pre-requisites are

discussed in Section 2.1, “Pre-Requisites”. Further details on installation using the Binary files

are discussed in Chapter 4, Installation With Binary Download

JBossAS 5.0.0 can be compiled with both Java5 and Java6. The Java5 compiled binary is our

primary/recommended binary distribution. It has undergone rigorous testing and can run under

both a Java 5 and a Java 6 runtime. When running under Java 6 you need to manually copy the

following libraries from the JBOSS_HOME/client directory to the JBOSS_HOME/lib/endorsed

directory, so that the JAX-WS 2.0 apis supported by JBossWS are used:

* jbossws-native-saaj.jar

 * jbossws-native-jaxrpc.jar

 * jbossws-native-jaxws.jar

 * jbossws-native-jaxws-ext.jar

Another alternative is to download the jdk6 distribution

(jboss-5.0.0.CR2-jdk6.zip) [http://downloads.sourceforge.net/jboss/jboss-5.0.0.CR2-

jdk6.zip?modtime=1221686600&big_mirror=1] in which case no configuration changes

are required. Please refer to the release notes [http://sourceforge.net/project/

shownotes.php?release_id=627020&group_id=22866] for additional information about running

with JDK 6.

• Source Files download

In this form of installation, download the source files from the web and build the source files

locally. On successfully building your source files you can manually copy the built file into a

desired folder and start the server. Please ensure you have met the pre-requisites required

before proceeding with your installation. Pre-requisites are discussed in Section 2.1, “Pre-

Requisites”. For more instructions on building your source files, please refer to Chapter 5,

Installation With Source Download.

Three types of server configurations will be included in your installation - minimal, default, and all.

http://labs.jboss.com/jbossas/downloads/
http://downloads.sourceforge.net/jboss/jboss-5.0.0.CR2-jdk6.zip?modtime=1221686600&big_mirror=1
http://downloads.sourceforge.net/jboss/jboss-5.0.0.CR2-jdk6.zip?modtime=1221686600&big_mirror=1
http://downloads.sourceforge.net/jboss/jboss-5.0.0.CR2-jdk6.zip?modtime=1221686600&big_mirror=1
http://sourceforge.net/project/shownotes.php?release_id=627020&group_id=22866
http://sourceforge.net/project/shownotes.php?release_id=627020&group_id=22866
http://sourceforge.net/project/shownotes.php?release_id=627020&group_id=22866

16

Chapter 4.

17

Installation With Binary Download

4.1. Download and Installation

You can download the Binary zip files from http://labs.jboss.com/jbossas/downloads/.

There are two binary distributions available:

1. jboss-5.0.0.CR2.zip [http://downloads.sourceforge.net/jboss/jboss-

5.0.0.CR2.zip?modtime=1221686752&big_mirror=1]

2. jboss-5.0.0.CR2-jdk6.zip [http://downloads.sourceforge.net/jboss/jboss-5.0.0.CR2-

jdk6.zip?modtime=1221686600&big_mirror=1]

In this form of installation, simply unzip the downloaded zip file to the directory of your choice on

any operating system that supports the zip format.

• Unzip jboss-<release>.zip to extract the archive contents into the location of your choice.

You can do this using the JDK jar tool (or any other ZIP extraction tool). In the example below

we are assuming you downloaded the zip file to the /jboss directory.

 [usr]$ cd /jboss

 [usr]$ jar -xvf jboss-<release>.zip

• You should now have a directory called jboss-<release>. Next you need to set

your JBOSS_HOME environment variables. This is discussed in Chapter 6, Setting the

JBOSS_HOME variable.

http://labs.jboss.com/jbossas/downloads/
http://downloads.sourceforge.net/jboss/jboss-5.0.0.CR2.zip?modtime=1221686752&big_mirror=1
http://downloads.sourceforge.net/jboss/jboss-5.0.0.CR2.zip?modtime=1221686752&big_mirror=1
http://downloads.sourceforge.net/jboss/jboss-5.0.0.CR2.zip?modtime=1221686752&big_mirror=1
http://downloads.sourceforge.net/jboss/jboss-5.0.0.CR2-jdk6.zip?modtime=1221686600&big_mirror=1
http://downloads.sourceforge.net/jboss/jboss-5.0.0.CR2-jdk6.zip?modtime=1221686600&big_mirror=1
http://downloads.sourceforge.net/jboss/jboss-5.0.0.CR2-jdk6.zip?modtime=1221686600&big_mirror=1

18

Chapter 5.

19

Installation With Source Download

5.1. Download and Installation

You can download the zip source file from http://labs.jboss.com/jbossas/downloads/.

• Uncompress jboss-<release>-src.tar.gz to extract the archive contents into the location of

your choice. You can do this using the tar archiving utility in Linux (or any other compatible

extraction tool). In this example we are assuming your source files were copied in the /jboss

folder.

[user@localhost]$ cd /jboss

 [user@localhost]$ tar -xvf

 jboss-<release>-src.tar.gz

• You should now have a directory called jboss-<release>-src.tar.gz. The next step is to

build your source files. In this example we are using Apache ANT. This is discussed in the

following section.

5.2. Installing and configuring ANT

Apache Ant [http://ant.apache.org/] is a Java-based build tool. Instead of using an extended

model using shell-based commands, Ant is extended using Java classes that use XML-based

configuration files. The configuration files call out a target tree that executes various tasks. Each

task is run by an object that implements a particular Task interface. This gives you the ability to

perform cross platform builds. Please also note that if needed, Ant provides an <exec> task that

allows commands to be executed based on the Operating System it is executing on. For more

information on Apache ANT please click here [http://ant.apache.org/].

You will need to build your JBoss Application Server source files before you can run the application

server. Apache Ant is shipped with the JBoss Application Server source files and can be executed

from the <source_directory>/tools/bin directory.

The source files can also be built using Apache Maven which is also shipped with the JBoss

Application Server source files under <source_directory>/tools/maven directory. For more

information about Apache Maven, please refer to http://maven.apache.org/ [].

Like Java, you also need to set the environment variables for Apache ANT and/or Apache Maven.

The following example illustrates a desirable configuration for the .bashrc file. In the example the

file is edited using the gnome text editor (gedit).

[user@localhost ~]$ gedit .bashrc

 # Source global definitions

 if [-f /etc/bashrc]; then

http://labs.jboss.com/jbossas/downloads/
http://ant.apache.org/
http://ant.apache.org/
http://ant.apache.org/
http://ant.apache.org/

Chapter 5. Installation With ...

20

 /etc/bashrc

 fi

 # User specific aliases and functions

 # The following are the environment variables for Java , ANT

 and Maven

 export JAVA_HOME=/usr/java/jdk1.6.0_07/

 export PATH=$PATH:$JAVA_HOME/bin

 export

 ANT_HOME=/home/downloads/jboss-<source_directory>/tools/

 export PATH=$PATH:$ANT_HOME/bin

 export

 MAVEN_HOME=/home/downloads/jboss-<source_directory>/tools/maven

 export PATH=$PATH:$MAVEN_HOME/bin

To implement the changes you've made to the .bashrc file, type the following on a terminal.

[user@localhost ~]$ source .bashrc

 [user@localhost ~]$

If any errors are displayed, please check your .bashrc file for errors and ensure that all directory

paths are correct.

5.3. Building with Apache ANT

To build the JBoss Application Server source files with Apache ANT, from a terminal change

directory to where the unzipped source files are. In the following example we are assuming that

the source files were copied and unzipped in the logged in user's downloads folder.

[user@localhost]$ cd /home/user/downloads/jboss-<release>-src/build

[504][valkyrie: jboss-5.0.0.GA-src]$ ls

aspects hibernate-int security

bootstrap iiop server

build j2se spring-int

client jbossas system

cluster jmx system-jmx

component-matrix jmx-remoting testsuite

connector main thirdparty

console management tomcat

deployment mbeans tools

docbook-support messaging varia

ejb3 pom.xml webservices

embedded profileservice

Building with Apache ANT

21

From the contents of the build directory above, you can see the build.xml file which is used by

Apache ANT as a configuration file when building your source files. The next step is to perform

the build using Apache ANT as illustrated below.

[571][valkyrie: build]$ ant

Buildfile: build.xml

_buildmagic:init:

Trying to override old definition of task property

_buildmagic:init:local-properties:

[copy] Copying 1 file to /Users/svn/Releases/jboss-5.0.0.GA-src/build

_buildmagic:init:buildlog:

configure:

[echo] groups: default

[echo] modules:

 bootstrap,main,j2se,mbeans,jmx,system,system-

jmx,security,server,deployment,jbossas/remoting,jmx-remoting,jbossas/jmx-

remoting,messaging,cluster,varia,iiop,aspects,profileservice,connector,management,ejb3,tomcat,webservices,hibernate-

int,console,spring-int

...

createthirdparty:

[echo] Calling mvn command located in

 /Users/svn/Releases/jboss-5.0.0.GA-src/build/../tools/maven

...

main:

BUILD SUCCESSFUL

Total time: 21 minutes 34 seconds

A successful build will have the above message. The first time you build the tree it will download

a large number of thirdparty files from maven repositories. After that, these will be used from the

local repository and the build will be much faster. Typical initial build times can be 30 minutes with

subsequent build times 3 minutes. If your build fails, please check the error log and ensure that

your configuration files and environment variables are correctly set. The JBoss Application Server

files are built under the build/output/jboss-<release> directory as indicated below.

Note

At this point the JBoss Application Server source files build is a hybrid one (builds

in both Ant and Maven) because it declares all JBoss dependencies as maven2

Chapter 5. Installation With ...

22

artifacts, however after the dependencies are resolved/imported the legacy ant

based build is used to compile and build the distribution. The JBoss Application

Server source files will change to a full maven build soon.

[578][valkyrie: build]$ ls

VersionRelease.java build.sh local.properties

build-distr.xml build.xml output

build-release.xml docs pom.xml

build.bat eclipse.psf

build.log etc

[579][valkyrie: build]$ ls output/

jboss-5.0.0.GA

[580][valkyrie: build]$

The jboss-<release> directory contains your successful JBoss Application Server files. You

can copy this folder to a different location or run the server from this folder after setting

the JBOSS_HOME environment variable in your .bashrc file. Next you need to set your

JBOSS_HOME environment variables. This is discussed in Chapter 6, Setting the JBOSS_HOME

variable.

5.4. Java6 Notes

JBossAS 5.0.0.GA can be compiled with both Java5 and Java6. The Java5 compiled binary is our

primary/recommended binary distribution. It has undergone rigorous testing and can run under

both a Java 5 and a Java 6 runtime. When running under Java 6 you need to manually copy

the following libraries from the JBOSS_HOME/client directory to the JBOSS_HOME/lib/endorsed

directory, so that the JAX-WS 2.0 apis supported by JBossWS are used:

jbossws-native-saaj.jar

jbossws-native-jaxrpc.jar

jbossws-native-jaxws.jar

jbossws-native-jaxws-ext.jar

The other option is to download the jdk6 distribution (jboss-5.0.0.GA-jdk6.zip) in which case no

configuration changes are required. If you still have problems using JBoss with a Sun Java 6

runtime, you may want to set -Dsun.lang.ClassLoader.allowArraySyntax=true, as described in

JBAS-4491. Other potential problems under a Java 6 runtime include:

ORB getting prematurely destroyed when using Sun JDK 6 (see Sun Bug ID: 6520484)

Unimplemented methods in Hibernate for JDK6 interfaces.

When JBossAS 5 is compiled with Java 6, support for the extended JDBC 4 API is included in the

binary, however this can only be used under a Java 6 runtime. In this case no manual configuration

steps are necessary.

Java6 Notes

23

Note

It should be noted that the Java 6 compiled distribution of JBoss AS 5 is still in an

experimental stage in terms of testing.

24

Chapter 6.

25

Setting the JBOSS_HOME variable

6.1. Setting the JBOSS_HOME variable in Linux.

Before you can run the JBoss Application Server, you need to ensure that you've configured

the JBOSS_HOME environment variable in your .bashrc file as follows. In this example the

Application Server folder has beeen copied to the /usr/jboss/jboss-<release> folder. The

following is a .bashrc file used in this installation. Please ensure that your .bashrc file has a

similar configuration.

[user@localhost ~]$ gedit .bashrc

Source global definitions

if [-f /etc/bashrc]; then

/etc/bashrc

fi

......

User specific aliases and functions

The following are the environment variables for Java, ANT and JBoss

export JAVA_HOME=/usr/java/jdk1.6.0_07

export PATH=$PATH:$JAVA_HOME/bin

export ANT_HOME=/usr/ant/apache-ant-1.6.0

export PATH=$PATH:$ANT_HOME/bin

export JBOSS_HOME=/usr/jboss/jboss-<release>

export PATH=$PATH:$JBOSS_HOME/bin

To implement your .bashrc file changes run the following command.

[user@localhost ~]$ source .bashrc

[user@localhost ~]$

If no errors are displayed on your terminal, you are now ready to run your JBoss Application Server.

6.2. Setting the JBOSS_HOME variable in Windows.

• Create an environment variable called JBOSS_HOME that points to the JBoss Application Server

installation directory, for example: C:\Program Files\JBoss\jboss-<release>\.

• In order to run JBoss Application Server from the command line, add the jboss-<release>\bin

directory to your path, for example: C:\Program Files\JBoss\jboss-<release>\bin. To do

this, open the Control Panel from the Start Menu, switch to Classic View if necessary, open the

System Control Panel applet, select the Advanced Tab, and click on the Environment Variables

button.

Chapter 6. Setting the JBOSS_...

26

You are now ready to start the JBoss Application Server.

Chapter 7.

27

Uninstall JBoss
The JBoss Application Server may be uninstalled by simply deleting the JBoss Application Server's

installation directory. You will also need to remove the JBOSS_HOME environment variables

discussed in Chapter 6, Setting the JBOSS_HOME variable for your Linux or Windows platform.

28

Chapter 8.

29

Test your Installation
After you have installed the JBoss Application Server, it is wise to perform a simple startup test

to validate that there are no major problems with your Java VM/operating system combination.

To test your installation, open the JBOSS_DIST/jboss-<release>/bin directory and execute the

run.bat (for Windows) or run.sh (for Linux) script, as appropriate for your operating system.

Your output should look similar to the following (accounting for installation directory differences)

and contain no error or exception messages:

 [samson@dhcp-1-150 bin]$ sh run.sh

 ===

 JBoss Bootstrap Environment

 JBOSS_HOME:

 /home/svn/JBossHead/jboss-head/build/output/jboss-5.0.0.GA

 JAVA: /Library/Java/Home/bin/java

 JAVA_OPTS: -Dprogram.name=run.sh -Xms128m -Xmx512m

 -XX:MaxPermSize=256m -Dorg.jboss.resolver.warning=true

 -Dsun.rmi.dgc.client.gcInterval=3600000

 -Dsun.rmi.dgc.server.gcInterval=3600000

 CLASSPATH:

 /home/svn/JBossHead/jboss-head/build/output/jboss-5.0.0.GA/bin/run.jar

 ===

 21:47:23,874 INFO [ServerImpl] Starting JBoss (Microcontainer)...

 21:47:23,875 INFO [ServerImpl] Release ID: JBoss [Morpheus]

 5.0.0.GA (build: SVNTag=JBoss_5_0_0_GA date=200812011226)

 .

 .

 ...output truncated

 .

 .

 21:47:46,090 INFO [AjpProtocol] Starting Coyote AJP/1.3 on

 ajp-127.0.0.1-8009

 21:47:46,112 INFO [ServerImpl] JBoss (Microcontainer) [5.0.0.GA

 (build: SVNTag=JBoss_5_0_0_GA date=200812011226)] Started in 22s:227ms

Chapter 8. Test your Installation

30

Now open http://localhost:8080 in your web browser. (Make sure you dont have anything

else already on your machine using that port).1 The contents of your page should look similar to

the following: Figure 8.1, “Test your Installation”.

Figure 8.1. Test your Installation

You are now ready to use the JBoss Application Server.

1 Note that on some machines, the name localhost may not resolve properly and you may need to use the local loopback

address 127.0.0.1 instead.

Chapter 9.

31

The JBoss Server - A Quick Tour

9.1. Server Structure

Now that you’ve downloaded JBoss and have run the server for the first time, the next thing you

will want to know is how the installation is laid out and what goes where. At first glance there seems

to be a lot of stuff in there, and it’s not obvious what you need to look at and what you can safely

ignore for the time being. To remedy that, we’ll explore the server directory structure, locations

of the key configuration files, log files, deployment and so on. It’s worth familiarizing yourself with

the layout at this stage as it will help you understand the JBoss service architecture so that you’ll

be able to find your way around when it comes to deploying your own applications.

9.2. Server Configurations

Fundamentally, the JBoss architecture consists of the microcontainer, bootstrap beans loaded

into the micrcontainer, a collection of deployers for loading various deployment types, and various

mcbean(-jboss-beans.xml) and legacy mbean(jboss-service.xml) deployments. This makes it

easy to assemble different configurations and gives you the flexibility to tailor them to meet your

requirements.

You don’t have to run a large, monolithic server all the time; you can remove the components

you don’t need (which can also reduce the server startup time considerably) and you can also

integrate additional services into JBoss by writing your own MBeans. You certainly do not need

to do this to be able to run standard Java EE 5 applications though.

You don’t need a detailed understanding of the microcontainer to use JBoss, but it’s worth keeping

a picture of this basic architecture in mind as it is central to the way JBoss works.

The JBoss Application Server ships with three different server configurations. Within the

<JBoss_Home>/server directory, you will find five subdirectories: minimal, default, standard,

all and web - one for each server configuration. Each of these configurations provide a different

set of services. The default configuration is the one used if you don’t specify another one when

starting up the server.

minimal

has a minimal configuration—the bare minimum services required to start JBoss. It starts the

logging service, a JNDI server and a URL deployment scanner to find new deployments. This

is what you would use if you want to use JMX/JBoss to start your own services without any

other Java EE 5 technologies. This is just the bare server. There is no web container, no EJB

or JMS support.

default

is a base Java EE 5 server profile containing a default set of services. It has the most frequently

used services required to deploy a Java EE application. It does not include the JAXR service,

the IIOP service, or any of the clustering services.

Chapter 9. The JBoss Server -...

32

all

The all configuration starts all the available services. This includes the RMI/IIOP and clustering

services, which are not loaded in the default configuration.

standard

is the JavaEE 5 certified configuration of services.

web

is a lightweight web container oriented profile that previews the JavaEE 6 web profile.

If you want to know which services are configured in each of these instances, the primary

differences will be in the <JBoss_Home>/server/<instance-name>/deployers/ directory

and also the services deployments in the <JBoss_Home>/server/<instance-name>/deploy

directory. For example, the default profile deployers and deploy directory contents are:

[usr@localhost <JBoss_Home>]$ls server/default/deployers

alias-deployers-jboss-beans.xml jboss-aop-jboss5.deployer

bsh.deployer jboss-jca.deployer

clustering-deployer-jboss-beans.xml jbossweb.deployer

dependency-deployers-jboss-beans.xml jbossws.deployer

directory-deployer-jboss-beans.xml j sr77-deployers-jboss-beans.xml

ear-deployer-jboss-beans.xml metadata-deployer-jboss-beans.xml

ejb-deployer-jboss-beans.xml seam.deployer

ejb3.deployer security-deployer-jboss-beans.xml

hibernate-deployer-jboss-beans.xml

[usr@localhost <JBoss_Home>]$ls server/default/deploy

ROOT.war jsr88-service.xml

cache-invalidation-service.xml legacy-invokers-service.xml

ejb2-container-jboss-beans.xml mail-ra.rar

ejb2-timer-service.xml mail-service.xml

ejb3-connectors-jboss-beans.xml management

ejb3-container-jboss-beans.xml messaging

ejb3-interceptors-aop.xml monitoring-service.xml

ejb3-timer-service.xml profileservice-jboss-beans.xml

hdscanner-jboss-beans.xml properties-service.xml

hsqldb-ds.xml quartz-ra.rar

http-invoker.sar remoting-jboss-beans.xml

jboss-local-jdbc.rar schedule-manager-service.xml

jboss-xa-jdbc.rar scheduler-service.xml

jbossweb.sar security

jbossws.sar sqlexception-service.xml

jca-jboss-beans.xml transaction-jboss-beans.xml

jms-ra.rar transaction-service.xml

jmx-console.war uuid-key-generator.sar

Server Configuration Directory Structure

33

jmx-invoker-service.xml vfs-jboss-beans.xml

jmx-remoting.sar

while the web profile deployers and deploy directory contents are:

[usr@localhost <JBoss_Home>]$ls server/web/deployers

alias-deployers-jboss-beans.xml jbossweb.deployer

ejb3.deployer metadata-deployer-jboss-beans.xml

jboss-aop-jboss5.deployer security-deployer-jboss-beans.xml

jboss-jca.deployer

[usr@localhost <JBoss_Home>]$ls server/web/deployers

ROOT.war jbossweb.sar

ejb3-container-jboss-beans.xml jca-jboss-beans.xml

hdscanner-jboss-beans.xml jmx-console.war

hsqldb-ds.xml jmx-invoker-service.xml

http-invoker.sar security

jboss-local-jdbc.rar transaction-jboss-beans.xml

jboss-xa-jdbc.rar

Note

The default configuration is the one used if you don’t specify another one when

starting up the server.

To start the server using an alternate configuration refer to Section 9.3.2, “Start the

Server With Alternate Configuration”.

9.2.1. Server Configuration Directory Structure

The directory server configuration you’re using, is effectively the server root while JBoss is running.

It contains all the code and configuration information for the services provided by the particular

server configuration. It’s where the log output goes, and it’s where you deploy your applications.

Table 9.1, “Server Configuration Directory Structure” shows the directories inside the server

configuration directory (<JBoss_Home>/server/<instance-name>) and their functions.

Table 9.1. Server Configuration Directory Structure

Directory Description

conf The conf directory contains the bootstrap.xml bootstrap descriptor file for

a given server configuration. This defines the core microcontainer beans that

are fixed for the lifetime of the server.

Chapter 9. The JBoss Server -...

34

Directory Description

data The data directory is available for use by services that want to store content

in the file system. It holds persistent data for services intended to survive a

server restart. Serveral JBoss services, such as the embedded Hypersonic

database instance, store data here.

deploy The deploy directory contains the hot-deployable services (those which

can be added to or removed from the running server). It also contains

applications for the current server configuration. You deploy your application

code by placing application packages (JAR, WAR and EAR files) in the

deploy directory. The directory is constantly scanned for updates, and any

modified components will be re-deployed automatically.

lib This directory contains JAR files (Java libraries that should not be hot

deployed) needed by this server configuration. You can add required library

files here for JDBC drivers etc. All JARs in this directory are loaded into

the shared classpath at startup. Note that this directory only contains those

jars unique to the server configuration. Jars common across the server

configurations are now located in <JBoss_Home>/common/lib.

log This is where the log files are written. JBoss uses the Jakarta log4j

package for logging and you can also use it directly in your own applications

from within the server. This may be overridden through the conf/jboss-

log4j.xml configuration file.

tmp The tmp directory is used for temporary storage by JBoss services. The

deployer, for example, expands application archives in this directory.

work This directory is used by Tomcat for compilation of JSPs.

9.2.2. The "default" Server Configuration File Set

The "default" server configuration file set is located in the <JBoss_Home>/server/default

directory. The following example illustrates a truncated directory structure of the jboss-as-

<release> server configuration files:

[user@localhost <JBoss_Home>]$ tree

|-- bin

|-- client

|-- common

| |-- lib

| | |-- antlr.jar

| | |-- ... many more jars

|-- docs

| |-- dtd

| |-- examples

| | |-- binding-manager

| | | `-- sample-bindings.xml

| | |-- jca

The "default" Server Configuration File Set

35

| | |-- jms

| | |-- jmx

| | |-- netboot

| | | `-- netboot.war

| | `-- varia

| | |-- deployment-service

| | |-- derby-plugin.jar

| | |-- entity-resolver-manager

| | | `-- xmlresolver-service.xml

| | `-- jboss-bindings.xml

| `-- schema

|-- lib

| |-- commons-codec.jar

| |-- commons-httpclient.jar

| |-- commons-logging.jar

| |-- concurrent.jar

| |-- endorsed

| | |-- serializer.jar

| | |-- xalan.jar

| | `-- xercesImpl.jar

| |-- getopt.jar

| |-- jboss-common.jar

| |-- jboss-jmx.jar

| |-- jboss-system.jar

| |-- jboss-xml-binding.jar

| `-- log4j-boot.jar

`-- server

|-- all

| |-- conf

| | |-- bootstrap/

| | | |-- aop.xml

| | | |-- bindings.xml

| | | |-- aop.xml

| | | |-- classloader.xml

| | | |-- deployers.xml

| | | |-- jmx.xml

| | | |-- profile-repository.xml

| | | |-- profile.xml

| | | |-- vfs.xml

| | |-- bootstrap.xml

| | |-- bootstrap-norepo.xml

| | |-- jacorb.properties

| | |-- java.policy

| | |-- jax-ws-catalog.xml

| | |-- jboss-log4j.xml

| | |-- jboss-service.xml

| | |-- jbossjta-properties.xml

| | |-- jndi.properties

| | |-- login-config.xml

Chapter 9. The JBoss Server -...

36

| | |-- props

| | | |-- jbossws-roles.properties

| | | |-- jbossws-users.properties

| | | |-- jmx-console-roles.properties

| | | `-- jmx-console-users.properties

| | |-- standardjboss.xml

| | |-- standardjbosscmp-jdbc.xml

| | `-- xmdesc

| |-- deploy

| |-- deploy-hasingleton

| | `-- jms

| |-- deployers

| `-- lib

|-- default

| |-- conf

| | |-- bootstrap/

| | | |-- aop.xml

| | | |-- bindings.xml

| | | |-- aop.xml

| | | |-- classloader.xml

| | | |-- deployers.xml

| | | |-- jmx.xml

| | | |-- profile-repository.xml

| | | |-- profile.xml

| | | |-- vfs.xml

| | |-- bootstrap.xml

| | |-- bootstrap-norepo.xml

| | |-- jacorb.properties

| | |-- java.policy

| | |-- jax-ws-catalog.xml

| | |-- jboss-log4j.xml

| | |-- jboss-service.xml

| | |-- jbossjta-properties.xml

| | |-- jndi.properties

| | |-- login-config.xml

| | |-- props

| | | |-- jbossws-roles.properties

| | | |-- jbossws-users.properties

| | | |-- jmx-console-roles.properties

| | | `-- jmx-console-users.properties

| | |-- standardjboss.xml

| | |-- standardjbosscmp-jdbc.xml

| | `-- xmdesc

| | |-- AttributePersistenceService-xmbean.xml

| | |-- ClientUserTransaction-xmbean.xml

| | |-- JNDIView-xmbean.xml

| | |-- Log4jService-xmbean.xml

| | |-- NamingBean-xmbean.xml

| | |-- NamingService-xmbean.xml

The "default" Server Configuration File Set

37

| | |-- TransactionManagerService-xmbean.xml

| | |-- org.jboss.deployment.JARDeployer-xmbean.xml

| | |-- org.jboss.deployment.MainDeployer-xmbean.xml

| | `-- org.jboss.deployment.SARDeployer-xmbean.xml

| |-- data

| | |-- hypersonic

| | |-- jboss.identity

| | |-- tx-object-store

| | `-- xmbean-attrs

| |-- deploy

| |-- lib

| |-- log

| | |-- boot.log

| | |-- server.log

| | `-- server.log.2008-08-09

| |-- tmp

| `-- work

| `-- jboss.web

| `-- localhost

`-- minimal

|-- conf

| |-- bootstrap/

| |-- bootstrap/aop.xml

| |-- bootstrap/classloader.xml

| |-- bootstrap/deployers.xml

| |-- bootstrap/jmx.xml

| |-- bootstrap/profile.xml

| |-- bootstrap.xml

| |-- jboss-log4j.xml

| |-- jboss-service.xml

| |-- jndi.properties

| `-- xmdesc

| |-- NamingBean-xmbean.xml

| `-- NamingService-xmbean.xml

|-- deploy/

|-- deploy/hdscanner-jboss-beans.xml

|-- deployers/

`-- lib

|-- jboss-minimal.jar

|-- jnpserver.jar

`-- log4j.jar

9.2.2.1. Contents of "conf" directory

The files in the conf directory are explained in the following table.

Chapter 9. The JBoss Server -...

38

Table 9.2. Contents of "conf" directory

File Description

bootstrap.xml This is the bootstrap.xml file that defines

which additional microcontainer deployments

will be loaded as part of the bootstrap phase.

bootstrap/* This directory contains the microcontainer

bootstrap descriptors that are referenced from

the bootstrap.xml file.

jboss-service.xml jboss-service.xml legacy core mbeans that

have yet to be ported to either bootstrap

deployments, or deploy services. This file will

go away in the near future.

jbossjta-properties.xml jbossjta-properties.xml specifies the

JBossTS transaction manager default

properties.

jndi.properties The jndi.properties file specifies the

JNDI InitialContext properties that are

used within the JBoss server when an

InitialContext is created using the no-arg

constructor.

java.policy A placeholder java security policy file that

simply grants all permissions.

jboss-log4j.xml This file configures the Apache log4j framework

category priorities and appenders used by the

JBoss server code.

login-config.xml This file contains sample server side

authentication configurations that are

applicable when using JAAS based security.

props/* The props directory contains the users and

roles property files for the jmx-console.

standardjboss.xml This file provides the default container

configurations.

standardjbosscmp-jdbc.xml This file provides a default configuration file for

the JBoss CMP engine.

xmdesc/*-mbean.xml The xmdesc directory contains XMBean

descriptors for several services configured in

the jboss-service.xml file.

9.2.2.2. Contents of "deployers" directory

The files in the deployers directory are explained in the following table.

The "default" Server Configuration File Set

39

Table 9.3. Contents of "deployers" directory

File Description

alias-deployers-jboss-beans.xml Deployers that know how to handle The know

how to handle <alias> in <deployment> as true

controller context. Meaning they will only get

active/installed when their original is installed.

bsh.deployer This file configures the bean shell deployer,

which deploys bean shell scripts as JBoss

mbean services.

clustering-deployer-jboss-beans.xml Clustering-related deployers which add

dependencies on needed clustering services

to clustered EJB3, EJB2 beans and to

distributable web applications.

dependency-deployers-jboss-beans.xml Deployers for aliases.txt, jboss-

dependency.xml jboss-depedency.xml adds

generic dependency on whatever. aliases.txt

adds human-readable name for deployments,

e.g. vfszip://home/blah/.../jboss-5.0.0.GA/

server/default/deploy/some-long-name.ear

aliased to ales-app.ear.

directory-deployer-jboss-beans.xml Adds legacy behavior for directories, handling

its children as possible deployments. e.g. .sar's

lib directory to treat its .jar files as deployments

ear-deployer-jboss-beans.xml JavaEE 5 enterprise application related

deployers

ejb-deployer-jboss-beans.xml Legacy JavaEE 1.4 ejb jar related deployers

ejb3.deployer This is a deployer that supports JavaEE 5 ejb3,

JPA, and application client deployments, .

hibernate-deployer-jboss-beans.xml Deployers for Hibernate -hibernate.xml

descriptors, which are similar to Hibernate's

.cfg.xml files.

jboss-aop-jboss5.deployer JBossAspectLibrary and base aspects. Why is

this in deployers, dependencies?

jboss-jca.deployer jboss-jca.deployer description

jbossweb.deployer The JavaEE 5 servlet, JSF, JSP deployers.

jbossws.deployer The JavaEE 5 webservices endpoint

deployers.

jsr77-deployers-jboss-beans.xml Deployers for creating the JSR77 MBeans from

the JavaEE components.

Chapter 9. The JBoss Server -...

40

File Description

metadata-deployer-jboss-beans.xml Deployers for processing the JavaEE metadata

from xml, annotations.

seam.deployer Deployer providing integration support for

JBoss Seam applications.

security-deployer-jboss-beans.xml Deployers for configuration the security layers

of the JavaEE components.

9.2.2.3. Contents of "deploy" directory

The files in the deploy directory are explained in the following table.

Table 9.4. Contents of "deploy" directory

File Description

ROOT.war ROOT.war establishes the '/' root web

application.

cache-invalidation-service.xml This is a service that allows for custom

invalidation of the EJB caches via JMS

notifications. It is disabled by default.

ejb2-container-jboss-beans.xml ejb2-container-jboss-beans.xml

UserTransaction integration bean for the EJB2

containers.

ejb2-timer-service.xml ejb2-timer-service.xml contains the ejb

timer service beans.

ejb3-connectors-jboss-beans.xml ejb3-connectors-jboss-beans.xml EJB3

remoting transport beans.

ejb3-container-jboss-beans.xml ejb3-container-jboss-beans.xml

UserTransaction integration bean for the EJB3

containers.

ejb3-interceptors-aop.xml ejb3-interceptors-aop.xml defines the

EJB3 container aspects.

ejb3-timer-service.xml ejb3-timer-service.xml an alternate quartz

based timer service

hdscanner-jboss-beans.xml hdscanner-jboss-beans.xml the deploy

directory hot deployment scanning bean

hsqldb-ds.xml configures the Hypersonic embedded

database service configuration file. It sets

up the embedded database and related

connection factories.

http-invoker.sar

The "default" Server Configuration File Set

41

File Description

contains the detached invoker that supports

RMI over HTTP. It also contains the proxy

bindings for accessing JNDI over HTTP.

jboss-local-jdbc.rar is a JCA resource adaptor that implements the

JCA ManagedConnectionFactory interface for

JDBC drivers that support the DataSource

interface but not JCA.

jboss-xa-jdbc.rar JCA resource adaptors for XA DataSources

jbossweb.sar an mbean service supporting TomcatDeployer

with web application deployment service

management.

jbossws.sar provides JEE web services support.

jca-jboss-beans.xml jca-jboss-beans.xml is the application

server implementation of the JCA specification.

It provides the connection management

facilities for integrating resource adaptors into

the JBoss server.

jms-ra.rar jms-ra.rar JBoss JMS Resource Adapter

messaging/connection-factories-

service.xml

configures the DLQ, ExpiryQueue JMS

connection factory

messaging/destinations-service.xml The message persistence store service

messaging/destinations-service.xml configures the DLQ, ExpiryQueue JMS

destinations.

messaging/jms-ds.xml jms-ds.xml configures the

JMSProviderLoader and JmsXA inflow

resource adaptor connection factory binding.

messaging/legacy-service.xml legacy-service.xml configures the

JMSProviderLoader and JmsXA inflow

resource adaptor connection factory binding.

messaging/messaging-jboss-beans.xml The messaging-jboss-beans.xml file

configures JMS security and management

beans.

messaging/messaging-service.xml The messaging-service.xml file configures

the core JBoss Messaging service.

messaging/remoting-bisocket-

service.xml

The remoting-bisocket-service.xml

configures the JMS remoting service layer.

jmx-console.war The jmx-console.war directory provides the

JMX Console. The JMX Console provides a

Chapter 9. The JBoss Server -...

42

File Description

simple web interface for managing the MBean

server.

jmx-invoker-service.xml jmx-invoker-service.xml is an MBean

service archive that exposes a subset of the

JMX MBeanServer interface methods as an

RMI interface to enable remote access to the

JMX core functionality.

jmx-remoting.sar jmx-remoting.sar is a

javax.management.remote implementation

providing access to the JMX server.

legacy-invokers-service.xml legacy-invokers-service.xml the legacy

detached jmx invoker remoting services.

jsr-88-service.xml jsr-88-service.xml provides the JSR 88

remote deployment service.

mail-ra.rar mail-ra.rar is a resource adaptor that

provides a JavaMail connector.

mail-service.xml The mail-service.xml file is an MBean

service descriptor that provides JavaMail

sessions for use inside the JBoss server.

monitoring-service.xml The monitoring-service.xml file configures

alert monitors like the console listener and

email listener used by JMX notifications.

profileservice-jboss-beans.xml profileservice-jboss-beans.xml

description

properties-service.xml The properties-service.xml file is an

MBean service descriptor that allows

for customization of the JavaBeans

PropertyEditors as well as the definition of

system properties.

quartz-ra.rar quartz-ra.rar is a resource adaptor for inflow

of Quartz events

remoting-jboss-beans.xml remoting-jboss-beans.xml contains the

unified invokers based on JBoss Remoting.

scheduler-service.xml The scheduler-service.xml and schedule-

manager-service.xml files are MBean

service descriptors that provide a scheduling

type of service.

security/security-jboss-beans.xml security-jboss-beans.xml security domain

related beans.

The "all" Server Configuration File Set

43

File Description

security/security-policies-jboss-

beans.xml

security-policies-jboss-beans.xml

security authorization related beans for ejb and

web authorization.

sqlexception-service.xml The sqlexception-service.xml file is an

MBean service descriptor for the handling of

vendor specific SQLExceptions.

transaction-jboss-beans.xml transaction-jboss-beans.xml JTA

transaction manager related beans.

transaction-service.xml transaction-service.xml

ClientUserTransaction proxy service

configuration.

uuid-key-generator.sar The uuid-key-generator.sar service

provides a UUID-based key generation facility.

9.2.3. The "all" Server Configuration File Set

The "all" server configuration file set is located in the <JBoss_Home>/server/all directory. In

addition to the services in the "default" set, the all configuration contains several other services

in the conf/ directory as shown below.

Table 9.5. Additional Services in "conf" directory for "all" configuration

File Description

cluster-service.xml This service configures clustering

communication for most clustered services in

JBoss.

deploy-hasingleton-service.xml This provides the HA singleton service,

allowing JBoss to manage services that must

be active on only one node of a cluster.

httpha-invoker.sar This service provides HTTP tunneling support

for clustered environments.

iiop-service.xml This provides IIOP invocation support.

juddi-service.sar This service provides UDDI lookup services.

snmp-adaptor.sar This is a JMX to SNMP adaptor. It allows for

the mapping of JMX notifications onto SNMP

traps.

9.2.4. EJB3 Services

The following table explains the files providing ejb3 services.

Chapter 9. The JBoss Server -...

44

Table 9.6. EJB3 Services

File Description

ejb3-interceptors-aop.xml This service provides the AOP interceptor

stack configurations for EJB3 bean types.

ejb3.deployer This service deploys EJB3 applications into

JBoss.

jboss-aop-jdk50.deployer This is a Java 5 version of the AOP

deployer. The AOP deployer configures the

AspectManagerService and deploys JBoss

AOP applications.

jbossws.sar This provides Java EE 5 web services support.

Finally, in the EJB3 "all" configuration there are two additional services.

Table 9.7. Additional Services in EJB3 "all" Configuration

File Description

ejb3-clustered-sfsbcache-service.xml This provides replication and failover for EJB3

stateful session beans.

ejb3-entity-cache-service.xml This provides a clustered cache for EJB3 entity

beans.

9.2.5.

9.3. Starting and Stopping the Server

9.3.1. Start the Server

Move to JBOSS_DIST/jboss-as/bin directory and execute the run.bat (for Windows) or run.sh

(for Linux) script, as appropriate for your operating system.

Remote connection to the JBoss AS server

JBoss AS now binds its services to localhost (127.0.0.1) by default, instead of

binding to all available interfaces (0.0.0.0). This was primarily done for security

reasons because of concerns of users going to production without having secured

their servers properly. To enable remote access by binding JBoss services to a

particular interface, simply run jboss with the -b option. To bind to all available

interfaces and re-enable the legacy behaviour use -b 0.0.0.0. In any case, be

aware you still need to secure your server properly.

For more information including setting up multiple JBoss server instances on one

machine and hosting multiple domains with JBoss, please refer to the Administration and

http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta500/html-single/index.html

Start the Server With Alternate Configuration

45

Configuration Guide [http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/

Server_Configuration_Guide/beta500/html-single/index.html]. Some examples on binding are

shipped in <JBOSS_HOME>/docs/examples/binding-manager/sample-bindings.xml.

On starting your server, your screen output should look like the following (accounting for

installation directory differences) and contain no error or exception messages:

[user@mypc bin]$./run.sh

===

 JBoss Bootstrap Environment

 JBOSS_HOME: /home/user/jboss-as-version/jboss-as

 JAVA: java

 JAVA_OPTS: -Dprogram.name=run.sh -server -Xms1503m -Xmx1503m -Dsun.rmi.dgc.client.

gcInterval=3600000 -Dsun.rmi.dgc.server.gcInterval=3600000 -Djava.net.preferIPv4Stack=true

 CLASSPATH: /home/user/jboss-as-version/jboss-as/bin/run.jar

===

More options for the JBoss AS run script are discussed in Section 9.3.2, “Start the Server With

Alternate Configuration” below.

Note

Note that there is no "Server Started" message shown at the console when the

server is started using the production profile, which is the default profile used

when no other is specified. This message may be observed in the server.log file

located in the server/production/log subdirectory.

9.3.2. Start the Server With Alternate Configuration

Using run.sh without any arguments starts the server using the default server configuration file

set. To start with an alternate configuration file set, pass the name of the server configuration file

set [same as the name of the server configuration directory under JBOSS_DIST/jboss-as/server]

that you want to use, as the value to the -c command line option. For example, to start with the

minimal configuration file set you should specify:

http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta500/html-single/index.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta500/html-single/index.html
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta500/html-single/index.html

Chapter 9. The JBoss Server -...

46

[bin]$./run.sh -c minimal

...

...

...

15:05:40,301 INFO [Server] JBoss (MX MicroKernel) [5.0.0 (build: SVNTag=JBoss_5_0_0

 date=200801092200)] Started in 5s:75ms

9.3.3. Using run.sh

The run script supports the following options:

usage: run.sh [options]

-h, --help Show help message

-V, --version Show version information

-- Stop processing options

-D<name>[=<value>] Set a system property

-d, --bootdir=<dir> Set the boot patch directory; Must be absolute or url

-p, --patchdir=<dir> Set the patch directory; Must be absolute or url

-n, --netboot=<url> Boot from net with the given url as base

-c, --configuration=<name> Set the server configuration name

-B, --bootlib=<filename> Add an extra library to the front bootclasspath

-L, --library=<filename> Add an extra library to the loaders classpath

-C, --classpath=<url> Add an extra url to the loaders classpath

-P, --properties=<url> Load system properties from the given url

-b, --host=<host or ip> Bind address for all JBoss services.

-g, --partition=<name> HA Partition name (default=DefaultDomain)

-u, --udp=<ip> UDP multicast address

-l, --log=<log4j|jdk> Specify the logger plugin type

9.3.4. Stopping the Server

To shutdown the server, you simply issue a Ctrl-C sequence in the console in which JBoss was

started. Alternatively, you can use the shutdown.sh command.

[bin]$./shutdown.sh -S

The shutdown script supports the following options:

A JMX client to shutdown (exit or halt) a remote JBoss server.

Running as a Service under Microsoft

Windows

47

usage: shutdown [options] <operation>

options:

-h, --help Show this help message (default)

-D<name>[=<value>] Set a system property

-- Stop processing options

-s, --server=<url> Specify the JNDI URL of the remote server

-n, --serverName=<url> Specify the JMX name of the ServerImpl

-a, --adapter=<name> Specify JNDI name of the MBeanServerConnection to use

-u, --user=<name> Specify the username for authentication

-p, --password=<name> Specify the password for authentication

operations:

-S, --shutdown Shutdown the server

-e, --exit=<code> Force the VM to exit with a status code

-H, --halt=<code> Force the VM to halt with a status code

Using the shutdown command requires a server configuration that contains the jmx-invoker-

service.xml service. Hence you cannot use the shutdown command with the minimal

configuration.

9.3.5. Running as a Service under Microsoft Windows

You can configure the server to run as a service under Microsoft Windows, and configure it to

start automatically if desired.

Download the JavaService package from http://forge.objectweb.org/projects/javaservice/.

Unzip the package and use the JBossInstall.bat file to install the JBoss service. You must

set the JAVA_HOME and JBOSS_HOME environment variables to point to the jdk and jboss-as

directories before running JBossInstall.bat. Run JBossInstall.bat with the following syntax:

JBossInstall.bat <depends> [-auto | -manual]

Where <depends> is the name of any service that the JBoss AS server depends on, such as the

mysql database service.

Once the service is installed the server can be started by using the command net start JBoss,

and stopped with the command net stop JBoss.

Please refer to the documentation included in the JavaService package for further information.

http://forge.objectweb.org/projects/javaservice/

Chapter 9. The JBoss Server -...

48

9.4. The JMX Console

When the JBoss Server is running, you can get a live view of the server by going to the JMX

console application at http://localhost:8080/jmx-console. You should see something similar to

Figure 9.1, “View of the JMX Management Console Web Application”.

The JMX Console is the JBoss Management Console which provides a raw view of the JMX

MBeans which make up the server. They can provide a lot of information about the running server

and allow you to modify its configuration, start and stop components and so on.

For example, find the service=JNDIView link and click on it. This particular MBean provides a

service to allow you to view the structure of the JNDI namespaces within the server. Now find the

operation called list near the bottom of the MBean view page and click the invoke button. The

operation returns a view of the current names bound into the JNDI tree, which is very useful when

you start deploying your own applications and want to know why you can’t resolve a particular

EJB name.

Figure 9.1. View of the JMX Management Console Web Application

Look at some of the other MBeans and their listed operations; try changing some of the

configuration attributes and see what happens. With a very few exceptions, none of the changes

made through the console are persistent. The original configuration will be reloaded when you

restart JBoss, so you can experiment freely without doing any permanent damage.

Note

If you installed JBoss using the graphical installer, the JMX Console will prompt

you for a username and password before you can access it. If you installed using

other modes, you can still configure JMX Security manually. We will show you how

to secure your console in Section 9.6.4, “Security Service”.

9.5. Hot-deployment of services in JBoss

Hot-deployable services are those which can be added to or removed from the running server.

These are placed in the JBOSS_DIST/jboss-as/server/<instance-name>/deploy directory.

Let’s have a look at a practical example of hot-deployment of services in JBoss before we go on

to look at server configuration issues in more detail.

Start JBoss if it isn’t already running and take a look at the server/production/deploy directory.

Remove the mail-service.xml file and watch the output from the server:

13:10:05,235 INFO [MailService] Mail service 'java:/Mail' removed from JNDI

http://localhost:8080/jmx-console

Basic Configuration Issues

49

Then replace the file and watch JBoss re-install the service:

13:58:54,331 INFO [MailService] Mail Service bound to java:/Mail

This is hot-deployment in action.

9.6. Basic Configuration Issues

Now that we have examined the JBoss server, we will take a look at some of the main configuration

files and what they are used for. All paths are relative to the server configuration directory (server/

default, for example).

9.6.1. Bootstrap Configuration

The microcontainer bootstrap configuration is described by the conf/bootstrap.xml and the

conf/bootstrap/*.xml it references. Its expected that the number of bootstrap beans will be

reduced in the future. Its not expected that you would need to edit the bootstrap configuration files

for a typical installation.

9.6.2. Legacy Core Services

The legacy core services specified in the conf/jboss-service.xml file are started just after

server starts up the microcontainer. If you have a look at this file in an editor you will see MBeans

for various services including logging, security, JNDI, JNDIView etc. Try commenting out the entry

for the JNDIView service.

Note

Eventually this file will be dropped as the services are converted to microcontainer

beans or mbeans that are deployed as deploy directory services.

Note that because the mbeans definition had nested comments, we had to comment out the

mbean in two sections, leaving the original comment as it was.

<!-- Section 1 commented out

<mbean code="org.jboss.naming.JNDIView"

 name="jboss:service=JNDIView"

 xmbean-dd="resource:xmdesc/JNDIView-xmbean.xml">

-->

 <!-- The HANamingService service name -->

<!-- Section two commented out

 <attribute name="HANamingService">jboss:service=HAJNDI</attribute></mbean>

Chapter 9. The JBoss Server -...

50

-->

If you then restart JBoss, you will see that the JNDIView service no longer appears in the JMX

Management Console (JMX Console) listing. In practice, you should rarely, if ever, need to modify

this file, though there is nothing to stop you adding extra MBean entries in here if you want to.

The alternative is to use a separate file in the deploy directory, which allows your service to be

hot deployable.

9.6.3. Logging Service

In JBoss log4j is used for logging. If you are not familiar with the log4j package and would

like to use it in your applications, you can read more about it at the Jakarta web site (http://

jakarta.apache.org/log4j/).

Logging is controlled from a central conf/jboss-log4j.xml file. This file defines a set of

appenders specifying the log files, what categories of messages should go there, the message

format and the level of filtering. By default, JBoss produces output to both the console and a log

file (log/server.log).

There are 6 basic log levels used: TRACE, DEBUG, INFO, WARN, ERROR and FATAL. The logging

threshold on the console is INFO, which means that you will see informational messages, warning

messages and error messages on the console but not general debug messages. In contrast, there

is no threshold set for the server.log file, so all generated logging messages will be logged there.

If things are going wrong and there doesn’t seem to be any useful information in the console,

always check the server.log file to see if there are any debug messages which might help you

to track down the problem. However, be aware that just because the logging threshold allows

debug messages to be displayed, that doesn't mean that all of JBoss will produce detailed debug

information for the log file. You will also have to boost the logging limits set for individual categories.

Take the following category for example.

<!-- Limit JBoss categories to INFO -->

<category name="org.jboss">

 <priority value="INFO"/>

</category>

This limits the level of logging to INFO for all JBoss classes, apart from those which have more

specific overrides provided. If you were to change this to DEBUG, it would produce much more

detailed logging output.

As another example, let’s say you wanted to set the output from the container-managed

persistence engine to DEBUG level and to redirect it to a separate file, cmp.log, in order to analyze

the generated SQL commands. You would add the following code to the conf/jboss-log4j.xml

file:

http://jakarta.apache.org/log4j/
http://jakarta.apache.org/log4j/

Security Service

51

<appender name="CMP" class="org.jboss.logging.appender.RollingFileAppender">

 <errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>

 <param name="File" value="${jboss.server.home.dir}/log/cmp.log"/>

 <param name="Append" value="false"/>

 <param name="MaxFileSize" value="500KB"/>

 <param name="MaxBackupIndex" value="1"/>

 <layout class="org.apache.log4j.PatternLayout">

 <param name="ConversionPattern" value="%d %-5p [%c] %m%n"/>

 </layout>

</appender>

<category name="org.jboss.ejb.plugins.cmp">

 <priority value="DEBUG" />

 <appender-ref ref="CMP"/>

</category>

This creates a new file appender and specifies that it should be used by the logger (or category)

for the package org.jboss.ejb.plugins.cmp.

The file appender is set up to produce a new log file every day rather than producing a new

one every time you restart the server or writing to a single file indefinitely. The current log file is

cmp.log. Older files have the date they were written added to their filenames. Please note that

the log directory also contains HTTP request logs which are produced by the web container.

9.6.4. Security Service

The security domain information is stored in the file conf/login-config.xml as a list of named

security domains, each of which specifies a number of JAAS 1 login modules which are used for

authentication purposes in that domain. When you want to use security in an application, you

specify the name of the domain you want to use in the application’s JBoss-specific deployment

descriptors, jboss.xml (used in defining jboss specific configurations for an application) and/or

jboss-web.xml (used in defining jboss for a Web application. We'll quickly look at how to do this

to secure the JMX Console application which ships with JBoss.

Almost every aspect of the JBoss server can be controlled through the JMX Console, so it is

important to make sure that, at the very least, the application is password protected. Otherwise,

any remote user could completely control your server. To protect it, we will add a security domain to

cover the application. This can be done in the jboss-web.xml file for the JMX Console, which can

be found in deploy/jmx-console.war/WEB-INF/ directory. Uncomment the security-domain

in that file, as shown below.

1 The Java Authentication and Authorization Service. JBoss uses JAAS to provide pluggable authentication modules. You

can use the ones that are provided or write your own if you have more specific requirements.

Chapter 9. The JBoss Server -...

52

<jboss-web>

 <security-domain>java:/jaas/jmx-console</security-domain>

</jboss-web>

This links the security domain to the web application, but it doesn't tell the web application what

security policy to enforce, what URLs are we trying to protect, and who is allowed to access them.

To configure this, go to the web.xml file in the same directory and uncomment the security-

constraint that is already there. This security constraint will require a valid user name and

password for a user in the JBossAdmin group.

<!--

 A security constraint that restricts access to the HTML JMX console

 to users with the role JBossAdmin. Edit the roles to what you want and

 uncomment the WEB-INF/jboss-web.xml/security-domain element to enable

 secured access to the HTML JMX console.

-->

<security-constraint>

 <web-resource-collection>

 <web-resource-name>HtmlAdaptor</web-resource-name>

 <description>

 An example security config that only allows users with the

 role JBossAdmin to access the HTML JMX console web application

 </description>

 <url-pattern>/*</url-pattern>

 <http-method>GET</http-method>

 <http-method>POST</http-method>

 </web-resource-collection>

 <auth-constraint>

 <role-name>JBossAdmin</role-name>

 </auth-constraint>

</security-constraint>

That's great, but where do the user names and passwords come from? They come from the

jmx-console security domain we linked the application to. We have provided the configuration

for this in the conf/login-config.xml.

<application-policy name="jmx-console">

 <authentication>

 <login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule"

 flag="required">

 <module-option name="usersProperties">

Additional Services

53

 props/jmx-console-users.properties

 </module-option>

 <module-option name="rolesProperties">

 props/jmx-console-roles.properties

 </module-option>

 </login-module>

 </authentication>

</application-policy>

This configuration uses a simple file based security policy. The configuration files are found in the

conf/props directory of your server configuration. The usernames and passwords are stored in

the conf/props/jmx-console-users.properties file and take the form "username=password".

To assign a user to the JBossAdmin group add "username=JBossAdmin" to the jmx-console-

roles.properties file (additional roles on that username can be added comma separated). The

existing file creates an admin user with the password admin. For security, please either remove

the user or change the password to a stronger one.

JBoss will re-deploy the JMX Console whenever you update its web.xml. You can check the server

console to verify that JBoss has seen your changes. If you have configured everything correctly

and re-deployed the application, the next time you try to access the JMX Console, it will ask you

for a name and password. 2

The JMX Console isn't the only web based management interface to JBoss. There is also the Web

Console. Although it's a Java applet, the corresponding web application can be secured in the

same way as the JMX Console. The Web Console is in the file deploy/management/console-

mgr.sar/web-console.war.. The only difference is that the Web Console is provided as a simple

WAR file instead of using the exploded directory structure that the JMX Console did. The only real

difference between the two is that editing the files inside the WAR file is a bit more cumbersome.

9.6.5. Additional Services

The non-core, hot-deployable services are added to the deploy directory. They can be either XML

descriptor files, *-service.xml, *-jboss-beans.xml, MC .beans archive, or JBoss Service

Archive (SAR) files. SARs contains an META-INF/jboss-service.xml descriptor and additional

resources the service requires (e.g. classes, library JAR files or other archives), all packaged

up into a single archive. Similarly, a .beans archive contains a META-INF/jboss-beans.xml and

additional resources.

Detailed information on all these services can be found in the JBoss Application Server:

Configuration Guide, which also provides comprehensive information on server internals and the

implementation of services such as JTA and the J2EE Connector Architecture (JCA).

2 Since the username and password are session variables in the web browser you may need to restart your browser to

use the login dialog window.

54

Chapter 10.

55

EJB3 Caveats in JBoss Application

Server 5.0.0
There are a number of implementation features that you should be aware of when developing

applications for JBoss Application Server 5.0.0.

10.1. Unimplemented features

The Release Notes for JBoss Application Server contain information on EJB3 features that are

not yet implemented, or partially implemented. The Release Notes include links to issues in JIRA

for information on workarounds and further details.

10.2. Referencing EJB3 Session Beans from non-EJB3

Beans

JBoss Application Server 5 fully supports the entire Java 5 Enterprise Edition specification. JBoss

Application Server 4.2.2 implemented EJB3 functionality by way of an EJB MBean container

running as a plugin in the JBoss Application Server. This had certain implications for application

development.

The EJB3 plugin injects references to an EntityManager and @EJB references from one EJB

object to another. However this support is limited to the EJB3 MBean and the JAR files it manages.

Any JAR files which are loaded from a WAR (such as Servlets, JSF backing beans, and so forth)

do not undergo this processing. The Java 5 Enterprise Edition standard specifies that a Servlet

can reference a Session Bean through an @EJB annotated reference, this was not implemented

in JBoss Application Server 4.2.2.

56

Chapter 11.

57

Sample Applications
The JBoss Application Server, ships with various sample applications under JBOSS_HOME/docs/

examples.

For further details, please refer to the accompanying readme.txt for the respective sample

applications under the above directory.

58

Chapter 12.

59

Sample JSF-EJB3 Application
We use a simple "TODO" application to show how JSF and EJB3 work together in a web

application. The "TODO" application works like this: You can create a new 'todo' task item using

the "Create" web form. Each 'todo' item has a 'title' and a 'description'. When you submit the form,

the application saves your task to a relational database. Using the application, you can view all

'todo' items, edit/delete an existing 'todo' item and update the task in the database.

The sample application comprises the following components:

• Entity objects - These objects represent the data model; the properties in the object are mapped

to column values in relational database tables.

• JSF web pages - The web interface used to capture input data and display result data. The data

fields on these web pages are mapped to the data model via the JSF Expression Language (EL).

• EJB3 Session Bean - This is where the functionality is implemented. We make use of a Stateless

Session Bean.

12.1. Data Model

Let's take a look at the contents of the Data Model represented by the Todo class in the Todo.java

file. Each instance of the Todo class corresponds to a row in the relational database table. The

'Todo' class has three properties: id, title and description. Each of these correspond to a column

in the database table.

The 'Entity class' to 'Database Table' mapping information is specified using EJB3 Annotations in

the 'Todo' class. This eliminates the need for XML configuration and makes it a lot clearer. The

@Entity annotation defines the Todo class as an Entity Bean. The @Id and @GeneratedValue

annotations on the id property indicate that the id column is the primary key and that the server

automatically generates its value for each Todo object saved into the database.

@Entity

public class Todo implements Serializable {

 private long id;

 private String title;

 private String description;

 public Todo () {

 title ="";

 description ="";

 }

Chapter 12. Sample JSF-EJB3 A...

60

 @Id @GeneratedValue

 public long getId() { return id;}

 public void setId(long id) { this.id = id; }

 public String getTitle() { return title; }

 public void setTitle(String title) {this.title = title;}

 public String getDescription() { return description; }

 public void setDescription(String description) {

 this.description = description;

 }

}

12.2. JSF Web Pages

In this section we will show you how the web interface is defined using JSF pages. We will also

see how the data model is mapped to the web form using JSF EL. Using the #{...} notation to

reference Java objects is called JSF EL (JSF Expression Language). Lets take a look at the pages

used in our application:

• index.xhtml: This page displays two options: 1. Create New Todo 2. Show all Todos. When

you click on the Submit button the corresponding action is invoked.

<h:form>

 <h:commandLink type="submit" value="Create New Todo" action="create"/>

 <h:commandLink type="submit" value="Show All Todos" action="todos"/>

</h:form>

• create.xhtml: When you try to create a new task, this JSF page captures the input data. We use

the todoBean to back the form input text fields. The #{todoBean.todo.title} symbol refers to the

"title" property of the "todo" object in the "TodoBean" class. The #{todoBean.todo.description}

symbol refers to the "description" property of the "todo" object in the "TodoBean" class. The

#{todoBean.persist} symbol refers to the "persist" method in the "TodoBean" class. This method

creates the "Todo" instance with the input data (title and description) and persists the data.

<h:form id="create">

JSF Web Pages

61

<table>

 <tr>

 <td>Title:</td>

 <td>

 <h:inputText id="title" value="#{todoBean.todo.title}" size="15">

 <f:validateLength minimum="2"/>

 </h:inputText>

 </td>

 </tr>

 <tr>

 <td>Description:</td>

 <td>

 <h:inputTextarea id="description" value="#{todoBean.todo.description}">

 <f:validateLength minimum="2" maximum="250"/>

 </h:inputTextarea>

 </td>

 </tr>

</table>

<h:commandButton type="submit" id="create" value="Create"

 action="#{todoBean.persist}"/>

</h:form>

Figure 12.1, “The "Create Todo" web page ” shows the "Create Todo" web page with the input

fields mapped to the data model.

Figure 12.1. The "Create Todo" web page

• todos.xhtml: This page displays the list of all "todos" created. There is also an option to choose

a "todo" item for 'edit' or 'delete'.

The list of all 'todos' is fetched by #{todoBean.todos} symbol referring to the 'getTodos()' property

in the 'TodoBean' class. The JSF dataTable iterates through the list and displays each Todo

object in a row. The 'Edit' option is available across each row. The #{todo.id} symbol represents

the "id" property of the "todo" object.

<h:form>

<h:dataTable value="#{todoBean.todos}" var="todo">

 <h:column>

 <f:facet name="header">Title</f:facet>

 #{todo.title}

 </h:column>

Chapter 12. Sample JSF-EJB3 A...

62

 <h:column>

 <f:facet name="header">Description</f:facet>

 #{todo.description}

 </h:column>

 <h:column>

 Edit

 </h:column>

</h:dataTable>

<center>

 <h:commandButton action="create"

 value="Create New Todo" type="submit"/>

</center>

</h:form>

Figure 12.2, “The "Show All Todos" web page ” shows the "Show All Todos" web page with the

data fields mapped to the data model.

Figure 12.2. The "Show All Todos" web page

• edit.xhtml: This page allows you to edit the "todo" item's 'title' and 'description' properties.

The #{todoBean.update} and #{todoBean.delete} symbols represent the "update" and "delete"

methods in the "TodoBean" class.

<h2>Edit #{todoBean.todo.title}</h2>

<h:form id="edit">

<input type="hidden" name="tid" value="#{todoBean.todo.id}"/>

<table>

 <tr>

 <td>Title:</td>

 <td>

 <h:inputText id="title" value="#{todoBean.todo.title}" size="15">

 <f:validateLength minimum="2"/>

 </h:inputText>

 </td>

 </tr>

 <tr>

 <td>Description:</td>

 <td>

 <h:inputTextarea id="description" value="#{todoBean.todo.description}">

 <f:validateLength minimum="2" maximum="250"/>

 </h:inputTextarea>

EJB3 Session Beans

63

 </td>

 </tr>

</table>

<h:commandButton type="submit" id="update" value="Update"

 action="#{todoBean.update}"/>

<h:commandButton type="submit" id="delete" value="Delete"

 action="#{todoBean.delete}"/>

</h:form>

Figure 12.3, “The "Edit Todo" web page ” shows the "Edit Todo" web page with the mapping

to the data model.

Figure 12.3. The "Edit Todo" web page

Note

We have used XHTML pages in the sample applications because we recommend

using Facelets instead of JSP to render JSF view pages.

12.3. EJB3 Session Beans

EJB 3.0 is one of the major improvements introduced with Java EE 5.0. It aims at reducing the

complexity of older versions of EJB and simplifies Enterprise Java development and deployment.

You will notice that to declare a class as a 'Session Bean' you simply have to annotate it. Using

annotations eliminates the complexity involved with too many deployment descriptors. Also the

only interface an EJB3 Session Bean requires is a business interface that declares all the business

methods that must be implemented by the bean.

We will explore the two important source files associated with the Bean implementation in our

application: TodoDaoInt.java and TodoDao.java.

• Business interface: TodoDaoInt.java

We define here the methods that need to be implemented by the bean implementation class.

Basically, the business methods that will be used in our application are defined here.

public interface TodoDaoInt {

 public void persist (Todo todo);

 public void delete (Todo todo);

Chapter 12. Sample JSF-EJB3 A...

64

 public void update (Todo todo);

 public List <Todo> findTodos ();

 public Todo findTodo (String id);

}

• Stateless Session Bean: TodoDao.java

The @Stateless annotation marks the bean as a stateless session bean. In this class, we

need to access the Entity bean Todo defined earlier. For this we need an EntityManager. The

@PersistenceContext annotation tells the JBoss Server to inject an entity manager during

deployment.

@Stateless

public class TodoDao implements TodoDaoInt {

 @PersistenceContext

 private EntityManager em;

 public void persist (Todo todo) {

 em.persist (todo);

 }

 public void delete (Todo todo) {

 Todo t = em.merge (todo);

 em.remove(t);

 }

 public void update (Todo todo) {

 em.merge (todo);

 }

 public List <Todo> findTodos () {

 return (List <Todo>) em.createQuery("select t from Todo t")

 .getResultList();

 }

 public Todo findTodo (String id) {

 return (Todo) em.find(Todo.class, Long.parseLong(id));

 }

}

Configuration and Packaging

65

12.4. Configuration and Packaging

We will build the sample application using Ant and explore the configuration and packaging details.

Please install Ant if currently not installed on your computer.

12.4.1. Building The Application

Let's look at building the example application and then explore the configuration files in detail.

In Chapter 11, Sample Applications, we looked at the directory structure of the jsfejb3 sample

application. At the command line, go to the jsfejb3 directory. There you will see a build.xml file.

This is our Ant build script for compiling and packaging the archives. To build the application, you

need to first of all edit the build.xml file and edit the value of jboss-dist to reflect the location

where the JBoss Application Server is installed. Once you have done this, just type the command

ant and your output should look like this:

[user@localhost jsfejb3]$ ant

Buildfile: build.xml

compile:

 [mkdir] Created dir: /jboss/gettingstarted/jsfejb3/build/classes

 [javac] Compiling 4 source files to

 /home/user/Desktop/gettingstarted/jsfejb3/build/classes

 [javac] Note: /jboss/gettingstarted/jsfejb3/src/TodoDao.java uses

 unchecked or unsafe operations.

 [javac] Note: Recompile with -Xlint:unchecked for details.

war:

 [mkdir] Created dir: /jboss/gettingstarted/jsfejb3/build/jars

 [war] Building war: /jboss/gettingstarted/jsfejb3/build/jars/app.war

ejb3jar:

 [jar] Building jar: /jboss/gettingstarted/jsfejb3/build/jars/app.jar

ear:

 [ear] Building ear:

 /jboss/gettingstarted/jsfejb3/build/jars/jsfejb3.ear

main:

BUILD SUCCESSFUL

Total time: 3 seconds

If you get the BUILD SUCCESSFUL message, you will find a newly created build directory with

2 sub-directories in it:

• classes: containing the compiled class files.

Chapter 12. Sample JSF-EJB3 A...

66

• jars: containing three archives - app.jar, app.war and jsfejb3.ear.

• app.jar : EJB code and descriptors.

• app.war : web application which provides the front end to allow users to interact with the

business components (the EJBs). The web source (HTML, images etc.) contained in the

jsfejb3/view directory is added unmodified to this archive. The Ant task also adds the WEB-

INF directory that contains the files which aren’t meant to be directly accessed by a web

browser but are still part of the web application. These include the deployment descriptors

(web.xml) and extra jars required by the web application.

• jsfejb3.ear : The EAR file is the complete application, containing the EJB modules and the

web module. It also contains an additional descriptor, application.xml. It is also possible

to deploy EJBs and web application modules individually but the EAR provides a convenient

single unit.

12.4.2. Configuration Files

Now that we have built the application, lets take a closer look at some of the important

Configuration files. We have built the final archive ready for deployment - jsfejb3.ear. The

contents of your EAR file should look like this:

jsfejb3.ear

|+ app.jar // contains the EJB code

 |+ import.sql

 |+ Todo.class

 |+ TodoDao.class

 |+ TodoDaoInt.class

 |+ META-INF

 |+ persistence.xml

|+ app.war // contains web UI

 |+ index.html

 |+ index.xhtml

 |+ create.xhtml

 |+ edit.xhtml

 |+ todos.xhtml

 |+ TodoBean.class

 |+ style.css

 |+ META-INF

 |+ WEB-INF

 |+ faces-config.xml

 |+ navigation.xml

 |+ web.xml

|+ META-INF // contains the descriptors

Configuration Files

67

 |+ application.xml

 |+ jboss-app.xml

• application.xml: This file lists the JAR files in the EAR (in our case app.jar) and tells the

JBoss server what files to look for and where. The root URL for the application is also specified

in this file as 'context-root'.

<application>

 <display-name>Sample Todo</display-name>

 <module>

 <web>

 <web-uri>app.war</web-uri>

 <context-root>/jsfejb3</context-root>

 </web>

 </module>

 <module>

 <ejb>app.jar</ejb>

 </module>

</application>

• jboss-app.xml: Every EAR application should specify a unique string name for the class

loader. In our case, we use the application name 'jsfejb3' as the class loader name.

<jboss-app>

 <loader-repository>

 jsfejb3:archive=jsfejb3.ear

 </loader-repository>

</jboss-app>

• app.jar: This contains EJB3 Session Bean and Entity Bean classes and the related

configuration files. In addition, the persistence.xml file configures the back-end data source

(in our case the default HSQL database) for the EntityManager.

<persistence>

 <persistence-unit name="helloworld">

 <provider>org.hibernate.ejb.HibernatePersistence</provider>

 <jta-data-source>java:/DefaultDS</jta-data-source>

Chapter 12. Sample JSF-EJB3 A...

68

 <properties>

 <property name="hibernate.dialect" value="org.hibernate.dialect.HSQLDialect"/>

 <property name="hibernate.hbm2ddl.auto" value="create-drop"/>

 </properties>

 </persistence-unit>

</persistence>

• app.war: This contains the Web UI files packaged according to the Web Application aRchive

(WAR) specification. It contains all the web pages and the required configuration files. The

web.xml file is an important file for all JAVA EE web applications. It is the web deployment

descriptor file. The faces-config.xml file is the configuration file for JSF. The navigation.xml

file contains the rules for JSF page navigation.

//faces-config.xml

<faces-config>

 <application>

 <view-handler>

 com.sun.facelets.FaceletViewHandler

 </view-handler>

 </application>

 <managed-bean>

 <description>Dao</description>

 <managed-bean-name>todoBean</managed-bean-name>

 <managed-bean-class>TodoBean</managed-bean-class>

 <managed-bean-scope>request</managed-bean-scope>

 </managed-bean>

</faces-config>

12.5. The Database

12.5.1. Creating the Database Schema

To pre-populate the database, we have supplied SQL Code (import.sql) to run with HSQL in

the examples/jsfejb3/resources directory. When you build the application using Ant, this is

packaged in the app.jar file within the jsfejb3.ear file. When the application is deployed, you should

be able to view the pre-populated data.

12.5.2. The HSQL Database Manager Tool

Just as a quick aside at this point, start up the JMX console application and click on the

service=Hypersonic link which you’ll find under the section jboss. If you can’t find this, make

sure the Hypersonic service is enabled in the hsqldb-ds.xml file.

Deploying the Application

69

This will take you to the information for the Hypersonic service MBean. Scroll down to the bottom

of the page and click the invoke button for the startDatabaseManager() operation. This starts

up the HSQL Manager, a Java GUI application which you can use to manipulate the database

directly.

Figure 12.4. The HSQL Database Manger

12.6. Deploying the Application

Deploying an application in JBoss is simple and easy. You just have to copy the EAR file to the

deploy directory in the 'server configuration' directory of your choice. Here, we will deploy it to the

'default' configuration, so we copy the EAR file to the JBOSS_DIST/jboss-as/server/default/

deploy directory.

You should see something close to the following output from the server:

15:32:23,997 INFO [EARDeployer] Init J2EE application:

 file:/jboss/jboss-as-5.0.0<release>/server/default/deploy/jsfejb3.ear

15:32:24,212 INFO [JmxKernelAbstraction] creating wrapper delegate for:

 org.jboss.ejb3.

entity.PersistenceUnitDeployment

15:32:24,213 INFO [JmxKernelAbstraction] installing MBean:

 persistence.units:ear=

jsfejb3.ear,jar=app.jar,unitName=helloworld with dependencies:

15:32:24,213 INFO [JmxKernelAbstraction]

 jboss.jca:name=DefaultDS,service=

DataSourceBinding

15:32:24,275 INFO [PersistenceUnitDeployment] Starting persistence unit

 persistence.

units:ear=jsfejb3.ear,jar=app.jar,unitName=helloworld

15:32:24,392 INFO [Ejb3Configuration] found EJB3 Entity bean: Todo

15:32:24,450 WARN [Ejb3Configuration] Persistence provider caller does not

 implements

the EJB3 spec correctly. PersistenceUnitInfo.getNewTempClassLoader() is

 null.

15:32:24,512 INFO [Configuration] Reading mappings from resource :

 META-INF/orm.xml

15:32:24,512 INFO [Ejb3Configuration] [PersistenceUnit: helloworld] no

 META-INF/orm.xml

found

15:32:24,585 INFO [AnnotationBinder] Binding entity from annotated class:

 Todo

15:32:24,586 INFO [EntityBinder] Bind entity Todo on table Todo

.

.

.

Chapter 12. Sample JSF-EJB3 A...

70

.

15:32:26,311 INFO [SchemaExport] Running hbm2ddl schema export

15:32:26,312 INFO [SchemaExport] exporting generated schema to database

15:32:26,314 INFO [SchemaExport] Executing import script: /import.sql

15:32:26,418 INFO [SchemaExport] schema export complete

15:32:26,454 INFO [NamingHelper] JNDI InitialContext

 properties:{java.naming.factory.

initial=org.jnp.interfaces.NamingContextFactory,

 java.naming.factory.url.pkgs=org.jboss.

naming:org.jnp.interfaces}

15:32:26,484 INFO [JmxKernelAbstraction] creating wrapper delegate for:

 org.jboss.ejb3.

stateless.StatelessContainer

15:32:26,485 INFO [JmxKernelAbstraction] installing MBean:

 jboss.j2ee:ear=jsfejb3.ear,

jar=app.jar,name=TodoDao,service=EJB3 with dependencies:

15:32:26,513 INFO [JmxKernelAbstraction]

 persistence.units:ear=jsfejb3.ear,

jar=app.jar,unitName=helloworld

15:32:26,557 INFO [EJBContainer] STARTED EJB: TodoDao ejbName: TodoDao

15:32:26,596 INFO [EJB3Deployer] Deployed:

 file:/jboss/jboss-as-5.0.0<release>

server/default/tmp/deploy/

tmp33761jsfejb3.ear-contents/app.jar

15:32:26,625 INFO [TomcatDeployer] deploy, ctxPath=/jsfejb3,

 warUrl=.../tmp/deploy/

tmp33761jsfejb3.ear-contents/app-exp.war/

15:32:26,914 INFO [EARDeployer] Started J2EE application:

 file:/jboss/jboss-as-5.0.0<release>/server/default/deploy/jsfejb3.ear

If there are any errors or exceptions, make a note of the error message. Check that the EAR is

complete and inspect the WAR file and the EJB jar files to make sure they contain all the necessary

components (classes, descriptors etc.).

You can safely redeploy the application if it is already deployed. To undeploy it you just have to

remove the archive from the deploy directory. There’s no need to restart the server in either case.

If everything seems to have gone OK, then point your browser at the application URL.

http://localhost:8080/jsfejb3

You will be forwarded to the application main page. Figure 12.5, “Sample TODO” shows the

sample application in action.

Figure 12.5. Sample TODO

http://localhost:8080/jsfejb3

Chapter 13.

71

Using Seam
JBoss Seam is a framework that provides the glue between the new EJB3 and JSF frameworks

that are part of the Java EE 5.0 standard. In fact, the name Seam refers to the seamless manner

in which it enables developers to use these two frameworks in an integrated manner. Seam

automates many of the common tasks, and makes extensive use of annotations to reduce the

amount of xml code that needs to be written. The overall effect is to significantly reduce the total

amount of coding that needs to be done.

If you are new to Seam, you can find more introductory information from the following url and book:

• The Seam Reference Guide [http://docs.jboss.com/seam/2.0.0.GA/reference/en/html_single/].

• Beginning JBoss Seam by Joseph Faisal Nusairat, Apress 2007.

We have included two versions of the example application, one coded using EJB3 / JSF

without using Seam, and one using Seam, to demonstrate clearly the difference in application

development using the Seam framework.

13.1. Data Model

Let's start off our examination of the Seam implementation in the same way, by examining how

the Data Model is implemented. This is done in the Todo.java file.

@Entity

@Name("todo")

public class Todo implements Serializable {

 private long id;

 private String title;

 private String description;

 public Todo () {

 title ="";

 description ="";

 }

 @Id @GeneratedValue

 public long getId() { return id;}

 public void setId(long id) { this.id = id; }

 @NotNull

 public String getTitle() { return title; }

http://docs.jboss.com/seam/2.0.0.GA/reference/en/html_single/
http://docs.jboss.com/seam/2.0.0.GA/reference/en/html_single/

Chapter 13. Using Seam

72

 public void setTitle(String title) {this.title = title;}

 @NotNull

 @Length(max=250)

 public String getDescription() { return description; }

 public void setDescription(String description) {

 this.description = description;

 }

}

The @Entity annotation defines the class as an EJB3 entity bean, and tells the container to map

the Todo class to a relational database table. Each property of the class will become a column in

the table. Each instance of the class will become a row in this table. Since we have not used the

@Table annotation, Seam's "configuration by exception" default will name the table after the class.

@Entity and @Table are both EJB3 annotations, and are not specific to Seam. It is possible

to use Seam completely with POJOs (Plain Old Java Objects) without any EJB3-specific

annotations. However, EJB3 brings a lot of advantages to the table, including container managed

security, message-driven components, transaction and component level persistence context, and

@PersistenceContext injection, which we will encounter a little further on.

The @Name annotation is specific to Seam, and defines the string name for Seam to use to register

the Entity Bean. This will be the default name for the relational database table. Each component in

a Seam application must have a unique name. In the other components in the Seam framework,

such as JSF web pages and session beans, you can reference the managed Todo bean using

this name. If no instance of this class exists when it is referenced from another component, then

Seam will instantiate one.

The @Id annotation defines a primary key id field for the component. @GeneratedValue specifies

that the server will automatically generate this value for the component when it is saved to the

database.

Seam provides support for model-based constraints defined using Hibernate Validator, although

Hibernate does not have to be the object persister used. The @NotNull annotation is a validation

constraint that requires this property to have a value before the component can be persisted into

the database. Using this annotation allows the validation to be enforced by the JSF code at the

view level, without having to specify the exact validation constraint in the JSF code.

At this point the only apparent difference between the Seam version and the EJB3/JSF version of

the app is the inclusion of the validator annotation @NotNull, and the @Name annotation. However,

while the EJB3/JSF version of this application requires a further TodoBean class to be manually

coded and managed in order to handle the interaction between the Todo class and the web

interface, when using Seam the Seam framework takes care of this work for us. We'll see how

this is done in practice as we examine the implementation of the user interface.

JSF Web Pages - index.xhtml and

create.xhtml

73

13.2. JSF Web Pages - index.xhtml and create.xhtml

The index.xhtml file used is the same as in the EJB3/JSF example.

create.xhtml begins to reveal the difference that coding using the Seam framework makes.

<h:form id="create">

<f:facet name="beforeInvalidField">

 <h:graphicImage styleClass="errorImg" value="error.png"/>

</f:facet>

<f:facet name="afterInvalidField">

 <s:message styleClass="errorMsg" />

</f:facet>

<f:facet name="aroundInvalidField">

 <s:div styleClass="error"/>

</f:facet>

<s:validateAll>

<table>

 <tr>

 <td>Title:</td>

 <td>

 <s:decorate>

 <h:inputText id="title" value="#{todo.title}" size="15"/>

 </s:decorate>

 </td>

 </tr>

 <tr>

 <td>Description:</td>

 <td>

 <s:decorate>

 <h:inputTextarea id="description" value="#{todo.description}"/>

 </s:decorate>

 </td>

 </tr>

</table>

</s:validateAll>

Chapter 13. Using Seam

74

<h:commandButton type="submit" id="create" value="Create"

 action="#{todoDao.persist}"/>

</h:form>

The first thing that is different here is the Java Server Facelet code at the beginning, which works

with the @NotNull validation constraint of our todo class to enforce and indicate invalid input to

the user.

Also notice here that rather than requiring the use of a TodoBean class as we did in the EJB3/JSF

example we back the form directly with a Todo entity bean. When this page is called, JSF asks

Seam to resolve the variable todo due to JSF EL references such as #{todo.title}. Since there

is no value already bound to that variable name, Seam will instantiate an entity bean of the todo

class and return it to JSF, after storing it in the Seam context. The Seam context replaces the

need for an intermediary bean.

The form input values are validated against the Hibernate Validator constraints specified in the

todo class. JSF will redisplay the page if the constraints are violated, or it will bind the form input

values to the Todo entity bean.

Entity beans shouldn't do database access or transaction management, so we can't use the Todo

entity bean as a JSF action listener. Instead, creation of a new todo item in the database is

accomplished by calling the persist method of a TodoDao session bean. When JSF requests

Seam to resolve the variable todoDao through the JSF EL expression #{todoDao.persist},

Seam will either instantiate an object if one does not already exist, or else pass the existing stateful

todoDao object from the Seam context. Seam will intercept the persist method call and inject

the todo entity from the session context.

Let's have a look at the TodoDao class (defined in TodoDao.java) to see how this injection

capability is implemented.

13.3. Data Access using a Session Bean

Let's go through a listing of the code for the TodoDao class.

@Stateful

@Name("todoDao")

public class TodoDao implements TodoDaoInt {

 @In (required=false) @Out (required=false)

 private Todo todo;

 @PersistenceContext (type=EXTENDED)

 private EntityManager em;

Data Access using a Session Bean

75

 // Injected from pages.xml

 Long id;

 public String persist () {

 em.persist (todo);

 return "persisted";

 }

 @DataModel

 private List <Todo> todos;

 @Factory("todos")

 public void findTodos () {

 todos = em.createQuery("select t from Todo t")

 .getResultList();

 }

 public void setId (Long id) {

 this.id = id;

 if (id != null) {

 todo = (Todo) em.find(Todo.class, id);

 } else {

 todo = new Todo ();

 }

 }

 public Long getId () {

 return id;

 }

 public String delete () {

 em.remove(todo);

 return "removed";

 }

 public String update () {

 return "updated";

 }

 @Remove @Destroy

 public void destroy() {}

Chapter 13. Using Seam

76

}

First of all notice that this is a stateful session bean. Seam can use both stateful and stateless

session beans, the two most common types of EJB3 beans.

The @In and @Out annotations define an attribute that is injected by Seam. The attribute is injected

to this object or from this object to another via a Seam context variable named todo, a reference

to the Seam registered name of our Todo class defined in Todo.java.

The @PersistenceContext annotation injects the EJB3 Entity manager, allowing this object

to persist objects to the database. Because this is a stateful session bean and the

PersistenceContext type is set to EXTENDED, the same Entity Manager instance is used until the

Remove method of the session bean is called. The database to be used (a persistence-unit)

is defined in the file resources/META-INF/persistence.xml

Note that this session bean has simultaneous access to context associated with web request (the

form values of the todo object), and state held in transactional resources (the EntityManager).

This is a break from traditional J2EE architectures, but Seam does not force you to work this way.

You can use more traditional forms of application layering if you wish.

The @DataModel annotation initializes the todos property, which will be outjected or "exposed" to

the view. The @Factory annotated method performs the work of generating the todos list, and is

called by Seam if it attempts to access the exposed DataModel property and finds it to be null.

Notice the absence of property access methods for the todos property. Seam takes care of this

for you automatically.

Let's take a look at the JSF code that we use for displaying and editing the list of todos, to get an

idea of how to use these interfaces in practice.

13.4. JSF Web Pages - todos.xhtml and edit.xhtml

Using the DataModel exposed property of the Session Bean it becomes trivial to produce a list

of todos:

<h:form>

<h:dataTable value="#{todos}" var="todo">

 <h:column>

 <f:facet name="header">Title</f:facet>

 #{todo.title}

 </h:column>

 <h:column>

 <f:facet name="header">Description</f:facet>

 #{todo.description}

 </h:column>

JSF Web Pages - todos.xhtml and edit.xhtml

77

 <h:column>

 Edit

 </h:column>

</h:dataTable>

<center>

 <h:commandButton action="create"

 value="Create New Todo" type="submit"/>

</center>

</h:form>

When the JSF variable resolver encounters {#todos} and requests todos, Seam finds that there

is no "todos" component in the current scope, so it calls the @Factory("todos") method to make

one. The todos object is then outjected once the factory method is done since it is annotated with

the @DataModel annotation.

Constructing the view for the edit page is similarly straight forward:

<h:form id="edit">

<f:facet name="beforeInvalidField">

 <h:graphicImage styleClass="errorImg" value="error.png"/>

</f:facet>

<f:facet name="afterInvalidField">

 <s:message styleClass="errorMsg" />

</f:facet>

<f:facet name="aroundInvalidField">

 <s:div styleClass="error"/>

</f:facet>

<s:validateAll>

<table>

 <tr>

 <td>Title:</td>

 <td>

 <s:decorate>

 <h:inputText id="title" value="#{todo.title}" size="15"/>

 </s:decorate>

 </td>

 </tr>

Chapter 13. Using Seam

78

 <tr>

 <td>Description:</td>

 <td>

 <s:decorate>

 <h:inputTextarea id="description" value="#{todo.description}"/>

 </s:decorate>

 </td>

 </tr>

</table>

</s:validateAll>

<h:commandButton type="submit" id="update" value="Update"

 action="#{todoDao.update}"/>

<h:commandButton type="submit" id="delete" value="Delete"

 action="#{todoDao.delete}"/>

</h:form>

Here we see the same factors in play. JSF validation code taking advantage of the validation

constraints defined in our Entity Bean, and the use of the todoDao Session Bean's update and

delete methods to update the database.

The call from todos.xhtml: edit.seam?tid=#{todo.id} causes Seam to create a todoDao and

set it's id property to tid. Setting its id property causes the todoDao to retrieve the appropriate

record from the database.

The functionality that allows the edit page to be called with a parameter in this way is implemented

through pages.xml. Let's have a look at the pages.xml file and how it is used by Seam

applications.

13.5. Xml Files

Seam drastically reduces the amount of xml coding that needs to be done. One file that is of

interest is the pages.xml, packaged in the app.war file's WEB-INF directory. This file is available

in the resources/WEB-INF directory in the source code bundle. The pages.xml file is used to

define page descriptions including Seam page parameters (HTTP GET parameters), page actions,

page navigation rules, error pages etc. Among other things it can be used in a Seam application

to define exception handlers and redirections.

In the case of our sample application we are using it to define a Seam page parameter. The

pages.xml in this example contains the following code:

Further Information

79

<page view-id="/edit.xhtml">

 <param name="tid" value="#{todoDao.id}"

 converterId="javax.faces.Long"/>

</page>

This defines a parameter named tid for the edit.xhtml page. When the edit.xhtml page is

loaded, the HTTP GET request parameter tid is converted to a Long value and assigned to the

id property of the todoDao object. You can have as many page parameters as required to bind

HTTP GET request parameters to the back-end components in your application.

13.6. Further Information

This completes our walkthrough of the sample Seam application. For further, detailed information

on developing applications using the Seam framework, please refer to the The Seam Reference

Guide [http://docs.jboss.com/seam/2.0.0.GA/reference/en/html_single/].

http://docs.jboss.com/seam/2.0.0.GA/reference/en/html_single/
http://docs.jboss.com/seam/2.0.0.GA/reference/en/html_single/
http://docs.jboss.com/seam/2.0.0.GA/reference/en/html_single/

80

Chapter 14.

81

Using other Databases
In the previous chapters, we’ve been using the JBossAS default datasource in our applications.

This datasource is configured to use the embedded Hypersonic database instance shipped by

default with the distribution. This datasource is bound to the JNDI name java:/DefaultDS and

its descriptor is named hsqldb-ds.xml under the deploy directory

Having a database included with JBossAS is very convenient for running the server and examples

out-of-the-box. However, this database is not a production quality database and as such should

not be used with enterprise-class deployments. As a consequence of this JBoss Support does

not provide any official support for Hypersonic.

In this chapter we will explain in details how to configure and deploy a datasource to connect

JBossAS to the most popular database servers available on the market today.

14.1. DataSource Configuration Files

Datasource configuration file names end with the suffix -ds.xml so that they will be recognized

correctly by the JCA deployer. The docs/example/jca directory contains sample files for a wide

selection of databases and it is a good idea to use one of these as a starting point. For a full

description of the configuration format, the best place to look is the DTD file docs/dtd/jboss-

ds_1_5.dtd. Additional documentation on the files and the JBoss JCA implementation can also

be found in the JBoss Application Server Guide available at http://labs.jboss.com/projects/docs/.

Local transaction datasources are configured using the local-tx-datasource element and XA-

compliant ones using xa-tx-datasource. The example file generic-ds.xml shows how to use

both types and also some of the other elements that are available for things like connection pool

configuration. Examples of both local and XA configurations are available for Oracle, DB2 and

Informix.

If you look at the example files firebird-ds.xml, facets-ds.xml and sap3-ds.xml, you’ll

notice that they have a completely different format, with the root element being connection-

factories rather than datasources. These use an alternative, more generic JCA configuration

syntax used with a pre-packaged JCA resource adapter. The syntax is not specific to datasource

configuration and is used, for example, in the jms-ds.xml file to configure the JMS resource

adapter.

We would also highly recommend consulting the JCA wiki pages at http://wiki.jboss.org/wiki/

Wiki.jsp?page=JBossJCA

Next, we’ll work through some step-by-step examples to illustrate what’s involved setting up a

datasource for a specific database.

14.2. Using MySQL as the Default DataSource

The MySQL® database has become the world's most popular open source database thanks to

its consistent fast performance, high reliability and ease of use. This database server is used

http://labs.jboss.com/projects/docs/

Chapter 14. Using other Databases

82

in millions of installations ranging from large corporations to specialized embedded applications

across every continent of the world. . In this section, we'll be using the community version of

their database server (GA 5.0.45) and the latest JDBC driver (GA 5.1.5) both available at http://

www.mysql.com.

14.2.1. Installing the JDBC Driver and Deploying the datasource

To make the JDBC driver classes available to the JBoss Application Server, copy the archive

mysql-mysql-connector-java-5.1.5-bin.jar from the Connector/J distribution to the lib

directory in the default server configuration (assuming that is the server configuration you’re

running).

Then create a text file in the deploy directory called mysql-ds.xml with the following datasource

descriptor:

<?xml version="1.0" encoding="UTF-8"?>

<datasources>

 <local-tx-datasource>

 <jndi-name>DefaultDS</jndi-name>

 <connection-url>jdbc:mysql://localhost:3306/test</connection-url>

 <driver-class>com.mysql.jdbc.Driver</driver-class>

 <user-name>root</user-name>

 <password>jboss</password>

 <valid-connection-checker-class-

name>org.jboss.resource.adapter.jdbc.vendor.MySQLValidConnectionChecker</valid-

connection-checker-class-name>

 <metadata>

 <type-mapping>mySQL</type-mapping>

 </metadata>

 </local-tx-datasource>

</datasources>

The datasource is pointing at the database called test provided by default with MySQL 5.x.

Remember to update the connection url attributes as well as the combo username/password to

match your environment setup.

14.2.2. Testing the MySQL DataSource

Using the test client described in Section 14.6, “Creating a JDBC client”, you may now verify the

proper installation of your datasource.

http://www.mysql.com
http://www.mysql.com

Configuring a datasource for Oracle DB

83

14.3. Configuring a datasource for Oracle DB

Oracle is one of the main players in the commercial database field and most readers will probably

have come across it at some point. You can download it freely for non-commercial purposes from

http://www.oracle.com/technology/products/database/xe/index.html

In this section, we'll connect the server to Oracle Database 10g Express Edition using the latest

JDBC driver (11g) available at http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/

index.html

14.3.1. Installing the JDBC Driver and Deploying the

DataSource

To make the JDBC driver classes available to JBoss Application Server, copy the archive

ojdbc5.jar to the lib directory in the default server configuration (assuming that is the server

configuration you’re running).

Then create a text file in the deploy directory called oracle-ds.xml with the following datasource

descriptor :

<?xml version="1.0" encoding="UTF-8"?>

<datasources>

 <local-tx-datasource>

 <jndi-name>DefaultDS</jndi-name>

 <connection-url>jdbc:oracle:thin:@localhost:1521:xe</connection-url>

 <driver-class>oracle.jdbc.driver.OracleDriver</driver-class>

 <user-name>SYSTEM</user-name>

 <password>jboss</password>

 <valid-connection-checker-class-

name>org.jboss.resource.adapter.jdbc.vendor.OracleValidConnectionChecker</valid-

connection-checker-class-name>

 <metadata>

 <type-mapping>Oracle9i</type-mapping>

 </metadata>

 </local-tx-datasource>

</datasources>

The datasource is pointing at the database/SID called “xe” provided by default with Oracle XE.

Of course, you need to update the connection url attributes as well as the username/password

combination to match your environment setup.

http://www.oracle.com/technology/products/database/xe/index.html
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html

Chapter 14. Using other Databases

84

14.3.2. Testing the Oracle DataSource

Before you can verify the datasource configuration, Oracle XE should be reconfigured to avoid

port conflict with JBossAS as by default they both start a web server on port 8080.

Open up an Oracle SQLcommand line and execute the following commands:

SQL> connect;

Enter user-name: SYSTEM

Enter password:

Connected.

SQL> begin

2 dbms_xdb.sethttpport('8090');

3 end;

4 /

PL/SQL procedure successfully completed.

SQL> select dbms_xdb.gethttpport from dual;

GETHTTPPORT

8090

The web server started by Oracle XE to provide http-based administration tools is now running

on port 8090. Start the JBossAS server instance as you would normally do. You are now ready to

use the test client described in Chapter 6.5 to verify the proper installation of your datasource.

14.4. Configuring a datasource for Microsoft SQL

Server 200x

In this section, we'll connect the server to MS SQL Server 2000 using the latest JDBC driver (v1.2)

available at http://msdn2.microsoft.com/en-us/data/aa937724.aspx.

14.4.1. Installing the JDBC Driver and Deploying the

DataSource

To make the JDBC driver classes available to JBoss Application Server, copy the archive

sqljdbc.jar from the sqljdbc_1.2 distribution to the lib directory in the default server

configuration (assuming that is the server configuration you’re running).

Then create a text file in the deploy directory called mssql-ds.xml with the following datasource

descriptor :

<?xml version="1.0" encoding="UTF-8"?>

<datasources>

 <local-tx-datasource>

http://msdn2.microsoft.com/en-us/data/aa937724.aspx

Configuring JBoss Messaging Persistence

Manager

85

 <jndi-name>DefaultDS</jndi-name>

 <connection-url>jdbc:sqlserver://localhost:1433;DatabaseName=pubs</connection-url>

 <driver-class>com.microsoft.sqlserver.jdbc.SQLServerDriver</driver-class>

 <user-name>sa</user-name>

 <password>jboss</password>

 <check-valid-connection-sql>SELECT 1 FROM sysobjects</check-valid-connection-sql>

 <metadata>

 <type-mapping>MS SQLSERVER2000</type-mapping>

 </metadata>

 </local-tx-datasource>

</datasources>

The datasource is pointing at a database “pubs” provided by default with MS SQL Server 2000.

Remember to update the connection url attributes as well as the username/password combination

to match your environment setup.

14.4.1.1. Testing the datasource

Using the test client described in Section 14.6, “Creating a JDBC client”, you may now verify the

proper installation of your datasource.

14.5. Configuring JBoss Messaging Persistence

Manager

The persistence manager of JBoss Messaging uses the default datasource to create tables to

store messages, transaction data and other indexes. Configuration of "persistence" is grouped

in xxx-persistence-service.xml files. JBoss Application Server ships with a default hsqldb-

persistence-service.xml file, which configures the Messaging server to use the Hypersonic

database instance that ships by default with the JBoss Application Server.

You can view the hsqldb-persistence-service.xml file in configurations based on the all or

default configurations:

<JBoss_Home>/server/all/deploy/messaging/hsqldb-persistence-service.xml and

 <JBoss_Home>/server/default/deploy/messaging/hsqldb-persistence-service.xml

Warning

Please note that the Hypersonic database is not recommended for production

environments due to its limited support for transaction isolation and its low reliability

under high load

Chapter 14. Using other Databases

86

More information on configuring JBoss Messaging can be found in the JBoss AS

Configuration Guide [http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/

Server_Configuration_Guide/beta500/html-single/index.html#d0e3471].

14.6. Creating a JDBC client

When testing a newly configured datasource we suggest using some very basic JDBC client code

embedded in a JSP page. First of all, you should create an exploded WAR archive under the

deploy directory which is simply a folder named "jdbcclient.war". In this folder, create a text

document named client.jsp and paste the code below:

<%@page contentType="text/html"

 import="java.util.*,javax.naming.*,javax.sql.DataSource,java.sql.*"

 %>

 <%

 DataSource ds = null;

 Connection con = null;

 PreparedStatement pr = null;

 InitialContext ic;

 try {

 ic = new InitialContext();

 ds = (DataSource)ic.lookup("java:/DefaultDS");

 con = ds.getConnection();

 pr = con.prepareStatement("SELECT USERID, PASSWD FROM JMS_USERS");

 ResultSet rs = pr.executeQuery();

 while (rs.next()) {

 out.println("
 " +rs.getString("USERID") + " | " +rs.getString("PASSWD"));

 }

 rs.close();

 pr.close();

 }catch(Exception e){

 out.println("Exception thrown " +e);

 }finally{

 if(con != null){

 con.close();

 }

} %>

Open up a web browser and hit the url: http://localhost:8080/jdbcclient/client.jsp. A list of users

and password should show up as a result of the jdbc query:

http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta500/html-single/index.html#d0e3471
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta500/html-single/index.html#d0e3471
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta500/html-single/index.html#d0e3471
http://www.jboss.org/file-access/default/members/jbossas/freezone/docs/Server_Configuration_Guide/beta500/html-single/index.html#d0e3471
http://localhost:8080/jdbcclient/client.jsp

Creating a JDBC client

87

dynsub | dynsub

guest | guest

j2ee | j2ee

john | needle

nobody | nobody

88

89

Appendix A.

Revision History

Revision 5.0.0 Jan 08 2007 SKittoli

Updated Content

Revision 5.0.0 Apr 07 2007 SKittoli

Merge Content

Revision 5.0.0.GA Dec 08 2008 SStark

Complete the

90

91

Appendix B. Further Information

Sources
Developers wanting to get familiar with software development and implementation in JBoss

Application Server can read: JBoss: A Developer's Notebook. (O'Reilly, 2005. Norman Richards,

Sam Griffith).

For more comprehensive JBoss documentation covering advanced JBoss topics, refer to the

manuals available online at http://www.jboss.org/jbossas/docs.

For general EJB instruction, with thorough JBoss coverage, see Enterprise JavaBeans, 4th

Edition. (O'Reilly, 2004. Richard Monson-Haeful, Bill Burke, Sacha Labourey)

To learn more about Hibernate, see Java Persistence With Hibernate. (Manning, 2007. Christian

Bauer, Gavin King)

For complete coverage of the JBoss Seam framework, we recommend JBoss Seam: Simplicity

And Power Beyond Java EE. (Prentice Hall, 2007. Michael Yuan, Thomas Heute).

http://www.jboss.org/jbossas/docs

92

	JBoss Application Server
	Table of Contents
	Introduction
	1. Help Contribute

	Chapter 1. What's new In JBossAS 5
	1.1. Overview
	1.2. Component Highlights
	1.3. Major Component Upgrades
	1.4. Project Structure Changes
	1.4.1. SVN Information
	1.4.2. The Project Directories

	1.5. Configuration Notes
	1.5.1. JBoss VFS
	1.5.2. Hibernate Logging
	1.5.3. jbossall-client.jar
	1.5.4. EJB3
	1.5.5. Other JBossAS
	1.5.6. Clustering

	1.6. New Configurations

	Chapter 2. Getting Started
	2.1. Pre-Requisites
	2.1.1. Hardware and Operating System Requirements
	2.1.2. Configuring Your Java Environment

	Chapter 3. Installation Alternatives
	Chapter 4. Installation With Binary Download
	4.1. Download and Installation

	Chapter 5. Installation With Source Download
	5.1. Download and Installation
	5.2. Installing and configuring ANT
	5.3. Building with Apache ANT
	5.4. Java6 Notes

	Chapter 6. Setting the JBOSS_HOME variable
	6.1. Setting the JBOSS_HOME variable in Linux.
	6.2. Setting the JBOSS_HOME variable in Windows.

	Chapter 7. Uninstall JBoss
	Chapter 8. Test your Installation
	Chapter 9. The JBoss Server - A Quick Tour
	9.1. Server Structure
	9.2. Server Configurations
	9.2.1. Server Configuration Directory Structure
	9.2.2. The "default" Server Configuration File Set
	9.2.2.1. Contents of "conf" directory
	9.2.2.2. Contents of "deployers" directory
	9.2.2.3. Contents of "deploy" directory

	9.2.3. The "all" Server Configuration File Set
	9.2.4. EJB3 Services
	9.2.5.

	9.3. Starting and Stopping the Server
	9.3.1. Start the Server
	9.3.2. Start the Server With Alternate Configuration
	9.3.3. Using run.sh
	9.3.4. Stopping the Server
	9.3.5. Running as a Service under Microsoft Windows

	9.4. The JMX Console
	9.5. Hot-deployment of services in JBoss
	9.6. Basic Configuration Issues
	9.6.1. Bootstrap Configuration
	9.6.2. Legacy Core Services
	9.6.3. Logging Service
	9.6.4. Security Service
	9.6.5. Additional Services

	Chapter 10. EJB3 Caveats in JBoss Application Server 5.0.0
	10.1. Unimplemented features
	10.2. Referencing EJB3 Session Beans from non-EJB3 Beans

	Chapter 11. Sample Applications
	Chapter 12. Sample JSF-EJB3 Application
	12.1. Data Model
	12.2. JSF Web Pages
	12.3. EJB3 Session Beans
	12.4. Configuration and Packaging
	12.4.1. Building The Application
	12.4.2. Configuration Files

	12.5. The Database
	12.5.1. Creating the Database Schema
	12.5.2. The HSQL Database Manager Tool

	12.6. Deploying the Application

	Chapter 13. Using Seam
	13.1. Data Model
	13.2. JSF Web Pages - index.xhtml and create.xhtml
	13.3. Data Access using a Session Bean
	13.4. JSF Web Pages - todos.xhtml and edit.xhtml
	13.5. Xml Files
	13.6. Further Information

	Chapter 14. Using other Databases
	14.1. DataSource Configuration Files
	14.2. Using MySQL as the Default DataSource
	14.2.1. Installing the JDBC Driver and Deploying the datasource
	14.2.2. Testing the MySQL DataSource

	14.3. Configuring a datasource for Oracle DB
	14.3.1. Installing the JDBC Driver and Deploying the DataSource
	14.3.2. Testing the Oracle DataSource

	14.4. Configuring a datasource for Microsoft SQL Server 200x
	14.4.1. Installing the JDBC Driver and Deploying the DataSource
	14.4.1.1. Testing the datasource

	14.5. Configuring JBoss Messaging Persistence Manager
	14.6. Creating a JDBC client

	Appendix A.
	Appendix B. Further Information Sources

