
Getting Started with JBoss 4.0

Release 2

Copyright © 2004 JBoss, Inc.

Table of Contents
Foreword .. iv
Target Audience ... v
What this Book Covers .. vi
1. Getting Started .. 1

1.1. Downloading and Installing JBoss ... 1
1.2. Starting the Server .. 1
1.3. The JMX Console .. 1
1.4. Stopping the Server .. 3
1.5. Running as a Service .. 3

2. The JBoss Server - A Quick Tour ... 4
2.1. Server Structure ... 4

2.1.1. Main Directories ... 4
2.1.2. Server Configurations .. 5

2.2. Basic Configuration Issues .. 7
2.2.1. Core Services .. 7
2.2.2. Logging Service .. 7
2.2.3. Security Service .. 8
2.2.4. Additional Services ... 9

2.3. The Web Container - Tomcat .. 12
3. About the Example Applications .. 13

3.1. The J2EE Tutorial .. 13
3.2. What’s Different? ... 13

3.2.1. Container-Specific Deployment Descriptors .. 13
3.2.2. Database Changes ... 14
3.2.3. Security Configuration ... 14

3.3. J2EE in the Real World .. 14
4. The Duke’s Bank Application .. 15

4.1. Building the Application ... 15
4.1.1. Preparing the Files ... 15
4.1.2. Compiling the Java Source ... 15
4.1.3. Package the EJBs .. 16
4.1.4. Package the WAR File ... 16
4.1.5. Package the Java Client ... 16
4.1.6. Assembling the EAR ... 16
4.1.7. The Database .. 16

4.1.7.1. Enabling the HSQL MBean and TCP/IP Connections 17
4.1.7.2. Creating the Database Schema ... 17
4.1.7.3. The HSQL Database Manager Tool ... 18

4.1.8. Deploying the Application ... 18
4.2. JNDI and Java Clients .. 19

4.2.1. The jndi.properties File .. 19
4.2.2. Application JNDI Information in the JMX Console ... 20

4.3. Security ... 22
4.3.1. Configuring a Security Domain .. 22
4.3.2. UsersRolesLoginModule Files .. 23
4.3.3. The J2EE Security Model .. 23

4.3.3.1. Authentication .. 23
4.3.3.2. Access Control (Authorization) ... 24

ii

5. J2EE Web Services ... 25
5.1. Web services in JBoss .. 25
5.2. Duke’s Bank as a Web Service .. 25
5.3. Running the Web Service Client .. 27
5.4. Network Traffic Analysis ... 28

6. JMS and Message-Driven Beans .. 30
6.1. Building the Example ... 30

6.1.1. Compiling and Packaging the MDB and Client .. 30
6.1.1.1. Specifying the Source Queue for the MDB ... 30

6.2. Deploying and Running the Example ... 31
6.2.1. Running the Client ... 31

6.3. Managing JMS Destinations ... 31
6.3.1. The jbossmq-destinations-service.xml File .. 31
6.3.2. Using the DestinationManager from the JMX Console ... 32
6.3.3. Administering Destinations .. 32

7. Container-Managed Persistence ... 33
7.1. Building the Example ... 33
7.2. Deploying and Running the Application .. 34

7.2.1. Running the Client ... 34
7.3. CMP Customization ... 35

7.3.1. XDoclet .. 36
8. Using other Databases ... 37

8.1. DataSource Configuration ... 37
8.1.1. JDBC-Wrapper Resource Adapters ... 37
8.1.2. DataSource Configuration Files .. 37

8.2. Using MySQL as the Default DataSource .. 38
8.2.1. Creating a Database and User ... 38
8.2.2. Installing the JDBC Driver and Deploying the DataSource 38
8.2.3. Testing the MySQL DataSource ... 39

8.3. Setting up an XADataSource with Oracle 9i ... 39
8.3.1. Padding Xid Values for Oracle Compatibility .. 40
8.3.2. Installing the JDBC Driver and Deploying the DataSource 40
8.3.3. Testing the Oracle DataSource ... 41

9. Security Configuration .. 42
9.1. Security Using a Database .. 42
9.2. Using Password Hashing .. 43

10. Using Hibernate .. 44
10.1. Creating a Hibernate archive ... 44
10.2. Using the hibernate objects ... 45
10.3. Packaging the complete application ... 46
10.4. Deploying Running the application .. 46

A. The Web Console ... 47
B. Further Information Sources .. 49

Getting Started with JBoss 4.0

iii

Foreword
JBoss started out as an EJB container and has evolved over several years into a fully fledged application server.
While the architecture has grown to support many new software technologies and additional features, there has
always been an emphasis on the implementation of the J2EE standards, regardless of whether official certifica-
tion has been achieved or not.

For the foreseeable future, JBoss will continue to be, first and foremost, a J2EE application server.

iv

Target Audience
The goal of this book is to get you up and running J2EE 1.4 applications on JBoss 4.0 as quickly as possible. At
the time of writing, the latest release is version 4.0.0. You should use this version or later with the examples.
We will use Sun’s J2EE 1.4 tutorial examples (http://java.sun.com/j2ee/1.4/docs/tutorial/doc/) to illustrate the
deployment and configuration of J2EE applications in JBoss. While the book is not intended to teach you J2EE,
we will be covering the subject from quite a basic standpoint, so it will still be useful if you are new to J2EE. If
you would like to use JBoss to run the standard Sun J2EE tutorials then this is the book for you. It should
ideally be read in parallel with the tutorial texts.

v

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/

What this Book Covers
We will cover downloading and installation and see how to start JBoss. Then we’ll have a quick tour of the
server directory structure and layout, the key configuration files and services.

Moving on to the examples, we’ll look at how to deploy the Duke’s Bank application from the Sun J2EE Tu-
torial. This will let you see JBoss in action as quickly as possible and also gives you a chance to get some prac-
tical experience of simple configuration and deployment issues. Further chapters cover other J2EE topics which
aren’t used in Duke’s Bank: JMS Messaging (and Message-Driven Beans) and container-managed persistence
(CMP). These also make use of the J2EE tutorial examples.

Chapter 5 covers web services. We work through how to expose EJB methods from the Duke’s Bank applica-
tion through web services and then call them with a Java client.

Configuration of databases is an important issue and this is covered in Chapter 8. We also work through some
step-by-step examples.

In Chapter 9 we look at some more advanced security configuration options.

Suggestions for additional topics are always welcome.

vi

1 Note that on some machines, the name localhost won’t resolve properly and you should use the local loopback address 127.0.0.1 in-
stead.

1
Getting Started

1.1. Downloading and Installing JBoss

The JBoss application server is available as a free download from the JBoss website. (ht-
tp://www.jboss.org/downloads/index) We provide both a binary and source distribution, but if you are just get-
ting started with JBoss, stick to the binary distribution, which can be run straight out of the box.

The binary versions are available as either .zip, .tar.gz, .bz2 files. The contents are the same so grab
whichever flavor is most convenient for the platform you’re running on. Once it's downloaded, unpack the
archive to a suitable location on your machine. It should all unpack into a single directory named jboss-4.0.0.
Of course the version number suffix will be different if you are running a later release. Make sure you don't use
a directory which has any spaces in the path (such as the Program Files directory on Windows) as this may
cause problems.

The only additional requirement to run JBoss is to have an up-to-date version of Java on your machine. JBoss
4.0 requires at least a 1.4 JDK to run. Make sure to get the JDK and not the JRE. Although JBoss will startup
with the JRE only, you'll experience problems compiling JSPs with it. You should also make sure the
JAVA_HOME environment variable is set to point to your JDK installation.

1.2. Starting the Server

Our first step is to try running the server. You'll find a bin directory inside the main JBoss directory which con-
tains various scripts. Execute the run script (run.bat if you're on Windows, run.sh if you're on Linux, OS X,
or another UNIX-like system). You should then see the log messages from all the JBoss components as they are
deployed and started up. The last message (obviously with different values for the time and start-up speed)
should look like the following.

11:29:39,944 INFO [Server] JBoss (MX MicroKernel) [4.0.0 (build: CVSTag=JBoss_4_0_0 date=
200409200418)] Started in 1m:18s:941ms

You can verify that the server is running by going the JBoss web server, which is running on port 8080. (Make
sure you don't have anything else already on your machine using that port) The default page has links to a few
useful JBoss resources.

1.3. The JMX Console

You can get a live view of the server by going to the JMX console application at ht-
tp://localhost:8080/jmx-console 1. You should see something similar to Figure 1.1.

This is the JBoss Management Console which provides a raw view of the JMX MBeans which make up the

1

http://www.jboss.org/downloads/index
http://www.jboss.org/downloads/index
http://localhost:8080/jmx-console
http://localhost:8080/jmx-console

server. You don't really need to know much about these to begin with, but they can provide a lot of information
about the running server and allow you to modify its configuration, start and stop components and so on.

For example, find the service=JNDIView link and click on it. This particular MBean provides a service to allow
you to view the structure of the JNDI namespaces within the server. Now find the operation called list near
the bottom of the MBean view page and click the invoke. The operation returns a view of the current names
bound into the JNDI tree, which is very useful when you start deploying your own applications and want to
know why you can’t resolve a particular EJB name.

Figure 1.1. View of the JMX Management Console Web Application

Look at some of the other MBeans and their listed operations; try changing some of the configuration attributes
and see what happens. With a few exceptions, none of the changes made through the console are persistent. The
original configuration will be reloaded when you restart JBoss, so you can experiment freely and shouldn’t be
able to do any permanent damage.

Getting Started

2

2Javaservice is freely available from http://www.alexandriasc.com/software/JavaService/index.html.

1.4. Stopping the Server

To stop the server, you can type Ctrl-C or you can run the shutdown script from the bin directory. Alternat-
ively, you can use the management console (look for type=Server under the section jboss.system and invoke
the shutdown operation).

1.5. Running as a Service

In a real deployment scenario, you won’t want to stop and start JBoss manually but will want it to run in the
background as a service or daemon when the machine is booted up. The details of how to do this will vary
between platforms and will require some system administration knowledge and root privileges.

On Linux or other UNIX-like systems, you will have to install a startup script (or get your system administrator
to do it). There are examples in the JBoss bin directory called jboss_init_redhat.sh and
jboss_init_suse.sh which you can modify and use. On a Windows system, you can use a utility like Javaser-
vice2 to manage JBoss as a system service.

Getting Started

3

http://www.alexandriasc.com/software/JavaService/index.html

3 J2EE Connector Architecture - provides a standard for providing connectivity between application servers and existing Enterprise Inform-
ation Systems (EIS).
4 JBoss comes with an embedded instance of the free Hypersonic database and there is a corresponding datasource set up in the default
configuration. If you want to use another database then you have to add the appropriate JCA configuration information. We’ll see how to
do this later.

2
The JBoss Server - A Quick Tour

2.1. Server Structure

Now that you’ve downloaded JBoss and have run the server for the first time, the next thing you will want to
know is how the installation is laid out and what goes where. At first glance there seems to be a lot of stuff in
there, and it’s not obvious what you need to look at and what you can safely ignore for the time being. To rem-
edy that, we’ll explore the server directory structure, locations of the key configuration files, log files, deploy-
ment and so on. It’s worth familiarizing yourself with the layout at this stage as it will help you understand the
JBoss service architecture so that you’ll be able to find your way around when it comes to deploying your own
applications.

2.1.1. Main Directories

The binary distribution unpacks into a top-level jboss-4.0.0 directory. There are four sub-directories immedi-
ately below this:

• bin: contains startup and shutdown and other system-specific scripts. We’ve already seen the run script
which starts JBoss.

• client: stores configuration and JAR files which may be needed by a Java client application or an external
web container. You can select archives as required or use jbossall-client.jar.

• docs: contains the XML DTDs used in JBoss for reference (these are also a useful source of documentation
on JBoss configuration specifics). There are also example JCA3 configuration files for setting up data-
sources for different databases (such as MySQL, Oracle, Postgres)4.

• lib: JAR files which are needed to run the JBoss microkernel. You should never add any of your own JAR
files here.

• server: each of the subdirectories in here is a different server configuration. The configuration is selected
by passing -c <config-name> to the run script. We’ll look at the standard server configurations next.

4

Figure 2.1. JBoss Directory Structure

2.1.2. Server Configurations

Fundamentally, the JBoss architecture consists of the JMX MBean server, the microkernel, and a set of plug-
gable component services, the MBeans. This makes it easy to assemble different configurations and gives you
the flexibility to tailor them to meet your requirements. You don’t have to run a large, monolithic server all the
time; you can remove the components you don’t need (which can also reduce the server startup time consider-
ably) and you can also integrate additional services into JBoss by writing your own MBeans. You certainly
don’t need to do this to be able to run standard J2EE applications though. Everything you need is already there.
You don’t need a detailed understanding of JMX to use JBoss, but it’s worth keeping a picture of this basic ar-
chitecture in mind as it is central to the way JBoss works.

Within the server directory, there are four example server configurations: all, default, standard and minim-

al, each of which provides a different set of services. Not surprisingly, the default configuration is the one
used if you don’t specify another one when starting up the server, so that’s the one we were running in the pre-
vious chapter. It is the J2EE 1.4 certified configuration, and contains everything you need to run a stand-alone
J2EE server. The other configurations are explained below.

• minimal: the bare minimum required to start JBoss. It starts the logging service, a JNDI server and a URL
deployment scanner to find new deployments. This is what you would use if you want to use JMX/JBoss to
start your own services without any other J2EE technologies. This is just the bare server. There is no web
container, no EJB or JMS support.

The JBoss Server - A Quick Tour

5

5 The J2EE Connector Architecture defines the Resource Adapter Archive (RAR) file, which is used for storing JCA implementations for a
particular resource.

• standard: this is the base J2EE 1.4 compliant configuration and is similar to the default configuration in
JBoss 3.2. It does not include the JAXR service, the IIOP service, or any of the clustering services.

• all: starts all the available services. This includes the RMI/IIOP and clustering services, which aren’t loaded
in the default configuration.

You can add your own configurations too. The best way to do this is to copy an existing one that is closest to
your needs and modify the contents. For example, if you weren’t interested in using messaging, you could copy
the default directory, renaming it as myconfig, remove the jms subdirectory and then start JBoss with the new
configuration.

run -c myconfig

The directory server configuration you’re using, is effectively the server root while JBoss is running. It contains
all the code and configuration information for the services provided by the particular configuration. It’s where
the log output goes, and it’s where you deploy your applications. Let’s take a look at the contents of the de-

fault server configuration directory. If you haven’t tried running the server yet, then do so now, as a few of the
sub-directories are only created when JBoss starts for the first time.

• conf: contains the jboss-service.xml file which specifies the core services. Also used for additional con-
figuration files for these services.

• data: this is where the embedded Hypersonic database instance stores its data. It is also used by JBossMQ
(the JBoss implementation of JMS) to store messages on disk.

• deploy: you deploy your application code (JAR, WAR and EAR files) by dropping them in here. It is also
used for hot-deployable services (those which can be added to or removed from the running server) and for
deploying JCA resource adapters5. That’s why there’s a lot of stuff in there already. In particular you’ll no-
tice the JMX Console application (an unpacked WAR file) that we were using earlier. The directory is con-
stantly scanned for updates and any modified components will be re-deployed automatically. We’ll look at
deployment in more detail later.

• lib: JAR files needed by this server configuration. You can add required library files here for JDBC drivers
etc.

• log: this is where the logging information goes. JBoss uses the Jakarta log4j package for logging and you
can also use it directly in your own applications from within the server.

• tmp: used by the deployer for temporary storage of unpacked applications etc.

• work: used by Tomcat for compilation of JSPs.

The data, log, tmp and work directories are created by JBoss and won’t exist until you’ve run the server at least
once.

We’ve touched briefly on the issue of hot-deployment of services in JBoss so let’s have a look at a practical ex-
ample of this before we go on to look at server configuration issues in more detail. Start JBoss if it isn’t already
running and take a look in the deploy directory again (make sure you’re looking at the one in the default con-
figuration directory). Remove the mail-service.xml file and watch the output from the server:

13:10:05,235 INFO [MailService] Mail service 'java:/Mail' removed from JNDI

Then replace the file and watch the JBoss re-install the service. It's hot-deployment in action.

The JBoss Server - A Quick Tour

6

2.2. Basic Configuration Issues

Now that we’ve examined the layout of the JBoss server, we’ll take a look at some of the main configuration
files and what they’re used for. All paths are relative to the server configuration directory (server/default, for
example).

2.2.1. Core Services

The core services specified in the conf/jboss-service.xml file are started first when the server starts up. If
you have a look at this file in an editor you'll see MBeans for various services including logging, security, JNDI
(and the JNDIView service that we saw earlier). Try commenting out the entry for the JNDIView service.

<!--
<mbean code="org.jboss.naming.JNDIView"

name="jboss:service=JNDIView"
xmbean-dd="resource:xmdesc/JNDIView-xmbean.xml">

</mbean>
-->

If you then restart JBoss, you’ll see that the JNDIView service no longer appears in the management console
listing. In practice, you should rarely, if ever, need to modify this file, though there is nothing to stop you
adding extra MBean entries in here if you want to. The alternative is to use a separate file in the deploy direct-
ory, which allows your service to be hot deployable.

2.2.2. Logging Service

We mentioned already that log4j is used for logging. If you're not familiar with the log4j package and would
like to use it in your applications, you can read more about it at the Jakarta web site. (ht-
tp://jakarta.apache.org/log4j/) Logging is controlled from a central conf/log4j.xmlfile. This file defines a set
of appenders, specifying the log files, what categories of messages should go there, the message format and the
level of filtering. By default, JBoss produces output to both the console and a log file (server.log in the log

directory).

There are 4 basic log levels used: DEBUG, INFO, WARN and ERROR. The logging threshold on the console is INFO,
which means that you will see informational messages, warning messages and error messages on the console
but not general debug messages. In contrast, there is no threshold set for the server.log file, so all generated
logging messages will be logged there. If things are going wrong and there doesn’t seem to be any useful in-
formation in the console, always check the log file to see if there are any debug messages which might help you
track down the problem. However, be aware that just because the logging threshold allows debug messages to
be displayed, that doesn't mean that all of JBoss will produce detailed debug information for the log file. You
will also have to boost the logging limits set for individual categories. Take the following category for example.

<!-- Limit JBoss categories to INFO -->
<category name="org.jboss">

<priority value="INFO"/>
</category>

This limits the level of logging to INFO for all JBoss classes, apart from those which have more specific over-
rides provided. If you were to change this to DEBUG, it would produce a much more detailed logging output.

As another example, let’s say you wanted to set the output from the container-managed persistence engine to
DEBUG level and to redirect it to a separate file, cmp.log, in order to analyze the generated SQL commands. You
would add the following code to the log4j.xml file:

The JBoss Server - A Quick Tour

7

http://jakarta.apache.org/log4j/
http://jakarta.apache.org/log4j/

6The Java Authentication and Authorization Service. JBoss uses JAAS to provide pluggable authentication modules. You can use the ones
that are provided or write your own if have more specific requirements.

<appender name="CMP" class="org.jboss.logging.appender.RollingFileAppender">
<errorHandler class="org.jboss.logging.util.OnlyOnceErrorHandler"/>
<param name="File" value="${jboss.server.home.dir}/log/cmp.log"/>
<param name="Append" value="false"/>
<param name="MaxFileSize" value="500KB"/>
<param name="MaxBackupIndex" value="1"/>

<layout class="org.apache.log4j.PatternLayout">
<param name="ConversionPattern" value="%d %-5p [%c] %m%n"/>

</layout>
</appender>

<category name="org.jboss.ejb.plugins.cmp">
<priority value="DEBUG" />
<appender-ref ref="CMP"/>

</category>

This creates a new file appender and specifies that it should be used by the logger (or category) for the package
org.jboss.ejb.plugins.cmp. This will be useful when we come to look at CMP (Chapter 7).

The file appender is set up to produce a new log file every day rather than producing a new one every time you
restart the server or writing to a single file indefinitely. The current log file is cmp.log. Older files have the date
they were written added to the name. You will notice that the log directory also contains HTTP request logs
which are produced by the web container.

2.2.3. Security Service

The security domain information is stored in the file login-config.xml as a list of named security domains,
each of which specifies a number of JAAS6 login modules which are used for authentication purposes in that
domain. When you want to use security in an application, you specify the name of the domain you want to use
in the application’s JBoss-specific deployment descriptors, jboss.xml and/or jboss-web.xml. We'll quickly
look at how to do this to secure the JMX Console and the Web Console applications that ship with JBoss.

We saw the JMX Console briefly in Section 1.3. Almost every aspect of the JBoss server can be controlled
through the JMX Console, so it is important to make sure that, at the very least, the application is password pro-
tected. Otherwise, any remote user could completely control your server. To protect it, we will add a security
domain to cover the application. This can be done in the jboss-web.xml file for the JMX Console, which can
be found in deploy/jmx-console.war/WEB-INF/ directory. Uncomment the security-domain in that file, as
shown below.

<jboss-web>
<security-domain>java:/jaas/jmx-console</security-domain>

</jboss-web>

This links the security domain to the web application, but it doesn't tell the web application what security policy
to enforce. What URLs are we trying to protect, and who is allowed to access them? To configure this, go to the
web.xml file in the same directory and uncomment the security-constraint that is already there. This secur-
ity constraint will require a valid user name and password for a user in the JBossAdmin group.

<!--
A security constraint that restricts access to the HTML JMX console
to users with the role JBossAdmin. Edit the roles to what you want and
uncomment the WEB-INF/jboss-web.xml/security-domain element to enable
secured access to the HTML JMX console.

-->
<security-constraint>

The JBoss Server - A Quick Tour

8

<web-resource-collection>
<web-resource-name>HtmlAdaptor</web-resource-name>
<description>

An example security config that only allows users with the
role JBossAdmin to access the HTML JMX console web application

</description>
<url-pattern>/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>JBossAdmin</role-name>
</auth-constraint>

</security-constraint>

That's great, but where do the user names and passwords come from? They come from the jmx-console secur-
ity domain we linked the application to. We've provided the configuration for this in the conf/lo-

gin-config.xml.

<application-policy name="jmx-console">
<authentication>

<login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule"
flag="required">

<module-option name="usersProperties">
jmx-console-users.properties

</module-option>
<module-option name="rolesProperties">

jmx-console-roles.properties
</module-option>

</login-module>
</authentication>

</application-policy>

This configuration uses a simple file based security policy. The usernames and passwords are stored in jmx-

console-users.properties and take the form "username=password". To assign a user to the JBossAdmin

group add "username=JBossAdmin" to the jmx-console-roles.properties file. The existing file creates an
admin user with the password admin. You'll want to remove that user or change the password to something
stronger.

JBoss will re-deploy the JMX Console whenever you update its web.xml. You can check the server console to
verify that JBoss has seen your changes. If you've configured everything correctly and re-deployed the applica-
tion, the next time you try to access the JMX Console, JBoss will ask you for a name and password.

The JMX Console isn't the only web based management interface to JBoss. There is also the Web Console.
(See Appendix A) Although it's a Java applet, the corresponding web application can be secured in the same
way as the JMX Console. The Web Console is in deploy/management/web-console.war. The only difference
is that the Web Console is provided as a simple WAR file instead of using the exploded directory structure that
the JMX Console did. The only real difference between the two is that editing the files inside the WAR file is a
bit more cumbersome.

2.2.4. Additional Services

The non-core, hot-deployable services are added to the deploy directory. They can be either XML descriptor
files, *-service.xml, or JBoss Service Archive (SAR) files. SARs contain both the XML descriptor and addi-
tional resources the service requires (e.g. classes, library JAR files or other archives), all packaged up a single
archive.

We’ll go through the deploy directory in the default configuration and identify the contents. This is really just

The JBoss Server - A Quick Tour

9

for the sake of completeness, so you can skip this section unless you’d like to know more about the what the
existing MBean components are for. In the default configuration deploy directory, you’ll find the following
files and sub-directories:

• bsh-deployer: deploys bean shell scripts as JBoss services.

• client-deployer-service.xml: deploys J2EE application clients.

• ear-deployer.xml: deploys J2EE EJB JAR files.

• ebxmlrr-service.xml: the JAXR registry service implementation.

• ejb-deployer.xml: deploys J2EE EAR files.

• hibernate-deployer-service.xml: deploys Hibernate archives (HAR files).

• hsqldb-ds.xml: sets up the embedded Hypersonic database service and the default data source.

• iiop-service.xml: enables CORBA and IIOP support.

• jboss-jdbc-metadata.sar: a service that allows the datasource-mapping for a CMP2 deployment to be ex-
ternalized from the jbosscmp-jdbc.xml descriptor so that deployments can be independent of the type of
datasource.

• jboss-local-jdbc.rar and jboss-xa-jdbc.rar: these are JCA resource adapters to integrate JDBC drivers
which support DataSource and XADataSource respectively but for which there is no proprietary JCA imple-
mentation.

• jboss-ws4ee.sar: provides J2EE web services support.

• jbossjca-service.xml: the JBoss JCA implementation. Allows the deployment of JCA resource adaptors
within JBoss.

• jbossweb-tomcat50-sar: an expanded SAR file containing the embedded Tomcat service. This provides the
standard web container within JBoss.

• jms: JMS-specific services grouped together in a subdirectory.

• jmx-console.war: the management console web application that we used in the previous chapter.

• jmx-invoker-server.xml: provides remote access to the JMX MBean server.

• mail-service.xml: allows applications and services to use JavaMail from within JBoss. Must be configured
with relevant mail server information.

• management: sub-directory containing alternative management services, including an improved web con-
sole.

• monitoring-service.xml: Alert monitors like the console listener and email listener are configured here.

• properties-service.xml: amongst other things, allows the setting of global system properties (as returned by
System.getProperties).

• sqlexception-service.xml: provides a means of identifying non-fatal SQL exceptions for a given JDBC
driver.

• uuid-key-generator.sar: generates unique UUID-based keys.

The JBoss Server - A Quick Tour

10

7Although the -ds suffix is used, it doesn’t apply only to DataSource configuration but can be used to configure any resource adapter for
use with JBoss JCA. The <adapter-display-name> element links the information in the JBoss descriptor to a specific resource adapter.

The files in the jms subdirectory are all specific to JMS messaging. Many of them are invocation layers that
define the transport protocols over which message transfer can take place. Additional files are:

• hsqldb-jdbc2-service.xml: implements caching and persistence using the embedded HSQL database. Also
contains the DestinationManager MBean which is the core service for the JMS implementation.

• jbossmq-destinations-service.xml: sets up standard JMS Topics and Queues which are used by the JBoss
test suite.

• jbossmq-service.xml: additional services for JMS, including the interceptor configuration.

• jms-ra.rar: resource adapter to allow JMS connection factories to be handled by JCA.

• jms-ds.xml: sets up JBoss Messaging as the default JMS provider and supplies JCA configuration informa-
tion to integrate the JMS resource adapter with JBoss JCA7.

Looking beyond the default configuration into the standard configuration, a few additional services are
provided.

• cache-invalidation-service.xml: allows customized control of the EJB cache via JMS.

• http-invoker.sar: provides RMI/HTTP access for MBeans and EJBs.

• jboss-aop.deployer: provides the AspectManagerService and deploys JBoss AOP applications.

• schedule-manager-service.xml and scheduler-service.xml: task scheduling service.

The all configuration contains all the additional services provided by JBoss that you might want to incorporate
into your configuration.

• cluster-service.xml: the cluster services, including the JGroups integration service, HA-JNDI, stateful ses-
sion bean replication, and the CMP2 cache invalidation service.

• deploy-hasingleton-service.xml: the HASingletonSDeployer which insures that only a single node in a
cluster deploys the services in the deploy-hasingleton directory.

• deploy.last/farm-service.xml: the farm cluster deployment service. It is in the deploy.last directory to
ensure that it is deployed after all other services.

• jbossha-httpsession.sar: the legacy HTTP session replication service.

• remoting-service.xml: the experimental next generation detached invoker framework.

• snmp-adaptor.sar: translates JMX notifications into SNMP traps.

• tc5-cluster-service.xml: the TreeCache configuration for the new HTTP replication service.

More detailed information on all these services can be found in JBoss Administration and Development, which
also provides comprehensive information on server internals and the implementation of services such as JTA
and the J2EE Connector Architecture (JCA).

The JBoss Server - A Quick Tour

11

2.3. The Web Container - Tomcat

JBoss now comes with Tomcat 5.0 as the default web container. The embedded Tomcat service is the expanded
SAR jbossweb-tomcat50.sar in the deploy directory. All the necessary jar files needed by Tomcat can be
found in there, as well as a web.xml file which provides a default configuration set for web applications. If you
are already familiar with configuring Tomcat, have a look at the server.xml, which contains a subset of the
standard Tomcat format configuration information. As it stands, this includes setting up the HTTP connector on
the default port 8080, an AJP connector on port 8009 (can be used if you want to connect via a web server such
as Apache) and an example of how to configure an SSL connector (commented out by default).

You shouldn’t need to modify any of this other than for advanced use. If you’ve used Tomcat before as a stand-
alone server you should be aware that things are a bit different when using the embedded service. JBoss is in
charge and you shouldn’t need to access the Tomcat directory at all. Web applications are deployed by putting
them in the JBoss deploy directory and logging output from Tomcat (both internal and access logs) can be
found in the JBoss log directory.

The JBoss Server - A Quick Tour

12

8You can get an up-to-date copy of Ant from http://ant.apache.org/. Make sure you are using version 1.5.4 or later.

3
About the Example Applications

3.1. The J2EE Tutorial

We will make use of the example applications provided by Sun in the J2EE tutorial, in particular the Duke’s
Bank application. You can find the tutorial on-line at http://java.sun.com/j2ee/1.4/docs/tutorial/doc/. You
should read the getting started information there and download the example code from ht-
tp://java.sun.com/j2ee/1.4/download.html#tutorial.

We will look at how to run the code in JBoss, supplementing the tutorial where necessary with JBoss-specific
configuration information and deployment descriptors. While you’re online, make sure you’ve downloaded the
additional code that comes with this document, which is available along side this document on the JBoss docu-
mentation page, http://www.jboss.org/docs/index.

The tutorial uses the Apache Ant build tool, which you should download and install8. Ant is almost universally
used in Java projects these days so if you aren’t already familiar with its use then we recommend you spend
some time reading the documentation that comes with it and learning the basics of Ant build files. The default
file name is build.xml, and it contains a set of targets which you can use to perform automated tasks in your
project. Usually all you will have to do is run the Ant command in the directory which contains the build file.
The default target in the file will perform the necessary

The tutorial explains how to run the applications with the J2EE SDK Reference Implementation server. Our
aim will be to deploy them in JBoss.

3.2. What’s Different?

J2EE technologies are designed so that the code is independent of the server in which the application is de-
ployed. The deployment descriptors for EJBs and web applications (ejb-jar.xml and web.xml, respectively)
are standard and also do not need to change between different J2EE containers. However, there are still one or
two things that need to be done in order to move the application to JBoss. In particular, we have to supply
JBoss-specific descriptors and make sure that the database scripts will work.

3.2.1. Container-Specific Deployment Descriptors

Container-specific information is usually contained in extra XML descriptors which map logical information
used in the application (such as JNDI names and security role names) to actual values which are used in the
server. JBoss uses separate files for the EJB and web modules of an application, called jboss.xml and jboss-

web.xml respectively. There is also a client version of these files which fulfils the same role in a Java client, in
combination with the J2EE application-client.xml descriptor. If container-managed persistence (CMP) is
being used for entity EJBs, it is also possible to configure the JBoss persistence engine through the jbosscmp-jd-

bc.xml file.

13

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/
http://java.sun.com/j2ee/1.4/download.html#tutorial
http://java.sun.com/j2ee/1.4/download.html#tutorial
http://www.jboss.org/docs/index
http://ant.apache.org/

3.2.2. Database Changes

The J2EE SDK comes with the Cloudscape database and this is used throughout the tutorials. We will be using
the Hypersonic database which runs as an embedded service within JBoss.

In a real-world situation, porting an application to a different databases is rarely straightforward, especially if
proprietary features such as sequences, stored procedures and non-standard SQL are used. For these simple ap-
plications, though it is relatively easy. When we look at the Duke’s Bank application in the next chapter, you
will see that there are only a few minor syntax changes required in the database scripts.

We’ll look at how to configure JBoss to use a different database in Chapter 8.

3.2.3. Security Configuration

J2EE defines how you specify security constraints within your application, but doesn’t say how the authentica-
tion and access control mechanisms are actually implemented by the server or how they are configured. As we
mentioned earlier, JBoss uses JAAS to provide a pluggable means of incorporating different security technolo-
gies in your applications. It also comes with a set of standard modules for the use of file, database and LDAP-
based security information. We’ll start out using file-based information as this is the simplest approach.

3.3. J2EE in the Real World

The examples here are only intended to get you up and running with JBoss and to help you familiarize yourself
with the basics. The applications definitely aren’t intended to reflect how you should go about writing produc-
tion J2EE software - indeed there is a lot of differing opinion on this subject. Many people disagree on the use
of EJBs for example, particularly the use of entity beans; the use of bean-managed persistence is especially
controversial yet is convenient for examples. There is also endless debate about the use of different web techno-
logies (it would be safe to say that not everyone loves JSPs) and the numerous different Model-2 frameworks
that are out there. Struts was one of the first and is probably the best known but is not without its critics. We’ve
provided some sources at the end of this chapter which you can check out for more information.

If you’re starting out, your best bet is probably to look at some existing open-source projects and see how they
are structured, and then pick something appropriate for your project.

Finally, we hope you’ll realize that there’s a lot more depth to JBoss than we can hope to cover here and once
you’ve worked your way through this basic introduction, we hope you’ll be eager to learn more. JBoss is also a
continually evolving project with lots of plans for the future. So keep an eye on the bleeding-edge version, even
if you’re running all your production applications on the stable 4.0 series.

About the Example Applications

14

4
The Duke’s Bank Application

Now that you have the server running, we will use the Duke’s Bank example from the J2EE tutorial to illustrate
how to get an application up and running in JBoss. Duke’s Bank demonstrates a selection of J2EE technologies
working together to implement a simple on-line banking application. It uses EJBs and web components (JSPs
and servlets) and uses a database to store the information. The persistence is bean-managed, with the entity
beans containing the SQL statements which are used to manipulate the data.

We won’t look in detail at its functionality or comment on the implementation but will concentrate on a step-
by-step guide to building and deploying it in JBoss.

4.1. Building the Application

You should have already downloaded the J2EE 1.4 tutorial, which includes Duke’s Bank. We’ll go through
building and deploying the application first and then look at things in a bit more detail.

4.1.1. Preparing the Files

You should be able to obtain the supplementary JBoss files from the same place as this document. The file is
packaged as a ZIP archive called jbossj2ee-src.zip. Download this and unpack it into the j2eetutorial14

directory, adding to the existing tutorial files. All the Duke’s Bank code is in a the examples/bank subdirect-
ory. If you've unpacked the JBoss extensions correctly, you will see a jboss-build.xml there. This is our Ant
build script for the JBoss version of the application. Rather than just overwriting the existing build.xml file,
we’ve used a different name from the default. This means that Ant must now be run as ant -f jboss-

build.xml.

Before we can build, you'll need to edit the jboss-build.properties file in the j2eetutorial14 to point to
your JBoss install directory. Set the jboss.home property to the full path to your JBoss 4.0 installation. If
you’ve unpacked JBoss 4.0 in the C: drive on a windows machine, you would set it as follows.

Set the path to the JBoss directory containing the JBoss application server
(This is the one containing directories like "bin", "client" etc.)
jboss.home=C:/jboss-4.0.0

4.1.2. Compiling the Java Source

At the command line, go to the bank directory. All the build commands will be run from here. Compilation is
pretty straightforward; just type the following command to invoke the compile Ant target.

ant -f jboss-build.xml compile

If there aren’t any errors, you will find a newly created build directory with the class files in it.

15

4.1.3. Package the EJBs

The application has one EJB jar, bank-ejb.jar, which contains the code and descriptors (ejb-jar.xml and
jboss.xml) for the entity beans and associated controller session beans which the clients interact with. The
package-ejb Ant target will create them in the jar directory.

ant -f jboss-build.xml package-ejb

4.1.4. Package the WAR File

The next target is the web application which provides the front end to allow users to interact with the business
components (the EJBs). The web source (JSPs, images etc.) is contained in the src/web directory and is added
unmodified to the archive. The Ant war task also adds a WEB-INF directory which contains the files which aren’t
meant to be directly accessed by a web browser but are still part of the web application. These include the de-
ployment descriptors (web.xml and jboss-web.xml), class files, (e.g. servlets and EJB interfaces) and extra jars
and the extra JSP tag-library descriptors required by the web application. The package-web Ant target builds
the web client WAR file.

ant -f jboss-build.xml package-web

4.1.5. Package the Java Client

In addition to the web interface, there is a standalone Java client for administering customers and accounts. You
can build it using the package-client Ant target.

ant -f jboss-build.xml package-client

The generated WAR file contains the application-client.xml and jboss-client.xml descriptors as well as
the client jndi.properties file. The client JAR will also be included as an additional module in the EAR file
and the server.

4.1.6. Assembling the EAR

The EAR file is the complete application, containing the three EJB modules and the web module. It must also
contain an additional descriptor, application.xml. It is also possible to deploy EJBs and web application mod-
ules individually but the EAR provides a convenient single unit. The assemble-app Ant target will produce the
final file JBossDukesBank.ear.

ant -f jboss-build.xml assemble-app

4.1.7. The Database

Before we can deploy the application, we need to populate the database it will run against. If you are writing an
application that uses container-managed persistence, you can configure the CMP engine to create the tables for
you at deployment, but otherwise you will need have to have a set of scripts to do the job. This is also a con-
venient place pre-populating the database with data.

The Duke’s Bank Application

16

4.1.7.1. Enabling the HSQL MBean and TCP/IP Connections

The HSQL database can be run in one of two modes: in-process or client-server (the HSQL documentation
refers to this as server mode). Since we are going to be running the SQL scripts using a tool that connects to the
database, we want to make sure the database is running in client-server mode and will accept TCP/IP connec-
tions. In later versions of JBoss, client-server mode is disabled to prevent direct database access, which could
be a security risk if the default login and password have not been modified. Open the hsqldb-ds.xml file which
you’ll find in the deploy directory and which sets up the default datasource. Near the top of the file, you’ll find
the connection-url element. Make sure the value is set to jdbc:hsqldb:hsql://localhost:1701 and that any
other examples are commented out.

<!-- The jndi name of the DataSource, it is prefixed with java:/ -->
<!-- Datasources are not available outside the virtual machine -->
<jndi-name>DefaultDS</jndi-name>

<!-- for tcp connection, allowing other processes to use the hsqldb
database. This requires the org.jboss.jdbc.HypersonicDatabase mbean. -->
<connection-url>jdbc:hsqldb:hsql://localhost:1701</connection-url>

<!-- for totally in-memory db, not saved when jboss stops.
The org.jboss.jdbc.HypersonicDatabase mbean is unnecessary
<connection-url>jdbc:hsqldb:.</connection-url>
-->
<!-- for in-process db with file store, saved when jboss stops. The
org.jboss.jdbc.HypersonicDatabase is unnecessary

<connection-url>jdbc:hsqldb:${jboss.server.data.dir}/hypersonic/localDB
</connection-url>
-->

Now scroll down to the bottom of the file, and you should find the MBean declaration for the Hypersonic ser-
vice.

<mbean code="org.jboss.jdbc.HypersonicDatabase" name="jboss:service=Hypersonic">
<attribute name="Port">1701</attribute>
<attribute name="Silent">true</attribute>
<attribute name="Database">default</attribute>
<attribute name="Trace">false</attribute>
<attribute name="No_system_exit">true</attribute>

</mbean>

Make sure this is also uncommented so JBoss will start the database in the correct mode.

4.1.7.2. Creating the Database Schema

We have supplied scripts to run with HSQL in the sql directory. The database tasks in the build file will try to
contact the HSQL database. If JBoss isn’t already running, you should start it now, so that the database is avail-
able.

First we need to create the necessary tables with the db-create-table target.

ant -f jboss-build.xml db-create-table

Then run the db-insert target to populate them with the required data.

ant -f jboss-build.xml db-insert

The Duke’s Bank Application

17

Finally, if everything has gone according to plan, you should be able to view some of the data using the db-

list target, which lists the transactions for a specific account.

ant -f jboss-build.xml db-list

4.1.7.3. The HSQL Database Manager Tool

Just as a quick aside at this point, start up the JMX console application web application and click on the ser-

vice=Hypersonic link which you’ll find under the section jboss. If you can’t find this, make sure the service is
enabled as described in Section 4.1.7.1.

Figure 4.1. The HSQL Database Manger

This will take you to the information for the Hypersonic service MBean. Scroll down to the bottom of the page
and click the invoke button for the startDatabaseManager() operation. This starts up the HSQL Manager, a
Java GUI application which you can use to manipulate the database directly.

4.1.8. Deploying the Application

Deploying an application in JBoss is easy. You just have to copy the EAR file to the deploy directory. The de-

ploy target in the build file does this for our application.

ant -f jboss-build.xml deploy

The Duke’s Bank Application

18

You should see something close to the following output from the server (reduced for brevity).

14:14:53,763 INFO [EARDeployer] Init J2EE application: file:/Users/orb/java/jboss-4.0.0/
server/default/deploy/JBossDukesBank.ear
14:14:55,588 INFO [EjbModule] Deploying CustomerEJB
14:14:56,049 INFO [EjbModule] Deploying CustomerControllerEJB
...
14:14:59,292 INFO [EJBDeployer] Deployed: file:/Users/orb/java/jboss-4.0.0/server/
default/tmp/deploy/tmp43515JBossDukesBank.ear-contents/customer-ejb.jar
14:14:59,727 INFO [EJBDeployer] Deployed: file:/Users/orb/java/jboss-4.0.0/server/
default/tmp/deploy/tmp43515JBossDukesBank.ear-contents/tx-ejb.jar
14:15:00,321 INFO [EJBDeployer] Deployed: file:/Users/orb/java/jboss-4.0.0/server/
default/tmp/deploy/tmp43515JBossDukesBank.ear-contents/account-ejb.jar
14:15:00,608 INFO [TomcatDeployer] deploy, ctxPath=/bank, warUrl=file:/Users/orb/java/
jboss-4.0.0/server/default/tmp/deploy/tmp43515JBossDukesBank.ear-contents/web-client-
exp.war/
14:15:01,594 INFO [EARDeployer] Started J2EE application: file:/Users/orb/java/
jboss-4.0.0/server/default/deploy/JBossDukesBank.ear

If there are any errors or exceptions, make a note of the error message and at what point it occurs (e.g. during
the deployment of a particular EJB, the web application or whatever). Check that the EAR is complete and in-
spect the WAR file and each of the EJB jar files to make sure they contain all the necessary components
(classes, descriptors etc.).

You can safely redeploy the application if it is already deployed. To undeploy it you just have to remove the
archive from the deploy directory. There’s no need to restart the server in either case. If everything seems to
have gone OK, then point your browser at the application URL.

http://localhost:8080/bank/main

You will be forwarded to the application login page. As explained in the tutorial, you can login with a customer
ID of 200 and the password j2ee. If you get an error at this point, check again that you have set up the database
correctly as described in Section 4.1.7.1. In particular, check that the connection-url is right. Then make sure
that you have populated the database with data.

You can also run the standalone client application using the run-client target.

ant -f jboss-build.xml run-client

This is a Swing GUI client which allows you to administer the customers and accounts.

4.2. JNDI and Java Clients

It’s worth taking a brief look at the use of JNDI with standalone clients. The example makes use of the J2EE
Application Client framework, which introduces the concept of a client-side local environment naming context
within which JNDI names are resolved with the prefix java:/comp/env. This is identical to the usage on the
server side; the additional level of indirection means you can avoid using hard-coded names in the client. The
name mapping is effected by the use of the proprietary jboss-client.xml which resolves the references
defined in the standard application-client.xml. See Section 3.2.1 for more information on how this works.

4.2.1. The jndi.properties File

One issue with a Java client is how it bootstraps itself into the system, how it manages to connect to the correct
JNDI server to lookup the references it needs. The information is supplied by using standard Java properties.
You can find details of these and how they work in the JDK API documentation for the javax.naming.Context

The Duke’s Bank Application

19

http://localhost:8080/bank/main

class. The properties can either be hard-coded, or supplied in a file named jndi.properties on the classpath.
The file we’ve used is shown below.

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=jnp://localhost:1099
java.naming.factory.url.pkgs=org.jboss.naming.client
j2ee.clientName=bank-client

The first three are standard properties, which are set up in order to use the JBoss JNDI implementation. The
j2ee.clientName property identifies the client deployment information on the server side. The name must
match the jndi-name specified in the jboss-client.xml descriptor:

<jboss-client>
<jndi-name>bank-client</jndi-name>
<ejb-ref>

<ejb-ref-name>ejb/customerController</ejb-ref-name>
<jndi-name>MyCustomerController</jndi-name>

</ejb-ref>
<ejb-ref>

<ejb-ref-name>ejb/accountController</ejb-ref-name>
<jndi-name>MyAccountController</jndi-name>

</ejb-ref>
</jboss-client>

Of course if you were only building a simple web application, you wouldn't need to worry about remote clients

4.2.2. Application JNDI Information in the JMX Console

While we’re on the subject of JNDI, let’s take a quick look at the JBoss JMX console again and see what in-
formation it shows about our application. This time click on the service=JNDIView link and then invoke the
list() operation, which displays the JNDI tree for the server. You should see the EJB modules from Duke’s
Bank listed near the top and the contents of their private environment naming contexts as well as the names the
entries are linked to in the server.

The Duke’s Bank Application

20

9The java: namespace is for names which can only be resolved within the VM. Remote clients can’t resolve them, unlike those in the
global namespace.

Figure 4.2. JMX Console JNDI View

Further down, under the java: namespace9 is a list of the active security managers, bound under their security-
domain names

+- jaas (class: javax.naming.Context)
| +- dukesbank (class: org.jboss.security.plugins.SecurityDomainContext)
| +- JmsXARealm (class: org.jboss.security.plugins.SecurityDomainContext)
| +- jbossmq (class: org.jboss.security.plugins.SecurityDomainContext)
| +- HsqlDbRealm (class: org.jboss.security.plugins.SecurityDomainContext)

Note that these objects are created on demand, so the dukesbank entry will only appear if you have configured
the application to use the dukesbank domain and tried to log in to the application.

The Duke’s Bank Application

21

10The term security domain is widely used in security parlance, not always with the same meaning. It generally refers to a set of users (or
components) operating under a common set of authentication and access-control mechanisms. In JBoss this is seen in the mapping of a se-
curity domain name to a particular set of login modules in the login-config.xml file. The term is often used interchangeably with the term
realm.

4.3. Security

You may have noticed that we haven’t done anything so far to set up any security configuration for the applica-
tion. In fact there isn’t any security to speak of, and you can login with any password and gain access to the ac-
count. That is not very good for an on-line bank. Logging in with an invalid id will cause the application to
crash when the first JSP tries to access the (non-existent) user’s accounts. That's not exactly ideal either.

If a web application doesn’t have a security domain 10 specified, JBoss assigns it a NullSecurityManager in-
stance by default. This will allow any login to succeed, explaining the above behaviour.

4.3.1. Configuring a Security Domain

Enabling security for your application is done through the JBoss-specific deployment descriptors. To protect
the web application, you have to include a security-domain element in the jboss-web.xml.

<jboss-web>
<security-domain>java:/jaas/dukesbank</security-domain>
...

</jboss-web>

If you also want access controls to be applied at the EJB layer, you should also add an identical security-do-
main element to the jboss.xml file too

<jboss>
<security-domain>java:/jaas/dukesbank</security-domain>

<enterprise-beans>
...

</enterprise-beans>
</jboss>

What this means is that JBoss will bind a security manager instance for our application under the JNDI name
java:/jaas/dukesbank. You can configure it in the conf/login-config.xml file, which we first saw in Sec-
tion 2.2.3. If you take a look at that file, you’ll see how each security domain has an application-policy ele-
ment. The name attribute is the security domain name, so to add a login configuration for our application, we
would insert an extra entry like the following.

<application-policy name="dukesbank">
<authentication>

<login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule"
flag="required" />

</authentication>
</application-policy>

The authentication element contains a sequence of login-module child elements, each of which specifies a
JAAS login module implementation which will be used to authenticate users. The required flag means that lo-
gin under this module must succeed for the user to be authenticated. The UsersRolesLoginModule which we’ve
specified here is a simple login module which stores valid user names, passwords and roles in properties files.
Any security domains which don’t have a login configuration entry will default to the policy named other

which you will find at the bottom of the login-config.xml file. By default it uses this same login module, so
we don’t really need to add a specific entry for our application. However it’s a good idea for completeness
sake, and you may want to experiment with adding different login modules later.

The Duke’s Bank Application

22

To recap, here are the steps you need to follow to secure Duke’s Bank:

1. Add the security-domain element to each of the jboss.xml and jboss-web.xml descriptors in the dd dir-
ectory. It should already be there, commented out.

2. Add an entry to the conf/login.xml file for the dukesbank security domain.

3. Create the users.properties and roles.properties files which contain the security information for the
information for the application and include these in the EAR file (this has already been done for you).

4. Follow through the build steps to re-package the EJBs and the web application (to make sure the modified
descriptors are included).

5. Assemble the EAR file and re-deploy it to JBoss.

Again make sure that the application deploys OK without any errors and exceptions and try accessing it with
your browser as before. This time you should not be able to login without the correct username and password
combination.

4.3.2. UsersRolesLoginModule Files

Have a quick look at the format of the files so that you can experiment with adding users of your own. You’ll
find them in the src directory. The users.properties file contains name-value pairs of the form user-

name=password. The roles.properties entries are the user name and a comma-separated list of roles for that
user of the form username=role1,role2,....

In Duke’s Bank, the user id 200 must be given the role BankCustomer to be able to access the web application
and the EJB methods which it calls.

In a real project you will want to use a more sophisticated approach to authentication. You can find out more
about using JAAS login modules in the JBoss “JAAS Howto” document which you can download from ht-
tp://sourceforge.net/docman/?group_id=22866 . We’ll also look at security in more detail in Chapter 9.

4.3.3. The J2EE Security Model

We’ve only covered the proprietary aspects of securing a J2EE application in JBoss and we won’t go into the
details of standard J2EE security as this is adequately covered elsewhere. However a brief overview in the con-
text of the Duke’s Bank application is worthwhile. For more details you should see the relevant sections in the
tutorial, the EJB and servlet specifications, or any textbook on J2EE applications.

4.3.3.1. Authentication

The servlet spec. defines a standard means of configuring the login process for web applications. You will find
an example in the element login-config in the web.xml file for Duke’s Bank:

<login-config>
<auth-method>FORM</auth-method>
<realm-name>Default</realm-name>
<form-login-config>

<form-login-page>/logon</form-login-page>
<form-error-page>/logonError</form-error-page>

</form-login-config>
</login-config>

The Duke’s Bank Application

23

http://sourceforge.net/docman/?group_id=22866
http://sourceforge.net/docman/?group_id=22866

This specifies that a HTML form login should be used to obtain a username and password. (The alternative
would be HTTP BASIC authentication, where the browser presents a login dialog). It also specifies the URL
that should be used for the login (/logon) and the URL which the user is forwarded to on a login error, such as
a bad password. The format of the login form, namely the URL to submit to and the field names for username
and password, are defined in the servlets specification. You can see how it works in the logon.jsp file in this
application.

You should keep in mind that the authentication logic which decides whether a login succeeds or fails is outside
the scope of the J2EE specification. The actual authentication mechanism is contained in the login modules that
a security domain uses. So by adding the security-domain tag to your application, and thus linking it to an
entry in login-config.xml, you are effectively what authentication logic will be used, be it a database, LDAP
or whatever.

4.3.3.2. Access Control (Authorization)

J2EE uses a role-based access-control model, with the emphasis placed on configuration rather than code; you
can restrict access to EJBs or individual EJB methods in the ejb-jar.xml file or to specific URLs in the
web.xml file by defining which user roles are allowed to access them. A set of roles, again decided by the un-
derlying security mechanism, will be assigned to a user as part of the logon process and each subsequent at-
tempt to access a protected resource will be checked to see if it is allowed.

If you have a look at in web.xml you will find the access controls under the security-constraint element.
You can see the list of restricted URLs there under web-resource-collection and the role which is allowed to
access them (BankCustomer) under the auth-constraint element. In the ejb-jar.xml file, method access is
controlled using a series of method-permission elements which contain lists of method definitions and the
roles that can call them (or unchecked for any role).

The Duke’s Bank Application

24

5
J2EE Web Services

From the start, web services have promised genuine interoperability by transmitting XML data using platform
and language-independent protocols such as SOAP over HTTP. While the early days of multiple competing
standards and general developer confusion may have made this more of a dream than a reality, web services
have matured and standardized enough to have been incorporated into the J2EE 1.4 specification.

Keeping with the spirit of this guide, we'll assume you have some experience with web services already. If you
don't, we would recommend you do some reading in advance. A good place to start would be ht-
tp://www.jboss.org/wiki/Wiki.jsp?JBossWS on the JBoss wiki, which covers web services on JBoss in more
depth. We also recommend J2EE Web Services by Richard Monson-Haefel for more general coverage of J2EE
web services.

5.1. Web services in JBoss

JBossWS is the JBoss module responsible for providing web services in JBoss 4.0, replacing the previous
JBoss.NET package. Like its predecessor, it is also based on Apache Axis (http://ws.apache.org/axis).
However, JBossWS provides the complete set of J2EE 1.4 web services technologies, including SOAP, SAAJ,
JAX-RPC and JAXR.

J2EE web services provides for two types of endpoints. If you think of a web service as a platform-independent
invocation layer, then the endpoint is the object you are exposing the operations of and invoking operations on.
Naturally, J2EE web services support exposing EJBs as web services, but only stateless session beans can be
used. That makes sense given the stateless nature of web services requests. Additionally, J2EE web services
provide for JAX-RPC service endpoints, (JSEs) which are nothing more than simple Java classes. We'll only be
working with EJB endpoints in this example.

5.2. Duke’s Bank as a Web Service

We'll continue working with the Duke's Bank application from Chapter 4 and create a simple web service for
querying accounts and balances. The AccountController session bean provides this functionality to the Duke's
Bank web application. Unfortunately the application uses stateful session beans as its external interface, so we
can't expose the AccountController session bean directly. Instead, we'll create a new stateless session bean,
the TellerBean, which will provide a more suitable web service endpoint.

Before we start, make sure that you have built and deployed Duke's Bank according to the instructions in
Chapter 4. As with that example, we'll be working from the examples/bank directory. Although TellerBean

will have already been compiled when you deployed Duke's Bank, you'll need to remember to invoke the com-

pile target to compile any changes you might make.

ant -f jboss-build.xml compile

The magic of J2EE is in the deployment descriptors. We've seen how to deploy session beans already. Deploy-
ing a session bean as a web service is as simple as adding a service-endpoint element to the session bean

25

http://www.jboss.org/wiki/Wiki.jsp?JBossWS
http://www.jboss.org/wiki/Wiki.jsp?JBossWS
http://ws.apache.org/axis

definition in ejb-jar.xml. The service-endpoint specifies the class that provides the interface corresponding to
the methods on the session bean being exposed as a web service.

<session>
<ejb-name>TellerBean</ejb-name>
<service-endpoint>com.jboss.ebank.TellerEndpoint</service-endpoint>
<ejb-class>com.jboss.ebank.TellerBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<ejb-ref>

<ejb-ref-name>ejb/account</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>com.sun.ebank.ejb.customer.CustomerHome</home>
<remote>com.sun.ebank.ejb.customer.Customer</remote>

</ejb-ref>
</session>

You might have noticed that we didn't declare a home or remote interface for TellerBean. If your session bean
is only accessed by the web services interface, you don't need one, so we've left them out here. Instead, we've
declared the TellerEndpoint class as our endpoint interface. Our web service interface exposes two operations,
both of which map onto the equivalent methods on TellerBean.

public interface TellerEndpoint
extends Remote

{
public String[] getAccountsOfCustomer(String customerId)

throws RemoteException;

public BigDecimal getAccountBalance(String accountID)
throws RemoteException;

}

We'll generate our WSDL, the interoperable web services definition, from this interface using java2wsdl, an
Axis tool which comes with the JBossWS. The wsdl target does this.

ant -f jboss-build.xml wsdl

This generates the dd/ws/wsdl/teller.wsdl file representing our service. WSDL can be very verbose, so we
won't duplicate the file here. But, we will point out two important things. First, the wsdlsoap:address in the
wsdl:service is deliberately bogus.

<wsdl:service name="TellerService">
<wsdl:port name="TellerEndpoint" binding="impl:TellerEndpointSoapBinding">

<wsdlsoap:address location="http://this.value.is.replaced.by.jboss"/>
</wsdl:port>

</wsdl:service>

JBoss will replace the wsdlsoap:address with the actual value when it deploys the web service, so there is no
need to worry about it at this point.

The other detail to note from the generated WSDL file is that the namespace for our webservice is ht-

tp://ebank.jboss.com. We'll need to make sure we map the namespaceURI in our JAX-RPC mapping file.

<java-wsdl-mapping xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://www.ibm.com/webservices/xsd/j2ee_jaxrpc_mapping_1_1.xsd"
version="1.1">

<package-mapping>
<package-type>com.jboss.ebank</package-type>
<namespaceURI>http://ebank.jboss.com</namespaceURI>

</package-mapping>

J2EE Web Services

26

</java-wsdl-mapping>

The last piece of the deployment descriptor puzzle is the webservices.xml file, which associates our webser-
vice with the WSDL and mapping files we've created.

<webservices xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://www.ibm.com/webservices/xsd/j2ee_web_services_1_1.xsd"
version="1.1">
<webservice-description>

<webservice-description-name>TellerService</webservice-description-name>
<wsdl-file>META-INF/wsdl/teller.wsdl</wsdl-file>
<jaxrpc-mapping-file>META-INF/mapping.xml</jaxrpc-mapping-file>
<port-component>

<port-component-name>Teller</port-component-name>
<wsdl-port>TellerEndpoint</wsdl-port>
<service-endpoint-interface>

com.jboss.ebank.TellerEndpoint
</service-endpoint-interface>
<service-impl-bean>

<ejb-link>TellerBean</ejb-link>
</service-impl-bean>

</port-component>
</webservice-description>

</webservices>

Our web service is a simple session bean, so deploying it only requires us to package up the bean and the asso-
ciated deployment descriptors into an EJB JAR file. The package-ws task accomplishes this, and the deploy-ws

target deploys the EJB JAR to JBoss.

ant -f jboss-build.xml package-ws
ant -f jboss-build.xml deploy-ws

Once the service is deployed you can view the WSDL (Web Service Description Language) for it by browsing
to the URL http://localhost:8080/bankws-ejb/TellerService?wsdl. In this example we generate the WSDL, but it
would also have been possible to write the WSDL for the service by hand and then generate a Java endpoint in-
terface for it using wsdl2java, which is also provided with JBossWS.

5.3. Running the Web Service Client

We’ve also supplied a Java client which accesses the web service from a non-J2EE environment.

public class WSClient {
public static void main(String[] args)

throws Exception
{

URL url =
new URL("http://localhost:8080/ws4ee/services/TellerService?wsdl");

QName qname = new QName("http://ebank.jboss.com",
"TellerService");

ServiceFactory factory = ServiceFactory.newInstance();
Service service = factory.createService(url, qname);

TellerEndpoint endpoint = (TellerEndpoint)
service.getPort(TellerEndpoint.class);

String customer = "200";
String[] ids = endpoint.getAccountsOfCustomer(customer);

J2EE Web Services

27

http://localhost:8080/bankws-ejb/TellerService?wsdl

System.out.println("Customer: " + customer);
for (int i=0; i<ids.length; i++) {

System.out.println("account[" + ids[i] + "] " +
endpoint.getAccountBalance(ids[i]));

}
}

}

The client can be run using the run-ws target.

ant -f jboss-build.xml run-ws

The client will display the balance for each account belonging to the given customer.

[java] Customer: 200
[java] account[5005] 3300.00
[java] account[5006] 2458.32
[java] account[5007] 220.03
[java] account[5008] 59601.35

5.4. Network Traffic Analysis

JBoss comes with a very useful network monitoring utilities to help monitoring your web service traffic. The
TCP monitor tool act as a TCP tunnel for connections between the client and server. It listens on one port for
client connections, forwarding client requests to the server and returning responses on the client. From this
man-in-the-middle position, it will print out all the traffic in both directions, so you can use it to view HTTP
headers, SOAP messages or anything else you want to pass over a TCP connection. There’s nothing specific to
web services involved. The tcpmon target will launch the tool.

ant -f jboss-build.xml tcpmon

When tcpmon starts, it will present an initial configuration window. You just need to specify a local port to
listen on (we chose 7070) and the information for the host and port to forward to. The defaults are localhost

and 8080 respectively, so you shouldn’t need to change them.

To route your web service traffic through the TCP monitor, you'll need to change the port number used to look-
up the WSDL file in the client. You'll also need to change the port number in the WSDL file that gets returned.
If you recall, JBoss overwrites the wsdlsoap:address using the correct service name, host and port. To get
JBoss to use port 7070 instead, you'll need to change the WebServicePort in jboss-

ws4ee.sar/META-INF/jboss-service.xml to 7070 as shown below.

<mbean code="org.jboss.webservice.AxisService"
name="jboss.ws4ee:service=AxisService">

<depends>jboss:service=WebService</depends>
<attribute name="WebServiceHost">localhost</attribute>
<attribute name="WebServiceSecurePort">8443</attribute>
<attribute name="WebServicePort">7070</attribute>
<attribute name="ValidateWsdlRequest">false</attribute>

</mbean>

If everything is configured correctly, you can then run the client and view the output.

J2EE Web Services

28

Figure 5.1. TCPMon output of Web Services Call

You can also make changes to the request message and resend it, making TCPMon an extremely useful debug-
ging tool as well.

J2EE Web Services

29

6
JMS and Message-Driven Beans

One thing that’s missing from the Duke’s Bank application is any use of JMS messaging, so we’ll work
through the tutorial example on Message Driven Beans (MDBs) to see how to use messaging in JBoss. We’ll
assume you’re already familiar with general JMS and MDB concepts. The J2EE tutorial code for the MDB is in
j2eetutorial14/examples/ejb/simplemessage. We’ve supplied a jboss-build.xml file in the simplemes-

sage directory which will allow you to build the example from scratch and run it in JBoss.

The example code is very simple. There are only two classes, one for the client and one for the bean (unlike
normal EJBs, MDBs don’t need any interfaces). The client publishes messages to a JMS Queue and the MDB
handles them via its standard onMessage method. The messages are all of type javax.jms.TextMessage and the
bean simply prints out the text contained in each message.

The only container-specific tasks required are setting up the Queue in JBoss, and configuring the MDB to ac-
cept messages from it.

6.1. Building the Example

6.1.1. Compiling and Packaging the MDB and Client

To compile the files, invoke the compile-mdb target from the simplemessage directory.

ant -f jboss-build.xml compile-mdb

Then run the following targets to produce archives for the bean and the client and a combined EAR file in the
jar directory.

ant -f jboss-build.xml package-mdb
ant -f jboss-build.xml package-mdb-client
ant -f jboss-build.xml assemble-mdb

We’ve retained the same layout we used in the Duke’s Bank build, with a dd directory containing the deploy-
ment descriptors and the jar directory containing the archives produced by the build.

6.1.1.1. Specifying the Source Queue for the MDB

As with other container-specific information, the queue name for the MDB is specified in the jboss.xml file:

<jboss>
<enterprise-beans>

<message-driven>
<ejb-name>SimpleMessageBean</ejb-name>
<destination-jndi-name>queue/MyQueue</destination-jndi-name>

</message-driven>
</enterprise-beans>

</jboss>

30

So the MDB will receive messages from the queue with JNDI name queue/MyQueue.

6.2. Deploying and Running the Example

To deploy the MDB, just copy the SimpleMessage.ear file to the JBoss deploy directory. The deploy-mdb tar-
get does this.

ant -f jboss-build.xml deploy-mdb

A successful deployment should look something like this:

15:42:02,437 INFO [EARDeployer] Init J2EE application: file:/Users/orb/java/jboss-
4.0.0/server/default/deploy/SimpleMessage.ear
15:42:03,274 INFO [EjbModule] Deploying SimpleMessageEJB
15:42:04,857 WARN [JMSContainerInvoker] Could not find the queue destination-jndi-
name=queue/MyQueue
15:42:04,951 WARN [JMSContainerInvoker] destination not found: queue/MyQueue reaso
n: javax.naming.NameNotFoundException: MyQueue not bound
15:42:04,955 WARN [JMSContainerInvoker] creating a new temporary destination: queu
e/MyQueue
15:42:05,204 INFO [MyQueue] Bound to JNDI name: queue/MyQueue
15:42:06,216 INFO [EJBDeployer] Deployed: file:/Users/orb/java/jboss-4.0.0/server/
default/tmp/deploy/tmp18923SimpleMessage.ear-contents/simplemessage.jar
15:42:06,909 INFO [EARDeployer] Started J2EE application: file:/Users/orb/java/jbo
ss-4.0.0/server/default/deploy/SimpleMessage.ear

If you look more closely at this, you will see warnings that the message queue specified in the deployment
doesn’t exist. In this case JBoss will create a temporary one for the application and bind it under the supplied
name. You can check it exists using the JNDIView MBean again. Look under the global JNDI namespace.
We’ll look at how to explicitly create JMS destinations below.

6.2.1. Running the Client

Run the client with the run-mdb Ant target.

ant -f jboss-build.xml run-mdb

You should see output in both the client and server windows as they send and receive the messages respect-
ively.

6.3. Managing JMS Destinations

As with most things in JBoss, JMS Topics and Queues are implemented using MBeans. There are two ways
you can create them: you can add MBean declarations to the appropriate configuration file, or you can create
them dynamically using the jmx-console application. However, if you use the latter method, they won’t survive
a server restart.

6.3.1. The jbossmq-destinations-service.xml File

You’ll find this file in the jms directory inside the deploy directory. It contains a list of JMS destinations and
sets up a list of test topics and queues which illustrate the syntax used. To add the queue for our example, you
would simply add the following MBean declaration to the file.

JMS and Message-Driven Beans

31

<mbean code="org.jboss.mq.server.jmx.Queue"
name="jboss.mq.destination:service=Queue,name=MyQueue">

</mbean>

6.3.2. Using the DestinationManager from the JMX Console

With JBoss running, bring up the JMX Console in your browser and look for the section labelled jboss.mq in
the main agent view. Click on the link which says service=DestinationManager. The DestinationManager
MBean is the main JMS service in JBoss and you can use it to create and destroy queues and topics at runtime.
Look for the operation called createQueue. This takes two parameters. The first is a name for the Queue
MBean (so will not usually be relevant to your application code) and the second is the JNDI name. So enter
MyQueue and queue/MyQueue for these respectively. We’ve adopted the standard JBoss convention of binding
queues under the JNDI name queue and topics under topic but this isn’t necessary. You can use any name.
Note that this will fail if either of these names is already in use (for example if you have deployed the applica-
tion as above or added a Queue MBean using the XML configuration file. If this is the case you can either re-
move the existing queue or just try another name.

6.3.3. Administering Destinations

You can access the attributes and operations that the MBeans representing a queue or topic exposes via JMX.
Look at the main JMX Console view again and you’ll find a separate jboss.mq.destination section which
should contain an entry for our Queue (no matter how it was created). Click on this and you’ll see the attributes
for the queue. Amongst these is the QueueDepth which is the number of messages which are currently on the
queue.

As an exercise, you can try temporarily stopping the delivery of messages to the MDB. Locate the section
called jboss.j2ee in the JMX console and you should find an MBean listed there which is responsible for in-
voking your MDB. The name will be binding=message-driven-bean, jndiName=local/SimpleMessageEJB,

plugin=invoker,service=EJB

You can start and stop the delivery of messages using the corresponding MBean operations which it supports.
Invoke the stopDelivery() method, and then run the client a few times. You will see the QueueDepth increase
as the messages accumulate. If you re-start message delivery, with the startDelivery() method, you should
see all the messages arriving at once.

JMS and Message-Driven Beans

32

7
Container-Managed Persistence

The Duke’s Bank application uses bean-managed persistence (BMP). However, the improvements to container-
managed persistence (CMP) introduced in the EJB 2.0 specification make it unlikely that you would use BMP
in practice. In this chapter we’ll look at the RosterApp example application from the J2EE tutorial which covers
the use of container-managed persistence and relationships. You should read through the CMP tutorial notes
before proceeding so that you have a good overview of the beans and their relationships.

You’ll find the code in j2eetutorial14/examples/ejb/cmproster. The application implements a player roster
for sports’ teams playing in leagues. There are three entity beans PlayerEJB, TeamEJB and LeagueEJB and a
single session bean, RosterEJB, which manipulates them and provides the business methods accessed by the
client application. Only the session bean has a remote interface.

7.1. Building the Example

The EJBs are packaged in two separate JAR files, one for the entity beans and one for the session bean. As be-
fore, we’ve provided an ejb-jar.xml file for each one. You don’t need a jboss.xml file for this example. All
the CMP information needed to build the database schema is included in the standard descriptor. We’ll look at
JBoss-specific customization later.

To compile the code, first make sure you’re in the examples directory. Running the compile-cmp target will
compile all the code in one go.

ant -f jboss-build.xml compile-cmp

Run the following package-team to build the team JAR file which contains the entity beans.

ant -f jboss-build.xml package-team

The package-roster target builds the roster JAR.

ant -f jboss-build.xml package-roster

Both JAR files will be created in the jar directory. Build the client jar using the package-roster-client tar-
get.

ant -f jboss-build.xml package-roster-client

Finally assemble the RosterApp EAR using the assemble-roster target.

ant -f jboss-build.xml assemble-roster

33

7.2. Deploying and Running the Application

Deploying the application is done with the deploy-cmp Ant target.

ant -f jboss-build.xml deploy-cmp

Copy the RosterApp.ear file from the jar directory to the JBoss deploy directory (or run Ant with the de-

ploy-cmp target) and check the output from the server.

17:19:13,603 INFO [EARDeployer] Init J2EE application: file:/Users/orb/java/jboss-4.0.0/s
erver/default/deploy/RosterApp.ear
17:19:14,068 INFO [EjbModule] Deploying RosterBean
17:19:14,320 INFO [EjbModule] Deploying TeamBean
17:19:14,357 INFO [EjbModule] Deploying LeagueBean
17:19:14,383 INFO [EjbModule] Deploying PlayerBean
17:19:14,614 INFO [EJBDeployer] Deployed: file:/Users/orb/java/jboss-4.0.0/server/default
/tmp/deploy/tmp35981RosterApp.ear-contents/roster-ejb.jar
17:19:15,334 INFO [EJBDeployer] Deployed: file:/Users/orb/java/jboss-4.0.0/server/default
/tmp/deploy/tmp35981RosterApp.ear-contents/team-ejb.jar
17:19:15,419 INFO [EARDeployer] Started J2EE application: file:/Users/orb/java/jboss-4.0.
0/server/default/deploy/RosterApp.ear

There are a few things worth noting here. In the Duke’s Bank application, we specified the JNDI name we
wanted a particular EJBHome reference to be bound under in the jboss.xml file. Without that information JBoss
will default to using the EJB name. So the session bean is bound under RosterBean and so on. You can check
these in the JMX Console as before.

The first time you deploy the application, JBoss will automatically create the required database tables. If you
take a look at the database schema (as we did in Section 4.1.7.3), you will see that JBoss has created one table
for each entity bean and an addition join table needed to handle the many-to-many relationship between players
and teams. The table and column names correspond the names of the entity beans and their attributes. If these
names are suitable, you won't need to further refine the schema. In this case we've had to manually map the po-

sition field on PlayerBean to a column named pos because the default column name, position, is a reserved
token in HSQL. The schema is in the jbosscmp-jdbc.xml file.

Note that if you increase the logging level for the org.jboss.ejb.plugins.cmp package (Section 2.2.2) to DE-

BUG, the engine will log the SQL commands which it is executing. This can be useful in understanding how the
engine works and how the various tuning parameters affect the loading of data.

7.2.1. Running the Client

The client performs some data creation and retrieval operations via the session bean interface. It creates
leagues, teams and players which will be inserted into the database. The session bean methods it calls to re-
trieve data are mainly wrappers for EJB finder methods. The command to run the client and the expected output
are shown below.

$ ant -f jboss-build.xml run-cmp
Buildfile: jboss-build.xml

run-cmp:
[java] P10 Terry Smithson midfielder 100.0
[java] P6 Ian Carlyle goalkeeper 555.0
[java] P7 Rebecca Struthers midfielder 777.0
[java] P8 Anne Anderson forward 65.0
[java] P9 Jan Wesley defender 100.0

Container-Managed Persistence

34

[java] T1 Honey Bees Visalia
[java] T2 Gophers Manteca
[java] T5 Crows Orland

[java] P2 Alice Smith defender 505.0
[java] P22 Janice Walker defender 857.0
[java] P25 Frank Fletcher defender 399.0
[java] P5 Barney Bold defender 100.0
[java] P9 Jan Wesley defender 100.0

[java] L1 Mountain Soccer
[java] L2 Valley Basketball

Note that the client doesn’t remove the data, so if you run it twice it will fail because it tries to create entities
which already exist! If you want to run it again you’ll have to remove the data. The easiest way to do this (if
you’re using HSQL) is to delete the contents of the data/hypersonic directory in the server configuration you
are using (assuming you don’t have any other important data in there) and restart the server. We’ve also
provided a simple delete SQL script which you can run with the db-delete target.

ant -f jboss-build.xml db-delete

You could also use SQL commands directly through the HSQL Manager tool to delete the data.

7.3. CMP Customization

There are many ways you can further customize the CMP engine’s behaviour by using the jbosscmp-jdbc.xml

file. It is used for basic information such as the datasource name and type-mapping (Hypersonic, Oracle etc.)
and whether the database tables should be automatically created on deployment and deleted on shutdown. You
can customize the names of database tables and columns which the EJBs are mapped to and you can also tune
the way in which the engine loads the data depending on how you expect it to be used. For example, by using
the read-ahead element you can get it to read and cache blocks of data for multiple EJBs with a single SQL
call, anticipating further access. Eager-loading groups can be specified, meaning that only some fields are
loaded initially with the entity; the others are lazy-loaded if and when they are required. The accessing of rela-
tionships between EJBs can be tuned using similar mechanisms. This flexibility is impossible to achieve if you
are using BMP where each bean must be loaded with a single SQL call. If on top of that you include having to
write all your SQL and relationship management code by hand then the choice should be obvious. You should
rarely, if ever, have to use BMP in your applications.

The details of tuning the CMP engine are beyond the scope of this document but you can get an idea of what’s
available by examining the DTD (docs/dtd/jbosscmp-jdbc_3_2.dtd) which is well commented. There is also
a standard setup in the conf directory called standardjbosscmp-jdbc.xml which contains values for the de-
fault settings and a list of type-mappings for common databases. The beginning of the file is shown below.

<jbosscmp-jdbc>
<defaults>

<datasource>java:/DefaultDS</datasource>
<datasource-mapping>Hypersonic SQL</datasource-mapping>

<create-table>true</create-table>
<remove-table>false</remove-table>
<read-only>false</read-only>
<read-time-out>300000</read-time-out>
<row-locking>false</row-locking>
<pk-constraint>true</pk-constraint>
<fk-constraint>false</fk-constraint>
<preferred-relation-mapping>foreign-key</preferred-relation-mapping>
<read-ahead>

<strategy>on-load</strategy>

Container-Managed Persistence

35

<page-size>1000</page-size>
<eager-load-group>*</eager-load-group>

</read-ahead>
<list-cache-max>1000</list-cache-max>

...

You can see that, among other things, this sets the datasource and mapping for use with the embedded Hyper-
sonic database and sets table-creation to true and removal to false, so the schema will be created if it doesn’t
already exist. The read-only and read-time-out elements specify whether data should be read-only and the
time in milliseconds it is valid for. Note that many of these elements can be used at different granularities such
as per-entity or even on a field-by-field basis (consult the DTD for details). The read-ahead element uses an
on-load strategy which means that the EJB data will be loaded when it is accessed (rather than when the finder
method is called) and the page-size setting means that the data for up to 1000 entities will be loaded with one
SQL command. You can override this either in your own jbosscmp-jdbc.xml file’s list of default settings or by
adding the information to a specific query configuration in the file.

A comprehensive explanation of the CMP engine and its various loading strategies can be found in the full
JBoss Admin. and Development Guide.

7.3.1. XDoclet

Writing and maintaining deployment descriptors is a labour-intensive and error-prone job at the best of times,
and detailed customization of the CMP engine can lead to some large and complex files. If you are using CMP
(or indeed EJBs) in anger then it is worth learning to use the XDoclet code generation engine (ht-
tp://xdoclet.sourceforge.net/). Using Javadoc-style attribute tags you place in your code, XDoclet will generate
the deployment descriptors for you as well as the EJB interfaces and other artifacts if required. It fully supports
JBoss CMP, and though the learning curve is quite steep, its use is thoroughly recommended (almost essential
in fact) for real projects.

Container-Managed Persistence

36

http://xdoclet.sourceforge.net/
http://xdoclet.sourceforge.net/

8
Using other Databases

In the previous chapters, we’ve just been using the JBoss default datasource in our applications. This is
provided by the embedded HSQL database instance and is bound to the JNDI name java:/DefaultDS. Having
a database included with JBoss is very convenient for running examples and HSQL is adequate for many pur-
poses. However, at some stage you will want to use another database, either to replace the default datasource or
to access multiple databases from within the server.

8.1. DataSource Configuration

Database connection management in JBoss is entirely handled by the JCA implementation. So, all databases are
accessed via JCA resource adapters that handle connection pooling, security and transactions.

8.1.1. JDBC-Wrapper Resource Adapters

If there is no proprietary adapter for the database in question then you can configure it to use one of the two JD-
BC-wrapper resource adapters which we mentioned when we were looking at the various services deployed in
JBoss (See Section 2.2.4). Obviously you need a JDBC driver for this to work, and the classes have to be made
available (just copying the driver JAR or ZIP file to the lib directory of the server configuration you are work-
ing with). The main distinction between different datasource configurations is whether they are set up to use the
local or XA-transaction JDBC adapters. The latter option is only available if the JDBC driver in question
provides an implementation of javax.sql.XADataSource, but you can still choose the local option even if an
XADataSource implementation is available (see the two Oracle configuration files for example). There is also a
no-transaction configuration, but you would rarely use this with a database.

8.1.2. DataSource Configuration Files

DataSource configuration file names end with the suffix -ds.xml so that they will be recognized correctly by
the JCA deployer. The docs/example/jca directory contains sample files for a wide selection of databases and
it is a good idea to use one of these as a starting point. For a full description of the configuration format the best
place to look is the DTD file docs/dtd/jboss-ds_1_0.dtd. Additional documentation on the files and the
JBoss JCA implementation can also be found in the JBoss Admin. and Development Guide.

Local-transaction datasources are configured using the local-tx-datasource element and XA-compliant ones
using xa-tx-datasource. The example file generic-ds.xml shows how to use both types and also some of the
other elements that are available for things like connection pool configuration. Examples of both local and XA
configurations are available for Oracle, DB2 and Informix.

If you look at the example files firebird-ds.xml, facets-ds.xml and sap3-ds.xml, you’ll notice that they
have a completely different format, with the root element being connection-factories rather than data-

sources. These use an alternative, more generic JCA configuration syntax used with a pre-packaged JCA re-
source adapter. As we mentioned in Section 2.2.4, the syntax is not specific to datasource configuration and is
used, for example, in the jms-ds.xml file to configure the JMS resource adapter.

37

Next, we’ll work through some step-by-step examples to illustrate what’s involved.

8.2. Using MySQL as the Default DataSource

MySQL is a one of the most popular open source databases around and is used by many prominent organiza-
tions from Yahoo to NASA. The official JDBC driver for it is called Connector/J. For this example we’ve used
MySQL 4.1.7 and Connector/J 3.0.15. You can download them both from http://www.mysql.com .

8.2.1. Creating a Database and User

We’ll assume that you’ve already installed MySQL and that you have it running and are familiar with the ba-
sics. Run the mysql client program from the command line so we can execute some administration commands.
You should make sure that you are connected as a user with sufficient privileges (e.g. by specifying the -u

root option to run as the MySQL root user).

First create a database called jboss within MySQL for use by JBoss.

mysql> CREATE DATABASE jboss;
Query OK, 1 row affected (0.05 sec)

Then check that it has been created.

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+
| jboss |
| mysql |
| test |
+----------+
3 rows in set (0.00 sec)

Next, create a user called jboss with password password to access the database.

mysql> GRANT ALL PRIVILEGES ON jboss.* TO jboss@localhost IDENTIFIED BY 'password';
Query OK, 0 rows affected (0.06 sec)

Again, you can check that everything has gone smoothly.

mysql> select User,Host,Password from mysql.User;
+-------+-----------+------------------+
| User | Host | Password |
+-------+-----------+------------------+
root	localhost	
root	%	
	localhost	
	%	
jboss	localhost	5d2e19393cc5ef67
+-------+-----------+------------------+
5 rows in set (0.02 sec)

8.2.2. Installing the JDBC Driver and Deploying the DataSource

To make the JDBC driver classes available to JBoss, copy the file mysql-connector-java-3.0.15-ga-bin.jar

from the Connector/J distribution to the lib directory in the default server configuration (assuming that is the
configuration you’re running, of course). Then create a file in the deploy directory called mysql-ds.xml with

Using other Databases

38

http://www.mysql.com

the following datasource configuration. The database user name and password corresponds the MySql user we
created in the previous section.

<datasources>
<local-tx-datasource>

<jndi-name>MySqlDS</jndi-name>
<connection-url>jdbc:mysql://localhost:3306/jboss</connection-url>
<driver-class>com.mysql.jdbc.Driver</driver-class>
<user-name>jboss</user-name>
<password>password</password>

</local-tx-datasource>
</datasources>

Because we have added a new JAR file to the lib directory, you will need to JBoss to make sure that the server
is able to find the MySQL driver classes.

8.2.3. Testing the MySQL DataSource

We’ll use the CMP roster application from Chapter 7 to test the new database connection. In order to use
MySql in our application, we'll need to set the datasource name a nd type-mapping in the jbosscmp-jdbc.xml

file in the dd/team directory of the CMP roster application. Edit the file and add the following datasource and
datasource-mapping elements to the defaults element. to mySQL.

<jbosscmp-jdbc>
<defaults>

<datasource>java:/MySqlDS</datasource>
<datasource-mapping>mySQL</datasource-mapping>

</defaults>

<enterprise-beans>
...

</enterprise-beans>
</jbosscmp-jdbc>

After restarting JBoss, you should be able to deploy the application and see the tables being created as we did
in Section 7.2. The tables should be visible from the MySQL client.

mysql> show tables;
+-----------------------------------+
| Tables_in_jboss |
+-----------------------------------+
| LeagueBean |
| PlayerBean |
| PlayerBean_teams_TeamBean_players |
| TeamBean |
+-----------------------------------+
4 rows in set (0.00 sec)

You can see the JMS persistence tables in there too since we’re using MySQL as the default datasource.

8.3. Setting up an XADataSource with Oracle 9i

Oracle is one of the main players in the commercial database field and most readers will probably have come
across it at some point. You can download it freely for non-commercial purposes from http://www.oracle.com

Installing and configuring Oracle is not for the faint of heart. It isn’t really just a simple database, but it is
heavy on extra features and technologies which you may not actually want (another Apache web server, mul-
tiple JDKs, Orbs etc.) but which are usually installed anyway. So we’ll assume you already have an Oracle in-
stallation available. For this example, we’ve used Oracle 10g.

Using other Databases

39

http://www.oracle.com

8.3.1. Padding Xid Values for Oracle Compatibility

If you look in the jboss-service.xml file in the default/conf directory, you’ll find the following service
MBean.

<!-- The configurable Xid factory. For use with Oracle, set pad to true -->
<mbean code="org.jboss.tm.XidFactory"

name="jboss:service=XidFactory">
<!--attribute name="Pad">true</attribute-->

</mbean>

The transaction service uses this to create XA transactions identifiers. The comment explains the situation: for
use with Oracle you have to include the line which sets the attribute Pad to true. This activates padding the
identifiers out to their maximum length of 64 bytes. Remember that you’ll have to restart JBoss for this change
to be put into effect, but wait until you’ve installed the JDBC driver classes which we’ll talk about next.

8.3.2. Installing the JDBC Driver and Deploying the DataSource

The Oracle JDBC drivers can be found in the directory $ORACLE_HOME/jdbc/lib. Older versions, which may be
more familiar to some users, had rather uninformative names like classes12.zip but at the time of writing the
latest driver version can be found in the file ojdbc14.jar. There is also a debug version of the classes with _g

appended to the name which may be useful if you run into problems. Again, you should copy one of these to
the lib directory of the JBoss default configuration. The basic driver class you would use for the non-XA
setup is called oracle.jdbc.driver.OracleDriver. The XADataSource class, which we’ll use here, is called
oracle.jdbc.xa.client.OracleXADataSource.

For the configuration file, make a copy of the oracle-xa-ds.xml example file and edit it to set the correct
URL, username and password.

<datasources>
<xa-datasource>

<jndi-name>XAOracleDS</jndi-name>
<track-connection-by-tx>true</track-connection-by-tx>
<isSameRM-override-value>false</isSameRM-override-value>
<xa-datasource-class>oracle.jdbc.xa.client.OracleXADataSource</xa-datasource-class>
<xa-datasource-property name="URL">

jdbc:oracle:thin:@monkeymachine:1521:jboss
</xa-datasource-property>
<xa-datasource-property name="User">jboss</xa-datasource-property>
<xa-datasource-property name="Password">password</xa-datasource-property>
<exception-sorter-class-name>

org.jboss.resource.adapter.jdbc.vendor.OracleExceptionSorter
</exception-sorter-class-name>
<no-tx-separate-pools/>

</xa-datasource>

<mbean code="org.jboss.resource.adapter.jdbc.xa.oracle.OracleXAExceptionFormatter"
name="jboss.jca:service=OracleXAExceptionFormatter">

<depends optional-attribute-name="TransactionManagerService">
jboss:service=TransactionManager

</depends>
</mbean>

</datasources>

We’ve used the oracle thin (pure java) driver here and assumed the database is running on the host monkeyma-
chine and that the database name (or SID in Oracle terminology) is jboss. We’ve also assumed that you’ve
created a user jboss with all the sufficient privileges. You can just use dba privileges for this example.

SQL> connect / as sysdba
Connected.

Using other Databases

40

SQL> create user jboss identified by password;
User created.
SQL> grant dba to jboss;
Grant succeeded.

Now copy the file to the deploy directory. You should get the following output.

11:33:45,174 INFO [WrapperDataSourceService] Bound connection factory for resource adapter
for ConnectionManager 'jboss.jca:name=XAOracleDS,service=DataSourceBinding to JNDI name
'java:XAOracleDS'

If you use the JNDIView service from the JMX console as before, you should see the name java:/XAOracleDS

listed.

8.3.3. Testing the Oracle DataSource

Again we’ll use the CMP example to test out the new database connection. The jbosscmp-jdbc.xml file should
contain the following.

<jbosscmp-jdbc>
<defaults>

<datasource>java:/XAOracleDS</datasource>
<datasource-mapping>Oracle9i</datasource-mapping>

</defaults>
</jbosscmp-jdbc>

There are other Oracle type-mappings available too. If you’re using an earlier version, have a look in the conf/

standardjbosscmp-jdbc.xml file to find the correct name

Deploy the application as before, check the output for errors and then check that the tables have been created
using Oracle SQLPlus again from the command line.

SQL> select table_name from user_tables;

TABLE_NAME

TEAMBEAN
LEAGUEBEAN
PLAYERBEAN
PLAYERBEAN_TEAMS_TEAM_1OFLZV8

Using other Databases

41

9
Security Configuration

We’ve already seen how to set up simple security when we looked at the Duke’s Bank application
(Section 4.3). We looked at how to enable security by adding a security domain element to the jboss-specific
deployment descriptors and thus linking your application to a configuration in the login-config.xml file.
However we only used simple file based security in that chapter.

In this chapter, we’ll examine some more advanced configuration options and find out how to use some of the
other login modules that are available.

9.1. Security Using a Database

One of the most likely scenarios is that your user and role information is stored and maintained in a database.
JBoss comes with a login module called DatabaseServerLoginModule which just needs some simple configur-
ation options to set it up. You need to supply the following.

• the SQL query to retrieve the password for a specified user

• the query to retrieve a user’s roles

• the JNDI name of the DataSource to be used

This gives you the flexibility to use an existing database schema. Let’s suppose that the security database tables
were created using the following SQ.L

CREATE TABLE Users(username VARCHAR(64) PRIMARY KEY, passwd VARCHAR(64))
CREATE TABLE UserRoles(username VARCHAR(64), userRoles VARCHAR(32))

then to use this as the security database for Duke’s Bank, you would modify the dukesbank entry in the JBoss
login-config.xml file as follows:

<application-policy name="dukesbank">
<authentication>

<login-module code="org.jboss.security.auth.spi.DatabaseServerLoginModule"
flag="required">

<module-option name="dsJndiName">java:/DefaultDS</module-option>
<module-option name="principalsQuery">

select passwd from Users where username=?
</module-option>
<module-option name="rolesQuery">

select userRoles,'Roles' from UserRoles where username=?
</module-option>

</login-module>
</authentication>

</application-policy>

The query to retrieve the password is straightforward. In the case of the roles query you will notice that there is

42

11 You can also use the default schema which is to have a table called Principals with columns PrincipalID and Password and a table
called Roles with columns PrincipalID, Role and RoleGroup. In this case you don’t have to specify the SQL queries for the login module.
The RoleGroup entries for JBoss permissions should be set to the value Roles as before.

an additional field with value Roles which is the role group. This allows you to store additional roles (for
whatever purpose) classified by the role group. The ones which will affect JBoss permissions are expected to
have the value Roles. In this simple example we only have a single set of roles in the database and no role
group information11.

We’ve used the default DataSource here. If you’re using Hypersonic, then you can easily create the tables and
insert some data using the Database Manager tool which we also used in the Duke’s Bank chapter. Just execute
the two commands above and then the following ones to insert the information for the user with customer id
200 and you should be able to login as before.

INSERT INTO Users VALUES(‘200’,’j2ee’)
INSERT INTO UserRoles VALUES(‘200’,’BankCustomer’)

9.2. Using Password Hashing

The login modules we’ve used so far all have support for password hashing; rather than storing passwords in
plain text, a one-way hash of the password is stored (using an algorithm such as MD5) in a similar fashion to
the /etc/passwd file on a UNIX system. This has the advantage that anyone reading the hash won’t be able to
use it to log in. However, there is no way of recovering the password should the user forget it, and it also makes
administration slightly more complicated because you also have to calculate the password hash yourself to put
it in your security database. This isn’t a major problem though. To enable password hashing in the database ex-
ample above, you would add the following module options to the configuration

<module-option name="hashAlgorithm">MD5</module-option>
<module-option name="hashEncoding">base64</module-option>

This indicates that we want to use MD5 hashes and use base64 encoding to covert the binary hash value to a
string. JBoss will now calculate the hash of the supplied password using these options before authenticating the
user, so it’s important that we store the correctly hashed information in the database. If you’re on a UNIX sys-
tem or have Cygwin installed on Windows, you can use openssl to hash the value.

$ echo -n "j2ee" | openssl dgst -md5 -binary | openssl base64
glcikLhvxq1BwPBZN0EGMQ==

You would then insert the resulting string, glcikLhvxq1BwPBZN0EGMQ==, into the database instead of the plain-
text password, j2ee. If you don’t have this option, you can use the class org.jboss.security.Base64Encoder

which you’ll find in the jbosssx.jar file.

$ java -classpath ./jbosssx.jar org.jboss.security.Base64Encoder j2ee MD5
[glcikLhvxq1BwPBZN0EGMQ==]

With a single argument it will just encode the given string but if you supply the name of a digest algorithm as a
second argument it will calculate the hash of the string first.

Security Configuration

43

10
Using Hibernate

Hibernate is a popular persistence engine that provides a simple, yet powerful, alternative to using standard en-
tity beans. Hibernate runs in almost any application server, or even outside of an application server completely.
However, when running inside of JBoss, you can choose to deploy your application as a Hibernate archive,
called a HAR file, and make Hibernate's simple usage even simpler. JBoss can manage your Hibernate session
and other configuration details, allowing you to use Hibernate objects with minimal setup.

In this chapter, we will return the CMP roster application from Chapter 7 and show how to access the roster
database tables with Hibernate. We'll demonstrate how to create a HAR file to package your Hibernate objects,
and then we'll show how to access them from a web application in a WAR file. The entire project will be
bundled in an EAR file, just like all of our previous examples.

The code for this section is in the examples/hibernate directory. However, the Hibernate example here is in-
tended to be run along side of the CMP roster application in Chapter 7. If you don't have the roster application
deployed, go back and follow the instructions there. Make sure that you follow the instructions for creating the
database schema and populating the database. We will be using the schema and data from that task.

Also, please keep in mind that we'll only be looking at the steps required to deploy a Hibernate application in
JBoss. If you need a more general guide to Hibernate, we recommend Hibernate in Action by Christian Bauer
and Gavin King (Manning, 2004).

10.1. Creating a Hibernate archive

The Hibernate portion of the application consists of a single Java class, org.jboss.roster.Player, that maps
onto the PlayerBean entity bean from the CMP roster application. The Player object is a simple POJO object
with no direct coupling to Hibernate. The details of the Hibernate mapping are specified in the Player.hbm.xml

file, shown below.

<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 2.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>
<class name="org.jboss.roster.Player" table="PlayerBean">

<id name="id" type="string" column="playerID">
<generator class="assigned" />

</id>

<property name="position" type="string" column="POS" />
<property name="name" type="string" column="name" />
<property name="salary" type="float" column="salary" />

</class>
</hibernate-mapping>

In addition to the Player object and its mapping file, we also need to provide a hibernate-service.xml file
that creates an MBean that will manage the Hibernate configuration. The following is the hibernate-ser-

vice.xml files we are using.

44

<server>
<mbean code="org.jboss.hibernate.jmx.Hibernate"

name="jboss.har:service=Hibernate">
<attribute name="DatasourceName">java:/DefaultDS</attribute>
<attribute name="Dialect">net.sf.hibernate.dialect.HSQLDialect</attribute>
<attribute name="SessionFactoryName">java:/hibernate/SessionFactory</attribute>
<attribute name="CacheProviderClass">

net.sf.hibernate.cache.HashtableCacheProvider
</attribute>
<!-- <attribute name="Hbm2ddlAuto">create-drop</attribute> -->

</mbean>
</server>

This configuration information should be familiar to any Hibernate user. The JBoss specific details are the
mapping to our java:/DefaultDS and the JNDI location where we want our Hibernate SessionFactory bound.

To compile the project and build the hibernate archive, use the compile and package-har Ant targets.

ant -f jboss-build.xml compile
ant -f jboss-build.xml package-har

The contents of the create HAR file look like the following:

$ jar tf jar/roster.har
META-INF/
META-INF/MANIFEST.MF
META-INF/hibernate-service.xml
org/
org/jboss/
org/jboss/roster/
org/jboss/roster/Player.class
org/jboss/roster/Player.hbm.xml

Experienced Hibernate users may be wondering where we've told Hibernate what our persistent objects are.
The Hibernate deployer determines the set of persistent objects by searching the HAR file for hibernate map-
ping files. All hibernate objects found are added to the configuration with no further effort required.

10.2. Using the hibernate objects

By deploying the Hibernate archive, we have created a fully configured SessionFactory for use in other parts
of our application. In this example, we have created a simple JSP which creates a Session from the Session-

Factory and issues a query directly. Normally it would be preferable to put the Hibernate access code in a ser-
vlet or in a session bean, but for example purposes we'll keep the code together in the JSP. For reference, the
following code fragment shows how we are accessing the Hibernate session in the JSP.

InitialContext ctx = new InitialContext();
SessionFactory factory = (SessionFactory)

ctx.lookup("java:/hibernate/SessionFactory");
Session hsession = factory.openSession();
try {

request.setAttribute("players",
hsession.find("from org.jboss.roster.Player order by name"));

} finally {
hsession.close();

}

To package our complete web application, use the package-web Ant target.

ant -f jboss-build.xml package-web

Using Hibernate

45

This creates roster.war in the jar directory containing our simple web application.

10.3. Packaging the complete application

Next, we need to package the entire application into an EAR file. The assemble Ant target does this.

ant -f jboss-build.xml assemble

This creates the HibernateRoster.ear file. The contents of the EAR file our our roster.har and roster.war

files, along with the appropriate deployment descriptors.

$ jar tf jar/HibernateRoster.ear
META-INF/
META-INF/MANIFEST.MF
META-INF/application.xml
META-INF/jboss-app.xml
roster.har
roster.war

Just as we need to declare the WAR file in the application.xml file, we also need to declare the HAR file.
However, since Hibernate archives are not a standard J2EE deployment type, we need to declare it in the
jboss-app.xml file.

<!DOCTYPE jboss-app PUBLIC "-//JBoss//DTD J2EE Application 1.4//EN"
"http://www.jboss.org/j2ee/dtd/jboss-app_4_0.dtd">

<jboss-app>
<module>

<har>roster.har</har>
</module>

</jboss-app>

Now our application is ready to be deployed.

10.4. Deploying Running the application

Once the EAR file is created, we need to deploy it using the deploy Ant target. This copies the EAR file to the
appropriate JBoss deploy directory.

ant -f jboss-build.xml deploy

The deployed application can be accessed at http://localhost:8080/roster/players.jsp. When the page is loaded,
you will see a list of players sorted by name. If you don't see any data, make sure that you have deployed the
CMP roster application from Chapter 7 and run it to populate the tables with the shared player data.

Using Hibernate

46

http://localhost:8080/roster/players.jsp

A
The Web Console

Throughout this guide, we have been using to the JMX Console web application to inspect and manage the
server. However there is another management console application which offers extended functionality such as
live graphs, alerts, and statistics on deployed J2EE components such as EJBs and servlets.

The URL for the web console is http://localhost:8080/web-console. You will get more out of it if you have
some applications deployed and been running them to accumulate some statistics. For example, with the
Duke’s Bank application deployed you’ll see something like Figure A.1, which shows the statistics for the Ac-
countController stateful session bean. The invocation statistics are self-explanatory; you have a list of methods
and the max, min, average time per invocation as well as the total time spent in the method and the number of
invocations. The number of concurrent invocations is shown underneath the table of methods.

The information in the Bean Statistics section shows information on the bean instance numbers. The details
vary depending on the type of bean and the possible values are shown in Table A.1. For a complete description
of the bean states (method-ready, pooled, ready etc.) see the EJB specification.

Figure A.1. Web Admin. Console Showing Stateful Session Bean Statistics.

Table A.1. Bean Statistics Data

Stateless Session Bean Description

MethodReadyCount Number of beans in the method-ready state.

47

http://localhost:8080/web-console

CreateCount Number of times the create method has been called.

RemoveCount Number of times the remove method has been called.

Stateful Session Bean

MethodReadyCount The number of beans in the method-ready state.

CreateCount The number of beans that have been created

RemoveCounta The number of beans that have been explicitly re-
moved.

PassiveCount The number of beans that have been passivated by the
container.

Entity Bean

CreateCount Number of entities that have been created by calls to
create method.

RemoveCount Number of entities that have been removed (deleted)
by calling remove method.

ReadyCount Number of beans that are in the ready state, assigned
an entity object and ready to handle invocations.

PooledCount Number of beans in the pooled state. JBoss doesn’t
use entity instance pooling so this will be zero.

aNote that the RemoveCount may not equal CreateCount over time as the beans may be passivated and then time-out with the remove meth-
od being called.

The web-console isn’t a pure web application but uses a Java applet for the tree view on the left-hand side. So
you’ll need to have the Java plugin installed and have Java enabled to make it work.

The Web Console

48

B
Further Information Sources

For comprehensive JBoss documentation covering advanced JBoss topics, see JBoss Admin. and Development
Ghashtuide, available at http://www.jboss.org/docs/index.

For information on how to run clustered JBoss servers for performance and high availability, see JBoss Cluster-
ing (Sacha Labourey and Bill Burke) also available at http://www.jboss.org/docs/index

For general EJB instruction, with thorough JBoss coverage, see Enterprise JavaBeans, 4th Edition. (O'Reilly,
2004. Richard Monson-Haeful, Bill Burke, Sacha Labourey)

For additional, but dated, EJB instruction, we also recommend the classic Mastering Enterprise JavaBeans,
Second Edition. (Wiley, 2001. Ed. Roman et al.) A free PDF version of the first edition is available online at ht-
tp://www.theserverside.com/books/masteringEJB/index.jsp.

For complete coverage of the new J2EE 1.4 web services, see J2EE Web Services. (Addison-Wesley, 2003. hi
Richard Monson-Haefel)

For more information about using XDoclet to simplify J2EE development, see XDoclet in Action. (Manning,
2003. Craig Walls, Norman Richards)

To learn more about Hibernate, see Hibernate in Action. (Manning, 2004. Christian Bauer, Gavin King)

49

http://www.jboss.org/docs/index
http://www.jboss.org/docs/index
http://www.theserverside.com/books/masteringEJB/index.jsp
http://www.theserverside.com/books/masteringEJB/index.jsp

	Getting Started with JBoss 4.0
	Table of Contents
	Foreword
	Target Audience
	What this Book Covers
	Chapter 1. Getting Started
	1.1. Downloading and Installing JBoss
	1.2. Starting the Server
	1.3. The JMX Console
	1.4. Stopping the Server
	1.5. Running as a Service

	Chapter 2. The JBoss Server - A Quick Tour
	2.1. Server Structure
	2.1.1. Main Directories
	2.1.2. Server Configurations

	2.2. Basic Configuration Issues
	2.2.1. Core Services
	2.2.2. Logging Service
	2.2.3. Security Service
	2.2.4. Additional Services

	2.3. The Web Container - Tomcat

	Chapter 3. About the Example Applications
	3.1. The J2EE Tutorial
	3.2. What’s Different?
	3.2.1. Container-Specific Deployment Descriptors
	3.2.2. Database Changes
	3.2.3. Security Configuration

	3.3. J2EE in the Real World

	Chapter 4. The Duke’s Bank Application
	4.1. Building the Application
	4.1.1. Preparing the Files
	4.1.2. Compiling the Java Source
	4.1.3. Package the EJBs
	4.1.4. Package the WAR File
	4.1.5. Package the Java Client
	4.1.6. Assembling the EAR
	4.1.7. The Database
	4.1.7.1. Enabling the HSQL MBean and TCP/IP Connections
	4.1.7.2. Creating the Database Schema
	4.1.7.3. The HSQL Database Manager Tool

	4.1.8. Deploying the Application

	4.2. JNDI and Java Clients
	4.2.1. The jndi.properties File
	4.2.2. Application JNDI Information in the JMX Console

	4.3. Security
	4.3.1. Configuring a Security Domain
	4.3.2. UsersRolesLoginModule Files
	4.3.3. The J2EE Security Model
	4.3.3.1. Authentication
	4.3.3.2. Access Control (Authorization)

	Chapter 5. J2EE Web Services
	5.1. Web services in JBoss
	5.2. Duke’s Bank as a Web Service
	5.3. Running the Web Service Client
	5.4. Network Traffic Analysis

	Chapter 6. JMS and Message-Driven Beans
	6.1. Building the Example
	6.1.1. Compiling and Packaging the MDB and Client
	6.1.1.1. Specifying the Source Queue for the MDB

	6.2. Deploying and Running the Example
	6.2.1. Running the Client

	6.3. Managing JMS Destinations
	6.3.1. The jbossmq-destinations-service.xml File
	6.3.2. Using the DestinationManager from the JMX Console
	6.3.3. Administering Destinations

	Chapter 7. Container-Managed Persistence
	7.1. Building the Example
	7.2. Deploying and Running the Application
	7.2.1. Running the Client

	7.3. CMP Customization
	7.3.1. XDoclet

	Chapter 8. Using other Databases
	8.1. DataSource Configuration
	8.1.1. JDBC-Wrapper Resource Adapters
	8.1.2. DataSource Configuration Files

	8.2. Using MySQL as the Default DataSource
	8.2.1. Creating a Database and User
	8.2.2. Installing the JDBC Driver and Deploying the DataSource
	8.2.3. Testing the MySQL DataSource

	8.3. Setting up an XADataSource with Oracle 9i
	8.3.1. Padding Xid Values for Oracle Compatibility
	8.3.2. Installing the JDBC Driver and Deploying the DataSource
	8.3.3. Testing the Oracle DataSource

	Chapter 9. Security Configuration
	9.1. Security Using a Database
	9.2. Using Password Hashing

	Chapter 10. Using Hibernate
	10.1. Creating a Hibernate archive
	10.2. Using the hibernate objects
	10.3. Packaging the complete application
	10.4. Deploying Running the application

	Appendix A. The Web Console
	Appendix B. Further Information Sources

