The Professional
Open Source Company

Getting Started with JBoss 4.0

Release 2

Copyright © 2004 JBoss, Inc.

Table of Contents

0] =Yoo PSR iv
I 0 L= A o 1= o= \;
What thiSBOOK COVEI'Seiiiiiiiiie ittt ettt ettt et e e e et bt e e e nb bt e e e enbe e e e e snbbe e e e annaneee s Vi
L. GEIING SEAIMEH ...t e e e e e e e s 1
1.1. Downloading and INStAlliNg JBOSScccuuiiiiiieee ittt e e e s et e e e e e e s st e e e e e e e e e ennneees 1

1.2, SEAITING TNE SEIVET ..t e e e e e e e et r e e s e e e e e nnnneeas 1

I T I L= 1Y Q0 =" = SR 1

1.4, StOPPING ThE SEIVEL ...t e e et e e ab e e e e nnnne s 3

1.5, RUNNING @S @ SEIVICE ...uuuuiiiiiiiiiiii i aasnsnsnsasnsssnsnsnsnsnnnsnnnsnsnsnnnsnnnnnnns 3

2. The IB0oss SErver - A QUICK TOUKccceeeeeee e 4
2.0 SEIVEN SITUCIUI ... 4
2.1 1 MaN DITECLOMES ...eviiiiiiiiieeiiiiee ettt e ettt e e et e ettt e e e e e e st e e e s snbae e e e e nnnneeeeenees 4

2.1.2. ServVer CONFIGUIALTONSeieiiiiiieeeiiiiiee e ettt e e et e et e et e e e st e e s st e e e e nnnne e e e e nees 5

2.2. Basic Configuration ISSUEScooeeiie e 7
2.2.0. COME SEIVICES ..ottt et e e e s ettt e e e e e e e s e e et e e e s s aa sttt eeeaaeeesassntaaeeeaaeessanntnraneeaens 7

WA o o [a0 = Vol P 7

2.2.3. SECUNMLY SEIVICE ..uuuiiiiiiiiie ettt e e e e s e e e e e e e e e s e st e e e e e e e s s anntaraaeeaeas 8

224, AQAItIONGl SEIVICES ...eeeiiiee ettt s e r e e e e s e st e e e e e e e e aenenraeeeeens 9

2.3. The Web COoNtaiNer - TOMCELcceiiiriieeiiiiieeeeiiteeeeesieeeeeasttee e s ssnteeee s sseeeeessnaeeeeesnsaeeeeans 12

3. About the EXample APPIICELIONSciiuuiiieiiiiiie et e e 13
TN I TN 122 1o - PSPPSR 13

3.2. What' S DIfEIENL? ... e e e e s e r e e e e e e s e atbrareeaaaeeeans 13
3.2.1. Container-Specific Deployment DESCIPLOIScovreeeiiiiiiiiiiiie e 13

3.2.2. Database ChanQESvvviiiiiee ittt e e e e e e e e e e e s et r e e e e e e e e e nnrnees 14

3.2.3. Security CONFIGUIALTONoiiiiiiiieiiiiiie et e s e e e e 14

3.3. 2EE iNthe REal WOITAooiiiiiiiiie ettt snrnee e 14

4. The DUKE S BanK APPIICAIIONuviiiiiiiiiie ettt e e e e e e e e e e s snbeeeeean 15
7 I = 101 Vo [g To T g T3 AN o] L o= 1o o 15
4.1.1. Preparing thE FIlEScooieiie e 15

4.1.2. Compiling the JAVA SOUICEceeieiiiiee et e e e e e e e 15

4.1.3. Packagethe EJIBScoviiiiiiie ettt 16

4.1.4. Package the WAR FIloooiiiee et 16

4.1.5. Packagethe Java ClIENtcocciiiiiiiii e e 16

4.1.6. AsSembling the EAR ...t 16

4.1.7. TNEDEADASE ...eeeiuvveeeeeiiiiee e et e ettt e e et e e e st e e e et e e e e sntte e e e anneeeeeeanbeeeeennreeeeeans 16

4.1.7.1. Enabling the HSQL MBean and TCP/IP CONNECtionsccccoeecvvvveveeeeenns 17

4.1.7.2. Creating the Database SChemaLcooiiiiiiiiiiiiceeee e 17

4.1.7.3. The HSQL Database Manager TOOIccccuvieiiieeeiiiiiiieeee e 18

4.1.8. Deploying the APPlICALIONoviiiiiiiieiiie et 18

4.2. INDI @N0 JAVA CHIENES ..ottt et e e sttt e e e s s e e e e enae e e e s nnnneeeeans 19
4.2.1. The jndi.propertiE@S Filecooi i 19

4.2.2. Application INDI Information inthe IMX Consoleccovvvvveviieiiviieveveeeeeeeeeeeeeee 20

G TS = ol 1 SRR 22
4.3.1. Configuring a SeCUrity DOMEINoeeeiiiiieeeiiiie e 22

4.3.2. UsersRolesLoginModUIE FIlESueiiiiiii e 23

4.3.3. The J2EE SeCurity MOUE!ooiiiiiiiiiie ettt 23

4.3.3.1. AULNENLICALIONeveieeeiiiiie et e e e e s e e e e nnneeeeeans 23

4.3.3.2. Access Control (AULNOMIZaLION)eeeiiiiiiieeiiiee e 24

Getting Started with JBoss 4.0

5. J2EE WED SEIVICESveeeeiiiiiie e it e e ettt e e e sttt e e ettt e e e et e e e e etae e e e e s sss e e e e e nsteaeeeasseeeeeanneaaeeanssnneeaans 25
5.1, WED SEIVICES TN JBOSSvveiieiiiiiiieeiiittieeesitieee e s sibeee e s sstteee e s sntae e e e snbe e e e s snbaeeeesannaeeeeennsneeeeans 25

5.2. DUKE SBaNK @S @WED SEIVICEuvveiiiiie e ittt e e et e e e e e e e s snntraaeeeaaaeeeans 25

5.3. Runningthe Web Service Client ..., 27

5.4. NetWOIK TraffiC ANBIYSIS ...ooiiiiiiiieiiiiiee ettt be e e e 28

6. IMS and Message-DIriVEN BEANSooiiii ittt e e e et e e e e e e e e nnnaeeeeeeas 30
6.1. BUIAING thE EXAMPIE ...eeeiiee ettt e s s e e e e e e et ere e e e e e e e e ans 30
6.1.1. Compiling and Packaging the MDB and Clientcoooiiiiiiiiiiiieeiieee e 30

6.1.1.1. Specifying the Source Queue for the MDBooocciiiiiiiiiii e, 30

6.2. Deploying and RUNNIiNG the EXaMPIEociiiiiiiiiice e 31
6.2.1. Runningthe Client ... 31

6.3. Managing IMS DESIINGLIONSccceiiiiiieiiiiiieeeeite e ettt e et e et e et e e e s e e e e snbneeeean 31
6.3.1. The jbossmg-destinations-serviceXml File ... 31

6.3.2. Using the DestinationM anager from the IMX Consolecccccvvveieeeeeiiiicciiineeenn. 32

6.3.3. AdMINIStEring DESIINALIONSccoiiiiiiieiiiiiie et 32

7. Container-Managed PEFSISEENCEuviiiii e e e e et e s 33
7.1 BUilding the EXAMPIEooiiie e 33

7.2. Deploying and Running the Application ..., 34
7.2.1. RUNNING thE CHIENTeeeeiiie e e e e e e e e e e e rareeeeas 34

7.3. CMP CUSLOMIZALIONeeeeiiieeeieiiiiei et e ettt e e e e e e ettt e e e e e e e s s st aeeeaaeeeeaansseneeeeaaeeaans 35
4 To = PRSP 36

8. USING OthEr DELAIDESESeveiieiiiieie ettt e et e e e et e e e e an e e e anbrneeeans 37
8.1. DataSource ConfigUIalionccc.uueiiiiie e e s e e e e e s et e e e e e e e s e satbreaeeeeaeeeaan 37
8.1.1. IDBC-Wrapper RESOUICE ATBPLEN'Scouveieeiiiiiie sttt 37

8.1.2. DataSource Configuration FIles ... 37

8.2. Using MySQL asthe Default DalaSOUICEcivveeiiiiiiiiiiiieiee e s esctree e e e e e e s ssirrereeaae e e 38
8.2.1. Creating aDatabase a0 USEYooiiiiiiiiiiiiiieec e 38

8.2.2. Installing the JDBC Driver and Deploying the DataSourcecccocceeeeeeeiiccivvneennn. 38

8.2.3. Testing the MySQL DaLaSOUICEcccoiiuurieiiiiiiieeiiiee et e s e 39

8.3. Setting up an XADataSource With OraCle 9iooiiiiiiiiiieiiie e 39
8.3.1. Padding Xid Vauesfor Oracle Compatibilityccccoeiriiiiiiiiiiieeeiieee e 40

8.3.2. Installing the JIDBC Driver and Deploying the DataSourcecccooeeeeeeeeeeeeeeee. 40

8.3.3. Testing the Oracle DaaSOUICEcccoiiiiiuiiieiieeee et e e s e e e e e eeaeas 41

9. SeCUNity CONFIGUIELIONeeeiieiiiiee ettt et e e e e e e s e e e abn e e e e s anr e e e e e nnbrneeeans 42
9.1. Security USiNg aDatalbasecccvveiiiiieiiiiciiiie e a e 42

9.2. USING PassWOrd HBSNINGcooiuiiiieiiiiie et e e 43

10. USING HIDEINGLE ... s annsnsnsnnnsssnsnsnnnnnnnnnnnnnn 44
10.1. Creating @aHIbErNate @rChiVEeeiiiiiiiieeiiie e 44

10.2. Using the hibernate ObJECEScooiiiiiiieie e e 45

10.3. Packaging the complete appliCationeceiieiiiiiiiiiiei e e 46

10.4. Deploying Running the @ppliCationoooueiieiiiiiie e 46

AL THEWED CONSOIE ...ttt e ettt e e e et e e e et e e e e st e e e e e ansbeeeeannneeeas 47
B. FUrther INfOrmation SOUMCESuuuiiiiiee ittt e e s e et e e e e e e e s st e e e e e e e e s e nsntaaeeaaeeeesannnssaneeeeens 49

Foreword

JBoss started out as an EJB container and has evolved over several years into afully fledged application server.
While the architecture has grown to support many new software technologies and additional features, there has

always been an emphasis on the implementation of the J2EE standards, regardless of whether official certifica-
tion has been achieved or not.

For the foreseeable future, JBoss will continue to be, first and foremost, a J2EE application server.

Target Audience

The goal of this book isto get you up and running J2EE 1.4 applications on JBoss 4.0 as quickly as possible. At
the time of writing, the latest release is version 4.0.0. Y ou should use this version or later with the examples.
We will use Sun’s J2EE 1.4 tutorial examples (http://java.sun.com/j2ee/1.4/docs/tutorial/doc/) to illustrate the
deployment and configuration of J2EE applications in JBoss. While the book is not intended to teach you J2EE,
we will be covering the subject from quite a basic standpoint, so it will still be useful if you are new to J2EE. If
you would like to use JBoss to run the standard Sun J2EE tutorials then this is the book for you. It should
ideally beread in parallel with the tutorial texts.

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/

What this Book Covers

We will cover downloading and installation and see how to start JBoss. Then we'll have a quick tour of the
server directory structure and layout, the key configuration files and services.

Moving on to the examples, we'll 1ook at how to deploy the Duke's Bank application from the Sun J2EE Tu-
torial. Thiswill let you see JBoss in action as quickly as possible and also gives you a chance to get some prac-
tical experience of simple configuration and deployment issues. Further chapters cover other J2EE topics which
aren’'t used in Duke's Bank: JMS Messaging (and Message-Driven Beans) and container-managed persistence
(CMP). These also make use of the J2EE tutorial examples.

Chapter 5 covers web services. We work through how to expose EJB methods from the Duke's Bank applica
tion through web services and then call them with a Java client.

Configuration of databases is an important issue and this is covered in Chapter 8. We aso work through some
step-by-step examples.

In Chapter 9 we look at some more advanced security configuration options.

Suggestions for additional topics are always welcome.

Vi

Getting Started

1.1. Downloading and Installing JBoss

The JBoss application server is available as a free download from the JBoss website. (ht-
tp://www.jboss.org/downloads/index) We provide both a binary and source distribution, but if you are just get-
ting started with JBoss, stick to the binary distribution, which can be run straight out of the box.

The binary versions are available as either . zip, .tar. gz, . bz2 files. The contents are the same so grab
whichever flavor is most convenient for the platform you're running on. Once it's downloaded, unpack the
archive to a suitable location on your machine. It should all unpack into a single directory named j boss- 4. 0. 0.
Of course the version number suffix will be different if you are running alater release. Make sure you don't use
a directory which has any spaces in the path (such as the Program Fi | es directory on Windows) as this may
cause problems.

The only additional requirement to run JBoss is to have an up-to-date version of Java on your machine. JBoss
4.0 requires at least a 1.4 JDK to run. Make sure to get the JDK and not the JRE. Although JBoss will startup
with the JRE only, you'll experience problems compiling JSPs with it. You should also make sure the
JAVA_HOME environment variableis set to point to your JDK installation.

1.2. Starting the Server

Our first step isto try running the server. You'll find abi n directory inside the main JBoss directory which con-
tains various scripts. Execute the run script (run. bat if you're on Windows, run. sh if you're on Linux, OS X,
or another UNIX-like system). Y ou should then see the log messages from all the JBoss components as they are
deployed and started up. The last message (obviously with different values for the time and start-up speed)
should look like the following.

11:29: 39,944 INFO [Server] JBoss (MX McroKernel) [4.0.0 (build: CVvSTag=JBoss_4_0_0 date=
200409200418)] Started in 1m 18s:941ms

Y ou can verify that the server is running by going the JBoss web server, which is running on port 8080. (Make
sure you don't have anything else already on your machine using that port) The default page has links to a few
useful JBOSs resources.

1.3. The JIMX Console

You can get a live view of the server by going to the JMX console application at ht-
tp://local host:8080/jmx-console 1 v ou should see somethi ng similar to Figure 1.1.

This is the JBoss Management Console which provides a raw view of the IMX MBeans which make up the

1 Note that on some machines, the name I ocal host won't resolve properly and you should use the local loopback address 127.0.0.1 in-
stead.

http://www.jboss.org/downloads/index
http://www.jboss.org/downloads/index
http://localhost:8080/jmx-console
http://localhost:8080/jmx-console

Getting Started

server. You don't really need to know much about these to begin with, but they can provide alot of information
about the running server and allow you to modify its configuration, start and stop components and so on.

For example, find the ser vi ce=JNDI Vi ewlink and click on it. This particular MBean provides a service to alow
you to view the structure of the INDI namespaces within the server. Now find the operation called 1i st near
the bottom of the MBean view page and click the i nvoke. The operation returns a view of the current names
bound into the JNDI tree, which is very useful when you start deploying your own applications and want to
know why you can’t resolve a particular EJB name.

B O (&) JBoss JMX Management Console |
|
I

[_] u [_] € http: //localhost: 8080/ jmx-console, Q- Coogle b
I_lBuss JMX Management Co... F = —_?
0

JMX Agent View toki.local

ObjectMame Filter (e.g. "jboss:*", "*:service=invoker, *") :
I’Appl‘fFiltEr"

Catalina
- tgpe=5erver
JMImplementation

* pname=Default.servicesLoaderRepository
* type=MBeanRegistry
s type=MBeanServerDelegate

jboss

database=localDB.servicesHypersonic
name=PropertyEditorManager.type=Service
name=3SystemProperties.type=3ervice
readonly=true.service=invoker.target=Naming.type=http
service=AttributePersistenceService
service=ClientUserTransaction
service=EJBTimerService
service=EJBTimerServiceRetryPolicy

&= =) J4 >

L I I

Figure 1.1. View of the IM X Management Console Web Application

Look at some of the other MBeans and their listed operations; try changing some of the configuration attributes
and see what happens. With afew exceptions, none of the changes made through the console are persistent. The
original configuration will be reloaded when you restart JBoss, so you can experiment freely and shouldn’t be
able to do any permanent damage.

Getting Started

1.4. Stopping the Server

To stop the server, you can type Ctrl-C or you can run the shutdown script from the bi n directory. Alternat-
ively, you can use the management console (look for t ype=Ser ver under the section j boss. syst emand invoke
the shut down operation).

1.5. Running as a Service

In area deployment scenario, you won't want to stop and start JBoss manually but will want it to run in the
background as a service or daemon when the machine is booted up. The details of how to do this will vary
between platforms and will require some system administration knowledge and root privileges.

On Linux or other UNIX-like systems, you will have to install a startup script (or get your system administrator
to do it). There are examples in the JBoss bin directory called jboss_init_redhat.sh and
j boss_i ni t _suse. sh which you can modify and use. On a Windows system, you can use a utility like Javaser-
vice? to manage JBOss as a system service.

2Javaservice isfreely available from http://www.al exandriasc.com/software/JavaService/index.html .

http://www.alexandriasc.com/software/JavaService/index.html

The JBoss Server - A Quick Tour

2.1. Server Structure

Now that you've downloaded JBoss and have run the server for the first time, the next thing you will want to
know is how the installation is laid out and what goes where. At first glance there seems to be a lot of stuff in
there, and it's not obvious what you need to look at and what you can safely ignore for the time being. To rem-
edy that, we'll explore the server directory structure, locations of the key configuration files, log files, deploy-
ment and so on. It's worth familiarizing yourself with the layout at this stage as it will help you understand the
JBoss service architecture so that you'll be able to find your way around when it comes to deploying your own
applications.

2.1.1. Main Directories

The binary distribution unpacks into a top-level j boss- 4. 0. 0 directory. There are four sub-directories immedi-
ately below this:

e bin: contains startup and shutdown and other system-specific scripts. We've already seen the run script
which starts JBoss.

e client: stores configuration and JAR files which may be needed by a Java client application or an external
web container. Y ou can select archives as required or usej bossal | -client.jar.

¢ docs: containsthe XML DTDs used in JBoss for reference (these are also a useful source of documentation
on JBoss configuration specifics). There are also example Jcad configuration files for setting up data
sources for different databases (such as MySQL, Oracle, Postgres)4.

« lib: JAR files which are needed to run the JBoss microkernel. Y ou should never add any of your own JAR
files here.

e server: each of the subdirectories in here is a different server configuration. The configuration is selected
by passing - ¢ <confi g- name> to the run script. We'll look at the standard server configurations next.

8 J2EE Connector Architecture - provides a standard for providing connectivity between application servers and existing Enterprise Inform-
ation Systems (EIS).

JBoss comes with an embedded instance of the free Hypersonic database and there is a corresponding datasource set up in the default
configuration. If you want to use another database then you have to add the appropriate JCA configuration information. We'll see how to
do thislater.

The JBoss Server - A Quick Tour

806 "I jboss-4.0.0 -
| Mame
» & bin
» [client
» [F docs
| jar-versions.xml
» [lib
v [server
» [F all
v [default
» [# conf
» [data
» [F deploy
> [lib
» [F log
» [tmp
> [F work
» [minimal
&) = Tv 2

Figure 2.1. JBoss Directory Structure

2.1.2. Server Configurations

Fundamentally, the JBoss architecture consists of the IMX MBean server, the microkernel, and a set of plug-
gable component services, the MBeans. This makes it easy to assemble different configurations and gives you
the flexibility to tailor them to meet your requirements. Y ou don’'t have to run alarge, monolithic server all the
time; you can remove the components you don’'t need (which can aso reduce the server startup time consider-
ably) and you can aso integrate additional services into JBoss by writing your own MBeans. You certainly
don’t need to do this to be able to run standard J2EE applications though. Everything you need is already there.
Y ou don’t need a detailed understanding of IMX to use JBoss, but it's worth keeping a picture of this basic ar-
chitecturein mind asit is central to the way JBoss works.

Within the ser ver directory, there are four example server configurations: al | , def aul t, st andard and ni ni m
al , each of which provides a different set of services. Not surprisingly, the default configuration is the one
used if you don’'t specify another one when starting up the server, so that’s the one we were running in the pre-
vious chapter. It is the J2EE 1.4 certified configuration, and contains everything you need to run a stand-alone
J2EE server. The other configurations are explained below.

« minimal: the bare minimum required to start JBoss. It starts the logging service, a INDI server and a URL
deployment scanner to find new deployments. Thisis what you would use if you want to use IM X/JBoss to
start your own services without any other J2EE technologies. This is just the bare server. There is no web
container, no EJB or JM S support.

The JBoss Server - A Quick Tour

e standard: thisis the base J2EE 1.4 compliant configuration and is similar to the def aul t configuration in
JBoss 3.2. It does not include the JAXR service, the [1OP service, or any of the clustering services.

e all: starts al the available services. This includes the RMI/IIOP and clustering services, which aren’t loaded
in the default configuration.

Y ou can add your own configurations too. The best way to do thisis to copy an existing one that is closest to
your needs and modify the contents. For example, if you weren't interested in using messaging, you could copy
the def aul t directory, renaming it as nyconfi g, remove thej ms subdirectory and then start JBoss with the new
configuration.

run -c nyconfig

The directory server configuration you're using, is effectively the server root while JBossis running. It contains
all the code and configuration information for the services provided by the particular configuration. It's where
the log output goes, and it's where you deploy your applications. Let’s take a look at the contents of the de-
faul t server configuration directory. If you haven't tried running the server yet, then do so now, as afew of the
sub-directories are only created when JBoss starts for the first time.

e conf: contains the j boss- servi ce. xm file which specifies the core services. Also used for additional con-
figuration files for these services.

e data: thisis where the embedded Hypersonic database instance stores its data. It is aso used by JBossMQ
(the JBoss implementation of IMS) to store messages on disk.

« deploy: you deploy your application code (JAR, WAR and EAR files) by dropping them in here. It isaso
used for hot-deployable services (those which can be added to or removed from the running server) and for
deploying JCA resource adaptersS. That's why there' s alot of stuff in there already. In particular you'll no-
tice the IMX Console application (an unpacked WAR file) that we were using earlier. The directory is con-
stantly scanned for updates and any modified components will be re-deployed automatically. We'll look at
deployment in more detail later.

« lib: JAR files needed by this server configuration. You can add required library files here for JDBC drivers
etc.

« log: this is where the logging information goes. JBoss uses the Jakarta log4j package for logging and you
can also useit directly in your own applications from within the server.

e tmp: used by the deployer for temporary storage of unpacked applications etc.

work: used by Tomcat for compilation of JSPs.

Thedat a, | og, t np and wor k directories are created by JBoss and won't exist until you’' ve run the server at least
once.

We've touched briefly on the issue of hot-deployment of servicesin JBoss so let’s have alook at a practical ex-
ample of this before we go on to look at server configuration issues in more detail. Start JBossiif it isn't already
running and take a look in the depl oy directory again (make sure you're looking at the one in the def aul t con-
figuration directory). Remove the mai | - servi ce. xni file and watch the output from the server:

13:10: 05,235 INFO [Mil Service] Miil service '"java:/Miil' renoved from JNDI

Jhen reEpIace the file and watch the JBoss re-install the service. It's hot-deployment in action.
The J2EE Connector Architecture defines the Resource Adapter Archive (RAR) file, which isused for storing JCA implementations for a

particular resource.

The JBoss Server - A Quick Tour

2.2. Basic Configuration Issues

Now that we' ve examined the layout of the JBoss server, we'll take a look at some of the main configuration
files and what they’ re used for. All paths are relative to the server configuration directory (ser ver/ def aul t, for
example).

2.2.1. Core Services

The core services specified in the conf/j boss-servi ce. xm file are started first when the server starts up. If
you have alook at thisfile in an editor you'll see MBeans for various services including logging, security, JNDI
(and the JNDI Vi ew service that we saw earlier). Try commenting out the entry for the JNDI Vi ew service.

<l--
<nmbean code="org.j boss. nam ng. JNDI Vi ew'

nanme="j boss: servi ce=JNDI Vi ew'

xnbean- dd="r esour ce: xndesc/ JNDI Vi ew xnbean. xm " >
</ mbean>
-->

If you then restart JBoss, you'll see that the JNDI Vi ew service no longer appears in the management console
listing. In practice, you should rarely, if ever, need to modify this file, though there is nothing to stop you
adding extra MBean entries in here if you want to. The alternative is to use a separate file in the depl oy direct-
ory, which allows your service to be hot deployable.

2.2.2. Logging Service

We mentioned already that log4j is used for logging. If you're not familiar with the log4j package and would
like to use it in your applications, you can read more about it at the Jakarta web site. (ht-
tp:/ljakarta.apache.org/log4j/) Logging is controlled from a central conf /1 og4j . xni file. This file defines a set
of appenders, specifying the log files, what categories of messages should go there, the message format and the
level of filtering. By default, JBoss produces output to both the console and a log file (server. 1 og inthel og
directory).

There are 4 basic log levels used: DEBUG, | NFO, WARN and ERROR. The logging threshold on the console is | NFO,
which means that you will see informational messages, warning messages and error messages on the console
but not general debug messages. In contrast, there is no threshold set for the server . | og file, so al generated
logging messages will be logged there. If things are going wrong and there doesn’'t seem to be any useful in-
formation in the console, always check the log file to see if there are any debug messages which might help you
track down the problem. However, be aware that just because the logging threshold allows debug messages to
be displayed, that doesn't mean that all of JBoss will produce detailed debug information for the log file. You
will also have to boost the logging limits set for individual categories. Take the following category for example.

<l-- Limt JBoss categories to | NFO -->
<cat egory nane="org.j boss">

<priority value="INFO'/>
</ cat egory>

This limits the level of logging to | NFO for al JBoss classes, apart from those which have more specific over-
rides provided. If you were to change this to DEBUG, it would produce a much more detailed logging output.

As another example, let’s say you wanted to set the output from the container-managed persistence engine to
DEBUG level and to redirect it to a separate file, crp. | og, in order to analyze the generated SQL commands. Y ou
would add the following code to the | og4j . xm file:

http://jakarta.apache.org/log4j/
http://jakarta.apache.org/log4j/

The JBoss Server - A Quick Tour

<appender nanme="CMP" cl ass="org.] boss. | oggi ng. appender. Rol | i ngFi | eAppender ">
<errorHandl er class="org.j boss. | oggi ng.util.Onl yOnceErrorHandl er"/>
<param nane="Fi | e" val ue="${j boss. server. hone.dir}/l og/cnp.lo0g"/>
<par am name="Append" val ue="fal se"/>
<par am nane="MaxFi | eSi ze" val ue="500KB"/ >
<par am nanme=" MaxBackupl ndex" val ue="1"/>

<l ayout cl ass="org. apache. | og4j.PatternLayout">
<par am nane="Conver si onPattern" val ue="% %5p [%] %Pn"/>
</ | ayout >
</ appender >

<cat egory nane="org.j boss. ej b. pl ugi ns. cnp" >
<priority val ue="DEBUG' />
<appender-ref ref="CwW"/>

</ cat egory>

This creates a new file appender and specifies that it should be used by the logger (or category) for the package
org. j boss. ej b. pl ugi ns. cnp. Thiswill be useful when we cometo look at CMP (Chapter 7).

The file appender is set up to produce a new log file every day rather than producing a new one every time you
restart the server or writing to asingle file indefinitely. The current log fileiscnp. | og. Older files have the date
they were written added to the name. Y ou will notice that the | og directory also contains HTTP request logs
which are produced by the web container.

2.2.3. Security Service

The security domain information is stored in the file I ogi n-config. xm as alist of named security domains,
each of which specifies a number of IAAS® login modules which are used for authentication purposes in that
domain. When you want to use security in an application, you specify the name of the domain you want to use
in the application’s JBoss-specific deployment descriptors, j boss. xmi and/or j boss-web. xm . We'l quickly
look at how to do this to secure the IMX Console and the Web Consol e applications that ship with JBoss.

We saw the IMX Console briefly in Section 1.3. Almost every aspect of the JBoss server can be controlled
through the IMX Console, so it isimportant to make sure that, at the very least, the application is password pro-
tected. Otherwise, any remote user could completely control your server. To protect it, we will add a security
domain to cover the application. This can be done in the j boss-web. xm file for the IMX Console, which can
be found in depl oy/j nx- consol e. war/ VEB- | NF/ directory. Uncomment the securi ty- domai n in that file, as
shown below.

<j boss- web>
<security-domai n>j ava: /j aas/j nx- consol e</ security-domai n>
</j boss-web>

This links the security domain to the web application, but it doesn't tell the web application what security policy
to enforce. What URL s are we trying to protect, and who is allowed to access them? To configure this, go to the
web. xm file in the same directory and uncomment the securi ty-constrai nt that is already there. This secur-
ity constraint will require avalid user name and password for a user in the JBossAdni n group.

<l--
A security constraint that restricts access to the HTM. JMX consol e
to users with the role JBossAdnin. Edit the roles to what you want and
unconment the WEB-| NF/j boss-web. xm /security-donmai n el enent to enable
secured access to the HTM. JMX consol e.

-->

<security-constraint>

6The Java Authentication and Authorization Service. JBoss uses JAAS to provide pluggable authentication modules. Y ou can use the ones
that are provided or write your own if have more specific requirements.

The JBoss Server - A Quick Tour

<web-resource-col | ecti on>
<web- r esour ce- name>Ht m Adapt or </ web- r esour ce- nane>
<descri pti on>
An exanpl e security config that only allows users with the
role JBossAdnmin to access the HTM. JMX consol e web application
</ descri ption>
<url-pattern>/*</url-pattern>
<ht t p- met hod>GET</ ht t p- net hod>
<ht t p- met hod>POST</ ht t p- met hod>
</ web-resource-col | ecti on>
<aut h-constrai nt >
<r ol e- name>JBossAdni n</r ol e- name>
</ aut h-constrai nt >
</ security-constraint>

That's great, but where do the user names and passwords come from? They come from the j nx- consol e secur-
ity domain we linked the application to. We've provided the configuration for this in the conf/I o-
gin-config.xm.

<appl i cation-policy name="jnx-consol e">
<aut henti cati on>
<l ogi n- rodul e code="org.jboss. security.auth. spi.UsersRol esLogi nMdul e"
flag="required">
<nodul e- opti on name="user sProperties">
j mx- consol e-users. properties
</ modul e- opti on>
<nodul e- opti on nane="rol esProperties">
j mx-consol e-rol es. properties
</ modul e- opti on>
</| ogi n- modul e>
</ aut henti cati on>
</ appl i cati on-policy>

This configuration uses a simple file based security policy. The usernames and passwords are stored in j mx-
consol e-users. properties and take the form "user nane=password". TO assigh a user to the JBossAdnin
group add "user nane=JBossAdni n" to the j nx- consol e-rol es. properti es file. The existing file creates an
adni n user with the password adni n. You'll want to remove that user or change the password to something
stronger.

JBoss will re-deploy the IMX Console whenever you update its web. xni . You can check the server console to
verify that JBoss has seen your changes. If you've configured everything correctly and re-deployed the applica
tion, the next time you try to access the IMX Console, JBoss will ask you for a name and password.

The IMX Console isn't the only web based management interface to JBoss. There is also the Web Console.
(See Appendix A) Although it's a Java applet, the corresponding web application can be secured in the same
way as the IMX Console. The Web Console is in depl oy/ management / web- consol e. war . The only difference
is that the Web Console is provided as a smple WAR file instead of using the exploded directory structure that
the IMX Console did. The only real difference between the two is that editing the files inside the WAR fileisa
bit more cumbersome.

2.2.4. Additional Services

The non-core, hot-deployable services are added to the depl oy directory. They can be either XML descriptor
files, *- servi ce. xm , or JBoss Service Archive (SAR) files. SARs contain both the XML descriptor and addi-
tional resources the service requires (e.g. classes, library JAR files or other archives), all packaged up a single
archive.

WEe'll go through the depl oy directory in the def aul t configuration and identify the contents. Thisis realy just

The JBoss Server - A Quick Tour

for the sake of completeness, so you can skip this section unless you'd like to know more about the what the
existing MBean components are for. In the def aul t configuration depl oy directory, you'll find the following
files and sub-directories:

bsh-deployer: deploys bean shell scripts as JBoss services.

client-deployer -service.xml: deploys J2EE application clients.

ear-deployer .xml: deploys J2EE EJB JAR files.

ebxmlrr-servicexml: the JAXR registry service implementation.

g b-deployer .xml: deploys J2EE EAR files.

hiber nate-deployer -servicexml: deploys Hibernate archives (HAR files).

hsgldb-ds.xml: sets up the embedded Hypersonic database service and the default data source.
iiop-service.xml: enables CORBA and [10OP support.

jboss-jdbc-metadata.sar: a service that allows the datasource-mapping for a CMP2 deployment to be ex-
ternalized from the jbosscmp-jdbc.xml descriptor so that deployments can be independent of the type of
datasource.

jboss-local-jdbc.rar and jboss-xa-jdbc.rar: these are JCA resource adapters to integrate JDBC drivers
which support Dat aSour ce and XADat aSour ce respectively but for which there is no proprietary JCA imple-
mentation.

jboss-wsdee.sar : provides J2EE web services support.

jbossjca-service.xml: the JBoss JCA implementation. Allows the deployment of JCA resource adaptors
within JBoss.

jbossweb-tomcat50-sar: an expanded SAR file containing the embedded Tomcat service. This provides the
standard web container within JBoss.

jms. IM S-specific services grouped together in a subdirectory.
jmx-console.war : the management console web application that we used in the previous chapter.
jmx-invoker -ser ver .xml: provides remote access to the IMX MBean server.

mail-service.xml: allows applications and services to use JavaMail from within JBoss. Must be configured
with relevant mail server information.

management: sub-directory containing aternative management services, including an improved web con-
sole.

monitoring-servicexml: Alert monitors like the console listener and email listener are configured here.

properties-service.xml: amongst other things, allows the setting of global system properties (as returned by
System get Properti es).

sglexception-servicexml: provides a means of identifying non-fatal SQL exceptions for a given JDBC
driver.

uuid-key-generator .sar: generates unique UUID-based keys.

10

The JBoss Server - A Quick Tour

The files in the j ns subdirectory are all specific to IMS messaging. Many of them are invocation layers that
define the transport protocols over which message transfer can take place. Additional files are:

hsgldb-jdbc2-service.xml: implements caching and persistence using the embedded HSQL database. Also
containsthe Dest i nat i onManager MBean which isthe core service for the IM S implementation.

e jbossmg-destinations-service.xml: sets up standard IMS Topics and Queues which are used by the JBoss
test suite.

e jbossmg-servicexml: additional servicesfor IMS, including the interceptor configuration.
e jmsrarar: resource adapter to allow JM S connection factories to be handled by JCA.

* jms-dsxml: sets up JBoss Messaging as the default IMS provider and supplies JCA configuration informa-
tion to integrate the JM S resource adapter with JBoss Jca’.

Looking beyond the defaul t configuration into the st andard configuration, a few additional services are
provided.

+ cache-invalidation-service.xml: allows customized control of the EJB cacheviaJMS.

http-invoker.sar: provides RMI/HTTP access for MBeans and EJBs.
e jboss-aop.deployer: providesthe Aspect Manager Ser vi ce and deploys JBoss AOP applications.
¢ schedule-manager-servicexml and scheduler -service.xml: task scheduling service.

Theal | configuration contains all the additional services provided by JBoss that you might want to incorporate
into your configuration.

e cluster-service.xml: the cluster services, including the JGroups integration service, HA-INDI, stateful ses-
sion bean replication, and the CMP2 cache invalidation service.

e deploy-hasingleton-service.xml: the HASi ngl et onSDepl oyer Which insures that only a single node in a
cluster deploysthe services in the depl oy- hasi ngl et on directory.

e deploy.last/farm-servicexml: the farm cluster deployment service. It is in the depl oy. | ast directory to
ensure that it is deployed after all other services.

e jbossha-httpsession.sar: the legacy HT TP session replication service.

¢ remoting-service.xml: the experimental next generation detached invoker framework.

e snmp-adaptor.sar: transates IM X notifications into SNMP traps.

» tc5-cluster-servicexml: the TreeCache configuration for the new HTTP replication service.

More detailed information on all these services can be found in JBoss Administration and Development, which
also provides comprehensive information on server internals and the implementation of services such as JTA
and the J2EE Connector Architecture (JCA).

7Although the - ds suffix is used, it doesn’t apply only to DataSource configuration but can be used to configure any resource adapter for
use with JBoss JCA. The <adapt er - di spl ay- name> element links the information in the JBoss descriptor to a specific resource adapter.

11

The JBoss Server - A Quick Tour

2.3. The Web Container - Tomcat

JBoss now comes with Tomcat 5.0 as the default web container. The embedded Tomcat service is the expanded
SAR j bossweb- t ontat 50. sar in the depl oy directory. All the necessary jar files needed by Tomcat can be
found in there, aswell asaweb. xm file which provides a default configuration set for web applications. If you
are already familiar with configuring Tomcat, have a look at the server. xni , which contains a subset of the
standard Tomcat format configuration information. Asit stands, this includes setting up the HT TP connector on
the default port 8080, an AJP connector on port 8009 (can be used if you want to connect via aweb server such
as Apache) and an example of how to configure an SSL connector (commented out by default).

Y ou shouldn’t need to maodify any of this other than for advanced use. If you' ve used Tomcat before as a stand-
alone server you should be aware that things are a bit different when using the embedded service. JBoss is in
charge and you shouldn’t need to access the Tomcat directory at all. Web applications are deployed by putting
them in the JBoss depl oy directory and logging output from Tomcat (both internal and access logs) can be
found in the JBoss| og directory.

12

About the Example Applications

3.1. The J2EE Tutorial

We will make use of the example applications provided by Sun in the J2EE tutorial, in particular the Duke's
Bank application. You can find the tutorial on-line at http://java.sun.com/j2ee/1.4/docs/tutorial/doc/. You
should read the getting started information there and download the example code from ht-
tp:/ljava.sun.com/j2ee/1.4/download.html#tutorial .

We will look at how to run the code in JBoss, supplementing the tutorial where necessary with JBoss-specific
configuration information and deployment descriptors. While you' re online, make sure you’ ve downloaded the
additional code that comes with this document, which is available along side this document on the JBoss docu-
mentation page, http://www.jboss.org/docs/index.

The tutorial uses the Apache Ant build tool, which you should download and install®. Ant is almost universally
used in Java projects these days so if you aren’'t aready familiar with its use then we recommend you spend
some time reading the documentation that comes with it and learning the basics of Ant build files. The default
file name isbui I d. xni , and it contains a set of targets which you can use to perform automated tasks in your
project. Usually all you will have to do is run the Ant command in the directory which contains the build file.
The default target in the file will perform the necessary

The tutorial explains how to run the applications with the J2EE SDK Reference Implementation server. Our
aim will be to deploy them in JBoss.

3.2. What's Different?

J2EE technologies are designed so that the code is independent of the server in which the application is de-
ployed. The deployment descriptors for EJBs and web applications (ej b-j ar. xmi and web. xni , respectively)
are standard and also do not need to change between different J2EE containers. However, there are still one or
two things that need to be done in order to move the application to JBoss. In particular, we have to supply
JBoss-specific descriptors and make sure that the database scripts will work.

3.2.1. Container-Specific Deployment Descriptors

Container-specific information is usually contained in extra XML descriptors which map logical information
used in the application (such as INDI names and security role names) to actua values which are used in the
server. JBoss uses separate files for the EJB and web modules of an application, called j boss. xmi and j boss-
web. xm respectively. Thereis also a client version of these files which fulfils the same role in a Java client, in
combination with the J2EE application-client.xm descriptor. If container-managed persistence (CMP) is
being used for entity EJBs, it is also possible to configure the JBoss persistence engine through thej bosscnp- j d-
be. xm file.

8y ou can get an up-to-date copy of Ant from http://ant.apache.org/. Make sure you are using version 1.5.4 or later.

13

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/
http://java.sun.com/j2ee/1.4/download.html#tutorial
http://java.sun.com/j2ee/1.4/download.html#tutorial
http://www.jboss.org/docs/index
http://ant.apache.org/

About the Example Applications

3.2.2. Database Changes

The J2EE SDK comes with the Cloudscape database and this is used throughout the tutorials. We will be using
the Hypersonic database which runs as an embedded service within JBoss.

In areal-world situation, porting an application to a different databases is rarely straightforward, especially if
proprietary features such as sequences, stored procedures and non-standard SQL are used. For these simple ap-
plications, though it is relatively easy. When we ook at the Duke's Bank application in the next chapter, you
will see that there are only afew minor syntax changes required in the database scripts.

We'll look at how to configure JBoss to use a different database in Chapter 8.

3.2.3. Security Configuration

J2EE defines how you specify security constraints within your application, but doesn’t say how the authentica-
tion and access control mechanisms are actually implemented by the server or how they are configured. As we
mentioned earlier, JBoss uses JAAS to provide a pluggable means of incorporating different security technolo-
giesin your applications. It also comes with a set of standard modules for the use of file, database and LDAP-
based security information. We'll start out using file-based information as this is the simplest approach.

3.3. J2EE in the Real World

The examples here are only intended to get you up and running with JBoss and to help you familiarize yourself
with the basics. The applications definitely aren’t intended to reflect how you should go about writing produc-
tion J2EE software - indeed there is a lot of differing opinion on this subject. Many people disagree on the use
of EJBs for example, particularly the use of entity beans; the use of bean-managed persistence is especialy
controversial yet is convenient for examples. There is also endless debate about the use of different web techno-
logies (it would be safe to say that not everyone loves JSPs) and the numerous different Model-2 frameworks
that are out there. Struts was one of the first and is probably the best known but is not without its critics. We've
provided some sources at the end of this chapter which you can check out for more information.

If you're starting out, your best bet is probably to ook at some existing open-source projects and see how they
are structured, and then pick something appropriate for your project.

Finally, we hope you'll realize that there's alot more depth to JBoss than we can hope to cover here and once
you' ve worked your way through this basic introduction, we hope you'll be eager to learn more. JBossisalso a
continually evolving project with lots of plans for the future. So keep an eye on the bleeding-edge version, even
if you're running all your production applications on the stable 4.0 series.

14

The Duke’s Bank Application

Now that you have the server running, we will use the Duke's Bank example from the J2EE tutorial to illustrate
how to get an application up and running in JBoss. Duke's Bank demonstrates a selection of J2EE technol ogies
working together to implement a simple on-line banking application. It uses EJBs and web components (JSPs
and servlets) and uses a database to store the information. The persistence is bean-managed, with the entity
beans containing the SQL statements which are used to manipulate the data.

We won't look in detail at its functionality or comment on the implementation but will concentrate on a step-
by-step guide to building and deploying it in JBoss.

4.1. Building the Application

You should have already downloaded the J2EE 1.4 tutorial, which includes Duke's Bank. We'll go through
building and deploying the application first and then look at things in a bit more detail.

4.1.1. Preparing the Files

Y ou should be able to obtain the supplementary JBoss files from the same place as this document. The file is
packaged as a ZIP archive called j bossj 2ee- src. zi p. Download this and unpack it into the j 2eet ut ori al 14
directory, adding to the existing tutorial files. All the Duke’'s Bank code is in a the exanpl es/ bank subdirect-
ory. If you've unpacked the JBoss extensions correctly, you will see aj boss-bui | d. xni there. Thisis our Ant
build script for the JBoss version of the application. Rather than just overwriting the existing bui | d. xm file,
we've used a different name from the default. This means that Ant must now be run as ant -f jboss-
build. xm.

Before we can build, you'll need to edit the j boss-bui | d. properties filein the j 2eet ut ori al 14 to point to
your JBoss install directory. Set the j boss. hone property to the full path to your JBoss 4.0 installation. If
you've unpacked JBoss 4.0 in the C. drive on awindows machine, you would set it as follows.

Set the path to the JBoss directory containing the JBoss application server
(This is the one containing directories like "bin", "client" etc.)
j boss. hone=C: /| boss-4.0.0

4.1.2. Compiling the Java Source

At the command line, go to the bank directory. All the build commands will be run from here. Compilation is
pretty straightforward; just type the following command to invoke the conpi | e Ant target.

ant -f jboss-build.xm conpile

If there aren’'t any errors, you will find anewly created bui | d directory with the classfilesiniit.

15

The Duke' s Bank Application

4.1.3. Package the EJBs

The application has one EJB jar, bank-ej b. j ar, which contains the code and descriptors (ej b-j ar. xni and
j boss. xni) for the entity beans and associated controller session beans which the clients interact with. The
package- ej b Ant target will create them in thej ar directory.

ant -f jboss-build.xm package-ejb

4.1.4. Package the WAR File

The next target is the web application which provides the front end to allow users to interact with the business
components (the EJBs). The web source (JSPs, images etc.) is contained in the src/ web directory and is added
unmodified to the archive. The Ant war task also adds a WeB- | NF directory which contains the files which aren’t
meant to be directly accessed by a web browser but are still part of the web application. These include the de-
ployment descriptors (web. xmi and j boss-web. xn), classfiles, (e.g. servlets and EJB interfaces) and extra jars
and the extra JSP tag-library descriptors required by the web application. The package- web Ant target builds
the web client WAR file.

ant -f jboss-build.xm package-web

4.1.5. Package the Java Client

In addition to the web interface, there is a standal one Java client for administering customers and accounts. Y ou
can build it using the package- cl i ent Ant target.

ant -f jboss-build.xm package-client

The generated WAR file contains the appl i cati on-client.xm andjboss-client.xm descriptors as well as
the client j ndi . properti es file. The client JAR will also be included as an additional module in the EAR file
and the server.

4.1.6. Assembling the EAR

The EAR file is the complete application, containing the three EJB modules and the web module. It must also
contain an additional descriptor, application. xm . It isalso possible to deploy EJBs and web application mod-
ulesindividually but the EAR provides a convenient single unit. The assenbl e- app Ant target will produce the
final file JBossDukesBank. ear .

ant -f jboss-build.xm assenbl e-app

4.1.7. The Database

Before we can deploy the application, we need to populate the database it will run against. If you are writing an
application that uses container-managed persistence, you can configure the CMP engine to create the tables for
you at deployment, but otherwise you will need have to have a set of scripts to do the job. Thisis also a con-
venient place pre-populating the database with data.

16

The Duke' s Bank Application

4.1.7.1. Enabling the HSQL MBean and TCP/IP Connections

The HSQL database can be run in one of two modes: in-process or client-server (the HSQL documentation
refers to this as server mode). Since we are going to be running the SQL scripts using atool that connects to the
database, we want to make sure the database is running in client-server mode and will accept TCP/IP connec-
tions. In later versions of JBoss, client-server mode is disabled to prevent direct database access, which could
be a security risk if the default login and password have not been modified. Open the hsgl db- ds. xni file which
you'll find in the depl oy directory and which sets up the default datasource. Near the top of the file, you'll find
the connecti on-url element. Make sure the valueis set toj dbc: hsql db: hsql : / /| ocal host : 1701 and that any
other examples are commented out.

<l-- The jndi name of the DataSource, it is prefixed with java:/ -->
<l-- Datasources are not avail able outside the virtual machine -->
<j ndi - name>Def aul t DS</ j ndi - nanme>

<I-- for tcp connection, allow ng other processes to use the hsql db
dat abase. This requires the org.jboss.jdbc. Hypersoni cDat abase nbean. -->
<connection-url >jdbc: hsqgl db: hsql : / /1 ocal host: 1701</ connecti on-url >

<I-- for totally in-menory db, not saved when j boss stops.

The org. | boss. jdbc. Hypersoni cDat abase nmbean i s unnecessary
<connecti on-url >j dbc: hsql db: . </ connecti on-url >

--2>

<I-- for in-process db with file store, saved when jboss stops. The
org.j boss. jdbc. Hyper soni cDat abase i s unnecessary

<connection-url >j dbc: hsqgl db: ${j boss. server. data. di r}/ hypersoni c/| ocal DB
</ connecti on-url >
-->

Now scroll down to the bottom of the file, and you should find the MBean declaration for the Hypersonic ser-
vice.

<nmbean code="org.j boss.j dbc. Hyper soni cDat abase" nanme="j boss: servi ce=Hyper soni c">
<attribute nanme="Port">1701</attri bute>
<attribute nane="Silent">true</attri bute>
<attribute nanme="Dat abase">defaul t</attri bute>
<attribute nane="Trace">fal se</attri bute>
<attribute name="No_systemexit">true</attribute>
</ mbean>

Make sure thisis also uncommented so JBoss will start the database in the correct mode.

4.1.7.2. Creating the Database Schema

We have supplied scripts to run with HSQL in the sql directory. The database tasks in the build file will try to
contact the HSQL database. If JBoss isn’t aready running, you should start it now, so that the database is avail-
able.

First we need to create the necessary tables with the db- cr eat e- t abl e target.

ant -f jboss-build.xm db-create-table

Then run the db-i nsert target to populate them with the required data.

ant -f jboss-build.xm db-insert

17

The Duke' s Bank Application

Finaly, if everything has gone according to plan, you should be able to view some of the data using the db-
l'i st target, which lists the transactions for a specific account.

ant -f jboss-build.xm db-1Iist

4.1.7.3. The HSQL Database Manager Tool

Just as a quick aside at this point, start up the IMX console application web application and click on the ser -
vi ce=Hyper soni ¢ link which you'll find under the section j boss. If you can't find this, make sure the serviceis
enabled as described in Section 4.1.7.1.

(aNaNa] HSQL Database Manager

File View Command Recent Options Tools

%
g Clear 5QL Statement” Execute SOL 5tatement|

jdbc:hsgldb-hsql:/ flocalhost 170/ galect * from ACCOUNT
¥ 0 ACCOUNT
ACCOUNT_ID
| TYPE
* DESCRIPTION

BALANCE £
 Type: NUMERIC ACCOUNT_ID TYPE DESCRIPTION BALANCE =~ CREDIT_LINE

NiiEbe oie 5005 Money Market Hi Balance 3300.00 0.00
— ’ 5006 Checking Checking 2458.32 0.00
CREDIT_LINE 5007 Credit Visa 720.03 5000.00
BEGIN_BALANCE 5008 Savings Super Interest Account B4102.00 0.00

BEGIN_BALAMCE_TIME_ST 4
| Indices
. CUSTOMER
CUSTOMER _ACCOUMNT _XREF
HILOSEQUENCES
O JMS_MESSAGES
IMS_ROLES
JMS_SUBSCRIPTIONS
JMS_TRANSACTIONS
L4 JM5_USERS
' MEXT_ACCOUNT_ID
MEXT_CUSTOMER_ID s
MNEXT_TX_ID v

4 TYvYY

yYYYY

N Y YT Y Y Y Y TYYYIYTYY

A

Figure4.1. The HSQL Database Manger

Thiswill take you to the information for the Hypersonic service MBean. Scroll down to the bottom of the page
and click the i nvoke button for the st ar t Dat abaseManager () operation. This starts up the HSQL Manager, a
Java GUI application which you can use to manipulate the database directly.

4.1.8. Deploying the Application

Deploying an application in JBoss is easy. You just have to copy the EAR file to the depl oy directory. The de-
pl oy target in the build file does this for our application.

ant -f jboss-build.xm deploy

18

The Duke' s Bank Application

Y ou should see something close to the following output from the server (reduced for brevity).

14:14: 53,763 I NFO [EARDepl oyer] Init J2EE application: file:/Users/orb/javaljboss-4.0.0/
server/ def aul t/ depl oy/ JBossDukesBank. ear

14: 14: 55,588 | NFO [Ej bMbdul e] Depl oyi ng Cust oner EJB

14: 14: 56, 049 I NFO [Ej bMbdul e] Depl oyi ng Customner Control | er EJB

14:14: 59, 292 I NFO [EJIBDepl oyer] Deployed: file:/Users/orb/javaljboss-4.0.0/server/
def aul t/t np/ depl oy/ t p43515JBossDukesBank. ear - cont ent s/ cust onmer - ej b. j ar

14:14: 59, 727 I NFO [EJIBDepl oyer] Deployed: file:/Users/orb/javaljboss-4.0.0/server/
defaul t/t np/ depl oy/ t p43515JBossDukesBank. ear-contents/tx-ej b.jar

14:15: 00, 321 I NFO [EJBDepl oyer] Deployed: file:/Users/orb/javaljboss-4.0.0/server/
defaul t/t np/ depl oy/ t np43515JBossDukesBank. ear - cont ent s/ account - ej b. j ar

14:15: 00, 608 I NFO [Tontat Depl oyer] depl oy, ctxPath=/bank, warUrl=file:/Users/orb/javal
j boss-4.0.0/server/defaul t/tnp/depl oy/tnp43515JBossDukesBank. ear - cont ent s/ web-cl i ent -
exp. war /

14: 15: 01,594 I NFO [EARDepl oyer] Started J2EE application: file:/Users/orb/javal

j boss-4.0.0/server/ def aul t/depl oy/ JBossDukesBank. ear

If there are any errors or exceptions, make a note of the error message and at what point it occurs (e.g. during
the deployment of a particular EJB, the web application or whatever). Check that the EAR is complete and in-
spect the WAR file and each of the EJB jar files to make sure they contain all the necessary components
(classes, descriptors etc.).

You can safely redeploy the application if it is already deployed. To undeploy it you just have to remove the
archive from the depl oy directory. There’s no need to restart the server in either case. If everything seems to
have gone OK, then point your browser at the application URL.

http://local host:8080/bank/main

Y ou will be forwarded to the application login page. As explained in the tutorial, you can login with a customer
ID of 200 and the password j 2ee. If you get an error at this point, check again that you have set up the database
correctly as described in Section 4.1.7.1. In particular, check that the connecti on-url isright. Then make sure
that you have populated the database with data.

Y ou can aso run the standalone client application using therun-cl i ent target.

ant -f jboss-build.xm run-client

ThisisaSwing GUI client which allows you to administer the customers and accounts.

4.2. INDI and Java Clients

It's worth taking a brief ook at the use of JINDI with standalone clients. The example makes use of the J2EE
Application Client framework, which introduces the concept of a client-side local environment naming context
within which INDI names are resolved with the prefix j ava: / conp/ env. Thisis identical to the usage on the
server side; the additional level of indirection means you can avoid using hard-coded names in the client. The
name mapping is effected by the use of the proprietary j boss-client.xm which resolves the references
defined in the standard appl i cati on-cl i ent. xn . See Section 3.2.1 for more information on how this works.

4.2.1. The jndi.properties File

One issue with a Javaclient is how it bootstraps itself into the system, how it manages to connect to the correct
JINDI server to lookup the references it needs. The information is supplied by using standard Java properties.
Y ou can find details of these and how they work in the JDK API documentation for thej avax. nani ng. Cont ext

19

http://localhost:8080/bank/main

The Duke' s Bank Application

class. The properties can either be hard-coded, or supplied in afile named j ndi . properti es on the classpath.
The file we' ve used is shown below.

java.nam ng.factory.initial=org.jnp.interfaces. Nam ngCont ext Fact ory
j ava. nam ng. provi der. url =j np:/ /1 ocal host: 1099

java. nam ng. factory. url.pkgs=org.jboss. nam ng. cli ent

j 2ee. cl i ent Nane=bank- cl i ent

The first three are standard properties, which are set up in order to use the JBoss JNDI implementation. The
j 2ee. cli ent Name property identifies the client deployment information on the server side. The name must
match thej ndi - nane specified inthej boss-cli ent. xm descriptor:

<j boss-client>
<j ndi - name>bank- cl i ent </ j ndi - nane>
<ej b-ref>
<ej b-ref - nanme>ej b/ cust oner Control | er </ ej b-r ef - name>
<j ndi - name>MyCust oner Control | er </ j ndi - nane>
</ ejb-ref>
<ej b-ref>
<ej b-ref - nanme>ej b/ account Control | er </ ej b-r ef - nane>
<j ndi - nane>MyAccount Control | er </ j ndi - name>
</ ejb-ref>
</jboss-client>

Of course if you were only building a simple web application, you wouldn't need to worry about remote clients

4.2.2. Application JNDI Information in the JMX Console

While we're on the subject of JNDI, let’s take a quick look at the JBoss IMX console again and see what in-
formation it shows about our application. This time click on the servi ce=JNDI Vi ew link and then invoke the
l'ist() operation, which displays the JNDI tree for the server. You should see the EJB modules from Duke's
Bank listed near the top and the contents of their private environment naming contexts as well as the names the
entries are linked to in the server.

20

The Duke' s Bank Application

[B S B Operation Results
4 ||| & ||+ | @ http://localhost:BDE0/jmx-console/HtmlAdaptor Q@ B Q~ Google)
R >Rl + o

A operationresurs [T .

Back to Agent View Back to MBean View Reinvoke MBean Operation

Ejb Module: bank-ejb.jar

java:comp namespace of the CustomerBean bean:

+- env (class: org.jnp.interfaces.NamingContext)
| +- jdbc (class: org.jnp.interfaces.NamingContext)
| | +- BankDB[link -> java:/DefaultDS] {(class: javax.naming.LinkRef)

java:comp namespace of the AccountBean bean:

+- env (class: org.jnp.interfaces.NamingContext)

| +- jdbc (class: org.jnp.interfaces.NamingContext)

| | +- BankDB[link -> java:/DefaultD5] (class: javax.naming.LinkrRef)
7

4k

Figure4.2. IMX Console JNDI View

Further down, under thej ava: namehepace9 isalist of the active security managers, bound under their security-
domain names

+- jaas (class: javax.nam ng. Context)

| +- dukesbank (class: org.jboss.security.plugins. SecurityDomai nCont ext)

| + JnmsXAReal m (cl ass: org.jboss. security. plugins. SecurityDomai nCont ext)

| +- jbossmg (class: org.jboss.security. plugins. SecurityDonai nCont ext)

| +- Hsql DbReal m (cl ass: org.jboss.security.plugins. SecurityDomai nCont ext)

Note that these objects are created on demand, so the dukesbank entry will only appear if you have configured
the application to use the dukesbank domain and tried to log in to the application.

9The java: namespace is for names which can only be resolved within the VM. Remote clients can’'t resolve them, unlike those in the
global namespace.

21

The Duke' s Bank Application

4.3. Security

Y ou may have noticed that we haven’'t done anything so far to set up any security configuration for the applica-
tion. In fact there isn’t any security to speak of, and you can login with any password and gain access to the ac-
count. That is not very good for an on-line bank. Logging in with an invalid id will cause the application to
crash when the first JSP tries to access the (non-existent) user’ s accounts. That's not exactly ideal either.

If aweb application doesn’t have a security domain 10 specified, JBoss assigns it a Nul | Secur i t yManager in-
stance by default. Thiswill allow any login to succeed, explaining the above behaviour.

4.3.1. Configuring a Security Domain

Enabling security for your application is done through the JBoss-specific deployment descriptors. To protect
the web application, you haveto include asecuri t y- domai n element in thej boss- web. xni .

<j boss- web>
<security-domai n>j ava: / j aas/ dukesbank</ securi ty- domai n>

</j boss-web>

If you also want access controls to be applied at the EJB layer, you should also add an identical securi t y- do-
mai n element to thej boss. xni filetoo

<j boss>
<security-donmai n>j ava: / j aas/ dukesbank</ securi ty-donmai n>

<ent erpri se- beans>

</ enterprise-beans>
</ j boss>

What this means is that JBoss will bind a security manager instance for our application under the INDI name
java: /j aas/ dukesbank. You can configure it in the conf /1 ogi n- confi g. xm file, which we first saw in Sec-
tion 2.2.3. If you take alook at that file, you'll see how each security domain has an appl i cati on- pol i cy €le-
ment. The nane attribute is the security domain name, so to add a login configuration for our application, we
would insert an extraentry like the following.

<appl i cati on-policy name="dukesbank" >
<aut henti cati on>
<l ogi n- nodul e code="org.j boss. security. auth. spi.UsersRol esLogi nMbdul e"
flag="required" />
</ aut henti cati on>
</ application-policy>

The aut henti cati on element contains a sequence of | ogi n- modul e child elements, each of which specifies a
JAAS login module implementation which will be used to authenticate users. Ther equi r ed flag means that lo-
gin under this module must succeed for the user to be authenticated. The User sRol esLogi nMbdul e which we've
specified here is a simple login module which stores valid user names, passwords and roles in properties files.
Any security domains which don’'t have a login configuration entry will default to the policy named ot her
which you will find at the bottom of the I ogi n-confi g. xm file. By default it uses this same login module, so
we don't really need to add a specific entry for our application. However it's a good idea for completeness
sake, and you may want to experiment with adding different login modules | ater.

O7he term security domain is widely used in security parlance, not always with the same meaning. It generally refers to a set of users (or
components) operating under a common set of authentication and access-control mechanisms. In JBoss this is seen in the mapping of a se-
curity domain name to a particular set of login modulesin thel ogi n- confi g. xni file. The term is often used interchangeably with the term
realm.

22

The Duke' s Bank Application

To recap, here are the steps you need to follow to secure Duke' s Bank:

1. Addthesecurity-domin element to each of thej boss. xni and j boss- web. xn descriptorsin the dd dir-
ectory. It should already be there, commented out.

2. Addanentry totheconf /I ogin. xni filefor the dukesbank security domain.

3. Createtheusers. properties androl es. properties fileswhich contain the security information for the
information for the application and include these in the EAR file (this has already been done for you).

4. Follow through the build steps to re-package the EJBs and the web application (to make sure the modified
descriptors are included).

5. Assemblethe EAR file and re-deploy it to JBoss.

Again make sure that the application deploys OK without any errors and exceptions and try accessing it with
your browser as before. This time you should not be able to login without the correct username and password
combination.

4.3.2. UsersRolesLoginModule Files

Have a quick look at the format of the files so that you can experiment with adding users of your own. You'll
find them in the src directory. The users. properties file contains name-value pairs of the form user-
nane=password. Therol es. properti es entries are the user name and a commar-separated list of roles for that
user of theform user name=rol e1,role2,

In Duke's Bank, the user id 200 must be given the role BankCust oner to be able to access the web application
and the EJB methods which it calls.

In area project you will want to use a more sophisticated approach to authentication. Y ou can find out more
about using JAAS login modules in the JBoss “JAAS Howto” document which you can download from ht-
tp://sourceforge.net/docman/?group_id=22866 . We'll also ook at security in more detail in Chapter 9.

4.3.3. The J2EE Security Model

We've only covered the proprietary aspects of securing a J2EE application in JBoss and we won't go into the
details of standard J2EE security as this is adequately covered elsewhere. However a brief overview in the con-
text of the Duke's Bank application is worthwhile. For more details you should see the relevant sections in the
tutorial, the EJB and servlet specifications, or any textbook on J2EE applications.

4.3.3.1. Authentication

The servlet spec. defines a standard means of configuring the login process for web applications. Y ou will find
an example in the element | ogi n- confi g intheweb. xm filefor Duke's Bank:

<l ogi n- confi g>
<aut h- met hod>FORM</ aut h- net hod>
<r eal m nanme>Def aul t </ r eal m nane>
<f orm | ogi n-confi g>
<f or m | ogi n- page>/ | ogon</form| ogi n- page>
<f orm error-page>/| ogonError</formerror-page>
</ form| ogi n- config>
</l ogi n-confi g>

23

http://sourceforge.net/docman/?group_id=22866
http://sourceforge.net/docman/?group_id=22866

The Duke' s Bank Application

This specifies that a HTML form login should be used to obtain a username and password. (The alternative
would be HTTP BASIC authentication, where the browser presents a login dialog). It also specifies the URL
that should be used for the login (/1 ogon) and the URL which the user is forwarded to on alogin error, such as
a bad password. The format of the login form, namely the URL to submit to and the field names for username
and password, are defined in the servlets specification. You can see how it works in the | ogon. j sp filein this
application.

Y ou should keep in mind that the authentication logic which decides whether alogin succeeds or failsis outside
the scope of the J2EE specification. The actual authentication mechanism is contained in the login modules that
a security domain uses. So by adding the securi t y- domai n tag to your application, and thus linking it to an
entry inl ogi n-confi g. xm , you are effectively what authentication logic will be used, be it a database, LDAP
or whatever.

4.3.3.2. Access Control (Authorization)

J2EE uses a role-based access-control model, with the emphasis placed on configuration rather than code; you
can restrict access to EJBs or individual EJB methods in the ej b-j ar. xn file or to specific URLs in the
web. xm file by defining which user roles are alowed to access them. A set of roles, again decided by the un-
derlying security mechanism, will be assigned to a user as part of the logon process and each subsequent at-
tempt to access a protected resource will be checked to seeif it is allowed.

If you have alook at in web. xm you will find the access controls under the securi ty-constrai nt element.
You can seethe list of restricted URL s there under web- r esour ce- col | ecti on and the role which is allowed to
access them (BankCust oner) under the aut h-constrai nt element. In the ej b-j ar. xni file, method access is
controlled using a series of net hod- per i ssi on elements which contain lists of method definitions and the
roles that can call them (or unchecked for any role).

24

J2EE Web Services

From the start, web services have promised genuine interoperability by transmitting XML data using platform
and language-independent protocols such as SOAP over HTTP. While the early days of multiple competing
standards and general developer confusion may have made this more of a dream than a reality, web services
have matured and standardized enough to have been incorporated into the J2EE 1.4 specification.

Keeping with the spirit of this guide, we'll assume you have some experience with web services already. If you
don't, we would recommend you do some reading in advance. A good place to start would be ht-
tp://www.jboss.org/wiki/Wiki.jsp?IBossWS on the JBoss wiki, which covers web services on JBoss in more
depth. We also recommend J2EE Web Services by Richard Monson-Haefel for more general coverage of J2EE
web services.

5.1. Web services in JBoss

JBossWS is the JBoss module responsible for providing web services in JBoss 4.0, replacing the previous
JBoss.NET package. Like its predecessor, it is also based on Apache Axis (http://ws.apache.org/axis).
However, JBossWS provides the complete set of J2EE 1.4 web services technologies, including SOAP, SAAJ,
JAX-RPC and JAXR.

J2EE web services provides for two types of endpoints. If you think of aweb service as a platf orm-independent
invocation layer, then the endpoint is the object you are exposing the operations of and invoking operations on.
Naturally, J2EE web services support exposing EJBs as web services, but only stateless session beans can be
used. That makes sense given the stateless nature of web services requests. Additionally, J2EE web services
provide for JAX-RPC service endpoints, (JSEs) which are nothing more than simple Java classes. We'll only be
working with EJB endpointsin this example.

5.2. Duke’s Bank as a Web Service

WEe'll continue working with the Duke's Bank application from Chapter 4 and create a simple web service for
querying accounts and balances. The Account Cont rol | er session bean provides this functionality to the Duke's
Bank web application. Unfortunately the application uses stateful session beans as its external interface, so we
can't expose the Account Control | er session bean directly. Instead, we'll create a new stateless session bean,
the Tel | er Bean, which will provide a more suitable web service endpoint.

Before we start, make sure that you have built and deployed Duke's Bank according to the instructions in
Chapter 4. As with that example, well be working from the exanpl es/ bank directory. Although Tel | er Bean
will have aready been compiled when you deployed Duke's Bank, you'll need to remember to invoke the com
pi | e target to compile any changes you might make.

ant -f jboss-build.xm conpile

The magic of J2EE isin the deployment descriptors. We've seen how to deploy session beans already. Deploy-
ing a session bean as a web service is as simple as adding a ser vi ce- endpoi nt element to the session bean

25

http://www.jboss.org/wiki/Wiki.jsp?JBossWS
http://www.jboss.org/wiki/Wiki.jsp?JBossWS
http://ws.apache.org/axis

J2EE Web Services

definition in ej b-j ar. xm . The service-endpoint specifies the class that provides the interface corresponding to
the methods on the session bean being exposed as aweb service.

<sessi on>
<ej b- name>Tel | er Bean</ ej b- name>
<servi ce- endpoi nt >com j boss. ebank. Tel | er Endpoi nt </ servi ce- endpoi nt >
<ej b-cl ass>com j boss. ebank. Tel | er Bean</ ej b- cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transacti on-type>Cont ai ner </ transacti on-type>
<ej b-ref>
<ej b-r ef - name>ej b/ account </ ej b- r ef - name>
<ej b-ref-type>Sessi on</ej b-ref-type>
<hone>com sun. ebank. ej b. cust oner . Cust oner Hone</ home>
<r enot e>com sun. ebank. ej b. cust onmer . Cust oner </ r enot e>
</ ejb-ref>
</ sessi on>

Y ou might have noticed that we didn't declare a home or remote interface for Tel | er Bean. If your session bean
is only accessed by the web services interface, you don't need one, so we've left them out here. Instead, we've
declared the Tel | er Endpoi nt class as our endpoint interface. Our web service interface exposes two operations,
both of which map onto the equivalent methods on Tel | er Bean.

public interface Tell erEndpoi nt
extends Renote

{
public String[] getAccountsCO Custoner(String customnerld)
t hrows Renot eExcepti on;
publ i c Bi gDeci mal get Account Bal ance(String account | D)
throws Renot eExcepti on;
}

WEe'll generate our WSDL, the interoperable web services definition, from this interface using j ava2wsdl , an
Axistool which comeswith the JBossWS. Thewsdl target doesthis.

ant -f jboss-build. xm wsdl

This generates the dd/ ws/ wsdl / tel | er. wsdl file representing our service. WSDL can be very verbose, so we
won't duplicate the file here. But, we will point out two important things. First, the wsdl soap: addr ess in the
wsdl : servi ce is deliberately bogus.

<wsdl : servi ce name="Tel | er Servi ce">
<wsdl : port name="Tel | er Endpoi nt" bi ndi ng="i npl : Tel | er Endpoi nt SoapBi ndi ng" >
<wsdl soap: address | ocation="http://this.value.is.replaced. by.jboss"/>
</ wsdl : port>
</wsdl : servi ce>

JBoss will replace the wsdl soap: addr ess with the actual value when it deploys the web service, so there is no
need to worry about it at this point.

The other detail to note from the generated WSDL file is that the namespace for our webservice is ht -
tp: // ebank. j boss. com We'll need to make sure we map the nanespaceURI in our JAX-RPC mapping file.

<j ava-wsdl - mappi ng xm ns="http://java. sun. conl xm / ns/j 2ee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schere- i nst ance"
xsi : schenmalLocati on="http://java. sun. conl xm / ns/j 2ee
http://ww. i bm conl webservi ces/ xsd/j 2ee_j axrpc_mapping_1_ 1. xsd"
version="1.1">

<package- mappi ng>
<package-type>com j boss. ebank</ package-t ype>
<nanespaceURl >ht t p: // ebank. j boss. conk/ nanespaceURl >
</ package- mappi ng>

26

J2EE Web Services

</ j ava- wsdl - mappi ng>

The last piece of the deployment descriptor puzzle is the webser vi ces. xni file, which associates our webser-
vice with the WSDL and mapping files we've created.

<webservi ces xm ns="http://java. sun. conf xm / ns/j 2ee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance”
xsi : schemaLocati on="http://java. sun.com xm / ns/ | 2ee
http://ww. i bm conf webservi ces/ xsd/j2ee_web_services_1_1. xsd"
version="1.1">
<webservi ce-descri ption>
<webservi ce-descri pti on- nane>Tel | er Servi ce</ webser vi ce-descri pti on- name>
<wsdl -fil e>META- I NF/ wsdl /tel |l er.wsdl </wsdl -fil e>
<j axr pc- mappi ng- fi | e>SMETA- | NF/ mappi ng. xm </ j axr pc- mappi ng-fil e>
<port - conponent >
<port - conponent - nanme>Tel | er </ port - conponent - nanme>
<wsdl - port >Tel | er Endpoi nt </ wsdl - port >
<servi ce-endpoi nt-interface>
com j boss. ebank. Tel | er Endpoi nt
</ servi ce-endpoi nt-interface>
<servi ce-i npl - bean>
<ej b-li nk>Tel | er Bean</ ej b- | i nk>
</ servi ce-inpl - bean>
</ port - conponent >
</ webservi ce-descri pti on>
</ webservi ces>

Our web service is a simple session bean, so deploying it only requires us to package up the bean and the asso-
ciated deployment descriptorsinto an EJB JAR file. The package- ws task accomplishes this, and the depl oy- ws
target deploys the EJB JAR to JBoss.

ant -f jboss-build.xm package-ws
ant -f jboss-build.xm deploy-ws

Once the service is deployed you can view the WSDL (Web Service Description Language) for it by browsing
to the URL http://local host:8080/bankws-gjb/TellerService?wsdl. In this example we generate the WSDL, but it
would also have been possible to write the WSDL for the service by hand and then generate a Java endpoint in-
terface for it using wsdl 2j ava, which is also provided with JBosswS.

5.3. Running the Web Service Client

WEe' ve also supplied a Java client which accesses the web service from a non-J2EE environment.

public class WsClient {
public static void nain(String[] args)
throws Exception
{

URL url =
new URL("http://1 ocal host: 8080/ ws4ee/ servi ces/ Tel | er Servi ce?wsdl ") ;

QNane gnane = new QNanme("http://ebank.jboss. cont
"Tel | er Service");

Servi ceFactory factory = Servi ceFactory. new nstance();
Servi ce service = factory.createService(url, gnane);

Tel | er Endpoi nt endpoi nt = (Tel | er Endpoi nt)
service. get Port (Tel | er Endpoi nt. cl ass);

String custoner = "200";
String[] ids = endpoi nt . get Account sCOf Cust oner (cust oner) ;

27

http://localhost:8080/bankws-ejb/TellerService?wsdl

J2EE Web Services

Systemout. println("Custonmer: " + customner);
for (int i=0; i<ids.length; i++) {
Systemout.println("account[" + ids[i] + "] " +

endpoi nt . get Account Bal ance(ids[i]));

The client can be run using the r un- ws target.

ant -f jboss-build.xm run-ws

The client will display the balance for each account belonging to the given customer.

[java] Custoner: 200

[java] account[5005] 3300.00
[java] account[5006] 2458.32
[java] account[5007] 220.03
[java] account[5008] 59601. 35

5.4. Network Traffic Analysis

JBoss comes with a very useful network monitoring utilities to help monitoring your web service traffic. The
TCP monitor tool act as a TCP tunnel for connections between the client and server. It listens on one port for
client connections, forwarding client requests to the server and returning responses on the client. From this
man-in-the-middle position, it will print out al the traffic in both directions, so you can use it to view HTTP
headers, SOAP messages or anything else you want to pass over a TCP connection. There’s nothing specific to
web servicesinvolved. Thet cpnon target will launch the tool.

ant -f jboss-build.xm tcpnon

When tcpnon starts, it will present an initial configuration window. You just need to specify a local port to
listen on (we chose 7070) and the information for the host and port to forward to. The defaults are | ocal host
and 8080 respectively, so you shouldn’'t need to change them.

To route your web service traffic through the TCP monitor, you'll need to change the port number used to |ook-
up the WSDL filein the client. You'll also need to change the port number in the WSDL file that gets returned.
If you recall, JBoss overwrites the wsdl soap: addr ess using the correct service name, host and port. To get
JBoss to use port 7070 instead, you'll need to change the wbServicePort in jboss-
ws4ee. sar/ META- | NF/ j boss- servi ce. xni to 7070 as shown below.

<nbean code="org.jboss. webservi ce. Axi sServi ce"
nanme="j boss. ws4ee: servi ce=Axi sServi ce">
<depends>j boss: servi ce=\ebSer vi ce</ depends>
<attribute name="WebServi ceHost ">l ocal host</attri bute>
<attribute name="WebServi ceSecurePort">8443</attri bute>
<attribute name="\WebServi cePort">7070</attri bute>
<attribute name="Val i dat eWsdl Request " >f al se</attri bute>
</ nbean>

If everything is configured correctly, you can then run the client and view the output.

28

J2EE Web Services

(s HaNa) TCPMonitor

' Admin Port 7070 |

Listen Port: 7070 Host: 127.0.0.1 Port: (8080 | [Proxy

State Time | Request Host ~ Target Host | ‘ Request...

Done 2004-09-21 13:01:52 localhost 127.0.0.1 POST /bankws-ejb /TellerService HTTP/... ™
Done 2004-09-21 13:01:57 localhost 127.0.0.1 POST /bankws-ejb/TellerService HTTP/...
Done 2004-09-21 13:01:58 localhost 127.0.0.1 POST /bankws-ejb/TellerService HTI'F-‘,f...m
Done 2004-09-21 13:01:59 localhost 127.0.0.1 POST /bankws-ejb/TellerService HTTP/... 4
Done 2004-09-21 13:02:00 localhost 127.0.0.1 POST /bankws-ejb TellerService HTTP/... ¥

Remove Selected Remove All

<soapenv:Envelope xmlins:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmins:xsd="http:/~
<soapenv:Body>

<getAccountBalance xmins="http://ebank.jboss.com">

<in0 xmlins="">5008</in0>

</getAccountBalance> m
< /soapenv:Body> -
</soapenv:Envelope>]

¥

€ = Rl

<soapenv:Envelope xmlins:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmins:xsd="http:/™
<soapenv:Body>
<getAccountBalanceResponse xmins="http://ebank.jboss.com">
<getAccountBalanceReturn xmins="">59601.35 < /getAccountBalanceReturn> m
< /getAccountBalanceResponse>

< /soapenv:Body> -
</soapenv:Envelope> B

i
&) il

(] XML Format (Save) (Resend) {Switch Lavuut)

Figure5.1. TCPMon output of Web Services Call

Y ou can also make changes to the request message and resend it, making TCPMon an extremely useful debug-

ging tool aswell.

29

JMS and Message-Driven Beans

One thing that's missing from the Duke's Bank application is any use of JMS messaging, so we'll work
through the tutorial example on Message Driven Beans (MDBS) to see how to use messaging in JBoss. We'll
assume you're aready familiar with general IMS and MDB concepts. The J2EE tutorial code for the MDB isin
j 2eet ut ori al 14/ exanpl es/ e] b/ si npl enessage. We've supplied a j boss-buil d. xm file in the si npl enes-
sage directory which will allow you to build the example from scratch and run it in JBoss.

The example code is very simple. There are only two classes, one for the client and one for the bean (unlike
normal EJBs, MDBs don’t need any interfaces). The client publishes messages to a IMS Queue and the MDB
handles them viaits standard onMessage method. The messages are all of typej avax. j ns. Text Message and the
bean simply prints out the text contained in each message.

The only container-specific tasks required are setting up the Queue in JBoss, and configuring the MDB to ac-
cept messages fromit.

6.1. Building the Example

6.1.1. Compiling and Packaging the MDB and Client

To compile thefiles, invoke the conpi | e- mdb target from the si npl enessage directory.

ant -f jboss-build.xm conpile-nmdb

Then run the following targets to produce archives for the bean and the client and a combined EAR file in the
j ar directory.

ant -f jboss-build.xm package-nmdb
ant -f jboss-build.xm package-ndb-client
ant -f jboss-build.xm assenbl e-ndb

WEe've retained the same layout we used in the Duke's Bank build, with a dd directory containing the deploy-
ment descriptors and thej ar directory containing the archives produced by the build.

6.1.1.1. Specifying the Source Queue for the MDB

As with other container-specific information, the queue name for the MDB is specified in thej boss. xm file:

<j boss>
<ent er pri se- beans>
<nessage-dri ven>
<ej b- nanme>Si npl eMessageBean</ ej b- name>
<desti nati on-j ndi - name>queue/ MyQueue</ desti nati on-j ndi - nane>
</ message-dri ven>
</ enterprise-beans>
</ j boss>

30

JMS and Message-Driven Beans

So the MDB will receive messages from the queue with INDI name queue/ MyQueue.

6.2. Deploying and Running the Example

To deploy the MDB, just copy the Si mpl eMessage. ear file to the JBoss deploy directory. The depl oy- mdb tar-
get doesthis.

ant -f jboss-build.xm deploy-ndb

A successful deployment should look something like this:

15: 42: 02, 437 INFO [EARDepl oyer] Init J2EE application: file:/Users/orb/javaljboss-
4.0.0/server/def aul t/ depl oy/ Si npl eMessage. ear

15:42: 03, 274 I NFO [Ej bMbdul e] Depl oyi ng Si npl eMessageEJB

15: 42: 04, 857 WARN [JMSCont ai ner | nvoker] Could not find the queue destination-jndi-
nane=queue/ M\yQueue

15:42: 04,951 WARN [JMSCont ai ner | nvoker] destination not found: queue/ MyQueue reaso
n: javax. nam ng. NameNot FoundExcepti on: MyQueue not bound

15: 42: 04, 955 WARN [JMSCont ai nerl nvoker] creating a new tenporary destination: queu

e/ MyQueue
15:42: 05,204 INFO [M/Queue] Bound to JNDI nane: queue/ MyQueue

15: 42: 06, 216 | NFO [EJBDepl oyer] Deployed: file:/Users/orb/javaljboss-4.0.0/server/
defaul t/t np/ depl oy/ t np18923Si npl eMessage. ear - cont ent s/ si npl enmessage. j ar

15:42: 06, 909 I NFO [EARDepl oyer] Started J2EE application: file:/Users/orb/javaljbo
ss-4.0. 0/ server/ def aul t/ depl oy/ Si npl eMessage. ear

If you look more closely at this, you will see warnings that the message queue specified in the deployment
doesn’t exist. In this case JBoss will create a temporary one for the application and bind it under the supplied
name. You can check it exists using the JNDI Vi ew MBean again. Look under the gl obal JNDI namespace.
We'll look at how to explicitly create JM S destinations below.

6.2.1. Running the Client

Run the client with the r un- ndb Ant target.

ant -f jboss-build.xm run-nmdb

Y ou should see output in both the client and server windows as they send and receive the messages respect-
ively.

6.3. Managing JMS Destinations

As with most things in JBoss, JMS Topics and Queues are implemented using MBeans. There are two ways
you can create them: you can add MBean declarations to the appropriate configuration file, or you can create
them dynamically using the jmx-console application. However, if you use the latter method, they won't survive
aserver restart.

6.3.1. The jbossmq-destinations-service.xml File

You'll find this file in the j ms directory inside the depl oy directory. It contains a list of JIMS destinations and
sets up alist of test topics and queues which illustrate the syntax used. To add the queue for our example, you
would simply add the following MBean declaration to thefile.

31

JMS and Message-Driven Beans

<nbean code="org.jboss. ng. server.jnx. Queue"
nanme="j boss. ng. desti nati on: servi ce=Queue, name=MyQueue" >
</ mbean>

6.3.2. Using the DestinationManager from the JMX Console

With JBoss running, bring up the IMX Console in your browser and look for the section labelled j boss. ng in
the main agent view. Click on the link which says servi ce=Dest i nat i onManager . The DestinationManager
MBean is the main IMS service in JBoss and you can use it to create and destroy queues and topics at runtime.
Look for the operation called creat eQueue. This takes two parameters. The first is a name for the Queue
MBean (so will not usually be relevant to your application code) and the second is the INDI name. So enter
M Queue and queue/ MyQueue for these respectively. We've adopted the standard JBoss convention of binding
queues under the JINDI name queue and topics under t opi ¢ but this isn't necessary. You can use any hame.
Note that this will fail if either of these namesis aready in use (for example if you have deployed the applica-
tion as above or added a Queue MBean using the XML configuration file. If thisis the case you can either re-
move the existing queue or just try another name.

6.3.3. Administering Destinations

Y ou can access the attributes and operations that the MBeans representing a queue or topic exposes via IMX.
Look at the main IMX Console view again and you'll find a separate j boss. mg. dest i nati on section which
should contain an entry for our Queue (no matter how it was created). Click on this and you'll see the attributes
for the queue. Amongst these is the QueueDept h which is the number of messages which are currently on the
queue.

As an exercise, you can try temporarily stopping the delivery of messages to the MDB. Locate the section
called j boss. j 2ee in the IMX console and you should find an MBean listed there which is responsible for in-
voking your MDB. The name will be bi ndi ng=nessage- dri ven-bean, jndi Name=I ocal / Si npl eMessageEJB,
p!l ugi n=i nvoker, servi ce=EJB

You can start and stop the delivery of messages using the corresponding MBean operations which it supports.
Invoke the st opDel i very() method, and then run the client afew times. You will see the QueueDept h increase
as the messages accumulate. If you re-start message delivery, with the st art Del i very() method, you should
see all the messages arriving at once.

32

Container-Managed Persistence

The Duke's Bank application uses bean-managed persistence (BMP). However, the improvements to container-
managed persistence (CMP) introduced in the EJB 2.0 specification make it unlikely that you would use BMP
in practice. In this chapter we'll ook at the Rost er App example application from the J2EE tutorial which covers
the use of container-managed persistence and relationships. You should read through the CMP tutorial notes
before proceeding so that you have a good overview of the beans and their relationships.

You'll find the code inj 2eet ut ori al 14/ exanpl es/ e] b/ cnpr ost er . The application implements a player roster
for sports' teams playing in leagues. There are three entity beans Pl ayer EJB, TeanEJB and LeagueEJB and a
single session bean, Rost er EJB, which manipulates them and provides the business methods accessed by the
client application. Only the session bean has a remote interface.

7.1. Building the Example
The EJBs are packaged in two separate JAR files, one for the entity beans and one for the session bean. As be-
fore, we've provided an ej b-j ar. xni file for each one. You don't need aj boss. xni file for this example. All

the CMP information needed to build the database schema is included in the standard descriptor. We'll look at
JBoss-specific customization later.

To compile the code, first make sure you're in the exanpl es directory. Running the conpi | e- cnp target will
compile al the code in one go.

ant -f jboss-build.xm conpile-cnp

Run the following package- t eamto build the team JAR file which contains the entity beans.

ant -f jboss-build.xm package-team

The package-rost er target buildstheroster JAR.

ant -f jboss-build.xm package-roster

Both JAR files will be created in the j ar directory. Build the client jar using the package-roster-client tar-
get.

ant -f jboss-build.xm package-roster-client

Finally assemble the RosterApp EAR using the assenbl e-r ost er target.

ant -f jboss-build.xm assenbl e-roster

33

Container-Managed Persistence

7.2. Deploying and Running the Application

Deploying the application is done with the depl oy- cnp Ant target.

ant -f jboss-build.xm deploy-cnp

Copy the Rost er App. ear file from the j ar directory to the JBoss depl oy directory (or run Ant with the de-
pl oy- cnp target) and check the output from the server.

17:19: 13,603 I NFO [EARDepl oyer] Init J2EE application: file:/Users/orb/javaljboss-4.0.0/s
erver/ def aul t/ depl oy/ Rost er App. ear

17:19: 14,068 I NFO [Ej bMbdul e] Depl oyi ng Rost er Bean

17:19: 14, 320 I NFO [Ej bivbdul e] Depl oyi ng TeanBean

17:19: 14, 357 I NFO [Ej bMbdul e] Depl oyi ng LeagueBean

17:19: 14,383 I NFO [Ej bModul e] Depl oyi ng Pl ayer Bean

17:19: 14,614 I NFO [EJBDepl oyer] Depl oyed: file:/Users/orb/javaljboss-4.0.0/server/default
[t mp/ depl oy/ t np35981Rost er App. ear-contents/roster-ejb.jar

17:19: 15,334 I NFO [EJBDepl oyer] Depl oyed: file:/Users/orb/javaljboss-4.0.0/server/default
/ t np/ depl oy/ t mp35981Rost er App. ear-contents/teamejb.jar

17:19: 15,419 INFO [EARDepl oyer] Started J2EE application: file:/Users/orb/javaljboss-4.0.
0/ server/ def aul t/ depl oy/ Rost er App. ear

There are a few things worth noting here. In the Duke's Bank application, we specified the INDI name we
wanted a particular EJBHore reference to be bound under in thej boss. xm file. Without that information JBoss
will default to using the EJB name. So the session bean is bound under Rost er Bean and so on. Y ou can check
these in the IMX Console as before.

The first time you deploy the application, JBoss will automatically create the required database tables. If you
take alook at the database schema (as we did in Section 4.1.7.3), you will see that JBoss has created one table
for each entity bean and an addition join table needed to handle the many-to-many relationship between players
and teams. The table and column names correspond the names of the entity beans and their attributes. If these
names are suitable, you won't need to further refine the schema. In this case we've had to manually map the po-

sition field on Pl ayer Bean t0 a column named pos because the default column name, posi ti on, isareserved
tokenin HSQL. The schemaisin thej bosscnp-j dbc. xni file.

Note that if you increase the logging level for the or g. j boss. ej b. pl ugi ns. cnp package (Section 2.2.2) to DE-
BUG, the engine will log the SQL commands which it is executing. This can be useful in understanding how the
engine works and how the various tuning parameters affect the loading of data.

7.2.1. Running the Client

The client performs some data creation and retrieval operations via the session bean interface. It creates
leagues, teams and players which will be inserted into the database. The session bean methods it calls to re-
trieve data are mainly wrappers for EJB finder methods. The command to run the client and the expected output
are shown below.

$ ant -f jboss-build.xm run-cnp
Bui | dfile: jboss-build.xm

run- cnp:

[java] P10 Terry Smithson nidfielder 100.0
[java] P6 lan Carlyl e goal keeper 555.0
[java]l P7 Rebecca Struthers mdfielder 777.0
[java] P8 Anne Anderson forward 65.0

[java] P9 Jan Wesl ey defender 100.0

34

Container-Managed Persistence

[java] T1 Honey Bees Visalia
[java] T2 Gophers Manteca
[java] T5 Crows Ol and

[java]l] P2 Alice Smth defender 505.0
[java] P22 Jani ce Wl ker defender 857.0
[java] P25 Frank Fl etcher defender 399.0
[java] P5 Barney Bol d defender 100.0
[java] P9 Jan Wesl ey defender 100.0

[java] L1 Mountain Soccer
[java] L2 Valley Basket bal

Note that the client doesn’t remove the data, so if you run it twice it will fail because it tries to create entities
which aready exist! If you want to run it again you'll have to remove the data. The easiest way to do this (if
you're using HSQL) is to delete the contents of the dat a/ hyper soni ¢ directory in the server configuration you
are using (assuming you don't have any other important data in there) and restart the server. We've aso
provided asimple delete SQL script which you can run with the db- del et e target.

ant -f jboss-build.xm db-delete

Y ou could also use SQL commands directly through the HSQL Manager tool to delete the data.

7.3. CMP Customization

There are many ways you can further customize the CMP engin€’ s behaviour by using the j bosscnp-j dbc. xni
file. It is used for basic information such as the datasource name and type-mapping (Hypersonic, Oracle etc.)
and whether the database tables should be automatically created on deployment and deleted on shutdown. Y ou
can customize the names of database tables and columns which the EJBs are mapped to and you can also tune
the way in which the engine loads the data depending on how you expect it to be used. For example, by using
the r ead- ahead element you can get it to read and cache blocks of data for multiple EJBs with a single SQL
call, anticipating further access. Eager-loading groups can be specified, meaning that only some fields are
loaded initially with the entity; the others are lazy-loaded if and when they are required. The accessing of rela-
tionships between EJBs can be tuned using similar mechanisms. This flexibility is impossible to achieve if you
are using BMP where each bean must be loaded with a single SQL call. If on top of that you include having to
write al your SQL and relationship management code by hand then the choice should be obvious. Y ou should
rarely, if ever, have to use BMP in your applications.

The details of tuning the CMP engine are beyond the scope of this document but you can get an idea of what's
available by examining the DTD (docs/ dt d/ j bosscrp-j dbc_3_2. dt d) which is well commented. There is also
a standard setup in the conf directory called st andar dj bosscnp-j dbc. xmi which contains values for the de-
fault settings and alist of type-mappings for common databases. The beginning of the file is shown below.

<j bosscnp-j dbc>
<def aul t s>
<dat asour ce>j ava: / Def aul t DS</ dat asour ce>
<dat asour ce- nappi ng>Hyper soni ¢ SQL</ dat asour ce- mappi ng>

<create-tabl e>true</create-tabl e>
<r enpve-t abl e>f al se</renove-tabl e>
<r ead- onl y>f al se</read-onl y>
<r ead-ti me- out >300000</ r ead-ti me- out >
<row | ocki ng>f al se</row- | ocki ng>
<pk- constrai nt >t rue</ pk- constrai nt >
<f k- constrai nt >f al se</fk-constraint>
<preferred-rel ati on- mappi ng>f or ei gn- key</ preferred-rel ati on- mappi ng>
<r ead- ahead>
<strat egy>on-| oad</ strat egy>

35

Container-Managed Persistence

<page- si ze>1000</ page- si ze>

<eager - | oad- gr oup>*</ eager - | oad- gr oup>
</ r ead- ahead>
<l i st-cache- max>1000</1i st - cache- max>

Y ou can see that, among other things, this sets the datasource and mapping for use with the embedded Hyper-
sonic database and sets table-creation to true and removal to false, so the schema will be created if it doesn't
already exist. The read- onl y and read-ti me- out elements specify whether data should be read-only and the
time in milliseconds it is valid for. Note that many of these elements can be used at different granularities such
as per-entity or even on a field-by-field basis (consult the DTD for details). The r ead- ahead €lement uses an
on- 1 oad strategy which means that the EJB data will be loaded when it is accessed (rather than when the finder
method is called) and the page- si ze setting means that the data for up to 1000 entities will be loaded with one
SQL command. Y ou can override this either in your own j bosscnp-j dbc. xni file'slist of default settings or by
adding the information to a specific query configuration in the file.

A comprehensive explanation of the CMP engine and its various loading strategies can be found in the full
JBoss Admin. and Development Guide.

7.3.1. XDoclet

Writing and maintaining deployment descriptors is a labour-intensive and error-prone job at the best of times,
and detailed customization of the CMP engine can lead to some large and complex files. If you are using CMP
(or indeed EJBs) in anger then it is worth learning to use the XDoclet code generation engine (ht-
tp://xdoclet.sourceforge.net/). Using Javadoc-style attribute tags you place in your code, XDoclet will generate
the deployment descriptors for you as well as the EJB interfaces and other artifacts if required. It fully supports
JBoss CMP, and though the learning curve is quite steep, its use is thoroughly recommended (almost essential
in fact) for real projects.

36

http://xdoclet.sourceforge.net/
http://xdoclet.sourceforge.net/

Using other Databases

In the previous chapters, we've just been using the JBoss default datasource in our applications. This is
provided by the embedded HSQL database instance and is bound to the INDI name j ava: / Def aul t DS. Having
a database included with JBoss is very convenient for running examples and HSQL is adequate for many pur-
poses. However, at some stage you will want to use another database, either to replace the default datasource or
to access multiple databases from within the server.

8.1. DataSource Configuration

Database connection management in JBossis entirely handled by the JCA implementation. So, all databases are
accessed via JCA resource adapters that handle connection pooling, security and transactions.

8.1.1. JIDBC-Wrapper Resource Adapters

If there is no proprietary adapter for the database in question then you can configure it to use one of the two JD-
BC-wrapper resource adapters which we mentioned when we were looking at the various services deployed in
JBoss (See Section 2.2.4). Obviously you need a JDBC driver for this to work, and the classes have to be made
available (just copying the driver JAR or ZIP fileto thel i b directory of the server configuration you are work-
ing with). The main distinction between different datasource configurations is whether they are set up to use the
local or XA-transaction JDBC adapters. The latter option is only available if the JDBC driver in question
provides an implementation of j avax. sql . XADat aSour ce, but you can still choose the local option even if an
XADat aSour ce implementation is available (see the two Oracle configuration files for example). Thereisaso a
no-transact i on configuration, but you would rarely use this with a database.

8.1.2. DataSource Configuration Files

DataSource configuration file names end with the suffix - ds. xm so that they will be recognized correctly by
the JCA deployer. The docs/ exanpl e/ j ca directory contains sample files for a wide selection of databases and
it isagood ideato use one of these as a starting point. For afull description of the configuration format the best
place to look is the DTD file docs/ dt d/ j boss-ds_1_0. dt d. Additional documentation on the files and the
JBoss JCA implementation can also be found in the JBoss Admin. and Development Guide.

L ocal-transaction datasources are configured using the | ocal - t x- dat asour ce element and XA-compliant ones
using xa- t x- dat asour ce. The examplefile generi c-ds. xni shows how to use both types and also some of the
other elements that are available for things like connection pool configuration. Examples of both local and XA
configurations are available for Oracle, DB2 and Informix.

If you look at the example files firebird-ds. xm , facets-ds. xm and sap3-ds. xm , you'll notice that they
have a completely different format, with the root element being connecti on-factories rather than dat a-
sour ces. These use an alternative, more generic JCA configuration syntax used with a pre-packaged JCA re-
source adapter. As we mentioned in Section 2.2.4, the syntax is not specific to datasource configuration and is
used, for example, inthej ns-ds. xm file to configure the IM S resource adapter.

37

Using other Databases

Next, we'll work through some step-by-step examples to illustrate what’ s involved.

8.2. Using MySQL as the Default DataSource

MySQL is a one of the most popular open source databases around and is used by many prominent organiza-
tions from Y ahoo to NASA. The official IDBC driver for it is called Connector/J. For this example we've used
MySQL 4.1.7 and Connector/J 3.0.15. Y ou can download them both from http://www.mysgl.com .

8.2.1. Creating a Database and User

WEe'll assume that you've aready installed MySQL and that you have it running and are familiar with the ba-
sics. Run the nysgl client program from the command line so we can execute some administration commands.
You should make sure that you are connected as a user with sufficient privileges (e.g. by specifying the -u
root option to run asthe MySQL root user).

First create adatabase called j boss within MySQL for use by JBoss.

nmysql > CREATE DATABASE | boss;
Query OK, 1 row affected (0.05 sec)

Then check that it has been created.

nmysql > SHOW DATABASES;

eocococoooo +
| Dat abase |
eocococoooo +
| jboss |
| nysal I
| test |
deoococcooos +

3 rows in set (0.00 sec)

Next, create auser called j boss with password passwor d to access the database.

mysql > GRANT ALL PRI VI LEGES ON j boss.* TO jboss@ocal host | DENTI FI ED BY ' password';
Query OK, O rows affected (0.06 sec)

Again, you can check that everything has gone smoothly.

nmysql > sel ect User, Host, Password from nysql . User;

doocooooo ooocoocoooo oocococcococoocooos +
| User | Host | Password |
doocooooo dooocoocoooo oocococcococoocooos +
| root | local host |
| root % |
| | ocal host |

5 rows in set (0.02 sec)

8.2.2. Installing the JDBC Driver and Deploying the DataSource

To make the IDBC driver classes available to JBoss, copy the file nysql - connect or - j ava- 3. 0. 15-ga- bi n. j ar
from the Connector/J distribution to the 1 i b directory in the def aul t server configuration (assuming that is the
configuration you're running, of course). Then create a file in the depl oy directory called nysgl - ds. xm with

38

http://www.mysql.com

Using other Databases

the following datasource configuration. The database user name and password corresponds the MySqgl user we
created in the previous section.

<dat asour ces>
<l ocal -t x- dat asour ce>
<j ndi - nane>MySqgl DS</ j ndi - name>
<connecti on-url >j dbc: mysql ://1 ocal host: 3306/ j boss</ connecti on-url >
<driver-class>om nysql . j dbc. Dri ver</driver-cl ass>
<user - name>j boss</ user - nane>
<passwor d>passwor d</ passwor d>
</l ocal -t x- dat asour ce>
</ dat asour ces>

Because we have added anew JAR fileto thel i b directory, you will need to JBoss to make sure that the server
isableto find the MySQL driver classes.

8.2.3. Testing the MySQL DataSource

We'll use the CMP roster application from Chapter 7 to test the new database connection. In order to use
MySql in our application, we'll need to set the datasource name a nd type-mapping in the j bosscnp- j dbc. xni
filein the dd/ t eamdirectory of the CMP roster application. Edit the file and add the following dat asour ce and
dat asour ce- mappi ng e ementsto the def aul t s e ement. to mysqQL.

<j bosscnp-j dbc>
<def aul t s>
<dat asour ce>j ava: / MySgl DS</ dat asour ce>
<dat asour ce- mappi ng>mySQL</ dat asour ce- mappi ng>
</ def aul t s>

<ent erpri se- beans>

</ enterprise-beans>
</j bosscnp-j dbc>

After restarting JBoss, you should be able to deploy the application and see the tables being created as we did
in Section 7.2. The tables should be visible from the MySQL client.

mysqgl > show t abl es;

| Tabl es_in_jboss |
Fo e e e e ee e ccceeeeeaa +
| LeagueBean |
| Pl ayer Bean |
| Pl ayer Bean_t eans_TeanBean_pl ayers |
| TeanmBean |

4 rows in set (0.00 sec)

Y ou can see the IM S persistence tables in there too since we' re using MySQL as the default datasource.

8.3. Setting up an XADataSource with Oracle 9i

Oracle is one of the main players in the commercial database field and most readers will probably have come
acrossit at some point. Y ou can download it freely for non-commercial purposes from http://www.oracle.com

Installing and configuring Oracle is not for the faint of heart. It isn't realy just a simple database, but it is
heavy on extra features and technologies which you may not actually want (another Apache web server, mul-
tiple JDKss, Orbs etc.) but which are usually installed anyway. So we'll assume you already have an Oracle in-
stallation available. For this example, we've used Oracle 10g.

39

http://www.oracle.com

Using other Databases

8.3.1. Padding Xid Values for Oracle Compatibility

If you look in the j boss-service. xn file in the defaul t/conf directory, you'll find the following service
MBean.

<l-- The configurable Xid factory. For use with Oracle, set pad to true -->
<nmbean code="org.j boss.tm Xi dFact ory"
nanme="j boss: servi ce=Xi dFact ory" >
<l--attribute nane="Pad">true</attribute-->
</ mbean>

The transaction service uses this to create XA transactions identifiers. The comment explains the situation: for
use with Oracle you have to include the line which sets the attribute Pad to true. This activates padding the
identifiers out to their maximum length of 64 bytes. Remember that you'll have to restart JBoss for this change
to be put into effect, but wait until you' ve installed the JDBC driver classes which we'll talk about next.

8.3.2. Installing the JDBC Driver and Deploying the DataSource

The Oracle JDBC drivers can be found in the directory $ORACLE_HOVE/ j dbc/ | i b. Older versions, which may be
more familiar to some users, had rather uninformative names like cl asses12. zi p but at the time of writing the
latest driver version can be found in the file oj dbc14. j ar. There is also a debug version of the classes with _g
appended to the name which may be useful if you run into problems. Again, you should copy one of these to
the 1i b directory of the JBoss def aul t configuration. The basic driver class you would use for the non-XA
setup is called oracl e. j dbc. dri ver. Oracl eDri ver. The XADat aSour ce class, which we'll use here, is called
oracl e.jdbc. xa. client. O acl eXADat aSour ce.

For the configuration file, make a copy of the oracl e-xa-ds. xm example file and edit it to set the correct
URL, username and password.

<dat asour ces>
<xa- dat asour ce>
<j ndi - nane>XAOr acl eDS</ j ndi - name>
<track-connecti on-by-tx>true</track-connection-by-tx>
<i sSameRM over ri de-val ue>f al se</i sSanmeRM overri de- val ue>
<xa- dat asour ce- cl ass>or acl e. j dbc. xa. cl i ent. Or acl eXADat aSour ce</ xa- dat asour ce- cl ass>
<xa- dat asour ce- property nane="URL">
j dbc: oracl e: t hi n: @onkeynmachi ne: 1521: j boss
</ xa- dat asour ce- pr operty>
<xa- dat asour ce- property nanme="User" >j boss</ xa- dat asour ce- property>
<xa- dat asour ce- property nane="Passwor d">passwor d</ xa- dat asour ce- property>
<exception-sorter-cl ass-nane>
org.j boss. resource. adapt er. j dbc. vendor . Or acl eExcepti onSort er
</ exception-sorter-class-name>
<no-t X- separ at e- pool s/ >
</ xa- dat asour ce>

<nbean code="org.jboss.resource. adapter.jdbc. xa.oracl e. Oracl eXAExcepti onFornatter"
nanme="j boss. j ca: servi ce=Or acl eXAExcepti onFormatter" >
<depends optional -attri bute-nanme="Transacti onManager Servi ce" >
j boss: servi ce=Tr ansact i onManager
</ depends>
</ mbean>
</ dat asour ces>

We've used the oracle thin (pure java) driver here and assumed the database is running on the host nonkeyma-
chi ne and that the database name (or SID in Oracle terminology) is j boss. We' ve also assumed that you've
created a user j boss with all the sufficient privileges. You can just use dba privileges for this example.

SQL> connect / as sysdba
Connect ed.

40

Using other Databases

SQL> create user jboss identified by password;
User created.

SQL> grant dba to jboss;

Grant succeeded.

Now copy the file to the depl oy directory. Y ou should get the following output.

11:33: 45,174 I NFO [W apper Dat aSour ceServi ce] Bound connection factory for resource adapter
for Connecti onManager 'jboss.jca: name=XAO acl eDS, servi ce=Dat aSour ceBi ndi ng to JNDI nane
'java: XAOr acl eDS'

If you use the JNDI Vi ew service from the IMX console as before, you should see the name j ava: / XAOr acl eDS
listed.

8.3.3. Testing the Oracle DataSource

Again we'll use the CMP example to test out the new database connection. Thej bosscnp-j dbc. xni file should
contain the following.

<j bosscnp-j dbc>
<def aul t s>
<dat asour ce>j ava: / XAOr acl eDS</ dat asour ce>
<dat asour ce- mappi ng>Or acl e9i </ dat asour ce- mappi ng>
</ def aul t s>
</ j bosscnp-j dbc>

There are other Oracle type-mappings available too. If you’re using an earlier version, have alook in the conf/
st andar dj bosscnp-j dbc. xni fileto find the correct name

Deploy the application as before, check the output for errors and then check that the tables have been created
using Oracle SQL Plus again from the command line.

SQL> sel ect table_nane from user_tabl es;

TABLE_NAVE

TEAVBEAN

LEAGUEBEAN

PLAYERBEAN

PLAYERBEAN TEAMS_TEAM 1OFLZV8

41

Security Configuration

We've dready seen how to set up simple security when we looked at the Duke's Bank application
(Section 4.3). We looked at how to enable security by adding a security domain element to the jboss-specific
deployment descriptors and thus linking your application to a configuration in the | ogi n-config. xn file.
However we only used simple file based security in that chapter.

In this chapter, we'll examine some more advanced configuration options and find out how to use some of the
other login modules that are available.

9.1. Security Using a Database

One of the most likely scenarios is that your user and role information is stored and maintained in a database.
JBoss comes with alogin module called Dat abaseSer ver Logi nMbdul e Which just needs some simple configur-
ation optionsto set it up. Y ou need to supply the following.

« the SQL query to retrieve the password for a specified user
» thequery to retrieve auser’sroles

* the INDI name of the DataSource to be used

This gives you the flexibility to use an existing database schema. Let’ s suppose that the security database tables
were created using the following SQ.L

CREATE TABLE User s(usernane VARCHAR(64) PRI MARY KEY, passwd VARCHAR(64))
CREATE TABLE User Rol es(usernane VARCHAR(64), userRol es VARCHAR(32))

then to use this as the security database for Duke's Bank, you would modify the dukesbank entry in the JBoss
| ogi n-config.xn fileasfollows:

<appl i cati on-policy nane="dukesbank">
<aut henti cati on>
<l ogi n- rodul e code="org.jboss. security. auth. spi.Dat abaseServer Logi nMbdul e"
flag="required">
<nodul e- opti on nanme="dsJndi Nane" >j ava: / Def aul t DS</ nodul e- opti on>
<nmodul e- opti on nane="pri nci pal sQuery" >
sel ect passwd from Users where username=?
</ modul e- opti on>
<nodul e- opti on name="rol esQuery" >
sel ect userRol es,' Roles' from User Rol es where user nane=?
</ nodul e- opt i on>
</ | ogi n- modul e>
</ aut henti cati on>
</ application-policy>

The query to retrieve the password is straightforward. In the case of the roles query you will notice that thereis

42

Security Configuration

an additional field with value Rol es which is the role group. This allows you to store additiona roles (for
whatever purpose) classified by the role group. The ones which will affect JBoss permissions are expected to
have the value Rol es. In this simple example we only have a single set of roles in the database and no role
group information™™.

We've used the default DataSource here. If you're using Hypersonic, then you can easily create the tables and
insert some data using the Database Manager tool which we also used in the Duke's Bank chapter. Just execute
the two commands above and then the following ones to insert the information for the user with customer id
200 and you should be able to login as before.

I NSERT | NTO Users VALUES(‘200’,’j2ee’)
I NSERT | NTO User Rol es VALUES(‘ 200’ , ' BankCust oner ')

9.2. Using Password Hashing

The login modules we' ve used so far al have support for password hashing; rather than storing passwords in
plain text, a one-way hash of the password is stored (using an algorithm such as MD5) in a similar fashion to
the/ et c/ passwd file on a UNIX system. This has the advantage that anyone reading the hash won’t be able to
useit to log in. However, there is no way of recovering the password should the user forget it, and it also makes
administration slightly more complicated because you also have to calculate the password hash yourself to put
it in your security database. Thisisn't amajor problem though. To enable password hashing in the database ex-
ample above, you would add the following module options to the configuration

<nmodul e- opti on nane="hashAl gori t hnf >MD5</ npodul e- opti on>
<nodul e- opti on nanme="hashEncodi ng" >base64</ nodul e- opti on>

This indicates that we want to use MD5 hashes and use base64 encoding to covert the binary hash value to a
string. JBoss will now calculate the hash of the supplied password using these options before authenticating the
user, so it's important that we store the correctly hashed information in the database. If you're on a UNIX sys-
tem or have Cygwin installed on Windows, you can use openss! to hash the value.

$ echo -n "j2ee" | openssl dgst -nmd5 -binary | openssl base64
gl ci kLhvxqlBwPBZNOEGMQ==

Y ou would then insert the resulting string, gl ci kLhvxq1BwWPBZNOEGMQ==, into the database instead of the plain-
text password, j 2ee. If you don't have this option, you can use the class or g. j boss. securi ty. Base64Encoder
which you'll find inthe bosssx. j ar file.

$ java -classpath ./jbosssx.jar org.jboss.security.Base64Encoder j2ee MD5
[gl ci kLhvxqlBwPBZNOEGVI==]

With asingle argument it will just encode the given string but if you supply the name of adigest algorithm as a
second argument it will calculate the hash of the string first.

11 v ou can also use the default schema which is to have a table called pri nci pal s with columns Pri nci pal | D and Passwor d and a table
called Rol es with columns Pri nci pal | D, Rol e and Rol eG oup. In this case you don’t have to specify the SQL queries for the login module.
The Rol eGr oup entries for JBoss permissions should be set to the value Rol es as before.

43

10

Using Hibernate

Hibernate is a popular persistence engine that provides a ssmple, yet powerful, alternative to using standard en-
tity beans. Hibernate runs in almost any application server, or even outside of an application server completely.
However, when running inside of JBoss, you can choose to deploy your application as a Hibernate archive,
caled aHAR file, and make Hibernate's simple usage even simpler. JBoss can manage your Hibernate session
and other configuration details, allowing you to use Hibernate objects with minimal setup.

In this chapter, we will return the CMP roster application from Chapter 7 and show how to access the roster
database tables with Hibernate. We'll demonstrate how to create a HAR file to package your Hibernate objects,
and then well show how to access them from a web application in a WAR file. The entire project will be
bundled in an EAR file, just like all of our previous examples.

The code for this section is in the exanpl es/ hi ber nat e directory. However, the Hibernate example here is in-
tended to be run along side of the CMP roster application in Chapter 7. If you don't have the roster application
deployed, go back and follow the instructions there. Make sure that you follow the instructions for creating the
database schema and popul ating the database. We will be using the schema and data from that task.

Also, please keep in mind that we'll only be looking at the steps required to deploy a Hibernate application in
JBoss. If you need a more general guide to Hibernate, we recommend Hibernate in Action by Christian Bauer
and Gavin King (Manning, 2004).

10.1. Creating a Hibernate archive

The Hibernate portion of the application consists of a single Java class, or g. j boss. roster. Pl ayer, that maps
onto the Pl ayer Bean entity bean from the CMP roster application. The Pl ayer object is a simple POJO object
with no direct coupling to Hibernate. The details of the Hibernate mapping are specified in the Pl ayer . hbm xm
file, shown below.

<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// Hi bernat e/ H bernate Mappi ng DID 2. 0//EN'
"http://hibernate. sourceforge. net/hi bernat e- mappi ng-2. 0. dtd">

<hi ber nat e- mappi ng>
<cl ass nanme="org.jboss.roster.Player" tabl e="Pl ayer Bean">
<id name="id" type="string" colum="playerl|D'>
<generator class="assigned" />

</id>

<property nane="position" type="string" columm="PCS" />

<property nane="nane" type="string" colum="nane" />

<property nane="sal ary" type="float" colum="sal ary" />
</ cl ass>

</ hi ber nat e- mappi ng>

In addition to the Pl ayer object and its mapping file, we also need to provide a hi ber nat e- servi ce. xni file
that creates an MBean that will manage the Hibernate configuration. The following is the hi ber nat e- ser -
vi ce. xni fileswe are using.

Using Hibernate

<server>
<nbean code="org.j boss. hi bernat e. j nx. H ber nat e"
nanme="j boss. har: servi ce=Hi ber nat e" >
<attribute name="Dat asour ceNane">j ava: / Def aul t DS</ attri but e>
<attribute nanme="Di al ect">net. sf. hi bernate. di al ect. HSQLDi al ect</attri bute>
<attri bute name="Sessi onFact oryNane" >j ava: / hi ber nat e/ Sessi onFact ory</attri bute>
<attri bute name="CacheProvi der d ass" >
net . sf . hi ber nat e. cache. Hasht abl eCachePr ovi der
</attribute>
<l-- <attribute nane="HonRddl Aut 0" >create-drop</attribute> -->
</ mbean>
</ server>

This configuration information should be familiar to any Hibernate user. The JBoss specific details are the
mapping to our j ava: / Def aul t DS and the JNDI location where we want our Hibernate Sessi onFact ory bound.

To compile the project and build the hibernate archive, use the conpi | e and package- har Ant targets.

ant -f jboss-build.xm conpile
ant -f jboss-build.xm package- har

The contents of the create HAR file look like the following:

$ jar tf jar/roster. har
VETA- | NF/

META- | NF/ MANI FEST. MF

META- | NF/ hi ber nat e- ser vi ce. xni
org/

org/jboss/

org/j boss/roster/
org/jboss/roster/ Pl ayer.cl ass
org/j boss/roster/Player. hbm xni

Experienced Hibernate users may be wondering where we've told Hibernate what our persistent objects are.
The Hibernate deployer determines the set of persistent objects by searching the HAR file for hibernate map-
ping files. All hibernate objects found are added to the configuration with no further effort required.

10.2. Using the hibernate objects

By deploying the Hibernate archive, we have created a fully configured Sessi onFact ory for use in other parts
of our application. In this example, we have created a smple JSP which creates a Sessi on from the Sessi on-

Fact ory and issues a query directly. Normally it would be preferable to put the Hibernate access code in a ser-
vlet or in a session bean, but for example purposes we'll keep the code together in the JSP. For reference, the
following code fragment shows how we are accessing the Hibernate session in the JSP.

new I nitial Context();
(Sessi onFact ory)
ct x. | ookup("j ava: / hi ber nat e/ Sessi onFactory");
Sessi on hsession = factory. openSessi on();
try {
request.setAttribute("pl ayers"
hsession. find("fromorg.jboss.roster.Player order by nane"));

} finally {
hsessi on. cl ose();
}

I nitial Context ctx
Sessi onFactory factory

To package our complete web application, use the package- web Ant target.

ant -f jboss-build.xm package-web

45

Using Hibernate

Thiscreatesrost er. war inthej ar directory containing our simple web application.

10.3. Packaging the complete application

Next, we need to package the entire application into an EAR file. The assenbl e Ant target doesthis.

ant -f jboss-build.xm assenble

This creates the Hi ber nat eRost er . ear file. The contents of the EAR file our our r ost er. har and r ost er . war
files, along with the appropriate deployment descriptors.

$ jar tf jar/H bernateRoster.ear
META- | NF/

VETA- | NF/ MANI FEST. M-

META- | NF/ appl i cati on. xm

META- | NF/ j boss- app. xm

roster. har

roster.war

Just as we need to declare the WAR file in the appli cation. xm file, we also need to declare the HAR file.
However, since Hibernate archives are not a standard J2EE deployment type, we need to declare it in the
j boss-app. xn file.

<! DOCTYPE | boss-app PUBLIC "-//JBoss//DTD J2EE Application 1.4//EN'
"http://ww. jboss. org/j2ee/dtd/jboss-app_4 0.dtd">
<j boss- app>
<modul e>
<har >r ost er . har </ har >
</ modul e>
</j boss- app>

Now our application is ready to be deployed.

10.4. Deploying Running the application

Once the EAR file is created, we need to deploy it using the depl oy Ant target. This copies the EAR file to the
appropriate JBoss deploy directory.

ant -f jboss-build.xnm depl oy

The deployed application can be accessed at http://localhost:8080/roster/players.jsp. When the page is loaded,
you will see alist of players sorted by name. If you don't see any data, make sure that you have deployed the
CMP roster application from Chapter 7 and run it to popul ate the tables with the shared player data.

46

http://localhost:8080/roster/players.jsp

TheWeb Console

Throughout this guide, we have been using to the IMX Console web application to inspect and manage the
server. However there is another management console application which offers extended functionality such as
live graphs, aerts, and statistics on deployed J2EE components such as EJBs and servlets.

The URL for the web console is http://localhost:8080/web-console. You will get more out of it if you have
some applications deployed and been running them to accumulate some statistics. For example, with the
Duke's Bank application deployed you'll see something like Figure A.1, which shows the statistics for the Ac-
countController stateful session bean. The invocation statistics are self-explanatory; you have alist of methods
and the max, min, average time per invocation as well as the total time spent in the method and the number of
invocations. The number of concurrent invocations is shown underneath the table of methods.

The information in the Bean Satistics section shows information on the bean instance numbers. The details
vary depending on the type of bean and the possible values are shown in Table A.1. For a complete description
of the bean states (method-ready, pooled, ready etc.) see the EJB specification.

dadrirek Cas s weck e =
L L O L L1 L
e - [N TR R T N 1Y =]

e

ES

1]y
FES
FERHA

Figure A.1. Web Admin. Console Showing Stateful Session Bean Statistics.

Table A.1. Bean Statistics Data

Stateless Session Bean Description

M ethodReadyCount Number of beansin the net hod- r eady state.

47

http://localhost:8080/web-console

The Web Console

CreateCount
RemoveCount

Stateful Session Bean

Number of times the create method has been called.

Number of times the remove method has been called.

M ethodReadyCount The number of beansin the net hod- r eady State.

CreateCount The number of beans that have been created

RemoveCount? The number of beans that have been explicitly re-
moved.

PassiveCount The number of beans that have been passivated by the
container.

Entity Bean

CreateCount Number of entities that have been created by calls to
create method.

RemoveCount Number of entities that have been removed (deleted)
by calling remove method.

ReadyCount Number of beans that are in the ready State, assigned
an entity object and ready to handle invocations.

PooledCount Number of beans in the pool ed state. JBoss doesn't

use entity instance pooling so thiswill be zero.

8Note that the RenpveCount may not equal Cr eat eCount over time as the beans may be passivated and then time-out with the r emove meth-

od being called.

The web-console isn’t a pure web application but uses a Java applet for the tree view on the left-hand side. So
you'll need to have the Java plugin installed and have Java enabled to make it work.

48

Further Information Sources

For comprehensive JBoss documentation covering advanced JBoss topics, see JBoss Admin. and Devel opment
Ghashtuide, available at http://www.jboss.org/docs/index.

For information on how to run clustered JBoss servers for performance and high availability, see JBoss Cluster-
ing (Sacha Labourey and Bill Burke) also available at http://www.jboss.org/docs/index

For general EJB instruction, with thorough JBoss coverage, see Enterprise JavaBeans, 4th Edition. (O'Rellly,
2004. Richard Monson-Haeful, Bill Burke, Sacha L abourey)

For additional, but dated, EJB instruction, we also recommend the classic Mastering Enterprise JavaBeans,
Second Edition. (Wiley, 2001. Ed. Roman et a.) A free PDF version of thefirst edition is available online at ht-
tp://www.theserverside.com/books/masteringEJB/index.jsp.

For complete coverage of the new J2EE 1.4 web services, see J2EE Web Services. (Addison-Wesley, 2003. hi
Richard Monson-Haefel)

For more information about using XDoclet to simplify J2EE development, see XDoclet in Action. (Manning,
2003. Craig Walls, Norman Richards)

To learn more about Hibernate, see Hibernate in Action. (Manning, 2004. Christian Bauer, Gavin King)

49

http://www.jboss.org/docs/index
http://www.jboss.org/docs/index
http://www.theserverside.com/books/masteringEJB/index.jsp
http://www.theserverside.com/books/masteringEJB/index.jsp

	Getting Started with JBoss 4.0
	Table of Contents
	Foreword
	Target Audience
	What this Book Covers
	Chapter 1. Getting Started
	1.1. Downloading and Installing JBoss
	1.2. Starting the Server
	1.3. The JMX Console
	1.4. Stopping the Server
	1.5. Running as a Service

	Chapter 2. The JBoss Server - A Quick Tour
	2.1. Server Structure
	2.1.1. Main Directories
	2.1.2. Server Configurations

	2.2. Basic Configuration Issues
	2.2.1. Core Services
	2.2.2. Logging Service
	2.2.3. Security Service
	2.2.4. Additional Services

	2.3. The Web Container - Tomcat

	Chapter 3. About the Example Applications
	3.1. The J2EE Tutorial
	3.2. What’s Different?
	3.2.1. Container-Specific Deployment Descriptors
	3.2.2. Database Changes
	3.2.3. Security Configuration

	3.3. J2EE in the Real World

	Chapter 4. The Duke’s Bank Application
	4.1. Building the Application
	4.1.1. Preparing the Files
	4.1.2. Compiling the Java Source
	4.1.3. Package the EJBs
	4.1.4. Package the WAR File
	4.1.5. Package the Java Client
	4.1.6. Assembling the EAR
	4.1.7. The Database
	4.1.7.1. Enabling the HSQL MBean and TCP/IP Connections
	4.1.7.2. Creating the Database Schema
	4.1.7.3. The HSQL Database Manager Tool

	4.1.8. Deploying the Application

	4.2. JNDI and Java Clients
	4.2.1. The jndi.properties File
	4.2.2. Application JNDI Information in the JMX Console

	4.3. Security
	4.3.1. Configuring a Security Domain
	4.3.2. UsersRolesLoginModule Files
	4.3.3. The J2EE Security Model
	4.3.3.1. Authentication
	4.3.3.2. Access Control (Authorization)

	Chapter 5. J2EE Web Services
	5.1. Web services in JBoss
	5.2. Duke’s Bank as a Web Service
	5.3. Running the Web Service Client
	5.4. Network Traffic Analysis

	Chapter 6. JMS and Message-Driven Beans
	6.1. Building the Example
	6.1.1. Compiling and Packaging the MDB and Client
	6.1.1.1. Specifying the Source Queue for the MDB

	6.2. Deploying and Running the Example
	6.2.1. Running the Client

	6.3. Managing JMS Destinations
	6.3.1. The jbossmq-destinations-service.xml File
	6.3.2. Using the DestinationManager from the JMX Console
	6.3.3. Administering Destinations

	Chapter 7. Container-Managed Persistence
	7.1. Building the Example
	7.2. Deploying and Running the Application
	7.2.1. Running the Client

	7.3. CMP Customization
	7.3.1. XDoclet

	Chapter 8. Using other Databases
	8.1. DataSource Configuration
	8.1.1. JDBC-Wrapper Resource Adapters
	8.1.2. DataSource Configuration Files

	8.2. Using MySQL as the Default DataSource
	8.2.1. Creating a Database and User
	8.2.2. Installing the JDBC Driver and Deploying the DataSource
	8.2.3. Testing the MySQL DataSource

	8.3. Setting up an XADataSource with Oracle 9i
	8.3.1. Padding Xid Values for Oracle Compatibility
	8.3.2. Installing the JDBC Driver and Deploying the DataSource
	8.3.3. Testing the Oracle DataSource

	Chapter 9. Security Configuration
	9.1. Security Using a Database
	9.2. Using Password Hashing

	Chapter 10. Using Hibernate
	10.1. Creating a Hibernate archive
	10.2. Using the hibernate objects
	10.3. Packaging the complete application
	10.4. Deploying Running the application

	Appendix A. The Web Console
	Appendix B. Further Information Sources

