The Professional
Open Source Company

Getting Started with JBoss 4.0

Release 5

Copyright © 2004, 2005, 2006 JBoss, Inc.

Table of Contents

N o0 1111 o SRS iv
What thiSBOOK COVEI'Seieieiiee ettt e e e e e et e e e e e e e s e s s st a e e e aeeesssanntaaeeeeaaeeesanssraneeeans %
1. GEIING SEAIMEH ...ttt e e et e e e e e e e bt e e e et e e e e e e e e 1
1.1. Downloading and INStAlliNG JBOSScccuuriiiiiiee e i e ittt e e e e e s s sttt e e e e e e e e s st r e e e e e e e e s s narraaeeeeeas 1

1.2, SEAITING TNE SEIVET ..ottt e e e e e e st e e e e e e e e e e e e e ennes 1

I T I L= 1Y Q0 =" = SRR 2

1.4, StOPPING ThE SEIVEL ...t e e e e st e e e et e e e s annr e e e e ennes 4

1.5, RUNNING @S @ SEIVICE ...uuuuuiiiiiiiiiiiiei i sn s s a s a s s s s s nsasasasnsasnsnsnssnnsnsnsnnnsnnnnnnnnnnnn 4

2. The JB0oSS SErVEr - A QUICK TOUKcceeeeieeeee et 5
2.0 SEIVEN SITUCIUIE .. 5
2.1 1 MaIN DITECLOMES ..veiiiiiiiiiee ettt e e ettt e ettt e e ettt e e ettt e e s snba e e e e nbe e e e e snbae e e e e snnaeeeeenntneeeeans 5

2.1.2. SErVEr CONFIGUIALTONSeeieiiieiieeeiieie e e ettt e e ettt e et e e st e e e st e e e e s aba e e e e anne e e e e nnrreeeean 6

2.2. BasiC CoNfigUIAtioN ISSUESuvviiiiieeeiiiiiiiiei e e e e sttt e e e e e s sttt e e e e e e e e s s aataae e e e e e e e s sentrreneeeeas 8
2.2.0. COME SEIVICES ..oiiiieiiieeetiee e e s ettt e e e e e s e st etetaeeseaa et taae et eaeeesaasstsaeeeaaeeessnnssrannnaaaeesaans 8

2.2.2. LOQQING SENVICE ..ooii e, 9

2.2.3. SECUNMLY SEIVICE ..uuuiiiiiiiii e e ittt ettt e e e e e e e e e e e e e s e et e e et eaeessssntnrareeaaaeeaaans 10

224, AQAITIONGl SEIVICES ...eeiiiieeiiiieee ettt e e e e e s e et e e e e e e e e e annnrreeeaaaeeaans 11

2.3. The Web CONtaINES - TOMCELceeiiuuriieiiiiiieeeiieieeesieeeeessieee e s s ssteeeessbeeeesasnneeeessnbeeeessnseeeeeans 11

3. About the EXample APPIICELIONScoiuiiiieeiiiii ettt e e e e e e nnnreeas 13
TN I TN 122 1o - RSP 13

3.2 WAt S DIffEIENL? ... e e e e s s e e e e e e e e s s et a e e e e aaeeesannnreees 13
3.2.1. Container-Specific Deployment DESCIIPLOIScviieeeiiiiiiiiieee e 13

3.2.2. Database ChanQESuvviiiiieeii ittt e e e e e e e e e e e e s s e e e e e e e s e e b aaeaaas 14

3.2.3. Security CONFIGUIALIONeeiiiiiiiie ettt a e e e e e e e e e nnnee s 14

3.3. J2EEINthe REA WOITAooiiiiiiee ettt et as 14

4. The DUKE S BanK APPIICAIIONeeiiieiiiiiie ettt et e e et e e e e e e e annnee s 15
v I = 11 Vo [To T 1 T3 AN o] L o= 1o o 15
4.1.1. Preparing tE FlEScooiiiee et 15

4.1.2. Compiling the JAVA SOUICE ... et e e e e e e e e e eeeeeeeas 15

4.1.3. PaCkagethe EJIBSuuviiiiiiii et 16

4.1.4. Package the WAR FIlooiiiee e 16

4.1.5. Package the JAVa ClIENTcooiiiiieiiee et e e 16

4.1.6. AsSembliNg thE EAR ...t 16

A Tl DL o SRR 16

4.1.7.1. Enabling the HSQL MBean and TCP/IP CONNECLIONSc.cvvveiiiieieeiiiiieeeiiieeee 17

4.1.7.2. Creating the Database SChemao.oov i 17

4.1.7.3. The HSQL Database Manager TOOIcccvvviieeeeeiiiiieee e 18

4.1.8. Deploying the APPLICALIONooiiiiiiiieiiiee et 19

4.2. INDI @N0 JAVA CHIENES ...viviiie ittt et e e st e e e e st e e e e sbe e e e s snbneeeeannneeeas 20
4.2.1. The Jndi.propertiE@S Filecooi it 20

4.2.2. Application INDI Information inthe IMX Consolecccevvvvveveieiiiiiiieiciceeeeeeeeeeeeeeeeee, 21

S < ol U] PO PP TSP 22
4.3.1. Configuring the Security DOMEINcoiiiiiiiiiiiiie e 22

4.3.2. Security USiNg aDatabhasecccvviiiiiii e 24

Getting Started with JBoss 4.0

4.3.3. Using Password Hashingcccuuiieiiiii ettt 24

5. J2EE WED SEIVICES ...uuuiieiiiieeeesii ittt et e e et s ettt e e e e s sa et eeeeee e s s st abaaeeeaaeessaasnseaaeeeaaeesaanssannnneaeeenaans 26
5.1, WED SEIVICES TN JBOSSciiiieiiiiiiitiiie ettt ettt e e e e e e s sttt e e e e e e e e s nebaeeeeeaaeeeeannnneees 26

5.2. DUKE SBaNK @S aWED SEIVICEuuviiiiiie ittt e e st e e e e e e et e e e e e e e e s ennnneees 26

5.3. Runningthe Web Service Client ... 28

5.4. MONItOriNg WEDSEIVICES FEQUESESvvveiiieeeieiiiiieiteee e e e s esitiee e e e e e e e e s sniattaereeaeeesaasatnaaaeeeaeeessannnneees 29

6. IMS and MeSSage-DIVEN BEANScocuuiiiiiiiiiie ittt e e nnre e e es 30
6.1. BUIlAING thE EXAMPIE ...eeeiiiee i e e e e e e e e et e e e e e e e e e e anneees 30
6.1.1. Compiling and Packaging the MDB and Clientccouiiiieiiiiiieeiiieee e 30

6.1.1.1. Specifying the Source QueuefortheMDB ... 30

6.2. Deploying and RUNNING the EXaMPIEuuiiiiiiiiec et 31

6.3. Managing IMS DESIINGLIONSuuuiiiiiieeeiieiiiiii e e e e et e e e e e e e s st e e e e e e e e e aaanenreeeeeaaeeeeeannneees 31
6.3.1. The jbossmg-destinations-service Xml File ..o 31

6.3.2. Using the DestinationManager from the IMX CONSOIecooiiriiiiiiiiieiiiiee e 32

6.3.3. AdMINIStering DESHINGLIONSvvviiiieieiiiiciiieeee e e e e e e s e e e e e e e e st r e e e aaeeaaens 32

7. ContaiNer-Managed PErSISLENCEcoiiuiiiieiiiii ettt e et e e st e e st e e e annreeas 33
7.1. Buildingthe EXample ... 33

7.2. Deploying and RunNning the APPlICaLIONcoiiiiiiiiiiiiee e 34
7.2.1. RUNNING T CHIENLeeiiiiee ettt e et e e e e e e s e s eeereeeeaaaeeeens 34

7.3. CIMP CUSLOMIZALION ...ttt ettt ettt e et e e s s bt e e e e e sb e e e e e nbbaeeesnnbneeeeans 35
0G5 T o o = PR SPPPRRRR 36

8. USING OtNEr DAIADASES ...vvveeieieii ittt e et e e e e e e e e e e e e s e sttt e e e e e e e s s e satbreeeeeaeessasnsrrnrnneeaeesaans 37
8.1. DataSource ConfiguIation FIlESiii it 37

8.2. Using MySQL asthe Default DalaSOUrCecccoooeeeiiiiiiie e, 37
8.2.1. Creating aDatabase anNd USEYouviiiiiiiiiiiiiie ettt 37

8.2.2. Installing the JDBC Driver and Deploying the DataSOourceccouvvveeeiniieeeeinineeeens 38

8.2.3. Testing the MYSQL Dal@SOUICEccceiiiiuiiieiiieee e e st e e e e e s s esrree e e e e e s s s s sanrnaeeaaaeeaaens 39

8.3. Setting up an XADataSource With OraCle Oieeiiiiiiiieiiiiie e 39
8.3.1. Padding Xid Vaues for Oracle Compatibilitycccoiieeieeeiiiiiiiie e 39

8.3.2. Installing the JDBC Driver and Deploying the DataSOourceccovvveeeeiiiieeeeiniiieeeens 40

8.3.3. Testing the Oracle DataSOoUICeccooeeeeiie i, 41

9. USING HIDEIMNELEt e e e e e e e et e e e e e e s s sttt eeeeeaeessasnsnaaneeeaeeenaans 42
9.1. Creating aHIDEMELE 8rCNIVEcoiiiiiie e 42

9.2. UsiNg the hibernate ODJECLScuviiiiiiie e e e e e e e e e e e anneees 43

9.3. Packaging the complete appliCalioneveiiiiiiiiiiiiie et 44

9.4. Deploying RUNNING the apPliCaLIONcooiiiiiiiiice e e e e e e aneeees 44

A. FUrther INfOrmMation SOUICESciiieiiiiiiiieiire e e e e s e ettt e e e e e s e s e e e e e e e s e ssst e e e e aeeessasnsssnreeaaaeessannnnenes 46

About this book

The goal of this book isto get you up and running J2EE 1.4 applications on JBoss 4.0 as quickly as possible. At the
time of writing, the latest release is version 4.0.4. Y ou should use this version or later with the examples. We will
use update 7 of Sun’'s J2EE 1.4 tutorial examples (http://java.sun.com/j2ee/1.4/docs/tutorial/doc/) to illustrate the
deployment and configuration of J2EE applicationsin JBoss. While the book is not intended to teach you J2EE, we
will be covering the subject from quite a basic standpoint, so it will still be useful if you are new to J2EE. If you
would like to use JBoss to run the standard Sun J2EE tutorials then this is the book for you. It should ideally be
read in parallel with the tutoria texts.

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/

What this Book Covers

Chapter 1 will show you how to install and run JBoss. Then Chapter 2 will provide a quick tour of the server direct-
ory structure and layout, the key configuration files and services. Finally, Chapter 3 introduces the J2EE tutorial
code that is used throughout out the book.

Moving on to the examples, Chapter 4 introduces the Duke’'s Bank application from the Sun J2EE Tutorial. You
will see JBoss in action get some exposure simple configuration and deployment issues. Chapter 5 adds web ser-
vices to the application. We work through how to expose EJB methods from the Duke's Bank application through
web services and then call them with a Javaclient.

After that, Chapter 6 and Chapter 7 show additional applications showing JMS messaging with message-driven
beans and a more in-depth contai ner-managed persistence example.

Chapter 8 explores database configuration using MySQL and Oracle as the database. We end with Chapter 9,
which shows how to use Hibernate with JBoss. The example applies Hibernate persistence to one of the earlier ap-
plications.

Of course, that barely scratches the surface of what you can do with JBoss. Once you feel comfortable with the in-
formation here, the JBoss 4 Application Server Guide can take you the rest of the way to total mastery of the JBoss.

Getting Started

1.1. Downloading and Installing JBoss

Before you download and run JBoss make sure you have an up-to-date version of Java on your machine. JBoss 4.0
requires either a Java 1.4 or Java 5 VM. We recommend Java 5 for overall performance and the ability to work
with the newer EJB3/Java EE 5 technologies. A full JDK install is not required to run JBoss, but you will need a
full JDK to build and run the tutorial examples. Before gettings started, make sure you have an appropriate JDK in-
stalled and that your JAVA_HOVE environment variableis set to the directory where you installed Java.

The JBoss application server is avalable as a free download from the JBoss website. (ht-
tp://www.jboss.org/downloads/index) We provide both binary, source, and Web Start distributions. If you are just
getting started with JBoss, the easiest way to get going isto use the Java Web Start Installer.

The binary versions are available as a . zi p archive, jboss- 4. 0. 4. zi p for example. Once it's downloaded, unpack
the archive to a suitable location on your machine. It should all unpack into a single directory named j boss- 4. 0. 4.
Of course the version number suffix will be different if you are running a later release. Make sure you don't use a
directory which has any spaces in the path (such as the Program Fi | es directory on Windows) as this may cause
problems.

The installer versions are available as executable JAR files. The installer can aso be launched using Web Start by
following the Run Installer links from the JBoss AS downloads page. Follow the instructions of each page of the
installer wizard and make sure you choose the Al I option on the Server Profile page, the configuration name de-
faul t on the Configuration Name page and go ahead and select all the check boxes and then set a password for the
admi n account on the IMX Security page. Therest of the pages are pretty self explanatory.

1.2. Starting the Server

Our first step isto try running the server. You'll find abi n directory inside the main JBoss directory which contains
various scripts. Execute the r un script (r un. bat if you're on Windows, r un. sh if you're on Linux, OS X, or another
UNIX-like system). Y ou should then see the log messages from all the JBoss components as they are deployed and
started up. The last message (obviously with different values for the time and start-up speed) should look like the
following.

13:52: 00, 183 INFO [Server] JBoss (MX M croKernel)
[4.0.4.GA (build: CvSTag=JBoss_4 0 _4 GA dat e=200605111311)] Started in 31s:941ns

Y ou can verify that the server is running by going the JBoss web server, which is running on port 8080. (Make sure

http://www.jboss.org/downloads/index
http://www.jboss.org/downloads/index

Getting Started

you don't have anything else already on your machine using that port) The default page has links to a few useful
JBoss resources.

1.3. The JIMX Console

You can get alive view of the server by going to the IMX console application at http://local host:8080/jmx-console
1. You should see something similar to Figure 1.1.

Thisis the JBoss Management Console which provides araw view of the IMX MBeans which make up the server.
Y ou don' realy need to know much about these to begin with, but they can provide alot of information about the
running server and allow you to modify its configuration, start and stop components and so on.

For example, find the servi ce=JNDI Vi ew link and click on it. This particular MBean provides a service to allow
you to view the structure of the INDI namespaces within the server. Now find the operation called I i st near the
bottom of the MBean view page and click the i nvoke. The operation returns a view of the current names bound in-
to the JNDI tree, which is very useful when you start deploying your own applications and want to know why you
can’t resolve a particular EJB name.

1 Note that on some machines, the name| ocal host won't resolve properly and you should use the local loopback address 127.0.0.1 instead.

http://localhost:8080/jmx-console

Getting Started

e0o0 JBoss JMX Management Console
| «] |Iﬁ] l v l [+] " http://localhost:8080 /jmx-consele/HtmlAdapto @ » Q- Google
E_IBuss IMX Management Co... | - __'ﬁ

° 0

@
‘B DSS JMX Agent View toki.local
@

ObjectName Filter (e.g. "jboss:*", "*:service=invoker,*") :
J_ApplyFiIter_\

Catalina

* typesServer
s type=StringCache

JMImplementation

s name=Default.service=LoaderRepository
* type=MBeanRegistry
* type=MBeanServerDelegate

jboss

database=localDB.service=sHypersonic
name=PropertyEditorManager.type=Service
name=systemProperties.typesservice
readonly=true.service=invoker.target=Naming.type=http
servicesAttributePersistenceService
service=ClientUserTransaction
service=DynamicloginConfig

servicesJNDIView
service=sKevGeneratorFactory.tvpe=HiLo

service=KevGeneratorFactorv.tvpe=UulD b
- B ERRS

. 8 8 2 8 8 8 8 88

Figure 1.1. View of the IM X Management Console Web Application

Look at some of the other MBeans and their listed operations; try changing some of the configuration attributes and
see what happens. With a very few exceptions, none of the changes made through the console are persistent. The
original configuration will be reloaded when you restart JBoss, so you can experiment freely and shouldn’t be able
to do any permanent damage.

Getting Started

1.4. Stopping the Server

To stop the server, you can type Ctrl-C or you can run the shutdown script (shut down. bat Or shut down. sh) from
the bin directory. Alternatively, you can use the management console. Look for type=Server under the
j boss. syst emdomain and invoke the shut down operation.

1.5. Running as a Service

In areal deployment scenario, you won't want to stop and start JBoss manually but will want it to run in the back-
ground as a service or daemon when the machine is booted up. The details of how to do thiswill vary between plat-
forms and will require some system administration knowledge and root privileges.

On Linux or other UNIX-like systems, you will have to install a startup script (or get your system administrator to
do it). There are examples in the JBoss bi n directory called j boss_init_redhat.sh and j boss_i nit_suse. sh
which you can modify and use. On a Windows system, you can use a utility like Javaservice 210 manage JBoss as
asystem service.

2Javaservice isfreely available from http://www.al exandriasc.com/software/JavaService/index.html.

http://www.alexandriasc.com/software/JavaService/index.html

The JBoss Server - A Quick Tour

2.1. Server Structure

Now that you’ ve downloaded JBoss and have run the server for the first time, the next thing you will want to know
is how the installation is laid out and what goes where. At first glance there seems to be a lot of stuff in there, and
it's not obvious what you need to look at and what you can safely ignore for the time being. To remedy that, we'll
explore the server directory structure, locations of the key configuration files, log files, deployment and so on. It's
worth familiarizing yourself with the layout at this stage as it will help you understand the JBoss service architec-
ture so that you' Il be able to find your way around when it comes to deploying your own applications.

2.1.1. Main Directories

The binary distribution unpacks into atop-level j boss- 4. 0. 4 directory. There are four sub-directories immediately
below this:

e bin: contains startup and shutdown and other system-specific scripts. We've aready seen the run script which
starts JBoss.

e client: stores configuration and JAR files which may be needed by a Java client application or an external web
container. Y ou can select archives as required or usej bossal | -client.jar.

e docs: contains the XML DTDs used in JBoss for reference (these are also a useful source of documentation on
JBoss configuration specifics). There are also example JCA (Java Connector Architecture) configuration files
for setting up datasources for different databases (such as MySQL, Oracle, Postgres).

« lib: JAR files which are needed to run the JBoss microkernel. Y ou should never add any of your own JAR files
here.

e server: each of the subdirectories in here is a different server configuration. The configuration is selected by
passing - ¢ <confi g- name> to the run script. We'll ook at the standard server configurations next.

The JBoss Server - A Quick Tour

® O© [jboss-4.0.4.CA o
f Mame
> bin
» [F client
copyright.txt
+ | 2 docs
" jar-versions.xml
= Igpl.html
» [2 lib
readme_j2ee.html
* readme.html
v [F server
» [2 all
v | @ default
 conf
[# data
| deploy
2 lib
[log
[tmp
| work
B minimal

Y YYYYYY

c—— <

Figure 2.1. JBoss Directory Structure

2.1.2. Server Configurations

Fundamentally, the JBoss architecture consists of the IMX MBean server, the microkernel, and a set of pluggable
component services, the MBeans. This makes it easy to assemble different configurations and gives you the flexib-
ility to tailor them to meet your requirements. Y ou don’'t have to run alarge, monolithic server al the time; you can
remove the components you don’t need (which can also reduce the server startup time considerably) and you can
also integrate additional services into JBoss by writing your own MBeans. Y ou certainly don’t need to do thisto be
able to run standard J2EE applications though. Everything you need is already there. Y ou don't need a detailed un-
derstanding of IMX to use JBoss, but it’s worth keeping a picture of this basic architecture in mind asit is central
to the way JBoss works.

Within the server directory, you will find one or more configuration directories depending on which installer

The JBoss Server - A Quick Tour

packages you choose when installing. If you ran the installer, you will only have adef aul t configuration (Thisis
because you choose a specific configuration in the installer for a setup like EJB3, EJB3 Clustered or J2EE 1.4 Full)
and so the def aul t configuration has all the services for the specific configuration you choose. If you downloaded
a binary or source version you will see that there are three server configurations:. al |, def aul t and ni ni mal , each
of which provides a different set of services. Not surprisingly, the default configuration is the one used if you don’t
specify another one when starting up the server, so that’s the one we were running in the previous chapter. The
configurations are explained below.

* minimal: The ni ni mal configuration contains the bare minimum services required to start JBoss. It starts the
logging service, a INDI server and a URL deployment scanner to find new deployments. This is what you
would use if you want to use IMX/JBoss to start your own services without any other J2EE technologies. This
isjust the bare server. There is no web container, no EJB or IM S support.

« default: The default configuration consists of the standard services needed by most J2EE applications. It does
not include the JAXR service, the [1OP service, or any of the clustering services.

o all: Theal | configuration starts al the available services. This includes the RMI/11OP and clustering services,
which aren’'t loaded in the default configuration.

Y ou can add your own configurations too. The best way to do thisisto copy an existing one that is closest to your
needs and modify the contents. For example, if you weren't interested in using messaging, you could copy the de-
faul t directory, renaming it asmyconfi g, remove the j ns subdirectory and then start JBoss with the new configur-
ation.

run -c myconfig

The directory server configuration you're using, is effectively the server root while JBoss is running. It contains all
the code and configuration information for the services provided by the particular configuration. It’s where the log
output goes, and it's where you deploy your applications. Let’s take a look at the contents of the def aul t server
configuration directory. If you haven't tried running the server yet, then do so now, as a few of the sub-directories
are only created when JBoss starts for the first time.

» conf: Thisdirectory containsthej boss- servi ce. xm file which specifies the core services. Also used for addi-
tional configuration files for these services.

« data: This directory holds persistent data for services intended to survive a server restart. Serveral JBoss ser-
vices, such as the embedded Hypersonic database instance, store data there.

« deploy: The deploy directory contains the hot-deployable services (those which can be added to or removed
from the running server) and applications for the current server configuration. You deploy your application
code by placing application packages (JAR, WAR and EAR files) in the depl oy directory. The directory is con-
stantly scanned for updates, and any modified components will be re-deployed automatically. We'll look at de-
ployment in more detail later.

< lib: This directory contains JAR files needed by this server configuration. You can add required library files
here for JDBC drivers etc.

« log: Thisis where the log files are written. JBoss uses the Jakarta log4j package for logging and you can also
use it directly in your own applications from within the server.

The JBoss Server - A Quick Tour

e tmp: The t np directory is used for temporary storage by JBoss services. The deployer, for example, expands
application archivesin this directory.

e work: Thisdirectory is used by Tomcat for compilation of JSPs.

The dat a, 1 og, t np and wor k directories are created by JBoss and won't exist until you've run the server at least
once.

WEe' ve touched briefly on the issue of hot-deployment of services in JBoss so let’'s have alook at a practical ex-
ample of this before we go on to look at server configuration issues in more detail. Start JBoss if it isn't already
running and take a look in the depl oy directory again (make sure you're looking at the one in the def aul t config-
uration directory). Remove the mai | - servi ce. xni file and watch the output from the server:

13:10: 05,235 INFO [Muil Service] Mail service 'java:/Miil' renmoved from JNDI

Then replace the file and watch the JBoss re-install the service:

13:58: 54,331 INFO [Muil Service] Ml Service bound to java:/Mil

It's hot-deployment in action.

2.2. Basic Configuration Issues

Now that we've examined the layout of the JBoss server, we'll take alook at some of the main configuration files
and what they’'re used for. All paths are relative to the server configuration directory (server/defaul t, for ex-
ample).

2.2.1. Core Services

The core services specified in the conf/ j boss- servi ce. xm file are started first when the server starts up. If you
have alook at this file in an editor you'll see MBeans for various services including logging, security, JNDI (and
the JNDI Vi ew service that we saw earlier). Try commenting out the entry for the JNDI Vi ew service. Please note that
because the mbeans definition had nested comments, we had to comment out the mbean in in two sections, leaving
the original comment as it was.

<l-- Section 1 commented out
<nbean code="org.jboss. nam ng. JNDI Vi ew'

nanme="j boss: servi ce=JNDI Vi ew'

xnmbean- dd="r esour ce: xndesc/ JNDI Vi ew xnbean. xni " >
oo

<l -- The HANam ngServi ce service nanme -->
<l-- Section two commented out

<attribute name="HANam ngServi ce">j boss: servi ce=HAINDI </ attri bute>
</ nbean>

>

If you then restart JBoss, you' |l see that the JNDI Vi ew service no longer appears in the IMX Management Console
(IMX Console) listing. In practice, you should rarely, if ever, need to modify this file, though there is nothing to
stop you adding extra MBean entries in here if you want to. The alternative is to use a separate file in the depl oy

The JBoss Server - A Quick Tour

directory, which alows your service to be hot deployable.

2.2.2. Logging Service

We mentioned already that log4j is used for logging. If you're not familiar with the log4j package and would like to
useit in your applications, you can read more about it at the Jakarta web site. (http://jakarta.apache.org/logdj/) Log-
ging is controlled from a central conf /1 og4j . xm file. This file defines a set of appenders, specifying the log files,
what categories of messages should go there, the message format and the level of filtering. By default, JBoss pro-
duces output to both the console and alog file (ser ver. | og inthel og directory).

There are 5 basic log levels used: DEBUG, | NFO, WARN, ERROR and FATAL. The logging threshold on the console is
I NFO, which means that you will see informational messages, warning messages and error messages on the console
but not general debug messages. In contrast, there is no threshold set for the server. | og file, so al generated log-
ging messages will be logged there. If things are going wrong and there doesn’t seem to be any useful information
in the console, always check the log file to see if there are any debug messages which might help you track down
the problem. However, be aware that just because the logging threshold allows debug messages to be displayed,
that doesn't mean that all of JBoss will produce detailed debug information for the log file. You will aso have to
boost the logging limits set for individual categories. Take the following category for example.

<I-- Limt JBoss categories to | NFO -->
<category nanme="org.j boss">

<priority value="I|NFO'/>
</ cat egory>

This limits the level of logging to | NFo for all JBoss classes, apart from those which have more specific overrides
provided. If you were to change this to DEBUG, it would produce much more detailed logging output.

As another example, let’s say you wanted to set the output from the contai ner-managed persistence engine to DEBUG
level and to redirect it to a separate file, cnp. 1 og, in order to analyze the generated SQL commands. Y ou would
add the following codeto the | og4j . xm file:

<appender nanme="CMP" cl ass="org.j boss. | oggi ng. appender. Rol | i ngFi | eAppender " >
<errorHandl er class="org.jboss.|ogging.util.OnlyOnceErrorHandl er"/>
<param nane="Fi | e" val ue="${j boss. server. hone.dir}/| og/cnp.|og"/>
<par am name="Append" val ue="fal se"/>
<par am nane="MaxFi | eSi ze" val ue="500KB"/ >
<par am name=" MaxBackupl ndex" val ue="1"/>

<l ayout class="org. apache. | og4j. PatternLayout">
<par am nane="Conver si onPattern" val ue="% % 5p [%] %P""/>
</ | ayout >
</ appender >

<cat egory nane="org. | boss. ej b. pl ugi ns. cnmp" >
<priority val ue="DEBUG' />
<appender-ref ref="CwW"/>

</ cat egory>

This creates a new file appender and specifies that it should be used by the logger (or category) for the package
org. j boss. ej b. pl ugi ns. cp. Thiswill be useful when we cometo look at CMP (Chapter 7).

The file appender is set up to produce a new log file every day rather than producing a new one every time you re-
start the server or writing to a single file indefinitely. The current log fileis cnp. | og. Older files have the date they
were written added to the name. Y ou will notice that the | og directory also contains HTTP request logs which are

http://jakarta.apache.org/log4j/

The JBoss Server - A Quick Tour

produced by the web container.

2.2.3. Security Service

The security domain information is stored in the file | ogi n- confi g. xm as alist of named security domains, each
of which specifies a number of JAAS 3 login modules which are used for authentication purposes in that domain.
When you want to use security in an application, you specify the name of the domain you want to use in the applic-
ation’s JBoss-specific deployment descriptors, j boss. xm and/or j boss-web. xni . Welll quickly look at how to do
this to secure the IMX Console application that ship with JBoss.

We saw the IMX Console briefly in Section 1.3. Almost every aspect of the JBoss server can be controlled through
the IMX Console, so it isimportant to make sure that, at the very least, the application is password protected. Oth-
erwise, any remote user could completely control your server. To protect it, we will add a security domain to cover
the application. 4 This can be donein thej boss-web. xni file for the IMX Console, which can be found in depl oy/
j mx- consol e. war / WEB- | NF/ directory. Uncomment the securi t y- domai n in that file, as shown below.

<j boss- web>
<security-domai n>j ava: /j aas/j nx- consol e</ securi ty-domai n>
</j boss-web>

This links the security domain to the web application, but it doesn't tell the web application what security policy to
enforce. What URLs are we trying to protect, and who is allowed to access them? To configure this, go to the
web. xm file in the same directory and uncomment the security-constraint that is already there. This security
constraint will require avalid user name and password for auser in the JBossAdni n group.

<l--
A security constraint that restricts access to the HTM. JMX consol e
to users with the role JBossAdnin. Edit the roles to what you want and
unconment the WEB-| NF/j boss-web. xm /security-domain el enent to enable
secured access to the HTML JMX consol e.
-->
<security-constraint>
<web-resource-col | ecti on>
<web- r esour ce- name>Ht ml Adapt or </ web- r esour ce- nane>
<descri pti on>
An exanpl e security config that only allows users with the
role JBossAdnmin to access the HTM. JMX consol e web application
</ descri ption>
<url-pattern>/*</url-pattern>
<ht t p- met hod>GET</ ht t p- met hod>
<ht t p- met hod>POST</ ht t p- met hod>
</ web-resource-col | ecti on>
<aut h- constrai nt >
<r ol e- name>JBossAdni n</r ol e- nanme>
</ aut h- constrai nt >
</ security-constraint>

That's great, but where do the user names and passwords come from? They come from the j nx- consol e Security
domain we linked the application to. We've provided the configuration for thisin the conf /1 ogi n-confi g. xni .

<appl i cation-policy name="jnx-consol e">
3 e Java AUINENtICaIion ana AULNON ZalioN SEIVICE. JBO0SS USES JAAS 10 proviae prugganie autnenticaron Moaules. Y Ou Can Use tne ones tnat
are provided or write your own if have more specific requirements.
ali you had installed JBoss using Web Start and set the IMX Security up, then you will not have to uncomment the sections, because they are
aready uncommented. Additionally, the admin password will be set up to whatever you had specified.

10

The JBoss Server - A Quick Tour

<aut henti cati on>
<l ogi n- nrodul e code="org.jboss. security. auth. spi.UsersRol esLogi nMbdul e"
flag="required">
<nodul e- opti on name="user sProperties">
props/ j mx- consol e-users. properties
</ modul e- opti on>
<rmodul e- opti on nane="rol esProperties">
props/ j nx- consol e-rol es. properties
</ modul e- opti on>
</| ogi n- modul e>
</ aut henti cati on>
</ appl i cati on-policy>

This configuration uses a simple file based security policy. The configuration files are found in the conf / pr ops dir-
ectory of your server configuration. The usernames and passwords are stored in j mx- consol e- users. properti es
in the directory and take the form "user name=passwor d". TO assign a user to the JBossAdni n group add "user -
nane=JBossAdni n" to the j nx- consol e-rol es. properties file. The existing file creates an adni n user with the
password adni n. Y ou'll want to remove that user or change the password to something stronger.

JBoss will re-deploy the IMX Console whenever you update itsweb. xm . Y ou can check the server console to veri-
fy that JBoss has seen your changes. If you've configured everything correctly and re-deployed the application, the
next time you try to access the IMX Console, JBoss will ask you for a name and password.

The IMX Console isn't the only web based management interface to JBoss. There is also the Web Console. Al-
though it's a Java applet, the corresponding web application can be secured in the same way as the IMX Console.
The Web Console is in depl oy/ managenent / web- consol e. war. The only difference is that the Web Console is
provided as a simple WAR file instead of using the exploded directory structure that the IMX Console did. The
only real difference between the two isthat editing the files inside the WAR fileis a bit more cumbersome.

2.2.4. Additional Services

The non-core, hot-deployable services are added to the depl oy directory. They can be either XML descriptor files,
*-servi ce. xm , or JBoss Service Archive (SAR) files. SARs contain both the XML descriptor and additional re-
sources the service requires (e.g. classes, library JAR files or other archives), all packaged up asingle archive.

Detailed information on all these services can be found in the JBoss 4 Application Server Guide, which also
provides comprehensive information on server internals and the implementation of services such as JTA and the
J2EE Connector Architecture (JCA).

2.3. The Web Container - Tomcat

JBoss now comes with Tomcat 5.5 as the default web container. The embedded Tomcat service is the expanded
SAR j bossweb- t oncat 55. sar in the depl oy directory. All the necessary jar files needed by Tomcat can be found
in there, as well as a web. xn file which provides a default configuration set for web applications. If you are
already familiar with configuring Tomcat, have alook at the server. xni , which contains a subset of the standard
Tomcat format configuration information. As it stands, this includes setting up the HTTP connector on the default
port 8080, an AJP connector on port 8009 (can be used if you want to connect via a web server such as Apache)

Ssince the username and password are session variables in the web browser you may need to shut down your browser and come back in to see
the login dialog come back up.

11

The JBoss Server - A Quick Tour

and an example of how to configure an SSL connector (commented out by default).

You shouldn’t need to modify any of this other than for advanced use. If you've used Tomcat before as a stand-
alone server you should be aware that things are a bit different when using the embedded service. JBoss is in
charge and you shouldn’t need to access the Tomcat directory at al. Web applications are deployed by putting
them in the JBoss depl oy directory and logging output from Tomcat can be found in the JBoss| og directory.

12

About the Example Applications

3.1. The J2EE Tutorial

To make it easy if your just starting out with J2EE using JBoss, we will make use of the example applications
provided in the J2EE tutorial, in particular the Duke' s Bank application. The J2EE tutorial explains how to run the
applications using the J2EE SDK Reference Implementation server. Our aim is to show how to deploy and run
those same examples in JBoss, and we do so by supplementing the J2EE tutorial where necessary with JBoss-
specific configuration information and deployment descriptors.

You can find the J2EE tutorial on-line at http://java.sun.com/j2ee/1.4/docs/tutorial/doc/ and the example code can
be found downloaded from http://java.sun.com/j2ee/1.4/download.htmi#tutorial. Y ou should download update 7 of
the tutorial and Unpack/Uncompress the archive in a convenient location. You'll end up with a directory hamed
j 2eetutorial 14. You can get the JBoss code on the JBoss documentation page, http://www.jboss.org/docs/index.
Unpack/Uncompress the JBoss example code into the J2EE tutorial directory j 2eet ut ori al 14. This code provides
the JBoss specific configuration and deployment descriptors.

Additionally, we also use the Apache Ant build tool, which you should download and install. Y ou can get an up-
to-date copy of Ant from http://ant.apache.org/. We recommend using version 1.6.2 or later with thistutorial. Ant is
almost universally used in Java projects these days so if you aren’'t already familiar with its use then we recom-
mend you spend some time reading the documentation that comes with it and learning the basics of Ant build files.
The default file nameisbui I d. xnl , and it contains a set of targets which you can use to perform automated tasksin
your project. Usually all you will have to do is run the Ant command in the directory which contains the build file.
The default target in the file will perform the necessary operations to build and deploy the tutorial applications.

3.2. What's Different?

J2EE technologies are designed so that the code is independent of the server in which the application is deployed.
The deployment descriptors for EJBs and web applications (ej b-j ar. xni and web. xm , respectively) are standard
and also do not need to change between different J2EE containers. However, there are still one or two things that
need to be done in order to move the application to JBoss. In particular, we have to supply JBoss-specific
descriptors and make sure that the database scripts will work.

3.2.1. Container-Specific Deployment Descriptors

Container-specific information is usually contained in extra XML descriptors which map logical information used
in the application (such as JINDI names and security role names) to actual values which are used in the server.
JBoss uses separate files for the EJB and web modules of an application, called j boss. xni and j boss- web. xni re-
spectively. Thereis also a client version of these files which fulfils the same role in a Java client, in combination

13

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/
http://java.sun.com/j2ee/1.4/download.html#tutorial
http://www.jboss.org/docs/index
http://ant.apache.org/

About the Example Applications

with the J2EE appl i cati on-client.xm descriptor. If container-managed persistence (CMP) is being used for en-
tity EJBs, it is also possible to configure the JBoss persistence engine through the j bosscnp-j dbc. xm file.

3.2.2. Database Changes

The J2EE SDK comes with the Cloudscape database and this is used throughout the tutorials. We will be using the
Hypersonic database which runs as an embedded service within JBoss.

In areal-world situation, porting an application to a different databases is rarely straightforward, especialy if pro-
prietary features such as sequences, stored procedures and non-standard SQL are used. For these simple applica-
tions, though it is relatively easy. When we look at the Duke's Bank application in the next chapter, you will see
that there are only afew minor syntax changes required in the database scripts.

WEe'll look at how to configure JBoss to use a different database in Chapter 8.

3.2.3. Security Configuration

J2EE defines how you specify security constraints within your application, but doesn’'t say how the authentication
and access control mechanisms are actually implemented by the server or how they are configured. As we men-
tioned earlier, JBoss uses JAAS to provide a pluggable means of incorporating different security technologies in
your applications. It also comes with a set of standard modules for the use of file, database and L DAP-based secur-
ity information. We'll start out using file-based information as thisis the ssimplest approach.

3.3. J2EE in the Real World

The examples here are only intended to get you up and running with JBoss and to help you familiarize yourself
with the basics. The applications definitely aren't intended to reflect how you should go about writing production
J2EE software - indeed there is alot of differing opinion on this subject. Many people disagree on the use of EJBs
for example, particularly the use of entity beans; the use of bean-managed persistence is especially controversial
yet is convenient for examples. There is aso endless debate about the use of different web technologies (it would
be safe to say that not everyone loves JSPs) and the numerous different Model-2 frameworks that are out there.
Struts was one of the first and is probably the best known but is not without its critics. We've provided some
sources at the end of this chapter which you can check out for more information.

If you're starting out, your best bet is probably to ook at some existing open-source projects and see how they are
structured, and then pick something appropriate for your project.

Finally, we hope you'll realize that there’'s a lot more depth to JBoss than we can hope to cover here and once
you've worked your way through this basic introduction, we hope you'll be eager to learn more. JBoss is also a
continually evolving project with lots of plans for the future. So keep an eye on the bleeding-edge version, even if
you're running all your production applications on the stable 4.0 series.

14

The Duke’s Bank Application

Now that you have the server running, we will use the Duke's Bank example from the J2EE tutorial to illustrate
how to get an application up and running in JBoss. Duke's Bank demonstrates a selection of J2EE technologies
working together to implement a simple on-line banking application. It uses EJBs and web components (JSPs and
servlets) and uses a database to store the information. The persistence is bean-managed, with the entity beans con-
taining the SQL statements which are used to manipulate the data.

We won't look in detail at its functionality or comment on the implementation but will concentrate on a step-
by-step guide to building and deploying it in JBoss.

4.1. Building the Application

Y ou should have already downloaded the J2EE 1.4 tutorial, which includes Duke's Bank. We'll go through build-
ing and deploying the application first and then look at thingsin a bit more detail.

4.1.1. Preparing the Files

Y ou should be able to obtain the supplementary JBoss files from the same place as this document. The file is pack-
aged asa ZIP archive called j bossj 2ee- src. zi p. Download this and unpack it into the j 2eet ut ori al 14 directory,
adding to the existing tutorial files. All the Duke's Bank code isin athe exanpl es/ bank subdirectory. If you've un-
packed the JBoss extensions correctly, you will see aj boss-bui | d. xm there. Thisis our Ant build8 script for the
JBoss version of the application. Rather than just overwriting the existing bui | d. xm file, we' ve used a different
name from the default. This means that Ant must now berunasant -f jboss-build. xm .

Before we can build, you'll need to edit the j boss- bui | d. properti es filein thej 2eetut ori al 14 to point to your
JBoss install directory. Set the j boss. hone property to the full path to your JBoss 4.0 installation. If you've un-
packed JBoss 4.0 in the c: drive on awindows machine, you would set it as follows.

Set the path to the JBoss directory containing the JBoss application server
(This is the one containing directories like "bin", "client" etc.)
j boss. hone=C: /| boss-4.0.4

4.1.2. Compiling the Java Source

At the command line, go to the bank directory. All the build commands will be run from here. Compilation is pretty
straightforward; just type the following command to invoke the conpi | e Ant target.

ant -f jboss-build.xm conpile

15

The Duke' s Bank Application

If there aren’'t any errors, you will find anewly created bui | d directory with the classfilesinit.

4.1.3. Package the EJBs

The application has one EJB jar, bank-ejb.jar, which contains the code and descriptors (ej b-jar.xn and
j boss. xni) for the entity beans and associated controller session beans which the clients interact with. The pack-
age- ej b Ant target will createtheminthej ar directory.

ant -f jboss-build.xm package-ejb

4.1.4. Package the WAR File

The next target is the web application which provides the front end to allow usersto interact with the business com-
ponents (the EJBSs). The web source (JSPs, images etc.) is contained in the src/ web directory and is added unmodi-
fied to the archive. The Ant war task also adds a VeB- | NF directory which contains the files which aren’t meant to
be directly accessed by a web browser but are still part of the web application. These include the deployment
descriptors (web. xmi and j boss- web. xni), classfiles, (e.g. servlets and EJB interfaces) and extra jars and the extra
JSP tag-library descriptors required by the web application. The package-web Ant target builds the web client
WAR file.

ant -f jboss-build.xm package-web

4.1.5. Package the Java Client

In addition to the web interface, there is a standalone Java client for administering customers and accounts. Y ou
can build it using the package- cl i ent Ant target.

ant -f jboss-build.xm package-client
The generated WAR file contains the appl i cation-client.xn andjboss-client.xm descriptors as well as the

client j ndi . properti es file. The client JAR will also be included as an additional module in the EAR file and the
server.

4.1.6. Assembling the EAR

The EAR file is the complete application, containing the three EJB modules and the web module. It must also con-
tain an additional descriptor, appl i cation. xm . It is also possible to deploy EJBs and web application modules in-
dividually but the EAR provides a convenient single unit. The assenbl e- app Ant target will produce the final file
JBossDukesBank. ear .

ant -f jboss-build.xm assenbl e-app

4.1.7. The Database

16

The Duke' s Bank Application

Before we can deploy the application, we need to populate the database it will run against. If you are writing an ap-
plication that uses container-managed persistence, you can configure the CMP engine to create the tables for you at
deployment, but otherwise you will need have to have a set of scripts to do the job. Thisis also a convenient place
pre-populating the database with data.

4.1.7.1. Enabling the HSQL MBean and TCP/IP Connections

The HSQL database can be run in one of two modes: in-process or client-server (the HSQL documentation refersto
this as server mode). Since we are going to be running the SQL scripts using a tool that connects to the database,
we want to make sure the database is running in client-server mode and will accept TCP/IP connections. In later
versions of JBoss, client-server mode is disabled to prevent direct database access, which could be a security risk if
the default login and password have not been modified. Open the hsql db- ds. xni file which you'll find in the de-

pl oy directory and which sets up the default datasource. Near the top of the file, you'll find the connecti on-url

element. Make sure the value is set to j dbc: hsql db: hsql : //1 ocal host : 1701 and that any other connecti on-url

elements are commented ouit.

<l-- The jndi nanme of the DataSource, it is prefixed with java:/ -->
<l -- Datasources are not avail able outside the virtual machine -->
<j ndi - name>Def aul t DS</ j ndi - name>

<I-- for tcp connection, allow ng other processes to use the hsql db
dat abase. This requires the org.jboss.jdbc. Hypersoni cDat abase nbean. -->
<connection-url >j dbc: hsqgl db: hsqgl : / /| ocal host: 1701</ connecti on-url >

<l-- for totally in-menory db, not saved when jboss stops.

The org.j boss.jdbc. Hyper soni cDat abase nbean i s unnecessary
<connecti on-url >j dbc: hsql db: . </ connecti on-url >

-->

<l-- for in-process db with file store, saved when jboss stops. The
org. j boss. j dbc. Hyper soni cDat abase i s unnecessary

<connecti on-url >j dbc: hsql db: ${j boss. server. data. di r}/ hypersoni c/| ocal DB
</ connection-url >
-->

Now scroll down to the bottom of the file, and you should find the MBean declaration for the Hypersonic service.

<nmbean code="org.j boss.j dbc. Hyper soni cDat abase" nanme="j boss: servi ce=Hyper soni c">
<attribute name="Port">1701</attri bute>
<attribute name="Silent">true</attri bute>
<attribute name="Dat abase">defaul t</attribute>
<attribute name="Trace">fal se</attri bute>
<attribute name="No_systemexit">true</attribute>
</ nbean>

Make sure thisis also uncommented so JBoss will start the database in the correct mode. If you choose to delete the
other MBean definition, make sure to change the dependency on the datasource from
j boss: servi ce=Hyper soni c, dat abase=I ocal DB 10 boss: servi ce=Hyper soni c.

4.1.7.2. Creating the Database Schema

We have supplied scriptsto run with HSQL in the sql directory. The database tasksin the build file will try to con-
tact the HSQL database. If JBossisn't aready running, you should start it now, so that the database is available.

17

The Duke' s Bank Application

First we need to create the necessary tables with the db- cr eat e- t abl e target.

ant -f jboss-build.xm db-create-table

Then run the db-i nsert target to populate them with the required data.

ant -f jboss-build.xm db-insert

Finally, if everything has gone according to plan, you should be able to view some of the data using the db- 1 i st
target, which lists the transactions for a specific account.

ant -f jboss-build.xm db-1Iist

4.1.7.3. The HSQL Database Manager Tool

Just as a quick aside at this point, start up the IMX console application web application and click on the ser -
vi ce=Hyper soni ¢ link which you'll find under the section j boss. If you can't find this, make sure the serviceis en-
abled as described in Section 4.1.7.1.

AeA HSQL Database Manager
File View Command Recent Options Tools

%
% Clear 50L EtatementH Execute 5QL 5tatement|

jdbc:hsgldb:hsgl:/ /localhost: 17007y | salect* from ACCOUNT
¥ ACCOUNT
| ACCOUNT_ID
' TYPE
* DESCRIPTION

BALANCE N
“ Type: NUMERIC ACCOUNT_ID TYPE DESCRIFTION BALAMCE = CREDIT_LINE

5005 Money Market Hi Balance 3300.00 0.00

5006 Checking Checking 2458.32 0.00

W CREDIT. LINE 5007 Credit Visa 720.03 5000.00
¢ BEGIN_BALANCE 5008 savings Super Interest Account 64102.00 0.00

" BEGIN_BALANCE_TIME_ST#

| Indices

| CUSTOMER

© CUSTOMER_ACCOUNT _XREF
HILOSEQUENCES

| JM5_MESSAGES

JMS_ROLES

| JMS_SUBSCRIPTIONS
JMS_TRANSACTIONS

| IM5_USERS

| NEXT_ACCOUNT_ID

| NEXT_CUSTOMER._ID
NEXT_TX_ID :

4 YVYY

_ Nullable: true

YyYYYY

M Y Y Y Y Y Y TYYYYY

Figure4.1. The HSQL Database Manger

18

The Duke' s Bank Application

This will take you to the information for the Hypersonic service MBean. Scroll down to the bottom of the page and
click thei nvoke button for the st ar t Dat abaseManager () operation. This starts up the HSQL Manager, a Java GUI
application which you can use to manipulate the database directly.

4.1.8. Deploying the Application

Deploying an application in JBoss is easy. You just have to copy the EAR file to the depl oy directory. The depl oy
target in the build file does this for our application.

ant -f jboss-build.xm deploy

Y ou should see something close to the following output from the server:

18: 07: 53,923 I NFO [EARDepl oyer] Init J2EE application:
file:/private/tnp/jboss-4.0.4/server/defaul t/depl oy/ JBossDukesBank. ear

18: 07: 55, 024 I NFO [Ej bModul e] Depl oyi ng Cust orrer Bean

18: 07: 55,103 I NFO [Ej bMbdul e] Depl oyi ng Account Bean

18: 07: 55, 142 I NFO [Ej bModul €] Depl oyi ng TxBean

18: 07: 55, 403 I NFO [Ej bMbdul e] Depl oyi ng Next | dBean

18: 07: 55,439 I NFO [Ej bMbdul e] Depl oyi ng Account Control | er Bean

18: 07: 55, 478 I NFO [Ej bModul e] Depl oyi ng Cust oner Contr ol | er Bean

18: 07: 55,503 I NFO [Ej bMbdul e] Depl oyi ng TxControl | er Bean

18: 07: 56, 950 | NFO [EJBDepl oyer] Depl oyed: file:/private/tnp/jboss-4.0.4/server/default/t
np/ depl oy/ t np15097JBossDukesBank. ear - cont ent s/ bank- ej b. j ar

18: 07: 57, 267 I NFO [Toncat Depl oyer] depl oy, ctxPath=/bank, warUrl=file:/private/tnp/jboss
-4.0.4/ server/defaul t/tnp/depl oy/tnpl5097JBossDukesBank. ear - cont ent s/ web-cl i ent. war/

18: 08: 00, 784 | NFO [EARDepl oyer] Started J2EE application: file:/private/tnp/jboss-4.0.4/
server/ def aul t/ depl oy/ JBossDukesBank. ear

If there are any errors or exceptions, make a note of the error message and at what point it occurs (e.g. during the
deployment of a particular EJB, the web application or whatever). Check that the EAR is complete and inspect the
WAR file and each of the EJB jar filesto make sure they contain all the necessary components (classes, descriptors
efc.).

You can safely redeploy the application if it is already deployed. To undeploy it you just have to remove the
archive from the depl oy directory. There’s no need to restart the server in either case. If everything seems to have
gone OK, then point your browser at the application URL.

http://local host:8080/bank/main

Y ou will be forwarded to the application login page. As explained in the tutorial, you can login with a customer 1D
of 200 and the password j 2ee. Figure 4.2 shows the Duke's Bank application in action.

19

http://localhost:8080/bank/main

The Duke' s Bank Application

Account Account Number |Balance Available Credit

Hi Balance 3005 53.300.00 5-3300.00
Checking 3006 5245832 5-2458.32
Yisa 3007 522003 5477997
Super Interest Account [5008 539.601.35 5-59601.35

Figure4.2. Duke's Bank

If you got an error at this point, check again that you have set up the database correctly as described in Sec-
tion 4.1.7.1. In particular, check that the connecti on-url is correct and that you have populated the database with
data.

Y ou can also run the standalone client application using ther un-cl i ent target.

ant -f jboss-build.xm run-client

Thisisa Swing GUI client which allows you to administer the customers and accounts.

4.2. JNDI and Java Clients

It's worth taking a brief look at the use of JINDI with standalone clients. The example makes use of the J2EE Ap-
plication Client framework, which introduces the concept of a client-side local environment naming context within
which JNDI names are resolved with the prefix j ava: / conp/ env. Thisis identical to the usage on the server side;
the additional level of indirection means you can avoid using hard-coded names in the client. The name mapping is
effected by the use of the proprietary j boss-cli ent. xm which resolves the references defined in the standard ap-

plication-client.xmn .

4.2.1. The jndi.properties File

One issue with a Java client is how it bootstraps itself into the system, how it manages to connect to the correct
JINDI server to lookup the references it needs. The information is supplied by using standard Java properties. You
can find details of these and how they work in the JDK API documentation for the j avax. nami ng. Cont ext class.
The properties can either be hard-coded, or supplied in a file named j ndi . properti es on the classpath. The file
we've used is shown below.

java.nam ng. factory.initial=org.jnp.interfaces. Nan ngCont ext Fact ory
j ava. nam ng. provi der. url =j np://| ocal host: 1099

20

The Duke' s Bank Application

java. nam ng. factory. url . pkgs=org.jboss. nam ng. cli ent
j 2ee. cl i ent Nane=bank-cl i ent

The first three are standard properties, which are set up in order to use the JBoss JNDI implementation. The
j 2ee. cli ent Nanme property identifies the client deployment information on the server side. The name must match
thej ndi - nane specified inthej boss-client. xn descriptor:

<j boss-client>
<j ndi - name>bank- cl i ent </ j ndi - nane>
<ej b-ref>
<ej b-ref - nane>ej b/ cust oner Control | er </ ej b- r ef - name>
<j ndi - name>MyCust oner Control | er </ j ndi - nane>
</ ej b-ref>
<ej b-ref>
<ej b-ref - nane>ej b/ account Cont rol | er </ ej b-r ef - nane>
<j ndi - name>MyAccount Control | er </j ndi - nane>
</ ejb-ref>
</jboss-client>

Of courseif you were only building a simple web application, you wouldn't need to worry about remote clients

4.2.2. Application JNDI Information in the JMX Console

While we're on the subject of JNDI, let’s take a quick look at the JBoss IMX console again and see what informa-
tion it shows about our application. This time click on the ser vi ce=JNDI Vi ew link and then invoke the I i st () op-
eration, which displays the JINDI tree for the server. Y ou should see the EJB modules from Duke's Bank listed near
the top and the contents of their private environment naming contexts as well as the names the entries are linked to
in the server. Here's an abbreviated view:

Ej b Modul e: bank-ejb.jar

java: conp nanespace of the CustonerBean bean:
+- env (class: org.jnp.interfaces. Nam ngCont ext)

j ava: conp nanespace of the AccountBean bean:
+- env (class: org.jnp.interfaces. Nam ngCont ext)

j ava: conp nanespace of the TxBean bean:
+- env (class: org.jnp.interfaces. Nam ngCont ext)

j ava: conp nanmespace of the NextldBean bean:
+- env (class: org.jnp.interfaces. Nam ngCont ext)

j ava: conp nanmespace of the Account Controll erBean bean:
+- env (class: org.jnp.interfaces. Nam ngCont ext)
| + ejb (class: org.jnp.interfaces. Nam ngCont ext)
| | + tx[link -> MyTx] (class: javax.nam ng.LinkRef)
| | + nextld[link -> MyNextld] (class: javax.nam ng.LinkRef)
| | +- account[link -> MyAccount] (class: javax.nam ng.LinkRef)
| | +- custoner[link -> MyCustoner] (class: javax.nam ng.LinkRef)

j ava: conp nanmespace of the CustonerControll erBean bean:
+- env (class: org.jnp.interfaces. Nam ngCont ext)
+ ejb (class: org.jnp.interfaces. Nam ngCont ext)
| + tx[link -> MyTx] (class: javax.nam ng. Li nkRef)
| + nextld[link -> MyNextld] (class: javax.nam ng.LinkRef)
| +- account[link -> MyAccount] (class: javax.nam ng.Li nkRef)
| +- custoner[link -> MyCustoner] (class: javax.nam ng.LinkRef)

21

The Duke' s Bank Application

j ava: conp nanmespace of the TxControl |l erBean bean
+- env (class: org.jnp.interfaces. Nam ngCont ext)
| +- ejb (class: org.jnp.interfaces. Nam ngCont ext)
| | + tx[link -> MyTx] (class: javax.nam ng. Li nkRef)
| | +- nextld[link -> MyNextld] (class: javax.nam ng.LinkRef)
| | +- account[link -> MyAccount] (class: javax.nam ng.Li nkRef)
| | +- custoner[link -> MyCustoner] (class: javax.nam ng.LinkRef)

j ava: Namespace
+- XAConnectionFactory (class: org.jboss. ng. SpyXAConnecti onFact ory)
+- DefaultDS (class: org.jboss.resource. adapter.jdbc. Wapper Dat aSour ce)
+- SecurityProxyFactory (class: org.jboss.security. SubjectSecurityProxyFactory)
+- Def aul t IMSProvi der (class: org.jboss.jmns.jndi.JNDI Provi der Adapt er)
+- conp (class: javax.nam ng. Cont ext)
+- JmeXA (class: org.jboss.resource. adapter.jnms.JmsConnecti onFactoryl npl)
+- Connecti onFactory (class: org.jboss. ng. SpyConnecti onFact ory)
+- jaas (class: javax.nam ng. Context)
| +- Hsql DbReal m (cl ass: org.jboss.security. plugins. SecurityDomai nCont ext)
| +- jnx-consol e (class: org.jboss.security.plugins. SecurityDonai nCont ext)
| +- jbossng (class: org.jboss.security.plugins. SecurityDomai nCont ext)
| +- JmsXAReal m (cl ass: org.jboss. security. plugins. SecurityDomai nCont ext)
+- tinmedCacheFactory (class: javax.nam ng. Context)

Failed to | ookup: tinedCacheFactory, errnsg=org.jboss.util.Ti nedCachePolicy
+- Transacti onPropagati onCont ext Exporter
(class: org.jboss.tm Transacti onPropagati onCont ext Fact ory)
+- StdJMSPool (class: org.jboss.jns. asf. StdServer Sessi onPool Fact ory)
+- Mail (class: javax. il . Session)
+- Transacti onPropagati onCont ext | nporter
(class: org.jboss.tm Transacti onPropagati onCont ext | nporter)
+- Transacti onManager (class: org.jboss.tm TxManager)

Note that these objects are created on demand, so the dukesbank entry will only appear if you have configured the
application to use the dukesbank domain and have tried to log in to the application.

4.3. Security

When you first access Duke's Bank, you are prompted for an account number and password using a simple login
form. J2EE security aways requires some configuration in the application server. The authentication logic which
decides whether a login succeeds or fails is outside the scope of the J2EE specification. The actual authentication
mechanism is controlled by the security domain that the application is linked to. In this section we will see how the
security domain is configured for Duke's Bank.

4.3.1. Configuring the Security Domain

The standard J2EE security declarations for the web and EJB tiers are declared in the web. xm and ej b-j ar. xni
files, respectively. However, the JBoss security configuration needs to go in the companion JBoss deployment
descriptors.

The configuration is quite straightforward. In both cases, a single securi ty- domai n element is all that is needed.
The following fragment from j boss- web. xni illustrates the usage in the web application.

<j boss- web>
<security-domai n>j ava: / j aas/ dukesbank</ security-domai n>

</ | boss- web>

22

The Duke' s Bank Application

The configuration looks the same on the EJB side. The following j boss. xm file shows how this works.

<j boss>
<security-domai n>j ava: /j aas/ dukesbank</ security-domai n>

<ent er pri se- beans>

</ enterprise-beans>
</j boss>

In both cases, we've linked to a security domain located by the j ava: / j aas/ dukesbank JNDI name. All security
domains are bound under the j ava: /j aas context, so we would really just say that the application is using the
dukesbank security domain.

Security domains are configured by a corresponding application policy in the conf /1 ogi n-config. xm file. But, if
you look, you won't see a dukesbank policy. When JBoss doesn't find a matching policy, it defaults to using the
ot her policy, which is shown below.

<appl i cati on-policy nane="other">
<aut henti cati on>
<l ogi n- nmodul e code="org.jboss. security. auth. spi.UsersRol esLogi nMbdul e"
flag="required" />
</ aut henti cati on>
</ appl i cati on-policy>

The login module used here uses local properties files for authentication. There are two files; one provides user-
names and passwords, and other provides the roles assigned to the users. The following listing shows the
users. properti es file used for Duke's Bank.

users.properties file for use with the UsersRol esLogi nMdul e
Format is:

#

user name=password

200=j 2ee
The format is simple. Each line takes the form user name=passwor d. So, this file contains one user named 200

whose password isj 2ee. That is the name and password you used to access the application. Try changing the pass-
word and deploying the application again.

J2EE application security isn't driven only by a username and password. Users are assigned to roles, and the applic-
ation can only only give access to a user based on that user's roles. Duke's bank can only be accessed by users that
are customers, as indicated by the bankcust orrer role. The following listing showsther ol es. properti es file used
to assign the bankCust orer role to the user.

A roles.properties file for use with the UsersRol esLogi nMdul e
#

Format is

#

usernane=rol el,rol e2,rol e3

200=bankCust omer

To complete the application, you should actually define the dukesbank security domain rather than letting the serv-
er fall back to the default security domain. All you need to do is add the following policy to the conf/1 o-

23

The Duke' s Bank Application

gi n-config. xm file.

<appl i cati on-policy nane="dukesbank">
<aut henti cati on>
<l ogi n- modul e code="org.jboss. security.auth. spi.UsersRol esLogi nMbdul e"
flag="required" />
</ aut henti cati on>
</ application-policy>

Y ou will, unfortunately, need to restart JBoss to make the changesto | ogi n- confi g. xn visible.

4.3.2. Security Using a Database

As you can well imagine, password files are not a very flexible method for maintaining security. In a real project
you will want to use a more sophisticated approach to authentication. Since the user accounts are in the database, it
would be very convenient to be able to store the passwords there too. We'll do that now.

JBoss comes with a login module called Dat abaseSer ver Logi nModul e that can use authentication information
stored in arelational database. The following database schema mirrors the information in the properties files.

CREATE TABLE User s(usernane VARCHAR(64) PRI MARY KEY, passwd VARCHAR(64))
CREATE TABLE User Rol es(usernane VARCHAR(64), userRol es VARCHAR(32))

I NSERT | NTO Users VALUES (' 200','j2ee')
I NSERT | NTO User Rol es VALUES (' 200', ' bankCustoner')

Y ou can use they Hypersonic database manager we looked at earlier to create these tables and load the data. Once
you have the data, we'll need to configure the Dat abaseSer ver Logi nMbdul e. The login module requires the appro-
priate queries to retrieve the password and roles for a particular user and a reference to the datasource that those
queries should be issued on. For Duke's Bank, the following configuration should be added to 1 ogi n- confi g. xni .

<appl i cati on-policy nane="dukesbank">
<aut henti cati on>
<l ogi n- rodul e code="org.jboss. security. auth. spi.Dat abaseServer Logi nModul e"
flag="required">
<nodul e- opti on nanme="dsJndi Nane">j ava: / Def aul t DS</ nodul e- opti on>
<nmodul e- opti on nane="pri nci pal sQuery" >
sel ect passwd from Users where username=?
</ modul e- opti on>
<nodul e- opti on name="rol esQuery" >
sel ect userRol es,' Roles' from UserRol es where user nane=?
</ modul e- opti on>
</ | ogi n- nodul e>
</ aut henti cati on>
</ appl i cati on-policy>

The query to retrieve the password is straightforward. However, there is an additional field with value Rol es in the
roles query. This is the role group. It allows you to store additional roles (for whatever purpose) classified by the
role group. The ones which will affect JBoss permissions are expected to have the value Rol es. In this smple ex-
ample we only have a single set of roles in the database and no role group information. The details aren't critical to
understand here. Just remember that the roles query should return the text Rol es in the second column.

Y ou will need to restart JBoss for changesto | ogi n- confi g. xni to take effect. Do that and access Duke's bank.

4.3.3. Using Password Hashing

24

The Duke' s Bank Application

The login modules we' ve used so far al have support for password hashing; rather than storing passwords in plain
text, a one-way hash of the password is stored (using an algorithm such as MD5) in a similar fashion to the /
et ¢/ passwd file on a UNIX system. This has the advantage that anyone reading the hash won't be able to use it to
log in. However, thereis no way of recovering the password should the user forget it, and it also makes administra-
tion slightly more complicated because you also have to calculate the password hash yourself to put it in your se-
curity database. This isn't a magjor problem though. To enable password hashing in the database example above,
you would add the following module options to the configuration

<modul e- opti on name="hashAl gorit hni' >MD5</ nodul e- opti on>
<nmodul e- opti on nane="hashEncodi ng" >base64</ nodul e- opti on>

This indicates that we want to use MD5 hashes and use base64 encoding to covert the binary hash value to a string.
JBoss will now calculate the hash of the supplied password using these options before authenticating the user, so
it's important that we store the correctly hashed information in the database. If you're on a UNIX system or have
Cygwin installed on Windows, you can use openss! to hash the value.

$ echo -n "j2ee" | openssl dgst -nd5 -binary | openssl base64
gl ci kLhvxq1BwPBZNOEGMQ==

You would then insert the resulting string, gl ci kLhvxq1BwPBZNOEGMQ==, into the database instead of the plaintext
password, j 2ee. If you don't have this option, you can use the class or g. j boss. securi ty. Base64Encoder Which
you'll find in thej bosssx. j ar file.

$ java -classpath ./jbosssx.jar org.jboss.security. Base64Encoder j2ee MD5
[gl ci kLhvxqlBwPBZNOEGVQ==]

With a single argument it will just encode the given string but if you supply the name of a digest algorithm as a
second argument it will calculate the hash of the string first.

25

J2EE Web Services

From the start, web services have promised genuine interoperability by transmitting XML data using platform and
language-independent protocols such as SOAP over HTTP. While the early days of multiple competing standards
and general developer confusion may have made this more of a dream than a reality, web services have matured
and standardized enough to have been incorporated into the J2EE 1.4 specification.

Keeping with the spirit of this guide, well assume you have some experience with web services aready. If you
don't, we would recommend you do some reading in advance. A good place to start would be ht-
tp:/Iwiki.jboss.org/wiki/Wiki.jsp?page=JBossWS on the JBoss wiki, which covers web services on JBoss in more
depth. We aso recommend J2EE Web Services by Richard Monson-Haefel for more general coverage of J2EE web
services.

5.1. Web services in JBosSsS

JBossWS is the JBoss module responsible for providing web services in JBoss 4.0, replacing the previous
JBoss.NET package. Like its predecessor, it is also based on Apache Axis (http://ws.apache.org/axis). However,
JBossWS provides the complete set of J2EE 1.4 web services technologies, including SOAP, SAAJ, JAX-RPC and
JAXR.

J2EE web services provides for two types of endpoints. If you think of aweb service as a platform-independent in-
vocation layer, then the endpoint is the object you are exposing the operations of and invoking operations on. Nat-
urally, J2EE web services support exposing EJBs as web services, but only stateless session beans can be used.
That makes sense given the stateless nature of web services requests. Additionally, J2EE web services provide for
JAX-RPC service endpoints, (JSEs) which are nothing more than simple Java classes. We'll only be working with
EJB endpoints in this example.

5.2. Duke’s Bank as a Web Service

Well continue working with the Duke's Bank application from Chapter 4 and create a simple web service for
querying accounts and balances. The Account Control | er session bean provides this functionality to the Duke's
Bank web application. Unfortunately the application uses stateful session beans as its external interface, so we can't
expose the Account Control | er session bean directly. Instead, we'll create a new statel ess session bean, the Tel | -
er Bean, which will provide a more suitable web service endpoint.

Before we start, make sure that you have built and deployed Duke's Bank according to the instructions in
Chapter 4. As with that example, we'll be working from the exanpl es/ bank directory. Although Tel | er Bean will
have already been compiled when you deployed Duke's Bank, you'll need to remember to invoke the conpi | e tar-
get to compile any changes you might make.

ant -f jboss-build.xm conpile

26

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossWS
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossWS
http://ws.apache.org/axis

J2EE Web Services

The magic of J2EE is in the deployment descriptors. We've seen how to deploy session beans already. Deploying a
session bean as aweb service is as simple as adding aser vi ce- endpoi nt element to the session bean definition in
ej b-j ar. xm . The service-endpoint specifies the class that provides the interface corresponding to the methods on
the session bean being exposed as a web service.

<sessi on>
<ej b- name>Tel | er Bean</ ej b- name>
<servi ce- endpoi nt >com j boss. ebank. Tel | er Endpoi nt </ servi ce- endpoi nt >
<ej b-cl ass>com j boss. ebank. Tel | er Bean</ ej b- cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transaction-type>Cont ai ner</transacti on-type>
<ej b-ref >
<ej b-ref - nane>ej b/ account </ ej b- r ef - name>
<ej b-ref-type>Sessi on</ej b-ref-type>
<home>com sun. ebank. ej b. account . Account Cont r ol | er Home</ hone>
<r enot e>com sun. ebank. ej b. account . Account Control | er </ r enot e>
</ejb-ref>
<security-identity>
<run-as>
<r ol e- name>bankCust oner </ r ol e- nane>
</ run-as>
</security-identity>
</ sessi on>

Y ou might have noticed that we didn't declare a home or remote interface for Tel | er Bean. If your session bean is
only accessed by the web services interface, you don't need one, so we've |eft them out here. Instead, we've de-
clared the Tel | er Endpoi nt class as our endpoint interface. Our web service interface exposes two operations, both
of which map onto the equivalent methods on Tel | er Bean.

public interface Tell er Endpoi nt
extends Renote

{
publ i c Account Li st get Account sOf Custoner (String customerld)
t hrows Renot eExcepti on;
publ i c Bi gDeci mal get Account Bal ance(String account | D)
t hrows Renot eExcepti on;
}

The required web services deployment descriptors (WSDL file, JAX-RPC mapping file, webservices deployment
descriptor) can be generated using the wstools generator that comes with JBossWS. The wst ool s target runs the
generator.

ant -f jboss-build.xm wstools

The wstools program uses the wst ool s- confi g. xm fileto guide the generation project.

<configuration xm ns="http://ww.jboss. org/j bossws-tool s">
<j ava- wsdl >
<service nanme="Tel | er Servi ce" style="rpc" endpoi nt="com j boss. ebank. Tel | er Endpoi nt"/ >
<nanespaces target-nanmespace="http://ebank.jboss.confteller"
type- nanespace="http://ebank. jboss.comtel |l er/types"/>
<mappi ng file="jaxrpc- mappi ng. xm "/ >
<webservi ces ejb-1ink="Tell erBean"/>
</java-wsdl >
</ configuration>

The following artificats are generated by this configuration.

27

J2EE Web Services

« TdlerServicewsdl: Thisisthe WSDL definition that describes the web service. Some values, like the SOAP
address, will befilled in at runtime by JBosswS.

e jaxrpc-mapping.xml: This mapping file describes the mapping between the WSDL types and the underlying
Java implementation. Since the client program happens to use the same Java classes, we will re-use thisfile for
the client-side mappings.

« webservicesxml: This file declares the webservice. It links the endpoint to a server-side component (in this
case a session bean) and points to the location of the related deployment files.

This web service is a simple session bean, so deploying it only requires us to package up the bean and the associ-
ated deployment descriptors into an EJB JAR file. The package- ws task accomplishes this, and the depl oy- ws tar-
get deploysthe EJB JAR to JBoss.

boss-bui | d. xm package-ws
boss- bui | d. xml depl oy-ws

ant -f
ant -f

Once the service is deployed you can view the WSDL (Web Service Description Language) for it by browsing to
the URL http://localhost:8080/bankws-ejb/TellerServicewsdl. In this example we generate the WSDL, but it
would also have been possible to write the WSDL for the service by hand and then generate a Java endpoint inter-
face for it using wsdl 2j ava, which is also provided with JBossWS.

5.3. Running the Web Service Client

We've aso supplied a Java client which accesses the web service from a non-J2EE environment.

public class Wsd i ent {
public static void main(String[] args)
throws Exception

{
URL url =
new URL("http://I|ocal host: 8080/ bankws-ej b/ Tel | er Bean?wsdl ") ;
QNane gnane = new QNarme("http://ebank.jboss.comteller",
"Tel | er Service");
Fi |l e mappi ng = new Fil e("dd/ ws/j axrpc- nappi ng. xm ") ;
Servi ceFactoryl nmpl factory = new ServiceFactorylnpl ();
Servi ce service = factory.createService(url, gnane, napping.toURL());
Tel | er Endpoi nt endpoi nt = (Tel | er Endpoi nt)
service. get Port (Tel | er Endpoi nt. cl ass);
String custoner = "200";
Systemout. println("Custonmer: " + customner);
Account Li st accounts = endpoi nt. get Account sOf Cust oner (cust oner) ;
String[] i ds = accounts. get Accounts();
for (int i=0; i<ids.length; i++) {
Systemout.println("account[" + ids[i] + "] " +
endpoi nt . get Account Bal ance(ids[i])):
}
}

28

http://localhost:8080/bankws-ejb/TellerService?wsdl

J2EE Web Services

The client can be run using the r un- ws target.

ant -f jboss-build.xm run-ws

The client will display the balance for each account belonging to the given customer.

[java] Custoner: 200

[java] account[5005] 3300.00
[java] account[5006] 2458. 32
[java] account[5007] 220.03
[java] account[5008] 59601. 35

5.4. Monitoring webservices requests

When processing web services requests, it is often useful to be able and observe the actual messages being passed
between the client and the server. JBossWS logs this information in the or g. j boss. ws. server . Servi ceEndpoi nt
category. To enable web services logging, add the following debug category to the | og4j . xm file:

<cat egory nane="org.j boss. ws. server. Servi ceEndpoi nt">
<priority val ue="DEBUG'/>
</ cat egor y>

When enabled, all SOAP requests and responses will be logged to the ser ver . | og file. Hereisalog of acall to the
get Account sOf Cust omer method.

2005-05-16 17:50:43,479 DEBUG [org.] boss. axis.transport. http. Axi sServl et]
<?xm version="1.0" encodi ng="UTF-8"?>
<soapenv: Envel ope xm ns: soapenv="http://schemas. xm soap. or g/ soap/ envel ope/"
xm ns: xsd="htt p: // wwv. w3. or g/ 2001/ XM_Schena"
xm ns: xsi ="http://ww. wW3. org/ 2001/ XM_Schema- i nst ance" >
<soapenv: Body>
<nsl: get Account sOf Cust omer xm ns: ns1="http://ebank.jboss. cont>
<i n0>200</ i n0>
</ nsl: get Account sOf Cust oner >
</ soapenv: Body>
</ soapenv: Envel ope>
...2006-05-23 14:51:51, 710 DEBUG [org. | boss. ws. server. Servi ceEndpoi nt] Qut goi ng SOAPMessage
<env: Envel ope xm ns: env="http://schemas. xm soap. or g/ soap/ envel ope/"' >
<env: Header/ >
<env: Body>
<ns1: get Account sOf Cust oner Response xm ns: nsl='http://ebank.jboss.comteller'>
<result xm ns:xsi="http://ww. w3. org/ 2001/ XM_-Schema-i nst ance' >
<account s>5005</ account s>
<account s>5006</ account s>
<account s>5007</ account s>
<account s>5008</ account s>
</result>
</ nsl: get Account sOFf Cust oner Response>
</ env: Body>
</ env: Envel ope>

29

JMS and Message-Driven Beans

One thing that’ s missing from the Duke’'s Bank application is any use of JIMS messaging, so we' |l work through the
tutorial example on Message Driven Beans (MDBS) to see how to use messaging in JBoss. We'll assume you're
aready familiar with generd JMS and MDB concepts. The J2EE tutorial code for the MDB is in
j 2eet utori al 14/ exanpl es/ ej b/ si npl enessage. We've supplied a j boss-bui | d. xm file in the si npl enessage
directory which will alow you to build the example from scratch and run it in JBoss.

The example code is very simple. There are only two classes, one for the client and one for the bean (unlike normal
EJBs, MDBs don't need any interfaces). The client publishes messages to a JIMS Queue and the MDB handles
them via its standard onMessage method. The messages are al of type j avax. j ns. Text Message and the bean
simply prints out the text contained in each message.

The only container-specific tasks required are setting up the Queue in JBoss, and configuring the MDB to accept
messages from it.

6.1. Building the Example

6.1.1. Compiling and Packaging the MDB and Client

To compile thefiles, invoke the conpi | e- mdb target from the si npl enessage directory.

ant -f jboss-build.xm conpile-ndb

Then run the following targets to produce archives for the bean and the client and a combined EAR file in thej ar
directory.

ant -f jboss-build.xm package-ndb
ant -f jboss-build.xm package-ndb-client
ant -f jboss-build.xm assenbl e-ndb

WEe've retained the same layout we used in the Duke's Bank build, with a dd directory containing the deployment
descriptors and thej ar directory containing the archives produced by the build.

6.1.1.1. Specifying the Source Queue for the MDB
Aswith other container-specific information, the queue name for the MDB is specified in thej boss. xm file:

<j boss>
<ent erpri se- beans>
<message-dri ven>
<ej b- name>Si npl eMessageBean</ ej b- nanme>
<desti nati on-j ndi - name>queue/ M\yQueue</ desti nati on-j ndi - name>

30

JM S and Message-Driven Beans

</ message-dri ven>
</enterprise-beans>
</ j boss>

The MDB will receive messages from the queue with INDI name queue/ MyQueue.

6.2. Deploying and Running the Example

To deploy the MDB, copy the Si npl eMessage. ear file to the JBoss deploy directory. The depl oy- ndb target does
this:

ant -f jboss-build.xm deploy-ndb

A successful deployment should look something like this:

08: 20: 08, 188 | NFO [EARDepl oyer] Init J2EE application:

file:/tnp/jboss-4.0.4.GA server/defaul t/depl oy/ Si npl eMessage. ear

08: 20: 08,370 | NFO [Ej bModul e] Depl oyi ng Si npl eMessageEJB

08:20: 08,565 INFO [CientDeployer] dient ENC bound under: SinpleMessaged ient

08: 20: 08, 712 WARN [JMSCont ai ner I nvoker] Could not find the queue

desti nati on-j ndi - nane=queue/ MyQueue

08: 20: 08, 719 WARN [JMSCont ai ner |l nvoker] destination not found: queue/ MyQueue

reason: javax.nam ng. NameNot FoundExcepti on: MyQueue not bound

08: 20: 08, 719 WARN [JMSCont ai ner |l nvoker] creating a new tenporary destination: queue/ MyQueue
08:20: 08,772 I NFO [M/Queue] Bound to JNDI name: queue/ MyQueue

08: 20: 08,952 | NFO [EJBDepl oyer] Depl oyed:

file:/tnp/jboss-4.0.4. GA server/defaul t/tnp/depl oy/tnp51464Si npl eMessage. ear - content s
/ si npl enessage. j ar

08:20: 08,996 | NFO [EARDepl oyer] Started J2EE application:

file:/tnp/jboss-4.0.4.GA/ server/defaul t/depl oy/ Si npl eMessage. ear

If you look more closely at this, you will see warnings that the message queue specified in the deployment doesn’t
exist. In this case JBoss will create a temporary one for the application and bind it under the supplied name. You
can check it exists using the JNDI Vi ew MBean again. Look under the gl obal JNDI namespace. We'll look at how
to explicitly create IM S destinations below.

Run the client with the r un- ndb Ant target.

ant -f jboss-build.xm run-ndb

Y ou should see output in both the client and server windows as they send and receive the messages respectively.

6.3. Managing JMS Destinations

As with most things in JBoss, IMS Topics and Queues are implemented using MBeans. There are two ways you
can create them: you can add MBean declarations to the appropriate configuration file, or you can create them dy-
namically using the IMX Console. However, if you use the latter method, they won’t survive a server restart.

6.3.1. The jpbossmq-destinations-service.xml File

31

JM S and Message-Driven Beans

You'll find this file in the j ms directory inside the depl oy directory. It contains alist of IMS destinations and sets
up alist of test topics and queues which illustrate the syntax used. To add the queue for our example, you would
simply add the following MBean declaration to thefile.

<nbean code="org.jboss. ny. server. | nx. Queue"
nanme="j boss. ng. desti nati on: servi ce=Queue, name=MyQueue" >
</ mbean>

6.3.2. Using the DestinationManager from the JMX Console

With JBoss running, bring up the IMX Console in your browser and look for the section labelled j boss. ng in the
main agent view. Click on the link which saysservi ce=Dest i nat i onManager . The Dest i nat i onManager MBeanis
the main IM S service in JBoss and you can use it to create and destroy queues and topics at runtime. Look for the
operation caled cr eat eQueue. There will be two operations by that name, both of which take a different number of
arguments. Look for the one that takes only one argument. That argument is the name of the queue. This takes two
parameters. Enter MyQueue and click the I nvoke button. This will create a queue bound under the INDI name
queue/ MyQueue, assuming it doesn't already exist.

6.3.3. Administering Destinations

Y ou can access the attributes and operations that the MBeans representing a queue or topic exposes via IMX. Look
at the main IMX Console view again and you'll find a separate j boss. mg. dest i nat i on section which should con-
tain an entry for our Queue (no matter how it was created). Click on this and you'll see the attributes for the queue.
One of them is QueueDept h, which is the number of messages which are currently on the queue.

As an exercise, you can try temporarily stopping the delivery of messages to the MDB. Locate the section called
j boss. j 2ee in the IMX console and you should find an MBean listed there which is responsible for invoking your
MDB. The name will be bindi ng=nessage-driven-bean, jndi Nane=l ocal / Si npl eMessageEJB, pl u-
gi n=i nvoker, servi ce=EJB

You can start and stop the delivery of messages using the corresponding MBean operations which it supports. In-
voke the st opDel i ver y() method, and then run the client a few times. You will see the QueueDept h increase as the
messages accumulate. If you re-start message delivery, with the st art Del i very() method, you should see al the
messages arriving at once.

32

Container-Managed Persistence

In this chapter we'll use the Rost er App example application from the J2EE tutorial to explore container-managed
persistence in a bit more depth than we did with Duke's Bank. Y ou should read through the CMP tutorial notes be-
fore proceeding so that you have a good overview of the beans and their relationships.

You'll findthe codeinj 2eet ut ori al 14/ exanpl es/ ej b/ cnpr ost er . The application implements a player roster for
sports teams playing in leagues. There are three entity beans Pl ayer EJB, TeanEJB and LeagueEJB and a single ses-
sion bean, Rost er EJB, which manipulates them and provides the business methods accessed by the client applica-
tion. Only the session bean has a remote interface.

7.1. Building the Example

The EJBs are packaged in two separate JAR files, one for the entity beans and one for the session bean. As before,
we've provided an ej b-j ar. xm file for each one. You don’t need aj boss. xni file for this example. All the CMP

information needed to build the database schema isincluded in the standard descriptor. We'll look at JBoss-specific
customization later.

To compile the code, first make sure you're in the exanpl es directory. Running the conpi | e- cnp target will com-
pile al the code in one go.

ant -f jboss-build.xm conpile-cnp

Run the following package- t eamto build the team JAR file which contains the entity beans.

ant -f jboss-build.xm package-team

The package- rost er target buildstheroster JAR.

ant -f jboss-build.xm package-roster

Both JAR fileswill be created inthej ar directory. Build the client jar using the package-rost er-cl i ent target.

ant -f jboss-build.xm package-roster-client

Finally assemble the RosterApp EAR using the assenbl e- rost er target.

ant -f jboss-build.xm assenbl e-roster

33

Container-Managed Persistence

7.2. Deploying and Running the Application

Deploying the application is done with the depl oy- cnp Ant target.

ant -f jboss-build.xm deploy-cnp

Copy the Rost er App. ear filefromthej ar directory to the JBoss depl oy directory (or run Ant with the depl oy- cnp
target) and check the output from the server.

13:49: 11,044 I NFO [EARDepl oyer] Init J2EE application: file:/private/tnp/jboss-4.0.4/serv
er/ def aul t/ depl oy/ Rost er App. ear

13:49: 11,884 I NFO [Ej bMbdul e] Depl oyi ng Rost er Bean

13:49: 13,366 | NFO [Ej bvbdul e] Depl oyi ng TeanBean

13:49: 13,751 INFO [Ej bMbdul e] Depl oyi ng LeagueBean

13:49: 13,842 I NFO [Ej bMbdul e] Depl oyi ng Pl ayer Bean

13:49: 14,377 INFO [EJIBDepl oyer] Deployed: file:/private/tnp/jboss-4.0.4/server/default/tm
p/ depl oy/ t np29312Rost er App. ear-contents/roster-ejb.jar

13:49: 17,931 INFO [EJIBDepl oyer] Deployed: file:/private/tnp/jboss-4.0.4/server/default/tm
p/ depl oy/ t np29312Rost er App. ear-contents/teamej b. j ar

13:49: 17,991 INFO [EARDepl oyer] Started J2EE application: file:/private/tnp/jboss-4.0.4/s
erver/ def aul t/ depl oy/ Rost er App. ear

There are a few things worth noting here. In the Duke's Bank application, we specified the INDI name we wanted
aparticular EJBHone reference to be bound under in thej boss. xn file. Without that information JBoss will default
to using the EJB name. So the session bean is bound under Rost er Bean and so on. Y ou can check these in the IMX
Console as before.

The first time you deploy the application, JBoss will automatically create the required database tables. If you take a
look at the database schema using the Hypersonic database manager (see Section 4.1.7.3), you will see that JBoss
has created one table for each entity bean and an addition join table needed to handle the many-to-many relation-
ship between players and teams. The table and column names correspond the names of the entity beans and their at-
tributes. If these names are suitable, you won't need to further refine the schema. In this case we've had to manually
map the posi ti on field on Pl ayer Bean t0 a column named pos because the default column name, position, isa
reserved token in HSQL. The schemaisin thej bosscnp-j dbc. xn file.

Note that if you increase the logging level for the or g. j boss. ej b. pl ugi ns. cnp package (Section 2.2.2) to DEBUG,
the engine will log the SQL commands which it is executing. This can be useful in understanding how the engine
works and how the various tuning parameters affect the loading of data.

7.2.1. Running the Client

The client performs some data creation and retrieval operations via the session bean interface. It creates leagues,
teams and players which will be inserted into the database. The session bean methods it calls to retrieve data are
mainly wrappers for EJB finder methods. The command to run the client and the expected output are shown below.

$ ant -f jboss-build.xm run-cnp
Bui | dfile: jboss-build.xm

run- cnp:
[java] P10 Terry Smithson midfielder 100.0
[java] P6 lan Carlyl e goal keeper 555.0
[java] P7 Rebecca Struthers mdfielder 777.0

Container-Managed Persistence

[java] P8 Anne Anderson forward 65.0
[java] P9 Jan Wesl ey defender 100.0

[java] T1 Honey Bees Visalia
[java] T2 Gophers Manteca
[java] T5 Crows Ol and

[java]l] P2 Alice Smth defender 505.0
[java] P22 Jani ce Wl ker defender 857.0
[java] P25 Frank Fl etcher defender 399.0
[java] P5 Barney Bol d defender 100.0
[java] P9 Jan Wesl ey defender 100.0

[java] L1 Mountain Soccer
[java] L2 Vall ey Basket bal

The client doesn’'t remove the data, so if you run it twice it will fail because it tries to create entities which already
exist. If you want to run it again you' |l have to remove the data. The easiest way to do this (if you're using HSQL)
is to delete the contents of the dat a/ hyper soni ¢ directory in the server configuration you are using (assuming you
don’'t have any other important data in there) and restart the server. We've also provided a SQL script to delete the
data. You can run it with the db- del et e target.

ant -f jboss-build.xm db-delete

Y ou could also use SQL commands directly through the HSQL Manager tool to delete the data.

7.3. CMP Customization

There are many ways you can further customize the CMP engine’' s behaviour by using the j bosscnp-j dbc. xm file.
It is used for basic information such as the datasource name and type-mapping (Hypersonic, Oracle etc.) and
whether the database tables should be automatically created on deployment and deleted on shutdown. Y ou can cus-
tomize the names of database tables and columns which the EJBs are mapped to and you can a so tune the way in
which the engine loads the data depending on how you expect it to be used. For example, by using the r ead- ahead
element you can get it to read and cache blocks of data for multiple EJBs with a single SQL call, anticipating fur-
ther access. Eager-loading groups can be specified, meaning that only some fields are loaded initially with the en-
tity; the others are lazy-loaded if and when they are required. The accessing of relationships between EJBs can be
tuned using similar mechanisms. This flexibility is impossible to achieve if you are using BMP where each bean
must be loaded with a single SQL call. If on top of that you include having to write al your SQL and relationship
management code by hand then the choice should be obvious. Y ou should rarely, if ever, have to use BMP in your
applications.

The details of tuning the CMP engine are beyond the scope of this document but you can get an idea of what's
available by examining the DTD (docs/ dt d/ j bosscnp-j dbc_4_0. dt d) which is well commented. There is also a
standard setup in the conf directory called st andar dj bosscnp-j dbc. xm which contains values for the default set-
tings and alist of type-mappings for common databases. The beginning of the fileis shown below.

<j bosscnp-j dbc>
<def aul t s>
<dat asour ce>j ava: / Def aul t DS</ dat asour ce>
<dat asour ce- nappi ng>Hyper soni ¢ SQL</ dat asour ce- nappi ng>

<create-tabl e>true</create-tabl e>
<renove-t abl e>f al se</renove-t abl e>
<r ead- onl y>f al se</read-onl y>

35

Container-Managed Persistence

<read-ti me- out >300000</ r ead-ti me- out >
<row | ocki ng>f al se</row | ocki ng>
<pk- constrai nt >t r ue</ pk- constrai nt >
<f k- constrai nt >f al se</f k-constrai nt>
<preferred-rel ati on- mappi ng>f or ei gn- key</ preferred-rel ati on- mappi ng>
<r ead- ahead>

<strat egy>on-| oad</ strat egy>

<page- si ze>1000</ page- si ze>

<eager - | oad- gr oup>*</ eager - | oad- gr oup>
</ r ead- ahead>
<l i st-cache- max>1000</1i st - cache- max>

Y ou can see that, among other things, this sets the datasource and mapping for use with the embedded Hypersonic
database and sets table-creation to true and removal to false, so the schema will be created if it doesn't aready ex-
ist. The read- only and read-ti me- out elements specify whether data should be read-only and the time in milli-
seconds it is valid for. Note that many of these elements can be used at different granularities such as per-entity or
even on a field-by-field basis (consult the DTD for details). The r ead- ahead element uses an on- 1 oad Strategy
which means that the EJB data will be loaded when it is accessed (rather than when the finder method is called) and
the page- si ze setting means that the data for up to 1000 entities will be loaded with one SQL command. Y ou can
override this either in your own j bosscnp-j dbc. xm file'slist of default settings or by adding the information to a
specific query configuration in thefile.

A comprehensive explanation of the CMP engine and its various loading strategies can be found in the full JBoss 4
Application Server Guide.

7.3.1. XDoclet

Writing and maintaining deployment descriptors is a labour-intensive and error-prone job at the best of times, and
detailed customization of the CMP engine can lead to some large and complex files. If you are using CMP (or in-
deed EJBs) in anger then it is worth learning to use the XDoclet code generation engine (ht-
tp://xdoclet.sourceforge.net/). Using Javadoc-style attribute tags you place in your code, XDoclet will generate the
deployment descriptors for you as well as the EJB interfaces and other artifacts if required. It fully supports JBoss
CMP, and though the learning curve is quite steep, its use is thoroughly recommended (almost essential in fact) for
real projects.

36

http://xdoclet.sourceforge.net/
http://xdoclet.sourceforge.net/

Using other Databases

In the previous chapters, we' ve just been using the JBoss default datasource in our applications. Thisis provided by
the embedded HSQL database instance and is bound to the JINDI name j ava: / Def aul t DS. Having a database in-
cluded with JBoss is very convenient for running examples and HSQL is adequate for many purposes. However, at
some stage you will want to use another database, either to replace the default datasource or to access multiple
databases from within the server.

8.1. DataSource Configuration Files

DataSource configuration file names end with the suffix - ds. xm so that they will be recognized correctly by the
JCA deployer. The docs/ exanpl e/ j ca directory contains sample files for a wide selection of databases and it is a
good ideato use one of these as a starting point. For afull description of the configuration format the best place to
look isthe DTD file docs/ dt d/ j boss-ds_1_5. dt d. Additional documentation on the files and the JBoss JCA im-
plementation can also be found in the JBoss 4 Application Server Guide.

Local transaction datasources are configured using the | ocal - t x- dat asour ce element and XA-compliant ones us-
ing xa- t x- dat asour ce. The example file generi c-ds. xnl shows how to use both types and also some of the other
elements that are available for things like connection pool configuration. Examples of both local and XA configura-
tions are available for Oracle, DB2 and Informix.

If you look at the examplefilesfirebird-ds. xnl , facet s-ds. xni and sap3-ds. xni , you'll notice that they have a
completely different format, with the root element being connecti on-fact ori es rather than dat asour ces. These
use an aternative, more generic JCA configuration syntax used with a pre-packaged JCA resource adapter. The
syntax is not specific to datasource configuration and is used, for example, in thej ms-ds. xni file to configure the
JMS resource adapter.

Next, we'll work through some step-by-step examples to illustrate what's involved setting up a datasource for a
specific.

8.2. Using MySQL as the Default DataSource

MySQL is a one of the most popular open source databases around and is used by many prominent organizations
from Yahoo to NASA. The official JDBC driver for it is called Connector/J. For this example we' ve used MySQL
4.1.7 and Connector/J 3.0.15. Y ou can download them both from http://www.mysqgl.com .

8.2.1. Creating a Database and User

WEe'll assume that you’'ve aready installed MySQL and that you have it running and are familiar with the basics.
Run the nysql client program from the command line so we can execute some administration commands. Y ou

37

http://www.mysql.com

Using other Databases

should make sure that you are connected as a user with sufficient privileges (e.g. by specifying the-u root option

to run as the MySQL root user).
First create adatabase called j boss within MySQL for use by JBoss.

nmysql > CREATE DATABASE | boss;
Query OK, 1 row affected (0.05 sec)

Then check that it has been created.

nysql > SHOW DATABASES;

Feoococcooos +
| Dat abase |
Feoococcooos +
| jboss |
| nysql I
| test |
deoococcooos +

3 rows in set (0.00 sec)

Next, create auser called j boss with password passwor d to access the database.

mysql > GRANT ALL PRI VI LEGES ON j boss.* TO j boss@ ocal host

Query OK, 0 rows affected (0.06 sec)

Again, you can check that everything has gone smoothly.

nmysql > sel ect User, Host, Password from nysql . User;

doocooooo dooocoocoooo doocococcococoocooos +
| User | Host | Password |
doocooooo doococoocosoo oococoocococoocaoos +
root	local host	
root	%	
	local host	
I	% I I	
jboss	local host	5d2e19393cc5ef 67

H- oo - e B +
5rows in set (0.02 sec)

| DENTI FI ED BY ' password' ;

8.2.2. Installing the JDBC Driver and Deploying the DataSource

To make the JDBC driver classes available to JBoss, copy the file nysql - connect or - j ava- 3. 0. 15-ga-bi n. j ar
from the Connector/J distribution to the 1i b directory in the def aul t server configuration (assuming that is the
configuration you're running, of course). Then create a file in the depl oy directory caled nysqgl - ds. xm with the
following datasource configuration. The database user name and password corresponds the MySql user we created

in the previous section.

<dat asour ces>
<l ocal -t x- dat asour ce>
<j ndi - name>MySqgl DS</ j ndi - name>

<connection-url >jdbc: mysql :// 1 ocal host: 3306/ boss</ connecti on-url >

<driver-class>com nysql . jdbc. Driver</driver-cl ass>

<user - nane>j boss</ user - nane>
<passwor d>passwor d</ passwor d>
</l ocal -t x- dat asour ce>
</ dat asour ces>

38

Using other Databases

Because we have added a new JAR fileto thel i b directory, you will need to JBoss to make sure that the server is
able to find the MySQL driver classes.

8.2.3. Testing the MySQL DataSource

WEe'll use the CMP roster application from Chapter 7 to test the new database connection. In order to use MySql in
our application, we'll need to set the datasource name a nd type-mapping in the j bosscnp-j dbc. xnd file in the dd/
t eamdirectory of the CMP roster application. Edit the file and add the following dat asour ce and dat asour ce- map-
pi ng elementsto the def aul t s element. to mysSqQL.

<j bosscnp-j dbc>
<def aul t s>
<dat asour ce>j ava: / MySgl DS</ dat asour ce>
<dat asour ce- mappi ng>mySQ.</ dat asour ce- mappi ng>
</ def aul t s>

<ent er pri se- beans>
</ enterprise-beans>

</j bosscnp-j dbc>

After restarting JBoss, you should be able to deploy the application and see the tables being created as we did in
Section 7.2. The tables should be visible from the MySQL client.

nmysql > show t abl es;
| Tabl es_in_jboss |
oooccooccococoocoooooococoooocooaooo0 +
| LeagueBean
| Pl ayer Bean
| Pl ayer Bean_t eans_TeanBean_pl ayers
| TeanBean

4 rows in set (0.00 sec)

Y ou can see the IM S persistence tables in there too since we' re using MySQL as the default datasource.

8.3. Setting up an XADataSource with Oracle 9i

Oracle is one of the main players in the commercial database field and most readers will probably have come
acrossit at some point. You can download it freely for non-commercia purposes from http://www.oracle.com

Installing and configuring Oracle is not for the faint of heart. It isn’t really just a simple database, but it is heavy on
extra features and technol ogies which you may not actually want (another Apache web server, multiple JDKs, Orbs
etc.) but which are usually installed anyway. So we'll assume you already have an Oracle installation available. For
this example, we' ve used Oracle 10g.

8.3.1. Padding Xid Values for Oracle Compatibility

If youlook inthej boss-service. xn fileinthedef aul t/conf directory, you'll find the following service MBean.

<I-- The configurable Xid factory. For use with Oracle, set pad to true -->

39

http://www.oracle.com

Using other Databases

<nmbean code="org.j boss.tm Xi dFact ory"
nane="j boss: servi ce=Xi dFact ory" >
<l--attribute nane="Pad">true</attribute-->
</ mbean>

The transaction service uses this to create XA transactions identifiers. The comment explains the situation: for use
with Oracle you have to include the line which sets the attribute Pad to true. This activates padding the identifiers
out to their maximum length of 64 bytes. Remember that you'll have to restart JBoss for this change to be put into
effect, but wait until you’ ve installed the JDBC driver classes which we'll talk about next.

8.3.2. Installing the JDBC Driver and Deploying the DataSource

The Oracle JDBC drivers can be found in the directory $ORACLE_HOVE/ j dbc/ | i b. Older versions, which may be
more familiar to some users, had rather uninformative names like cl asses12. zi p but at the time of writing the
latest driver version can be found in the file oj dbc14. j ar. There is also a debug version of the classes with _g ap-
pended to the name which may be useful if you run into problems. Again, you should copy one of theseto thelib
directory of the JBoss def aul t configuration. The basic driver class you would use for the non-XA setup is called
oracle.jdbc.driver.Oracl eDriver. The XADataSource class, which well use here, is caled or-
acl e.jdbc. xa. client. O acl eXADat aSour ce.

For the configuration file, make a copy of the or acl e- xa-ds. xml example file and edit it to set the correct URL,
username and password.

<dat asour ces>
<xa- dat asour ce>
<j ndi - nane>XAOr acl eDS</ j ndi - nanme>
<track-connection-by-tx>true</track-connection-by-tx>
<i sSameRM over ri de-val ue>f al se</i sSanmeRM overri de- val ue>
<xa- dat asour ce- cl ass>oracl e. j dbc. xa. cl i ent. Or acl eXADat aSour ce</ xa- dat asour ce- cl ass>
<xa- dat asour ce- property nane="URL">
j dbc: oracl e: t hi n: @monkeynmachi ne: 1521: j boss
</ xa- dat asour ce- pr operty>
<xa- dat asour ce- property nanme="User" >j boss</ xa- dat asour ce- property>
<xa- dat asour ce- property nane="Passwor d" >passwor d</ xa- dat asour ce- property>
<exception-sorter-cl ass- nane>
org.j boss. resource. adapt er. j dbc. vendor . Or acl eExcepti onSort er
</ excepti on-sorter-cl ass- name>
<no-t x- separ at e- pool s/ >
</ xa- dat asour ce>

<nbean code="org.jboss.resource. adapter.jdbc.vender.oracl e. Oracl eXAExcepti onFornmatter"
nane="j boss. j ca: servi ce=Or acl eXAExcepti onFormatter" >
<depends optional -attri bute-name="Transacti onManager Servi ce">
j boss: servi ce=Tr ansact i onManager
</ depends>
</ mbean>
</ dat asour ces>

WEe' ve used the Oracle thin (pure java) driver here and assumed the database is running on the host monkeymachi ne
and that the database name (or SID in Oracle terminology) isj boss. We' ve also assumed that you' ve created a user
j boss with all the sufficient privileges. Y ou can just use dba privileges for this example.

SQL> connect / as sysdba

Connect ed.

SQL> create user jboss identified by password;
User created.

SQL> grant dba to jboss;

40

Using other Databases

Grant succeeded.

Now copy thefileto the depl oy directory. Y ou should get the following output.

11:33: 45,174 I NFO [W apper Dat aSour ceServi ce] Bound connection factory for resource adapter
for ConnectionManager 'jboss.jca: name=XAO acl eDS, ser vi ce=Dat aSour ceBi nding to JNDI nane
'java: XAOr acl eDS'

If you use the JNDI Vi ew service from the IMX console as before, you should see the name j ava: / XAQr acl eDS lis-
ted.

8.3.3. Testing the Oracle DataSource

Again we'll use the CMP example to test out the new database connection. The j bosscnp-j dbe. xm file should
contain the following.

<j bosscnp- j dbc>
<def aul t s>
<dat asour ce>j ava: / XAOr acl eDS</ dat asour ce>
<dat asour ce- mappi ng>Or acl e9i </ dat asour ce- mappi ng>
</ def aul t s>
</j bosscnp-j dbc>

There are other Oracle type-mappings available too. If you're using an earlier version, have a look in the conf/
st andar dj bosscnp-j dbc. xni fileto find the correct name

Deploy the application as before, check the output for errors and then check that the tables have been created using
Oracle SQL Plus again from the command line.

SQL> sel ect table_nane from user_tables;

TABLE_NAVE

TEAVBEAN

LEAGUEBEAN

PLAYERBEAN

PLAYERBEAN TEAMS_TEAM 1OFLZV8

41

Using Hibernate

Hibernate is a popular persistence engine that provides a simple, yet powerful, alternative to using standard entity
beans. Hibernate runs in almost any application server, or even outside of an application server completely.
However, when running inside of JBoss, you can choose to deploy your application as a Hibernate archive, called a
HAR file, and make Hibernate's simple usage even simpler. JBoss can manage your Hibernate session and other
configuration details, allowing you to use Hibernate objects with minimal setup.

In this chapter, we will return the CMP roster application from Chapter 7 and show how to access the roster data-
base tables with Hibernate. We'll demonstrate how to create a HAR file to package your Hibernate objects, and
then we'll show how to access them from aweb application in aWAR file. The entire project will be bundled in an
EARfile, just like all of our previous examples.

The code for this section isin the exanpl es/ hi ber nat e directory. However, the Hibernate example here is intended
to be run along side of the CMP roster application in Chapter 7. If you don't have the roster application deployed,
go back and follow the instructions there. Make sure that you follow the instructions for creating the database
schema and populating the database. We will be using the schema and data from that task.

Also, please keep in mind that we'll only be looking at the steps required to deploy a Hibernate application in
JBoss. If you need a more general guide to Hibernate, we recommend Hibernate in Action by Christian Bauer and
Gavin King (Manning, 2004).

9.1. Creating a Hibernate archive

The Hibernate portion of the application consists of asingle Javaclass, or g. j boss. rost er. Pl ayer , that maps onto
the Pl ayer Bean entity bean from the CMP roster application. The Pl ayer object is a smple POJO object with no
direct coupling to Hibernate. The details of the Hibernate mapping are specified in the Pl ayer . hbm xni file, shown
below.

<! DOCTYPE hi ber nat e- mappi ng PUBLI C
"-// Hi bernat e/ H bernate Mappi ng DTD 3. 0//EN'
"http://hibernate. sourceforge. net/hi bernat e- mappi ng-3. 0. dtd">

<hi ber nat e- mappi ng>
<cl ass nane="org.jboss.roster.Player" tabl e="Pl ayer Bean">
<id name="id" type="string" colum="pl ayerlD'>
<generator class="assigned" />

</id>

<property name="position" type="string" col um="PCS" />

<property nane="nane" type="string" columm="nane" />

<property nane="sal ary" type="float" colum="salary" />
</ cl ass>

</ hi ber nat e- mappi ng>

42

Using Hibernate

In addition to the Pl ayer object and its mapping file, we also need to provide a hi ber nat e- servi ce. xni file that
creates an M Bean that will manage the Hibernate configuration. The following is the hi ber nat e- ser vi ce. xni files
we are using.

<server>
<nbean code="org.j boss. hi bernat e. j nx. H ber nat e"
nane="j boss. har: servi ce=Hi ber nat e" >
<attribute name="Dat asour ceNane">j ava: / Def aul t DS</ attri but e>
<attribute name="D al ect">org. hi bernat e. di al ect. HSQLD al ect </ attri but e>
<attri bute name="Sessi onFact oryNane" >j ava: / hi ber nat e/ Sessi onFactory</attri bute>
<attri bute name="CacheProvi der d ass" >
or g. hi ber nat e. cache. Hasht abl eCachePr ovi der

</attribute>
<I'-- <attribute nane="HonRddl Aut 0" >create-drop</attribute> -->

</ mbean>
</ server>

This configuration information should be familiar to any Hibernate user. The JBoss specific details are the mapping
toour j ava: / Def aul t DS and the JNDI location where we want our Hibernate Sessi onFact or y bound.

To compile the project and build the hibernate archive, use the conpi | e and package- har Ant targets.

ant -f jboss-build.xm conpile
ant -f jboss-build.xm package- har

The contents of the create HAR file look like the following:

$ jar tf jar/roster. har
META- | NF/

META- | NF/ MANI FEST. MF

META- | NF/ hi ber nat e- ser vi ce. xni
org/

org/j boss/

org/j boss/roster/
org/jboss/roster/Player.class
org/j boss/roster/ Pl ayer. hbm xni

Experienced Hibernate users may be wondering where we've told Hibernate what our persistent objects are. The
Hibernate deployer determines the set of persistent objects by searching the HAR file for hibernate mapping files.
All hibernate objects found are added to the configuration with no further effort required.

9.2. Using the hibernate objects

By deploying the Hibernate archive, we have created a fully configured Sessi onFact ory for use in other parts of
our application. In this example, we have created a ssmple JSP which creates a Sessi on from the Sessi onFact ory
and issues a query directly. Normally it would be preferable to put the Hibernate access code in a servlet or in a
session bean, but for example purposes we'll keep the code together in the JSP. For reference, the following code
fragment shows how we are accessing the Hibernate session in the JSP.

Initial Context ctx = new | nitial Context();
Sessi onFactory factory = (SessionFactory)

ct x. | ookup("j ava: / hi ber nat e/ Sessi onFactory");
Sessi on hsessi on = factory. openSession();
try {

Query query = hsession.createQuery("fromorg.jboss.roster.Player order by nanme");

Using Hibernate

request.setAttribute("players", query.list());

} finally {
hsessi on. cl ose();
}

To package the complete web application, use the package- web Ant target.

ant -f jboss-build.xm package-web

Thiscreatesrost er. war inthej ar directory containing our simple web application.

9.3. Packaging the complete application

Next, we need to package the entire application into an EAR file. The assenbl e Ant target doesthis.

ant -f jboss-build.xm assenble

This creates the Hi ber nat eRost er . ear file. The contents of the EAR file our our roster. har and roster. war
files, along with the appropriate deployment descriptors.

$ jar tf jar/H bernateRoster.ear
META- | NF/

VETA- | NF/ MANI FEST. M-

META- | NF/ appl i cati on. xm

META- | NF/ j boss- app. xm

roster. har

roster.war

Just as we need to declare the WAR file in the application. xm file, we also need to declare the HAR file.
However, since Hibernate archives are not a standard J2EE deployment type, we need to declare it in the j boss-
app. xm file.

<I DOCTYPE j boss-app PUBLIC "-//JBoss//DTD J2EE Application 1.4//EN'
"http://ww. jboss. org/j2ee/dtd/jboss-app_4 _0.dtd">
<j boss- app>
<nmodul e>
<har >r ost er . har </ har >
</ modul e>
</j boss- app>

Now our application is ready to be deployed.

9.4. Deploying Running the application

Once the EAR fileis created, we need to deploy it using the depl oy Ant target. This copies the EAR file to the ap-
propriate JBoss deploy directory.

ant -f jboss-build.xm deploy

The deployed application can be accessed at http://localhost:8080/roster/players.jsp. When the page is loaded, you
will see alist of players sorted by name. If you don't see any data, make sure that you have deployed the CMP

44

http://localhost:8080/roster/players.jsp

Using Hibernate

roster application from Chapter 7 and run it to populate the tables with the shared player data.

45

Further Information Sources

For a longer introduction to JBoss, see JBoss: A Developer's Notebook. (O'Reilly, 2005. Norman Richards, Sam
Griffith).

For more comprehensive JBoss documentation covering advanced JBoss topics, see JBoss 4 Application Server
Guide, available at http://docs.jboss.org/. A print version of the guide is available as JBoss 4.0: The Official Guide.
(Sams, 2005)

For general EJB instruction, with thorough JBoss coverage, see Enterprise JavaBeans, 4th Edition. (O'Reilly, 2004.
Richard Monson-Haeful, Bill Burke, Sacha Labourey)

For additional, but dated, EJB instruction, we also recommend the classic Mastering Enterprise JavaBeans, Second
Edition. (Wiley, 2001. Ed. Roman et al.) A free PDF version of the first edition is available online at ht-
tp://www .theserverside.com/books/masteringEJB/index.jsp.

For complete coverage of the new J2EE 1.4 web services, see J2EE Web Services. (Addison-Wesley, 2003.
Richard Monson-Haefel)

For more information about using XDoclet to simplify J2EE development, see XDoclet in Action. (Manning, 2003.
Craig Walls, Norman Richards)

To learn more about Hibernate, see Hibernate in Action. (Manning, 2004. Christian Bauer, Gavin King)

46

http://docs.jboss.org/
http://www.theserverside.com/books/masteringEJB/index.jsp
http://www.theserverside.com/books/masteringEJB/index.jsp

	Getting Started with JBoss 4.0
	Table of Contents
	About this book
	What this Book Covers
	Chapter 1. Getting Started
	1.1. Downloading and Installing JBoss
	1.2. Starting the Server
	1.3. The JMX Console
	1.4. Stopping the Server
	1.5. Running as a Service

	Chapter 2. The JBoss Server - A Quick Tour
	2.1. Server Structure
	2.1.1. Main Directories
	2.1.2. Server Configurations

	2.2. Basic Configuration Issues
	2.2.1. Core Services
	2.2.2. Logging Service
	2.2.3. Security Service
	2.2.4. Additional Services

	2.3. The Web Container - Tomcat

	Chapter 3. About the Example Applications
	3.1. The J2EE Tutorial
	3.2. What’s Different?
	3.2.1. Container-Specific Deployment Descriptors
	3.2.2. Database Changes
	3.2.3. Security Configuration

	3.3. J2EE in the Real World

	Chapter 4. The Duke’s Bank Application
	4.1. Building the Application
	4.1.1. Preparing the Files
	4.1.2. Compiling the Java Source
	4.1.3. Package the EJBs
	4.1.4. Package the WAR File
	4.1.5. Package the Java Client
	4.1.6. Assembling the EAR
	4.1.7. The Database
	4.1.7.1. Enabling the HSQL MBean and TCP/IP Connections
	4.1.7.2. Creating the Database Schema
	4.1.7.3. The HSQL Database Manager Tool

	4.1.8. Deploying the Application

	4.2. JNDI and Java Clients
	4.2.1. The jndi.properties File
	4.2.2. Application JNDI Information in the JMX Console

	4.3. Security
	4.3.1. Configuring the Security Domain
	4.3.2. Security Using a Database
	4.3.3. Using Password Hashing

	Chapter 5. J2EE Web Services
	5.1. Web services in JBoss
	5.2. Duke’s Bank as a Web Service
	5.3. Running the Web Service Client
	5.4. Monitoring webservices requests

	Chapter 6. JMS and Message-Driven Beans
	6.1. Building the Example
	6.1.1. Compiling and Packaging the MDB and Client
	6.1.1.1. Specifying the Source Queue for the MDB

	6.2. Deploying and Running the Example
	6.3. Managing JMS Destinations
	6.3.1. The jbossmq-destinations-service.xml File
	6.3.2. Using the DestinationManager from the JMX Console
	6.3.3. Administering Destinations

	Chapter 7. Container-Managed Persistence
	7.1. Building the Example
	7.2. Deploying and Running the Application
	7.2.1. Running the Client

	7.3. CMP Customization
	7.3.1. XDoclet

	Chapter 8. Using other Databases
	8.1. DataSource Configuration Files
	8.2. Using MySQL as the Default DataSource
	8.2.1. Creating a Database and User
	8.2.2. Installing the JDBC Driver and Deploying the DataSource
	8.2.3. Testing the MySQL DataSource

	8.3. Setting up an XADataSource with Oracle 9i
	8.3.1. Padding Xid Values for Oracle Compatibility
	8.3.2. Installing the JDBC Driver and Deploying the DataSource
	8.3.3. Testing the Oracle DataSource

	Chapter 9. Using Hibernate
	9.1. Creating a Hibernate archive
	9.2. Using the hibernate objects
	9.3. Packaging the complete application
	9.4. Deploying Running the application

	Appendix A. Further Information Sources

