msTM The Professional
Open Source Company

The JBoss 4 Application Server J2EE Reference

JBoss AS 4.0.5

Release 2

Copyright © 2006 JBoss, Inc.

Table of Contents

1. The JBOSS IMX MICIOKEINEL ...ttt e e e e e e e et e e e e e e e e s annnneeeeeaeeeeannnnenes 1
002N o I g oo [T o (o T 1Y, SRS 1
111 InStrumentation LEVEL ...t e e e e et e e e e e 3
O o = | =Y U EEPRR 3
1.1.3. Distributed SErVICES LEVELooiiiiiiieeeeee et e 4
1.1.4. IMX COMPONENE OVEIVIEW ...vvveiiieeeiiiiiiieiee e e e e e e eeititare e e eee e s s ssats e e e e e aeesesssarrreeeeaesssansnnrens 4
1.1.4.1. Managed BeanS Of MBEENScoooiiiiiiiiiiiiiee et 5

1.1.4.2. Notification MOEL ... 5

1.1.4.3. MBean Metadata ClasseSccveiiiiiiiiiieiiiiiie ettt 5

L.1.4.4, MBEAN SEIVEN ...oieiiieieeeeeiieee e ettt e e e sttt e e e et e e e e sttt e e e aassaeeeeasteeeesansaeeeeaanneeeeeennees 6

L1145, AQENE SEIVICES ..vviiiiiei e i ittt e ettt e e e e e e et e e e e e e e s e et e e e e e e e s s anantbraeeeaaas 6

1.2. JIBoss IMX Implementation ArChItECTUNEoviiiiiiiii e 7
1.2.1. The JBoss ClassLoader ArChiteCtUIccooiuiiieiiiieiee e 7
1.2.2. Class Loading @nd TYPESIN JAVAcceeiurriieiiiiiieeiiieiee sttt aine e e 7
1.2.2.1. ClassCastExceptions - I'mM NGOt YOUI TYPEuuuuuuuuiuiiiiinininiinninnnnnnnnnnnnnnnnnnnnnnnnnnnnes 7

1.2.2.2. lllegal AccessException - Doing what you should NOtcccvvveveeeeeniccciiieee. 12

1.2.2.3. LinkageErrors - Making Sure You Are Who You Say YOU Arecccceevvvveeeennne. 14

1.2.2.4. Inside the JBoss Class Loading ArchiteCtureccceeveeeeiiiiiiiieeeee e 19

1.2.3. IBOSS XIMBEAINSccouiiiiieiiiiite ettt e et e e e st e e et e e e et e e e s ana e e e e ensbeaeeennnaeeeean 26
220G T R 9 T o (0] - 27

1.2.3.2. The Management ClaSSccooiuiiiiiiiiiiee ettt 29

D2 G T = o L 1 o o S 29

1.2.3.4. ThE ATIIDULES ..ottt 30

1.2.3.5. TRE OPEIELIONSeveeeeeiiiiie ettt e et e et e e e e et e s s e e e s anne e e e e e 31

1.2.3.6. NOUTICAIIONSeeiiiiieiie ettt e st e e s e e e e nees 32

1.3. CoNNECEiNG T0 tE IMX SEIVET ..ottt e st e s st e e s anbneeeeans 33
1.3.1. Inspecting the Server - the IMX Console Web Applicationcccccceveeiininnnnnnnnnnnnnnns 33
1.3.1.1. Securing the IMX CONSOIEuuviiiiiiiiiee et 35

1.3.2. Connecting to IMX USINg RMI ..ot 37
1.3.3. Command LiNE ACCESSTO IMXuiiiiiiiiiiiee ettt eennbaee e 40
1.3.3.1. Connecting twiddle to a REMOLE SEIVEYooviiiiiiiiiiieeee e 40

1.3.3.2. Sampletwiddle CommMand USAQEceeveeieeeeiiiiiiiieiee et e e e e 40

1.3.4. Connecting to IMX USINg ANY ProtOCOIc.uviiiiiiiiiieiiiiiee e 43
1.4.USiNg IMX @S @MICIOKEINELuiiiiii s s nnnsnsnnnsnnnnnnnnns 44
1.4.1. ThE SEAIUDP PrOCESSeiieiiiiiiee ittt ettt e et e st e e e bb e e e e nnbneeeeans 44
1.4.2. JBOSSIMBEEN SEIVICESeeeiiiieiiae e e ettt e e e e e e e ettt e e e e e e e ettt e e e e e e e e e sanntnaeeeeaaeeeannnnnees 45
1.4.2.1. The SARDEPIOYEr MBEANcccviii it 46

1.4.2.2. The Service Life CyCle INErfateeveeiiiiiiieee e 49

1.4.2.3. The ServiceController MBEaNccueieeiiiiiiiieiiiiiie s 49

1.4.2.4. Specifying Service DePendenCiescoouiiiiiieiiiiiieeeiiiee e 51

1.4.2.5. Identifying Unsatisfied DEPENdENCIESccccciiiiiruiiiiieneeennennnnnens 52

1.4.2.6. Hot Deployment of Components, the URLDeploymentScannercccveeeeneee. 53

1.4.3. Writing JBOSS MBEEN SEIVICESoeiiiiiiiiieiiiiiie ettt 54
1.4.3.1. A Standard MBean EXamPIeoooiciiiiiiiie et 55

JBoss Release 2

The JBoss 4 Application Server 2EE Reference

1.4.3.2. XMBEaAN EXAMPIES ...ttt e s 58

1.4.4. Deployment Ordering and DePENTENCIESevveeiiiiiiieiiiiii e 65

1.5. JB0SS DePIoyer ArChItECIUIEuuuei s nnasnnnsnnnnnnnnnnns 75
1.5.1. Deployers and ClassLOGO0EN'Seeeiiiiiiiieiiiiiie et eennbaee e 76

1.6. Remote Access to Services, DEtaChed INVOKETSoveveiieeeiee ettt ees 78
1.6.1. A Detached Invoker Example, the MBeanServer Invoker Adaptor Service 80
1.6.2. Detached INVOKEr REFEIENCEcoiiiiiiiiiiieiiee e e 84
1.6.2.1. The RMPInvoker - RMI/JJIRMP Transportccccvveeeeeeeeiiiiiiiiieeeee e ecivveeee e 84

1.6.2.2. The Pooledinvoker - RMI/Socket Transporteeeeieveeeeiiiieeeeiiieee e 85

1.6.2.3. The [IOPInvoker - RMI/ITOP TranSPOortuiueuiuiniiinnnnnnnnnnnnnnnnnnnnnnnnnnnnnnes 86

1.6.2.4. The JRMPProxyFactory Service - Building Dynamic JRMP Proxies 86

1.6.2.5. The HttpInvoker - RMI/HTTP TranSportcooooceviieiirieeeeeeciieeeee e 86

1.6.2.6. The HA JRMPInvoker - Clustered RMI/JRMP Transportccccceeeeeviiiivvveennnnn. 87

1.6.2.7. The HA Httpinvoker - Clustered RMI/HTTP Transportcccceeevvvveeeiniieeeenne 87

1.6.2.8. HttpProxyFactory - Building Dynamic HTTP Proxiescccocceeeeeeviiicivvnnenenn. 87

1.6.2.9. Stepsto Expose Any RMI Interface VIaHTTPoovviiiiiiiiiieee e 88

2. NAMING ONJBOSS ..o 90
2.1 ANOVEIVIEW OFf INDI .oeeeiiiii e e e e e s e s r e e e e e s s st ereaaeeesannnreees 20
20 0 O\ 4= PR SUPRRSSRRRR 90
2.0.2. CONLEXES ..o 91
2.1.2.1. Obtaining a Context using INitial CONEXtccooiiiiiiiiiiiie e 91

2.2. The IBOSSNS ATChITECIUIEuveieieiiiiiee ettt e ettt ettt e e s st e e e s e e s anbe e e e s nnnneeeeans 92
2.3. The Naming Initial CONtEXt FACIOMESvvieiiiiiie it 95
2.3.1. The standard naming context factorycccccoeiii 95
2.3.2. The org.jboss.naming.NamingCoONtEXIFACIONYcc.ueiiiiiiiiee et 96
2.3.3. Naming Discovery in Clustered ENVIFONMENESc.oeveiiiiiieeniiiiieeiiiieeeesiieee e 96
2.3.4. The HTTP Initial Context Factory Implementationccccccoviiiiiiiiie e 97
2.3.5. The Login Initial Context Factory Implementationcccccoviiiiiiiiiiiee e 98
2.3.6. The ORBINitial CONtEXIFACLONYceiiiieiiiiiiiieeiee e e e e e s e e e e e e e 98

A |\ T R0 Y= ol N N N P 99
2.4.1. Accessing INDI over HTTP oo, 99
2.4.2. Accessing INDI OVEr HTTPSooviiiiiiie ettt e vanee e 102
2.4.3. Securing ACCeSStO INDI OVEr HTTP oo 104
2.4.4. Securing Access to JNDI with a Read-Only Unsecured Contextccccceeeeeviiiiiivneenn.n. 105

2.5. Additional Naming MBEENSccoouiiiiiiiiiie it e e 107
2.5.1. INDI Binding MaNagErccccuuiiiiiiie ettt e et e e e e e et e e e e e e e s entrraeeeaeas 107
2.5.2. The org.jboss.naming.NamingAlias MBeanccccceeiiiiiieiiiiiiie e 108
2.5.3. org.jboss.naming.ExternalContext MBeancccco 109
2.5.4. The org.jboss.naming.JNDIView MBEANccccceeeiiiiiiiiiiiece e 110

2.6. J2EE and JNDI - The Application Component ENVironmentccccovcveveeniiieeenniieee e 113
2.6.1. ENC USagE CONVENLIONScuuiiiiiiiiee e e s ettt e e e e e e e s et e e e e e e e e e e stataa e e e e e e e s s snnnrrnneeeeas 115
2.6.1.1. ENVIrONMENt ENLIIES ..ovveeiiiiiiiieiiee ettt e e e e s s e e e e e e s et ae e e e e e e e e ennneees 115

2.6.1.2. EJB REFEIEINCES ...oooiiiiiieie ittt ettt e e et e e e e e s 116

2.6.1.3. EJB References with jboss.xml and jboss-web.xmlccooveiiiiiiiii, 118

2.6.1.4. EJB LOCAl REFEIENCES ...ttt a e e 119

2.6.1.5. Resource Manager Connection Factory Referencesccccevvvvcvvvieveee e e, 120

2.6.1.6. Resource Manager Connection Factory References with jboss.xml and jboss-web.xml
... 122

2.6.1.7. Resource Environment REFEIENCEScvvviiiiieeeiiciiiiee e 122

JBoss Release 2

The JBoss 4 Application Server 2EE Reference

2.6.1.8. Resource Environment References and jboss.xml, jboss-web.xml 123

O I = 015 o 0 S o] N = 0\ SO 125
3.1 TranSaCtiON/ITA OVEIVIEIW ...coceiiiiieiiieiee e e e ettt e e e e e e ettt e e e e e e e s aanbt e eeeaeeeseanbbeeeeeeaaeeaaans 125
3.1.1. Pessimistic and OptimiStiC IOCKINGcoviveriiiiiiiiee it 126
3.1.2. The components of adistributed transaction ... 126
3.1.3. Thetwo-phase XA ProtOCOleeeiiiiiiiiiiieiiec e e 127
3.1.4. HEUNISHIC EXCEPLIONS ...civiieieeiiieie ettt ettt e e e e e e e s e e e s e e e e e 127
3.1.5. Transaction IDS and DranChesocvveiiiiiiiiie e 128

3.2. IBOSS TransaCtion INTEIMEIS ...t e e e e e e e e e e e aneereaeeeean 128
3.2.1. Adapting a Transaction Manager 10 JBOSScccveveieiiiiiiieieieieeeeeeeeeeeeeeeeeeee e eeeeeeeeeeeeeees 129
3.2.2. The Default TransaCtion MaNagEYoocvueieeiiireeeeeiieee et e 129
3.2.2.1. Org.jbOSS.IM.XIAFACLONY ...oeeeiiiiiieiie et e e e e e e e e 130

3.2.3. USerTranSaCtion SUPPOITccoiiieiiiieeeee e e s e ettt e e e e e e e et e e e e e e s s st r e e e e e e e e s s ntrraneeeens 130

4. EIBS ON JBOSSciiiiiiiiiiii e e e i et ettt oottt e e e et e et e et e e et e e e a b e e e e eeeeeenr e e e eeeeeeenranaaaaaaaeennres 131
4.1. TREEJIB ClIeNt SIHE VIBW ...eeiiiiiiiie ettt e et e e st e e e s nnnn e e e e e nees 131
4.1.1. Specifying the EJB Proxy Configurationcc.eeeeiiiiieienniriee e 134

4.2. TREEJIB SEIVEr SIUE VIBW ...eeiiiiiiiie ettt e e ettt e e et e e s et e e e e nnnneaeeenees 138
4.2.1. Detached Invokers - The Transport Middlemen ... 138
4.2.2. The HA JRMPInvoker - Clustered RMI/JRMP Transportcoooeceveieeeeeeeeeieiiiieeeeenn 142
4.2.3. The HA Httplnvoker - Clustered RMI/HTTP Transportccceeeevivciivieeeeeeeescecivineeeean. 142

A.3. TRE EJIB CONLAINELeiiiiiiieiee e eieetiieie e e e e e e s ettt e e eee e e s sant e e eraaeeesasannseeeeeeaeeesaannssnneneeaaeeaaans 143
4.3.1. EIBDEPIOYEr MBEANveveiiieiiiiciiiiee ettt e e et 143
4.3.1.1. Verifying EJB deplOYMENEScooiuiiiiiiiiiiieeiiie e 144

4.3.1.2. Deploying EJBS INt0 CONtAINENScvvvviiiiiiiiiieeeeeeeeeeeeeeeeeee e eeee e e e eeeeeeeeeeeeeeeees 144

4.3.1.3. Container configuration infOrMationcccueeeeiiiieeeiniiiee e 145

4.3.2. Container PIUg-in FramEWOIKc.eeiiiiiiiiieiiieie e 156
4.3.2.1. 0rg.jboss.gb.ContainerPIUginccoiviiiiiiie e 156

4.3.2.2. Org.jDOSS.ED.INLENCEPION ... 157

4.3.2.3. 0rg.jboss.gh.InstancePoolccceeviiiiiiiiii e 158

4.3.2.4. 0rg.jboss.ej.INStanCeCaChEc.uviiiiiiii e 159

4.3.2.5. org.jboss.g b.EntityPersistenCEManagerccovvveveeeeeiieeeeieeeeeeeeee e e e e ee e 160

4.3.2.6. The org.jboss.gjb.EntityPersistenceStore interfacecccccvveeeiiiiiciieieneee e, 162

4.3.2.7. org.jboss.gjb.Statef ul SessionPersistenceManagerccvvvveveeeeeiiiiiciiiieeeee e 165

4.4. Entity Bean Locking and Deadlock DELECHIONooeeeiiiiiiiiiiiiiice e 166
4.4.1. Why JB0OSS NEEAS LOCKINGevveieeiiieiee ettt 166
4.4.2. Entity BEaAN LIfECYCIE ..vvviiiiiei it 167
4.4.3. Default LOCKING BENAVIOKviiiiiiiiiie et 167
4.4.4. Pluggable Interceptors and LOCKiNg POLICYcoevvviviiiiiiiieiiieiceeeeeeeeeeeeeeeeeeeeeeeeeee e 167
4.4.5. DEAAIOCK ...t 168
4.4.5.1. DEadIOCK DELECHIONeiiiiieiiiiiiieiie ettt e e et e e e e e e e e ee e e e e e e ns 169

4.4.5.2. Catching ApplicationDeadl OCKEXCERLIONceevveeiiiiiiiiiiiieeee e 169

4.4.5.3. Viewing Lock INfOrMELioNcceeveiiiiiieiiiiiee e 170

4.4.6. Advanced Configurations and OptimiZatioNnScceveveieieieiiiieeieieeeeeeeeeeeeeeeeee e 170
4.4.6.1. ShOrt-lived TranSBClIONSccciiieiir e e e s e e e s e e e e s e s eeaaeeeeans 171

A.4.6.2. OrderEd ACCESSeeieiiiiie e ettt e e e e e e ettt e e e e e e e s s nebeeeeeaaeeseaananreeeeaaaeeaaans 171

4.4.6.3. READ-ONIY BEANSuvviiiiiieei ittt e e e s e e e e e e e e s e s ra e e e e aeeeeans 171

4.4.6.4. Explicitly Defining Read-Only MethodsScoooviiiiiiiiiiiieciee e 171

4.4.6.5. Instance Per Transaction POIICYcccooiiiiiiiiiiiiece e 172

4.4.7. RUNNING WithiN @ CIUSTESooiiiiiieeiiiiiee et 172

JBoss Release 2

The JBoss 4 Application Server 2EE Reference

T I oo = oo (] o SRR 173
4.4.8.1. Locking Behavior NOt WOIKINGcccouiiriieiiiiiieeiiieee e 173

4.4.8.2. 11legal SLAEEXCEPLIONceeveieieiiiieieeeeeeeeeeeee et 173

4.4.8.3. Hangs and Transaction TIMEOULSc.ueveeiiiieeeeiiirieeeniieee e e s 173

4.5. EIB Timer CONFIQUIBLIONcoeiiieiiiiiieieee e e ee e e e e ee et e e e et eeeeeeeerereeeeeeeeeees 173
5. MESSAQING ON JBOSSuvvvvveiieeeeiiiiitiieteeeee e e s e setataaeeeeaeeesaasataeae et eaaeessaasasabaeeeaaeessaasssaaeeeeaeessaanrsreneeaens 176
ST N 1Y S 1 o] =SSR 176
5.1.1. A POINt-TO-POINt EXAMPIE ..ottt e e e e 176
5.1.2. A PUB-SUD EXGMPIE ... s 179
5.1.3. A Pub-Sub With Durable TopiC EXample ..., 183
5.1.4. A Point-To-Point With MDB EXaMPIEooiiiiiiiiiiiiiec e 186

5.2. JBOSSMESSAGING OVEIVIEIWeeiiiiiiiiie e e e et ieiee e e e e e e et e e e e e e e s s aa st eeeeeeeaaeeasannneneeeeeaeeseaannseees 192
5.2.1. INVOCAION LAYESeuiiiiiiiee ettt e e e e e e e e e e et e e e e e e e s e senrrraneeaeas 192
5.2.2. SECUNMLY M@NAGES ...eiiiiiiiie ettt e et e e e e e e et e e e s anber e e s anneeeas 193
5.2.3. DESHINGLION IMBNGGESeeeieieiiieiiiiiee e e e e et e e e e e e e s e e e e e e e e s e et e e e e e e e s s santbrneeeaens 193
5.2.4. MESSAJE CBCNE ...ttt 193
S = (= 1Y/ = 1= RSP 193
5.2.6. PErSISIENCE MBNEOEYeveiiiiiiiiee ettt ettt et e e et e e e s anbe e e e e e nnnneeas 193
oI A T] = o] S 194
LI 0 R O 1= 1 L= 194

5.2.7.2. TOPICS .tteee ettt ettt ettt ettt e e et e e e st e e ekt e e e e e b e e e et e e s 194

5.3. JBoss Messaging Configuration and MBEANSccccuviiiieeeceiiccciiieeee e eertrree e 194
5.3.1. 0rg.jboss.mQ.il JVM.IVMSEIVENTLSEINVICEccoiiiiiieiiiiiiee et 195
5.3.2. 0rg.jboss.mq.il.UIl2.UILSErVerlLSErVICe ..o, 195
5.3.2.1. Configuring UIL2 fOr SSLciiiiiiiieiiiiiiiee ettt 196

5.3.2.2. IMS client properties for the UIL2 tranSportccceeeeiiiveeeiniieeee e 197

5.3.3. 0rg.jboss.mq.il.http.HT TPSEVENILSEINVICE ...uvveeeeiiee i 198
5.3.4. 0rg.jb0oss.MQ.SerVEr JMX.INVOKESooiiiiiiiiieiieee e 198
5.3.5. org.jboss.mg.server.jmX. I nterceptorLOBdErccoeeiiiiiiiiiieeee e 199
5.3.6. 0rg.jboss.mq.sm.jdDC.IDBCSIAEMBNGGEYvvvveeeiiiiieeeiiiiee et 199
5.3.7. org.jboss.mqg.security.SecurityManagercoooeeeeeieee i, 199
5.3.8. org.jboss.mg.server.jmx.DestinatioNManagercoeccuvireeieeeeee e e 200
5.3.9. 0rg.jboss.mQ.server.MessageCaChuuviii i 201
5.3.10. org.jboss.mg.pm.jdbc2. PersiStenCEMaNAgESccooviciiiieiieee e 202
5.3.11. DeStination MBEANScceeeiiiiiiiiiie e e e ettt et e e e e st e e e e e e e et e e e e e e e s s enneaeeeeaens 204
5.3.11.1. 0rg.jboss.mQ.Server JMX.QUEUEccccuuiriieieeee e e ettt e e e e e e eesiarare e e e e e e e e eaneees 204

5.3.11.2. 0rg.jboSS.MQ.SEVEr JIMX. TOPIC ..uvvveeeiiiiieeiiiiiee et e 206

5.4. Specifyingthe MDB IMS Provider ... 207
5.4.1. org.jboss.jms.jndi.JM SProviderLoader MBEaNcccccveveveeeiiiiiiieecee e 208
5.4.2. org.jboss,jms.asf.ServerSessionPoolLoader MBEaNccvveeiiiiiiciiiiieec e 209
5.4.3. Integrating NON-JBOSS IMS PrOVIENSc.uvviiiiiiie ettt 210

6. CONNECIOIS ON JBOSS .. .ciiiiiiieie e 211
LT N ©F N @Y VT T R 211
6.2. An Overview of the IBOSSCX ATChITECIUIEcoiveiiiiiiiiiiiiiee e e e 213
6.2.1. BaseConnectionManager2 MBeancccoo oo 214
6.2.2. RARDEPIOYMENt MBEAN ...t 214
6.2.3. JBossManagedConnectionPool MBEANccevieiiiiiiii e 215
6.2.4. CachedConnectionManager MBEaNcc.vveieiiiiiiiiccee e 216
6.2.5. A Sample Skeleton JCA ReSOUICE AQaPLONccciiiiirieeiiiiiieeiiiiee e 216

JBoss Release 2

The JBoss 4 Application Server 2EE Reference

6.3. Configuring JDBC DELASOUICESeeeieeeeiiieiiiieieeeeeeeseeiiiareeeeeeessasiatrbaeeeeaeesssssnraaeeeeeeessansnsnees 222
6.4. Configuring GeneriC JCA ABPLOIScooiiiiiiiiiiiiee ettt e e nneeeas 232
7. SECUNLY ONJBOSS ... 236
7.1. J2EE Declarative SECUNTY OVEIVIEWcoiueeiiiiiiiieeiiieie ettt e et e e e 236
7.1.1. Security REFEIENCES ...ccooeeeieeeee e 236
7.0.2. SECUNLY TABNEILY .. e e e e e e r e e e e e s s eenrrraeeeaeas 238

7. 1.3, SECUNLY TOIBS .ttt e et e e s e e e e e e e s anne e e e e e nnnne s 239
7.1.4. EJB MethOd PErMISSIONScccuiiiiiiiiie ettt e e e e e s e e ea s 240
7.1.5. Web Content Security CONSITAINTSovvrieiiiiriieeiiieie et e et e s snneeeas 243
7.1.6. Enabling Declarative Security iN JBOSScccooeveeieii e, 246

7.2. ANINrOdUCLIONTO JAAS ..t e e e e e e s e et e e e e e e e e s san b e e e e aaeeseennnneees 246
T2 L WA IS JAAS? ..ottt e e e et e e e ettt e e e et e e e et e e e e arre e e e annnreean 246
7.2.1.1. TREJAAS COrE ClaSSESuvviiiiiiiiiieeiiiiee ettt ettt e sbb e e neeeeas 246

7.3. The JB0OSS SECUNLY MOOELeiiieiiiiie e 250
7.3.1. Enabling Declarative Security in JBoss Revisitedcccceeveeiiiiiiiiiiecce e 252

7.4. The JB0ss Security EXtENSION ATChITECIUIEeviiiiiiiiie et 256
7.4.1. How the JaasSecurityManager USeSJAAS ..., 258
7.4.2. The JaasSecurityManagerService MBEANc..evvviiiiiiii e 261
7.4.3. The JaasSecurityDomain MBEANcoiiiiiiiiiiiiie e e 263

7.5. DEfiNiNg SECUMLY DOMEINSovviiiiiiee e ettt e e s e e e e s e e e e e e e e e e st aa e e e e e e e s e annnneees 264
7.5.1. Loading SeCUrity DOMBEINSccoiiuumiieiiiiiieeiieee ettt e e e e e s e e s e ees 266
7.5.2. The DynamicLoginConfig SEIVICEcoiiiiiiiieieii et 267
7.5.3. USINg JBOSS LOGIN MOUUIES ..ottt 268
7.5.3.1. Password Stackingccoooeeiiiiii i, 268

7.5.3.2. PassWOrd HashiNgcoooiiiiiiiiiiiiee et 269

7.5.3.3. Unauthenticated [deNntitycoccoveeiiiiiiieeiiiiee e 270

7.5.3.4. UsersRolesLoginMOAUIEoueiiiiieiiiiieeeee e 270

7.5.3.5. LAapLOGINMOTUIEooiiiiiiiiiieeii et 271

7.5.3.6. DatabaseServerLoginMOAUIEcoooiiiiiiiiiie e 274

7.5.3.7. BaseCertLOgiNMOTUIEooiiiiiiiiiiiiiiiee e 276

7.5.3.8. IdentityLoginModUule ..., 277

7.5.3.9. RUNASLOGINMOAUIE ...ttt e e e e 278

7.5.3.10. ClientLOgINMOUTUIEcouiiiieeiieie e 278

7.5.4. Writing Custom Login MOAUIEScooiiiiiiieieee e 279
7.5.4.1. Support for the Subject Usage Patterncccceoviiiieeiiiiiiee e 280

7.5.4.2. A Custom LoginModule EXamplecccuuviiiiieee et 284

7.6. The Secure Remote Password (SRP) ProtOCOlcoocuiiiiiiiiiieeiiiiieee s 287
7.6.1. Providing Password Information for SRPcccccooo 290
7.6.2. Inside of the SRP algorithmoooiiiiiiiii e 292
7.6.2.1. ANSRP €XAMPIE ... 294

7.7. Running JBoss with a Java 2 SECUIitY MBNAJENcccciuviiiiieeeee e e e e e e e e e e e e e neees 297
7.8.Using SSL With JBOSSUSING JSSEooiiiiiiiiieiiiii ettt 298
7.9. Configuring JBossfor use Behind aFirewalloooo 302
7.10. HOW t0 SECUrE the JBOSS SEIVES ...eeiiiieei i ittt e e e e e e ettt e e e e e e s e st a e e e e e e e s s snnb e e aaaeeseenneeees 303
7.10.1. TREIMX CONSOIEeeeiiieeeeeeie ettt e e e e e e et e e e e e e e s e e nnneaeeeeeens 303
7.10.2. TREWED CONSOIE ...ttt ettt e et e e st e e e s nnnneeas 303
7.10.3. TREHTTP INVOKENSvviieeiiiiit ettt s ettt e e e st e e e e nntee e e e snnnaeeeannneeeas 303
7.10.4. TRE IMX INVOKEN ...ttt e et e e st e e e e nnneeeas 304

8. AItIONE] SEIVICESeviiiiiiiie ettt e e e e e e er e e e e e e s et re e e e e e e e e saatnraarreaee e e e e nrrrareeeens 305

JBoss Release 2

The JBoss 4 Application Server 2EE Reference

8.1. Memory and Thread MONITOINGceiiiieiiiiiiiiiie e e e e e s nnees 305
8.2. TNELOUA] SEIVICE ...eeieeiitiiee ettt ettt e e et e e e st e e e s b e e e e nbe e e e e anbe e e e e s nnnneeas 305
8.3. System PropertiesSManagemMentcoooe i 306
8.4. Property EditOr ManagEMENTcoiuiiiiiiiiiiee ittt e e e e e nnnneeas 307
8.5. Services Binding Managementcooooii i 307
8.5.1. AttributeMappiNgDEIEOALEuvviiiieeee i 309
8.5.2. XSLTCONTIGDEEUALEcceiiiieieiiiiiieee ittt r e e e es 309
8.5.3. XSLTHIIEDEIEUALE ...ttt ettt e e st e e e s nnneeeas 310
8.5.4. The Sample BindiNgS Filecooiiiiiie e 312

8.6. RMI Dynamic ClassLoading ... 312
8.7. SCNEAUIING TBSKS ...ttt e et e e st e e e ate e e e s nnanee s 313
8.7.1. org.jboss.varia.scheduler.SChedulerc..oveiiiiii e 313

8.8, THE TIIMIEN SEIVICEeiiiiiiiiee ettt e et e e b e e e e abe e e e s anbe e e e e e nnneeeas 315
8.9. The BarrierControll€F SEIVICEueiiiii ettt e e e e e e e reaee e e e e e e e e nneeees 318
8.10. Exposing MBean EVENESVIASNMPcuiiiiiiiiic et 320
A. BOOK EXaMPIE INSLAIIGLIONeeiiiiiiiieeiiec et e e e e 322

JBoss Release 2 Vii

The JBoss JMX Microkernel

Modularly developed from the ground up, the JBoss server and container are completely implemented using com-
ponent-based plug-ins. The modularization effort is supported by the use of IMX, the Java Management Extension
API. Using IMX, industry-standard interfaces help manage both JBoss/Server components and the applications de-
ployed on it. Ease of use is still the number one priority, and the JBoss Server architecture sets a new standard for
modular, plug-in design as well as ease of server and application management.

This high degree of modularity benefits the application developer in several ways. The aready tight code can be
further trimmed down to support applications that must have a small footprint. For example, if EJB passivation is
unnecessary in your application, simply take the feature out of the server. If you later decide to deploy the same ap-
plication under an Application Service Provider (ASP) model, simply enable the server's passivation feature for
that web-based deployment. Another example is the freedom you have to drop your favorite object to relational
database (O-R) mapping tool, such as TOPLink, directly into the container.

This chapter will introduce you to IMX and its role as the JBoss server component bus. Y ou will aso be introduced
to the JBoss M Bean service notion that adds life cycle operations to the basic IMX management component.

1.1. An Introduction to JIMX

The success of the full Open Source J2EE stack lies with the use of IMX (Java Management Extension). IMX is
the best tool for integration of software. It prov ides a common spine that allows the user to integrate modules, con-
tainers, and plug-ins. Figure 1.1 shows the role of IMX as an integration spine or bus into which components plug.
Components are declared as M Bean services that are then loaded into JBoss. The components may subsequently be
administered using IMX.

JBoss Release 2 1

The JBoss IM X Microkernel

~ JISUTA | SECURITY | DATASOURCES | REMOTE
e Sy

‘Sl ¥

EJB CONTAINER DATABASES JAVA SERVER PAGES

Figure1.1. The JBoss JM X integration bus and the standar d JBoss components

Before looking at how JBoss uses IMX as its component bus, it would help to get abasic overview what IMX is by
touching on some of its key aspects.

JMX components are defined by the Java Management Extensions Instrumentation and Agent Specification, v1.2,
which is available from the JSR0O03 Web page at http://jcp.org/en/jsr/detail ?id=3. The materia in this IMX over-
view section is derived from the IMX instrumentation specification, with a focus on the aspects most used by
JBoss. A more comprehensive discussion of IMX and its application can be found in IMX: Managing J2EE with
Java Management Extensions written by Juha Lindfors (Sams, 2002).

JMX is astandard for managing and monitoring all varieties of software and hardware components from Java. Fur-
ther, IMX aims to provide integration with the large number of existing management standards. Figure 1.2 shows
examples of components found in a IMX environment, and illustrates the relationship between them as well as how
they relate to the three levels of the IMX model. The three levels are:

e Instrumentation, which are the resources to manage
» Agents, which are the controllers of the instrumentation level objects

e Distributed services, the mechanism by which administration applications interact with agents and their man-
aged objects

JBoss Release 2 2

http://jcp.org/en/jsr/detail?id=3

The JBoss IM X Microkernel

JMY-Compliant Weh Browser Proprietary Management
Management Application Application
I Additional
Management
Protocol APIs

O

SHMP

Distributed
Services Level

Ll
®
"

_________ L e TR

Instrumentation |

Leval Resource 1 [= Resource 2 1
| (MBean) | (MBean) | I

Ej Current JMX Specification
E] Future JMX Specification
[] Seperate J5Rs

Figure 1.2. The Relationship between the components of the IM X ar chitecture

1.1.1. Instrumentation Level

The instrumentation level defines the requirements for implementing JM X manageable resources. A IMX manage-
able resource can be virtualy anything, including applications, service components, devices, and so on. The man-
ageabl e resource exposes a Java object or wrapper that describes its manageabl e features, which makes the resource
instrumented so that it can be managed by JM X-compliant applications.

The user provides the instrumentation of a given resource using one or more managed beans, or MBeans. There are
four varieties of MBean implementations: standard, dynamic, model, and open. The differences between the vari-
ous MBean typesis discussed in Managed Beans or MBeans.

The instrumentation level also specifies a notification mechanism. The purpose of the notification mechanismisto
allow MBeans to communicate changes with their environment. This is similar to the JavaBean property change
notification mechanism, and can be used for attribute change notifications, state change notifications, and so on.

1.1.2. Agent Level

The agent level defines the requirements for implementing agents. Agents are responsible for controlling and ex-

JBoss Release 2 3

The JBoss IM X Microkernel

posing the managed resources that are registered with the agent. By default, management agents are located on the
same hosts as their resources. This collocation is not arequirement.

The agent requirements make use of the instrumentation level to define a standard MBeanServer management
agent, supporting services, and a communications connector. JBoss provides both an html adaptor as well as an
RMI adaptor.

The IMX agent can be located in the hardware that hosts the JM X manageable resources when a Java Virtual Ma-
chine (VM) isavailable. Thisis how the JBoss server uses the MBeanServer. A IMX agent does not need to know
which resources it will serve. IMX manageable resources may use any JMX agent that offers the services it re-
quires.

Managers interact with an agent's MBeans through a protocol adaptor or connector, as described in the Sec-
tion 1.1.3 in the next section. The agent does not need to know anything about the connectors or management ap-
plications that interact with the agent and its MBeans.

1.1.3. Distributed Services Level

The IMX specification notes that a complete definition of the distributed services level is beyond the scope of the
initial version of the IMX specification. This was indicated by the component boxes with the horizontal lines in
Figure 1.2. The general purpose of this level is to define the interfaces required for implementing JIMX manage-
ment applications or managers. The following points highlight the intended functionality of the distributed services
level as discussed in the current IMX specification.

« Provide an interface for management applications to interact transparently with an agent and its IMX manage-
able resources through a connector

¢ Exposes a management view of a IMX agent and its MBeans by mapping their semantic meaning into the con-
structs of adata-rich protocol (for example HTML or SNMP)

e Distributes management information from high-level management platforms to numerous IMX agents

e Consolidates management information coming from numerous JIMX agents into logical views that are relevant
to the end user's business operations

¢ Provides security

It isintended that the distributed services level components will allow for cooperative management of networks of
agents and their resources. These components can be expanded to provide a complete management application.

1.1.4. IMX Component Overview

This section offers an overview of the instrumentation and agent level components. The instrumentation level com-
ponents include the following:

e MBeans (standard, dynamic, open, and model MBeans)
* Notification model elements
* MBean metadata classes

JBoss Release 2 4

The JBoss IM X Microkernel

The agent level components include:

* MBean server
* Agent services

1.1.4.1. Managed Beans or MBeans

An MBean is a Java object that implements one of the standard MBean interfaces and follows the associated design
patterns. The MBean for a resource exposes all necessary information and operations that a management applica-
tion needs to control the resource.

The scope of the management interface of an MBean includes the following:

« Attribute values that may be accessed by name
* Operations or functions that may be invoked

* Notifications or events that may be emitted

* The constructors for the MBean's Java class

JMX defines four types of MBeans to support different instrumentation needs:

e Standard MBeans: These use a simple JavaBean style naming convention and a statically defined manage-
ment interface. Thisisthe most common type of MBean used by JBoss.

¢ Dynamic MBeans: These must implement the j avax. managerment . Dynani cMBean interface, and they expose
their management interface at runtime when the component is instantiated for the greatest flexibility. JBoss
makes use of Dynamic MBeans in circumstances where the components to be managed are not known until
runtime.

« Open MBeans: These are an extension of dynamic MBeans. Open MBeans rely on basic, self-describing, user-
friendly data types for universal manageability.

e Model MBeans. These are aso an extension of dynamic MBeans. Model MBeans must implement the
j avax. managenent . nodel mbean. Model MBean interface. Model MBeans simplify the instrumentation of re-
sources by providing default behavior. JBoss XMBeans are an implementation of Model MBeans.

We will present an example of a Standard and a Model MBean in the section that discusses extending JBoss with
your own custom services.

1.1.4.2. Notification Model

JMX Noatifications are an extension of the Java event model. Both the MBean server and MBeans can send notific-
ations to provide information. The IMX specification defines the j avax. managerment package Noti fi cati on event
object, NotificationBroadcaster event sender, and Notifi cati onLi st ener event receiver interfaces. The spe-
cification also defines the operations on the MBean server that allow for the registration of notification listeners.

1.1.4.3. MBean Metadata Classes

There is a collection of metadata classes that describe the management interface of an MBean. Users can obtain a
common metadata view of any of the four MBean types by querying the MBean server with which the MBeans are
registered. The metadata classes cover an MBean's attributes, operations, notifications, and constructors. For each

JBoss Release 2 5

The JBoss IM X Microkernel

of these, the metadata includes a name, a description, and its particular characteristics. For example, one character-
istic of an attribute is whether it is readable, writable, or both. The metadata for an operation contains the signature
of its parameter and return types.

The different types of MBeans extend the metadata classes to be able to provide additional information as required.
This common inheritance makes the standard information available regardless of the type of MBean. A manage-
ment application that knows how to access the extended information of a particular type of MBean is able to do so.

1.1.4.4. MBean Server

A key component of the agent level is the managed bean server. Its functionality is exposed through an instance of
the j avax. management . MBeanSer ver . An MBean server is aregistry for MBeans that makes the MBean manage-
ment interface available for use by management applications. The MBean never directly exposes the MBean object
itself; rather, its management interface is exposed through metadata and operations available in the MBean server
interface. This provides aloose coupling between management applications and the M Beans they manage.

MBeans can be instantiated and registered with the MBeanServer by the following:

e Another MBean
e Theagent itself
* A remote management application (through the distributed services)

When you register an MBean, you must assign it a unigue object name. The object name then becomes the unique
handle by which management applications identify the object on which to perform management operations. The
operations available on M Beans through the MBean server include the following:

« Discovering the management interface of MBeans

» Reading and writing attribute values

» Invoking operations defined by MBeans

* Registering for notifications events

¢ Querying MBeans based on their object name or their attribute values

Protocol adaptors and connectors are required to access the MBeanServer from outside the agent's VM. Each ad-
aptor provides a view viaits protocol of all MBeans registered in the MBean server the adaptor connects to. An ex-
ample adaptor isan HTML adaptor that allows for the inspection and editing of MBeans using a Web browser. As
was indicated in Figure 1.2, there are no protocol adaptors defined by the current IMX specification. Later versions
of the specification will address the need for remote access protocols in standard ways.

A connector is an interface used by management applications to provide a common API for accessing the MBean
server in amanner that isindependent of the underlying communication protocol. Each connector type provides the
same remote interface over a different protocol. This allows a remote management application to connect to an
agent transparently through the network, regardless of the protocol. The specification of the remote management
interface will be addressed in afuture version of the IMX specification.

Adaptors and connectors make al MBean server operations available to a remote management application. For an
agent to be manageable from outside of its VM, it must include at least one protocol adaptor or connector. JBoss
currently includes a custom HTML adaptor implementation and a custom JBoss RMI adaptor.

1.1.4.5. Agent Services

JBoss Release 2 6

The JBoss IM X Microkernel

The IMX agent services are objects that support standard operations on the MBeans registered in the MBean serv-
er. The inclusion of supporting management services helps you build more powerful management solutions. Agent
services are often themselves MBeans, which alow the agent and their functionality to be controlled through the
MBean server. The IMX specification defines the following agent services:

* A dynamic class loading ML et (management applet) service: This allows for the retrieval and instantiation
of new classes and native libraries from an arbitrary network location.

e Monitor services: These observe an MBean attribute's numerical or string value, and can notify other objects
of several types of changesin the target.

* Timer services. These provide a scheduling mechanism based on a one-time alarm-clock notification or on a
repeated, periodic notification.

« Therelation service: This service defines associations between MBeans and enforces consistency on the rela
tionships.

Any IMX-compliant implementation will provide all of these agent services. However, JBoss does not rely on any
of these standard agent services.

1.2. JBoss JMX Implementation Architecture

1.2.1. The JBoss ClassLoader Architecture

JBoss employs a class loading architecture that facilitates sharing of classes across deployment units and hot de-
ployment of services and applications. Before discussing the JBoss specific class loading model, we need to under-
stand the nature of Java's type system and how class loadersfit in.

1.2.2. Class Loading and Types in Java

Class loading is a fundamental part of all server architectures. Arbitrary services and their supporting classes must
be loaded into the server framework. This can be problematic due to the strongly typed nature of Java. Most de-
velopers know that the type of a class in Javais a function of the fully qualified name of the class. However the
typeis aso afunction of thej ava. | ang. O assLoader that is used to define that class. This additional qualification
of type is necessary to ensure that environments in which classes may be loaded from arbitrary locations would be
type-safe.

However, in a dynamic environment like an application server, and especially JBoss with its support for hot de-
ployment are that class cast exceptions, linkage errors and illegal access errors can show up in ways not seen in
more static class loading contexts. Let's take alook at the meaning of each of these exceptions and how they can

happen.
1.2.2.1. ClassCastExceptions - I'm Not Your Type

A java.l ang. O assCast Except i on results whenever an attempt is made to cast an instance to an incompatible
type. A simple exampleistrying to obtain ast ri ng from aLi st into which a URL was placed:

JBoss Release 2 7

The JBoss IM X Microkernel

Arrayli st array = new Arraylist();
array. add(new URL("file:/tnp"));
String url = (String) array.get(0);

java.l ang. Cl assCast Excepti on: java.net.URL
at org.jboss. book. j nx. ex0. ExCCEa. mai n(EX1CCE. j ava: 16)

The d assCast Except i on tells you that the attempt to cast the array element to a st ri ng failed because the actual
type was URL. This trivial case is hot what we are interested in however. Consider the case of a JAR being loaded
by different class loaders. Although the classes loaded through each class loader are identical in terms of the byte-
code, they are completely different types as viewed by the Java type system. An example of thisisillustrated by the
code shown in Example 1.1.

Example 1.1. The EXCCEc class used to demonstrate ClassCastException due to duplicate classloaders

package org.j boss. book. j mx. exO0;

import java.io.File;

i mport java.net. URL;

i mport java. net.URLC asslLoader;
i mport java.lang.refl ect. Met hod;

i mport org.apache. | og4j. Logger;

i mport org.jboss.util.ChapterExRepository;
i mport org.jboss. util.Debug;

*

An exanpl e of a O assCast Exception that
results fromcl asses | oaded through
di fferent class | oaders.
* @uthor Scott.Stark@ boss. org
* @ersion $Revision: 1.2 $
&/
public class ExCCEc
{

/

** * Ok

public static void main(String[] args) throws Exception

{
Chapt er ExReposi tory. i nit (ExCCEc. cl ass);

String chapDir Syst em get Property("chapter.dir");
Logger ucl OLog Logger . get Logger (" UCLO") ;
File jarO = new File(chapDir+"/j0.jar");
ucl OLog.info("jar0 path: "+jar0.toString());
URL[] cpO = {jar0.toURL()};
URLCl assLoader ucl 0 = new URLCO assLoader (cpO);
Thr ead. current Thread() . set Cont ext Cl assLoader (ucl 0) ;
Cl ass obj d ass = ucl 0.1 o0add ass("org.jboss. book. j nx. ex0. ExCbj ") ;
StringBuffer buffer = new
StringBuffer("ExCbj Info");
Debug. di spl ayd assl nf o(obj O ass, buffer, false);
ucl OLog. i nfo(buffer.toString());
Cbj ect val ue = obj d ass. newl nst ance();

File jarl = new File(chapDir+"/j0.jar");

Logger ucl 1Log = Logger. get Logger ("UCL1");

ucl 1Log.info("jarl path: "+jarl.toString());

URL[] cpl = {jarl.toURL()};

URLC assLoader ucl 1l = new URLC assLoader (cpl);

Thr ead. current Thread() . set Cont ext Cl assLoader (ucl 1) ;

Class ctxd ass2 = ucl 1.1 oadC ass("org.j boss. book. j mx. ex0. ExCt x") ;

JBoss Release 2 8

The JBoss IM X Microkernel

buf fer.setLengt h(0);

buf f er. append("ExCt x Info");

Debug. di spl ayd assl nf o(ct xCl ass2, buffer, false);
ucl 1Log. i nfo(buffer.toString());

hj ect ctx2 = ctxd ass2. newl nstance();

try {
C ass[] types = {nject.cl ass};
Met hod useVal ue =
ct xCl ass2. get Met hod("useVal ue", types);
bj ect[] margs = {val ue};
useVal ue. i nvoke(ctx2, margs);
} catch(Exception e) {
ucl 1Log. error("Failed to i nvoke ExCtx.useVal ue", e);
throw e;

Example 1.2. The EXCtx, ExObj, and ExObj2 classes used by the examples

package org.j boss. book. j nx. exO0;

i mport java.io.| CException;
i mport org.apache. | og4j . Logger;
i mport org.jboss.util.Debug;

/**

* A classes used to denpnstrate various cl ass
* | oadi ng i ssues

* @ut hor Scott.Stark@ boss. org

* @ersion $Revision: 1.2 $

*/
public class ExCtx
{

ExObj val ue;

public ExCtx()
throws | OException

{
val ue = new ExObj ();
Logger | og = Logger. get Logger (ExCt x. cl ass) ;
StringBuffer buffer = new StringBuffer("ctor. ExCbj");
Debug. di spl ayd assl nf o(val ue. get Cl ass(), buffer, false);
| og.info(buffer.toString());
ExCbj 2 obj 2 = val ue.ivar;
buf f er. set Lengt h(0) ;
buf fer = new StringBuffer("ctor.ExQhj.ivar");
Debug. di spl ayd assl nf o(obj 2. get O ass(), buffer, false);
| og.info(buffer.toString());

}

public Object getVal ue()

{
return val ue;

}

public void useVal ue(Obj ect obj)
t hrows Exception

{

Logger | og = Logger. get Logger (ExCt x. cl ass);
StringBuffer buffer = new

JBoss Release 2

The JBoss IM X Microkernel

StringBuf fer("useVal ue2.arg cl ass");
Debug. di spl ayd assl nfo(obj.getd ass(), buffer, false);
| og.info(buffer.toString());
buf f er. set Lengt h(0) ;
buf f er. append("useVal ue2. ExCbhj cl ass");
Debug. di spl ayd assl nf o(ExQbj . cl ass, buffer, false);
| og.info(buffer.toString());
ExCbj ex = (ExObj) obj;
}

voi d pkgUseVal ue(Obj ect obj)
throws Exception
{

Logger | og = Logger. get Logger (ExCt x. cl ass) ;
log.info("In pkgUseVal ue");

package org.j boss. book. j nx. ex0;

import java.io.Serializable;

/**
* @ut hor Scott.Stark@ boss. org
* @ersion $Revision: 1.2 $
*/
public class ExObj
i mpl enents Serializable
{

}

public ExCbj2 ivar = new ExCbj 2();

package org.j boss. book. j nx. exO0;

inport java.io.Serializable;

/**
* @ut hor Scott. Stark@ boss. org
* @ersion $Revision: 1.2 $
*/
public class Ex(Qoj2
i mpl ements Serializabl e
{

}

The ExcCEc. mai n method uses reflection to isolate the classes that are being loaded by the class loaders ucl 0 and
ucl 1 from the application class loader. Both are setup to load classes from the out put /j mx/j 0. j ar , the contents of
which are:

[exanpl es]$ jar -tf output/jnx/jO.jar

or g/ j boss/ book/j mx/ ex0/ ExCt x. cl ass
or g/ j boss/ book/j mx/ ex0/ ExCbj . cl ass
or g/ j boss/ book/ j mx/ ex0/ ExQbj 2. cl ass

We will run an example that demonstrates how a class cast exception can occur and then look at the specific issue
with the example. See Appendix A for instructions on installing the exampl es accompanying the book, and then run
the example from within the examples directory using the following command:

[exanpl es] $ ant - Dchap=j nx - Dex=0c run-exanpl e

JBoss Release 2

The JBoss IM X Microkernel

[java] java.lang.reflect.|nvocationTarget Exception

[java] at sun.refl ect. NativeMet hodAccessor | npl . i nvokeO(Nati ve Met hod)
[java] at sun.reflect. Nati veMet hodAccessor | npl . i nvoke(Nati veMet hodAccessor | npl . java: 39)
[java] at sun.refl ect. Del egati ngMet hodAccessor | npl . i nvoke(Del egati ngMet hodAccessor | npl
. java: 25)
[java] at java.lang.refl ect.Method. i nvoke(Met hod. j ava: 585)
[javal at org.jboss. book. j nx. ex0. ExCCEc. mai n(EXCCEc. j ava: 58)
[java] Caused by: java.lang.d assCast Exception: org.jboss. book.jm.ex0. Ex(oj
[java] at org.jboss. book. j nx. ex0. ExCt x. useVal ue(ExCt x. j ava: 44)
[java] ... 5 nmore

Only the exception is shown here. The full output can be found in the | ogs/j mx- ex0c. | og file. At line 55 of Ex-
CCEc. j ava We are invoking ExcCCECt x. useVal ue(Qoj ect) on the instance loaded and created in lines 37-48 using
ucl 1. The Extpj passed in is the one loaded and created in lines 25-35 via ucl 0. The exception results when the
ExCt x. useVal ue code attempts to cast the argument passed in to a ExObj . To understand why this fails consider the
debugging output from thej mx- exoc. | og file shown in Example 1.3.

Example 1.3. The jmx-ex0Oc.log debugging output for the ExObj classes seen

[I NFO, UCLO] ExObj Info

org.j boss. book. j nx. ex0. ExChj (f 8968f) . Cl assLoader =j ava. net . URLC assLoader @611a7

..java. net.URLd assLoader @611a7

....file:/Users/orb/proj/jboss/jboss-docs/|bossas/j2ee/ exanpl es/output/jnmx/jO0.jar

++++CodeSource: (file:/Users/orb/proj/jboss/jboss-docs/jbossas/j2eel/ exanpl es/ out put/
jmx/j0.jar <no signer certificates>)

I mpl ement ed | nterfaces:

++i nterface java.io. Serializabl e(41b571)

++++Cl assLoader: nul |

++++Nul | CodeSour ce

[NFO, ExCt x] useVal ue2. Ex(oj cl ass

org. j boss. book. j mx. ex0. ExObj (bc8ele) . A assLoader =j ava. net . URLO assLoader @bd8ea

..java. net. URLO assLoader @bd8ea

....file:/Users/orb/proj/jboss/jboss-docs/jbossas/j2ee/ exanpl es/out put/jnx/jO0.jar

++++CodeSource: (file:/Users/orb/proj/jboss/jboss-docs/jbossas/j2eel/ exanpl es/ out put/
jmx/j0O.jar <no signer certificates>)

I npl erented | nterfaces:

++i nterface java.io. Serializabl e(41b571)

++++Cl assLoader: nul |

++++Nul | CodeSour ce

The first output prefixed with [1| NFO, UCLO] shows that the Exbj class loaded at line ExCCEc. j ava: 31 has a hash
code of f 8968f and an associated URLC assLoader instance with a hash code of 2611a7, which corresponds to uclO.
Thisisthe class used to create the instance passed to the Exct x. useval ue method. The second output prefixed with
[1 NFO, ExCt x] shows that the Exthj class as seen in the context of the Ext x. useval ue method has a hash code of
bc8ele and a URLO assLoader instance with an associated hash code of 6bdgea, which corresponds to ucl 1. So
even though the Exbj classes are the same in terms of actual bytecode since it comes from the samej 0. j ar, the
classes are different as seen by both the Exavj class hash codes, and the associated URLA assLoader instances.
Hence, attempting to cast an instance of Exbj from one scope to the other resultsin the c assCast Except i on.

This type of error is common when redeploying an application to which other applications are holding referencesto
classes from the redeployed application. For example, a standalone WAR accessing an EJB. If you are redeploying
an application, all dependent applications must flush their class references. Typically this requires that the depend-
ent applications themselves be redeployed.

JBoss Release 2 11

The JBoss IM X Microkernel

An alternate means of allowing independent deployments to interact in the presence of redeployment would be to
isolate the deployments by configuring the EJB layer to use the standard call-by-value semantics rather than the
call-by-reference JBoss will default to for components collocated in the same VM. An example of how to enable
call-by-value semanticsis presented in Chapter 4

1.2.2.2. lllegalAccessException - Doing what you should not

A java.lang. |11 egal AccessExcepti on isthrown when one attempts to access a method or member that visibility
qualifiers do not allow. Typical examples are attempting to access private or protected methods or instance vari-
ables. Another common example is accessing package protected methods or members from a class that appears to
be in the correct package, but is really not due to caller and callee classes being loaded by different class loaders.
An example of thisisillustrated by the code shown in Example 1.5.

Example 1.4. The ExXIAEd class used to demonstrate | llegal AccessException dueto duplicate classloader s

package org.j boss. book. j nx. exO0;

inport java.io.File;

i mport java.net. URL;

i mport java. net.URLC asslLoader;
i mport java.lang.refl ect. Met hod;

i mport org.apache. | og4j. Logger;

i mport org.jboss.util.ChapterExRepository;
i mport org.jboss. util.Debug;

/**

* An exanple of |l egal AccessExceptions due to
* cl asses | oaded by two cl ass | oaders.
* @uthor Scott.Stark@ boss. org
* @ersion $Revision: 1.2 $
*/
public class Exl AEd
{

public static void main(String[] args) throws Exception

{
Chapt er ExReposi tory.init (Exl AEd. cl ass);

String chapDir = System getProperty("chapter.dir");
Logger ucl OLog = Logger. get Logger (" UCLO");

File jarO = new Fil e(chapDir+"/j0.jar");

ucl OLog.info("jar0 path: "+jar0.toString());

URL[] cpO = {jar0.toURL()};

URLCl assLoader ucl 0 = new URLC assLoader (cpO);

Thr ead. current Thread() . set Cont ext Cl assLoader (ucl 0);

StringBuffer buffer = new

StringBuffer("Exl AEd I nfo");
Debug. di spl ayd assl nf o(ExI AEd. cl ass, buffer, false);
ucl OLog. i nfo(buffer.toString());

Cl ass ctxd assl = ucl 0.1 oadC ass("org.j boss. book. j mx. ex0. ExCt x") ;
buf f er. set Lengt h(0);

buf f er. append("ExCtx Info");

Debug. di spl ayd assl nfo(ctxCl assl, buffer, false);

ucl OLog. i nfo(buffer.toString());

Cbj ect ctx0 = ctxd assl. newl nstance();

try {

JBoss Release 2 12

The JBoss IM X Microkernel

Cl ass[] types = {(bject.class};
Met hod useVal ue =
ct xd assl. get Decl ar edMet hod(" pkgUseVal ue", types);

Qoj ect[] margs = {null};

useVal ue. i nvoke(ct x0, margs);
} catch(Exception e) {

ucl OLog. error("Failed to i nvoke ExCtx. pkgUseVal ue", e);
}

The ExI AEd. mai n method uses reflection to load the Exct x class via the ucl 0 class loader while the ExI EAd class
was loaded by the application class loader. We will run this example to demonstrate how the I 1 | egal AccessEx-
cepti on can occur and then look at the specific issue with the example. Run the example using the following com-
mand:

[exanpl es] $ ant - Dchap=j nx - Dex=0d run-exanpl e
Bui l dfile: build.xmn

[java] java.lang.lllegal AccessException: C ass org.jboss. book.jnx. ex0. Exl AEd

can not access a nmenber of class org.jboss. book.jnm.ex0. ExCtx with nodifiers ""
[java] at sun.reflect.Refl ection. ensureMenber Access(Refl ection.java: 65)
[java] at java.lang.reflect.Method. i nvoke(Met hod. java: 578)
[java] at org.jboss. book. j nx. ex0. Exl AEd. mai n(Ex| AEd. j ava: 48)

The truncated output shown here illustrates the |11 egal AccessException. The full output can be found in the
| ogs/j mx-ex0d. | og file. At line 48 of ExI AEd. j ava the ExCt x. pkgUseVal ue(@bj ect) method is invoked via re-
flection. The pkgUseVal ue method has package protected access and even though both the invoking class ExI AEd
and the excx x class whose method is being invoked reside in the or g. j boss. book. j mx. ex0 package, the invocation
is seen to be invalid due to the fact that the two classes are loaded by different class loaders. This can be seen by
looking at the debugging output from thej mx- exod. 1 og file.

[I NFO UCLO] ExI AEd Info
org. j boss. book. j mx. ex0. Exl AEd(7808b9) . C assLoader =sun. m sc. Launcher $AppCl assLoader @9c85c
..sun. m sc. Launcher $Appd assLoader @9c85c

[I NFO UCLO] ExCtx Info
org. j boss. book. j mx. ex0. ExCt x(64c34e) . A assLoader =j ava. net . URLC assLoader @9c85c
..java. net.URLO assLoader @d88a

The EXIAEd class is seen to have been loaded via the default application class loader instance
sun. mi sc. Launcher $Appd assLoader @9c85c, Wwhile the Exax class was loaded by the
j ava. net. URLCl assLoader @9c85c instance. Because the classes are loaded by different class loaders, access to
the package protected method is seen to be a security violation. So, not only is type a function of both the fully
qualified class name and class |oader, the package scopeis as well.

An example of how this can happen in practice is to include the same classes in two different SAR deployments. If
classes in the deployment have a package protected relationship, users of the SAR service may end up loading one
class from SAR class loading at one point, and then load another class from the second SAR at a later time. If the
two classes in question have a protected access relationship an 1 | | egal AccessError Will result. The solution is to
either include the classes in a separate jar that is referenced by the SARs, or to combine the SARs into a single de-
ployment. This can either be asingle SAR, or an EAR that includes both SARs.

JBoss Release 2 13

The JBoss IM X Microkernel

1.2.2.3. LinkageErrors - Making Sure You Are Who You Say You Are

Loading constraints validate type expectations in the context of class loader scopes to ensure that a class X is con-
sistently the same class when multiple class loaders are involved. This is important because Java allows for user
defined class loaders. Linkage errors are essentially an extension of the class cast exception that is enforced by the
VM when classes are loaded and used.

To understand what loading constraints are and how they ensure type-safety we will first introduce the nomen-
clature of the Liang and Bracha paper along with an example from this paper. There are two type of class loaders,
initiating and defining. An initiating class loader is one that a d assLoader . | oadd ass method has been invoked
on to initiate the loading of the named class. A defining class loader is the loader that calls one of the d assLoad-

er. def i ned ass methods to convert the class byte code into a d ass instance. The most complete expression of a
classis given by <c, Ld>"" , where cis the fully qualified class name, Ld is the defining class loader, and Li is the
initiating class loader. In a context where the initiating class loader is not important the type may be represented by
<C, Ld>, while when the defining class loader is not important, the type may be represented by ¢ . In the latter
case, there is till a defining class loader, it's just not important what the identity of the defining class loader is.
Also, atypeis completely defined by <c, Ld>. The only time the initiating loader is relevant is when aloading con-
straint is being validated. Now consider the classes shown in Example 1.5.

Example 1.5. Classes demonstrating the need for loading constraints

class <C, L1> {
void f() {
<Spoofed, L1>!x = <Del egated, L2>-2
x.secret_value = 1; // Should not be all owed

cl ass <Del egat ed, L2> {
static <Spoofed, L2>° g() {...}
}

cl ass <Spoofed, L1> {
public int secret_val ue;
}

cl ass <Spoofed, L2> {
private int secret_val ue;

}

The class cis defined by L1 and so L1 is used to initiate loading of the classes Spoof ed and Del egat ed referenced
inthe c. f () method. The Spoof ed class is defined by L1, but Del egat ed is defined by L2 because L1 delegates to
L2. Since Del egat ed is defined by L2, L2 will be used to initiate loading of Spoof ed in the context of the Del eg-
at ed. g() method. In this example both L1 and L2 define different versions of Spoof ed as indicated by the two ver-
sions shown at the end of Example 1.5. Since C. f () believes x is an instance of <Spoof ed, L1> it is able to access
the private field secret _val ue Of <Spoof ed, L2> returned by Del egat ed. g() dueto the 1.1 and earlier Java VM's
failure to take into account that a class type is determined by both the fully qualified name of the class and the de-
fining class loader.

JBoss Release 2 14

The JBoss IM X Microkernel

Java addresses this problem by generating loader constraints to validate type consistency when the types being used
are coming from different defining class loaders. For the Example 1.5 example, the VM generates a constraint
Spoof ed"'=Spoof ed"® when the first line of method . f () is verified to indicate that the type Spoof ed must be the
same regardless of whether the load of Spoof ed isinitiated by L1 or L2. It does not matter if L1 or L2, or even some
other class loader defines spoof ed. All that matters is that there is only one Spoof ed class defined regardless of
whether L1 or L2 was used to initiate the loading. If L1 or L2 have already defined separate versions of Spoof ed
when this check is made a Li nkageEr r or will be generated immediately. Otherwise, the constraint will be recorded
and when Del egat ed. g() is executed, any attempt to load a duplicate version of Spoof ed will result in a Li nk-
ageError.

Now let's take alook at how a Li nkageEr r or can occur with a concrete example. Example 1.6 gives the example
main class along with the custom class |oader used.

Example 1.6. A concrete example of a LinkageError

package org.j boss. book. j nx. ex0;
import java.io.File;
i mport java.net. URL;

i mport org.apache. | og4j. Logger;
i mport org.jboss. util.ChapterExRepository;
i mport org.jboss.util.Debug;

/**

* An exanpl e of a LinkageError due to classes being defined by nore
* than one class | oader in a non-standard class | oadi ng environnent.
*
* @ut hor Scott. Stark@ boss. org
* @ersion $Revision: 1.2 $
*/
public class ExLE
{
public static void nain(String[] args)
throws Exception
{

Chapt er ExReposi tory.init (EXLE. cl ass);

String chapDir = System getProperty("chapter.dir");

Logger ucl OLog = Logger. get Logger (" UCL0O");

File jarO = new File(chapDir+"/j0.jar");

ucl OLog. i nfo("jar0 path: "+jar0.toString());

URL[] cpO = {jar0.toURL()};

EXOURLC assLoader ucl 0 = new ExOURLCO assLoader (cpO);

Thr ead. current Thread() . set Cont ext Cl assLoader (ucl 0) ;

Class ctxClassl = ucl 0.l oadd ass("org.]jboss. book.jm.ex0. ExCt x");
Cl ass obj 20 ass1l = ucl 0.1 oadd ass("org.j boss. book. j mk. ex0. ExCbj 2") ;
StringBuffer buffer = new StringBuffer("ExCtx Info");

Debug. di spl ayd assl nfo(ct xCl assl, buffer, false);

ucl OLog. i nfo(buffer.toString());

buf f er. set Lengt h(0) ;

buf f er. append("ExObj 2 | nfo, UCL0O");

Debug. di spl ayd assl nf o(obj 2] ass1, buffer, false);

ucl OLog. i nfo(buffer.toString());

File jarl = new File(chapDir+"/j1l.jar");

Logger ucl 1Log = Logger. get Logger (" UCL1");

ucl 1Log.info("jarl path: "+jarl.toString());

URL[] cpl = {jarl.toURL()};

ExOURLC assLoader ucl 1l = new ExOURLO asslLoader (cpl);

Cl ass obj 2C ass2 = ucl 1.1 oadCl ass("org.j boss. book. j nx. ex0. ExCbj 2") ;

JBoss Release 2 15

The JBoss IM X Microkernel

buf f er. set Lengt h(0) ;

buf f er. append("ExObj 2 I nfo, UCL1");

Debug. di spl ayd assl nf o(obj 2C ass2, buffer, false);
ucl 1Log. i nfo(buffer.toString());

ucl 0. set Del egat e(ucl 1);
try {
ucl OLog. info("Try ExCtx.newl nstance()");
Cbj ect ctx0 = ctxC assl. newl nstance();
ucl OLog. i nfo("ExCt x. ctor succeeded, ctx0: "+ctx0);
} catch(Throwabl e e) {
ucl OLog. error ("ExCt x.ctor failed", e);
}

package org.j boss. book. j mx. ex0;

i mport java. net.URLC asslLoader;
i mport java. net. URL;

i mport org.apache. | og4j . Logger;

/**
* A customclass | oader that overrides the standard parent del egation
* nodel
*
* @ut hor Scott. Stark@ boss. org
* @ersion $Revision: 1.2 $
*/
public class ExOURLC assLoader extends URLC assLoader
{
private static Logger |og = Logger.getLogger (ExOURLC assLoader . cl ass);
private EXOURLC assLoader del egate;

publ i ¢ EXOURLC assLoader (URL[] urls)

{
super (urls);
}
voi d set Del egat e(ExXOURLO assLoader del egat e)
{
thi s. del egate = del egat e;
}

protected synchroni zed O ass | oadd ass(String nane, bool ean resol ve)
t hrows O assNot FoundExcepti on
{
Cass clazz = null;
if (delegate !'= null) ({
| og. debug(| nt eger.toHexStri ng(hashCode()) +
"; Asking delegate to | oadC ass:
clazz = del egate. | oadd ass(nane, resolve);
| og. debug(I nt eger.t oHexStri ng(hashCode()) +
"; Del egate returned: "+clazz);

+ nane);

} else {
| og. debug(| nt eger.toHexStri ng(hashCode()) +
"; Asking super to | oadC ass: "+nane);
clazz = super.|oadd ass(nane, resolve);
| og. debug(I nt eger.toHexStri ng(hashCode()) +
"; Super returned: "+clazz);

}

return clazz;

}

protected O ass findd ass(String nane)

JBoss Release 2

16

The JBoss IM X Microkernel

t hrows C assNot FoundExcepti on

{
Class clazz = null;
| og. debug(|l nt eger.toHexStri ng(hashCode()) +
": Asking super to findd ass: "+nane);
clazz = super.findd ass(nane);
| og. debug(| nt eger.toHexStri ng(hashCode()) +
"; Super returned: "+clazz);
return clazz;
}

The key component in this example is the URLA assLoader subclass ExOURLO assLoader . This class loader imple-
mentation overrides the default parent delegation model to allow the ucl 0 and ucl 1 instances to both load the Ex-
vj 2 class and then setup a delegation relationship from uci0 to ucl1. At lines 30 and 31. the ucl0
ExOURLO assLoader iS used to load the ExCtx and ExObj2 classes. At line 45 of ExLE.main the ucl1
ExOURLO assLoader isused to load the Exthj 2 class again. At this point both the ucl 0 and ucl 1 class loaders have
defined the Exbj 2 class. A delegation relationship from ucl 0 to ucl1 is then setup at line 51 via the
ucl 0. set Del egat e(ucl 1) method call. Finally, at line 54 of ExLE. mai n an instance of ExCt x is created using the
classloaded viaucl 0. The ExCt x classisthe same as presented in Example 1.2, and the constructor was:

public ExCtx()
t hrows | OException

{
val ue = new ExObj ();
Logger | og = Logger. get Logger (ExCt x. cl ass) ;
StringBuffer buffer = new StringBuffer("ctor.ExChj");
Debug. di spl ayd assl nf o(val ue. get C ass(), buffer, false);
| og.info(buffer.toString());
ExObj 2 obj 2 = val ue.ivar;
buf f er. set Lengt h(0);
buffer = new StringBuffer("ctor.ExCbj.ivar");
Debug. di spl ayd assl nfo(obj 2. getd ass(), buffer, false);
| og.info(buffer.toString());

}

Now, since the Extt x class was defined by the ucl 0 class loader, and at the time the ExCt x constructor is executed,
ucl 0 delegatesto ucl 1, line 24 of the Exct x constructor involves the following expression which has been rewritten
in terms of the complete type expressions:

<ExODbj2,ucl 0> obj2 = <ExObj,ucl 1>"“° value * ivar

This generates aloading constraint of Exapj 2°“'° = Exabj 2"t since the Exanj 2 type must be consistent across the
ucl 0 and ucl 1 class loader instances. Because we have loaded Exvj 2 using both ucl 0 and ucl 1 prior to setting up
the delegation relationship, the constraint will be violated and should generate a Li nkageEr ror When run. Run the
example using the following command:

[exanpl es] $ ant - Dchap=j nx - Dex=0e run-exanpl e
Bui I dfile: build.xm

[java] java.lang. Li nkageError: |oader constraints violated when |inking
or g/ j boss/ book/j m/ ex0/ ExCbj 2 cl ass

[java] at org.jboss. book. j nx. ex0. ExCt x. <i ni t >(EXCt x. j ava: 24)

[java] at sun.reflect. NativeConstructorAccessor|npl.new nstanceO(Native Mt hod)

[java] at sun.reflect. NativeConstructorAccessorl| npl.new nstance(Nati veConstructor Accessor
I npl . j ava: 39)

[java] at sun.refl ect. Del egati ngConstructor Accessor | npl . newl nst ance(Del egati ngConst ruct or

JBoss Release 2 17

The JBoss IM X Microkernel

Accessor | npl . j ava: 27)

[java] at java.lang.refl ect. Constructor.new nstance(Constructor.java: 494)
[java] at java.lang. d ass. new nst ance0(d ass. j ava: 350)

[javal at java.lang. Cl ass. new nst ance(C ass. j ava: 303)

[java] at org.jboss. book. j nx. ex0. EXLE. mai n(EXLE. j ava: 53)

As expected, a LinkageError is thrown while validating the loader constraints required by line 24 of the Exct x con-
structor.

1.2.2.3.1. Debugging Class Loading Issues

Debugging class loading issues comes down to finding out where a class was loaded from. A useful tool for thisis
the code snippet shown in Example 1.7 taken from the org.jboss.util.Debug class of the book examples.

Example 1.7. Obtaining debugging information for a Class

Cass clazz =...;
StringBuffer results = new StringBuffer();

Cl assLoader cl = clazz. getd assLoader();
resul ts. append("\n" + clazz.getNanme() + "(" +

I nteger.toHexString(clazz. hashCode()) + ").d assLoader=" + cl);
Cl assLoader parent = cl;

while (parent = null) {
resul ts. append("\n.."+parent);
URL[] urls = getd assLoader URLs(parent);

int length = urls !'=null ? urls.length : 0;
for(int u=0; u<length; u ++) {
resul ts. append("\n...."+urls[u]);
}
i f (showParent Cl assLoaders == fal se) {
br eak;
}
if (parent !'= null) {
parent = parent.getParent();
}

}

CodeSour ce cl azzCS = cl azz. get Prot ecti onDonai n() . get CodeSour ce() ;
if (clazzCS != null) {
resul ts. append("\ n++++CodeSour ce: "+cl azzCS);
} else {
resul ts. append("\ n++++Nul | CodeSource");
}

The key items are shown in bold. The first is that every Class object knows its defining ¢ assLoader and thisis
available viathe get d assLoader () method. The defines the scope in which the d ass type is known as we have
just seen in the previous sections on class cast exceptions, illegal access exceptions and linkage errors. From the
C assLoader Yyou can view the hierarchy of class loaders that make up the parent delegation chain. If the class
loader isa URLO assLoader you can also see the URLs used for class and resource loading.

The defining d assLoader of ad ass cannot tell you from what location that d ass was loaded. To determine this
you must obtain the j ava. security. Prot ecti onDomai n and then the j ava. securi ty. CodeSour ce. It is the Code-

JBoss Release 2 18

The JBoss IM X Microkernel

Sour ce that has the URL p location from which the class originated. Note that not every d ass has a CoPdeSour ce.
If aclassis loaded by the bootstrap class loader then its CodeSour ce will be null. This will be the case for all
classesinthej ava. * andj avax. * packages, for example.

Beyond that it may be useful to view the details of classes being loaded into the JBoss server. Y ou can enable verb-
ose logging of the JBoss class loading layer using aLogdj configuration fragment like that shown in Example 1.8.

Example 1.8. An examplelogdj.xml configuration fragment for enabling verbose class loading logging

<appender nane="UCL" cl ass="org. apache. | og4j . Fi | eAppender">
<param name="Fi | e" val ue="${j boss. server. honme.dir}/log/ucl.log"/>
<par am nane="Append" val ue="fal se"/>
<l ayout cl ass="org. apache. | 0g4j . PatternLayout">
<par am nane="Conver si onPattern" val ue="[%, %€{1}, %] % t&"/>
</l ayout >
</ appender >

<cat egory nane="org. | boss. nx. | oadi ng" additivity="fal se">
<priority val ue="TRACE" cl ass="org.jboss.|oggi ng. XLevel "/ >
<appender-ref ref="UCL"/>

</ cat egory>

This places the output from the classes in the or g. j boss. nx. | oadi ng package into the ucl . 1 og file of the server
configurations log directory. Although it may not be meaningful if you have not looked at the class loading code, it
isvital information needed for submitting bug reports or questions regarding class loading problems.

1.2.2.4. Inside the JBoss Class Loading Architecture

Now that we have the role of class loaders in the Java type system defined, let's take a look at the JBoss class |oad-
ing architecture. Figure 1.3.

URLClassLoade vt UnifiedLoaderRepository3

UnifiedClassLoade

HeirarchicalLoaderRepos

Figure 1.3. The cor e JBoss class loading components

The central component isthe or g. j boss. mx. | oadi ng. Uni fi edd assLoader 3 (UCL) class loader. Thisis an exten-
sion of the standard j ava. net. URLA assLoader that overrides the standard parent delegation model to use a shared

JBoss Release 2 19

The JBoss IM X Microkernel

repository of classes and resources. This shared repository is the
org. j boss. nx. | oadi ng. Uni fi edLoader Reposi t ory3. Every UCL is associated with a single uni fi edLoader Re-
pository3, and a uni fi edLoader Reposi t ory3 typically has many UCLs. A UCL may have multiple URLS associ-
ated with it for class and resource loading. Deployers use the top-level deployment's UCL as a shared class loader
and all deployment archives are assigned to this class loader. We will talk about the JBoss deployers and their in-
teraction with the class loading system in more detail latter in Section 1.4.2.

When aUCL isasked to load aclass, it first looks to the repository cache it is associated with to seeif the class has
already been loaded. Only if the class does not exist in the repository will it be loaded into the repository by the
UCL. By default, there is a single uni fi edLoader Reposi t or y3 shared across all UCL instances. This means the
UCLsform asingle flat class loader namespace. The complete sequence of steps that occur when a unfi edd ass-
Loader 3. | oadd ass(String, bool ean) methodiscaledis:

1. Check theuni fi edLoader Reposi t or y3 classes cache associated with the uni fi edd assLoader 3. If the classis
found in the cacheit is returned.

2. Else asktheunfi edd assLoader 3 if it can load the class. Thisis essentialy acall to the superclass URLO ass-
Loader. | oadC ass(String, bool ean) method to seeif the class is among the URL s associated with the class
loader, or visible to the parent class loader. If the class is found it is placed into the repository classes cache
and returned.

3. Else, the repository is queried for all UCLs that are capable of providing the class based on the repository
package name to UCL map. When a UCL is added to arepository an association between the package names
available in the URL s associated with the UCL is made, and a mapping from package names to the UCL s with
classes in the package is updated. This allows for a quick determination of which UCL s are capable of loading
the class. The UCLs are then queried for the requested class in the order in which the UCLs were added to the
repository. If aUCL isfound that can load the classit isreturned, else aj ava. | ang. d assNot FoundExcept i on
isthrown.

1.2.2.4.1. Viewing Classes in the Loader Repository

Another useful source of information on classes is the UnifiedL oaderRepository itself. Thisis an MBean that con-
tains operations to display class and package information. The default repository is located under a standard JIM X
name of JM npl ement at i on: nane=Def aul t, ser vi ce=Loader Reposi t ory, and its MBean can be accessed via the
JMX console by following its link from the front page. The IMX console view of this MBean is shown in Fig-
ure 1.4.

JBoss Release 2 20

The JBoss IM X Microkernel

f SESNS) MBean Inspector
http://localhost:8080 le/HtmlAdaptor? »2(Qr coogle)
|l- . - . @ tip: //localhost: Jimx-console/HtmlAdaptorfaction=inspe & Qr Goog
i wipece [E—
61920 M
ﬁ jggﬁg JMX MBean View
-0 0
MBean Name: Domain Name: JMImplementation
service: LoaderRepository L.,

name: Default
MBean Java Class: org.jboss.mx.loading.UnifiedLoaderRepository3

Back to Agent View Refresh MBean View

MBean description:

Management Bean.

List of MBean attributes:

| Name [Type ___ JAccess|

CacheSize int R 2350

URLs [Ljava.net.URL; R [Ljava.net.URL;@1b031

Instance org.jboss.mx.loading.LoaderRepository|R org.jboss.mx.loading.Unifi

ClassLoadersSize|int R 35

Translator org.jboss.util.loading.Translator RW f
— 4w

Figure 1.4. The default class L oader Repository M Bean view in the JM X console

Two useful operations you will find here are get Packaged assLoader s(String) and di spl ayd assl nfo(String).
The get Packaged assLoader s operation returns a set of class loaders that have been indexed to contain classes or
resources for the given package name. The package hame must have a trailing period. If you type in the package
nameor g. j boss. ej b. , the following information is displayed:

[org.jboss. nx. | oadi ng. Uni fi edCl assLoader 3@26ae7{
url =file:/private/tnp/jboss-4.0.1/server/default/tnp/depl oy/tnpll895j boss-service.xm,
addedOr der =2}]

This is the string representation of the set. It shows one uni fi edd assLoader 3 instance with a primary URL point-

JBoss Release 2 21

The JBoss IM X Microkernel

ing to the j boss- servi ce. xm descriptor. This is the second class loader added to the repository (shown by adde-
dorder =2). It is the class loader that owns all of the JARs in the 1i b directory of the server configuration (e.g.,
server/defaul t/1ib).

The view the information for a given class, use the di spl ayd assl nf o operation, passing in the fully qualified
name of the class to view. For example, if we use or g. j boss. j mx. adapt or. ht m . Ht ml Adapt or Servl et which is
from the package we just looked at, the following description is displayed:

6 08 Operation Results

i - . @ - A http: / /localhost: 8080 /jmx-console/HtmlAdaptor @ B8 Q- Google
|
I Operallml Results E - =

Back to Agent View Back to MBean View Reinvoke MBean Operation

org.jboss. jmx.adaptor.html.HtmlAdaptorservlet Information
Repository cache version:
org.jboss. jmx.adaptor.html.HtmlAdaptorServlet (£965eb) .ClassLoader=org. jboss.mx. loading.UnifiedCl
..0rg,jboss.mx.loading.UnifiedClassloader3ifc500az{ url=file:/private/tmp/jboss-4.0.1/server/defa
..file:/private/tmp/jboss-4.0.1/server/default/deploy/jm¢-console.war/
..file:/private/tmp/jboss-4.0.1/server/default/deploy/jmi-console.war/WEB-INF/classes/
..0rg.jboss.system. server.NoAnnotationURLClassLoader@d0asd9
..sun.misc.LaunchersAppClassLoader#s3ibaid
..file:/private/tmp/jboss-4.0.1/bin/run. jar
..file:/system/Library/Frameworks/JavavM. framework/Versions/1.4.2/Home/lib/tools. jar
..sun.misc.Launcher$ExtClassloader@glifac
..file:/system/Library/Java/Extensions/Coreaudio. jar
...file:/sSystem/Library/Java/Extensions/MRJToolkit. jar
..file:/System/Library/Java/Extensions/QTJava.zip
..file:/System/Library/Java/Extensions/QTJSupport.jar
..file:/System/Library/Frameworks/JavavM. framework/Versions/1.4.2/Home/lib/ext/apple provider.
..file:/System/Library/Frameworks/JavavM. framework/Versions/1.4.2/Home/1lib/ext/ldapsec. jar
..file:/system/Library/Frameworks/JavavM. framework/versions/1.4.2/Home/lib/ext/localedata. jar
..file:/system/Library/Frameworks/JavavM. framework/Versions/1.4.2/Home/lib/ext/sunjce provider
++++Codesource' (file:/private/tmp/jboss-4.0.1/server/default/deploy/ jmx-console.war/WEB-INF/cla
Implemented Interfaces:

Instance0 found in UCL: org.jboss.mx.loading.UnifiedClassLoader3@c500az{ url=file:/private/t1

Instancel via UCL: org.jboss.mx.loading.UnifiedClassLoader3#c500a2{ url=file:/private/tmp/jbi%
'
L

S

The information is a dump of the information for the Class instance in the loader repository if one has been loaded,
followed by the class |oaders that are seen to have the class file available. If a class is seen to have more than one
class loader associated with it, then there is the potential for class loading related errors.

1.2.2.4.2. Scoping Classes

If you need to deploy multiple versions of an application you need to use deployment based scoping. With deploy-
ment based scoping, each deployment creates its own class loader repository in the form of a Hei rar chi cal Load-
er Reposi t or y3 that looks first to the uni fi edC assLoader 3 instances of the deployment unitsincluded in the EAR

JBoss Release 2 22

The JBoss IM X Microkernel

before delegating to the default uni fi edLoader Reposi tory3. To enable an EAR specific loader repository, you
need to create a META- | NF/ j boss- app. xm descriptor as shown in Example 1.9.

Example 1.9. An example jboss-app.xml descriptor for enabled scoped classloading at the EAR level.

<j boss- app>
<l oader - reposi t ory>sone. dot . com | oader =webt est . ear </ | oader - r eposi t ory>
</j boss- app>

The value of the | oader - reposi tory element is the IMX object name to assign to the repository created for the
EAR. This must be unique and valid IMX ObjectName, but the actual name is not important.

1.2.2.4.3. The Complete Class Loading Model

The previous discussion of the core class loading components introduced the custom uni fi edd assLoader 3 and
Uni fi edLoader Reposi t ory3 classes that form a shared class loading space. The complete class loading picture
must also include the parent class loader used by uni fi edd assLoader 3s as well as class loaders introduced for
scoping and other specialty class loading purposes. Figure 1.5 shows an outline of the class hierarchy that would
exist for an EAR deployment containing EJBs and WARs.

JBoss Release 2 23

The JBoss IM X Microkernel

assLoader(bootpath, systemCL)

srClassleadernlccalURL}

4 URLGfassLoader((}, TCL)

SarvietContainer Loader{anc) 3den(}, anc)

Figure 1.5. A complete classloader view

The following points apply to thisfigure:

e System ClassL oaders. The System ClassLoaders node refers to either the thread context class loader (TCL) of
the VM main thread or of the thread of the application that is loading the JBoss server if it is embedded.

e ServerlLoader: The ServerL oader node refers to the a URLC assLoader that delegates to the System ClassL oad-
ers and contains the following boot URLS:

e All URLsreferenced viathej boss. boot . i brary. | i st system property. These are path specifications rel-
ativetothel i braryURL defined by thej boss. Ii b. url property. If thereisnoj boss. i b.url property spe-

JBoss Release 2 24

The JBoss IM X Microkernel

cified, it defaultsto j boss. horme. url + /1ib/. |If thereisnoj boss. boot. I i brary property specified, it de-
faultstoj axp.jar, | og4j -boot.jar,jboss-commmon. jar, andj boss-system]j ar.

e The JAXP JAR which is either crinmson. jar or xerces. jar depending on the -j option to the mai n entry
point. Thedefault iscri nson. j ar.

e TheJBoss IMX jar and GNU regex jar, j boss-j nx. j ar and gnu-regexp. j ar.
e Oswego concurrency classes JAR, concurrent. j ar

* Any JARs specified aslibraries via- L command line options

» Any other JARs or directories specified via - ¢ command line options

e Server: The Server node represent a collection of UCLs created by the or g. j boss. syst em server. Server in-
terface implementation. The default implementation creates UCLs for the pat chDi r entries as well as the server
conf directory. The last UCL created is set as the JBoss main thread context class loader. This will be com-
bined into asingle UCL now that multiple URLs per UCL are supported.

« All UnifiedClassL oader 3s: The All UnifiedClassLoader3 node represents the UCL s created by deployers. This
covers EARs, jars, WARs, SARs and directories seen by the deployment scanner as well as JARs referenced by
their manifests and any nested deployment units they may contain. This is a flat namespace and there should
not be multiple instances of aclassin different deployment JARSs. If there are, only the first loaded will be used
and the results may not be as expected. There is a mechanism for scoping visibility based on EAR deployment
units that we discussed in Section 1.2.2.4.2. Use this mechanism if you need to deploy multiple versions of a
classin agiven JBoss server.

e EJB DynClassL oader: The EJB Dynd assLoader hodeis asubclass of URLO assLoader that is used to provide
RMI dynamic class loading via the simple HTTP WebService. It specifies an empty URL[] and delegates to the
TCL as its parent class loader. If the WebService is configured to allow system level classes to be loaded, all
classesin the uni fi edLoader Reposi t or y3 aswell as the system classpath are available viaHTTP.

e EJB ENCLoader: The EJB ENCLoader node isaURLd assLoader that exists only to provide a unique context
for an EJB deployment's j ava: conp JNDI context. It specifies an empty URL[] and delegates to the EJB Dyn-
C assLoader asits parent class loader.

« Web ENCL oader: The Web ENCLoader hode is a URL ClassL oader that exists only to provide a unigque context
for a web deployment's j ava: conp JNDI context. It specifies an empty URL[] and delegates to the TCL as its
parent class |oader.

» WAR Loader: The WAR Loader is a servlet container specific classloader that delegates to the Web ENC-
Loader asits parent class loader. The default behavior is to load from its parent class loader and then the WAR
VEB- | NF cl asses and | i b directories. If the serviet 2.3 class loading model is enabled it will first load from the
its VEB- | NF directories and then the parent class loader.

In its current form there are some advantages and disadvantages to the JBoss class loading architecture. Advantages
include:

» Classes do not need to be replicated across deployment unitsin order to have access to them.

JBoss Release 2 25

The JBoss IM X Microkernel

« Many future possibilities including novel partitioning of the repositories into domains, dependency and conflict
detection, etc.

Disadvantages include:

» Existing deployments may need to be repackaged to avoid duplicate classes. Duplication of classes in a loader
repository can lead to class cast exceptions and linkage errors depending on how the classes are loaded.

» Deployments that depend on different versions of a given class need to be isolated in separate EARs and a
unique Hei rar chi cal Loader Reposi t or y3 defined using aj boss- app. xm descriptor.

1.2.3. JBoss XMBeans

XMBeans are the JBoss IMX implementation version of the IMX model MBean. XMBeans have the richness of
the dynamic M Bean metadata without the tedious programming required by a direct implementation of the Dynam

i cMBean interface. The JBoss model MBean implementation allows one to specify the management interface of a
component through a XML descriptor, hence the X in XMBean. In addition to providing a simple mechanism for
describing the metadata required for a dynamic MBean, XMBeans also alow for the specification of attribute per-
sistence, caching behavior, and even advanced customizations like the MBean implementation interceptors. The
high level elements of thej boss_xmbean_1_2. dt d for the XMBean descriptor is given in Figure 1.6.

-

=,
— 7
s

+ des:ripu‘nn%

@ + descriptors

+ [Iass%

* mbeanz | (& * cOnsructor

= * atu'ihutEE

(| * operationz

=) * notification g

o
L

Figure 1.6. The JBoss 1.0 XM Bean DTD Overview (jboss xmbean_1 2.dtd)

The nbean element is the root element of the document containing the required elements for describing the man-
agement interface of one MBean (constructors, attributes, operations and notifications). It also includes an optional
description element, which can be used to describe the purpose of the MBean, as well as an optional descriptors
element which allows for persistence policy specification, attribute caching, etc.

JBoss Release 2 26

The JBoss IM X Microkernel

1.2.3.1. Descriptors

The descriptors element contains all the descriptors for a containing element, as subelements. The descriptors sug-
gested in the IMX specification as well as those used by JBoss have predefined elements and attributes, whereas
custom descriptors have a generic descriptor element with name and val ue attributes as show in Figure 1.7.

* interceprors

=
—f

(7| * persistence

(7 * currencyTimeLimit

(7 * display-name

+ descriptorsg | @ + defaulty

| * valueE

(%) * persistem:e-managerE

(+) * descriptor

® * injectiong

Figure1.7. Thedescriptorseement content model

The key descriptors child elements include:

« interceptors: Thei nt er cept or s element specifies a customized stack of interceptors that will be used in place
of the default stack. Currently thisis only used when specified at the MBean level, but it could define a custom
attribute or operation level interceptor stack in the future. The content of the interceptors element specifies a
custom interceptor stack. If no interceptors element is specified the standard Mdel MBean interceptors will be
used. The standard interceptors are:

* org.jboss.mx.interceptor.Persistencel nterceptor
e org.jboss.mx.interceptor.MBeanAttributel nterceptor
» org.jboss.mx.interceptor.ObjectReferencel nterceptor

When specifying a custom interceptor stack you would typically include the standard interceptors along with
your own unless you are replacing the corresponding standard interceptor.

JBoss Release 2 27

The JBoss IM X Microkernel

Each interceptor element content value specifies the fully qualified class name of the interceptor implementa-
tion. The class must implement the or g. j boss. mx. i nterceptor. I ntercept or interface. The interceptor class
must also have either a no-arg constructor, or a constructor that accepts aj avax. managenent . MBeanl nf o.

The interceptor elements may have any number of attributes that correspond to JavaBean style properties on the
interceptor class implementation. For each i ntercept or element attribute specified, the interceptor class is
queried for a matching setter method. The attribute value is converted to the true type of the interceptor class
property using the j ava. beans. Propert yEdi t or associated with the type. It is an error to specify an attribute
for which there is no setter or Propert yEdi t or .

« persistence: The persi st ence element alows the specification of the persi st Pol i cy, persi st Peri od, per-
si st Locati on, and persi st Nane persistence attributes suggested by the IMX specification. The persistence
element attributes are:

e persistPolicy: The persi st Pol i cy attribute defines when attributes should be persisted and its value must
be one of

* Never: attribute values are transient values that are never persisted
* OnUpdate: attribute values are persisted whenever they are updated
* OnTimer: attribute values are persisted based on the time given by the per si st Peri od.

* NoMoreOftenThan: attribute values are persisted when updated but no more often than the per si st -
Peri od.

e persistPeriod: The persi st Period attribute gives the update frequency in milliseconds if the perisit-
Pol i cy attribute is NoMor eCf t enThan OF OnTi mer .

e persistLocation: The persi st Locat i on attribute specifies the location of the persistence store. Its form de-
pends on the IMX persistence implementation. Currently this should refer to a directory into which the at-
tributes will be serialized if using the default JBoss persistence manager.

» persistName: The per si st Narre attribute can be used in conjunction with the per si st Locat i on attribute to
further qualify the persistent store location. For a directory per si st Locat i on the per si st Name specifies the
file to which the attributes are stored within the directory.

e currencyTimeLimit: The currencyTi neLi ni t element specifies the time in seconds that a cached value of an
attribute remains valid. Its value attribute gives the time in seconds. A vaue of 0 indicates that an attribute
value should always be retrieved from the MBean and never cached. A value of -1 indicates that a cache value
isalwaysvalid.

» display-name: The di spl ay- nane element specifies the human friendly name of an item.

e default: The def aul t element specifies a default value to use when afield has not been set. Note that this value
is not written to the MBean on startup as is the case with the j boss-servi ce. xm attribute element content
value. Rather, the default value is used only if there is no attribute accessor defined, and there is no value ele-
ment defined.

JBoss Release 2 28

The JBoss IM X Microkernel

e value: The val ue element specifies a management attribute's current value. Unlike the def aul t element, the
val ue element iswritten through to the MBean on startup provided there is a setter method available.

e persistence-manager: The persi st ence- manager element gives the name of a class to use as the persistence
manager. The value atribute specifies the class name that supplies the
org. j boss. nx. persi st ence. Per si st enceManager interface implementation. The only implementation cur-
rently supplied by JBoss is the or g. j boss. nx. per si st ence. Qbj ect St r eanPer si st enceManager Which serial-
izes the Mbdel MBean! nf o content to afile using Java serialization.

e descriptor: The descri ptor element specifies an arbitrary descriptor not known to JBoss. Its nane attribute
specifies the type of the descriptor and its val ue attribute specifies the descriptor value. The descri ptor ele-
ment allows for the attachment of arbitrary management metadata.

* injection: Thei nj ecti on element describes an injection point for receiving information from the microkernel.
Each injection point specifies the type and the set method to use to inject the information into the resource. The
i nj ecti on element supports type attributes:

* id: Thei d attribute specifies the injection point type. The current injection point types are:

* MBeanServer Type: An MBeanServer Type injection point receives areference to the MBeanServer that
the XMBean is registered with.

 MBeaninfoType: An MBeanInfoType injection point receives a reference to the XMBean Model M-
Beanlnfo metadata

* ObjectNameType: The ObjectName injection point receives the ObjectName that the XMBean is re-
gistered under.

* setMethod: The setMethod attribute gives the name of the method used to set the injection value on the re-
source. The set method should accept values of the type corresponding to the injection point type.

Note that any of the constructor, attribute, operation or notification elements may have a descri pt ors element to
specify the specification defined descriptors as well as arbitrary extension descriptor settings.

1.2.3.2. The Management Class

The cl ass element specifies the fully qualified name of the managed object whose management interface is de-
scribed by the XMBean descriptor.

1.2.3.3. The Constructors

The construct or element(s) specifies the constructors available for creating an instance of the managed object.
The constructor element and its content model are shown in Figure 1.8.

JBoss Release 2 29

The JBoss IM X Microkernel

[

+ name%
+ constru Clor

® + parameter

3 * des:riplinn%

__(7)|* descriptorsg

Figure 1.8. The XM Bean constructor element and its content model

The key child elements are:

e description: A description of the constructor.
* name: The name of the constructor, which must be the same as the implementation class.

e parameter: The parameter element describes a constructor parameter. The parameter element has the following
attributes:

» description: An optional description of the parameter.
e name: Therequired variable name of the parameter.
* type: Therequired fully qualified class name of the parameter type.

» descriptors: Any descriptors to associate with the constructor metadata.

1.2.3.4. The Attributes

The attri but e element(s) specifies the management attributes exposed by the MBean. The attribute element and
its content model are shown in Figure 1.9.

JBoss Release 2 30

The JBoss IM X Microkernel

]

B!
!

IR i[}' access = (3 o geﬂalemndg | seuulemndg

lenumeration xstrmg *® xs.trlng

A, -

A desmpﬁnn%

+ name%
+ am'ihuteE=

*tﬂ]g

(7) * descriptors

Figure 1.9. The XM Bean attribute element and its content model

Theat t ri but e element supported attributes include:

e access: Theoptiona access attribute defines the read/write access modes of an attribute. It must be one of:

e read-only: The attribute may only be read.
e write-only: The attribute may only be written.
» read-write: The attribute is both readable and writable. Thisis the implied default.

* getMethod: The get Met hod attribute defines the name of the method which reads the named attribute. This
must be specified if the managed attribute should be obtained from the MBean instance.

¢ setMethod: The set Met hod attribute defines the name of the method which writes the named attribute. This
must be specified if the managed attribute should be obtained from the MBean instance.

The key child elements of the attribute element include:

» description: A description of the attribute.
« name: The name of the attribute as would be used in the MBeanSer ver . get Attri but e() operation.
e type Thefully qualified class name of the attribute type.

e descriptors: Any additional descriptorsthat affect the attribute persistence, caching, default value, etc.

1.2.3.5. The Operations

The management operations exposed by the XMBean are specified via one or more operation elements. The opera-
tion element and its content model are shown in Figure 1.10.

JBoss Release 2 31

The JBoss IM X Microkernel

v ® impact
> mpact g
lenumeration

&, -

5| desmpﬁnn%

+ operationz_ @ + parameter g

7 * remm-type%

| * descriptorsg

Figure 1.10. The XM Bean operation element and its content model

The impact attribute defines the impact of executing the operation and must be one of:

* ACTION: The operation changes the state of the MBean component (write operation)
¢ INFO: The operation should not alter the state of the MBean component (read operation).
e ACTION_INFO: The operation behaves like a read/write operation.

The child elements are:

» description: This element specifies a human readable description of the operation.
¢ name: Thiselement contains the operation's name
e parameter: This element describes the operation's signature.

e return-type: This element contains a fully qualified class name of the return type from this operation. If not
specified, it defaults to void.

e descriptors: Any descriptorsto associate with the operation metadata.

1.2.3.6. Notifications

The noti ficati on element(s) describes the management notifications that may be emitted by the XMBean. The
notification element and its content model is shown in Figure 1.11.

JBoss Release 2 32

The JBoss IM X Microkernel

= des:ripﬁnn%

+ name%
+ nnﬁﬁtaﬁnnE

+ nnﬁﬁcaﬁnn-type%

)

fEon

+ descriptors

'
ol

Figure 1.11. The XM Bean notification element and content model

The child elements are:

» description: This element gives a human readable description of the notification.
* name: Thiselement contains the fully qualified name of the notification class.
« notification-type: This element contains the dot-separated notification type string.

» descriptors: Any descriptors to associate with the notification metadata.

1.3. Connecting to the JMX Server

JBoss includes adaptors that allow access to the IMX MBeanServer from outside of the JBoss server VM. The cur-
rent adaptorsinclude HTML, an RMI interface, and an EJB.

1.3.1. Inspecting the Server - the JIMX Console Web Application

JBoss comes with its own implementation of a IMX HTML adaptor that allows one to view the server's MBeans
using a standard web browser. The default URL for the console web application is ht-
tp://localhost:8080/jmx-console/. If you browse this location you will see something similar to that presented in
Figure 1.12.

JBoss Release 2 33

http://localhost:8080/jmx-console/
http://localhost:8080/jmx-console/

The JBoss IM X Microkernel

= J@B JBoss JMX Management Console ==

-ll [I llﬁl] [{'.’-] [=k] € http:/ /localhost: 8080/ jmx-console/ "’rb..v Coogle

ObjectName Filter (e.g. "jboss:*", "*:service=invoker,*") :
f’AppI'l,rFiiterTI

Catalina
* typesServer
JMImplementation

+« name=Default.service=LoaderRepository
» type=MBeanRegistry
« type=MBeanServerDelegate

jboss

database=localDBE.service=Hypersonic
name=PropertyEditorManager.type=Service
name=systemProperties.type=Service
readonly=true,servicesinvoker.target=Naming.type=http
service=AttributePersistenceService
service=ClientUserTransaction

service=JNDIView
service=sKeyGeneratorFactory.type=HiLo
service=sKeyGeneratorFactory.type=UUID

service=Mail

L O DN B B B

4l

in
|

Figure 1.12. The JBoss JIM X console web application agent view

The top view is caled the agent view and it provides a listing of all MBeans registered with the MBeanSer ver sor-
ted by the domain portion of the MBean's tbj ect Name. Under each domain are the MBeans under that domain.
When you select one of the MBeans you will be taken to the MBean view. This allows one to view and edit an
MBean's attributes as well as invoke operations. As an example, Figure 1.13 shows the MBean view for the
j boss. system t ype=Server MBean.

JBoss Release 2 34

The JBoss IM X Microkernel

JBoss JMX Management Console ——

ﬁ] ’ &] [7=] Bhttp:f,"Iﬂcalhﬂst:BDE{ijmx—mnmle,f "‘-’rb.* Google

ObjectName Filter (e.g. "jboss:*", "*:service=invoker,*") :
(Appl'l,r'FiiterTI

Catalina
* typesServer
JMImplementation

+« name=Default.service=LoaderRepository
» type=MBeanRegistry
« type=MBeanServerDelegate

jboss

database=localDBE.service=Hypersonic
name=PropertyEditorManager.type=Service
name=systemProperties.type=Service
readonly=true,servicesinvoker.target=Naming.type=http
service=AttributePersistenceService
service=ClientUserTransaction

service=JNDIView
service=sKeyGeneratorFactory.type=HiLo
service=sKeyGeneratorFactory.type=UUID

service=Mail v

-i }1:r-"

et

L O DN B B B

m

Figure 1.13. The MBean view for the " jboss.system:type=Server" MBean

The source code for the JIMX console web application is located in the varia module under the src/
mai n/ or g/ j boss/ j mx directory. Its web pages are located under vari a/ src/ resour ces/ j mx. The application is a
simple MV C servlet with JSP views that utilize the MBeanServer.

1.3.1.1. Securing the JMX Console

JBoss Release 2 35

The JBoss IM X Microkernel

Since the IMX console web application is just a standard servlet, it may be secured using standard J2EE role based
security. The j nx- consol e. war that is deployed as an unpacked WAR that includes template settings for quickly
enabling simple username and password based access restrictions. If you look at thej nx- consol e. war intheserv-
er/ def aul t/ depl oy directory you will find the web. xmi and j boss-web. xm descriptors in the VEB- | NF directory.
The j nx- consol e-rol es. properties and j nx- consol e-users. properties files are located in the server/ de-
faul t/ conf/ props directory.

By uncommenting the security sections of the web. xni and j boss- web. xni descriptors as shown in Example 1.10,
you enable HTTP basic authentication that restricts access to the IMX Console application to the user adni n with
password adnin. The username and password are determined by the admin=admin line in the jnx-con-
sol e-users. properties file.

Example 1.10. Thejmx-console.war web.xml descriptorswith the security elements uncommented.

<?xm version="1.0"?>
<! DOCTYPE web- app PUBLI C
"-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN'
"http://java. sun. com dt d/ web-app_2_3.dtd">
<web- app>
<l-- ... -->

<l-- A security constraint that restricts access to the HTM. JMX consol e
to users with the role JBossAdnin. Edit the roles to what you want and
unconment the WEB-| NF/j boss-web. xm /security-donmai n el enent to enable
secured access to the HTML JMX consol e.

-->

<security-constraint>

<web-resource-col | ecti on>
<web- r esour ce- name>Ht ml Adapt or </ web- r esour ce- nane>
<descri ption> An exanple security config that only allows users with
the rol e JBossAdnin to access the HTML JMX consol e web
application </description>
<url-pattern>/*</url-pattern>
<ht t p- met hod>GET</ ht t p- net hod>
<ht t p- met hod>POST</ ht t p- met hod>
</ web-r esour ce-col | ecti on>
<aut h- constrai nt >
<r ol e- nane>JBossAdm n</r ol e- nanme>
</ aut h- constrai nt >
</ security-constraint>
<l ogi n-confi g>
<aut h- met hod>BASI C</ aut h- net hod>
<r eal m name>JBoss JMX Consol e</real m nane>
</ | ogi n- confi g>
<security-rol e>
<r ol e- name>JBossAdni n</r ol e- nanme>
</security-rol e>
</ web- app>

Example 1.11. Thejmx-console.war jboss-web.xml descriptorswith the security elements uncommented.

<?xm version="1.0" encodi ng="UTF-8""?>
<! DOCTYPE j boss-web
PUBLI C "-//JBoss//DTD Web Application 2.3//EN'
"http://ww. j boss. org/j2ee/dtd/jboss-web_3 0.dtd">
<j boss- web>

JBoss Release 2 36

The JBoss IM X Microkernel

<l--
Unconmment the security-domain to enable security. You will
need to edit the htnl adaptor |ogin configuration to setup the
| ogi n nodul es used to authentication users.
-->
<security-domai n>j ava: /j aas/j nx- consol e</ security-domai n>
</ j boss- web>

Make these changes and then when you try to access the IMX Console URL. You will see adialog similar to that
shown in Figure 1.14.

Figure 1.14. The JIMX Console basic HTTP login dialog.

Y ou probably to use the properties files for securing access to the IM X console application. To see how to properly
configure the security settings of web applications see Chapter 7.

1.3.2. Connecting to JMX Using RMI

JBoss supplies an RMI interfface for connecting to the JMX MBeanServer. This interface is
org. j boss.j nx. adapt or. rni . RM Adapt or . The RM Adapt or interface is bound into JNDI in the default location of
j mx/ i nvoker/ RM Adapt or aswell asj mx/ rmi / RM Adapt or for backwards compatibility with older clients.

Example 1.12 shows a client that makes use of the RM Adapt or interface to query the MBeanl nf o for the JNDI Vi ew
MBean. It also invokesthe MBean's| i st (bool ean) method and displays the result.

Example 1.12. A JMX client that usesthe RMIAdaptor

JBoss Release 2 37

The JBoss IM X Microkernel

public class JMXBrowser

{
/**
* @aram args the command |ine argunents
=
public static void nmain(String[] args) throws Exception
{
new | nitial Context();
(RM Adaptor) ic.lookup("jm/invoker/RM Adaptor");

Initial Context ic =
RM Adapt or server =
/1 Get the MBeanlnfo for the JNDI Vi ew MBean

Cbj ect Nane name = new Cbj ect Name("j boss: servi ce=JNDI Vi ew') ;
MBeanl nfo info = server.get MBeanl nf o(hane);

Systemout. println("JND View Cass: " + info.getC assNane());

MBeanQper ationl nfo[] oplnfo = info.getOperations();

Systemout. println("JNDI Vi ew Operations: ");

for(int o =0; o <oplnfo.length; o ++) {
MBeanQper ati onlnfo op = oplnfo[o0];

String returnType = op. get ReturnType();
String opNane = op. get Nane();
Systemout.print(" + " + returnType + " " + opNane + "(");

MBeanPar anet er I nfo[] parans = op. get Signature();
for(int p =0; p < parans.length; p++) {
MBeanPar anet er I nf o param nfo = parans[p];

String pnane = param nfo. get Nane();
String type = paranl nfo.getType();

i f (pnane. equal s(type)) {

System out . print(type);
} else {

Systemout.print(type + " " + name);
}

if (p < parans.length-1) {
Systemout.print(',");
}
}
Systemout.printin(")");
}

/'l I nvoke the |ist(bool ean) op

String[] sig {"bool ean"};

Cbj ect[] opArgs {Bool ean. TRUE} ;

bj ect result server.invoke(nane, "list", opArgs, sig);

Systemout.println("JNDI View list(true) output:\n"+result);

To test the client access using the RM Adapt or , run the following:

[exanpl es] $ ant -Dchap=j mx -Dex=4 run-exanpl e

run- exanpl e4:
[java] JNDI Vi ew C ass: org.jboss. nx. nodel nbean. XMBean
[java] JNDI Vi ew Operati ons:
[java]l] + java.lang.String list(boolean jboss:service=JNDl Vi ew)
[java] + java.lang.String IistXM()
[java]l] + void create()

JBoss Release 2

The JBoss IM X Microkernel

[java]l] + void start()

[java] + void stop()

[java]l] + void destroy()

[java] + void jbosslnternal Lifecycle(java.lang.String jboss: service=JNDl Vi ew)
[java]l] + java.lang.String getName()

[java] + int getState()

[javal] + java.lang.String getStateString()

[java] JNDI View. |list(true) output:

[java] <hl>java: Nanespace</hl>

java] <pre>

j ava] +- XAConnectionFactory (class: org.jboss. ng. SpyXAConnecti onFact ory)

j ava] +- Defaul tDS (cl ass: javax.sql.Dat aSource)

j ava] +- SecurityProxyFactory (class: org.jboss.security. SubjectSecurityProxyFactory)
[java] +- Defaul t IMSProvi der (class: org.jboss.jns.jndi.JND Provi der Adapt er)
[java] +- conp (class: javax.nam ng. Cont ext)

[java] +- JmeXA (class: org.jboss.resource. adapter.jnms.JmsConnecti onFactoryl npl)
[java] +- ConnectionFactory (class: org.jboss. ng. SpyConnecti onFact ory)

j aval +- jaas (class: javax.nam ng. Context)

[

[java] | +- JnmsXAReal m (cl ass: org.jboss. security. plugins. SecurityDomai nCont ext)
[java] | +- jbossng (class: org.jboss.security.plugins. SecurityDomai nCont ext)
[java] | +- Hsql DbReal m (cl ass: org.jboss.security. plugins. SecurityDomai nCont ext)

[java] +- timedCacheFactory (class: javax.nam ng. Context)

[java] Failed to | ookup: tinedCacheFactory, errnsg=nul

[java] +- Transacti onPropagati onCont ext Exporter (class: org.jboss.tm Transacti onPropag
at i onCont ext Fact ory)

[java] +- StdJMSPool (class: org.jboss.jns. asf. StdServer Sessi onPool Fact ory)

[java] +- Mail (class: javax.nail.Session)

[java] +- Transacti onPropagati onCont ext | nporter (class: org.jboss.tm Transacti onPropag
ati onCont ext | nporter)

[java] +- Transacti onManager (class: org.jboss.tm TxManager)

[java] </pre>

[java] <h1>d obal JNDI Namespace</hl>

[java] <pre>

[java] +- XAConnectionFactory (class: org.jboss. my. SpyXAConnecti onFact ory)

[javal +- Ul L2ConnectionFactory[link -> ConnectionFactory] (class: javax.nam ng.Lin
kRef)

[java] +- User Transacti onSessi onFactory (proxy: $Proxyll inplenents interface org.jbos
s.tmusertx.interfaces. User Transacti onSessi onFact ory)

[java] +- HTTPConnecti onFactory (class: org.jboss. ng. SpyConnecti onFact ory)

[java] +- consol e (class: org.jnp.interfaces. Nam ngCont ext)

[java] | +- Pl ugi nManager (proxy: $Proxy36 inplenents interface org.jboss. consol e. ma
nager . Pl ugi nManager MBean)

[javal +- Ul L2XAConnecti onFactory[link -> XAConnecti onFactory] (class: javax.nam ng
. Li nkRef)

[java] +- UUI DKeyGener at or Factory (cl ass: org.jboss. ej b. pl ugi ns. keygener at or. uui d. UJl D
KeyGener at or Fact ory)

[java] +- HTTPXAConnecti onFactory (class: org.jboss. nmg. SpyXAConnecti onFact ory)

[java] +- topic (class: org.jnp.interfaces. Nam ngCont ext)

j aval | +- testDurabl eTopic (class: org.]jboss. nmg. SpyTopi c)
j ava] | +- testTopic (class: org.jboss. . SpyTopi c)

j ava] | +- securedTopic (class: org.jboss. ng. SpyTopi c)

j ava] +- queue (class: org.jnp.interfaces. Nam ngCont ext)

j ava] +- A (class: org.jboss. ng. SpyQueue)

j ava] +- testQueue (class: org.jboss. ng. SpyQueue)

I

I

| +- ex (class: org.jboss. ng. SpyQueue)
j ava] | +- DLQ (class: org.]jboss. nmg. SpyQueue)

I

I

I

j ava] +- D (class: org.jboss. ng. SpyQueue)
j ava] +- C (class: org.jboss.ng. SpyQueue)
j ava] +- B (class: org.jboss. ng. SpyQueue)

j ava] +- ConnectionFactory (class: org.jboss. ng. SpyConnecti onFact ory)
[java] +- UserTransaction (class: org.jboss.tmusertx.client.dientUserTransaction)
[java] + jnmx (class: org.jnp.interfaces. Nam ngCont ext)

[java] | +- invoker (class: org.jnp.interfaces. Nanm ngCont ext)
[java] | | +- RM Adaptor (proxy: $Proxy35 inplenents interface org.jboss.jnx.adapt
or.rm .RM Adaptor,interface org.jboss.jnx.adaptor.rm .RM Adapt or Ext)
[java] | + rm (class: org.jnp.interfaces. Nam ngCont ext)
JBoss Release 2 39

The JBoss IM X Microkernel

[java] | | +- RM Adaptor[link -> jm/invoker/RM Adaptor] (class: javax.nam ng.L

i nkRef)

[java] +- Hi LoKeyGener ator Factory (class: org.jboss. ejb. pl ugi ns. keygenerator. hilo. Hi Lo
KeyGener at or Fact ory)

[java] +- Ul LXAConnecti onFactory[link -> XAConnecti onFactory] (class: javax.nam ng.
Li nkRef)

[java] +- Ul LConnectionFactory[link -> ConnectionFactory] (class: javax.nam ng.Link
Ref)

[java] </pre>

1.3.3. Command Line Access to JMX

JBoss provides a simple command line tool that allows for interaction with aremote IMX server instance. This tool
is called twiddle (for twiddling bits via IMX) and is located in the bi n directory of the distribution. Twiddle is a
command execution tool, not a general command shell. It is run using either the twi ddl e. sh Or twi ddl e. bat

scripts, and passing in a - h(- - hel p) argument provides the basic syntax, and - - hel p- conmands shows what you
can do with the tool:

[bin]$./twiddle.sh -h
AJMX client to "twiddle' with a renpte JBoss server.

usage: tw ddl e.sh [options] <comrand> [conmand_ar gunent s]

options:
-h, --help Show t hi s hel p nessage
- - hel p- commands Show a |ist of commands
- H=<command> Show command specific help
- c=conmand. properties Speci fy the command. properties file to use
- D<nane>[=<val ue>] Set a system property
-- St op processing options
-s, --server=<url|> The JNDI URL of the renote server
-a, --adapter=<nanme> The JNDI name of the RM adapter to use
-q, --qQuiet Be somewhat nore qui et

1.3.3.1. Connecting twiddle to a Remote Server

By default the twiddle command will connect to the localhost at port 1099 to lookup the default jnmx/
rm / RM Adapt or binding of the RM Adapt or service as the connector for communicating with the IMX server. To
connect to a different server/port combination you can usethe-s (- - server) option:

[bin]$./twiddle.sh -s toki serverinfo -d jboss
[bin]$./twiddle.sh -s toki: 1099 serverinfo -d jboss

To connect using a different RMIAdaptor binding use the - a (--adapt er) option:

[bin]$./twiddle.sh -s toki -a jnx/rm /RM Adaptor serverinfo -d jboss

1.3.3.2. Sample twiddle Command Usage
To access basic information about a server, use the ser veri nf o command. This currently supports:

[bin]$./twi ddl e.sh -H serverinfo
CGet information about the MBean server

usage: serverinfo [options]

JBoss Release 2 40

The JBoss IM X Microkernel

options:
-d, --domain Cet the default domain
-c, --count CGet the MBean count

-1, --list Li st the MBeans
-- St op processing options
[bin]$./twiddle.sh --server=toki serverinfo --count

[bin]$./twiddle.sh --server=toki serverinfo --domain
j boss

To query the server for the name of MBeans matching a pattern, use the quer y command. This currently supports:

[bin]$./tw ddl e.sh -H query
Query the server for a list of matching MBeans

usage: query [options] <query>
options:
-c, --count Di spl ay the matchi ng MBean count
-- St op processing options
Exanpl es:
query all nbeans: query '*:*'
query all nbeans in the jboss.j2ee domain: query 'jboss.j2ee:*'
[bin]$./twiddle.sh -s toki query 'jboss:service=invoker, *'
j boss: readonl y=t rue, servi ce=i nvoker, t ar get =Nani ng, t ype=http
j boss: servi ce=i nvoker, t ype=j r np
j boss: servi ce=i nvoker, t ype=| ocal
j boss: servi ce=i nvoker, t ype=pool ed
j boss: servi ce=i nvoker, type=http
j boss: servi ce=i nvoker, t ar get =Nam ng, t ype=http

To get the attributes of an MBean, use the get command:

[bin]$./twiddle. sh -H get
CGet the val ues of one or nobre MBean attri butes

usage: get [options] <name> [<attr>+]
If no attribute nanes are given all readable attributes are retrieved

options:

--noprefix Do not display attribute nane prefixes

-- St op processing options
[bin]$./tw ddl e. sh get jboss:service=invoker,type=jrnp RM bj ectPort StateString
RM Obj ect Port =4444
StateString=Started
[bin]$./tw ddl e.sh get jboss:service=i nvoker, type=jrnp
Ser ver Addr ess=0.0.0.0
RM d i ent Socket Fact or yBean=nul |
StateString=Started
St at e=3
RM Ser ver Socket Fact or yBean=or g. j boss. net . socket s. Def aul t Socket Fact or y@d093076
Enabl ed assCachi ng=f al se
Securi t yDomai n=nul |
RM Ser ver Socket Fact or y=nul |
Backl 0g=200
RM Obj ect Port =4444
Name=JRWPI nvoker
RM d i ent Socket Fact or y=nul |

To query the MBeanInfo for an MBean, use the info command:

[bin]$./twiddle.sh -H info
Cet the netadata for an MBean

JBoss Release 2 41

The JBoss IM X Microkernel

usage: info <nbean-nanme>
Use "*' to query for all attributes
[bin]$ Description: Managenent Bean
+++ Attributes:
Nane: Server Address
Type: java.lang. String
Access: rw
Nanme: RM C i ent Socket Fact or yBean
Type: java.rm .server.RM Client Socket Factory
Access: rw
Nanme: StateString
Type: java.lang. String
Access: r-
Nane: State
Type: int
Access: r-
Narme: RM Server Socket Fact or yBean
Type: java.rm .server.RM Server Socket Fact ory
Access: rw
Nanme: Enabl eC assCachi ng
Type: bool ean
Access: rw
Narme: SecurityDomai n
Type: java.lang. String
Access: rw
Nanme: RM Server Socket Fact ory
Type: java.lang. String
Access: rw
Narme: Backl og
Type: int
Access: rw
Nanme: RM Obj ect Port
Type: int
Access: rw
Name: Name
Type: java.lang.String
Access: r-
Name: RM Cl i ent Socket Fact ory
Type: java.lang. String
Access: rw
+++ COperations:
voi d start()
voi d jbosslnternal Lifecycle(java.lang. String java.lang. String)
voi d create()
voi d stop()
voi d destroy()

To invoke an operation on an MBean, use the invoker command:

[bin]$./twi ddle.sh -H invoke
I nvoke an operation on an MBean

usage: invoke [options] <query> <operation> (<arg>)*

options:
-q, --query-type[=<type>] Treat object nane as a query
-- St op processing options

query type:
flirst] Only invoke on the first nmatching name [defaul t]
a[ll] I nvoke on all matchi ng nanes

[bin]$./twi ddle.sh invoke jboss:service=JNDI View |ist true
<hl>j ava: Nanespace</ hl>
<p|’ e>
+- XAConnectionFactory (class: org.jboss. ng. SpyXAConnecti onFact ory)

JBoss Release 2 42

The JBoss IM X Microkernel

+- Defaul tDS (class: javax.sql.DataSource)

+- SecurityProxyFactory (class: org.jboss.security. SubjectSecurityProxyFactory)

+- Def aul t IMSProvi der (class: org.jboss.jns.jndi.JNDI Provi der Adapt er)

+- conp (class: javax.nam ng. Cont ext)

+- JneXA (class: org.jboss.resource. adapter.jnms. JnsConnecti onFact oryl npl)

+- Connecti onFactory (class: org.jboss. ng. SpyConnecti onFact ory)

+- jaas (class: javax.nanm ng. Context)

| +- JnmsXAReal m (cl ass: org.jboss. security. plugins. SecurityDomai nCont ext)

| +- jbossnmg (class: org.jboss.security.plugins. SecurityDomai nCont ext)

| +- Hsql DbReal m (cl ass: org.jboss. security. plugins. SecurityDonai nCont ext)

+- tinedCacheFactory (class: javax.nam ng. Context)
Fai l ed to | ookup: timedCacheFactory, errnmsg=null

+- Transacti onPropagati onCont ext Exporter (class: org.jboss.tm Transacti onPropagati onCont ext
Fact ory)

+- StdJMSPool (class: org.jboss.jns.asf.StdServer Sessi onPool Fact ory)

+- Mail (class: javax.nmail.Session)

+- Transacti onPropagati onContext|nporter (class: org.jboss.tm Transacti onPropagati onCont ext
I mporter)

+- Transacti onManager (class: org.jboss.tm TxManager)
</ pre>
<h1>d obal JNDI Nanespace</hl>
<pr e>

+- XAConnectionFactory (class: org.jboss. ng. SpyXAConnecti onFact ory)

+- U L2ConnectionFactory[link -> ConnectionFactory] (class: javax.nam ng.Li nkRef)

+- User Transacti onSessi onFactory (proxy: $Proxyll inplenments interface org.jboss.tm usertx.
i nterfaces. User Transacti onSessi onFact ory)

+- HTTPConnecti onFactory (class: org.jboss. ng. SpyConnecti onFact ory)

+- consol e (class: org.jnp.interfaces. Nanm ngCont ext)

| +- Pl ugi nManager (proxy: $Proxy36 inplenments interface org.jboss. consol e. manager. Pl ugin
Manager MBean)

+- Ul L2XAConnecti onFactory[link -> XAConnecti onFactory] (class: javax.nam ng.LinkRef)

+- UUl DKeyGener at or Factory (cl ass: org.jboss. ejb. pl ugi ns. keygener at or . uui d. UUl DKeyGener at or
Fact ory)

+- HTTPXAConnecti onFactory (class: org.jboss. ng. SpyXAConnect i onFact ory)

+- topic (class: org.jnp.interfaces. Nam ngCont ext)

| +- testDurabl eTopic (class: org.jboss. ng. SpyTopi c)

| +- testTopic (class: org.jboss.ng. SpyTopi c)

| +- securedTopic (class: org.jboss. ng. SpyTopi c)

+- queue (class: org.jnp.interfaces. Nam ngCont ext)

| +- A (class: org.jboss. ng. SpyQueue)

| +- testQueue (class: org.jboss. nmy. SpyQueue)

| +- ex (class: org.jboss. ng. SpyQueue)

| +- DLQ (class: org.]jboss. mg. SpyQueue)

| +- D (class: org.jboss. ng. SpyQueue)

| +- C (class: org.jboss. ng. SpyQueue)

| +- B (class: org.jboss.ng. SpyQueue)

+- ConnectionFactory (class: org.jboss. ng. SpyConnecti onFact ory)

+- UserTransaction (class: org.jboss.tmusertx.client.dientUserTransaction)

+- jnx (class: org.jnp.interfaces. Nam ngCont ext)

| +- invoker (class: org.jnp.interfaces. Nam ngCont ext)

| | +- RM Adaptor (proxy: $Proxy35 inplenents interface org.jboss.jnx.adaptor.rm.RM Ad
aptor,interface org.jboss.jnx.adaptor.rm .RM Adapt or Ext)

| +- rm (class: org.jnp.interfaces. Nam ngCont ext)

| | + RM Adaptor[link -> jnx/invoker/ RM Adaptor] (class: javax.nam ng. Li nkRef)

+- Hi LoKeyGenerator Factory (class: org.jboss. ejb. plugins. keygenerator. hil o. H LoKeyGener at or
Fact ory)

+- Ul LXAConnecti onFactory[link -> XAConnecti onFactory] (class: javax.nam ng. Li nkRef)

+- Ul LConnecti onFactory[link -> ConnectionFactory] (class: javax.nam ng.Li nkRef)
</ pre>

1.3.4. Connecting to JMX Using Any Protocol

With the detached invokers and a somewhat generalized proxy factory capability, you can redly talk to the IMX

JBoss Release 2 43

The JBoss IM X Microkernel

server using the | nvoker Adapt or Ser vi ce and a proxy factory service to expose an RM Adapt or Or similar interface
over your protocol of choice. We will introduce the detached invoker notion along with proxy factories in Sec-
tion 1.6. See Section 1.6.1 for an example of an invoker service that allows one to access the MBean server using to
the RM Adapt or interface over any protocol for which a proxy factory service exists.

1.4. Using JMX as a Microkernel

When JBoss darts up, one of the first steps performed is to create an MBean server instance
(j avax. managenent . MBeanSer ver). The IMX MBean server in the JBoss architecture plays the role of a microker-
nel. All other manageable MBean components are plugged into JBoss by registering with the MBean server. The
kernel in that sense is only an framework, and not a source of actual functionality. The functionality is provided by
MBeans, and in fact all major JBoss components are manageable M Beans interconnected through the MBean serv-
er.

1.4.1. The Startup Process

In this section we will describe the JBoss server startup process. A summary of the steps that occur during the
JBoss server startup sequenceis:

1. The run start script initiates the boot sequence using the org. j boss. Mai n. mai n(String[]) method entry
point.

2. The mai n. mai n method creates a thread group named j boss and then starts a thread belonging to this thread
group. Thisthread invokes the Main.boot method.

3. The Min.boot method processes the Min.main arguments and then creates an
org. j boss. system server. Server Loader using the system properties along with any additional properties
specified as arguments.

4. The XML parser libraries, j boss-j nx.jar, concurrent.jar and extralibraries and classpaths given as argu-
ments are registered with the Ser ver Loader .

5. The JBoss server instance is created using the Server Loader . | oad(O assLoader) method with the current
thread context class loader passed in as the d assLoader argument. The returned server instance is an imple-
mentation of theor g. j boss. system server. Server interface. The creation of the server instance entails:

e Credting a java. net. URLd assLoader with the URLs of the jars and directories registered with the
Server Loader . ThiSURLO assLoader Usesthe d assLoader passed in asits parent and it is pushed as the
thread context class |oader.

e The class name of the implementation of the Server interface to use is determined by the
j boss. server. type property. This defaultsto or g. j boss. syst em server. Server | npl .

e The server implementation class is loaded using the URLC assLoader created in step 6 and instantiated
using its no-arg constructor. The thread context class |loader present on entry into the Ser ver Loader . | oad
method is restored and the server instance is returned.

JBoss Release 2 44

The JBoss IM X Microkernel

6. The server instance is initialized with the properties passed to the Ser ver Loader constructor using the Ser v-
er.init(Properties) method.

7. The server instance is then started using the Server. start () method. The default implementation performs
the following steps:

» Set the thread context class loader to the class loader used to load the Server | npl class.

e Create an MeanServer under the jboss domain using the MBeanServerFact-
ory. creat eMBeanSer ver (String) method.

* Register the Server | npl and Server Confi gl npl MBeans with the MBean server.

e Initialize the unified class loader repository to contain all JARs in the optional patch directory as well as
the server configuration file conf directory, for example, server/ def aul t / conf . For each JAR and direct-
ory anorg. j boss. nx. | oadi ng. Uni fi edC assLoader is created and registered with the unified repository.
One of these uni fi edd asslLoader isthen set as the thread context class loader. This effectively makes all
Uni fi edd assLoader S available through the thread context class loader.

e The org.jboss. system ServiceControl l er MBean is created. The Servi ceControl | er manages the
JBoss MBean services life cycle. We will discuss the JBoss MBean services notion in detail in Sec-
tion 1.4.2.

e The org. | boss. depl oyment . Mai nDepl oyer is created and started. The Mai nDepl oyer manages deploy-
ment dependencies and directing deployments to the correct deployer.

e The org. | boss. depl oynent . JARDepl oyer is created and started. The JARDepl oyer handles the deploy-
ment of JARsthat are simplelibrary JARSs.

e Theorg.jboss. depl oyment . SARDepl oyer is created and started. The SARDeployer handles the deploy-
ment of JBoss MBean services.

* The mai nDepl oyer isinvoked to deploy the services defined in the conf/j boss- servi ce. xm Of the cur-
rent server file set.

* Restore the thread context class |oader.

The JBoss server starts out as nothing more than a container for the IMX MBean server, and then loads its person-
ality based on the services defined in the j boss- ser vi ce. xm MBean configuration file from the named configura-
tion set passed to the server on the command line. Because MBeans define the functionality of a JBoss server in-
stance, it isimportant to understand how the core JBoss MBeans are written, and how you should integrate your ex-
isting servicesinto JBoss using MBeans. Thisis the topic of the next section.

1.4.2. JBoss MBean Services

Aswe have seen, JBoss relies on IMX to load in the MBean services that make up a given server instance's person-
aity. All of the bundled functionality provided with the standard JBoss distribution is based on MBeans. The best
way to add services to the JBoss server is to write your own JIMX MBeans.

There are two classes of MBeans: those that are independent of JBoss services, and those that are dependent on

JBoss Release 2 45

The JBoss IM X Microkernel

JBoss services. MBeans that are independent of JBoss services are the trivial case. They can be written per the
JMX specification and added to a JBoss server by adding an mbean tag to the depl oy/ user-servi ce. xni file.
Writing an MBean that relies on a JBoss service such as naming requires you to follow the JBoss service pattern.
The JBoss MBean service pattern consists of a set of life cycle operations that provide state change notifications.
The notifications inform an MBean service when it can create, start, stop, and destroy itself. The management of
the MBean service life cycle is the responsibility of three JBoss MBeans: SARDepl oyer , Ser vi ceConf i gur at or and
Servi ceController.

1.4.2.1. The SARDeployer MBean

JBoss manages the deployment of its MBean services via a custom MBean that loads an XML variation of the
standard JMX MLet configuration filee This custom MBean is implemented in the
org. j boss. depl oynent . SARDepl oyer class. The SARDepl oyer MBean isloaded when JBoss starts up as part of the
bootstrap process. The SAR acronym stands for service archive.

The sARDepl oyer handles services archives. A service archive can be either a jar that ends with a . sar suffix and
contains a META- | NF/ j boss- servi ce. xni descriptor, or a standalone XML descriptor with a naming pattern that
matches *-servi ce. xni . The DTD for the service descriptor is j boss-service_4.0.dtd and is shown in Fig-
ure 1.15.

0 Inaderltepommrytlassg

2 strmg

Py + Inader-repnsimrv—conﬁgai ?" = mnﬁgParserClassE
- .string
+ In[al-dlrecmryl:‘i 3 @ paﬂ'lg

strlng J
(| * dasspath (o cndehaseg -& bt archnresE
= \string : k- \string

(@ !:odeg » _nameg @. & !nterfa(eg €) ‘o xmhean—ddg
.string , Lstring J Lstring J .string

_‘iﬂ + loader-repository

'F-l-

'
J.

(7) # xmbean-codeg
+ serverg ~string]

_Qq * construn:or# r';;i* argq 6 (@ typeg (@ \ralueé
2 \string) \string J
)
(o nameé \ﬂ # replace E i’*rO rim E f—;~ * atmhuteClassE

i;: Y atl:rihute .string) fenumeration Cfenumeration . Lstring
ﬁ * senalDataTypeE

lenumeration

s H;, # gptional- atmhune-nameg ,\ L prox\r-typeg

\string et \string
[J

T

i

=

7 (o optional-atribute- nameg

e

string

L) * depends-listz | * depends-llst-elementE'

Figure 1.15. The DTD for the M Bean service descriptor parsed by the SARDeployer

JBoss Release 2 46

The JBoss IM X Microkernel

The elements of the DTD are;

« |loader-repository: This element specifies the name of the uni fi edLoader Reposi t ory MBean to use for the
SAR to provide SAR level scoping of classes deployed in the sar. It isaunique IMX Obj ect Name string. It may
also specify an arbitrary configuration by including al oader - reposi t ory- conf i g element. The optional | oad-
er Reposi t oryd ass attribute specifies the fully qualified name of the loader repository implementation class. It
defaultsto or g. j boss. nx. | oadi ng. Hei r achi cal Loader Reposi t ory3.

« loader-repository-config: This optional element specifies an arbitrary configuration that may be used to
configure the | oadReposi t oryd ass. The optional confi gParser d ass attribute gives the fully qualified
name of the org. j boss. mx. | oadi ng. Loader Reposi t or yFact ory. Loader Reposi t or yConf i gPar ser imple-
mentation to use to parse the | oader - r eposi t or y- conf i g content.

» local-directory: This element specifies a path within the deployment archive that should be copied to the ser v-
er/ <confi g>/ db directory for use by the MBean. The path attribute is the name of an entry within the deploy-
ment archive.

e classpath: This element specifies one or more external JARS that should be deployed with the MBean(s). The
optional archives attribute specifies a comma separated list of the JAR names to load, or the * wild card to sig-
nify that all jars should be loaded. The wild card only works with file URLs, and http URLSs if the web server
supports the WEBDAYV protocol. The codebase attribute specifies the URL from which the JARs specified in
the archive attribute should be loaded. If the codebase is a path rather than a URL string, the full URL is built
by treating the codebase value as a path relative to the JBoss distribution ser ver / <conf i g> directory. The order
of JARs specified in the archives as well as the ordering across multiple classpath element is used as the
classpath ordering of the JARs. Therefore, if you have patches or inconsistent versions of classes that require a
certain ordering, use this feature to ensure the correct ordering.

* mbean: This element specifies an MBean service. The required code attribute gives the fully qualified name of
the MBean implementation class. The required name attribute gives the IMX bj ect Nane of the MBean. The
optional xmbean- dd attribute specifies the path to the XMBean resource if this MBean service uses the JBoss
XM Bean descriptor to define a Model MBean management interface.

e constructor: The constructor element defines a non-default constructor to use when instantiating the
MBean The ar g element specify the constructor arguments in the order of the constructor signature. Each
arg hasatype and val ue attribute.

« attribute: Each attribute element specifies a name/value pair of the attribute of the MBean. The name of the
attribute is given by the name attribute, and the attribute element body gives the value. The body may be a
text representation of the value, or an arbitrary element and child elements if the type of the MBean attrib-
ute is or g. wac. dom El ement . For text values, the text is converted to the attribute type using the JavaBean
j ava. beans. Propert yEdi t or mechanism.

e server/mbean/depends and server/mbean/depends-list: these elements specify a dependency from the
MBean using the element to the MBean(s) named by the depends oOr depends-1ist elements. Sec-
tion 1.4.2.4. Note that the dependency value can be another mbean element which defines a nested mbean.

MBean attribute values don't need to be hardcoded literal strings. Service files may contain references to system
properties using the ${ name} notation, where nane is the name of a Java system property. The value of this system

JBoss Release 2 47

The JBoss IM X Microkernel

property, as would be returned from the call Syst em get Property("nanme"). Multiple properties can be specified
separated by commas like ${ nane1, nane2, name3} . If there is no system property named nane1, nane2 will be tried
and then nane3. This allows multiple levels of substitution to be used. Finally, a default value can be added using a
colon separator. The substitution ${ name: def aul t val ue} would substitute the the text "default val ue" if the
system property nane didn't exist. If none of the listed properties exist and no default value is given, no substitution
will occur.

When the sARDepl oyer is asked to deploy a service performs severa steps. Figure 1.16 is a sequence diagram that
shows the init through start phases of a service.

SARDeployer sdi MBeanServer ServiceController
SA4FDeployer DeploymentInfo MEeanierver ServiceController
MainDeployer:MainDeployer

1: init(DeploymentInfd):woid
[=
1.1: parselDocument(sdi):void
1.1.1: %et sdi.document to *-service.xml doc .
==

1.2: parsexMLClasspathisdi) rwoid

for{i = sdi.doc.classpath; i.hasNexti):) sdi

pp=={DeploymentInfo

-

1.2.1.1: <oonstructors:((URL)i.next(), null, server)

1.2.[1.z: deploy{cp_sdi):voig)
=3

for(i = sdi.doc,local-directory; i.hasWext();)

|
|
|
|
|
s
|
|
|
|
|
|
|
|
|
|
|
|
|
|

1.3.1: inflateJar(sdi.locallrl, datalir, (String)!i.next()):ivoid
1.4: processNestedheployments(sdi):void
|
2t create (DeploymentIhto) :void |
{7== 2.1l: loader:=registerMBean(di.ucl, di.ucl.getﬂbjectl\iamet]):Dbjectlnstance —
{==
2.2: descriptorMbeans:=install (sdi.doc, sdi.ucl.getObjectNames()):List

¥

2.3: zdi.uwbeans = descriptorMbeans

Z2.4.1: create((0bjectiane)i.next()):woid

¥

L

|
3: startiDeploymentInfo):void

ol tey(l
for(i = sdi.mbeans,iterator(); i.hasNext();)

3.1.1.1: start((0bjectName) i.next()]:wvoid

¥

catch (Exception e)

3.2.1: stop(sdi)iwoid

3.2.2: destroy(sdi):iwvoid

:
.
:

-

o= L
| for({i = descriptorMbeans.iterator(): i.hasNextt]:]|T|
|
I
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 1.16. A sequence diagram highlighting the main activities performed by the SARDeployer to start a
JBoss M Bean service

In Figure 1.16 the following isillustrated:

» Methods prefixed with 1.1 correspond to the load and parse of the XML service descriptor.

JBoss Release 2 48

The JBoss IM X Microkernel

Methods prefixed with 1.2 correspond to processing each classpath element in the service descriptor to create
an independent deployment that makes the jar or directory available through a uni fi edd assLoader registered
with the unified loader repository.

Methods prefixed with 1.3 correspond to processing each | ocal - di rect ory element in the service descriptor.
This does a copy of the SAR elements specified in the path attribute to the ser ver / <conf i g>/ db directory.

Method 1.4. Process each deployable unit nested in the service a child deployment is created and added to the
service deployment info subdeployment list.

Method 2.1. The uni fi edd assLoader of the SAR deployment unit is registered with the MBean Server so that
is can be used for loading of the SAR MBeans.

Method 2.2. For each MBean element in the descriptor, create an instance and initialize its attributes with the
values given in the service descriptor. Thisis done by calling the Servi ceControl I er. i nstal I method.

Method 2.4.1. For each MBean instance created, obtain its IMX Obj ect Narre and ask the ServiceController to
handle the create step of the servicelife cycle. The Servi ceCont rol | er handles the dependencies of the MBean
service. Only if the service's dependencies are satisfied is the service create method invoked.

Methods prefixed with 3.1 correspond to the start of each MBean service defined in the service descriptor. For
each MBean instance created, obtain its IMX ObjectName and ask the Servi ceControl | er to handle the start
step of the service life cycle. The Servi ceCont rol | er handles the dependencies of the MBean service. Only if
the service's dependencies are satisfied is the service start method invoked.

1.4.2.2. The Service Life Cycle Interface

The IMX specification does not define any type of life cycle or dependency management for MBeans. The JBoss
ServiceController MBean introduces this notion. A JBoss MBean is an extension of the IMX MBean in that an
MBean is expected to decouple creation from the life cycle of its service duties. Thisis necessary to implement any
type of dependency management. For example, if you are writing an MBean that needs a JINDI naming service to
be able to function, your MBean needs to be told when its dependencies are satisfied. This ranges from difficult to
impossible to do if the only life cycle event is the MBean constructor. Therefore, JBoss introduces a service life
cycle interface that describes the events a service can use to manage its behavior. The following listing shows the
org. j boss. syst em Servi ce interface:

package org.j boss. system
public interface Service

{
public void create() throws Exception;
public void start() throws Exception;
public void stop();
public void destroy();

The servi ceControl | er MBean invokes the methods of the Ser vi ce interface at the appropriate times of the ser-
vice life cycle. We'll discuss the methods in more detail in the Ser vi ceCont rol | er section.

1.4.2.3. The ServiceController MBean

JBoss manages dependencies between MBeans via the or g. j boss. syst em Servi ceControl | er custom MBean.
The SARDeployer delegates to the ServiceController when initializing, creating, starting, stopping and destroying

JBoss Release 2 49

The JBoss IM X Microkernel

MBean services. Figure 1.17 shows a sequence diagram that highlights interaction between the sARDepl oyer and
ServiceController.

ServiceController configqurator serviceCreator server ctx.proxy
ServiceController ServiceConfigqurator GerviceCreator MBeanierver Service
STRDeployer
1: install (Element,Objectiane) : List ! I
==

]] I

. | | | |

1.1: 1ns\:alltElemen\:,DbjacLNa*\a]:L:Ls\: | | |
o \ \ I

|

1.1.1: intE[nalInsFﬂlltthanElEmEnt,} wbeans, servicelame):Objecthane

1.1.1.1: ins\:anE:‘Linstalltservicel\lé‘me, loaderName mbeanElemem:]:Ubja{:tIns\:ance

1.1.1.1.1: createMBean|serviceNane, loaderName, ctdr.args, ctor.sitmature]:ObjectInstance

1.1.1.2: regist¢rfBeanClassNaue (instance):void]

ctx

|

| |

1.1(1.3: ctxr=getServiceContextiinstance. fe Uﬂactl\lama()):Sarvicecancex\: | |
T.'l.l.S.l: ctor 1 1

f=-|FerviceContext

Populates serice mhean aﬂnbuteslll

-
- T T

[F' | [‘
1.1.1.4: configune{mbeanWane, loaderWene, mbeanElemdnt, mbeans):void
| | ‘

2: create(Objectliame serviceName Collection depends):void
o=

| |
| |

2.1: c\:x:=gat5erviceton\:extt%arvlcal\lame]:Servlcet}:n\:axt
if(depends = null) | |
|
|

for(i = depends.iteratori):l i.hastext();)
|
| |

2.2.1.1: registerDependentyiserviceName, i.next()):void

| |

| |

2.3: crx.proxy:=getServicePrhuyict.obiectiNane, nlll):Service
|

1E(depandenclascraa:edtc\:x.i#apendon] == true)
2.4.1: createi):iwvoid |

for(i = ccx.depandsﬂnl‘le.iteh:atort]: i.hasNex\:():‘J
|

|
2.4.2.1: create(tUbjectNarFe) l.next())ivoid

3: startiObjectName):void | |

3.1t c\:x:=ga\:ServiceCon\:ext[lﬁarvlcal\lamej :Servlcecbn\:axt

if(dependenciesitarted(ctx. ibependin) == true) |

3.2.1: starc():void ! !

t f o=
for(i = ctx.dependsOnMe.itekator(i; i.hasNextij:l
| |
|

3.2.2.1: starti{ObjectNant) i.nmext(]):void
|

I
| | |
[‘ I
[‘ I
[‘ I
[‘ I
[‘ I
[‘ I
[‘ I
[‘ I
[} I
i | |
! | 0
| } ‘ :
| | ‘ I
| | ‘ |
' | | | :
[[‘ I
[‘ I
[‘ I
[} I
| | |
i ! L]
1 w I
| ‘ I
| ‘ I
| ‘ I
| ‘ I
| ‘ I
| ‘ |
| | I

Figure 1.17. Theinteraction between the SARDeployer and ServiceController to start a service

The Servi ceControl Il er MBean has four key methods for the management of the service life cycle: create,
start, st op and destroy.

1.4.2.3.1. The create(ObjectName) method

The creat e(bj ect Nane) method is called whenever an event occurs that affects the named services state. This
could be triggered by an explicit invocation by the SARDepl oyer, a notification of a new class, or another service
reaching its created state.

When a service's creat e method is called, all services on which the service depends have also had their create
method invoked. This gives an MBean an opportunity to check that required MBeans or resources exist. A service
cannot utilize other MBean services at this point, as most JBoss MBean services do not become fully functional un-
til they have been started via their st art method. Because of this, service implementations often do not implement
creat e in favor of just the st art method because that is the first point at which the service can be fully functional.

JBoss Release 2 50

The JBoss IM X Microkernel

1.4.2.3.2. The start(ObjectName) method

The start (Obj ect Nane) method is called whenever an event occurs that affects the named services state. This
could be triggered by an explicit invocation by the SARDepl oyer, a notification of a new class, or another service
reaching its started state.

When a service'sst art method is called, all services on which the service depends have also had their st art meth-
od invoked. Receipt of astart method invocation signals a service to become fully operational since al services
upon which the service depends have been created and started.

1.4.2.3.3. The stop(ObjectName) method

The st op(Obj ect Nane) method is called whenever an event occurs that affects the named services state. This could
be triggered by an explicit invocation by the sARDepl oyer, notification of a class removal, or a service on which
other services depend reaching its stopped state.

1.4.2.3.4. The destroy(ObjectName) method

The dest r oy(Obj ect Nane) method is called whenever an event occurs that affects the named services state. This
could be triggered by an explicit invocation by the sARDepl oyer, notification of a class removal, or a service on
which other services depend reaching its destroyed state.

Service implementations often do not implement dest roy in favor of simply implementing the st op method, or
neither st op Nor dest r oy if the service has no state or resources that need cleanup.

1.4.2.4. Specifying Service Dependencies

To specify that an MBean service depends on other MBean services you need to declare the dependencies in the
mbean element of the service descriptor. This is done using the depends and depends- | i st elements. One differ-
ence between the two elements relates to the opt i onal - at t ri but e- name attribute usage. If you track the oj ect -

Narres of dependencies using single valued attributes you should use the depends element. If you track the j ect -

NarreS Of dependencies using j ava. util. Li st compatible attributes you would use the depends-1i st element. If
you only want to specify a dependency and don't care to have the associated service Obj ect Nare bound to an attrib-
ute of your MBean then use whatever element is easiest. The following listing shows example service descriptor
fragments that illustrate the usage of the dependency related elements.

<mbean code="org.j boss. ng. server.jnx. Topi c"
nane="j ns. t opi c: servi ce=Topi ¢, nane=t est Topi ¢c" >
<I-- Declare a dependency on the "jboss.ny: servi ce=Desti nati onManager" and
bind this nanme to the Destinati onManager attribute -->
<depends optional -attribute-name="Desti nati onManager" >
j boss. ng: servi ce=Dest i nati onManager
</ depends>

<I'-- Declare a dependency on the "jboss.nq: servi ce=SecurityManager" and
bind this name to the SecurityManager attribute -->
<depends optional -attribute-name="SecurityManager">
j boss. ng: servi ce=Secur it yManager
</ depends>

<l-- .. -->
<I-- Declare a dependency on the

"j boss. mg: servi ce=CacheManager" wit hout
any binding of the nane to an attribute-->

JBoss Release 2 51

The JBoss IM X Microkernel

<depends>j boss. ng: ser vi ce=CacheManager </ depends>
</ mbean>

<nbean code="org.jboss. ng. server.jnk. Topi cMyr"
nanme="j boss. ng. desti nati on: servi ce=Topi cMyr " >
<I-- Declare a dependency on the given topic destinati on nbeans and
bi nd these nanes to the Topics attribute -->
<depends-Ilist optional-attribute-name="Topi cs">
<depends-|i st -el enent >j ms. t opi c: servi ce=Topi ¢, name=A</ depends- | i st - el ement >
<depends-|i st-el ement >j ns. t opi c: servi ce=Topi ¢, name=B</ depends- | i st - el ement >
<depends- | i st-el enent >j ns. t opi c: servi ce=Topi ¢, nane=C</ depends- | i st - el ement >
</ depends-1i st >
</ nbean>

Another difference between the depends and depends-1i st elementsis that the value of the depends element may
be a complete MBean service configuration rather than just the tbj ect Nane of the service. Example 1.13 shows an

example from the hsqgl db- servi ce. xn descriptor. In this listing the
org. j boss. resour ce. connect i onmanager . RARDepl oyment Service configuration is defined using a nested nbean
element as the depends element value. This indicates that the

org. j boss. resource. connect i onmanager . Local TxConnect i onManager MBean depends on this service. The
j boss. j ca: servi ce=Local TxDS, name=hsql dbDS Cbj ect Nane Will be bound to the ManagedConnect i onFact ory-
Nane attribute of the Local TxConnect i onManager class.

Example 1.13. An example of using the depends element to specify the complete configuration of a depended
on service.

<nmbean code="org.j boss. resource. connecti onmanager. Local TxConnecti onManager "
nane="j boss. j ca: servi ce=Local TXxCM nanme=hsql dbDS" >
<depends optional -attribute-name="ManagedConnecti onFact or yNane" >
<!--enbedded nbean-->
<nbean code="org.j boss. resource. connecti onmanager . RARDepl oynent "
nane="j boss. j ca: servi ce=Local TxDS, name=hsql dbDS" >
<attribute name="Jndi Nane" >Def aul t DS</ attri but e>
<attribute name="ManagedConnecti onFact oryProperti es">
<properties>
<confi g- property nane="Connecti onURL"
type="j ava.l ang. Stri ng">
jdbc: hsql db: hsql : //1 ocal host: 1476
</ confi g-property>
<confi g-property nane="DriverC ass" type="java.lang. String">
org. hsql db. j dbcDri ver
</ confi g- property>
<confi g- property nane="User Nane" type="java.l ang. String">
sa
</ confi g- property>
<confi g-property nane="Password" type="java.lang. String"/>
</ properties>
</attribute>

<l-- ... -->
</ mbean>
</ depends>
<l-- ... -->

</ mbean>

1.4.2.5. Identifying Unsatisfied Dependencies

The Servi ceControl | er MBean supports two operations that can help determine which MBeans are not running

JBoss Release 2 52

The JBoss IM X Microkernel

due to unsatisfied dependencies. Thefirst operationis!i st | nconpl et el yDepl oyed. Thisreturnsaj ava. uti | . Li st
of org. j boss. syst em Servi ceCont ext objectsfor the MBean services that are not in the RUNNI NG state.

The second operation is! i st Wi t i ngMBeans. This operation returnsaj ava. util . Li st of the IMX oj ect Nanes of
MBean services that cannot be deployed because the class specified by the code attribute is not available.

1.4.2.6. Hot Deployment of Components, the URLDeploymentScanner

The URLDepl oyment Scanner MBean service provides the JBoss hot deployment capability. This service watches
one or more URLSs for deployable archives and deploys the archives as they appear or change. It also undeploys
previously deployed applications if the archive from which the application was deployed is removed. The configur-
able attributes include:

* URLSs: A comma separated list of URL strings for the locations that should be watched for changes. Strings that
do not correspond to valid URLSs are treated as file paths. Relative file paths are resolved against the server
home URL, for example, JBoSS_DI ST/ ser ver / def aul t for the default config file set. If a URL represents afile
then the file is deployed and watched for subsequent updates or removal. If aURL endsin/ to represent adir-
ectory, then the contents of the directory are treated as a collection of deployables and scanned for content that
are to be watched for updates or removal. The requirement that a URL end in a/ to identify a directory follows
the RFC2518 convention and allows discrimination between collections and directories that are simply un-
packed archives.

The default value for the URLSs attribute is depl oy/ which means that any SARS, EARs, JARs, WARS, RARS,
etc. dropped into the ser ver / <name>/ depl oy directory will be automatically deployed and watched for updates.

Example URLs include:

e deploy/ scans ${j boss. server. url}/depl oy/, which is local or remote depending on the URL used to
boot the server

» ${jboss.server.home.dir}/deploy/ scans ${jboss.server.home.dir)/deploy, which is always local
» file/var/opt/myapp.ear deploys nyapp. ear from alocal location

« file/var/opt/apps/ scans the specified directory

e http://www.test.com/netboot/myapp.ear deploys nyapp. ear from aremote location

e http://www.test.com/netboot/apps/ scans the specified remote location using WebDAV. This will only
work if the remote http server supports the WebDAV PROPFIND command.

e ScanPeriod: Thetimein milliseconds between runs of the scanner thread. The default is 5000 (5 seconds).

e« URLComparator: The class name of aj ava. util . Conpar at or implementation used to specify a deployment
ordering for deployments found in a scanned directory. The implementation must be able to compare two
java.net.URL objects passed to its compare method. The default setting is the
org. j boss. depl oynent . Depl oynent Sort er class which orders based on the deployment URL suffix. The or-
dering of suffixes is: depl oyer, depl oyer. xm , sar, rar, ds. xm , servi ce. xnl , har, jar, war, wsr, ear, zip,
bsh, | ast.

An aternate implementation is the or g. j boss. depl oynent . scanner . Pref i xDepl oyment Sort er class. This or-

JBoss Release 2 53

The JBoss IM X Microkernel

ders the URLs based on numeric prefixes. The prefix digits are converted to an int (ignoring leading zeroes),
smaller prefixes are ordered ahead of larger numbers. Deployments that do not start with any digits will be de-
ployed after all numbered deployments. Deployments with the same prefix value are further sorted by the De-
pl oynent Sort er logic.

e Filter: The class name of ajava.io. Fil eFilter implementation that is used to filter the contents of scanned
directories. Any file not accepted by this filter will not be deployed. The default is
org. j boss. depl oynent . scanner . Depl oynent Fi | ter which is an implementation that rejects the following
patterns:

u#*u, II%II’ ||' *ll, II. *||1 ||_$*u, u*#u, II*$II’ Il*%l, ll*. BAK", ll*. Ol d“, ||*. Orl gll, ||*. re] II’ ||*' bak", ll*. Sh", ll*’ V“,

"x-" " make. state”,". nse_depi nfo", "cvs", "Cvs. adni n", "RCS", "RCSLOG', "SCCS", "TAGS", "core", "t ags"

» RecursiveSearch: This property indicates whether or not deploy subdirectories are seen to be holding deploy-
able content. If thisis false, deploy subdirectories that do not contain adot (.) in their name are seen to be un-
packaged JARs with nested subdeployments. If true, then deploy subdirectories are just groupings of deploy-
able content. The difference between the two views shows is related to the depth first deployment model JBoss
supports. The false setting which treats directories as unpackaged JARs with nested content triggers the deploy-
ment of the nested content as soon as the JAR directory is deployed. The true setting simply ignores the direct-
ory and adds its content to the list of deployable packages and calculates the order based on the previous filter
logic. The default istrue.

e Deployer: The IMX bj ect Nane string of the MBean that implements the or g. j boss. depl oynent . Depl oyer
interface operations. The default setting is to use the Mai nDepl oyer created by the bootstrap startup process.

1.4.3. Writing JBoss MBean Services

Writing a custom MBean service that integrates into the JBoss server requires the use of the
org. j boss. syst em Servi ce interface pattern if the custom service is dependent on other services. When a custom
MBean depends on other MBean services you cannot perform any service dependent initialization in any of the
j avax. managenent . MBeanRegi strati on interface methods since JIMX has no dependency notion. Instead, you
must manage dependency state using the Ser vi ce interface creat e and/or st art methods. Y ou can do this using
any one of the following approaches:

e Add any of the servi ce methods that you want called on your MBean to your MBean interface. This allows
your MBean implementation to avoid dependencies on JBoss specific interfaces.

* Haveyour MBean interface extend the or g. j boss. syst em Servi ce interface.

e Have your MBean interface extend the or g. j boss. syst em Servi ceMBean interface. This is a subinterface of
org. j boss. syst em Servi ce that adds get Nane() , get State(), get StateStri ng() methods.

Which approach you choose depends on whether or not you want your code to be coupled to JBoss specific code. If
you don't, then you would use the first approach. If you don't care about dependencies on JBoss classes, the
simplest approach is to have your MBean interface extend from org. j boss. syst em Servi ceMBean and your
MBean implementation class extend from the abstract or g. j boss. syst em Servi ceMBeanSupport class. This class
implements the or g. j boss. syst em Servi ceMBean interface. Servi ceMBeanSupport provides implementations of
thecreate, start, st op, and dest r oy methods that integrate logging and JBoss service state management tracking.
Each method delegates any subclass specific work to creat eServi ce, start Service, stopService, and des-

JBoss Release 2 54

The JBoss IM X Microkernel

t roySer vi ce methods respectively. When subclassing Ser vi ceMBeanSuppor t, you would override one or more of
thecr eat eSer vi ce, st art Servi ce, st opSer vi ce, and dest r oySer vi ce methods as required

1.4.3.1. A Standard MBean Example

This section develops a simple MBean that binds a Hashmap into the JBoss INDI namespace at a location determ-
ined by its Jndi Nane attribute to demonstrate what is required to create a custom MBean. Because the MBean uses
JNDI, it depends on the JBoss naming service MBean and must use the JBoss M Bean service pattern to be notified
when the naming service is available.

Version one of the classes, shown in Example 1.14, is based on the service interface method pattern. This version
of the interface declares the st art and st op methods needed to start up correctly without using any JBoss-specific
classes.

Example 1.14. INDIM apM Bean interface and implementation based on the service interface method pattern

package org.j boss. book. j nx. ex1;

/1 The JNDI Map MBean interface
i mport j avax. nam ng. Nam ngExcepti on;

public interface JND MapMBean

{
public String getJndi Nane();
public void setJndi Nane(String jndi Name) throws Nam ngExcepti on;
public void start() throws Exception;
public void stop() throws Exception;
}

package org.j boss. book. j nx. ex1;

/1 The JNDI Map MBean i npl enent ati on

i mport java.util.HashMap;

i mport javax.nam ng. I nitial Context;

i mport javax. nam ng. Name;

i mport javax. nam ng. Nam ngExcepti on;

i mport org.jboss. nam ng. NonSeri al i zabl eFact ory;

public class JNDI Map inpl enents JNDI MapMBean

{
private String jndi Name;
private HashMap context Map = new HashMap();
private bool ean started;

public String getJndi Name()
{

}
public void setJndi Nane(String jndi Name) throws Nami ngException

{

return jndi Nane;

String ol dNane = this.jndi Name;
thi s.jndi Nane = j ndi Nane;
if (started) {
unbi nd(ol dNane) ;
try {
rebi nd();
} catch(Exception e) {
Nam ngExcepti on ne = new Nam ngException("Fail edto update jndi Nanme");
ne. set Root Cause(e);
t hr ow ne;

JBoss Release 2 55

The JBoss IM X Microkernel

}
}
}
public void start() throws Exception
{
started = true;
rebi nd();
}
public void stop()
{
started = fal se;
unbi nd(j ndi Nan®e) ;
}
private void rebind() throws Nam ngException
{
Initial Context rootCtx = new Initial Context();
Name ful |l Name = root Ct x. get NamePar ser ("") . parse(j ndi Nane) ;
System out . println("full Name="+f ul | Nane) ;
NonSeri al i zabl eFact ory. rebi nd(ful | Nane, contextMap, true);
}
private void unbind(String jndi Nane)
{
try {
Initial Context rootCtx = new Initial Context();
root ¢t x. unbi nd(j ndi Nane) ;
NonSeri al i zabl eFact ory. unbi nd(j ndi Nane) ;
} cat ch(Nam ngException e) {
e.printStackTrace();
}
}

Version two of the classes, shown in Example 1.14, use the JB0oss Ser vi ceMBean interface and Ser vi ceMBeanSup-

port class. In this version, the implementation class extends the Servi ceMBeanSupport class and overrides the
start Servi ce and st opSer vi ce methods. JNDI MapMBean also implements the abstract get Name method to return a
descriptive name for the MBean. The JNDI MapMBean interface extends the or g. j boss. syst em Ser vi ceMBean inter-
face and only declares the setter and getter methods for the Jndi Narre attribute because it inherits the service life
cycle methods from Ser vi ceMBean. Thisisthe third approach mentioned at the start of the Section 1.4.2.

Example 1.15. INDIMap MBean interface and implementation based on the ServiceM Bean interface and
ServiceM BeanSupport class

package org.j boss. book. j nx. ex2;

/1 The JNDI Map MBean interface
i mport javax. nam ng. Nam ngExcepti on;

public interface JND MapMBean extends org.jboss. system Servi ceMBean

{
public String getJndi Nane();

public void setJndi Name(String jndi Nane) throws Nam ngExcepti on;

package org.j boss. book. j nx. ex2;
/1 The JNDI Map MBean i npl enent ati on

JBoss Release 2 56

The JBoss IM X Microkernel

i mport java.util.HashMap;

i mport javax.nam ng. I nitial Context;

i mport javax. nam ng. Name;

i mport javax. nam ng. Nam ngExcepti on;

i mport org.jboss. nam ng. NonSeri al i zabl eFact ory;

public class JNDI Map extends org.]jboss. system Servi ceMBeanSupport
i mpl enents JNDI MapMBean

{
private String jndi Name;
private HashMap context Map = new HashMap();
public String getJndi Nane()
{
return jndi Nane;
}
public void setJndi Name(String jndi Nane)
t hrows Nami ngExcepti on
{
String ol dNanme = this.jndi Naneg;
this.jndi Namre = j ndi Nane;
if (super.getState() == STARTED) {
unbi nd(ol dNan®) ;
try {
rebi nd();
} catch(Exception e) {
Nami ngExcepti on ne = new Nam ngException("Failed to update jndi Nane");
ne. set Root Cause(e);
t hr ow ne;
}
}
}
public void startService() throws Exception
rebi nd();
}
public void stopService()
{
unbi nd(j ndi Nan®e) ;
}
private void rebind() throws Nam ngException
{
Initial Context rootCtx = new Initial Context();
Narme ful |l Name = root Ct x. get NamePar ser (""). parse(j ndi Nane) ;
| og.info("full Name="+ful | Nane);
NonSeri al i zabl eFact ory. rebi nd(ful | Name, context Map, true);
}
private void unbind(String jndi Nane)
{
try {
Initial Context rootCtx = new Initial Context();
r oot Ct x. unbi nd(j ndi Nan®e) ;
NonSeri al i zabl eFact ory. unbi nd(j ndi Nane) ;
} catch(Nam ngException e) {
log.error("Failed to unbind map", e);
}
}
}

JBoss Release 2

57

The JBoss IM X Microkernel

The source code for these MBeans aong with the service descriptors is located in the exanpl es/
src/ mai n/ or g/ j boss/ book/ j mx/ { ex1, ex2} directories.

The jboss-service.xml descriptor for the first version is shown below.

<l-- The SAR META-I| NF/j boss-service.xm descriptor -->
<server >
<nbean code="org.jboss. book.jnx. ex1. JNDI Map"
nane="chap2. ex1: servi ce=JNDI Map" >
<attribute name="Jndi Nane">i nnenory/ maps/ MapTest </ attri but e>
<depends>j boss: ser vi ce=Nam ng</ depends>
</ mbean>
</ server>

The INDIMap MBean binds a Hashvap object under the i nnenor y/ maps/ MapTest JNDI name and the client code
fragment demonstrates retrieving the HashMap object from the i nmenor y/ maps/ MapTest location. The correspond-
ing client code is shown below.

/1 Sanpl e | ookup code
Initial Context ctx = new Initial Context();
HashMap map = (HashMap) ctx. | ookup("i nnenory/ maps/ MapTest");

1.4.3.2. XMBean Examples

In this section we will develop a variation of the JNDI Map MBean introduced in the preceding section that exposes
its management metadata using the JBoss XM Bean framework. Our core managed component will be exactly the
same core code from the JNDI Map class, but it will not implement any specific management related interface. We
will illustrate the following capabilities not possible with a standard MBean:

» Theability to add rich descriptions to attribute and operations
» The ability to expose notification information
e Theability to add persistence of attributes

« Theability to add custom interceptors for security and remote access through atyped interface

1.4.3.2.1. Version 1, The Annotated JNDIMap XMBean

Let's start with a simple XMBean variation of the standard MBean version of the INDIMap that adds the descript-
ive information about the attributes and operations and their arguments. The following listing shows the j boss-
servi ce. xn descriptor and the j ndi map- xnbean1. xmi XMBean descriptor. The source can be found in the src/
mai n/ or g/ j boss/ book/ j mx/ xmbean directory of the book examples.

<?xm version='1.0" encodi ng=' UTF-8" ?>
<I DOCTYPE server PUBLIC
"-//JBoss//DID MBean Service 3.2//EN'
"http://ww.jboss. org/j2ee/dtd/jboss-service_3_2.dtd">
<server >
<nbean code="org.j boss. book. j nx. xnbean. JNDI Map"
nanme="chap2. xnbean: servi ce=JNDI Map"
xnmbean- dd=" META- | NF/ j ndi map- xnbean. xm ">
<attri bute name="Jndi Narme" >i nnmenory/ maps/ MapTest </ attri but e>
<depends>j boss: servi ce=Nami ng</ depends>
</ nbean>

JBoss Release 2 58

The JBoss IM X Microkernel

</ server>

<?xm version="1.0" encodi ng="UTF-8""?>
<! DOCTYPE nbean PUBLI C
"-//JBoss// DTD JBOSS XMBEAN 1. 0//EN'
"http://ww. jboss. org/j2ee/dtd/jboss_xnbean_1 0.dtd">
<mbean>
<descri pti on>The JNDI Map XMBean Exanpl e Version 1</description>
<descri ptors>
<persi stence persistPolicy="Never" persistPeriod="10"
persi st Locati on="dat a/ JNDI Map. dat a" per si st Nane="JNDI Map"/ >
<currencyTineLimt val ue="10"/>
<state-action-on-update val ue="keep-runni ng"/>
</ descri pt or s>
<cl ass>org. j boss. test.jnx. xnmbean. JNDI Map</ cl ass>
<const ructor >
<descri pti on>The default constructor</description>
<nanme>JNDI Map</ nanme>
</ const ruct or >
<I-- Attributes -->
<attribute access="read-wite" getMet hod="getJndi Nane" set Met hod="set Jndi Nane" >
<descri pti on>
The location in JNDI where the Map we nmanage wi |l be bound
</ descripti on>
<nane>Jndi Nane</ nane>
<type>j ava. | ang. Stri ng</type>
<descri pt or s>
<defaul t val ue="i nnenory/ maps/ MapTest "/ >
</ descri ptors>
</attribute>
<attribute access="read-wite" get Method="getlnitial Val ues"
set Met hod="set | ni ti al Val ues" >
<descri ption>The array of initial values that will be placed into the
map associated with the service. The array is a collection of
key,value pairs with elenents[O0,2,4,...2n] being the keys and
elements [1,3,5,...,2n+1] the associated val ues. The
"[Ljava.lang. String;" type signature is the VMrepresentation of the
java.lang. String[] type. </description>
<nane>| ni ti al Val ues</ name>
<type>[Ljava.lang. String; </type>
<descri ptors>
<defaul t val ue="keyO, val ue0"/>
</ descri pt or s>
</attribute>
<l-- Operations -->
<oper ati on>
<descri ption>The start |ifecycle operation</description>
<nane>st ar t </ nanme>
</ operation>
<oper ati on>
<descri ption>The stop |ifecycle operation</description>
<name>st op</ nanme>
</ operati on>
<operation inpact="ACTlI ON'>
<descri ption>Put a value into the map</description>
<name>put </ name>
<par anet er >
<descri pti on>The key the value will be store under</description>
<nane>key</ name>
<type>j ava. | ang. Obj ect </t ype>
</ par anet er >
<par anet er >
<descri pti on>The val ue to place into the map</description>
<nane>val ue</ nanme>
<type>j ava. | ang. Qbj ect </t ype>

JBoss Release 2

59

The JBoss IM X Microkernel

</ par anet er >
</ operati on>
<operation inpact="1NFO'>
<descri pti on>Get a value from the map</description>
<nane>get </ name>
<par anet er >
<description>The key to | ookup in the map</description>
<name>get </ name>
<type>j ava. | ang. Obj ect </t ype>
</ par anet er >
<return-type>java. | ang. Obj ect </ return-type>
</ operati on>
<I-- Notifications -->
<noti fication>
<descri ption>The notification sent whenever a value is get into the map
managed by the service</description>
<nane>j avax. managenent . Noti fi cati on</ nane>
<notification-type>org.jboss. book.jnx.xnbean. JNDI Map. get </ noti fi cati on-type>
</notification>
<notificati on>
<descri ption>The notification sent whenever a value is put into the map
managed by the service</description>
<nane>j avax. managenent . Noti fi cati on</ name>
<notification-type>org.jboss. book.jnmx.xnmbean. JNDI Map. put</notification-type>
</notification>
</ nbean>

Y ou can build, deploy and test the XM Bean as follows:

[exanpl es] $ ant -Dchap=j nx - Dex=xnbeanl run-exanpl e

run- exanpl exnbeanl:
[java] JNDI Map O ass: org.]j boss. nx. nodel mbean. XMBean
[java] JNDI Map Qperati ons:
[java] + void start()
[java] + void stop()
[java]l] + void put(java.lang. Object chap2. xnbean: servi ce=JNDI Map, j ava. | ang. Qbj ect
chap2. xnmbean: servi ce=JNDI Map)

[java] + java.lang. Object get(java.lang. Cbject chap2. xnbean: servi ce=JNDI Map)

[java] nane=chap2. xnmbean: servi ce=JNDI Map

[java] listener=org.jboss. book.jnx.xnbean. Test XMBean1$Li st ener @ 38cf 0

[java] key=keyO, val ue=val ue0

[java]l handl eNotification, event: javax.nanagenment.Notificati on[source=chap2.xnbean:
servi ce=JNDI Map] [t ype=or g. j boss. book. j nx. xmbean. JNDI Map. put] [nessage=]

[java] JNDI Map. put (keyl, val uel) successfu

[java] handl eNotification, event: javax.managenent. Notifi cation[source=chap2. xnmbean
servi ce=JNDI Map] [t ype=or g. j boss. book. j nx. xnbean. JNDI Map. get] [nessage=]

[java] JNDI Map. get (keyO): nul

[java] handl eNotification, event: javax.nanagement.Notification[source=chap2.xnbean:
servi ce=JNDI Map] [t ype=or g. j boss. book. j nx. xmbean. JNDI Map. get] [nessage=]

[java] JNDI Map. get (keyl): val uel

[java]l handl eNotification, event: javax.managenent. Notification[source=chap2.xnbean
servi ce=JNDI Map] [t ype=or g. j boss. book. j nx. xnmbean. JNDI Map. put] [nessage=]

[java] handl eNotification, event: javax.managenent.AttributeChangeNotification[source
=chap2. xmbean: servi ce=JNDI Map] [t ype=j nx. attri but e. change] [message=I ni ti al Val ues
changed from javax. managenent. Attri bute@2a72a to
j avax. management . Attri but e@cdb96]

The functionality islargely the same as the Standard MBean with the notable exception of the IMX natifications. A
Standard MBean has no way of declaring that it will emit notifications. An XMBean may declare the notifications
it emits using notification elements as is shown in the version 1 descriptor. We see the notifications from the get
and put operations on the test client console output. Note that there isalso an j mx. attri but e. change notifi ca-

JBoss Release 2 60

The JBoss IM X Microkernel

ti on emitted when the | ni ti al Val ues attribute was changed. This is because the Model MBean interface extends the
Model MBeanNot i fi cati onBroadcast er Which SUPpOrtS At t ri but eChangeNot i fi cati onLi st eners.

The other magjor difference between the Standard and XMBean versions of INDIMap is the descriptive metadata.
Look at the chap2. xnbean: ser vi ce=IJNDI Map in the IMX Console, and you will see the attributes section as shown
in Figure 1.18.

T

4 MBean Inspector - Mozilla =X
! File Edit Wiew Go Bockmarks Tools Window Help

@ |% http:,fflocalhost:8080fjm}<—c0hsoleﬂ—|tmIAdaptor?action=in5pech'v’|Bs®| @ @o

" @Home @Bookmarks

@ | Q@ MBean Ingpector] ®
MBean View =
MBean Name: Domain Name: chap2.xmbean
service: INDIMap

MBean Java Class: org.jboss. mx modelmbean. XMBean

Back to Agent View Refresh MBeah View

MBean description:

The INDIMap *MBean Example Version 1

List of MBean attributes:

Name Tvpe Access Value Description

SO | —————— The location in INDI where the Map we
manage will be bound

IndiName java.lang. String

The array of initial values that will be
placed into the map associated with the
—|service, The array is a collection of

InitialValues [Ljava.lang. String; [RW (fexl0valield Nkey,value pairs with elements[0,2,4,...2n]
being the keys and elements
[1,3,5,...,2n+1] the associated values
Apply Changes
Q@@-® & | Dore | [

Figure 1.18. The Version 1 INDIMapXM Bean jmx-console view

Notice that the IMX Console now displays the full attribute description as specified in the XMBean descriptor
rather than MBean Attri bute text seen in standard MBean implementations. Scroll down to the operations and you
will also see that these now also have nice descriptions of their function and parameters.

1.4.3.2.2. Version 2, Adding Persistence to the JNDIMap XMBean

In version 2 of the XMBean we add support for persistence of the XMBean attributes. The updated XMBean de-
ployment descriptor is given below.

JBoss Release 2 61

The JBoss IM X Microkernel

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE nbean PUBLI C
"-//JBoss// DTD JBOSS XMBEAN 1.0//EN'
"http://ww. jboss. org/j2ee/dtd/jboss_xnmbean_1 0. dtd">
<nmbean>
<descri pti on>The JNDI Map XMBean Exanpl e Version 2</description>
<descri pt or s>
<persi stence persistPolicy="0OnUpdat e" persistPeriod="10"
per si st Locat i on="${j boss. server.data.dir}" persistNane="JNDI Map. ser"/>
<currencyTi neLimt val ue="10"/>
<st at e- acti on- on-updat e val ue="keep-runni ng"/>
<per si st ence- manager val ue="org.j boss. nx. persi st ence. Cbj ect St r eanPer si st enceManager "/ >
</ descri pt or s> <cl ass>org. j boss. test. | nx. xnbean. JNDI Map</ cl ass>
<constructor >
<descri pti on>The default constructor</description>
<nane>JNDI Map</ nane>
</ const ructor >
<I-- Attributes -->
<attribute access="read-wite" getMet hod="getJndi Nane" set Met hod="set Jndi Nane" >
<descri pti on>
The location in JNDI where the Map we manage will be bound
</ descri ption>
<nane>Jndi Nane</ nane>
<type>j ava. |l ang. Stri ng</type>
<descri ptors>
<def aul t val ue="i nnenory/ maps/ MapTest "/ >
</ descri pt or s>
</attribute>
<attribute access="read-wite" get Method="getlnitial Val ues"
set Met hod="set | ni ti al Val ues" >
<descri ption>The array of initial values that will be placed into the
map associated with the service. The array is a collection of
key,value pairs with elenents[O0,2,4,...2n] being the keys and
elenents [1,3,5,...,2n+1] the associ ated val ues</descri pti on>
<nane>| ni ti al Val ues</ nanme>
<type>[Ljava.lang. String; </type>
<descri ptors>
<def aul t val ue="keyO, val ue0"/ >
</ descri pt or s>
</attribute>
<I-- Operations -->
<operati on>
<descri ption>The start |ifecycle operation</description>
<nane>st art </ nanme>
</ operation>
<operati on>
<descri ption>The stop |ifecycle operation</description>
<nane>st op</ nanme>
</ operati on>
<operation inpact="ACTI ON'>
<descri ption>Put a value into the nap</description>
<name>put </ name>
<par anet er >
<descri pti on>The key the value will be store under</description>
<nanme>key</ name>
<type>j ava. | ang. Obj ect </t ype>
</ par anet er >
<par anet er >
<descri pti on>The val ue to place into the map</description>
<nane>val ue</ nanme>
<type>j ava. | ang. Obj ect </ type>
</ par anet er >
</ operation>
<operation inpact="1NFO' >
<description>Get a value fromthe map</description>
<name>get </ nanme>

JBoss Release 2 62

The JBoss IM X Microkernel

<par anet er >
<descri pti on>The key to | ookup in the map</description>
<nane>get </ name>
<type>j ava. | ang. Obj ect </t ype>
</ par anet er >
<return-type>java.l ang. Obj ect</return-type>
</ operation>
<I-- Notifications -->
<noti fication>
<descri ption>The notification sent whenever a value is get into the map
managed by the service</description>
<nane>j avax. managenent . Noti fi cati on</ nane>
<noti fication-type>org.]jboss. book. | m. xnbean. JNDI Map. get </ noti fi cati on-type>
</ notification>
<noti fication>
<descri ption>The notification sent whenever a value is put into the map
managed by the service</description>
<nane>j avax. managenent . Noti fi cati on</ nane>
<noti fication-type>org.]jboss. book. | mx. xnbean. JNDI Map. put </ noti fi cati on-type>
</notification>
</ nbean>

Build, deploy and test the version 2 XMBean as follows:

[exanpl es] $ ant -Dchap=j nx - Dex=xnbean2 - Dj boss. depl oy. conf =rm - adapt or run-exanpl e

r un- exanmpl exnbean2:

[java] JNDI Map O ass: org.jboss. nx. nbdel mbean. XMBean

[java] JNDI Map Operati ons:

[java] + void start()

[java] + void stop()

[java] + void put(java.lang. Object chap2. xnbean: servi ce=JNDI Map, j ava. | ang. Cbj ect cha
p2. xmbean: ser vi ce=JNDI Map)

[java] + java.lang. Object get(java.lang. Object chap2. xnbean: servi ce=JNDI Map)

[java] + java.lang. String getJndi Name()

[java] + void setJndi Nane(java.l ang. String chap2. xnbean: servi ce=JNDI Map)

[java]l] + [Ljava.lang.String; getlnitial Values()

[java] + void setlnitialValues([Ljava.lang. String; chap2.xnbean: servi ce=JNDI Map)

[java] handl eNotification, event: nul

[java] key=keyl10, val ue=val uel0

[java] handl eNotification, event: javax.nmanagenent. Notifi cati on[source=chap2. xnbean:s
ervi ce=JNDI Map, t ype=or g. j boss. chap2. xnbean. JNDI Map. put, sequenceNunber =7, ti neSt anp=10986326
93716, message=nul | , user Dat a=nul |]

[java] JNDI Map. put (keyl, val uel) successfu

[java] handl eNotification, event: javax.managenent.Notification[source=chap2.xnbean:s
ervi ce=JNDI Map, t ype=or g. j boss. chap2. xnbean. JNDI Map. get, sequenceNunber =8, ti neSt anp=10986326
93857, message=nul | , user Dat a=nul |]

[java] JNDI Map. get (keyO): nul

[java] handl eNotification, event: javax.managenent.Notification[source=chap2.xnbean:s
ervi ce=JNDI Map, t ype=or g. j boss. chap2. xnbean. JNDI Map. get, sequenceNunber =9, ti neSt anp=10986326
93896, nessage=nul | , user Dat a=nul |]

[java] JNDI Map. get (keyl): val uel

[java] handl eNotification, event: javax.managenent.Notification[source=chap2.xnbean:s
ervi ce=JNDI Map, t ype=or g. j boss. chap2. xnmbean. JNDI Map. put , sequenceNunber =10, ti neSt anp=1098632
693925, nessage=nul | , user Dat a=nul |]

There is nothing manifestly different about this version of the XMBean at this point because we have done nothing
to test that changes to attribute value are actually persisted. Perform this test by running example xmbean2a several

times:

[exanpl es] ant -Dchap=j nx - Dex=xnmbean2a run-exanpl e

JBoss Release 2

The JBoss IM X Microkernel

[java] Initial Val ues.| ength=2
[java] key=keyl10, val ue=val uel0

[exanpl es] ant -Dchap=j nx - Dex=xnmbean2a run-exanpl e

[java] Initial Val ues. | ength=4
[java] key=keyl10, val ue=val uel0
[java] key=key2, val ue=val ue2

[exanpl es] ant -Dchap=j mx - Dex=xmbean2a run-exanpl e

[java] Initial Val ues. | ength=6
[java] key=key10, val ue=val uelO
[java] key=key2, val ue=val ue2
[java] key=key3, val ue=val ue3

The org. j boss. book. j mx. xnbean. Test XMBeanRest art Used in this example obtains the current | ni ti al Val ues
attribute setting, and then adds another key/value pair to it. The client code is shown below.

package org.j boss. book. j nx. xnbean;
i nport javax. managenent. Attri bute;
i mport javax. managenent. Obj ect Naneg;
i mport javax. nami ng. | nitial Context;

i mport org.jboss.jnx.adaptor.rm .RM Adapt or;

*

/
A client that denonstrates the persistence of the xmbean
attributes. Every time it run it |ooks up the Initial Val ues
attribute, prints it out and then adds a new key/value to the
list.

@ut hor Scott. Stark@ boss. org
@ersion $Revision: 1.2 $

L S R T R R

~

public class Test XMBeanRest art

{
/**
* @aram args the command |ine argunents
*/
public static void main(String[] args) throws Exception
{

Initial Context ic
RM Adapt or server

new | nitial Context();
(RM Adaptor) ic.lookup("jm/rm/RM Adaptor");

/1 Get the InitialValues attribute
bj ect Nane name = new Obj ect Nane(" chap2. xnbean: servi ce=JNDI Map") ;
String[] initialValues = (String[])

server.getAttribute(nane, "lInitial Val ues");
System out. println("lnitialVal ues.|ength="+initial Val ues. | ength);
int length = initialValues.|ength;

for (int n =0; n<length; n +=2) {
String key = initial Values[n];
String value = initialVal ues[n+1];

System out. printl n("key="+key+", val ue="+val ue);
}
/1 Add a new key/val ue pair
String[] newnitial Val ues = new String[| engt h+2];
System arraycopy(initial Val ues, 0, new nitial Val ues,

JBoss Release 2 64

The JBoss IM X Microkernel

0, length);
newl ni tial Val ues[| ength] = "key"+(Iength/2+1);
new ni ti al Val ues[| engt h+1] = "val ue"+(| engt h/ 2+1) ;

Attribute ivalues = new
Attribute("InitialValues", newinitial Val ues);
server.setAttribute(nane, ivalues);

At this point you may even shutdown the JBoss server, restart it and then rerun the initial example to see if the
changes are persisted across server restarts:

[exanpl es] $ ant -Dchap=j mx - Dex=xnbean2 run-exanpl e

r un- exanpl exnbean2:

[java] JNDI Map Cl ass: org.j boss. nx. nodel mbean. XMBean

[java] JNDI Map QOperati ons:

[java]l] + void start()

[java] + void stop()

[java]l] + void put(java.lang. Object chap2. xnmbean: servi ce=JNDI Map, j ava. | ang. bj ect cha
p2. xmbean: ser vi ce=JNDI Map)

[java] + java.lang.Object get(java.lang. Object chap2. xnbean: servi ce=JNDI Map)

[java] + java.lang. String getJndi Name()

[java]l] + void setJndi Name(java.l ang. String chap2. xnbean: ser vi ce=JNDI Map)

[java]l] + [Ljava.lang.String; getlnitial Values()

[java]l] + void setlnitialValues([Ljava.lang. String; chap2.xnmbean: servi ce=JNDI Map)

[java] handl eNotification, event: null

[java] key=key10, val ue=val uelO

[java] key=key2, val ue=val ue2

[java] key=key3, val ue=val ue3

[java] key=key4, val ue=val ue4

[java] handl eNotification, event: javax.nmanagenent. Notifi cation[source=chap2. xnbean:s
ervi ce=JNDI Map, t ype=or g. j boss. book. j nx. xnbean. JNDI Map. put, sequenceNunber =3, t i neSt anp=10986
33664712, nessage=nul | , user Dat a=nul |]

[java] JNDI Map. put (keyl, val uel) successful

[java] handl eNotification, event: javax.managenent. Notifi cation[source=chap2. xnbean:s
ervi ce=JNDI Map, t ype=or g. j boss. book. j nx. xnbean. JNDI Map. get, sequenceNunber =4, t i neSt anp=10986
33664821, nessage=nul | , user Dat a=nul |]

[java] JNDI Map. get (keyO): null

[java] handl eNotification, event: javax.managenent. Notifi cation[source=chap2. xnbean:s
ervi ce=JNDI Map, t ype=or g. j boss. book. j nx. xnbean. JNDI Map. get, sequenceNunber =5, t i neSt anp=10986
33664860, nessage=nul | , user Dat a=nul |]

[java] JNDI Map. get (keyl): val uel

[java] handl eNotification, event: javax.managenment. Notifi cation[source=chap2. xnbean:s
ervi ce=JNDI Map, t ype=or g. j boss. book. j mx. xnmbean. JNDI Map. put, sequenceNunber =6, t i meSt anp=10986
33664877, message=nul | , user Dat a=nul |]

[java] handl eNotification, event: javax.managenent.Notification[source=chap2.xnbean:s
ervi ce=JNDI Map, t ype=or g. j boss. book. j nx. xnbean. JNDI Map. put, sequenceNunber =7, t i meSt anp=10986
33664895, message=nul | , user Dat a=nul |]

[java] handl eNotification, event: javax.managenment. Notifi cation[source=chap2. xnmbean:s
ervi ce=JNDI Map, t ype=or g. j boss. book. j nx. xnbean. JNDI Map. put , sequenceNunber =8, t i neSt anp=10986
33664899, nessage=nul | , user Dat a=nul |]

[java] handl eNotification, event: javax.managenent.Notification[source=chap2.xnbean:s
ervi ce=JNDI Map, t ype=or g. j boss. book. j nx. xnbean. JNDI Map. put, sequenceNunber =9, t i meSt anp=10986
33665614, message=nul | , user Dat a=nul |]

You seethat thelast I ni ti al val ues attribute setting isin fact visible.

1.4.4. Deployment Ordering and Dependencies

JBoss Release 2 65

The JBoss IM X Microkernel

We have seen how to manage dependencies using the service descriptor depends and depends-1i st tags. The de-
ployment ordering supported by the deployment scanners provides a coarse-grained dependency management in
that there is an order to deployments. If dependencies are consistent with the deployment packages then thisis a
simpler mechanism than having to enumerate the explicit MBean-MBean dependencies. By writing your own fil-
ters you can change the coarse grained ordering performed by the deployment scanner.

When a component archive is deployed, its nested deployment units are processed in a depth first ordering. Struc-
turing of componentsinto an archive hierarchy isyet another way to manage deployment ordering.Y ou will need to
explicitly state your MBean dependencies if your packaging structure does not happen to resolve the dependencies.
Let's consider an example component deployment that consists of an MBean that uses an EJB. Here is the structure
of the example EAR.

out put/j nx/j nx- ex3. ear

+- META- | NF/ MANI FEST. MF

+- META- | NF/ j boss- app. xmi

+- jnx-ex3.jar (archive) [EIB jar]

| +- META-I NF/ MANI FEST. MF

| +- META-INF/ ejb-jar.xm

| +- org/jboss/book/jnx/ex3/ EchoBean. cl ass

| +- org/jboss/book/jnx/ex3/EchoLocal . cl ass

| +- org/jboss/book/jnx/ex3/ EchoLocal Hone. cl ass
+- jnx-ex3.sar (archive) [MBean sar]
I

I

I

+

+ +

+- NMETA- | NF/ MANI FEST. M-

+- META- | NF/ j boss-servi ce. xni

+- org/jboss/book/j nx/ ex3/ Ej bMBeanAdapt or . cl ass
- META- | NF/ appl i cati on. xm

The EAR contains aj nx- ex3.jar and j mx- ex3. sar. Thej mx-ex3.j ar isthe EJB archive and the j nx- ex3. sar is
the MBean service archive. We have implemented the service as a Dynamic MBean to provide an illustration of
their use.

package org.j boss. book. j nx. ex3;

i mport java.lang.refl ect. Method;

i mport javax.ejb. Creat eExcepti on;

i mport javax.nmanagenent. Attri bute;

i mport javax.managenent. Attri buteLi st;

i mport javax.nmanagenent. Attri but eNot FoundExcepti on;
i mport j avax. managenent. Dynanmi cMBean;

i mport javax.managenent. | nval i dAttri buteVal ueExcepti on;
i mport javax. managenent. JMRunti meExcepti on;

i mport javax.managenent. MBeanAttri but el nf o;

i mport j avax. managenent . MBeanConst r uct or | nf o;

i mport j avax. managenent. MBeanl nf o;

i mport javax. managenent. MBeanNoti fi cati onl nf o;

i mport j avax. managenent . MBeanOper at i onl nf o;

i mport javax.nmanagenent. MBeanExcepti on;

i mport j avax.managenent. MBeanSer ver ;

i mport javax. managemnent. Obj ect Naneg;

i mport javax.managenent. Refl ecti onExcepti on;

i mport javax.nam ng. | nitial Context;

i mport javax. nam ng. Nam ngExcepti on;

i mport org.]jboss. system Servi ceMBeanSupport ;
/ *
An exanpl e of a Dynam cMBean that exposes select attributes and
operations of an EJB as an MBean.
@ut hor Scott. Stark@ boss. org
@ersion $Revision: 1.2 $

* % X * %

JBoss Release 2 66

The JBoss IM X Microkernel

=
public class Ej bMBeanAdapt or extends Servi ceMBeanSupport
i mpl enents Dynani cMBean
{

private String hell oPrefix;
private String ej bJndi Nane;
private EcholLocal Hone hore;

[** These are the nbean attributes we expose
*/
private MBeanAttributelnfo[] attributes = {
new MBeanAttri butel nfo("HelloPrefix", "java.lang.String",
"The prefix nessage to append to the session echo reply",
true, // isReadable
true, // isWitable
false), // isls
new MBeanAttri butel nfo("Ej bJndi Nane", "java.lang.String",
"The JNDI nanme of the session bean |ocal hone",
true, // isReadable
true, // isWitable
false) // isls
i
/**
* These are the nbean operati ons we expose
“f
private MBeanOperationlnfo[] operations;

/**

* \WW override this nethod to setup our echo operation info. It
* could also be done in a ctor.
&/
publ i ¢ Obj ect Name preRegi st er (MBeanServer server,
Ohj ect Name nane)
throws Exception

| og.info("preRegister notification seen");
operations = new MBeanOperati onl nfo[5] ;

Class thisC ass = getd ass();
Cl ass[] paraneterTypes = {String.cl ass};
Met hod echoMet hod =
thi sd ass. get Met hod("echo", paraneter Types);
String desc = "The echo op invokes the session bean echo nethod and”
+ " returns its value prefixed with the helloPrefix attribute val ue";
operations[0] = new MBeanOper ati onl nf o(desc, echoMet hod);

/1 Add the Service interface operations from our super class
par anet er Types = new C ass[0] ;
Met hod createMet hod =
thi sd ass. get Met hod("create", paraneterTypes);
operations[1] = new MBeanOper ati onl nfo(" The
JBoss Service.create", createMethod);
Met hod startMethod =
thi sC ass. get Met hod("start", paraneterTypes);
operations[2] = new MBeanOper ati onl nf o(" The
JBoss Service.start", startMethod);
Met hod st opMet hod =
thi sC ass. get Met hod(" st op", paraneter Types);
operations[3] = new MBeanOper ati onl nf o(" The
JBoss Service.stop", startMethod);
Met hod destroyMet hod =
thi sC ass. get Met hod(" destroy", paraneterTypes);
operations[4] = new MBeanOper ati onl nf o(" The
JBoss Service. destroy", startMethod);

JBoss Release 2

The JBoss IM X Microkernel

return nane;

}
/1 --- Begin ServiceMBeanSupport overides
protected void createService() throws Exception
{
log.info("Notified of create state");
}
protected void startService() throws Exception
{
log.info("Notified of start state");
Initial Context ctx = new Initial Context();
honme = (EcholLocal Hone) ctx. | ookup(ej bJndi Nane) ;
}
protected void stopService()
{
log.info("Notified of stop state");
}
/1l --- End ServiceMBeanSupport overides

public String getHelloPrefix()

{ return hel | oPrefix;

i)ubl ic void setHell oPrefix(String hell oPrefix)
{ this.helloPrefix = helloPrefix;

}

public String getE bJndi Nane()

{ return ej bdndi Name;

i)ubl ic void setE bdndi Nane(String ej bindi Nane)
i thi s. ej bdndi Nane = ej bJndi Nane;

public String echo(String arQg)
throws CreateException, Nam ngException

{
| og. debug(" Lookup EcholLocal Home@ +ej bJdndi Nane) ;
EchoLocal bean = hone.create();
String echo = helloPrefix + bean. echo(arg);
return echo;

}

/1 --- Begin Dynam cMBean interface nethods

/**

* Returns the managenent interface that describes this dynanc

* resource. It is the responsibility of the inplenentation to
* make sure the description is accurate.
*
* @eturn the managenent interface descriptor.
*/
publ i ¢ MBeanl nfo get MBeanl nf o()
{
String classnane = getCl ass().get Nane();
String description = "This is an MBean that uses a session bean in the"
+ " inplementation of its echo operation.";
MBeanl nfo[] constructors = null;
MBeanNot i ficationlnfo[] notifications = null;
JBoss Release 2 68

The JBoss IM X Microkernel

MBeanl nf o mbeanl nfo = new MBeanl nf o(cl assnane,
description, attributes,
constructors, operations,
notifications);

/1 Log when this is called so we know when in the

lifecycle this is used

Throwabl e trace = new Throwabl e("get MBeanl nfo trace");
| og.info("Don't panic, just a stack
trace", trace);
return mbeanl nf o;

}

/**

* Returns the value of the attribute with the nane matching the
* passed string.

*

* @aramattribute the nane of the attribute.

* @eturn the value of the attribute.

* @xception AttributeNot FoundExcepti on when there is no such
* attribute.

* @xcepti on MBeanException waps any error thrown by the

* resource when

* getting the attribute.

* @xception Reflecti onExcepti on waps any error invoking the
* resource.

*/

public Object getAttribute(String attribute)
throws Attri buteNot FoundExcepti on,
MBeanExcept i on,
Ref | ecti onExcepti on

oj ect value = null;
if (attribute.equal s("HelloPrefix")) {
val ue = get Hel | oPrefix();
} else if(attribute.equal s("E bJndi Nane")) ({
val ue = get Ej bindi Name() ;
} else {
throw new Attri but eNot FoundExcepti on(" Unknown
attribute("+attribute+") requested");

}

return val ue;

*

Returns the values of the attributes with names matching the
passed string array.

@aram attri butes the nanes of the attribute.
@eturn an {@ink AttributeList AttributeList} of nane
and val ue pairs.

L I G

~

public AttributelList getAttributes(String[] attributes)
{
AttributelList values = new AttributeList();
for (int a =0; a < attributes.length; a++) {
String nane = attributes[a];
try {
bj ect value = getAttribute(nane);
Attribute attr = new Attri bute(nanme, val ue);
val ues. add(attr);
} catch(Exception e) {
log.error("Failed to find attri bute: "+nane, e);
}
}

return val ues;

JBoss Release 2

The JBoss IM X Microkernel

/**

* Sets the value of an attribute. The attribute and new val ue
* are passed in the nanme value pair {@ink Attribute

* Attribute}.

*

* @ee javax. managenent. Attribute

*

* @aram attribute the nane and new val ue of the attribute.

* @xception AttributeNot FoundExcepti on when there is no such
* attribute.

* @xception |InvalidAttributeVal ueExcepti on when the new val ue
* cannot be converted to the type of the attribute.

* @xcepti on MBeanException waps any error thrown by the

* resource when setting the new val ue.

* @xception ReflectionException waps any error invoking the
* resource.

*

~

public void setAttribute(Attribute attribute)
throws AttributeNot FoundExcepti on,
I nval i dAttri but eVal ueExcepti on,
MBeanExcepti on,
Ref | ecti onExcepti on

{
String nane = attribute.get Nanme();
i f (nane.equal s("HelloPrefix")) {
String value = attribute. getValue().toString();
set Hel | oPrefi x(val ue);
} else if(name. equal s("E bJdndi Nane")) {
String value = attribute.getValue().toString();
set Ej bdndi Nane(val ue) ;
} else {
throw new Attri but eNot FoundExcepti on("Unknown attri bute("+nane+")
}
}
/**
* Sets the values of the attributes passed as an
* {@ink AttributeList AttributeList} of name and new
* val ue pairs.
*
* @aramattributes the name an new val ue pairs.
* @eturn an {@ink AttributeList AttributeList} of name and
* value pairs that were actually set.
*

~

public AttributeList setAttributes(AttributeList attributes)

{
AttributelList setAttributes = new AttributeList();
for(int a =0; a < attributes.size(); at+) {
Attribute attr = (Attribute) attributes.get(a);
try {
setAttribute(attr);
set Attributes. add(attr);
} catch(Exception ignore) {
}
}
return setAttri butes;
}
/**
* Invokes a resource operation.
*
* (@aram acti onNane the name of the operation to perform
* @aram parans the paraneters to pass to the operation.
* (@aramsignature the signartures of the paraneters.
*

@eturn the result of the operation.

requested");

JBoss Release 2

70

The JBoss IM X Microkernel

@xcepti on MBeanException waps any error thrown by the
resource when perform ng the operation.

resource.

/

publ i c Object

String[]

t hrows MBeanExcepti on,
Ref | ecti onExcepti on

bj ect

rtnValue = null;

| og. debug(" Begi n i nvoke,

try {

i f (actionNane. equal s("echo")) {
String arg = (String) parans[O0];
rtnVal ue = echo(a

| og. debug(" Resul t:

} else if

super .

} else if

super .

} else if

super .

} else if

super .

} else {

(acti onNane
create();
(acti onNane
start();
(acti onNane
stop();
(acti onNanme
destroy();

*
*
* @xception Reflecti onException waps any error invoking the
*
*

i nvoke(String actionNanme, Cbject[] parans,

si gnat ur e)

act i onNane="+act i onNane) ;

ra);

"+rtnVal ue) ;

.equal s("create")) {
.equal s("start")) {
.equal s("stop")) {

.equal s("destroy")) {

t hrow new JMRunt i neException("lnvalid state,
don't know about op="+acti onNane);

} catch(Exception e) {
throw new Refl ecti onException(e, "echo failed");

}

| og. debug("End i nvoke, ac
return rtnVal ue;

ti onNanme="+act i onNane) ;

End Dynam cMBean i nterface methods

Believeit or not, thisisavery trivial MBean. The vast mgjority of the code is there to provide the MBean metadata
and handle the callbacks from the MBean Server. This is required because a Dynamic MBean is free to expose
whatever management interface it wants. A Dynamic MBean can in fact change its management interface at
runtime simply by returning different metadata from the get MBean! nf o method. Of course, some clients may not be
happy with such a dynamic object, but the MBean Server will do nothing to prevent a Dynamic MBean from chan-
ging itsinterface.

There are two points to this example. First, demonstrate how an MBean can depend on an EJB for some of its func-
tionality and second, how to create MBeans with dynamic management interfaces. If we were to write a standard
MBean with a static interface for this example it would look like the following.

public interface Ej bMBeanAdapt or MBean

{
publ i
publ i
publ i
publ i
publ i
publ i
publ i

C
C
C
C
C
Cc
C

String getHelloPrefix();

voi d setHel |l oPrefix(String prefix);

String get Ej bdndi Nane() ;

voi d set Ej bdndi Nane(String jndi Nane) ;

String echo(String arg) throws CreateException, Nam ngException;
void create() throws Exception;

void start() throws Exception;

JBoss Release 2

71

The JBoss IM X Microkernel

public void stop();
public void destroy();

Moving to lines 67-83, this is where the MBean operation metadata is constructed. The echo(String), create(),
start(), stop() and destroy() operations are defined by obtaining the corresponding java.lang.reflect.Method
object and adding a description. Let's go through the code and discuss where this interface implementation exists
and how the MBean uses the EJB. Beginning with lines 40-51, the two MBeanAt t ri but el nf o instances created
define the attributes of the MBean. These attributes correspond to the get Hel | oPr ef i x/set Hel | oPref i x and get E-
j bandi Narre/set Ej bJndi Nane of the static interface. One thing to note in terms of why one might want to use a Dy-
namic MBean is that you have the ability to associate descriptive text with the attribute metadata. This is not
something you can do with a static interface.

Lines 88-103 correspond to the JBoss service life cycle callbacks. Since we are subclassing the Ser vi ceMBeanSup-
port utility class, we override the cr eat eSer vi ce, start Servi ce, and st opSer vi ce template callbacks rather than
thecreate, start, and st op methods of the service interface. Note that we cannot attempt to lookup the EchoLoc-
al Hone interface of the EJB we make use of until the st art Ser vi ce method. Any attempt to access the home inter-
face in an earlier life cycle method would result in the name not being found in INDI because the EJB container
had not gotten to the point of binding the home interfaces. Because of this dependency we will need to specify that
the MBean service depends on the EchoLocal EJB container to ensure that the service is not started before the EJB
container is started. We will see this dependency specification when we look at the service descriptor.

Lines 105-121 are the Hel | oPref i x and Ej bandi Nare attribute accessors implementations. These are invoked in re-
sponseto get At t ri but efset At t ri but e invocations made through the MBean Server.

Lines 123-130 correspond to the echo(String) operation implementation. This method invokes the EchoLoc-
al . echo(String) EJB method. The local bean interface is created using the EchoLocal Horre that was obtained in
the st art Ser vi ce method.

The remainder of the class makes up the Dynamic MBean interface implementation. Lines 133-152 correspond to
the MBean metadata accessor callback. This method returns a description of the MBean management interface in
the form of thej avax. management . MBeanl nf o object. Thisis made up of adescri pti on, the MBeanAt tri but el nfo
and MBeanOper at i onl nf o metadata created earlier, as well as constructor and notification information. This MBean
does not need any specia constructors or notifications so thisinformation is null.

Lines 154-258 handle the attribute access requests. This is rather tedious and error prone code so atoolkit or infra-
structure that helps generate these methods should be used. A Model MBean framework based on XML called
XBeans is currently being investigated in JBoss. Other than this, no other Dynamic MBean frameworks currently
exist.

Lines 260-310 correspond to the operation invocation dispatch entry point. Here the request operation action name
is checked against those the MBean handles and the appropriate method is invoked.

Thej boss-servi ce. xm descriptor for the MBean is given below. The dependency on the EJB container MBean is
highlighted in bold. The format of the EJB contaner MBean ObjectName is
“j boss. j 2ee: servi ce=EJB, j ndi Name=" + <hone-j ndi - name> wWhere the <home-jndi-name> is the EJB home in-
terface INDI name.

<server>
<nbean code="org.j boss. book. j nx. ex3. Ej bMBeanAdapt or "
nane="j boss. book: servi ce=Ej bMBeanAdapt or " >
<attribute name="Hel | oPrefix">AdaptorPrefix</attribute>

JBoss Release 2 72

The JBoss IM X Microkernel

<attri bute name="Ej bindi Nane" >l ocal / chap2. EchoBean</ attri but e>
<depends>j boss. j 2ee: servi ce=EJB,] ndi Nanme=| ocal / chap2. EchoBean</ depends>
</ nbean>
</ server>

Deploy the example ear by running:

[exanpl es] $ ant - Dchap=j mx -Dex=3 run-exanpl e

On the server console there will be messages similar to the following:

14:57: 12,906 I NFO [EARDeployer] Init J2EE application: file:/private/tnp/jboss-4.0.1/server/
def aul t/ depl oy/ chap2- ex3. ear
14:57: 13, 044 INFO [Ej bMBeanAdaptor] Don't panic, just a stack trace
java. |l ang. Thr owabl e: get MBeanl nfo trace
at org.jboss. book. j nx. ex3. Ej bMBeanAdapt or . get MBeanl nf o(Ej bMBeanAdapt or . j ava: 153)

14:57: 13,088 I NFO [Ej bMBeanAdaptor] preRegister notification seen
14:57: 13,093 I NFO [Ej bMBeanAdaptor] Don't panic, just a stack trace
j ava. |l ang. Throwabl e: get MBeanl nfo trace
at org.jboss. book. j nx. ex3. Ej bMBeanAdapt or . get MBeanl nf o(Ej bMBeanAdapt or . j ava: 153)

14:57: 13,117 INFO [E bMBeanAdaptor] Don't panic, just a stack trace
java. |l ang. Throwabl e: get MBeanl nfo trace
at org.jboss. book. j nx. ex3. Ej bMBeanAdapt or . get MBeanl nf o(Ej bMBeanAdapt or . j ava: 153)

14:57: 13, 140 WARN [Ej bMBeanAdapt or] Unexcepted error accessing MBeanlnfo for null
java. | ang. Nul | Poi nt er Excepti on
at org.jboss. system Servi ceMBeanSupport . post Regi st er (Servi ceMBeanSupport.java: 418)

14:57: 13, 203 I NFO [Ej bMBeanAdaptor] Don't panic, just a stack trace
java. |l ang. Throwabl e: get MBeanl nfo trace
at org.jboss. book. j nx. ex3. Ej bMBeanAdapt or . get MBeanl| nf o(Ej bMBeanAdapt or . j ava: 153)

14:57: 13, 232 INFO [Ej bMBeanAdaptor] Don't panic, just a stack trace
j ava. |l ang. Throwabl e: get MBeanl nfo trace
at org.jboss. book. j nx. ex3. Ej bMBeanAdapt or . get MBeanl| nf o(Ej bMBeanAdapt or . j ava: 153)

14:57: 13,420 I NFO [Ej bModul e] Depl oyi ng Chap2Echol nf oBean
14:57: 13, 443 I NFO [Ej bModul e] Depl oyi ng chap2. EchoBean
14:57: 13, 488 I NFO [Ej bMBeanAdaptor] Don't panic, just a stack trace
java. |l ang. Throwabl e: get MBeanl nfo trace
at org.jboss. book. j nx. ex3. Ej bMBeanAdapt or . get MBeanl| nf o(Ej bMBeanAdapt or . j ava: 153)

14:57: 13,542 I NFO [Ej bMBeanAdaptor] Don't panic, just a stack trace
java. |l ang. Thr owabl e: get MBeanl nfo trace
at org.jboss. book. j nx. ex3. Ej bMBeanAdapt or . get MBeanl nf o(Ej bMBeanAdapt or . j ava: 153)

14:57: 13,558 | NFO [Ej bMBeanAdaptor] Begi n i nvoke, acti onNane=create
14:57: 13,560 I NFO [Ej bMBeanAdaptor] Notified of create state
14:57: 13,562 | NFO [Ej bMBeanAdaptor] End invoke, actionNanme=create
14:57: 13,604 I NFO [E bMBeanAdaptor] Don't panic, just a stack trace
j ava. |l ang. Throwabl e: get MBeanl nfo trace
at org.jboss. book. j nx. ex3. Ej bMBeanAdapt or . get MBeanl nf o(Ej bMBeanAdapt or . j ava: 153)

14:57: 13,621 I NFO [Ej bMBeanAdaptor] Don't panic, just a stack trace
j ava. |l ang. Throwabl e: get MBeanl nfo trace
at org.jboss. book. j nx. ex3. Ej bMBeanAdapt or . get MBeanl| nf o(Ej bMBeanAdapt or . j ava: 153)
14:57: 13,641 I NFO [Ej bMBeanAdaptor] Begi n i nvoke, actionNanme=get State
14:57: 13,942 I NFO [Ej bMBeanAdaptor] Begin i nvoke, actionNane=start
14:57: 13,944 I NFO [Ej bMBeanAdaptor] Notified of start state
14:57: 13,951 INFO [Ej bMBeanAdaptor] Testing Echo
14:57: 13,983 I NFO [EchoBean] echo, info=echo info, arg=, arg=startService
14:57: 13,986 | NFO [Ej bMBeanAdaptor] echo(startService) = startService

JBoss Release 2

The JBoss IM X Microkernel

14:57: 13,988 I NFO [Ej bMBeanAdaptor] End invoke, acti onNane=start

14:57: 13,991 I NFO [EJBDepl oyer] Deployed: file:/tnp/jboss-4.0.5. GA/ server/default/tnp/depl oy
/ t np60550j nx- ex3. ear - cont ent s/ j nx- ex3. j ar

14:57: 14,075 I NFO [EARDepl oyer] Started J2EE appli cation:

The stack traces are not exceptions. They are traces coming from the Ej bMBeanAdapt or code to demonstrate that
clients ask for the MBean interface when they want to discover the MBean's capahilities. Notice that the EJB con-
tainer (lineswith [EjbModul€]) is started before the example M Bean (lines with [EjbM BeanAdaptor]).

Now, let's invoke the echo method using the JMX console web application. Go to the JIMX Console (ht-
tp://localhost:8080/jmx-console) and find the service=EjbMBeanAdaptor in the jboss.book domain. Click on the
link and scroll down to the echo operation section. The view should be like that shown in Figure 1.19.

wOA MBean Inspector

E] # A hitp: [flocalhost: 8080 /jmx-console/HtmlAdaptorfaction=inspectMI &)~ Q- Google i
I MBean Inspector F;=_— — =

List of MBean attributes:

HelloPrefix |java.lang.String|RW AdaptorPrefix The prefix message to append to
the session echo reply

EjbIlndiName|java.lang.String|[RW local/chap2.EchoBean The JNDI name of the session bean
local home

[Apply Changes _‘_'

List of MBean operations:

java.lang.String echo()

The echo op invokes the session bean echo method and returns its value prefixed with the helloPrefix
attribute value

ParamType ParamDescription

arg0 ‘java.lang.String ~echo-arg| MBean Operation Parameter.

Invoke)

void create()

The JBoss Service.create

Invoke

Figure 1.19. The EjbMBeanAdaptor M Bean operations JM X console view

As shown, we have already entered an argument string of - echo- ar g into the ParamValue text field. Press the In-

JBoss Release 2 74

http://localhost:8080/jmx-console
http://localhost:8080/jmx-console

The JBoss IM X Microkernel

voke button and a result string of Adapt or Prefi x- echo-ar g is displayed on the results page. The server console
will show severa stack traces from the various metadata queries issues by the IMX console and the MBean invoke
method debugging lines:

10: 51: 48, 671 | NFO [Ej bMBeanAdapt or] Begi n i nvoke, acti onNane=echo

10: 51: 48, 671 | NFO [Ej bMBeanAdapt or] Lookup EcholLocal Home@ ocal / chap2. EchoBean
10: 51: 48, 687 | NFO [EchoBean] echo, info=echo info, arg=, arg=-echo-arg

10: 51: 48, 687 | NFO [Ej bMBeanAdapt or] Resul t: AdaptorPrefix-echo-arg

10: 51: 48, 687 | NFO [Ej bMBeanAdapt or] End i nvoke, acti onNanme=echo

1.5. JBoss Deployer Architecture

JBoss has an extensible deployment architecture that allows one to incorporate components into the bare JBoss
JMX microkernel. The mai nDepl oyer is the deployment entry point. Requests to deploy a component are sent to
the Mai nDepl oyer and it determines if there is a subdeployer capable of handling the deployment, and if thereis, it
del egates the deployment to the subdeployer. We saw an example of this when we looked at how the Mai nDepl oyer
used the SARDepl oyer to deploy MBean services. Among the deployers provided with JBoss are:

« AbstractWebDeployer: This subdeployer handles web application archives (WARS). It accepts deployment
archives and directories whose name ends with awar suffix. WARS must have a VeB- | NF/ web. xmi descriptor
and may have aVEB- | NF/ j boss- web. xni descriptor.

« EARDeployer: This subdeployer handles enterprise application archives (EARs). It accepts deployment
archives and directories whose name ends with an ear suffix. EARs must have a META- | NF/ appl i cati on. xml
descriptor and may have a META- | NF/ j boss- app. xm descriptor.

» EJBDeployer: This subdeployer handles enterprise bean jars. It accepts deployment archives and directories
whose name ends with aj ar suffix. EJB jars must have a META- | NF/ ej b-j ar. xni descriptor and may have a
META- | NF/ j boss. xm descriptor.

* JARDeployer: This subdeployer handles library JAR archives. The only restriction it places on an archive is
that it cannot contain a WeB- | NF directory.

« RARDeployer: This subdeployer handles JCA resource archives (RARS). It accepts deployment archives and
directories whose name ends with ar ar suffix. RARS must have a META- | NF/ ra. xmi descriptor.

« SARDeployer: This subdeployer handles JBoss MBean service archives (SARS). It accepts deployment
archives and directories whose name ends with asar suffix, aswell as standalone XML files that end with ser -
vi ce. xm . SARs that are jars must have a META- | NF/ j boss- ser vi ce. xm descriptor.

e XSLSubDeployer: This subdeployer deploys arbitrary XML files. JBoss uses the XSLSubDeployer to deploy
ds. xni files and transform them into servi ce. xm files for the SARDepl oyer . However, it is not limited to just
this task.

* HARDeployer: This subdeployer deploys hibernate archives (HARS). It accepts deployment archives and dir-
ectories whose name ends with ahar suffix. HARS must have a META- | NF/ hi ber nat e- ser vi ce. xm descriptor.

* AspectDeployer: This subdeployer deploys AOP archives. It accepts deployment archives and directories
whose name ends with an aop suffix as well as aop.xm files. AOP archives must have a MeETA-
| NF/ j boss- aop. xm descriptor.

JBoss Release 2 75

The JBoss IM X Microkernel

e ClientDeployer: This subdeployer deploys J2EE application clients. It accepts deployment archives and direct-
ories whose name ends with a jar suffix. J2EE clients must have a META- | NF/ appl i cation-client.xm
descriptor and may have a META- | NF/ j boss-cl i ent. xm descriptor.

» BeanShellSubDeployer: This subdeployer deploys bean shell scripts as MBeans. It accepts files whose name
ends with absh suffix.

The MainDeployer, JARDeployer and SARDeployer are hard coded deployers in the JBoss server core. All other
deployers are MBean services that register themselves as deployers with the MainDeployer using the addDepl oy-
er (SubDepl oyer) operation.

The mai nDepl oyer communicates information about the component to be deployed the SubDepl oyer using a De-
pl oynent | nf o object. The Depl oyment I nf o object is a data structure that encapsulates the complete state of a de-
ployable component.

When the mai nDepl oyer receives a deployment request, it iterates through its registered subdeployers and invokes
the accept s(Depl oynent I nf o) method on the subdeployer. The first subdeployer to return true is chosen. The
MainDeployer will delegate the init, create, start, stop and destroy deployment life cycle operations to the subde-
ployer.

1.5.1. Deployers and ClassLoaders

Deployers are the mechanism by which components are brought into a JBoss server. Deployers are also the creators
of the majority of UCL instances, and the primary creator is the MainDeployer. The MainDeployer creates the
UCL for a deployment early on during its init method. The UCL is created by caling the Deploy-
mentlnfo.createClassL oaders() method. Only the topmost Depl oynent | nf o Will actually create a UCL. All subde-
ployments will add their class paths to their parent Depl oynent I nfo UCL. Every deployment does have a stan-
dalone URL ClassL oader that uses the deployment URL as its path. Thisis used to localize the loading of resources
such as deployment descriptors. Figure 1.20 provides an illustration of the interaction between Deployers, Deploy-
mentlInfos and class |oaders.

JBoss Release 2 76

The JBoss IM X Microkernel

MainDeployer

by tﬂhgﬂepluyer
BDeployer
ARDeployer

UnifiedLoade

some . ear Deploymentinfos UnifiedClassLoader3
+- META-INE /MANIFEST.MF

\
e.ear N

+- META-INE/application.saml : >
+- META-INF /jboss-app .nl - P A
+— lib/util. jar {(archiwe) ——_!L
|+ wé'h-.Trfrr
+- ejbs.jar (archiwve) \
+- META-INF/MANIFEST MF Class- Jutil jar
+- META-INF/ejb—jar.ml URLClassLoaders

roles properties=
+- users . properties

|
|
| +- META-INF/jboss_ml <
ne.ear
. o, -+
|
|

+ -

2o ' ejbs.jar
+= wmb _war {(archive)

| +- META-INF/MANIFEST.MF

| +- WEER-INE/[jboss-web _sanl web.war ‘

| +- WEE-INF fweb . sl A

+= +- WERB-INE [1lib/[jbosstest -web-util _ jar (archiwve)

| +- META-INF/MANIFEST.MF

|

1 1 = . _.

| += WEB-INF/classes/w/y/ReturnData.class
| 1 += ...

| += dndex. html

| +-

Figure 1.20. An illustration of the class loadersinvolved with an EAR deployment

The figure illustrates an EAR deployment with EJB and WAR subdeployments. The EJB deployment references
thelib/util.jar utility jar viaits manifest. The WAR includes classes in its WEB- | NF/ cl asses directory as well
as the VEB- I NF/ I i b/ j bosst est -web-uti | . j ar. Each deployment has a Depl oynent I nf o instance that has a URL-
d assLoader pointing to the deployment archive. The Depl oynent | nf o associated with sone. ear isthe only oneto
have a UCL created. The ej bs. j ar and web. war Depl oynent | nf oS add their deployment archive to the sone. ear
UCL classpath, and share this UCL as their deployment UCL. The EJBDepl oyer also adds any manifest jars to the
EAR UCL.

The waRDepl oyer behaves differently than other deployers in that it only adds its WAR archive to the Depl oy-
ment | nfo UCL classpath. The loading of classes from the WAR WEB- | NF/ cl asses and WEB- I NF/ | i b locations is
handled by the servlet container class loader. The servlet container class loaders delegate to the WAR Depl oy-

JBoss Release 2 77

The JBoss IM X Microkernel

ment | nf o UCL as their parent class loader, but the server container class loader is not part of the JBoss class loader
repository. Therefore, classes inside of a WAR are not visible to other components. Classes that need to be shared
between web application components and other components such as EJBs, and MBeans need to be loaded into the
shared class loader repository either by including the classes into a SAR or EJB deployment, or by referencing ajar
containing the shared classes through a manifest d ass- Pat h entry. In the case of a SAR, the SAR classpath ele-
ment in the service deployment serves the same purpose as a JAR manifest d ass- Pat h.

1.6. Remote Access to Services, Detached Invokers

In addition to the MBean services notion that allows for the ability to integrate arbitrary functionality, JBoss also
has a detached invoker concept that allows MBean services to expose functional interfaces via arbitrary protocols
for remote access by clients. The notion of a detached invoker is that remoting and the protocol by which a service
is accessed is a functional aspect or service independent of the component. Thus, one can make a naming service
available for use viaRMI/JRMP, RMI/HTTP, RMI/SOAP, or any arbitrary custom transport.

Let's begin our discussion of the detached invoker architecture with an overview of the components involved. The
main components in the detached invoker architecture are shown in Figure 1.21.

Proxy Factory

~

Client Proxy Detached | Invoker

HH <] -
i invoke(Invocation)

Exposed Interface

Invoker Interceptor *

MBeanSarvar

Target MBean

<

invoke{Invocation)

Exposed Interface

Figure 1.21. The main componentsin the detached invoker architecture

JBoss Release 2 78

The JBoss IM X Microkernel

On the client side, there exists a client proxy which exposes the interface(s) of the MBean service. Thisis the same
smart, compile-less dynamic proxy that we use for EJB home and remote interfaces. The only difference between
the proxy for an arbitrary service and the EJB is the set of interfaces exposed as well as the client side interceptors
found inside the proxy. The client interceptors are represented by the rectangles found inside of the client proxy.
An interceptor is an assembly line type of pattern that allows for transformation of a method invocation and/or re-
turn values. A client obtains a proxy through some lookup mechanism, typically JNDI. Although RMI is indicated
in Figure 1.21, the only real requirement on the exposed interface and its types is that they are serializable between
the client server over INDI aswell as the transport layer.

The choice of the transport layer is determined by the last interceptor in the client proxy, which is referred to as the
Invoker Interceptor in Figure 1.21. The invoker interceptor contains a reference to the transport specific stub of the
server side Detached Invoker MBean service. The invoker interceptor also handles the optimization of calls that oc-
cur within the same VM as the target MBean. When the invoker interceptor detects that this is the case the call is
passed to a call-by-reference invoker that simply passes the invocation along to the target MBean.

The detached invoker service is responsible for making a generic invoke operation available via the transport the
detached invoker handles. The nvoker interfaceillustrates the generic invoke operation.

package org.j boss.invocation;
i mport java.rm . Renote;

i mport org.jboss. proxy. | nterceptor;
i mport org.jboss.util.id. GU D

public interface |nvoker
extends Renote
{
QU D ID = new GU D();
String get Server Host Name() throws Exception;

oj ect invoke(lnvocation invocation) throws Exception;

}

The Invoker interface extends Renot e to be compatible with RMI, but this does not mean that an invoker must ex-
pose an RMI service stub. The detached invoker service simply acts as a transport gateway that accepts invocations
represented as the or g. j boss. i nvocati on. I nvocat i on object over its specific transport, unmarshalls the invoca
tion, forwards the invocation onto the destination MBean service, represented by the Target MBean in Figure 1.21,
and marshalls the return value or exception resulting from the forwarded call back to the client.

The I nvocat i on object is just a representation of a method invocation context. This includes the target MBean
name, the method, the method arguments, a context of information associated with the proxy by the proxy factory,
and an arbitrary map of data associated with the invocation by the client proxy interceptors.

The configuration of the client proxy is done by the server side proxy factory MBean service, indicated by the
Proxy Factory component in Figure 1.21. The proxy factory performs the following tasks:

« Create adynamic proxy that implements the interface the target MBean wishes to expose.
« Associate the client proxy interceptors with the dynamic proxy handler.

e Associate the invocation context with the dynamic proxy. This includes the target MBean, detached invoker

JBoss Release 2 79

The JBoss IM X Microkernel

stub and the proxy JNDI name.

Make the proxy available to clients by binding the proxy into JNDI.

The last component in Figure 1.21 is the Target MBean service that wishes to expose an interface for invocations to
remote clients. The steps required for an MBean service to be accessible through a given interface are:

Define a JMX operation matching the signature: public Qbj ect in-
voke(org.jboss.invocation.lnvocation) throws Exception

Create a HashMap<Long, Met hod> mapping from the exposed interface j ava. | ang. refl ect. Met hods to the
long hash representation using the or g. j boss. i nvocat i on. Mar shal | edl nvocat i on. cal cul at eHash method.

Implement the i nvoke(I nvocation) JMX operation and use the interface method hash mapping to transform
from the long hash representation of the invoked method to thej ava. | ang. refl ect . Met hod of the exposed in-
terface. Reflection is used to perform the actual invocation on the object associated with the MBean service that
actually implements the exposed interface.

1.6.1. A Detached Invoker Example, the MBeanServer Invoker Adaptor Service

In the section on connecting to the IMX server we mentioned that there was a service that allows one to access the
j avax. managenent . MBeanServer Vvia any protocol using an invoker service. In this section we present the
org. j boss. j mx. connector. i nvoker. I nvoker Adapt or Ser vi ce and its configuration for access via RMI/JRMP as
an example of the steps required to provide remote access to an MBean service.

The I nvoker Adapt or Ser vi ce IS a simple MBean service that only exists to fulfill the target MBean role in the de-
tached invoker pattern.

Example 1.16. The I nvoker Adaptor Service M Bean

package org.j boss.jnx. connector.invoker;
public interface |nvokerAdaptor Servi ceMBean

{

}

extends org.j boss. system Servi ceMBean

Cl ass get Exportedl nterface();
voi d set Exportedl nterface(Cl ass exportedlnterface);

oj ect invoke(org.jboss.invocation.|nvocation invocation)
throws Excepti on;

package org.j boss.j nx. connector.invoker;

i mport java.lang.reflect.|nvocati onTarget Excepti on;

i mport java.lang.reflect.Method;

i mport java.l ang.refl ect. Undecl aredThr owabl eExcepti on;
import java.util.Collections;

i mport java.util.HashMap;

i mport java.util.Mp;

i mport javax.nmanagenent. MBeanSer ver ;
i mport javax. managenent. Obj ect Naneg;

i mport org.jboss.invocation.|nvocation;

JBoss Release 2 80

The JBoss IM X Microkernel

i mport
i mport
i mport
i mport

public

org. j boss.invocation. Marshal | edl nvocati on;
org.j boss. nx. server. Server Const ant s;

org. j boss. system Servi ceMBeanSupport ;

org.j boss. system Regi stry;

cl ass | nvoker Adapt or Servi ce

ext ends Servi ceMBeanSupport
i mpl enent s | nvoker Adapt or Ser vi ceMBean, Server Constants

private static Cbject Nane nbeanRegi stry;

static {

}

try {

nmbeanRegi stry = new Obj ect Name(MBEAN_REG STRY) ;
} catch (Exception e) {

t hrow new Runti neException(e.toString());
}

private Map marshal | edl nvocati onMappi ng = new HashMap() ;
private O ass exportedlnterface;

public C ass get Exportedlnterface()

{
}

return exportedlnterface;

public void setExportedl nterface(d ass exportedlnterface)

{
}

this. exportedlnterface = exportedl nterface;

protected void startService()

{

}

throws Exception

/1 Build the interface nethod nap

Met hod[] met hods = exportedl nterface. get Met hods();

HashMap t npMap = new HashMap(net hods. | engt h) ;

for (int m= 0; m< nethods.|ength; m++) {
Met hod net hod = nmet hods[ni;
Long hash = new Long(Marshal | edl nvocati on. cal cul at eHash(net hod)) ;
t npMap. put (hash, method);

}

mar shal | edl nvocat i onMappi ng = Col | ecti ons. unnodi fi abl eMap(t npMap) ;
/1 Place our (bjectNane hash into the Registry so invokers can

[l resolve it

Regi stry. bi nd(new I nt eger (servi ceNane. hashCode()), servi ceNane);

protected void stopService()

{
}

throws Exception

Regi stry. unbi nd(new | nt eger (servi ceNane. hashCode()));

public Qoject invoke(lnvocation invocation)

{

t hrows Exception

/1 Make sure we have the correct classl oader before unmarshalling
Thread thread = Thread. current Thread();
Cl assLoader ol dCL = thread. get Cont ext Gl assLoader () ;

[/l Get the MBean this operation applies to
Cl assLoader newCL = nul | ;

JBoss Release 2 81

The JBoss IM X Microkernel

oj ect Narre obj ect Nane = (Obj ect Nan®e)
i nvocat i on. get Val ue(" JMX_OBJECT_NAME") ;
if (objectNane !'= null) {
[/ Obtain the C assLoader associated with the MBean depl oynent
newCL = (Cl assLoader)
server. i nvoke(nbeanRegi stry, "getVal ue",
new Cbject[] { objectNanme, CLASSLOADER },
new String[] { ObjectNane.class. get Nane(),
"java.lang. String" });
}

if (newCL !'= null && newCL != oldCL) {
t hr ead. set Cont ext C assLoader (newCL) ;
}

try {
/1 Set the nethod hash to Met hod mappi ng
if (invocation instanceof Marshall edl nvocation) ({
Mar shal | edl nvocation mi = (Marshal |l edl nvocation) invocati on;
nm . set Met hodMap(mar shal | edl nvocat i onMappi ng) ;

}

/1 1nvoke the MBeanServer mnethod via reflection
Met hod net hod = invocation. get Met hod();
Cbj ect[] args = invocation. get Argunents();

oj ect value = null;
try {

String name = net hod. get Nane() ;
Cl ass[] sig = nethod. get Par anet er Types() ;
Met hod nbeanServer Met hod =
MBeanSer ver . cl ass. get Met hod(nane, sig);
val ue = nbeanServer Met hod. i nvoke(server, args);
} catch(lnvocationTarget Exception e) {
Throwabl e t = e. get Target Exception();
if (t instanceof Exception) {
throw (Exception) t;
} else {
t hr ow new Undecl ar edThr owabl eExcepti on(t, method.toString());
}

}

return val ue;

} finally {
if (newCL !'= null && newCL != oldCL) {
t hr ead. set Cont ext Cl assLoader (ol dCL) ;
}

Let's go through the key details of this service. The | nvoker Adapt or Ser vi ceMBean Standard MBean interface of
the | nvoker Adapt or Servi ce has a single Export edi nt erface attribute and a single i nvoke(I nvocati on) opera
tion. The Export edl nt er f ace attribute allows customization of the type of interface the service exposes to clients.
This has to be compatible with the MBeanServer class in terms of method name and signature. The in-
voke(| nvocati on) operation is the required entry point that target MBean services must expose to participate in
the detached invoker pattern. This operation is invoked by the detached invoker services that have been configured
to provide access to the | nvoker Adapt or Ser vi ce.

Lines 54-64 of the InvokerAdaptorService build the HashMap<Long, Method> of the Exportedinterface Class us-
ing the org.jboss.invocation. Marshal | edl nvocati on. cal cul at eHash(Met hod) utility method. Because

JBoss Release 2 82

The JBoss IM X Microkernel

java.lang.reflect. Method instances are not serializable, a Marshal | edl nvocation version of the non-
seridizable I nvocati on classis used to marshall the invocation between the client and server. The Mar shal | edl n-
vocat i on replaces the Method instances with their corresponding hash representation. On the server side, the mar -
shal | edl nvocat i on must be told what the hash to Method mapping is.

Line 64 creates a mapping between the | nvoker Adapt or Ser vi ce service name and its hash code representation.
Thisis used by detached invokers to determine what the target MBean oj ect Narre of an I nvocati on is. When the
target MBean name is store in the I nvocat i on, its store as its hashCode because bj ect Nanes are relatively ex-
pensive objectsto create. Theorg. j boss. syst em Regi st ry isaglobal map like construct that invokers use to store
the hash code to j ect Name mappingsin.

Lines 77-93 obtain the name of the MBean on which the MBeanServer operation is being performed and lookup
the class loader associated with the MBean's SAR deployment. This information is available via the
org. j boss. nx. server. regi stry. Basi cMBeanRegi st ry, a JBoss IMX implementation specific class. It is gener-
ally necessary for an MBean to establish the correct class loading context because the detached invoker protocol
layer may not have access to the class |oaders needed to unmarshall the types associated with an invocation.

Lines 101-105 install the Exposed! nt er f ace class method hash to method mapping if the invocation argument is of
type Mar shal | edl nvocat i on. The method mapping calculated previoudly at lines 54-62 is used here.

Lines 107-114 perform a second mapping from the Exposedi nt er f ace Method to the matching method of the
MBeanServer class. The | nvoker Servi ceAdapt or decouples the Exposedl nt er f ace from the MBeanServer class
in that it allows an arbitrary interface. Thisis heeded on one hand because the standard j ava. | ang. ref | ect . Proxy
class can only proxy interfaces. It also alows one to only expose a subset of the MBeanServer methods and add
transport specific exceptionslikej ava. rni . Renot eExcept i on t0 the Exposed! nt er f ace method signatures.

Line 115 dispatches the MBeanServer method invocation to the MBeanServer instance to which the | nvoker Ad-
apt or Ser vi ce was deployed. The server instance variable is inherited from the Ser vi ceMBeanSupport superclass.

Lines 117-124 handle any exceptions coming from the reflective invocation including the unwrapping of any de-
clared exception thrown by the invocation.

Line 126 is the return of the successful MBeanServer method invocation result.

Note that the | nvoker Adapt or Ser vi ce MBean does not deal directly with any transport specific details. There is
the calculation of the method hash to Method mapping, but this is a transport independent detail.

Now let's take a look a how the InvokerAdaptorService may be used to expose the same
org.j boss. | nx. adapt or. rni . RM Adapt or interface via RMI/JRMP as seen in Connecting to IMX Using RMI.
We will start by presenting the proxy factory and | nvoker Adapt or Servi ce configurations found in the default
setup in the jnx-invoker - adapt or - servi ce. sar deployment. Example 1.17 shows the j boss-servi ce. xni
descriptor for this deployment.

Example 1.17. The default jmx-invoker -adaptor -ser ver .sar jboss-service.xml deployment descriptor

<server>
<l-- The JRWP invoker proxy configuration for the InvokerAdaptorService -->
<nmbean code="org.j boss.invocation.jrnp.server.JRWProxyFactory"
nane="j boss. j nx: t ype=adapt or, nane=l nvoker, prot ocol =j r np, servi ce=pr oxyFact ory" >

<I-- Use the standard JRWPI nvoker from conf/jboss-service.xm -->
<attribute name="| nvoker Nane" >j boss: servi ce=i nvoker, type=jrnp</attri bute>
<I-- The target MBean is the |nvokerAdaptor Service configured bel ow -->

JBoss Release 2 83

The JBoss IM X Microkernel

<attri bute name="Tar get Nane" >j boss. j nx: t ype=adapt or, nane=Il nvoker </ attri but e>
<I-- \Were to bind the RM Adaptor proxy -->
<attribute name="Jndi Name" >j nx/i nvoker/ RM Adapt or </ attri but e>
<l-- The RM conpabitle MBeanServer interface -->
<attri bute name="Exportedlnterface">org.jboss.jnx.adaptor.rnm .RM Adaptor</attribute>
<attribute name="Clientlnterceptors">
<i terceptors>
<i nterceptor>org.j boss. proxy. C i ent Met hodl nt er cept or </ i nt er cept or >
<i nterceptor>
org. j boss.j nx. connector.invoker.client.|nvokerAdaptorCientlnterceptor
</interceptor>
<i nterceptor>org.jboss.invocation.|nvokerlnterceptor</interceptor>
</iterceptors>
</attribute>
<depends>j boss: servi ce=i nvoker, t ype=j r np</ depends>

</ mbean>
<l-- This is the service that handl es the RM Adaptor invocations by routing
themto the MBeanServer the service is deployed under. -->

<nbean code="org.jboss.jnx.connector.invoker.|nvokerAdapt or Servi ce"
nane="j boss. j nx: t ype=adapt or, nane=I nvoker ">
<attribute name="Exportedl nterface">org.jboss.jnx.adaptor.rm .RM Adaptor</attri bute>
</ mbean>
</ server>

The first MBean, org. j boss. i nvocati on. j rnp. server. JRVPProxyFact ory, is the proxy factory MBean service
that creates proxies for the RMI/JRMP protocol. The configuration of this service as shown in Example 1.17 states
that the JRMPInvoker will be used as the detached invoker, the | nvoker Adapt or Ser vi ce is the target mbean to
which requests will be forwarded, that the proxy will expose the RM Adapt or interface, the proxy will be bound into
JNDI under the name j mx/ i nvoker / RM Adapt or, and the proxy will contain 3 interceptors. C i ent Met hodl nt er -
ceptor, InvokerAdaptordientlnterceptor, Invokerinterceptor. The configuration of the InvokerAd-
apt or Ser vi ce sSimply setsthe RMIAdaptor interface that the service is exposing.

The last piece of the configuration for exposing the | nvoker Adapt or Servi ce via RMI/JRMP is the detached in-
voker. The detached invoker we will use is the standard RMI/JRMP invoker used by the EJB containers for home
and remote invocations, and this is the org. j boss. i nvocati on. j rnp. server. JRVPI nvoker MBean service con-
figured in the conf/j boss- servi ce. xm descriptor. That we can use the same service instance emphasizes the de-
tached nature of the invokers. The JRMPInvoker ssmply acts as the RMI1/JRMP endpoint for all RMI/JRMP proxies
regardless of the interface(s) the proxies expose or the service the proxies utilize.

1.6.2. Detached Invoker Reference

1.6.2.1. The JRMPInvoker - RMI/JJRMP Transport

The org. j boss. invocation. jrnp. server. JRMPI nvoker classis an MBean service that provides the RMI/JRMP
implementation of the Invoker interface. The JRMPInvoker exports itself as an RMI server so that when it is used
as the Invoker in a remote client, the JRMPInvoker stub is sent to the client instead and invocations use the RMI/
JRMP protocol.

The JRMPInvoker MBean supports a number of attribute to configure the RMI/JRMP transport layer. Its configur-
able attributes are:

« RMIObjectPort: setsthe RMI server socket listening port number. Thisis the port RMI clients will connect to
when communicating through the proxy interface. The default setting in the j boss-servi ce. xn descriptor is

JBoss Release 2 84

The JBoss IM X Microkernel

4444, and if not specified, the attribute defaults to 0 to indicate an anonymous port should be used.

¢ RMIClientSocketFactory: specifies a fully qualified class name for the
java.rm.server. RM O i ent Socket Fact ory interface to use during export of the proxy interface.

* RMI ServerSocketFactory: specifies a fully qualified class name for the
java.rmi.server. RM Server Socket Fact ory interface to use during export of the proxy interface.

e ServerAddress: specifies the interface address that will be used for the RMI server socket listening port. This
can be either a DNS hostname or a dot-decimal Internet address. Since the RM Ser ver Socket Fact ory does not
support a method that accepts an InetAddress object, this value is passed to the RM Ser ver Socket Fact ory im-
plementation class using reflection. A check for the existence of a public void setBindAd-
dress(j ava. net. | net Address addr) method is made, and if one exists the RM Ser ver Socket Addr value is
passed to the RM Ser ver Socket Fact ory implementation. If the RM Ser ver Socket Fact ory implementation does
not support such a method, the Ser ver Addr ess value will be ignored.

e SecurityDomain: specifiesthe INDI name of an org. j boss. security. Securi t yDomai n interface implementa-
tion to associate with the RM Server Socket Factory implementation. The value will be passed to the
RM Ser ver Socket Fact ory using reflection to locate a method with a signature of public void setSecurity-
Domai n(org. j boss. security. SecurityDomain d). |f nosuch method exists the Securi t yDomai n value will be
ignored.

1.6.2.2. The PooledInvoker - RMI/Socket Transport

The org. j boss. i nvocati on. pool ed. server. Pool edl nvoker iSan MBean service that provides RMI over a cus-
tom socket transport implementation of the Invoker interface. The Pool edl nvoker exports itself as an RMI server
so that when it isused asthe | nvoker in aremote client, the Pool edl nvoker Stub is sent to the client instead and in-
vocations use the custom socket protocol.

The Pool edl nvoker MBean supports a number of attribute to configure the socket transport layer. Its configurable
attributes are:

¢ NumAcceptThreads: The number of threads that exist for accepting client connections. The default is 1.
* MaxPoolSize: The number of server threads for processing client. The default is 300.

e SocketTimeout: The socket timeout value passed to the Socket . set SoTi neout () method. The default is
60000.

e ServerBindPort: The port used for the server socket. A value of 0 indicates that an anonymous port should be
chosen.

* ClientConnectAddress: The address that the client passes to the Socket (addr, port) constructor. This de-
faults to the server | net Addr ess. get Local Host () value.

« ClientConnectPort: The port that the client passes to the Socket (addr, port) constructor. The default is the
port of the server listening socket.

* ClientM axPoolSize: The client side maximum number of threads. The default is 300.

JBoss Release 2 85

The JBoss IM X Microkernel

« Backlog: The backlog associated with the server accept socket. The default is 200.

e EnableTcpNoDelay: A boolean flag indicating if client sockets will enable the TcpNoDel ay flag on the socket.
The default isfalse.

e ServerBindAddress. The address on which the server binds its listening socket. The default is an empty value
which indicates the server should be bound on all interfaces.

¢ TransactionM anager Service: The IMX ObjectName of the JTA transaction manager service.

1.6.2.3. The llIOPInvoker - RMI/IIOP Transport

Theorg. jboss.invocation.iiop.!lOPl nvoker classisan MBean service that provides the RMI/IIOP implement-
ation of the I nvoker interface. The I'1 OPI nvoker routes [1OP requests to CORBA servants. This is used by the
org. j boss. proxy. ej b. | ORFact ory proxy factory to create RMI/11OP proxies. However, rather than creating Java
proxies (as the JRMP proxy factory does), this factory creates CORBA IORs. An | ORFact ory iS associated to a
given enterprise bean. It registers with the IIOP invoker two CORBA servants. ankj bHoneCor baSer vant for the
bean's EJBHorre and an Ej boj ect Cor baSer vant for the bean's EJBj ect S.

The 11OPInvoker MBean has no configurable properties, since all properties are configured from the conf/j ac-
orb. properties property file used by the JacORB CORBA service.

1.6.2.4. The JRMPProxyFactory Service - Building Dynamic JRMP Proxies

The org. j boss. i nvocation. j rnp. server. JRVMPProxyFact ory MBean service is a proxy factory that can expose
any interface with RM| compatible semantics for access to remote clients using JRMP as the transport.

The JRM PProxyFactory supports the following attributes:

¢ InvokerName: The server side JRMPInvoker MBean service IMX ObjectName string that will handle the
RMI/JRMP transport.

» TargetName: The server side MBean that exposes the i nvoke(| nvocati on) JMX operation for the exported
interface. Thisis used as the destination service for any invocations done through the proxy.

¢ JndiName: The JNDI name under which the proxy will be bound.

« Exportedinterface: The fully qualified class name of the interface that the proxy implements. Thisis the typed
view of the proxy that the client uses for invocations.

e ClientInterceptors: An XML fragment of interceptorg/interceptor elements with each interceptor element body
specifying the fully qualified class name of an org. j boss. proxy. I ntercept or implementation to include in
the proxy interceptor stack. The ordering of the interceptors/interceptor elements defines the order of the inter-
ceptors.

1.6.2.5. The HttpInvoker - RMI/HTTP Transport

The org. jboss.invocation. http. server. H t pl nvoker MBean service provides support for making invocations
into the IMX bus over HTTP. Unlike the JRvPI nvoker , the Ht t pl nvoker IS not an implementation of | nvoker , but
it does implement the Invoker.invoke method. The Httplnvoker is accessed indirectly by issuing an HTTP POST

JBoss Release 2 86

The JBoss IM X Microkernel

against the or g. j boss. i nvocation. http. servl et. | nvoker Servl et. The Ht t pl nvoker exports a client side proxy
in the form of the org. j boss. i nvocation. http.interfaces. H t pl nvoker Proxy class, which is an implementa-
tion of I nvoker, and is seriadlizable. The Ht t pl nvoker isadrop in replacement for the JRMPI nvoker as the target of
the bean-i nvoker and hone-i nvoker EJB configuration elements. The Ht t pl nvoker and | nvoker Servl et are de-
ployed intheht t p-i nvoker . sar discussed in the JINDI chapter in the section entitled Accessing JINDI over HTTP

The Httplnvoker supports the following attributes:

e InvokerURL: This s either the http URL to the I nvoker Servl et mapping, or the name of a system property
that will be resolved inside the client VM to obtain the http URL to the | nvoker Ser vl et .

* |InvokerURLPrefix: If there is no i nvoker URL set, then one will be constructed via the concatenation of i n-
voker URLPref i x + thelocal host + i nvoker URLSuf fi x. The default prefix ishttp://.

* |nvoker URL Suffix: If there is no i nvoker URL set, then one will be constructed via the concatenation of i n-
voker URLPr ef i x + the local host + i nvoker URLSuf fi x. The default suffix is
: 8080/ i nvoker/ JMXI nvoker Ser vl et .

¢ UseHostName: A boolean flag if the | net Addr ess. get Host Nane() OF get Host Addr ess() method should be
used as the host component of i nvoker URLPrefi x + host + i nvoker URLSuf fi x. If true get Host Nare() is used,
otherwise get Host Addr ess() is used.

1.6.2.6. The HA JRMPInvoker - Clustered RMI/JJRMP Transport

The org. j boss. proxy. generi c. ProxyFact or yHA service is an extension of the ProxyFact or yHA that is a cluster
aware factory. The Pr oxyFact or yHA fully supports al of the attributes of the JRVPPr oxyFact ory. This means that
customized bindings of the port, interface and socket transport are available to clustered RMI/JRMP as well. In ad-
dition, the following cluster specific attributes are supported:

» PartitionObjectName: The IMX bj ect Name of the cluster service to which the proxy isto be associated with.

» LoadBalancePolicy: The class name of the or g. j boss. ha. framewor k. i nt er f aces. LoadBal ancePol i cy inter-
face implementation to associate with the proxy.

1.6.2.7. The HA Httpinvoker - Clustered RMI/HTTP Transport

The RMI/HTTP layer allows for software load balancing of the invocations in a clustered environment. The HA
capable extension of the HTTP invoker borrows much of its functionality from the HA-RMI/JRMP clustering. To
enable HA-RMI/HTTP you need to configure the invokers for the EJB container. This is done through either a
j boss. xni descriptor, or the st andar dj boss. xm descriptor.

1.6.2.8. HttpProxyFactory - Building Dynamic HTTP Proxies

The org. j boss. i nvocation. http. server. Ht t pProxyFact ory MBean service is a proxy factory that can expose
any interface with RMI compatible semantics for access to remote clients using HT TP as the transport.

The HttpProxyFactory supports the following attributes:

« InvokerName: The server side MBean that exposes the invoke operation for the exported interface. The name

JBoss Release 2 87

The JBoss IM X Microkernel

is embedded into the Ht t pl nvoker Proxy context as the target to which the invocation should be forwarded by
the Ht t pl nvoker .

e JndiName: The JNDI name under which the H: t pl nvoker Proxy will be bound. Thisis the name clients lookup
to obtain the dynamic proxy that exposes the service interfaces and marshalls invocations over HTTP. This may
be specified as an empty value to indicate that the proxy should not be bound into JNDI.

e InvokerURL: This s either the http URL to the I nvoker Servl et mapping, or the name of a system property
that will be resolved inside the client VM to obtain the http URL to the | nvoker Servl et .

« |nvokerURLPrefix: If thereis no i nvoker URL Set, then one will be constructed via the concatenation of i n-
voker URLPrefi x +thelocal host +i nvoker URLSuf fi x. The default prefix ishttp: /7.

* |nvoker URL Suffix: If there is no i nvoker URL set, then one will be constructed via the concatenation of i n-
voker URLPr ef i x + the local host + i nvoker URLSuf fi x. The default suffix is
: 8080/ i nvoker/ JMXI nvoker Servl et .

e UseHostName: A boolean flag indicating if the | net Addr ess. get Host Namme() OrF get Host Address() method
should be used as the host component of i nvoker URLPrefix + host + i nvoker URLSuf fi x. If true get Host -
Nane() iSused, otherwise get Host Addr ess() is used.

» Exportedlnterface: The name of the RMI compatible interface that the Ht t pl nvoker Pr oxy implements.

1.6.2.9. Steps to Expose Any RMI Interface via HTTP

Using the H: t pPr oxyFact ory MBean and JMX, you can expose any interface for access using HTTP as the trans-
port. The interface to expose does not have to be an RMI interface, but it does have to be compatible with RMI in
that all method parameters and return values are serializable. There is also no support for converting RMI inter-
faces used as method parameters or return values into their stubs.

The three steps to making your object invocable viaHTTP are:

» Create a mapping of longs to the RMI interface methods using the Mar shal | edl nvocat i on. cal cul at eHash
method. Here for example, is the procedure for an RMI SRPRenot eSer ver | nt er f ace interface:

i mport java.lang.reflect.Method;
i mport java.util.HashMap;
i mport org.jboss.invocation. Marshal | edl nvocati on;

HashMap mar shal | edl nvocati onMappi ng = new HashMap();

[/ Build the Naming interface nethod map
Met hod[] net hods = SRPRenot eServer | nterface. cl ass. get Met hods() ;
for(int m= 0; m< nethods.length; m++) {
Met hod net hod = nmet hods[ni;
Long hash = new Long(Marshal | edl nvocati on. cal cul at eHash(net hod)) ;
mar shal | edl nvocat i onMappi ng. put (hash, net hod);

e Either create or extend an existing MBean to support an invoke operation. Its signature is oj ect in-
voke(l nvocation invocation) throws Exception, and the steps it performs are as shown here for the sr-
PRenot eSer ver | nt er f ace interface. Note that this uses the nar shal | edl nvocat i onMappi ng from step 1 to map
from the Long method hashes in the Mar shal | edl nvocat i on to the Met hod for the interface.

JBoss Release 2 88

The JBoss IM X Microkernel

i mport org.jboss.invocation.|nvocation;
i mport org.jboss.invocation. Marshal | edl nvocati on;

public Object invoke(lnvocation invocation)
throws Exception
{

SRPRenot eServer | nterface theServer = <the_actual _rni _server_obj ect >;
/1 Set the method hash to Met hod mapping
if (invocation instanceof Marshall edl nvocation) ({

Mar shal | edl nvocation mi = (Marshall edl nvocati on) invocation;

m . set Met hodMap(mar shal | edl nvocat i onMappi ng) ;

}

/1 1nvoke the Nami ng nmethod via reflection
Met hod net hod = invocation. get Met hod();
oj ect[] args = invocation. get Argunments();
bj ect value = null;
try {
val ue = net hod. i nvoke(theServer, args);
} catch(lnvocationTarget Excepti on e) {
Throwabl e t = e. get Target Exception();
if (t instanceof Exception) {
throw (Exception) e;
} else {
t hrow new Undecl ar edThr owabl eException(t, nethod.toString());
}

}

return val ue;

e Create a configuration of the Htt pProxyFactory MBean to make the RMI/HTTP proxy available through
JNDI. For example:

<l-- Expose the SRP service interface via HITP -->
<nbean code="org.jboss.invocation. http.server. HttpProxyFactory"
nanme="j boss. security.tests:servi ce=SRP/ HTTP" >
<attribute name="I|nvoker URL">http://| ocal host: 8080/i nvoker/JMXl nvoker Servl et </attri bute>
<attribute name="Invoker Nane" >j boss. security.tests: servi ce=SRPServi ce</attri bute>
<attribute name="Exportedlnterface">
org. jboss. security. srp. SRPRennt eServer | nterface
</attribute>
<attribute name="Jndi Nane">srp-test-http/ SRPServerlnterface</attribute>
</ mbean>

Any client may now lookup the RMI interface from INDI using the name specified in the Ht t pPr oxyFact ory (€.0.,
srp-test-http/ SRPSer ver | nt er f ace) and use the obtain proxy in exactly the same manner as the RMI/JRMP ver-
sion.

JBoss Release 2 89

Naming on JBoss
The JNDI Naming Service

The naming service plays akey role in enterprise Java applications, providing the core infrastructure that is used to
locate objects or services in an application server. It is aso the mechanism that clients external to the application
server use to locate services inside the application server. Application code, whether it is internal or external to the
JBoss instance, need only know that it needs to talk to the a message queue named queue/ | ncomi ngQr ders and
would not need to worry about any of the details of how the queue is configured. In a clustered environment, nam-
ing services are even more valuable. A client of a service would desire to look up the Pr oduct Cat al og Session bean
from the cluster without worrying which machine the service is residing. Whether it is a big clustered service, a
local resource or just a ssimple application component that is needed, the JINDI naming service provides the glue
that lets code find the objects in the system by name.

2.1. An Overview of JNDI

JNDI is a standard Java API that is bundled with JDK 1.3 and higher. INDI provides a common interface to a vari-
ety of existing naming services: DNS, LDAP, Active Directory, RMI registry, COS registry, NIS, and file systems.
The JNDI API is divided logically into a client API that is used to access naming services, and a service provider
interface (SPI) that alows the user to create INDI implementations for naming services.

The SPI layer is an abstraction that naming service providers must implement to enable the core JNDI classes to
expose the naming service using the common JNDI client interface. An implementation of JNDI for a naming ser-
vice isreferred to as a INDI provider. JBoss naming is an example JNDI implementation, based on the SPI classes.
Note that the INDI SPI is not needed by J2EE component devel opers.

For a thorough introduction and tutorial on JNDI, which covers both the client and service provider APIs, see the
Sun tutoria at http://java.sun.com/products/jndi/tutorial/.

The main INDI API package is the j avax. nani ng package. It contains five interfaces, 10 classes, and several ex-
ceptions. Thereisone key class, I ni ti al Cont ext , and two key interfaces, Cont ext and Narre

2.1.1. Names

The notion of a name is of fundamental importance in INDI. The naming system determines the syntax that the
name must follow. The syntax of the naming system allows the user to parse string representations of names into its
components. A name is used with a naming system to locate objects. In the simplest sense, a naming system is just
a collection of objects with unique names. To locate an abject in a naming system you provide a name to the nam-
ing system, and the naming system returns the object store under the name.

As an example, consider the Unix file system's naming convention. Each file is named from its path relative to the

JBoss Release 2 90

http://java.sun.com/products/jndi/tutorial/

Naming on JBoss

root of the file system, with each component in the path separated by the forward slash character ("/"). The file's
path is ordered from left to right. The pathnames usr/j boss/ r eadme. t xt , for example, names afilereadme. txt in
the directory j boss, under the directory usr, located in the root of the file system. JBoss naming uses a UNIX-style
namespace as its naming convention.

The j avax. nani ng. Nane interface represents a generic name as an ordered sequence of components. It can be a
composite name (one that spans multiple namespaces), or a compound name (one that is used within a single hier-
archical naming system). The components of a name are numbered. The indexes of a name with N components
range from O up to, but not including, N. The most significant component is at index 0. An empty name has no
components.

A composite name is a sequence of component names that span multiple namespaces. An example of a composite
name would be the hostname and file combination commonly used with UNIX commands like scp. For example,
the following command copies |ocal file.txt to the file remotefile.txt in the tnp directory on host
ahost . someor g. or g:

scp local file.txt ahost.soneorg.org:/tnp/renmotefile.txt

A compound name is derived from a hierarchical namespace. Each component in a compound name is an atomic
name, meaning a string that cannot be parsed into smaller components. A file pathname in the UNIX file systemis
an example of a compound name. ahost . soneorg. org: /tnp/ remotefil e. txt iSacomposite name that spans the
DNS and UNIX file system namespaces. The components of the composite name are ahost . someor g. org and /
tnp/renotefile.txt. A component is a string name from the namespace of a naming system. If the component
comes from a hierarchical namespace, that component can be further parsed into its atomic parts by using the
j avax. nami ng. ConpoundNane class. The INDI API provides the j avax. nani ng. Conposi t eNane class as the imple-
mentation of the Narre interface for composite names.

2.1.2. Contexts

The j avax. nani ng. Cont ext interface is the primary interface for interacting with a naming service. The Cont ext
interface represents a set of name-to-abject bindings. Every context has an associated naming convention that de-
termines how the context parses string names into j avax. nani ng. Nane instances. To create a hame to object bind-
ing you invoke the bind method of a cont ext and specify a name and an object as arguments. The object can later
be retrieved using its name using the cont ext lookup method. A cont ext will typically provide operations for
binding a name to an object, unbinding a name, and obtaining a listing of all name-to-object bindings. The object
you bind into a Cont ext can itself be of type Cont ext . The Cont ext object that is bound is referred to as a subcon-
text of the cont ext on which the bind method was invoked.

As an example, consider a file directory with a pathname / usr, which is a context in the UNIX file system. A file
directory named relative to another file directory is a subcontext (commonly referred to as a subdirectory). A file
directory with a pathname / usr/j boss names aj boss context that is a subcontext of usr. In another example, a
DNS domain, such asor g, is a context. A DNS domain named relative to another DNS domain is another example
of asubcontext. Inthe DNS domain j boss. or g, the DNS domainj boss is a subcontext of or g because DNS names
are parsed right to left.

2.1.2.1. Obtaining a Context using InitialContext

All naming service operations are performed on some implementation of the Cont ext interface. Therefore, you
need a way to obtan a context for the naming service you are interested in using. The

JBoss Release 2 91

Naming on JBoss

j avax. nam ng. I nti al Cont ext classimplementsthe Cont ext interface, and provides the starting point for interact-
ing with a naming service.

When you create an | ni ti al Cont ext, it isinitialized with properties from the environment. INDI determines each
property's value by merging the values from the following two sources, in order.

e Thefirst occurrence of the property from the constructor's environment parameter and (for appropriate proper-
ties) the applet parameters and system properties.

e Alljndi.properties resource filesfound on the classpath.

For each property found in both of these two sources, the property's value is determined as follows. If the property
is one of the standard JNDI properties that specify alist of JNDI factories, al of the values are concatenated into a
single colon-separated list. For other properties, only the first value found is used. The preferred method of specify-
ing the INDI environment properties is through aj ndi . properti es file, which allows your code to externalize the
JINDI provider specific information so that changing JNDI providers will not require changes to your code or re-
compilation.

The cont ext implementation used internally by the I ni ti al Context class is determined at runtime. The default
policy uses the environment property j ava. naming.factory.initial, which contains the class name of the
j avax. nam ng. spi . I niti al Cont ext Fact ory implementation. Y ou obtain the name of the I ni ti al Cont ext Fact -
ory class from the naming service provider you are using.

Example 2.1 gives a sample j ndi . properti es file a client application would use to connect to a JBossNS service
running on the local host at port 1099. The client application would need to have the j ndi . properti es file avail-
able on the application classpath. These are the properties that the JBossNS JNDI implementation requires. Other
JNDI providerswill have different properties and values.

Example 2.1. A samplejndi.propertiesfile

JBOSSNS properties

java.nam ng.factory.initial=org.jnp.interfaces. Nam ngCont ext Fact ory
j ava. nam ng. provi der. url =jnp:/ /1 ocal host: 1099

java. nam ng. factory. url.pkgs=org.jboss. nam ng: org.jnp.interfaces

2.2. The JIBossNS Architecture

The JBossNS architecture is a Java socket/RMI based implementation of the j avax. nani ng. Cont ext interface. Itis
a client/server implementation that can be accessed remotely. The implementation is optimized so that access from
within the same VM in which the JBossNS server is running does not involve sockets. Same VM access occurs
through an object reference available as a global singleton. Figure 2.1 illustrates some of the key classes in the
JBossNS implementation and their relationships.

JBoss Release 2 92

Naming on JBoss

Q

javax.naming. Context

RrniFor=Anonymous
ordg.jnp.interfaces. NaningContext Context Implementation - (:::>
client SEIVEer
ord. jnp.interfaces. Naning
|
Jlfr"u:u:untext |luukup
| |
| |
| |
[: org. jup. ferver. . Naningierver
: |Server Bootstrap
| |
| | A
| ! |
| : |
: .. = O org. jnp.server.Main
| bootztrap
| Socket
: Port=1099 M
|
! |
manages
|factory |

.]
; ; . org. jhoss. naming.Namingiervice
org.jnp.interfaces.NaningContextFactory

. . . - org.jboss. naming.NamingServiceME=san
Javax.naming. spi.InitialContextFactory g.1 g d

Figure 2.1. Key componentsin the JBossNS ar chitecture.

We will start with the Nani ngSer vi ce MBean. The Nani ngSer vi ce MBean provides the INDI naming service. This
is akey service used pervasively by the J2EE technology components. The configurable attributes for the Nani ng-
Servi ce are asfollows.

e Port: The jnp protocol listening port for the Nami ngSer vi ce. If not specified default is 1099, the same as the
RMI registry default port.

« RmiPort: The RMI port on which the RMI Naming implementation will be exported. If not specified the de-
fault is 0 which means use any available port.

¢ BindAddress. The specific address the Nani ngSer vi ce listens on. This can be used on a multi-homed host for a
java. net . Server Socket that will only accept connect requests on one of its addresses.

RmiBindAddress. The specific address the RMI server portion of the Nani ngSer vi ce listens on. This can be

JBoss Release 2 93

Naming on JBoss

used on a multi-homed host for aj ava. net . Server Socket that will only accept connect requests on one of its
addresses. If this is not specified and the Bi ndAddr ess is, the Rni Bi ndAddr ess defaults to the Bi ndAddr ess
value.

» Backlog: The maximum gueue length for incoming connection indications (a request to connect) is set to the
backl og parameter. If a connection indication arrives when the queue is full, the connection is refused.

* ClientSocketFactory: An optional custom j ava. rmi. server. RM O i ent Socket Fact ory implementation class
name. If not specified the default RM A i ent Socket Fact ory is used.

e ServerSocketFactory: An optional custom j ava. rni . server. RM Ser ver Socket Fact ory implementation class
name. If not specified the default RM Ser ver Socket Fact ory is used.

e JNPServer SocketFactory: An optional custom j avax. net . Ser ver Socket Fact ory implementation class name.
This is the factory for the Server Socket used to bootstrap the download of the JBossNS Nani ng interface. If
not specified thej avax. net . Server Socket Fact ory. get Def aul t () method valueis used.

The Nami ngSer vi ce also createsthej ava: conp context such that access to this context isisolated based on the con-
text class loader of the thread that accesses thej ava: conp context. This provides the application component private
ENC that is required by the J2EE specs. This segregation is accomplished by binding aj avax. nani ng. Ref er ence
to a context that uses the or g. j boss. nani ng. ENCFact ory asSitS| avax. nami ng. Obj ect Fact ory. When a client per-
forms alookup of j ava: conp, or any subcontext, the ENCFact ory checks the thread context d assLoader, and per-
forms alookup into amap using the d assLoader asthe key.

If a context instance does not exist for the class loader instance, one is created and associated with that class |oader
in the ENCFact ory map. Thus, correct isolation of an application component's ENC relies on each component re-
ceiving aunique d assLoader that is associated with the component threads of execution.

The Nami ngSer vi ce delegates its functionality to an org. j np. server. Mai n MBean. The reason for the duplicate
MBeans is because JBossNS started out as a stand-alone JNDI implementation, and can still be run as such. The
Nami ngSer vi ce MBean embeds the Mii n instance into the JBoss server so that usage of INDI with the same VM as
the JBoss server does not incur any socket overhead. The configurable attributes of the NamingService are really
the configurable attributes of the JBossNS mai n MBean. The setting of any attributes on the Nani ngSer vi ce
MBean simply set the corresponding attributes on the Mai n MBean the Nani ngSer vi ce contains. When the Nani ng-
Servi ce IS started, it starts the contained vai n MBean to activate the INDI naming service.

In addition, the Nami ngSer vi ce exposes the Nani ng interface operations through a IMX detyped invoke operation.
This alows the naming service to be accessed via IMX adaptors for arbitrary protocols. We will look at an ex-
ample of how HTTP can be used to access the naming service using the invoke operation later in this chapter.

The details of threads and the thread context class loader won't be explored here, but the INDI tutoria provides a
concise discussion that is applicable. See http://java.sun.com/products/jndi/tutorial/beyond/misc/classl oader.html
for the detalils.

When the vai n MBean is started, it performs the following tasks:
* |Instantiates an or g. j np. nani ng. Nani ngSer vi ce instance and sets this as the local VM server instance. Thisis

used by any org.jnp.interfaces. Nami ngCont ext instances that are created within the JBoss server VM to
avoid RMI calls over TCP/IP.

JBoss Release 2 94

http://java.sun.com/products/jndi/tutorial/beyond/misc/classloader.html

Naming on JBoss

e EXxportsthe Nani ngSer ver instance'sor g. j np. nami ng. i nt er f aces. Nami ng RMI interface using the configured
Rmi Port, d i ent Socket Fact ory, Ser ver Socket Fact or yattributes.

« Creates a socket that listens on the interface given by the Bi ndAddr ess and Por t attributes.

e Spawns athread to accept connections on the socket.

2.3. The Naming InitialContext Factories

The JBoss INDI provider currently supports several different | ni ti al Cont ext factory implementations.

2.3.1. The standard naming context factory

The most commonly used factory isthe org. j np. i nterfaces. Nanmi ngCont ext Fact ory implementation. Its proper-
tiesinclude:

« java.naming.factory.initial: The name of the environment property for specifying the initial context factory to
use. The value of the property should be the fully qualified class name of the factory class that will create an
initial context. If it is not specified, a j avax. nani ng. Nol ni ti al Cont ext Excepti on will be thrown when an
I'nitial Context objectiscreated.

e java.naming.provider.url: The name of the environment property for specifying the location of the JBoss
JINDI service provider the client will use. The Nami ngCont ext Fact ory class uses this information to know
which JBossNS server to connect to. The value of the property should be a URL string. For JBossNS the URL
format isj np: // host: port/[jndi _pat h]. Thejnp: portion of the URL is the protocol and refers to the socket/
RMI based protocol used by JBoss. Thej ndi _pat h portion of the URL is an optional INDI name relative to the
root context, for example, apps or apps/ t mp. Everything but the host component is optional. The following ex-
amples are equival ent because the default port value is 1099.

* jnp://ww. jboss. org: 1099/
* www. j boss. org: 1099
* ww. j boss.org

e java.naming.factory.url.pkgs: The name of the environment property for specifying the list of package pre-
fixes to use when loading in URL context factories. The value of the property should be a colon-separated list
of package prefixes for the class name of the factory class that will create a URL context factory. For the JBoss
JINDI provider thismust be or g. j boss. nami ng: org. j np. i nterfaces. This property is essential for locating the
jnp: andjava: URL context factories of the JBoss INDI provider.

* jnp.socketFactory: The fully qualified class name of thej avax. net . Socket Fact ory implementation to use to
create the bootstrap socket. The default value isorg. j np. i nterfaces. Ti nedSocket Fact ory. The Ti medSock-
et Fact ory isasimple Socket Fact ory implementation that supports the specification of a connection and read
timeout. These two properties are specified by:

* jnp.timeout: The connection timeout in milliseconds. The default value is 0 which means the connection will
block until the VM TCP/IP layer times out.

* jnp.sotimeout: The connected socket read timeout in milliseconds. The default value is O which means reads

JBoss Release 2 95

Naming on JBoss

will block. Thisisthe value passed to the Socket . set SoTi meout 0n the newly connected socket.

When a client creates an Initial Context Wwith these JBossNS properties available, the
org.jnp.interfaces. Nan ngCont ext Fact ory Object is used to create the Cont ext instance that will be used in
subsequent operations. The NamingContextFactory IS the JBossNS implementation of the
j avax. nam ng. spi . I ni ti al Cont ext Fact ory interface. When the Nami ngCont ext Fact ory classis asked to create a
Cont ext , it creates an org. j np. i nterfaces. Nani ngCont ext instance with the 1 ni ti al Cont ext environment and
name of the context in the global INDI namespace. It is the Nani ngCont ext instance that actually performs the task
of connecting to the JBossNS server, and implements the Cont ext interface. The Cont ext . PROVI DER_URL informa-
tion from the environment indicates from which server to obtain aNani ngSer ver RMI reference.

The association of the Nami ngCont ext instance to a Nani ngSer ver instance is done in a lazy fashion on the first
Cont ext operation that is performed. When a Cont ext operation is performed and the Nani ngCont ext has no Nam
i ngSer ver associated with it, it looks to see if its environment properties define a Cont ext . PROVI DER_URL. A Con-
t ext . PROVI DER_URL defines the host and port of the JBossNS server the Cont ext isto use. If there is a provider
URL, the Nani ngCont ext first checks to see if a Nani ng instance keyed by the host and port pair has already been
created by checking a Nani ngCont ext class static map. It simply uses the existing Nani ng instance if one for the
host port pair has already been obtained. If no Nani ng instance has been created for the given host and port, the
Nanmi ngCont ext CONNeCts to the host and port using aj ava. net . Socket , and retrieves a Nani ng RMI stub from the
server by reading aj ava. rmi . Marshal | edObj ect from the socket and invoking its get method. The newly obtained
Naming instance is cached in the Narmi ngCont ext Server map under the host and port pair. If no provider URL was
specified in the INDI environment associated with the context, the Nani ngCont ext simply uses thein VM Naming
instance set by the Mai n MBean.

The Nami ngCont ext implementation of the Cont ext interface delegates all operations to the Nani ng instance associ-
ated with the NaningContext. The NamingServer class that implements the Naming interface uses a
java.util.Hashtabl e as the Context store. There is one unique Nani ngSer ver instance for each distinct JNDI
Name for a given JBossNS server. There are zero or more transient Nani ngCont ext instances active at any given
moment that refers to a Nani ngSer ver instance. The purpose of the Nami ngCont ext IS t0 act as a Cont ext to the
Nami ng interface adaptor that manages trandation of the JINDI names passed to the Nani ngCont ext . Because a
JNDI name can be relative or a URL, it needs to be converted into an absolute name in the context of the JBossNS
server to which it refers. Thistrandation is a key function of the Nani ngCont ext .

2.3.2. The org.jboss.naming.NamingContextFactory

This version of the I ni ti al Cont ext Fact ory implementation is a simple extension of the jnp version which differs
from the jnp version in that it stores the last configuration passed to its Initi al ContextFact-
ory. getlnitial Context(Hashtabl e env) method in a public thread local variable. This is used by EJB handles
and other JNDI sensitive objects like the User Tr ansact i on factory to keep track of the INDI context that was in ef-
fect when they were created. If you want this environment to be bound to the object even after its serialized across
vm boundaries, then you should the or g. j boss. nani ng. Nami ngCont ext Fact ory. If you want the environment that
is defined in the current VM jndi.properties oOr system properties, then you should use the
org.jnp.interfaces. Nani ngCont ext Fact ory VErsion.

2.3.3. Naming Discovery in Clustered Environments

When running in a clustered JBoss environment, you can choose not to specify a Cont ext . PROVI DER_URL value and
let the client query the network for available naming services. This only works with JBoss servers running with the

JBoss Release 2 96

Naming on JBoss

al | configuration, or an equivalent configuration that has or g. j boss. ha. framewor k. server. Cl usterPartition
and or g. j boss. ha. j ndi . HANani ngSer vi ce services deployed. The discovery process consists of sending a multic-
ast request packet to the discovery address/port and waiting for any node to respond. The response is a HA-RMI
version of the Nani ng interface. The following I ni ti al Cont ext proerties affect the discovery configuration:

« jnp.partitionName: The cluster partition name discovery should be restricted to. If you are running in an en-
vironment with multiple clusters, you may want to restrict the naming discovery to a particular cluster. Thereis
no default value, meaning that any cluster response will be accepted.

e jnp.discoveryGroup: The multicast | P/address to which the discovery query is sent. The default is 230.0.0.4.
* jnp.discoveryPort: The port to which the discovery query is sent. The default is 1102.

e jnp.discoveryTimeout: The time in milliseconds to wait for a discovery query response. The default value is
5000 (5 seconds).

e jnp.disableDiscovery: A flag indicating if the discovery process should be avoided. Discovery occurs when
either no Cont ext . PROVI DER_URL is specified, or no valid naming service could be located among the URLS
specified. If thej np. di sabl eDi scovery flag istrue, then discovery will not be attempted.

2.3.4. The HTTP InitialContext Factory Implementation

The JNDI naming service can be accessed over HTTP. From a JNDI client's perspective this is a transparent
change as they continue to use the INDI Cont ext interface. Operations through the Cont ext interface are translated
into HTTP poststo a servlet that passes the request to the NamingService using its IMX invoke operation. Advant-
ages of using HTTP as the access protocol include better access through firewalls and proxies setup to allow HTTP,
aswell asthe ability to secure access to the INDI service using standard servlet role based security.

To access INDI over HTTP you usethe or g. j boss. nani ng. Ht t pNani ngCont ext Fact or y as the factory implement-
ation. The complete set of support I ni ti al Cont ext environment properties for this factory are:

« java.naming.factory.initial: The name of the environment property for specifying the initial context factory,
which must be or g. j boss. nani ng. Ht t pNani ngCont ext Fact ory.

e java.naming.provider.url (or Cont ext. PROVI DER_URL): This must be set to the HTTP URL of the JNDI fact-
ory. The full HTTP URL would be the public URL of the JBoss servlet container plus/i nvoker/ JNDI Fact ory.
Examplesinclude:

e http://ww.jboss. org: 8080/i nvoker/JNDI Fact ory
* http://ww.jboss.org/invoker/JNDI Factory
e https://ww.]jboss.org/invoker/JNDl Factory

The first example accesses the servlet using the port 8080. The second uses the standard HTTP port 80, and the
third uses an SSL encrypted connection to the standard HTTPS port 443.

e java.naming.factory.url.pkgs: For all JBoss JINDI provider this must be
org. j boss. naming: org. jnp.interfaces. This property is essential for locating thej np: andj ava: URL con-
text factories of the JBoss INDI provider.

The JNDI cont ext implementation returned by the Ht t pNanmi ngCont ext Fact ory iS a proxy that delegates invoca

JBoss Release 2 97

Naming on JBoss

tions made on it to a bridge servlet which forwards the invocation to the Nari ngSer vi ce through the IMX bus and
marshalls the reply back over HTTP. The proxy needs to know what the URL of the bridge servlet isin order to op-
erate. This value may have been bound on the server side if the JBoss web server has a well known public inter-
face. If the JBoss web server is sitting behind one or more firewalls or proxies, the proxy cannot know what URL is
required. In this case, the proxy will be associated with a system property value that must be set in the client VM.
For more information on the operation of INDI over HTTP see Section 2.4.1.

2.3.5. The Login InitialContext Factory Implementation

JAAS is the preferred method for authenticating a remote client to JBoss. However, for simplicity and to ease the
migration from other application server environment that do not use JAAS, JBoss alows you the security creden-
tials to be passed through the I ni ti al Cont ext . JAAS is till used under the covers, but there is no manifest use of
the JAAS interfacesin the client application.

The factory class that provides this capability is the or g. j boss. security.jndi. Logi nl nitial Cont ext Fact ory.
The complete set of support I ni ti al Cont ext environment properties for this factory are:

e java.naming.factory.initial: The name of the environment property for specifying the initial context factory,
which must be or g. j boss. securi ty. j ndi. Logi nl ni ti al Cont ext Fact ory.

e java.naming.provider.url: This must be set to a Nani ngCont ext Fact ory provider URL. The Logi nl nti al Con-
text isrealy just awrapper around the Nani ngCont ext Fact or y that adds a JAAS login to the existing Narmi ng-
Cont ext Fact ory behavior.

* java.naming.factory.url.pkgs: For all JBoss JNDI provider this must be
org.j boss. naming: org.jnp.interfaces. This property is essential for locating the j np: andjava: URL con-
text factories of the JBoss JNDI provider.

e java.naming.security.principal (or Context.SECURI TY_PRI NCI PAL): The principal to authenticate. This may
be either aj ava. security. Princi pal implementation or a string representing the name of a principal.

e java.naming.security.credentials (or Cont ext. SECURI TY_CREDENTI ALS), The credentials that should be used
to authenticate the principal, e.g., password, session key, etc.

e java.naming.security.protocol: (Cont ext . SECURI TY_PROTOCOL) This gives the name of the JAAS login mod-
ule to use for the authentication of the principal and credentials.

2.3.6. The ORBInitialContextFactory

When using Sun's CosNaming it is necessary to use a different naming context factory from the default. CosNam-
ing looks for the ORB in JNDI instead of using the the ORB configured in depl oy/ i i op-servi ce. xm 2. It is nec-
cessary to set the global context factory to org. j boss. i i op. nami ng. ORBI ni ti al Cont ext Fact ory, which sets the
ORB to JBosss ORB. Thisisdoneintheconf/j ndi . propeti es file:

DO NOT EDIT TH' S FI LE UNLESS YOU KNOW VWHAT YOU ARE DA NG

#

java.nam ng. factory.initial =org.jboss.iiop.nam ng. ORBI ni ti al Cont ext Factory
java. nam ng.factory. url.pkgs=org.jboss. nam ng: org.jnp.interfaces

JBoss Release 2 98

Naming on JBoss

It isalso necessary to use ORBI ni ti al Cont ext Fact or y When using CosNaming in an application client.

2.4. JNDI over HTTP

In addition to the legacy RMI/JRMP with a socket bootstrap protocol, JBoss provides support for accessing its
JNDI naming service over HTTP.

2.4.1. Accessing JNDI over HTTP

This capability is provided by ht t p-i nvoker . sar. The structure of the ht t p-i nvoker. sar is:

htt p-i nvoker. sar

+- META- | NF/ j boss-servi ce. xm

+- i nvoker.war

EB- | NF/ j boss- web. xm

VEB- | NF/ cl asses/ or g/ j boss/invocation/ http/servlet/InvokerServlet.class

WEB- | NF/ cl asses/ org/j boss/invocation/ http/servl et/ Nam ngFactoryServl et. cl ass
VEB- | NF/ cl asses/ org/j boss/i nvocati on/ http/servl et/ ReadOnl yAccessFilter. cl ass
VEB- | NF/ cl asses/ rol es. properties

VEB- | NF/ cl asses/ users. properties

\EB- | NF/ web. xmi

- META- | NF/ MANI FEST. M-

+- META- | NF/ MANI FEST. M-

+ 4+ + + + +

The j boss-servi ce. xm descriptor defines the Ht t pl nvoker and Ht t pl nvoker HA MBeans. These services handle
the routing of methods invocations that are sent viaHTTP to the appropriate target MBean on the IMX bus.

The ht t p-i nvoker . war web application contains servlets that handle the details of the HTTP transport. The Nam
i ngFact oryServl et handles creation requests for the JBoss JNDI naming service j avax. nani ng. Cont ext imple-
mentation. The I nvoker Ser vl et handles invocations made by RMI/HTTP clients. The Readnl yAccessFi |l ter a-
lows one to secure the JINDI naming service while making a single JINDI context available for read-only access by
unauthenticated clients.

Lookup via HTTP l NamingFactoryServiet
Queries
Creates i HttpProxyFactory
]

I)_ InvokerServlet

I JMX

org.jnp.interfaces.Naming

HttplnvokerProxy

ProxyHandler

Jinp.interfaces.NamingContext

{ E:}x.naming.l:untext

Figure2.2. The HTTP invoker proxy/server structurefor a JNDI Context

NamingService

!

JBoss Release 2 99

Naming on JBoss

Before looking at the configurations let's look at the operation of the ht t p-i nvoker services. Figure 2.2 shows alo-
gical view of the structure of a JBoss JNDI proxy and its relationship to the JBoss server side components of the
ht t p-i nvoker. The proxy is obtained from the Nani ngFact oryServl et USing an I ni ti al Cont ext With the Con-
text. | NI TI AL_CONTEXT_FACTORY property set to org.j boss. nani ng. Ht t pNani ngCont ext Fact ory, and the Con-
t ext . PROVI DER_URL property set to the HTTP URL of the Nani ngFact or ySer vl et . The resulting proxy is embed-
dedinanorg.jnp.interfaces. Nami ngCont ext instance that providesthe cont ext interface implementation.

The proxy is an instance of org.jboss.invocation. http.interfaces. Htt pl nvoker Proxy, and implements the
org.jnp.interfaces. Nani ng interface. Internaly the H t pl nvoker Proxy contains an invoker that marshalls the
Nani ng interface method invocations to the | nvoker Servl et ViaHTTP posts. The I nvoker Ser vl et translates these
posts into JIM X invocations to the Nani ngSer vi ce, and returns the invocation response back to the proxy in the HT-
TP post reponse.

There are severa configuration values that need to be set to tie all of these components together and Figure 2.3 il-
lustrates the relationship between configuration files and the corresponding components.

deploy/http-invoker.sar

+- META-INF /jboss-service.xml
+—- http-invoker .war ([(archive)
| +- HEB—IHFIWf:h.ml

InvokerServiet NamingFactoryServiet HttpPrunﬁyFa[:tur}r

A A

i1 il ___Jl I||____

__;_——-'I II________ __=~——-'I I'——__;__ i =
- 5 2 B =l s ¥
II| Illr II |Ilr III |Illr_
\ Y \
conf /jboss-service.xml P NamingService
=
—-:-_’___| r__:;--
I'|||I
|hl

Figure 2.3. Therelationship between configuration filesand JNDI/HTTP component

The http-invoker. sar/ META-| NF/ j boss-servi ce. xnl descriptor defines the Ht t pPr oxyFact ory that creates the
Ht t pl nvoker Proxy for the Nami ngSer vi ce. The attributes that need to be configured for the Ht t pProxyFact ory in-
clude:

JBoss Release 2 100

Naming on JBoss

¢ |nvokerName: The JMX bjectName Of the NanmingService defined in the conf/jboss-service. xm
descriptor. The standard setting used in the JBoss distributionsisj boss: ser vi ce=Nani ng.

e InvokerURL or Invoker URLPrefix + InvokerURLSuffix + UseHostName. You can specify the full HTTP
URL to the I nvoker Ser vl et using the nvoker URL attribute, or you can specify the hostname independent parts
of the URL and have the Htt pProxyFactory fill them in. An example I nvoker URL value would be ht -
tp://jbosshost 1. dot.com 8080/ i nvoker/ JMXI nvoker Ser vl et . This can be broken down into:

* Invoker URL Prefix: the URL prefix prior to the hostname. Typically thiswill be http:// or https:// if
SSL isto be used.

e Invoker URL Suffix: the URL suffix after the hostname. Thiswill include the port number of the web server
as well as the deployed path to the I nvoker Servl et . For the example | nvoker URL value the I nvoker -
URLSuf fi x would be : 8080/ i nvoker / IMXI nvoker Ser vl et without the quotes. The port number is determ-
ined by the web container service settings. The path to the | nvoker Ser vl et is specified in the ht t p-i n-
voker . sar/ i nvoker . war / WEB- | NF/ web. xni descriptor.

* UseHostName: aflag indicating if the hosthame should be used in place of the host IP address when build-
ing the hostname portion of the full | nvoker URL. If true, I net Address. get Local Host (). get Host Nare
method will be used. Otherwise, the | net Addr ess. get Local Host () . get Host Addr ess() method is used.

« Exportedinterface: The org.jnp.interfaces. Nami ng interface the proxy will expose to clients. The actual
client of this proxy is the JBoss JNDI implementation Nani ngCont ext class, which JNDI client obtain from
I nitial Context lookupswhen using the JBoss JNDI provider.

« JndiName: The name in JINDI under which the proxy is bound. This needs to be set to a blank/empty string to
indicate the interface should not be bound into JINDI. We can't use the JNDI to bootstrap itself. Thisisthe role
of the Nani ngFact oryServl et .

The http-invoker.sar/invoker. war/WEB- | NF/ web. xm descriptor defines the mappings of the Nani ngFact -
oryServl et and | nvoker Servl et along with their initialzation parameters. The configuration of the Nani ngFact -
oryServl et relevant to INDI/HTTP isthe JNDI Fact or y entry which defines:

e A nani ngProxyMBean initidization parameter that maps to the Ht t pPr oxyFact ory MBean name. This is used
by the Nani ngFact oryServl et to obtain the Nani ng proxy which it will return in response to HTTP posts. For
the default htt p-i nvoker. sar/ META-| NF/ j boss- servi ce. xm settings the name
j boss: servi ce=i nvoker, type=http, t ar get =Nani ng.

* A proxy initialzation parameter that defines the name of the nani ngPr oxyMBean attribute to query for the Nam-
ing proxy value. This defaultsto an attribute name of Pr oxy.

* The servlet mapping for the IJNDI Fact ory configuration. The default setting for the unsecured mapping is /
JNDI Fact ory/ *. Thisis relative to the context root of the ht t p-i nvoker. sar/i nvoker. war, which by default is
the WAR name minusthe . war suffix.

The configuration of the | nvoker Ser vl et relevant to INDI/HTTP isthe Jmxi nvoker Ser vl et which defines:

e The servlet mapping of the InvokerServiet. The default setting for the unsecured mapping is /
JMXI nvoker Servl et/ *. This is relative to the context root of the htt p-i nvoker. sar/i nvoker. war, which by

JBoss Release 2 101

Naming on JBoss

default isthe WAR name minus the . war suffix.

2.4.2. Accessing JNDI over HTTPS

To be able to access INDI over HTTP/SSL you need to enable an SSL connector on the web container. The details
of this are covered in the Integrating Servlet Containers for Tomcat. We will demonstrate the use of HTTPS with a
simple example client that uses an HTTPS URL as the JNDI provider URL. We will provide an SSL connector
configuration for the example, so unless you are interested in the details of the SSL connector setup, the exampleis
self contained.

We also provide a configuration of the Htt pProxyFact ory setup to use an HTTPS URL. The following example
shows the section of the ht t p-i nvoker. sar j boss-servi ce. xn descriptor that the example installs to provide this
configuration. All that has changed relative to the standard HTTP configuration are the | nvoker URLPr ef i x and | n-
voker URLSuf fi x attributes, which setup an HTTPS URL using the 8443 port.

<l-- Expose the Nami ng service interface via HITPS -->
<mbean code="org.j boss.invocation. http.server. HttpProxyFactory"
nane="j boss: servi ce=i nvoker, type=htt ps, t ar get =Nam ng" >

<l-- The Naming service we are proxying -->
<attribute name="I| nvoker Nane">j boss: servi ce=Nam ng</attri bute>
<I'-- Conpose the invoker URL fromthe cluster node address -->

<attribute name="I|nvoker URLPrefix">https://</attribute>
<attribute name="Invoker URLSuf fi x">: 8443/ i nvoker/ JMXI nvoker Servl et </attribute>
<attribute name="UseHost Name">true</attribute>
<attribute name="Exportedlnterface">org.jnp.interfaces. Nam ng </attri bute>
<attribute name="Jndi Name"/>
<attribute name="dientlnterceptors">
<i nt ercept or s>
<i nterceptor>org.j boss. proxy. C i ent Met hodl nt erceptor </interceptor>
<i nt er cept or >or g. j boss. proxy. Securityl nterceptor</interceptor>
<i nterceptor>org.j boss. nam ng. i nterceptors. Exceptionlnterceptor </interceptor>
<i nterceptor>org.j boss.invocation.|nvokerlnterceptor </interceptor>
</interceptors>
</attribute>
</ mbean>

At aminimum, a JNDI client using HTTPS requires setting up a HTTPS URL protocol handler. We will be using
the Java Secure Socket Extension (JSSE) for HTTPS. The JSSE documentation does a good job of describing what
is necessary to use HTTPS, and the following steps were needed to configure the example client shown in Ex-
ample 2.2:

e A protocol handler for HTTPS URLs must be made available to Java. The JSSE release includes an HTTPS
handler in the com sun. net . ssl . i nternal . ww. prot ocol package. To enable the use of HTTPS URLsyou in-
clude this package in the standard URL protocol handler search property, j ava. pr ot ocol . handl er. pkgs. We
set thej ava. prot ocol . handl er. pkgs property in the Ant script.

e The JSSE security provider must beinstalled in order for SSL to work. This can be done either by installing the
JSSE jars as an extension package, or programatically. We use the programatic approach in the example since
thisislessintrusive. Line 18 of the Exd i ent code demonstrates how thisis done.

e The JNDI provider URL must use HTTPS as the protocol. Lines 24-25 of the Exd i ent code specify an HTTP/
SSL connection to the localhost on port 8443. The hostname and port are defined by the web container SSL
connector.

JBoss Release 2 102

Naming on JBoss

e The vaidation of the HTTPS URL hostname against the server certificate must be disabled. By default, the
JSSE HTTPS protocol handler employs a strict validation of the hostname portion of the HTTPS URL against
the common name of the server certificate. This is the same check done by web browsers when you connect to
secured web site. We are using a self-signed server certificate that uses a common name of "Chapter 8 SSL
Exanpl e" rather than a particular hostname, and thisis likely to be common in development environments or in-
tranets. The JB0ss HitplnvokerProxy Will override the default hostname checking if a
org.jboss.security.ignoreHtpsHost system property exists and has a value of true. We set the
org.jboss. security.ignoreHttpsHost property totruein the Ant script.

Example 2.2. A JNDI client that usesHTTPS asthetransport

package org.j boss. chap3. ex1;

i mport java.security. Security;
import java.util.Properties;

i mport javax. nam ng. Cont ext;

i mport javax.naming. I nitial Context;

public class ExCient
{
public static void nmain(String args[]) throws Exception
{
Properties env = new Properties();
env. set Property(Context.| N Tl AL_CONTEXT_FACTORY,
"org.jboss. nam ng. Ht t pNam ngCont ext Factory");
env. set Propert y(Cont ext. PROVI DER_URL,
"https://|ocal host: 8443/invoker/JNDl FactorySSL");

Context ctx = new Initial Context(env);
Systemout.println("Created Initial Context, env=" + env);

Cbj ect data = ctx. | ookup("jnm/invoker/RM Adaptor");
System out. println("l ookup(j m/invoker/RM Adaptor): " + data);

To test the client, first build the chapter 3 example to create the chap3 configuration fileset.

[exanpl es] $ ant - Dchap=nami ng config

Next, start the JBoss server using the nami ng configuration fileset:

[bin]$ sh run.sh -c nam ng

And finally, run the Exa i ent using:

[exanpl es] $ ant - Dchap=nam ng - Dex=1 run-exanpl e

run- exanpl el:
[java] Created Initial Context, env={java.nam ng.provider.url=https://I|ocal host: 8443/invo
ker/JNDI Fact orySSL, java.nam ng.factory.initial=org.jboss.nam ng. HttpNanm ngCont ext Fact ory}
[java] | ookup(jm/invoker/RM Adaptor): org.jboss.invocation.jrnp.interfaces.JRWI nvokerP
roxy@ac3f a

JBoss Release 2 103

Naming on JBoss

2.4.3. Securing Access to JNDI over HTTP

One benefit to accessing INDI over HTTP isthat it is easy to secure accessto the INDI 1 ni ti al Cont ext factory as
well as the naming operations using standard web declarative security. This is possible because the server side
handling of the INDI/HTTP transport is implemented with two servlets. These servlets are included in the ht t p-
i nvoker . sar/invoker . war directory found in the def aul t and al | configuration deploy directories as shown pre-
viously. To enable secured access to INDI you need to edit the i nvoker . war / WEB- | NF/ web. xm descriptor and re-
move all unsecured servlet mappings. For example, the web. xni descriptor shown in Example 2.3 only alows ac-
cesstothei nvoker. war servletsif the user has been authenticated and has arole of H: t pl nvoker .

Example 2.3. An example web.xml descriptor for secured accessto the JNDI servlets

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE web-app PUBLIC
"-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN'
"http://java. sun. com dt d/ web-app_2_3. dtd">
<web- app>
<I-- ### Servlets -->
<servl et >
<ser vl et - nane>JMXI nvoker Ser vl et </ ser vl et - nane>
<servl et -cl ass>
org. jboss.invocation. http.servlet.|nvokerServl et
</servl et-class>
<l oad- on- st art up>1</1 oad- on-start up>
</servlet> <servl et >
<servl et - name>JNDI Fact or y</ ser vl et - name>
<servl et -cl ass>
org. j boss.invocation. http.servl et. Nam ngFact orySer vl et
</servl et-class>
<i ni t - paranp
<par am nanme>nani ngPr oxyMBean</ par am nane>
<par am val ue>j boss: servi ce=i nvoker, type=htt p, t ar get =Nam ng</ par am val ue>
</init-paranr
<i nit-paranp
<par am nane>pr oxyAt t ri but e</ par am nane>
<par am val ue>Pr oxy</ par am val ue>
</init-paranr
<l oad- on- st art up>2</| oad- on- st art up>
</servlet>
<I-- ### Servlet Mappings -->
<ser vl et - mappi ng>
<ser vl et - nane>JNDI Fact or y</ ser vl et - name>
<url-pattern>/restricted/ JND Factory/*</url-pattern>
</ servl et - mappi ng>
<servl et - mappi ng>
<servl et - nane>JMXI nvoker Ser vl et </ ser vl et - name>
<url-pattern>/restricted/ JMXl nvoker Servl et/*</url -pattern>
</ servl et - mappi ng> <security-constraint>
<web- r esour ce-col | ecti on>
<web- r esour ce- nane>Ht t pl nvoker s</ web- r esour ce- nane>
<descri pti on>An exanpl e security config that only allows users with
the role H tplnvoker to access the HTTP i nvoker servlets </description>
<url-pattern>/restricted/ *</url-pattern>
<ht t p- met hod>GET</ ht t p- net hod>
<ht t p- met hod>POST</ ht t p- met hod>
</ web-resource-col | ecti on>
<aut h- constrai nt >
<rol e- nane>Ht t pl nvoker </ r ol e- name>
</ aut h- constrai nt >
</security-constraint>
<l ogi n- confi g>

JBoss Release 2 104

Naming on JBoss

<aut h- met hod>BASI C</ aut h- net hod>
<r eal m name>JBoss HTTP | nvoker </real m nane>
</l ogin-config> <security-role>
<rol e- name>Ht t pl nvoker </ r ol e- nane>
</security-rol e>
</ web- app>

The web. xm descriptor only defines which sevlets are secured, and which roles are allowed to access the secured
servlets. You must additionally define the security domain that will handle the authentication and authorization for
the war. This is done through the j boss-web. xm descriptor, and an example that uses the htt p-i nvoker Security
domain is given below.

<j boss- web>
<security-domai n>j ava: /jaas/ http-invoker</security-domai n>
</j boss-web>

The securi ty- domai n element defines the name of the security domain that will be used for the JAAS login mod-
ule configuration used for authentication and authorization. See Section 7.1.6 for additional details on the meaning
and configuration of the security domain name.

2.4.4. Securing Access to JNDI with a Read-Only Unsecured Context

Another feature available for the INDI/HTTP naming service is the ability to define a context that can be accessed
by unauthenticated users in read-only mode. This can be important for services used by the authentication layer.
For example, the SRPLogi nMbdul e needs to lookup the SRP server interface used to perform authentication. Welll
now walk through how read-only JNDI works in JBoss.

First, the ReadOnl yINDI Factory is declared in invoker. sar/WEB-1 NF/ web. xmi . It will be mapped to /in-
voker/ ReadOnl yJNDI Fact ory.

<servl et >
<servl et - name>ReadOnl yJNDI Fact or y</ ser vl et - name>
<descri pti on>A servlet that exposes the JBoss JNDI Nami ng service stub
through http, but only for a single read-only context. The return content
is serialized Marshal | edVal ue containg the org.jnp.interfaces. Nam ng
st ub.
</ descri pti on>
<servl et-class>org. jboss.invocation. http.servlet.Nam ngFactoryServl et</servlet-class>
<i ni t-paranp
<par am name>nani ngPr oxy MBean</ par am nanme>
<par am val ue>j boss: servi ce=i nvoker, t ype=http, t ar get =Nam ng, r eadonl y=t r ue</ par am val ue>
</init-paranr
<i nit-paranp
<par am nane>pr oxyAt t ri but e</ par am nane>
<par am val ue>Pr oxy</ par am val ue>
</init-paranr
<l oad- on- st art up>2</| oad- on- st ar t up>
</servlet>

<-- L -->

<servl et - mappi ng>
<servl et - name>ReadOnl yJNDI Fact or y</ ser vl et - name>
<url - pattern>/ ReadOnl yJNDI Fact ory/ *</url - pattern>
</ servl et - mappi ng>

JBoss Release 2 105

Naming on JBoss

The factory only provides a JNDI stub which needs to be connected to an invoker. Here the invoker is
j boss: servi ce=i nvoker, t ype=http, t ar get =Nani ng, r eadonl y=true. This invoker is declared in the http-
i nvoker . sar/ META- | NF/ j boss- servi ce. xm file.

<nbean code="org.jboss.invocation. http.server. HttpProxyFactory"
nanme="j boss: servi ce=i nvoker, t ype=htt p, t ar get =Nanmi ng, r eadonl y=t r ue" >
<attribute name="I| nvoker Nane">j boss: servi ce=Nam ng</attri bute>
<attribute name="|nvoker URLPrefix">http://</attribute>
<attribute name="|nvoker URLSuf fi x">: 8080/ i nvoker/readonl y/ JMXI nvoker Servl et </ attri bute>
<attribute name="UseHost Nane">true</attri bute>
<attribute name="Exportedl nterface">org.jnp.interfaces. Nam ng</attri bute>
<attribute name="Jndi Nane"></attri bute>
<attribute name="Clientlnterceptors">
<i nt ercept or s>
<i nterceptor>org. j boss. proxy. C i ent Met hodl nt er cept or </ i nt er cept or >
<i nt er cept or >or g. j boss. proxy. Securityl nterceptor</interceptor>
<i nter cept or>org. j boss. nam ng. i nterceptors. Excepti onl nterceptor</interceptor>
<i nterceptor>org.jboss.invocation.|nvokerlnterceptor</interceptor>
</interceptors>
</attribute>
</ mbean>

The proxy on the client side needs to talk back to a specific invoker servlet on the server side. The configuration
here has the actual invocations going to /i nvoker/readonl y/ JMXI nvoker Ser vl et . This is actualy the standard
JMXI nvoker Ser vl et with aread-only filter attached.

<filter>
<filter-name>ReadOnl yAccessFilter</filter-name>
<filter-class>org.jboss.invocation. http.servlet. ReadOnl yAccessFilter</filter-class>
<init-paranp
<par am nanme>r eadOnl yCont ext </ par am nanme>
<par am val ue>r eadonl y</ par am val ue>
<descri pti on>The top | evel JNDI context the filter will enforce
read-only access on. |If specified only Context.|ookup operations
will be allowed on this context. Another other operations or
| ookups on any other context will fail. Do not associate this
filter with the JMXI nvokerServlets if you want unrestricted
access. </description>
</init-paranr
<i ni t - paranp
<par am name>i nvoker Nanme</ par am nanme>
<par am val ue>j boss: servi ce=Nam ng</ par am val ue>
<descri pti on>The JMX Obj ect Nane of the nami ng servi ce nbean </description>
</init-paranr
</filter>

<filter-mppi ng>
<filter-nane>ReadOnl yAccessFilter</filter-nanme>
<url -pattern>/readonly/*</url-pattern>
</filter-mappi ng>

<l-- ... -->
<l-- A mapping for the JMXInvokerServl et that only allows invocations
of | ookups under a read-only context. This is enforced by the
ReadOnl yAccessFi |l ter
-->
<servl et - mappi ng>
<ser vl et - nane>JMXI nvoker Ser vl et </ ser vl et - name>
<url - pattern>/readonl y/ IMXI nvoker Servl et/ *</url - pattern>
</ servl et - mappi ng>

The readnl yCont ext parameter is set to readonly which means that when you access JBoss through the

JBoss Release 2 106

Naming on JBoss

ReadOnl yJNDI Fact ory, You will only be able to access datain the readonl y context. Here is a code fragment that
illustrates the usage:

Properties env = new Properties();
env. set Property(Context.| N Tl AL_CONTEXT_FACTORY,
"org.jboss. nanm ng. Ht t pNanmi ngCont ext Factory");
env. set Propert y(Cont ext. PROVI DER_URL,
"http://1 ocal host: 8080/i nvoker/ ReadOnl yJNDI Fact ory");

Context ctx2 = new Initial Context(env);
bj ect data = ctx2.|ookup("readonly/data");

Attemptsto look up any objects outside of the readonly context will fail. Note that JBoss doesn't ship with any data
in ther eadonl y context, so the readonly context won't be bound usable unless you create it.

2.5. Additional Naming MBeans

In addition to the Nanmi ngSer vi ce MBean that configures an embedded JBossNS server within JBoss, there are sev-
eral additional MBean services related to naming that ship with JBoss. They are Jndi Bi ndi ngSer vi ceMgr , Nani n-
gAl i as, Ext er nal Cont ext , and JNDI Vi ew.

2.5.1. JNDI Binding Manager

The JNDI binding manager service alows you to quickly bind objects into INDI for use by application code. The
MBean class for the binding serviceisor g. j boss. nani ng. JNDI Bi ndi ngSer vi ceMyr . It has a single attribute, Bi nd-
i ngsConfi g, which accepts an XML document that conforms to the j ndi - bi ndi ng- servi ce_1_0. xsd schema. The
content of the Bi ndi ngsConfi g attribute is unmarshalled using the JBossXB framework. The following is an
MBean definition that shows the most basic form usage of the INDI binding manager service.

<nbean code="org.jboss. nam ng. JNDI Bi ndi ngSer vi ceMgr "
nanme="j boss. t est s: nane=exanpl el" >
<attribute name="Bi ndi ngsConfi g" seri al Dat aType="j bxb" >
<j ndi : bi ndi ngs xm ns: xs="http://ww. wW3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: j ndi ="urn:jboss:jndi - bi ndi ng-servi ce"
xs: schemalLocati on="ur n: j boss: j ndi - bi ndi ng- servi ce resource: jndi - bi ndi ng-service_1_
<j ndi : bi ndi ng name="bi ndexanpl e/ nessage" >
<jndi:value trim"true">
Hel | o, JNDI
</j ndi : val ue>
</ j ndi : bi ndi ng>
</ j ndi : bi ndi ngs>
</attribute>
</ nbean>

This binds the text string "Hel 1 o, JNDI ! " under the INDI name bi ndexanpl e/ message. An application would |ook
up the value just as it would for any other JNDI value. The tri m attribute specifies that leading and trailing
whitespace should be ignored. The use of the attribute here is purely for illustrative purposes as the default value is
true.

Initial Context ctx
String t ext

new | nitial Context();
(String) ctx.lookup("bindexanpl e/ message");

String values themselves are not that interesting. If a JavaBeans property editor is available, the desired class name
can be specified using thet ype attribute

JBoss Release 2 107

Naming on JBoss

<j ndi : bi ndi ng nanme="url s/ j boss- hone" >
<j ndi : val ue type="java.net. URL">http://ww. j boss. org</j ndi : val ue>
</j ndi : bi ndi ng>

Theedi t or attribute can be used to specify a particular property editor to use.

<j ndi : bi ndi ng nane="host s/ | ocal host" >
<j ndi : val ue editor="org.jboss. util.propertyeditor.|netAddressEditor">
127.0.0.1
</jndi:val ue>
</ j ndi : bi ndi ng>

For more complicated structures, any JBossXB-ready schema may be used. The following example shows how a
java.util.Properties object would be mapped.

<j ndi : bi ndi ng name="nmaps/test Props" >
<j ava: properties xmns:java="urn:jboss:]java-properties"
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
Xs: schemalLocati on="urn: j boss:java-properties resource:java-properties_1_0.xsd">
<j ava: property>
<j ava: key>key1l</j ava: key>
<j ava: val ue>val uel</j ava: val ue>
</java: property>
<j ava: property>
<j ava: key>key2</j ava: key>
<j ava: val ue>val ue2</j ava: val ue>
</java: property>
</java: properties>
</ j ndi : bi ndi ng>

For more information on JBossXB, see the JBossXB wiki page
[http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossX B].

2.5.2. The org.jboss.naming.NamingAlias MBean

The Nami ngAl i as MBean is a simple utility service that allows you to create an alias in the form of a JNDI
j avax. nami ng. Li nkRef from one JNDI name to another. This is similar to a symbolic link in the UNIX file sys-
tem. To an dias you add a configuration of the Nari ngAl i as MBean to the j boss- servi ce. xni configuration file.
The configurable attributes of the Nani ngAl i as service are as follows:

* FromName: The location wherethe Li nkRef isbound under INDI.

« ToName: The to name of the dlias. Thisis the target name to which the Li nkRef refers. The nameisaURL, or
aname to be resolved relative to the I ni ti al Cont ext , or if the first character of the nameisadot (.), the name
is relative to the context in which the link is bound.

The following example provides a mapping of the INDI name QueueConnect i onFact ory to the name Connect i on-
Factory.

<nbean code="org.jboss. nam ng. Nam ngAl i as"
nanme="j boss. ng: servi ce=Nam ngAl i as, f r omNane=QueueConnect i onFact or y" >
<attribute name="ToNanme" >Connecti onFactory</attri bute>
<attribute name="FromNanme" >QueueConnecti onFactory</attri bute>
</ nbean>

JBoss Release 2 108

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossXB

Naming on JBoss

2.5.3. org.jboss.naming.ExternalContext MBean

The External Context MBean allows you to federate external JNDI contexts into the JBoss server JNDI
namespace. The term external refers to any naming service external to the JBossNS naming service running inside
of the JBoss server VM. Y ou can incorporate LDAP servers, file systems, DNS servers, and so on, even if the INDI
provider root context is not serializable. The federation can be made available to remote clients if the naming ser-
vice supports remote access.

To incorporate an external INDI naming service, you have to add a configuration of the Ext er nal Cont ext MBean
service to the j boss-servi ce. xni configuration file. The configurable attributes of the Ext er nal Cont ext service
areasfollows:

* JndiName The JNDI name under which the external context isto be bound.

* RemoteAccess. A boolean flag indicating if the external 1 ni ti al Cont ext should be bound using a Seri al i z-
abl e form that allows a remote client to create the external 1 ni ti al Cont ext . When a remote client looks up
the external context via the JBoss JNDI I niti al Cont ext, they effectively create an instance of the external
I'nitial Context using the same env properties passed to the Ext er nal Cont ext MBean. Thiswill only work if
the client can do anew 1 niti al Cont ext (env) remotely. Thisrequires that the Cont ext . PROVI DER_URL value of
env isresolvable in the remote VM that is accessing the context. This should work for the LDAP example. For
the file system example this most likely won't work unless the file system path refers to a common network
path. If this property is not given it defaultsto false.

» CacheContext: The cacheContext flag. When set to true, the external Context is only crested when the
MBean is started and then stored as an in memory object until the MBean is stopped. If cacheContext is set to
false, the external context is created on each lookup using the MBean properties and Initial Context class.
When the uncached cont ext is looked up by a client, the client should invoke cl ose() on the Context to pre-
vent resource leaks.

« InitialContext: The fully qualified class name of the I ni ti al Cont ext implementation to use. Must be one of:
j avax. nam ng. I ni ti al Cont ext, j avax. nam ng. directory. I nitial D rCont ext or
j avax. nami ng. | dap. I ni ti al LdapCont ext . In the case of the I niti al LdapContext a null Control s array is
used. The default isj avax. nani ng. I ni ti al Cont ex.

* Properties: The Properti es attribute contains the INDI properties for the external I ni ti al Cont ext . The input
should be the text equivalent to what would go into aj ndi . properti es file.

e PropertiesURL: This set the j ndi . properti es information for the external 1 ni ti al Context from an extern
propertiesfile. Thisis either a URL, string or a classpath resource name. Examples are as follows:

« filel///config/myldap.properties
http://config.mycompany.com/myldap.properties
» /conf/myldap.properties

e myldap.properties

The MBean definition below shows a binding to an external LDAP context into the JBoss JINDI namespace under
the name ext er nal /| dap/ j boss.

<I-- Bind a renote LDAP server -->
<nbean code="org.j boss. nam ng. Ext er nal Cont ext "
nane="j boss. j ndi : servi ce=Ext er nal Cont ext, j ndi Name=ext er nal / | dap/j boss" >

JBoss Release 2 109

Naming on JBoss

<attribute name="Jndi Nane" >ext ernal /| dap/j boss</attri but e>
<attribute name="Properties">
java.nam ng.factory.initial =com sun.jndi.|dap.LdapCtxFactory
j ava. nami ng. provi der. url =l dap: / /| daphost . j boss. org: 389/ o=j boss. org
j ava. nam ng. security. princi pal =cn=Di rect ory Manager
j ava. nam ng. security. aut henticati on=si npl e
java. nam ng. security. credenti al s=secr et
</attribute>
<attribute name="Initial Context"> javax.nam ng.|dap.|nitial LdapContext </attribute>
<attribute name="RenpteAccess">true</attri bute>
</ mbean>

With this configuration, you can access the externa LDAP context located at
| dap: / /| daphost . j boss. or g: 389/ o=j boss. or g from within the JBoss VM using the following code fragment:

Initial Context iniCtx = new Initial Context();
LdapCont ext | dapCtx = ini Cx.|ookup("external/Ildap/jboss");

Using the same code fragment outside of the JBoss server VM will work in this case because the Renot eAccess
property was set to true. If it were set to false, it would not work because the remote client would receive a Ref er -
ence object with an vj ect Fact ory that would not be able to recreate the externa 1 nti al Cont ext

<I-- Bind the /usr/local file systemdirectory -->
<nbean code="org.j boss. nam ng. Ext er nal Cont ext"
nanme="j boss. j ndi : servi ce=Ext er nal Cont ext, j ndi Name=ext ernal / fs/ usr/| ocal ">
<attribute name="Jndi Narme" >ext ernal /fs/usr/ | ocal </ attri bute>
<attribute name="Properties">
java.nam ng.factory.initial =com sun.jndi.fscontext.Ref FSCont ext Fact ory
java. nam ng. provi der.url=file:///usr/l ocal
</attribute>
<attribute name="Initial Context">j avax. nam ng. I ntial Context</attri bute>
</ nbean>

This configuration describes binding alocal file system directory / usr/1 ocal into the JBoss INDI namespace un-
der thenameext ernal / fs/ usr/ 1 ocal .

With this configuration, you can access the external file system context located at file:///usr/1ocal from within
the JBoss VM using the following code fragment:

Initial Context iniCtx = new Initial Context();
Context |dapCtx = ini Ctx.|ookup("external/fs/usr/local");

Note that the use the Sun JNDI service providers, which must be downloaded from ht-
tp:/ljava.sun.com/products/jndi/serviceproviders.html. The provider JARs should be placed in the server configura-
tion i b directory.

2.5.4. The org.jboss.naming.JNDIView MBean

The INDIView MBean alows the user to view the INDI namespace tree as it exists in the JBoss server using the
JMX agent view interface. To view the JBoss JINDI namespace using the JINDIView MBean, you connect to the
JMX Agent View using the http interface. The default settings put thisat ht t p: / /| ocal host : 8080/ j mx- consol e/ .
On this page you will see a section that lists the registered MBeans sortyed by domain. It should look something
like that shown in Figure 2.4.

JBoss Release 2 110

http://java.sun.com/products/jndi/serviceproviders.html
http://java.sun.com/products/jndi/serviceproviders.html

Naming on JBoss

JBoss JMX Management Console == _
Bhttp:HIocalhost:BDEﬂfjmx—cun:‘.ule,f "(_Qv

ObjectName Filter (e.g. "jboss:*", "*:service=invoker,*") :
(Applyr'Fiiter‘]

Catalina
- t!p =Server
JMImplementation

=+ name=Default.servicesLoaderRepository

« type=MBeanRegistry
s type=MEBeanServerDelegate

jboss

database=localDB.servicesHypersonic
name=PropertyEditorManager.type=Service
name=SystemProperties.type=Service
readonly=true.service=sinvoker.target=Naming.type=http
service=AttributePersistenceService
service=ClientUserTransaction

service=sJNDIView
service=sKeyGeneratorFactory.type=HiLo
service=sKeyGeneratorFactory.type=UUID

service=Malil

service=sNaming v
B —

Figure 2.4. The IM X Console view of the configured JBoss M Beans

. 8 8 B B 0 ® B BB
i

Selecting the INDIView link takes you to the INDIView MBean view, which will have a list of the INDIView
MBean operations. This view should look similar to that shown in Figure 2.5.

JBoss Release 2 111

Naming on JBoss

I 800 MBean Inspector |
i [E] € hitp://localhost 8080 /jmx-console/HimlAdaptorfaction=inspatl = Q~ Coogle) |
' |
I e mepecor [T

-

MBean description:

IJNDIView Service. List deployed application java:comp namespaces, the java: namespace as well as the
global InitialContext JNDI namespace.

List of MBean attributes:

Name java.lang.String|R JNDIView|The class name of the MBean

State int R 3 The status of the MBean

StateString|java.lang.String|R Started |The status of the MBean in text form

List of MBean operations:

.
java.lang.String list()
Qutput JNDI info as text
P | oo T g"ll;:e O Infa::.;e, list the class of each object in addition to its
java.lang.String listXML()
Qutput JNDI info in XML format :
o

Figure2.5. The JM X Console view of the INDIView M Bean

The list operation dumps out the JBoss server INDI namespace as an HTML page using a simple text view. As an
example, invoking the list operation produces the view shown in Figure 2.6.

JBoss Release 2 112

Naming on JBoss

80 Operation Results

. |
i n n E] B http://localhost: 8080 /jmx-console /HimlAdaptor @ B Q- Coogle i
<> |+ | @nupy/ I / p r: = |

I operaonresuns [0 B

java: Namespace

+- XAConnectionFactory (class: org.jboss.mg.SpyXAConnectionFactory)
+- DefaultDS (class: javax.sgl.DataSource) .
+- SecurityProxyFactory (class: org.jboss.security.SubjectSecurityProxyFactory) r
+- DefaultJMsProvider (class: org.jboss.jms.jndi.JNDIProviderAdapter)
+- comp (class: javax.naming.Context)
+- Jms¥A (class: org.jboss.resource.adapter.jms.ImsConnectionFactoryImpl)
+- ConnectionFactory (class: org.jboss.md.SpyConnectionFactory)
+- jaas (class: javax.naming.Context)
| +- JmsXARealm (class: org.jboss.security.plugins.SecurityDomainContext)
| +- jbossmg (class: org.jboss.security.plugins.SecurityDomainContext)
| +- HsglDbRealm (class: org.jboss.security.plugins.SecuritybDomainContext)
+- timedCacheFactory (class: Jjavax.naming.Context)
Failed to lookup: timedCacheFactory, errmsg=null
+- TransactionPropagationContextExporter (class: org.jboss.tm.TransactionPropagationContext
+- 5tdJMSPool (class: org.jboss.jms.asf.StdServerSessionPoolFactory)
+- Mail (class: javax.mail.Session)
+- TransactionPropagationContextImporter (class: org.jboss.tm.TransactionPropagationContext
+- TransactionManager (class: org.jboss.tm.TxManager)

Global JNDI Namespace

+- XAConnectionFactory (class: org.jboss.mq.SpyXAConnectionFactory)

+- UILZConnectionFactory[link -> ConnectionFactory] (class: javax.naming.LinkRef)

+- UserTransactionSessionFactory (proxy: $Proxyll implements interface org.jboss.tm.usertx.
+- HTTPConnectionFactory (class: org.jboss.mdg.SpyConnectionFactory)

+- console (class: org.jnp.interfaces.NamingContext)

| +- PluginManager (proxy: $Proxy3é implements interface org.jboss.conscle.manager.Pluginl

+- UILZXAConnectionFactory[link -> XAConnectionFactory] (class: javax.naming.LinkRef) *
+- UUIDEeyGeneratorFactory (class: org.jboss.ejb.plugins.keygenerator.uuid.UUIDEeyGenerator”
i -] P
- - J il

4

Figure 2.6. The JIM X Console view of the INDIView list operation output

2.6. J2EE and JNDI - The Application Component Environment

JNDI is a fundamental aspect of the J2EE specifications. One key usage is the isolation of J2EE component code
from the environment in which the code is deployed. Use of the application component's environment allows the
application component to be customized without the need to access or change the application component's source
code. The application component environment is referred to as the ENC, the enterprise naming context. It isthe re-
sponsibility of the application component container to make an ENC available to the container components in the
form of JNDI Context. The ENC is utilized by the participants involved in the life cycle of a J2EE component in
the following ways.

JBoss Release 2 113

Naming on JBoss

e Application component business logic should be coded to access information from its ENC. The component
provider uses the standard deployment descriptor for the component to specify the required ENC entries. The
entries are declarations of the information and resources the component requires at runtime.

* The container provides tools that allow a deployer of a component to map the ENC references made by the
component developer to the deployment environment entity that satisfies the reference.

» The component deployer utilizes the container tools to ready a component for final deployment.

e The component container uses the deployment package information to build the complete component ENC at
runtime

The complete specification regarding the use of JNDI in the J2EE platform can be found in section 5 of the J2EE
1.4 specification. The J2EE specification is available at http://java.sun.com/j2ee/download.html.

An application component instance locates the ENC using the INDI API. An application component instance cre-
ates aj avax. naming. | ni ti al Cont ext Object by using the no argument constructor and then looks up the naming
environment under the name j ava: conp/ env. The application component's environment entries are stored directly
in the ENC, or in its subcontexts. Example 2.4 illustrates the prototypical lines of code a component uses to access
its ENC.

Example 2.4. ENC access sample code

/1 Obtain the application conponent's ENC
Context iniCtx = new Initial Context();
Cont ext conpEnv = (Context) ini Cx.|ookup("java:conp/env");

An application component environment is a local environment that is accessible only by the component when the
application server container thread of contral is interacting with the application component. This means that an EJB
Bean1 cannot access the ENC elements of EJB Bean2, and vice versa. Similarly, Web application web1 cannot ac-
cess the ENC eements of Web application web2 or Beanl or Bean2 for that matter. Also, arbitrary client code,
whether it is executing inside of the application server VM or externally cannot access a component's j ava: conp
JINDI context. The purpose of the ENC isto provide an isolated, read-only namespace that the application compon-
ent can rely on regardless of the type of environment in which the component is deployed. The ENC must be isol-
ated from other components because each component defines its own ENC content. Components A and B, for ex-
ample, may define the same name to refer to different objects. For example, EJB Bean1 may define an environment
entry j ava: conp/ env/ r ed to refer to the hexadecimal value for the RGB color for red, while Web application web1
may bind the same name to the deployment environment language |ocal e representation of red.

There are three commonly used levels of naming scope in JBoss. names under j ava: conp, names under j ava: , and
any other name. As discussed, the j ava: conp context and its subcontexts are only available to the application com-
ponent associated with that particular context. Subcontexts and object bindings directly under j ava: are only vis-
ible within the JBoss server virtual machine and not to remote clients. Any other context or object binding is avail-
able to remote clients, provided the context or object supports serialization. You'll see how the isolation of these
naming scopes is achieved in the Section 2.2.

An example of where the restricting a binding to the j ava: context is useful would be a j avax. sql . Dat aSour ce
connection factory that can only be used inside of the JBoss server where the associated database pool resides. On
the other hand, an EJB home interface would be bound to a globally visible name that should accessible by remote

JBoss Release 2 114

http://java.sun.com/j2ee/download.html

Naming on JBoss

client.

2.6.1. ENC Usage Conventions

JINDI is used as the API for externalizing a great deal of information from an application component. The JNDI
name that the application component uses to access the information is declared in the standard ej b-j ar. xn de-
ployment descriptor for EJB components, and the standard web. xn deployment descriptor for Web components.
Several different types of information may be stored in and retrieved from JNDI including:

» Environment entries as declared by the env- ent ry elements

EJB references as declared by ej b-ref and ej b-1 ocal - ref elements.
« Resource manager connection factory references as declared by ther esour ce-ref elements
¢ Resource environment references as declared by ther esour ce- env-ref elements

Each type of deployment descriptor element has a JINDI usage convention with regard to the name of the INDI con-
text under which the information is bound. Also, in addition to the standard deploymentdescriptor element, there is
a JBoss server specific deployment descriptor element that maps the INDI name as used by the application com-
ponent to the deployment environment INDI hame.

2.6.1.1. Environment Entries

Environment entries are the simplest form of information stored in a component ENC, and are similar to operating
system environment variables like those found on UNIX or Windows. Environment entries are a name-to-value
binding that allows a component to externalize a value and refer to the value using a name.

An environment entry is declared using an env-ent ry element in the standard deployment descriptors. The env-
ent ry €element contains the following child elements:

» Anoptional description element that provides a description of the entry
* Anenv-entry-name element giving the name of the entry relativetoj ava: conp/ env

« Anenv-entry-type element giving the Java type of the entry value that must be one of:

* java.lang.Byte

* java.lang. Bool ean

* java.lang. Character
* java.lang. Doubl e

* java.lang. Fl oat

* java.lang.|nteger

* java.lang.Long

* java.lang. Short

* java.lang.String

« Anenv-entry-value element giving the value of entry asastring

An example of an env-ent ry fragment from an ej b-j ar. xnl deployment descriptor is given in Example 2.5. There

JBoss Release 2 115

Naming on JBoss

is no JBoss specific deployment descriptor element because an env- ent ry is a complete name and value specifica
tion. Example 2.6 shows a sample code fragment for accessing the maxExenpt i ons and t axRat e env-entry values
declared in the deployment descriptor.

Example 2.5. An example g b-jar .xml env-entry fragment

<l-- ... -->

<sessi on>
<ej b- name>ASessi onBean</ ej b- nanme>
<l-- ... -->

<env-entry>
<descri pti on>The maxi mum nunber of tax exenptions allowed </description>
<env-ent ry- name>maxExenpt i ons</ env-ent ry- name>
<env-entry-type>j ava.l ang. | nt eger</env-entry-type>
<env-entry-val ue>15</env-entry-val ue>
</ env-entry>
<env-entry>
<description>The tax rate </description>
<env-entry- name>t axRat e</ env- ent ry- name>
<env-entry-type>java. |l ang. Fl oat </ env-entry-type>
<env-entry-val ue>0. 23</ env-entry-val ue>
</ env-entry>
</ sessi on>
<l-- ... -->

Example 2.6. ENC env-entry access code fragment

Initial Context iniCtx = new Initial Context();

Context envCtx = (Context) iniCx.|ookup("java:conp/env");

I nt eger maxExenptions = (Integer) envCtx. | ookup("maxExenptions");
Fl oat taxRate = (Float) envCx. | ookup("taxRate");

2.6.1.2. EJB References

It is common for EJBs and Web components to interact with other EJBs. Because the INDI name under which an
EJB home interface is bound is a deployment time decision, there needs to be a way for a component developer to
declare areference to an EJB that will be linked by the deployer. EJB references satisfy this requirement.

An EJB referenceis alink in an application component naming environment that points to a deployed EJB home
interface. The name used by the application component is alogical link that isolates the component from the actual
name of the EJB home in the deployment environment. The J2EE specification recommends that all references to
enterprise beans be organized in thej ava: conp/ env/ ej b context of the application component's environment.

An EJB reference is declared using an ej b-ref element in the deployment descriptor. Each ej b-ref element de-
scribes the interface requirements that the referencing application component has for the referenced enterprise
bean. Theej b-ref element contains the following child elements:

« Anoptiona description element that provides the purpose of the reference.

* An gb-ref-name element that specifies the name of the reference relative to the j ava: conp/ env context. To
place the reference under the recommended j ava: conp/ env/ ej b context, use an ej b/ 1 i nk- name form for the

JBoss Release 2 116

Naming on JBoss

ej b-ref - name vaue.
¢ Angb-ref-type element that specifies the type of the EJB. This must be either Enti ty or Sessi on.
* A home element that gives the fully qualified class name of the EJB home interface.
* A remoteelement that gives the fully qualified class name of the EJB remote interface.

* Anoptional gb-link element that links the reference to another enterprise bean in the same EJB JAR or in the
same J2EE application unit. The ej b-1i nk value is the ej b- nane of the referenced bean. If there are multiple
enterprise beans with the same ej b- nane, the value uses the path name specifying the location of the ej b-j ar
file that contains the referenced component. The path name is relative to the referencing ej b-j ar file. The Ap-
plication Assembler appends the ej b- name of the referenced bean to the path name separated by #. This alows
multiple beans with the same name to be uniquely identified.

An EJB reference is scoped to the application component whose declaration contains the ej b-ref element. This
means that the EJB reference is not accessible from other application components at runtime, and that other applic-
ation components may define ej b- ref elements with the same ej b- r ef - name without causing a name conflict. Ex-
ample 2.7 provides an ej b-j ar. xm fragment that illustrates the use of the ej b-ref element. A code sample that il-
lustrates accessing the Shoppi ngCar t Hore reference declared in Example 2.7 is given in Example 2.8.

Example 2.7. An example gjb-jar.xml g b-ref descriptor fragment

<l-- ... -->

<sessi on>
<ej b- nanme>Shoppi ngCar t Bean</ ej b- name>
<l-- ...-->

</ sessi on>

<sessi on>

<ej b- name>Pr oduct BeanUser </ ej b- nanme>

<l--...-->

<ej b-ref>
<description>This is a reference to the store products entity </description>
<ej b-ref - name>ej b/ Pr oduct Honme</ ej b- r ef - name>
<ej b-ref-type>Entity</ejb-ref-type>
<hone>or g. j boss. st ore. ej b. Product Home</ home>
<renote> org.j boss. store. ejb. Product </renot e>

</ ejb-ref>

</ sessi on>

<sessi on>
<ej b-ref>
<ej b- name>Shoppi ngCart User </ ej b- name>
<l--...-->

<ej b-ref - name>ej b/ Shoppi ngCar t Hone</ ej b-r ef - name>
<ej b-ref -type>Sessi on</ ej b-ref -type>
<hone>or g. j boss. st ore. ej b. Shoppi ngCar t Hone</ hone>
<renot e> org.j boss. store. ej b. Shoppi ngCart </ renot e>
<ej b-1i nk>Shoppi ngCart Bean</ ej b- | i nk>
</ ejb-ref>
</ sessi on>

<entity>
<descri pti on>The Product entity bean </description>
<ej b- name>Pr oduct Bean</ ej b- name>
<l-- . -->

JBoss Release 2 117

Naming on JBoss

</entity>

<l--...-->

Example 2.8. ENC gjb-ref access code fragment

Initial Context iniCtx = new Initial Context();
Context ejbCtx = (Context) iniCtx.|lookup("java: conp/env/ejb");
Shoppi ngCart Home hone = (Shoppi ngCart Hone) ej bCt x. | ookup(" Shoppi ngCart Horre") ;

2.6.1.3. EJB References with j boss. xnl and j boss-web. xni

The JBoss specific j boss. xni EJB deployment descriptor affects EJB references in two ways. First, thej ndi - nane
child element of the session and entity elements allows the user to specify the deployment INDI name for the
EJB home interface. In the absence of aj boss. xm specification of thej ndi - nane for an EJB, the home interfaceis
bound under the ej b-j ar. xni ej b- name value. For example, the session EJB with the ej b- name of Shoppi ngCart -
Bean in Example 2.7 would have its home interface bound under the INDI name Shoppi ngCar t Bean in the absence
of aj boss. xni j ndi - nane specification.

The second use of the j boss. xm descriptor with respect to ej b-ref s is the setting of the destination to which a
component's ENC ej b-ref refers. Theej b-1i nk element cannot be used to refer to EJBs in another enterprise ap-
plication. If your ej b-ref needs to access an external EJB, you can specify the JINDI name of the deployed EJB
home using thej boss. xm ej b-ref/ | ndi - name element.

Thej boss-web. xm descriptor is used only to set the destination to which a Web application ENC ej b-r ef refers.
The content model for the JBossej b-ref isasfollows:

* An gb-ref-name element that corresponds to the g b-ref-name element in the g b-jar.xml or web.xml stand-
ard descriptor

e Ajndi-nanme element that specifies the INDI name of the EJB home interface in the deployment environment

Example 2.9 provides an examplej boss. xm descriptor fragment that illustrates the following usage points:

e TheProduct BeanUser ej b-ref link destination is set to the deployment name of j boss/ st or e/ Pr oduct Horre

e Thedeployment INDI name of the Pr oduct Bean iSSet tOj boss/ st or e/ Product Horre

Example 2.9. An example jboss.xml g b-ref fragment

<l-- . -->

<sessi on>
<ej b- name>Pr oduct BeanUser </ ej b- name>
<ej b-ref>

<ej b- r ef - name>ej b/ Pr oduct Honme</ ej b- r ef - name>
<j ndi - nane>j boss/ st or e/ Pr oduct Hone</ j ndi - nane>
</ ej b-ref>
</ sessi on>

JBoss Release 2 118

Naming on JBoss

<entity>
<ej b- name>Pr oduct Bean</ ej b- nane>
<j ndi - name>j boss/ st or e/ Pr oduct Hone</ j ndi - nanme>
<l-- ... -->

</entity>
<l-- ... -->

2.6.1.4. EJB Local References

EJB 2.0 added local interfaces that do not use RMI call by value semantics. These interfaces use a call by reference
semantic and therefore do not incur any RMI serialization overhead. An EJB local referenceis alink in an applica
tion component naming environment that points to a deployed EJB local home interface. The name used by the ap-
plication component is alogical link that isolates the component from the actual name of the EJB local home in the
deployment environment. The J2EE specification recommends that all references to enterprise beans be organized
inthej ava: conp/ env/ ej b context of the application component's environment.

An EJB local reference is declared using an ej b-1ocal -ref element in the deployment descriptor. Each ej b-
| ocal - ref element describes the interface requirements that the referencing application component has for the ref-
erenced enterprise bean. Theej b-1 ocal - ref element contains the following child elements:

An optional description element that provides the purpose of the reference.

* An gb-ref-name element that specifies the name of the reference relative to the j ava: conp/ env context. To
place the reference under the recommended j ava: conp/ env/ ej b context, use an ej b/ | i nk- nane form for the
ej b-ref - name value.

¢ An gb-ref-type element that specifies the type of the EJB. This must be either Enti ty or Sessi on.
* A local-home element that gives the fully qualified class name of the EJB local home interface.
* Alocal element that givesthe fully qualified class name of the EJB local interface.

* Angb-link element that links the reference to another enterprise bean in the ej b-j ar file or in the same J2EE
application unit. The ej b-1i nk value is the ej b- nane of the referenced bean. If there are multiple enterprise
beans with the same ej b- narre, the value uses the path name specifying the location of the ej b-j ar file that
contains the referenced component. The path name is relative to the referencing ej b-j ar file. The Application
Assembler appends the ej b- name of the referenced bean to the path name separated by #. This allows multiple
beans with the same name to be uniquely identified. An ej b- 1 i nk element must be specified in JBoss to match
the local reference to the corresponding EJB.

An EJB local reference is scoped to the application component whose declaration contains the ej b-1 ocal - ref ele-
ment. This means that the EJB local reference is not accessible from other application components at runtime, and
that other application components may define ej b-1 ocal - ref elements with the same ej b- r ef - name without caus-
ing a name conflict. Example 2.10 provides an ej b-j ar. xni fragment that illustrates the use of the ej b- | ocal - r ef
element. A code sample that illustrates accessing the Pr obeLocal Hone reference declared in Example 2.10 is given
in Example 2.11.

Example 2.10. An example gjb-jar.xml g b-local-ref descriptor fragment

JBoss Release 2 119

Naming on JBoss

<l-- ... -->
<sessi on>
<ej b- name>Pr obe</ ej b- name>
<hone>or g. j boss. test. perf.interfaces. ProbeHonme</ horme>
<renote>org.j boss.test.perf.interfaces. Probe</renote>
<l ocal - home>or g. j boss. test. perf.interfaces. ProbeLocal Home</| ocal - hone>
<l ocal >org. jboss.test.perf.interfaces. ProbeLocal </| ocal >
<ej b-cl ass>org. j boss.test. perf.ejb. ProbeBean</ej b-cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transacti on-type>Bean</transaction-type>
</ sessi on>
<sessi on>
<ej b- name>Per f Test Sessi on</ ej b- nane>
<hone>or g. j boss. test. perf.interfaces. PerfTest Sessi onHone</ hone>
<renot e>org. j boss.test.perf.interfaces. Perf Test Sessi on</renpt e>
<ej b-cl ass>org. j boss.test. perf.ejb. PerfTest Sessi onBean</ ej b-cl ass>
<sessi on-type>St at el ess</ sessi on-type>
<transacti on-type>Cont ai ner</transacti on-type>
<ej b-ref>
<ej b-ref - name>ej b/ Pr obeHone</ ej b-r ef - name>
<ej b-ref-type>Sessi on</ ej b-ref-type>
<home>org. j boss.test.perf.interfaces. Sessi onHone</ honme>
<renote>org. j boss.test.perf.interfaces. Sessi on</renot e>
<ej b-1i nk>Probe</ ej b-1i nk>
</ejb-ref>
<ej b-1 ocal -ref >
<ej b-ref - nane>ej b/ ProbeLocal Hone</ ej b- r ef - name>
<ej b-ref-type>Sessi on</ej b-ref-type>
<l ocal - hone>org. j boss. test.perf.interfaces. ProbeLocal Hone</| ocal - home>
<l ocal >org. j boss.test.perf.interfaces. ProbeLocal </| ocal >
<ej b- i nk>Pr obe</ ej b-1i nk>
</ ej b-1ocal -ref>
</ sessi on>
<l-- ... -->

Example 2.11. ENC gjb-local-ref access code fragment

Initial Context iniCtx = new Initial Context();
Context ejbCtx = (Context) iniCtx.|lookup("java: conp/env/ejb");
ProbelLocal Home home = (ProbelLocal Hone) ej bCt x. | ookup(" ProbelLocal Hone") ;

2.6.1.5. Resource Manager Connection Factory References

Resource manager connection factory references allow application component code to refer to resource factories
using logical names called resource manager connection factory references. Resource manager connection factory
references are defined by the r esour ce-ref elementsin the standard deployment descriptors. The Depl oyer binds
the resource manager connection factory references to the actual resource manager connection factories that exist in
the target operationa environment using thej boss. xm andj boss-web. xm descriptors.

Each resour ce-ref element describes a single resource manager connection factory reference. The resour ce-r ef
element consists of the following child e ements:

« Anoptiona description element that provides the purpose of the reference.

¢ A resref-name element that specifies the name of the reference relative to the j ava: conp/ env context. The re-

JBoss Release 2 120

Naming on JBoss

source type based naming convention for which subcontext to place the r es-ref - name into is discussed in the
next paragraph.

« Arestypeeement that specifiesthe fully qualified class name of the resource manager connection factory.

¢ A resauth element that indicates whether the application component code performs resource signon program-
matically, or whether the container signs on to the resource based on the principal mapping information sup-
plied by the Deployer. It must be one of Appl i cati on OrF Cont ai ner .

« Anoptional res-sharing-scope element. This currently is not supported by JBoss.

The J2EE specification recommends that all resource manager connection factory references be organized in the
subcontexts of the application component's environment, using a different subcontext for each resource manager
type. The recommended resource manager type to subcontext nameis as follows:

* JDBC pat aSour ce references should be declared in thej ava: conp/ env/ j dbc subcontext.

JMS connection factories should be declared in thej ava: conp/ env/ j s subcontext.
+ JavaMail connection factories should be declared in thej ava: conp/ env/ mai | subcontext.
* URL connection factories should be declared in thej ava: conp/ env/ ur | subcontext.

Example 2.12 shows an example web. xm descriptor fragment that illustrates the r esour ce- ref element usage. Ex-
ample 2.13 provides a code fragment that an application component would use to access the Def aul t Mai | resource
declared by ther esource-ref.

Example 2.12. A web.xml resource-ref descriptor fragment

<web>
<l-- ... -->
<servl et >
<servl et - nane>ASer vl et </ ser vl et - nane>
<l-- ... -->
</servl et >
<l-- ... -->

<l-- JDBC Dat aSources (java: conp/env/jdbc) -->
<resource-ref>
<descri pti on>The default DS</descri ption>
<res-ref-nanme>j dbc/ Def aul t DS</ r es-r ef - nane>
<res-type>j avax. sql . Dat aSour ce</res-type>
<r es- aut h>Cont ai ner </ r es- aut h>
</resource-ref>
<l-- JavaMai| Connection Factories (java:conp/env/mil) -->
<resource-ref>
<descri pti on>Default Mil </ description>
<res-ref-nane>mai | / Def aul t Mai | </res-ref - name>
<res-type>j avax. mai | . Sessi on</res-type>
<r es- aut h>Cont ai ner </ r es- aut h>
</resource-ref>
<I-- JMS Connection Factories (java:conp/env/jns) -->
<resource-ref>
<descri pti on>Def aul t QueueFact ory</ descri pti on>
<res-ref - nane>j ms/ QueueFact ory</res-ref - name>
<res-type>j avax.j ns. QueueConnect i onFact ory</res-type>
<r es- aut h>Cont ai ner </ r es- aut h>

JBoss Release 2 121

Naming on JBoss

</resource-ref>
<web>

Example 2.13. ENC resour ce-ref access sample code fragment

Context initCtx = new Initial Context();
javax.nmil.Session s = (javax.nmil. Session)
initCx. | ookup("java: conp/ env/ mail/Defaul tMail");

2.6.1.6. Resource Manager Connection Factory References with jboss.xml and jboss-web.xml

The purpose of the JBossj boss. xmi EJB deployment descriptor and j boss-web. xm Web application deployment
descriptor is to provide the link from the logical name defined by the r es- r ef - nane element to the INDI name of
the resource factory as deployed in JBoss. This is accomplished by providing a resource-ref element in the
j boss. xnml Or jboss-web. xnl descriptor. The JBOSS resour ce-ref element consists of the following child ele-
ments:

¢ Aresref-name element that must match ther es- r ef - nane of acorresponding r esour ce-ref element from the
ej b-jar.xm orweb. xm standard descriptors

« Anoptiona res-type element that specifies the fully qualified class name of the resource manager connection
factory

« A jndi-name element that specifies the INDI name of the resource factory as deployed in JBoss
e Aresurl element that specifiesthe URL string in the case of aresour ce-ref of typej ava. net. URL

Example 2.14 provides a sample j boss-web. xm descriptor fragment that shows sample mappings of the re-
sour ce-ref elements givenin Example 2.12.

Example 2.14. A sample jboss-web.xml resour ce-ref descriptor fragment

<j boss- web>
<l-- ... -->
<resource-ref>
<res-ref - name>j dbc/ Def aul t DS</ r es- r ef - name>
<res-type>j avax. sql . Dat aSour ce</res-type>
<j ndi - name>j ava: / Def aul t DS</ j ndi - name>
</resource-ref>
<resource-ref>
<res-ref-nane>mai | / Def aul t Mai | </res-ref - name>
<res-type>j avax. nai |l . Sessi on</res-type>
<j ndi - nane>j ava: / Mai | </ j ndi - name>
</resource-ref>
<resource-ref>
<res-ref - nane>j ns/ QueueFact ory</res-r ef - name>
<res-type>j avax.j ms. QueueConnecti onFact ory</res-type>
<j ndi - name>QueueConnect i onFact or y</j ndi - name>
</resource-ref>
<l-- ... -->
</j boss-web>

JBoss Release 2 122

Naming on JBoss

2.6.1.7. Resource Environment References

Resource environment references are elements that refer to administered objects that are associated with a resource
(for example, IMS destinations) using logical names. Resource environment references are defined by the re-

sour ce-env-ref elements in the standard deployment descriptors. The Depl oyer binds the resource environment
references to the actual administered objects location in the target operational environment using the j boss. xm

and j boss-web. xm descriptors.

Each resour ce- env-ref element describes the requirements that the referencing application component has for the
referenced administered object. Ther esour ce- env-ref element consists of the following child elements:
« Anoptiona description element that provides the purpose of the reference.

» A resource-env-ref-name element that specifies the name of the reference relative to the j ava: conp/ env con-
text. Convention places the name in a subcontext that corresponds to the associated resource factory type. For
example, a M S queue reference named MyQueue should have ar esour ce- env-r ef - nane of j ms/ MyQueue.

« A resource-env-ref-type element that specifies the fully qualified class name of the referenced object. For ex-
ample, in the case of a JM S queue, the value would bej avax. j ms. Queue.

Example 2.15 provides an example r esour ce- r ef - env element declaration by a session bean. Example 2.16 gives
a code fragment that illustrates how to look up the st ockl nf o queue declared by ther esour ce- env-ref.

Example 2.15. An example g b-jar.xml resour ce-env-r ef fragment

<sessi on>
<ej b- name>MyBean</ ej b- nane>
<l-- ... -->

<r esour ce-env-ref>
<description>This is a reference to a JM5 queue used in the
processi ng of Stock info
</ descri ption>
<resour ce-env-ref - name>j ns/ St ockl nf o</ r esour ce- env-r ef - nane>
<resource-env-ref-type>j avax. j ms. Queue</resource-env-ref-type>
</resource-env-ref>
<l-- ... -->
</ sessi on>

Example 2.16. ENC resour ce-env-r ef access code fragment

Initial Context iniCtx = new Initial Context();
javax.j ns. Queue g = (javax.]j ns. Queue)
envCt x. | ookup("j ava: conp/ env/j ms/ St ockl nfo");

2.6.1.8. Resource Environment References and jboss.xml, jboss-web.xml

The purpose of the JBossj boss. xmi EJB deployment descriptor and j boss-web. xm Web application deployment
descriptor is to provide the link from the logical name defined by the r esour ce- env-r ef - name element to the INDI

JBoss Release 2 123

Naming on JBoss

name of the administered object deployed in JBoss. This is accomplished by providing aresource-env-ref ele
ment in thej boss. xn Of j boss-web. xni descriptor. The JBossr esour ce- env-ref element consists of the follow-
ing child elements:

e A resource-env-ref-name element that must match the resource-env-ref-nane of a corresponding re-
sour ce- env-ref element fromtheej b-jar. xm or web. xnl standard descriptors

¢ Ajndi-nane element that specifies the INDI name of the resource as deployed in JBoss

Example 2.17 provides a sample j boss. xm descriptor fragment that shows a sample mapping for the St ock! nf o
resource-env-ref.

Example 2.17. A samplejboss.xml resour ce-env-ref descriptor fragment

<sessi on>
<ej b- name>MyBean</ ej b- nane>
<l-- ... -->

<r esour ce-env-ref>
<resour ce- env-ref - name>j ns/ St ockl nf o</ r esour ce- env-r ef - nanme>
<j ndi - nane>queue/ St ockl nf oQueue</j ndi - nane>
</resource-env-ref>
<l-- ... -->
</ sessi on>

JBoss Release 2 124

Transactions on JBoss

The JTA Transaction Service

This chapter discusses transaction management in JBoss and the JBossTX architecture. The JBossTX architecture
alows for any Java Transaction APl (JTA) transaction manager implementation to be used. JBossTX includes a
fast in-VM implementation of a JTA compatible transaction manager that is used as the default transaction man-
ager. We will first provide an overview of the key transaction concepts and notions in the JTA to provide sufficient
background for the JBossTX architecture discussion. We will then discuss the interfaces that make up the JBossTX
architecture and conclude with a discussion of the MBeans available for integration of alternate transaction man-
agers.

3.1. Transaction/JTA Overview

For the purpose of this discussion, we can define a transaction as a unit of work containing one or more operations
involving one or more shared resources having ACID properties. ACID is an acronym for atomicity, consistency,
isolation and durability, the four important properties of transactions. The meanings of thesetermsis:

« Atomicity: A transaction must be atomic. This means that either all the work done in the transaction must be
performed, or none of it must be performed. Doing part of atransaction is not allowed.

» Consistency: When atransaction is completed, the system must be in a stable and consistent condition.

« Isolation: Different transactions must be isolated from each other. This means that the partial work done in one
transaction is not visible to other transactions until the transaction is committed, and that each process in a
multi-user system can be programmed asif it was the only process accessing the system.

« Durability: The changes made during a transaction are made persistent when it is committed. When a transac-
tion is committed, its changes will not be lost, even if the server crashes afterwards.

To illustrate these concepts, consider a simple banking account application. The banking application has a database
with a number of accounts. The sum of the amounts of all accounts must always be 0. An amount of money M is
moved from account A to account B by subtracting M from account A and adding M to account B. This operation
must be done in atransaction, and all four ACID properties are important.

The atomicity property means that both the withdrawal and deposit is performed as an indivisible unit. If, for some
reason, both cannot be done nothing will be done.

The consistency property means that after the transaction, the sum of the amounts of al accounts must still be O.

The isolation property isimportant when more than one bank clerk uses the system at the same time. A withdrawal
or deposit could be implemented as a three-step process: First the amount of the account is read from the database;

JBoss Release 2 125

Transactions on JBoss

then something is subtracted from or added to the amount read from the database; and at last the new amount is
written to the database. Without transaction isolation several bad things could happen. For example, if two pro-
cesses read the amount of account A at the same time, and each independently added or subtracted something be-
fore writing the new amount to the database, the first change would be incorrectly overwritten by the last.

The durability property is also important. If a money transfer transaction is committed, the bank must trust that
some subsequent failure cannot undo the money transfer.

3.1.1. Pessimistic and optimistic locking

Transactional isolation is usually implemented by locking whatever is accessed in a transaction. There are two dif-
ferent approaches to transactional locking: Pessimistic locking and optimistic locking.

The disadvantage of pessimistic locking is that aresourceislocked from thetimeit isfirst accessed in atransaction
until the transaction is finished, making it inaccessible to other transactions during that time. If most transactions
simply look at the resource and never change it, an exclusive lock may be overkill asit may cause lock contention,
and optimistic locking may be a better approach. With pessimistic locking, locks are applied in a fail-safe way. In
the banking application example, an account is locked as soon as it is accessed in atransaction. Attempts to use the
account in other transactions while it islocked will either result in the other process being delayed until the account
lock is released, or that the process transaction will be rolled back. The lock exists until the transaction has either
been committed or rolled back.

With optimistic locking, a resource is not actually locked when it is first is accessed by a transaction. Instead, the
state of the resource at the time when it would have been locked with the pessimistic locking approach is saved.
Other transactions are able to concurrently access to the resource and the possibility of conflicting changes is pos-
sible. At commit time, when the resource is about to be updated in persistent storage, the state of the resource is
read from storage again and compared to the state that was saved when the resource was first accessed in the trans-
action. If the two states differ, a conflicting update was made, and the transaction will be rolled back.

In the banking application example, the amount of an account is saved when the account is first accessed in atrans-
action. If the transaction changes the account amount, the amount is read from the store again just before the
amount is about to be updated. If the amount has changed since the transaction began, the transaction will fail it-
self, otherwise the new amount is written to persistent storage.

3.1.2. The components of a distributed transaction

There are anumber of participantsin a distributed transaction. These include:

e Transaction Manager: This component is distributed across the transactional system. It manages and coordin-
ates the work involved in the transaction. The ftransaction manager is exposed by the
j avax. transaction. Transact i onManager interfacein JTA.

» Transaction Context: A transaction context identifies a particular transaction. In JTA the corresponding inter-
faceisj avax. transaction. Transacti on.

» Transactional Client: A transactional client can invoke operations on one or more transactional objects in a
single transaction. The transactional client that started the transaction is called the transaction originator. A
transaction client is either an explicit or implicit user of JTA interfaces and has no interface representation in

JBoss Release 2 126

Transactions on JBoss

the JTA.

e Transactional Object: A transactional object is an object whose behavior is affected by operations performed
on it within a transactional context. A transactiona object can also be a transactional client. Most Enterprise
Java Beans are transactional objects.

« Recoverable Resource: A recoverable resource is a transactional object whose state is saved to stable storage
if the transaction is committed, and whose state can be reset to what it was at the beginning of the transaction if
the transaction is rolled back. At commit time, the transaction manager uses the two-phase XA protocol when
communicating with the recoverable resource to ensure transactional integrity when more than one recoverable
resource is involved in the transaction being committed. Transactional databases and message brokers like
JBossMQ are examples of recoverable resources. A recoverable resource is represented using the
j avax.transacti on. xa. XAResour ce interfacein JTA.

3.1.3. The two-phase XA protocol

When a transaction is about to be committed, it is the responsibility of the transaction manager to ensure that either
all of it is committed, or that all of is rolled back. If only a single recoverable resource is involved in the transac-
tion, the task of the transaction manager is simple: It just has to tell the resource to commit the changes to stable
storage.

When more than one recoverable resource is involved in the transaction, management of the commit gets more
complicated. Simply asking each of the recoverable resources to commit changes to stable storage is not enough to
maintain the atomic property of the transaction. The reason for thisisthat if one recoverable resource has commit-
ted and another failsto commit, part of the transaction would be committed and the other part rolled back.

To get around this problem, the two-phase XA protocol is used. The XA protocol involves an extra prepare phase
before the actual commit phase. Before asking any of the recoverable resources to commit the changes, the transac-
tion manager asks al the recoverable resources to prepare to commit. When a recoverable resource indicates it is
prepared to commit the transaction, it has ensured that it can commit the transaction. The resource is still able to
rollback the transaction if necessary aswell.

So the first phase consists of the transaction manager asking all the recoverable resources to prepare to commit. If
any of the recoverable resources failsto prepare, the transaction will be rolled back. But if all recoverable resources
indicate they were able to prepare to commit, the second phase of the XA protocol begins. This consists of the
transaction manager asking al the recoverable resources to commit the transaction. Because all the recoverable re-
sources have indicated they are prepared, this step cannot fail.

3.1.4. Heuristic exceptions

In adistributed environment communications failures can happen. If communication between the transaction man-
ager and arecoverable resource is not possible for an extended period of time, the recoverable resource may decide
to unilaterally commit or rollback changes done in the context of atransaction. Such a decision is called a heuristic
decision. It is one of the worst errors that may happen in a transaction system, asit can lead to parts of the transac-
tion being committed while other parts are rolled back, thus violating the atomicity property of transaction and pos-
sibly leading to data integrity corruption.

Because of the dangers of heuristic exceptions, a recoverable resource that makes a heuristic decision is required to

JBoss Release 2 127

Transactions on JBoss

maintain al information about the decision in stable storage until the transaction manager tellsit to forget about the
heuristic decision. The actual data about the heuristic decision that is saved in stable storage depends on the type of
recoverable resource and is not standardized. The idea is that a system manager can look at the data, and possibly
edit the resource to correct any dataintegrity problems.

There are several different kinds of heuristic exceptions defined by the JTA. The
j avax. transaction. Heuri sti cComni t Except i on iSthrown when arecoverable resource is asked to rollback to re-
port that a heuristic decision was made and that all relevant updates have been committed. On the opposite end is
the j avax. transacti on. Heuri sti cRol | backExcepti on, Which is thrown by a recoverable resource when it is
asked to commit to indicate that a heuristic decision was made and that all relevant updates have been rolled back.

Thej avax. transaction. Heuri sti cM xedExcept i on iS the worst heuristic exception. It is thrown to indicate that
parts of the transaction were committed, while other parts were rolled back. The transaction manager throws this
exception when some recoverable resources did a heuristic commit, while other recoverable resources did a heurist-
ic rollback.

3.1.5. Transaction IDs and branches

In JTA, the identity of transactions is encapsulated in objects implementing the j avax. transacti on. xa. Xi d inter-
face. The transaction ID is an aggregate of three parts:

* Theformat identifier indicates the transaction family and tells how the other two parts should be interpreted.
e Theglobal transaction id identified the global transaction within the transaction family.
» The branch qualifier denotes a particular branch of the global transaction.

Transaction branches are used to identify different parts of the same global transaction. Whenever the transaction
manager involves a new recoverable resource in atransaction it creates a new transaction branch.

3.2. JBoss Transaction Internals

The JBoss application server is written to be independent of the actual transaction manager used. JBoss uses the
JTA javax.transaction. Transacti onManager interface as its view of the server transaction manager. Thus,
JBoss may use any transaction manager which implements the JTA Transacti onManager interface. Whenever a
transaction manager is used it is obtained from the well-known JNDI location, j ava: / Tr ansact i onManager . Thisis
the globally available access point for the server transaction manager.

If transaction contexts are to be propagated with RMI/JRMP calls, the transaction manager must also implement
two simple interfaces for the import and export of transaction propagation contexts (TPCs). The interfaces are
Transact i onPropagati onCont ext I mporter, and TransactionPropagati onContextFactory, both in the
org. j boss. t mpackage.

Being independent of the actual transaction manager used also means that JBoss does not specify the format of type
of the transaction propagation contexts used. In JBoss, a TPC is of type Obj ect , and the only requirement is that the
TPC must implementation thej ava. i o. Seri al i zabl e interface.

When using the RMI/JRMP protocol for remote cals, the TPC is caried as a field in the

JBoss Release 2 128

Transactions on JBoss

org. jboss. ejb. plugins.jrnp.client.RenoteMet hodl nvocati on class that is used to forward remote method in-
vocation requests.

3.2.1. Adapting a Transaction Manager to JBoss

A transaction manager has to implement the Java Transaction APl to be easily integrated with JBoss. As amost
everything in JBoss, the transaction manager is managed as an MBean. Like all JBoss services, it should implement
org. j boss. syst em Ser vi ceMBean to ensure proper life-cycle management.

The primary requirement of the transaction manager service on startup is that it binds its implementation of the
three required interfaces into JINDI. These interfaces and their INDI locations are:

 Thejavax.transaction. Transacti onManager interface is used by the application server to manage transac-
tions on behalf of the transactional objects that use container managed transactions. It must be bound under the
JNDI namej ava: / Tr ansact i onManager .

e TheTransacti onPropagat i onCont ext Fact ory interfaceis called by JBoss whenever atransaction propagation
context is needed for transporting a transaction with a remote method call. It must be bound under the JNDI
namej ava: / Transacti onPropagat i onCont ext | nporter.

e The Transacti onPropagat i onCont ext | nport er interface is called by JBoss whenever a transaction propaga
tion context from an incoming remote method invocation has to be converted to a transaction that can be used
within the receiving JBoss server VM.

Establishing these JNDI bindings is al the transaction manager service needs to do to install its implementation as

the JBoss server transaction manager.

3.2.2. The Default Transaction Manager

JBossis by default configured to use the fast in-VM transaction manager. This transaction manager is very fast, but
does have two limitations.

« It does not do transactional logging, and is thus incapable of automated recovery after a server crash.

« While it does support propagating transaction contexts with remote calls, it does not support propagating trans-
action contexts to other virtual machines, so all transactional work must be done in the same virtual machine as
the JBoss server.

The corresponding default transaction manager MBean service isthe or g. j boss. t m Transact i onManager Ser vi ce
MBean. It has two configurable attributes:

e TransactionTimeout: The default transaction timeout in seconds. The default value is 300 seconds (5
minutes).

e InterruptThreads: Indicates whether or not the transaction manager should interrupt threads when the transac-
tion times out. The default valueisfase.

« GloballdsEnabled: Indicates whether or not the transaction manager should use global transaction ids. This

JBoss Release 2 129

Transactions on JBoss

should be set to true for transaction demarcation over ||OP The default value is true.

e XidFactory: The IMX j ect Nane of the MBean service that provides the or g. j boss. t m Xi dFact or yMBean
implementation. The Xi dFact or yMBean interface is used to create j avax. t ransacti on. xa. Xi d instances. This
is a workaround for XA JDBC drivers that only work with their own Xid implementation. Examples of such
drivers are the older Oracle XA drivers. The default factory iSj boss: servi ce=Xi dFact ory.

3.2.2.1. org.jboss.tm.XidFactory

The XidFactory MBean is a factory for javax.transaction.xa.Xid instances in the form of
org.jboss.tm Xidl mpl . The Xi dFact ory alows for customization of the xi di npl that it constructs through the
following attributes:

« BaseGloballd: Thisisused for building globally unique transaction identifiers. This must be set individually if
multiple JBoss instances are running on the same machine. The default value is the host name of the JBoss
server, followed by aslash.

¢ GloballdNumber: A long value used as initia transaction id. The default is 0.

e Pad: The pad value determines whether the byte[] returned by the Xid get @ obal Transacti onl d and get -
BranchQual i fi er methods should be equal to maximum 64 byte length or a variable value <= 64. Some re-
source managers (Oracle, for example) require ids that are max length in size.

3.2.3. UserTransaction Support

The JTA javax.transaction. User Transact i on interface alows applications to explicitly control transactions.
For enterprise session beans that manage transaction themselves (BMT), a User Transact i on can be obtained by
calling the get User Tr ansact i on method on the bean context object, j avax. ej b. Sessi onCont ext .

The d i ent User Transact i onServi ce MBean publishes a User Tr ansact i on implementation under the INDI name
User Transacti on. When the User Transacti on is obtained with a JNDI lookup from a externa client, a very
simple User Transact i on suitable for thin clients is returned. This User Tr ansact i on implementation only controls
the transactions on the server the User Tr ansact i on object was obtained from. Local transactional work done in the
client is not done within the transactions started by this User Tr ansact i on object.

When a User Transact i on object is obtained by looking up JNDI name User Tr ansact i on in the same virtua ma-
chine as JBoss, asimple interface to the JTA Transact i onManager isreturned. Thisis suitable for web components
running in web containers embedded in JBoss. When components are deployed in an embedded web server, the de-
ployer will make a INDI link from the standard j ava: conp/ User Tr ansact i on ENC name to the global User Tr ans-
action binding so that the web components can lookup the User Tranact i on instance under JNDI name as spe-
cified by the J2EE.

Note: For BMT beans, do not obtain the User Tr ansact i on interface using a INDI lookup. Doing this violates the
EJB specification, and the returned User Transact i on object does not have the hooks the EJB container needs to
make important checks.

JBoss Release 2 130

EJBs on JBOSS

The EJB Container Configuration and Architecture

The JBoss EJB container architecture employs a modular plug-in approach. All key aspects of the EJB container
may be replaced by custom versions of a plug-in and/or an interceptor by a developer. This approach alows for
fine tuned customization of the EJB container behavior to optimally suite your needs. Most of the EJB container
behavior is configurable through the EJB JAR META- | NF/ j boss. xni descriptor and the default server-wide equival-

ent st andar dj boss. xn descriptor. We will look at various configuration capabilities throughout this chapter as we
explore the container architecture.

4.1. The EJB Client Side View

We will begin our tour of the EJB container by looking at the client view of an EJB through the home and remote
proxies. It is the responsibility of the container provider to generate the javax.ejb. EJBHome and
j avax. ej b. EJIBObj ect for an EJB implementation. A client never references an EJB bean instance directly, but
rather references the EJBHome which implements the bean home interface, and the EJBbj ect which implements the

bean remote interface. Figure 4.1 shows the composition of an EJB home proxy and its relation to the EJB deploy-
ment.

ProxyFactory EJBModule EJBDeployer

3 2 1

Logical EJB Proxy

ClientContainer

EJEHome

JBoss Release 2 131

EJBs on JBoss

Figure4.1. The composition of an EJBHome proxy in JBoss.

The numbered itemsin the figure are:

1. The EJBDeployer (org.jboss. ejb. EJIBDepl oyer) is invoked to deploy an EJB JAR. An EJBMdul e
(org.jboss. ej b. EJBMbdul €) is created to encapsul ate the deployment metadata.

2. The create phase of the EJIBMbdul e life cycle creates an EJBPr oxyFact ory (or g. j boss. ej b. EJBPr oxyFact ory)
that manages the creation of EJB home and remote interface proxies based on the EJBWbdul e i nvoker -
pr oxy- bi ndi ngs metadata. There can be multiple proxy factories associated with an EJB and we will look at
how thisis defined shortly.

3. TheProxyFact ory constructs the logical proxies and binds the homesinto JINDI. A logical proxy is composed
of adynamic Proxy (j ava. | ang. refl ect. Proxy), the home interfaces of the EJB that the proxy exposes, the
ProxyHandl er (j ava.l ang. refl ect. | nvocationHandl er) implementation in the form of the d i ent Cont ai n-
er (org.jboss. proxy. dient Cont ai ner), and the client side interceptors.

4. The proxy created by the EJBPr oxyFact ory is astandard dynamic proxy. It is a serializable object that proxies
the EJB home and remote interfaces as defined in the EJBModul e metadata. The proxy trandates requests made
through the strongly typed EJB interfaces into a detyped invocation using the d i ent Cont ai ner handler asso-
ciated with the proxy. It is the dynamic proxy instance that is bound into JNDI as the EJB home interface that
clients lookup. When a client does alookup of an EJB home, the home proxy is transported into the client VM
along with the d i ent Cont ai ner and its interceptors. The use of dynamic proxies avoids the EJB specific
compilation step required by many other EJB containers.

5. The EJB home interface is declared in the gjb-jar.xml descriptor and available from the EIJBModule metadata.
A key property of dynamic proxiesisthat they are seen to implement the interfaces they expose. Thisistruein
the sense of Java's strong type system. A proxy can be cast to any of the home interfaces and reflection on the
proxy provides the full details of the interfaces it proxies.

6. The proxy delegates calls made through any of its interfaces to the di ent Cont ai ner handler. The single
method required of the handler is: public Object invoke(vject proxy, Method m Object[] args)
throws Throwabl e. The EJBPr oxyFact ory creates a d i ent Cont ai ner and assigns this as the Pr oxyHandl er .
The Cient Container's state consists of an I nvocat i onCont ext
(org.jboss.invocation.|lnvocationContext) and a chain of interceptors (or g. j boss. proxy. I ntercept or).
Thel nvocat i onCont ext contains:

o the IMX bj ect Nane of the EJB container MBean the Pr oxy is associated with
* thejavax. ej b. EJBMet aDat a for the EJB

» the JNDI name of the EJB home interface

» thetransport specific invoker (or g. j boss. i nvocati on. | nvoker)

The interceptor chain consists of the functional units that make up the EJB home or remote interface behavior.
This is a configurable aspect of an EJB as we will see when we discuss the j boss. xn descriptor, and the in-
terceptor makeup is contained in the EJBMbdul e metadata. Interceptors (org. j boss. proxy. | nterceptor)
handle the different EJB types, security, transactions and transport. You can add your own interceptors as
well.

7. Thetransport specific invoker associated with the proxy has an association to the server side detached invoker

JBoss Release 2 132

EJBs on JBoss

that handles the transport details of the EJB method invocation. The detached invoker is a JBoss server side
component.

The configuration of the client side interceptorsis done using thej boss. xm cl i ent-i nter cept or s element. When
the di ent Cont ai ner invoke method is caled it <creates an untyped Invocation
(org.jboss.invocation. I nvocation) to encapsulate request. This is then passed through the interceptor chain.
The last interceptor in the chain will be the transport handler that knows how to send the request to the server and
obtain the reply, taking care of the transport specific details.

As an example of the client interceptor configuration usage, consider the default stateless session bean configura-
tion found in the server/defaul t/standardjboss. xni descriptor. Example 4.1 shows the statel ess-
rm -i nvoker client interceptors configuration referenced by the Standard Statel ess SessionBean.

Example 4.1. The client-inter ceptor s from the Standard Stateless SessionBean configuration.

<i nvoker - pr oxy- bi ndi ng>
<nane>st at el ess-rm -i nvoker </ nane>
<i nvoker - nhean>j boss: servi ce=i nvoker, t ype=j r np</ i nvoker - mhean>
<proxy-factory>org.jboss. proxy. ej b. ProxyFact ory</ proxy-factory>
<proxy-factory-config>
<client-interceptors>
<home>
<i nt er cept or >or g. j boss. proxy. ej b. Homel nt er cept or </ i nt er cept or >
<i nterceptor>org.jboss. proxy. Securitylnterceptor</interceptor>
<i nt erceptor>org. j boss. proxy. Transacti onl nt er cept or </ i nt er cept or >
<interceptor call-by-value="fal se">
org. j boss.invocation. | nvokerl nterceptor
</interceptor>
<interceptor call-by-value="true">
org.j boss.invocation. Marshal | i ngl nvoker | nt er cept or
</interceptor>
</ hone>
<bean>
<i ntercept or>org. j boss. proxy. ej b. St at el essSessi onl nt er cept or </ i nt er cept or >
<i nt er cept or >or g. j boss. proxy. Securityl nterceptor</interceptor>
<i nter cept or>org. j boss. proxy. Transacti onl nt er cept or </ i nt er cept or >
<interceptor call-by-value="fal se">
org. j boss.invocation. | nvokerlnterceptor
</interceptor>
<interceptor call-by-value="true">
org.j boss.invocation. Marshal | i ngl nvoker | nt er cept or
</interceptor>
</ bean>
</client-interceptors>
</ proxy-factory-config>
</i nvoker - pr oxy- bi ndi ng>

<cont ai ner - confi gurati on>
<cont ai ner - nane>St andar d St at el ess Sessi onBean</ cont ai ner - nanme>

<cal | -1 oggi ng>f al se</cal | -1 oggi ng>
<i nvoker - pr oxy- bi ndi ng- name>st at el ess-rmni -i nvoker </ i nvoker - pr oxy- bi ndi ng- name>
<l-- ... -->

</ cont ai ner-confi gurati on>

This is the client interceptor configuration for stateless session beans that is used in the absence of an EJB JAR
META- | NF/ j boss. xmi configuration that overrides these settings. The functionality provided by each client inter-

JBoss Release 2 133

EJBs on JBoss

ceptor is:
» org.jboss.proxy.ejb.Homel nter ceptor : handles the get HoneHandl e, get EJBMet aDat a, and remove methods of
the EJBHone interface locally in the client VM. Any other methods are propagated to the next interceptor.

e org.)boss.proxy.gb.StatelessSessionl nterceptor: handlesthet oSt ri ng, equal s, hashCode, get Handl e, get E-
JBHore and i sl denti cal methods of the EJBj ect interface locally in the client VM. Any other methods are
propagated to the next interceptor.

e org.jboss.proxy.Securityl nterceptor: associates the current security context with the method invocation for
use by other interceptors or the server.

» org.jboss.proxy.Transactionl nter ceptor: associates any active transaction with the invocation method invoc-
ation for use by other interceptors.

» org.jboss.invocation.lnvokerInterceptor: encapsulates the dispatch of the method invocation to the transport
specific invoker. It knows if the client is executing in the same VM as the server and will optimally route the
invocation to a by reference invoker in this situation. When the client is externa to the server VM, this inter-
ceptor delegates the invocation to the transport invoker associated with the invocation context. In the case of
the Example 4.1 configuration, this would be the invoker stub associated with the
j boss: servi ce=i nvoker, t ypesj r np, the JRVPI nvoker Service.

org.jboss.invocation.M ar shallingl nvoker I nter ceptor: extends the | nvoker I nt er cept or to not optimize in-

VM invocations. Thisisused to forcecal | - by-val ue semantics for method calls.

4.1.1. Specifying the EJB Proxy Configuration

To specify the EJB invocation transport and the client proxy interceptor stack, you need to define an i nvoker -
proxy- bi ndi ng in either the EJB JAR META-1NF/jboss.xnl descriptor, or the server standardj boss. xni
descriptor. There are several default i nvoker - proxy- bi ndi ngs defined in the st andar dj boss. xm descriptor for
the various default EJB container configurations and the standard RMI/JRMP and RMI/11OP transport protocols.
The current default proxy configurations are:

* entity-rmi-invoker: aRMI/JRMP configuration for entity beans

e clustered-entity-rmi-invoker: a RMI/JRMP configuration for clustered entity beans

e stateess-rmi-invoker: a RMI/JRMP configuration for statel ess session beans

e clustered-stateless-rmi-invoker: a RMI/JRMP configuration for clustered statel ess session beans
e stateful-rmi-invoker: aRMI/JRMP configuration for clustered stateful session beans

e clustered-stateful-rmi-invoker: a RMI/JRMP configuration for clustered stateful session beans

* message-driven-bean: a IMS invoker for message driven beans

* gingleton-message-driven-bean: aJMS invoker for singleton message driven beans

* message-inflow-driven-bean: a IMS invoker for message inflow driven beans

JBoss Release 2 134

EJBs on JBoss

e jms-message-inflow-driven-bean: a M S inflow invoker for standard message driven beans
e jiop: aRMI/IIOP for use with session and entity beans.

To introduce a new protocol binding, or customize the proxy factory, or the client side interceptor stack, requires
defining a new i nvoker - pr oxy- bi ndi ng. The full i nvoker - pr oxy- bi ndi ng DTD fragment for the specification of
the proxy configuration is givenin Figure 4.2.

T immkzr-mhean%

+ pmx\r-fal:tur',f%

(7 * client-interceptors

@ + endpoint-interceptors

+ invoker-proxy-bindingz | @ + mh-dass-lnader%

(7| * activation-config g

= * JHSFruviderAdapteerDl%

)l * ServerSessinnFuanal:mmNDI%

TR _
@ IIIIII'III'I'II.II'I'ISIZE%

+ proxy-factory-config

@* HaximumSize%

= * Kzephlive“illis%

@) * lnlaxhlessages%

@ + MDBConfig

ORI

=) * register-ejhs-in-jnp—mntext%

@) * jnp-l:un[ext%

) + interface-mpnsimw-suppnmd%

Figure 4.2. The invoker-proxy-binding schema

Thei nvoker - pr oxy- bi ndi ng child elements are:

JBoss Release 2 135

EJBs on JBoss

e name: The nane element gives a unique name for the i nvoker - pr oxy- bi ndi ng. The hame is used to reference
the binding from the EJB container configuration when setting the default proxy binding as well as the EJB de-
ployment level to specify addition proxy bindings. You will see how this is done when we look at the
j boss. xm elements that control the server side EJB container configuration.

e invoker-mbean: The invoker-nbean element gives the IMX @bj ect Nane string of the detached invoker
M Bean service the proxy invoker will be associated with.

« proxy-factory: Theproxy-fact ory element specifies the fully qualified class name of the proxy factory, which
must implement the or g. j boss. ej b. EJBPr oxyFact ory interface. The EJBPr oxyFact ory handles the configura-
tion of the proxy and the association of the protocol specific invoker and context. The current JBoss implement-
ations of the EJBPr oxyFact ory interface include:

e org.jboss.proxy.eb.ProxyFactory: The RMI/JRMP specific factory.

e org.jboss.proxy.gb.ProxyFactoryHA: The cluster RMI/JRMP specific factory.
e org.,jboss.gb.pluginsjms.JM SContainer Invoker: The IMS specific factory.

e org.,jboss.proxy.eb.lORFactory: The RMI/I1OP specific factory.

« proxy-factory-config: The proxy-factory-config element specifies additional information for the proxy-
fact ory implementation. Unfortunately, its currently an unstructured collection of elements. Only a few of the
elements apply to each type of proxy factory. The child elements break down into the three invocation proto-
cols: RMI/RIMP, RMI/IIOP and IMS.

For the RMI/JRMP specific proxy factories, org.j boss. proxy. ej b. ProxyFactory and
org.j boss. proxy. ej b. ProxyFact or yHA the following elements apply:

e client-interceptors: Thecl i ent -i nt er cept or s define the home, remote and optionally the multi-valued proxy
interceptor stacks.

* web-class-loader: The web class loader defines the instance of the org. j boss. web. Webd assLoader that
should be associated with the proxy for dynamic class loading.

The following pr oxy-f act ory- confi g isfor an entity bean accessed over RMI.

<proxy-factory-config>
<client-interceptors>
<hone>
<i nt er cept or >or g. j boss. proxy. ej b. Honmel nt er cept or </ i nt er cept or >
<i nter cept or>org. j boss. proxy. Securityl nterceptor</interceptor>
<i nterceptor>org.j boss. proxy. Transacti onl nt er cept or </ i nt er cept or >
<i nterceptor call-by-value="fal se">
org.j boss.invocation. | nvokerl nt erceptor
</interceptor>
<interceptor call-by-val ue="true">
org. j boss.invocation. Marshal | i ngl nvoker | nt er cept or
</interceptor>
</ home>
<bean>
<i nterceptor>org.j boss. proxy. ejb. Entitylnterceptor</interceptor>
<i nterceptor>org.jboss. proxy. Securitylnterceptor</interceptor>
<i nterceptor>org.j boss. proxy. Transacti onl nt er cept or </ i nt er cept or >

JBoss Release 2 136

EJBs on JBoss

<i nterceptor call-by-value="fal se">
org.j boss.invocation. | nvoker| nt erceptor
</interceptor>
<i nterceptor call-by-value="true">
org. j boss.invocation. Marshal | i ngl nvoker | nt er cept or
</interceptor>
</ bean>
<list-entity>
<i nterceptor>org.j boss. proxy. ej b. Li stEntitylnterceptor</interceptor>
<i nt er cept or >or g. j boss. proxy. Securityl nterceptor</interceptor>
<i nterceptor>org.jboss. proxy. Transacti onl nt er cept or </ i nt er cept or >
<i nterceptor call-by-value="fal se">
org.j boss.invocation. | nvoker| nt erceptor
</interceptor>
<interceptor call-by-val ue="true">
org. j boss.invocation. Marshal | i ngl nvoker I nt er cept or
</interceptor>
</list-entity>
</client-interceptors>
</ proxy-factory-config>

For the RMI/I10OP specific proxy factory, or g. j boss. proxy. ej b. | ORFact ory, the following elements apply:

« web-class-loader: The web class loader defines the instance of the org.j boss. web. WebCl assLoader that
should be associated with the proxy for dynamic class loading.

* poa: The portable object adapter usage. Valid values are per - ser vant and shar ed.
* register-gbs-in-jnp-context: A flag indicating if the EJBs should be register in INDI.
e jnp-context: The JNDI context in which to register EJBs.

* interface-repository-supported: This indicates whether or not a deployed EJB has its own CORBA interface
repository.

The following shows a pr oxy- f act ory- conf i g for EJBs accessed over [10P.

<proxy-factory-config>
<web- cl ass-| oader >org. j boss. iiop. WbCL</ web- cl ass-| oader >
<poa>per - ser vant </ poa>
<regi ster-ejbs-in-jnp-context>true</register-ejbs-in-jnp-context>
<j np- cont ext >i i op</j np- cont ext >

</ proxy-factory-config>

For the IMS specific proxy factory, or g. j boss. ej b. pl ugi ns. j ms. IMSCont ai ner | nvoker , the following elements
apply:

e MinimumsSize: This specifies the minimum pool size for MDBs processing . This defaultsto 1.

* MaximumSize: This specifies the upper limit to the number of concurrent MDBs that will be allowed for the
JMS destination. This defaults to 15.

* MaxMessages: This specifies the maxMessages parameter value for the cr eat eConnect i onConsuner method of
javax. j ms. QueueConnection and j avax. j ms. Topi cConnecti on interfaces, as well as the naxMessages para
meter value for the creat eDur abl eConnect i onConsumer method of j avax. j ms. Topi cConnecti on. It is the
maximum number of messages that can be assigned to a server session at one time. This defaults to 1. This

JBoss Release 2 137

EJBs on JBoss

value should not be modified from the default unless your JIM S provider indicates thisis supported.

« KeegpAliveMillis: This specifies the keep alive time interval in milliseconds for sessions in the session pool.
The default is 30000 (30 seconds).

« MDBConfig: Configuration for the MDB JM S connection behavior. Among the elements supported are:

¢ ReconnectintervalSec:. The time to wait (in seconds) before trying to recover the connection to the IMS
server.

« DdliveryActive: Whether or not the MDB is active at startup. The default istrue.

« DLQConfig: Configuration for an MDB's dead letter queue, used when messages are redelivered too many
times.

e JMSProvider Adapter INDI: The JNDI name of the IMS provider adapter in the j ava: / namespace. This
is mandatory for an MDB and must implement or g. j boss. j ms. j ndi . JMSPr ovi der Adapt er .

e ServerSessionPoolFactoryJNDI: The JINDI name of the session pool inthej ava: / namespace of the IMS
provider's session pool factory. This is mandatory for an MDB and must implement
org.]j boss.jms. asf. Server Sessi onPool Fact ory.

Example 4.2 gives a sample pr oxy- f act ory- conf i g fragment taken from the st andar dj boss. xm descriptor.

Example 4.2. A sample JM SContainer I nvoker proxy-factory-config

<proxy-factory-config>
<JMSPr ovi der Adapt er INDI >Def aul t IMSPr ovi der </ JMSPr ovi der Adapt er JNDI >
<Ser ver Sessi onPool Fact or yJNDI >St dJMSPool </ Ser ver Sessi onPool Fact or yJNDI >
<M ni muni ze>1</ M ni munsSi ze>
<Maxi munsi ze>15</ Maxi nunti ze>
<KeepAl i veM | | i s>30000</ KeepAliveM I |is>
<MaxMessages>1</ MaxMessages>
<MDBConfi g>
<Reconnect | nt er val Sec>10</ Reconnect | nt er val Sec>
<DLQConf i g>
<Dest i nati onQueue>queue/ DLQ</ Dest i nat i onQueue>
<MaxTi mesRedel i ver ed>10</ MaxTi mesRedel i ver ed>
<Ti meToLi ve>0</ Ti neToLi ve>
</ DLQConfi g>
</ NDBConf i g>
</ proxy-factory-config>

4.2. The EJB Server Side View

Every EJB invocation must end up at a JBoss server hosted EJB container. In this section we will look at how in-
vocations are transported to the JBoss server VM and find their way to the EJB container viathe IMX bus.

4.2.1. Detached Invokers - The Transport Middlemen

JBoss Release 2 138

EJBs on JBoss

We looked at the detached invoker architecture in the context of exposing RMI compatible interfaces of MBean
services earlier. Here we will look at how detached invokers are used to expose the EJB container home and bean
interfaces to clients. The generic view of the invoker architecture is presented in Figure 4.3.

Client I JBoss Server

abc !fﬂﬂﬁﬂﬂﬂﬂbﬂj | SErvice=Invoker,
Frony | ype=abe (EJEContainer
JWX
1 MBean . |
* Sernjer Bean

service=lnvoker,
lype=xyz

lranspor=x EI
- P y -

I
1

Figure4.3. Thetransport invoker server side architecture

S —

For each type of home proxy there is abinding to an invoker and its associated transport protocol. A container may
have multiple invocation protocols active simultaneously. In the j boss. xm file, ani nvoker - pr oxy- bi ndi ng- name
Maps to an i nvoker - pr oxy- bi ndi ng/ name element. At the cont ai ner-confi gurati on level this specifies the de-
fault invoker that will be used for EJBs deployed to the container. At the bean level, thei nvoker - bi ndi ngs Specify
one or more invokers to use with the EJB container MBean.

When one specifies multiple invokers for a given EJB deployment, the home proxy must be given a unique JNDI
binding location. Thisis specified by thei nvoker/j ndi - nane element value. Another issue when multiple invokers
exist for an EJB is how to handle remote homes or interfaces obtained when the EJB calls other beans. Any such
interfaces need to use the same invoker used to call the outer EJB in order for the resulting remote homes and inter-
faces to be compatible with the proxy the client has initiated the call through. The i nvoker/ ej b-ref elements al-
low one to map from a protocol independent ENC ej b-ref to the home proxy binding for ej b-ref target EJB
home that matches the referencing invoker type.

An example of using a custom JRWPI nvoker MBean that enables compressed sockets for session beans can be
foundintheorg. j boss. test . j r np package of the testsuite. The following example illustrates the custom JRwPI n-
voker configuration and its mapping to a statel ess session bean.

<server>
<nbean code="org.jboss.invocation.jrnp.server.JRWI nvoker"
nanme="j boss: servi ce=i nvoker, t ype=j r mp, socket Type=Conpr essi onSocket Fact or y" >
<attribute name="RM Obj ect Port">4445</attri bute>
<attribute name="RM Cl i ent Socket Fact ory" >
org.j boss.test.jrnp.ejb. Conpressi ond i ent Socket Fact ory
</attribute>
<attribute name="RM Server Socket Fact ory" >
org.jboss.test.jrnp.ejb. Conpressi onSer ver Socket Fact ory

JBoss Release 2 139

EJBs on JBoss

</attribute>
</ mbean>
</ server>

Here the default JrRVPI nvoker has been customized to bind to port 4445 and to use custom socket factories that en-
able compression at the transport level.

<?xm version="1.0"?>
<! DOCTYPE j boss PUBLI C
"-//JBoss//DTD JBOSS 3. 2//EN'
"http://ww. jboss. org/j2ee/dtd/jboss_3 2.dtd">

<l-- The jboss.xm descriptor for the jrnp-conp.jar ejb unit -->
<j boss>
<ent er pri se- beans>
<sessi on>

<ej b- nane>St at el essSessi on</ ej b- name>
<configuration-nanme>St andard St at el ess Sessi onBean</ confi gur ati on- nane>
<i nvoker - bi ndi ngs>
<i nvoker >
<i nvoker - pr oxy- bi ndi ng- nane>
st at el ess-conpr essi on-i nvoker
</i nvoker - pr oxy- bi ndi ng- nane>
<j ndi - nane>j r np- conpr essed/ St at el essSessi on</j ndi - name>
</i nvoker >
</i nvoker - bi ndi ngs>
</ sessi on>
</enterprise-beans>

<i nvoker - pr oxy- bi ndi ngs>
<i nvoker - pr oxy- bi ndi ng>
<nane>st at el ess- conpr essi on-i nvoker </ name>
<i nvoker - nbean>
j boss: servi ce=i nvoker, t ype=j r np, socket Type=Conpr essi onSocket Fact ory
</i nvoker - nbhean>
<proxy-factory>org.jboss. proxy. ej b. ProxyFact ory</ proxy-fact ory>
<proxy-factory-config>
<client-interceptors>
<hone>
<i nt er cept or >or g. j boss. proxy. ej b. Homel nt er cept or </ i nt er cept or >
<i nterceptor>org.jboss. proxy. Securitylnterceptor</interceptor>
<i nter ceptor>org.j boss. proxy. Transacti onl nt er cept or </ i nt er cept or >
<i nterceptor>org.jboss.invocation.|nvokerlnterceptor</interceptor>
</ hone>
<bean>
<i nterceptor>
org.j boss. proxy. ej b. St at el essSessi onl nt er cept or
</interceptor>
<i nt ercept or>org.j boss. proxy. Securitylnterceptor</interceptor>
<i nterceptor>org.j boss. proxy. Transacti onl nt er cept or </ i nt er cept or >
<i nterceptor>org.jboss.invocation.|nvokerlnterceptor</interceptor>
</ bean>
</client-interceptors>
</ proxy-factory-config>
</i nvoker - pr oxy- bi ndi ng>
</ i nvoker - pr oxy- bi ndi ngs>
</j boss>

The st at el essSessi on EJB i nvoker - bi ndi ngs Settings specify that the st at el ess- conpr essi on-i nvoker will be
used with the home interface bound under the INDI hame j r np- conpr essed/ St at el essSessi on. The st at el ess-
conpr essi on-i nvoker islinked to the custom JRMP invoker we just declared.

The following example, or g. j boss. t est . hel | o testsuite package, is an example of using the H: t pl nvoker to con-

JBoss Release 2 140

EJBs on JBoss

figure a stateless session bean to use the RMI/HTTP protocol.

<?xm version="1.0" encodi ng="UTF-8""?>
<! DOCTYPE j boss PUBLI C
"-//JBoss// DTD JBCOSS 3. 2//EN'
"http://ww. jboss.org/j2ee/dtd/jboss_3_2.dtd">
<j boss>
<ent er pri se- beans>
<sessi on>
<ej b- nanme>Hel | oWor | dVi aHTTP</ ej b- name>
<j ndi - name>hel | owor | d/ Hel | oHTTP</ j ndi - nane>
<i nvoker - bi ndi ngs>
<i nvoker >
<i nvoker - pr oxy- bi ndi ng- nane>
st at el ess-http-i nvoker
</i nvoker - pr oxy- bi ndi ng- nane>
</i nvoker >
</i nvoker - bi ndi ngs>
</ sessi on>
</ enterprise-beans>
<i nvoker - pr oxy- bi ndi ngs>
<I-- A custominvoker for RM/HITP -->
<i nvoker - pr oxy- bi ndi ng>
<nane>st at el ess- htt p-i nvoker </ nane>
<i nvoker - nhean>j boss: servi ce=i nvoker, t ype=htt p</ i nvoker - mhean>
<proxy-factory>org.jboss. proxy. ej b. ProxyFact ory</ proxy-factory>
<proxy-factory-config>
<client-interceptors>
<hone>
<i nt ercept or>org.j boss. proxy. ej b. Honel nt er cept or </ i nt er cept or >
<i nt er cept or >or g. j boss. proxy. Securityl nterceptor</interceptor>
<i nt ercept or>org. j boss. proxy. Transacti onl nt er cept or </ i nt er cept or >
<i nterceptor>org.jboss.invocation.|nvokerlnterceptor</interceptor>
</ home>
<bean>
<i nterceptor>
org. j boss. proxy. ej b. St at el essSessi onl nt er cept or
</interceptor>
<i nt er cept or >or g. j boss. proxy. Securityl nterceptor</interceptor>
<i nt er cept or >or g. j boss. proxy. Transacti onl nt er cept or </ i nt er cept or >
<i nterceptor>org.jboss.invocation.|nvokerlnterceptor</interceptor>
</ bean>
</client-interceptors>
</ proxy-factory-config>
</i nvoker - pr oxy- bi ndi ng>
</i nvoker - pr oxy- bi ndi ngs>
</j boss>

Here a custom invoker-proxy-binding named st at el ess- ht t p-i nvoker isdefined. It usesthe Ht t pl nvoker MBean
as the detached invoker. The j boss: servi ce=i nvoker, t ype=htt p name is the default name of the Ht t pI nvoker
MBean as found in the htt p-i nvoker. sar/ META- | NF/ j boss- servi ce. xni descriptor, and its service descriptor
fragment is show here:

<I'-- The HTTP invoker service configuration -->
<nbean code="org.jboss.invocation. http.server. Httpl nvoker"
nanme="j boss: servi ce=i nvoker, type=http">
<I-- Use a URL of the form http://<hostname>: 8080/i nvoker/ EJBI nvoker Ser vl et
wher e <hostnanme> is | net Address. get Host nanme val ue on which the server
is running. -->
<attribute name="Invoker URLPrefi x">http://</attri bute>
<attribute name="| nvoker URLSuf fi x">: 8080/ i nvoker/ EJBI nvoker Servl et </attri but e>
<attribute name="UseHost Nane">true</attri bute>
</ mbean>

JBoss Release 2 141

EJBs on JBoss

The client proxy posts the EJB invocation content to the EJBI nvoker Servl et URL specified in the H: t pl nvoker
service configuration.

4.2.2. The HA JRMPInvoker - Clustered RMI/JRMP Transport

The org. j boss.invocation. jrnp. server. JRVPI nvoker HA Service is an extension of the JRWPI nvoker that is a
cluster aware invoker. The JRVPI nvoker HA fully supports al of the attributes of the JRVPI nvoker . This means that
customized bindings of the port, interface and socket transport are available to clustered RMI/JRMP as well. For
additional information on the clustering architecture and the implementation of the HA RMI proxies see the JBoss
Clustering docs.

4.2.3. The HA HttpIinvoker - Clustered RMI/HTTP Transport

The RMI/HTTP layer alows for software load balancing of the invocations in a clustered environment. An HA
capable extension of the HTTP invoker has been added that borrows much of its functionality from the HA-
RMI/IRMP clustering.

To enable HA-RMI/HTTP you need to configure the invokers for the EJB container. This is done through either a
j boss. xn descriptor, or the st andar dj boss. xn descriptor. Example 4.3 shows is an example of a stateless ses-
sion configuration taken from the or g. j boss. t est . hel | o testsuite package.

Example 4.3. A jboss.xml stateless session configuration for HA-RMI/HTTP

<j boss>
<ent er pri se- beans>
<sessi on>
<ej b- name>Hel | oWor | dVi adl ust er edHTTP</ ej b- nanme>
<j ndi - name>hel | owor | d/ Hel | oHA- HTTP</ j ndi - nanme>
<i nvoker - bi ndi ngs>
<i nvoker >
<i nvoker - pr oxy- bi ndi ng- name>
st at el ess- htt pHA-i nvoker
</i nvoker - pr oxy- bi ndi ng- nane>
</i nvoker >
</i nvoker - bi ndi ngs>
<cl ust er ed>t r ue</ cl ust er ed>
</ sessi on>
</ enterpri se-beans>
<i nvoker - pr oxy- bi ndi ngs>
<i nvoker - pr oxy- bi ndi ng>
<nane>st at el ess- htt pHA-i nvoker </ name>
<i nvoker - nbean>j boss: servi ce=i nvoker, t ype=ht t pHA</ i nvoker - nhean>
<proxy-factory>org.jboss. proxy. ej b. ProxyFact or yHA</ pr oxy- f act or y>
<proxy-factory-config>
<client-interceptors>
<home>
<i nt ercept or>org. j boss. proxy. ej b. Honel nt er cept or </ i nt er cept or >
<i nt er cept or >or g. j boss. proxy. Securityl nterceptor</interceptor>
<i nter cept or>org. j boss. proxy. Transacti onl nt er cept or </ i nt er cept or >
<i nterceptor>org.jboss.invocation.|nvokerlnterceptor</interceptor>
</ hone>
<bean>
<i nterceptor>
org. j boss. proxy. ej b. St at el essSessi onl nt er cept or
</interceptor>
<i nterceptor>org.jboss. proxy. Securitylnterceptor</interceptor>

JBoss Release 2 142

EJBs on JBoss

<i nterceptor>org. j boss. proxy. Transacti onl nt er cept or </ i nt er cept or >
<i nterceptor>org.jboss.invocation.|nvokerlnterceptor</interceptor>
</ bean>
</client-interceptors>
</ proxy-factory-config>
</i nvoker - pr oxy- bi ndi ng>
</i nvoker - pr oxy- bi ndi ngs>
</j boss>

The st at el ess- ht t pHA-i nvoker invoker-proxy-binding references the j boss: servi ce=i nvoker, t ype=ht t pHA in-
voker service. This service would be configured as shown below.

<nbean code="org.jboss.invocation. http.server. Httpl nvoker HA"
nanme="j boss: servi ce=i nvoker, t ype=ht t pHA" >
<I-- Use a URL of the form
htt p: // <host nane>: 8080/ i nvoker / EJBI nvoker HASer vl et
wher e <hostnanme> is | net Address. get Host nanme val ue on which the server
i s running.
-->
<attribute name="|nvoker URLPrefix">http://</attribute>
<attribute name="|nvoker URLSuf fi x">: 8080/ i nvoker/ EJBI nvoker HASer vl et </ attri but e>
<attribute name="UseHost Nane">true</attri bute>
</ mbean>

The URL used by the invoker proxy is the EJBI nvoker HASer vl et mapping as deployed on the cluster node. The
Ht t pl nvoker HA instances across the cluster form a collection of candidate http URLs that are made available to the
client side proxy for failover and/or load balancing.

4.3. The EJB Container

An EJB container is the component that manages a particular class of EJB. In JBoss there is one instance of the
org. j boss. ej b. Cont ai ner created for each unique configuration of an EJB that is deployed. The actual object that
isinstantiated is a subclass of Cont ai ner and the creation of the container instance is managed by the EJBDepl! oyer
MBean.

4.3.1. EJBDeployer MBean

Theorg. j boss. ej b. EJBDepl oyer MBean isresponsible for the creation of EJB containers. Given an EJB JAR that
is ready for deployment, the EJBDepl oyer will create and initialize the necessary EJB containers, one for each type
of EJB. The configurable attributes of the EJBDepl oyer are:

» VerifyDeployments: a boolean flag indicating if the EJB verifier should be run. This validates that the EJBsin
a deployment unit conform to the EJB 2.1 specification. Setting this to true is useful for ensuring your deploy-
ments are valid.

* VerifierVerbose: A boolean that controls the verboseness of any verification failures’'warnings that result from
the verification process.

* StrictVerifier: A boolean that enables/disables strict verification. When strict verification is enable an EJB will
deploy only if verifier reports no errors.

JBoss Release 2 143

EJBs on JBoss

« CallByValue: aboolean flag that indicates call by value semantics should be used by default.

e ValidateDTDs:. a boolean flag that indicates if theej b-j ar. xm andj boss. xm descriptors should be validated
against their declared DTDs. Setting thisto true is useful for ensuring your deployment descriptors are valid.

 MaetricsEnabled: a boolean flag that controls whether container interceptors marked with an netri csen-
abl ed=t r ue attribute should be included in the configuration. This allows one to define a container interceptor
configuration that includes metrics type interceptors that can be toggled on and off.

* WebServiceName: The IMX ObjectName string of the web service MBean that provides support for the dy-
namic class loading of EJB classes.

e TransactionM anager ServiceName: The IMX ObjectName string of the JTA transaction manager service.
This must have an attribute named Transact i onManager that returns that
j avax. transaction. Transact i onManager instance.

The deployer contains two central methods: deploy and undeploy. The deploy method takes a URL, which either
points to an EJB JAR, or to adirectory whose structure is the same as avalid EJB JAR (which is convenient for de-
velopment purposes). Once a deployment has been made, it can be undeployed by calling undeploy on the same
URL. A call to deploy with an already deployed URL will cause an undeploy, followed by deployment of the URL.
JBoss has support for full re-deployment of both implementation and interface classes, and will reload any changed
classes. Thiswill allow you to develop and update EJBs without ever stopping a running server.

During the deployment of the EJB JAR the EJBDepl oyer and its associated classes perform three main functions,
verify the EJBs, create a container for each unique EJB, initialize the container with the deployment configuration
information. We will talk about each function in the following sections.

4.3.1.1. Verifying EJB deployments

When the veri f yDepl oynent s attribute of the EJBDepl oyer istrue, the deployer performs a verification of EJBsin
the deployment. The verification checks that an EJB meets EJB specification compliance. This entails validating
that the EJB deployment unit contains the required home and remote, local home and local interfaces. It will also
check that the objects appearing in these interfaces are of the proper types and that the required methods are present
in the implementation class. This is a useful behavior that is enabled by default since there are a number of steps
that an EJB developer and deployer must perform correctly to construct a proper EJB JAR, and it is easy to make a
mistake. The verification stage attempts to catch any errors and fail the deployment with an error that indicates
what needs to be corrected.

Probably the most problematic aspect of writing EJBs is the fact that there is a disconnection between the bean im-
plementation and its remote and home interfaces, as well as its deployment descriptor configuration. It is easy to
have these separate elements get out of synch. One tool that helps eliminate this problem is XDaoclet. It alows you
to use custom JavaDoc-like tags in the EJB bean implementation class to generate the related bean interfaces, de-
ployment descriptors and related objects. See the XDoclet home page, http://sourceforge.net/projects/xdoclet for
additiona details.

4.3.1.2. Deploying EJBs Into Containers

The most important role performed by the EJBDepl oyer is the creation of an EJB container and the deployment of
the EJB into the container. The deployment phase consists of iterating over EJBsin an EJB JAR, and extracting the
bean classes and their metadata as described by the ej b-j ar. xnl and j boss. xm deployment descriptors. For each

JBoss Release 2 144

http://sourceforge.net/projects/xdoclet

EJBs on JBoss

EJB inthe EJB JAR, the following steps are performed:

» Create subclass of org. j boss. ej b. Cont ai ner depending on the type of the EJB: stateless, stateful, BMP entity,
CMP entity, or message driven. The container is assigned a unique d assLoader from which it can load local
resources. The unigueness of the d assLoader is aso used to isolate the standard j ava: conp JNDI namespace
from other J2EE components.

e Set dl container configurable attributes from a merge of thej boss. xm and st andar dj boss. xm descriptors.
e Create and add the container interceptors as configured for the container.

» Associate the container with an application object. This application object represents a J2EE enterprise applica-
tion and may contain multiple EJBs and web contexts.

If all EJBs are successfully deployed, the application is started which in turn starts all containers and makes the
EJBs available to clients. If any EJB fails to deploy, a deployment exception is thrown and the deployment module
isfaled.

4.3.1.3. Container configuration information

JBoss externalizes most if not all of the setup of the EJB containers using an XML file that conforms to the
j boss_4_0. dt d. The section DTD that relates to container configuration information is shown in Figure 4.4.

JBoss Release 2 145

EJBs on JBoss

-

(7] * extendsg
| sring I

' i A | P -1
T."‘:' y i Ly]

1
A

)

|
Ly

+ mnniner—mnﬁgumﬁun#_

)

+ mnnlnu—nmq

* call-logging

* imniter—pmxf—hhi:ilnﬁ -I'I-I-l'l'qu

* swc—nn—mmm!—nnlr#

[hun-aﬂer-zjb-pun—uﬂt!q

- ﬂlI:Ejh*stan—un—duiiq

+ mnn]ntr-lnmrmpmrsE'

+ mmnu-mlq

7| * instance-cacheg

+ ummm-mnmr#

b & &8 & &

)
'-_'-".

|
£

+ Wth—diss—lﬂldﬂ'#

* locking-policyg

+ l:untilnﬁr*cidteumnfﬁ‘

+ container-pool-confg

+ commit-option g

npﬂnnd—refruh—ram#

* semriw-dmnah#

)

#
=

Fa
L
g

+ cluster-config 31
¢ dependsg

Figure4.4. Thejboss 4 0 DTD elementsrelated to container configuration.

The cont ai ner - confi gurati on element and its subelements specify container configuration settings for a type of

JBoss Release 2

146

EJBs on JBoss

container as given by the cont ai ner - name element. Each configuration specifies information such as the default in-
voker type, the container interceptor makeup, instance caches/pools and their sizes, persistence manager, security,
and so on. Because this is a large amount of information that requires a detailed understanding of the JBoss con-
tainer architecture, JBoss ships with a standard configuration for the four types of EJBs. This configuration file is
called st andar dj boss. xm and it is located in the conf directory of any configuration file set that uses EJBs. The
following is a sample of cont ai ner - conf i gur ati on from st andar dj boss. xni .

<cont ai ner-confi gurati on>
<cont ai ner - name>St andard CWVP 2. x EntityBean</cont ai ner - name>
<cal I -1 oggi ng>f al se</ cal | -1 oggi ng>
<i nvoker - pr oxy- bi ndi ng- nane>entity-rm -i nvoker</i nvoker - pr oxy- bi ndi ng- name>
<sync-on-comi t-onl y>fal se</ sync-on-comit-only>
<insert-after-ejb-post-create>fal se</insert-after-ejb-post-create>
<cal | - ej b- st or e- on-cl ean>true</ cal | - ej b- st or e- on-cl ean>
<cont ai ner-i nt ercept or s>

<i nt er cept or >or g. j boss. ej b. pl ugi ns. ProxyFact or yFi nder | nt er cept or </ i nt er cept or >
<i nterceptor>org.jboss. ejb.plugins. Logl nterceptor</interceptor>

<i nterceptor>org.j boss. ej b. pl ugi ns. Securityl nterceptor</interceptor>

<i nterceptor>org.jboss. ej b. plugi ns. Txl nt er cept or CMI</ i nt er cept or >

<i nterceptor>org.jboss. ej b. pl ugi ns. Cal | Val i dati onl nt er cept or </ i nt er cept or >
<interceptor netricsEnabl ed="true">

org. j boss. ej b. pl ugi ns. Metri csl nterceptor
</interceptor>
<i nterceptor>org.]jboss. ej b. pl ugi ns. Enti tyCreati onl nterceptor</interceptor>
<i nterceptor>org.jboss. ejb.plugins. EntityLockl nterceptor</interceptor>
<i nterceptor>org.jboss.ejb.plugins. Entityl nstancel nterceptor</interceptor>
<i nterceptor>org.jboss. ejb.plugins. EntityReentrancel nterceptor</interceptor>
<i nterceptor>
org.j boss. resource. connecti onmanager . CachedConnect i onl nt er cept or
</interceptor>
<i nterceptor>org.jboss. ejb.plugins. EntitySynchroni zati onl nterceptor</interceptor>
<i nt er cept or >or g. j boss. ej b. pl ugi ns. cnp. j dbc. JDBCRel ati onl nt er cept or </ i nt er cept or >
</ cont ai ner-i nterceptors>
<i nst ance- pool >or g. j boss. ej b. pl ugi ns. Enti tyl nst ancePool </ i nst ance- pool >
<i nst ance- cache>or g. j boss. ej b. pl ugi ns. | nval i dabl eEnti tyl nst anceCache</i nst ance- cache>
<per si st ence- manager >or g. j boss. ej b. pl ugi ns. cnp. j dbc. JDBCSt or eManager </ per si st ence- nanager >
<l ocki ng- pol i cy>or g. j boss. ej b. pl ugi ns. | ock. QueuedPessi m sti cEJBLock</| ocki ng- pol i cy>
<cont ai ner - cache- conf >
<cache-pol i cy>org.] boss. ej b. pl ugi ns. LRUEnt er pri seCont ext CachePol i cy</ cache- pol i cy>
<cache- pol i cy- conf >
<m n- capaci t y>50</ m n- capaci ty>
<max- capaci t y>1000000</ max- capaci ty>
<over ager - per i 0d>300</ over ager - peri od>
<max- bean- age>600</ max- bean- age>
<resi zer - peri 0d>400</r esi zer - peri od>
<max- cache- m ss- peri 0d>60</ max- cache- m ss- peri od>
<m n- cache- m ss-peri od>1</ ni n-cache- m ss- peri od>
<cache- | oad- f act or >0. 75</ cache- | oad- f act or >
</ cache- pol i cy- conf >
</ cont ai ner - cache- conf >
<cont ai ner - pool - conf >
<Maxi munsSi ze>100</ Maxi munti ze>
</ cont ai ner - pool - conf >
<conmi t-opti on>B</conmi t-option>
</ cont ai ner-confi guration>

These two examples demonstrate how extensive the container configuration options are. The container configura-
tion information can be specified at two levels. The first isin the st andar dj boss. xm file contained in the config-
uration file set directory. The second is at the EJB JAR level. By placing aj boss. xni file in the EJB JAR META-
I NF directory, you can specify either overrides for container configurations in the st andar dj boss. xm file, or en-
tirely new named container configurations. This provides great flexibility in the configuration of containers. Asyou
have seen, all container configuration attributes have been externalized and as such are easily modifiable. Know-

JBoss Release 2 147

EJBs on JBoss

ledgeable devel opers can even implement specialized container components, such as instance pools or caches, and
easily integrate them with the standard container configurations to optimize behavior for a particular application or
environment.

How an EJB deployment chooses its container configuration is based on the explicit or implict j boss/ ent er -
pri se- beans/ <t ype>/ confi gur ati on- nane element. The confi gurati on- name element is alink to a cont ai ner -
confi gurations/ contai ner-configuration element in Figure 4.4. It specifies which container configuration to
use for the referring EJB. Thelink isfrom aconfi gur at i on- name element to acont ai ner - nane element.

You are able to specify container configurations per class of EJB by including a cont ai ner-confi guration ele-
ment in the EJB definition. Typically one does not define completely new container configurations, although thisis
supported. Thetypical usage of aj boss. xm level cont ai ner - confi gurati on iSto override one or more aspects of
a cont ai ner - confi gurati on coming from the st andar dj boss. xni descriptor. This is done by specifying con-
tainer-configuration that references the name of an existing standardj boss. xm cont ai ner - confi gur a-
ti on/ cont ai ner - nane as the value for the cont ai ner - conf i gur ati on/ ext ends attribute. The following example
shows an example of defining a new Secured Statel ess Sessi onBean configuration that is an extension of the
Standard Statel ess Sessi onBean configuration.

<?xm version="1.0"?>
<j boss>
<ent erpri se- beans>
<sessi on>
<ej b- name>EchoBean</ ej b- nane>
<confi guration-nane>Secured Statel ess Sessi onBean</ confi gurati on-nane>
<l-- ... -->
</ sessi on>
</enterprise-beans>
<cont ai ner - confi gurati ons>
<cont ai ner-configurati on extends="Standard Statel ess Sessi onBean">
<cont ai ner - name>Secur ed St at el ess Sessi onBean</ cont ai ner - nane>
<I-- Override the container security donain -->
<security-donmai n>j ava:/j aas/ my-security-domai n</ security-donmai n>
</ cont ai ner-confi gurati on>
</ cont ai ner - confi gurations>
</ j boss>

If an EJB does not provide a container configuration specification in the deployment unit EJB JAR, the container
factory chooses a container configuration from the st andar dj boss. xm descriptor based on the type of the EJB.
So, in reality there is an implicit confi gur ati on- nane element for every type of EJB, and the mappings from the
EJB type to default container configuration name are as follows:

e container-managed persistence entity version 2.0 = Standard CMP 2.x EntityBean
» container-managed persistence entity version 1.1 = Standard CMP EntityBean

« bean-managed persistence entity = Standard BMP EntityBean

» stateless session = Standard Statel ess SessionBean

» stateful session = Standard Stateful SessionBean

* message driven = Standard M essage Driven Bean

It is not necessary to indicate which container configuration an EJB is using if you want to use the default based on
the bean type. It probably provides for a more self-contained descriptor to include the confi gur ati on- nane ele-

JBoss Release 2 148

EJBs on JBoss

ment, but thisis purely amatter of style.

Now that you know how to specify which container configuration an EJB is using and can define a deployment unit
level override, we now will look at the cont ai ner-configuration child elements in the following sections. A
number of the elements specify interface class implementations whose configuration is affected by other elements,
so before starting in on the configuration elements you need to understand the or g. j boss. net adat a. Xm Loadabl e
interface.

The xni Loadabl e interface is asimpleinterface that consists of a single method. The interface definition is:

i mport org.w3c.dom El enent;
public interface Xm Loadabl e

{
}

public void inportXm (El ement el enent) throws Exception;

Classes implement this interface to allow their configuration to be specified viaan XML document fragment. The
root element of the document fragment is what would be passed to the i npor t Xmi method. Y ou will see afew ex-
amples of this as the container configuration elements are described in the following sections.

4.3.1.3.1. The container-name element

The cont ai ner - nane element specifies a unigue name for a given configuration. EJBs link to a particular container
configuration by setting their confi gur ati on- name element to the value of the cont ai ner - nane for the container
configuration.

4.3.1.3.2. The call-logging element

The cal | -1 oggi ng element expects a boolean (true or false) as its value to indicate whether or not the Logl nt er -
cept or should log method calls to a container. This is somewhat obsolete with the change to log4j, which provides
afine-grained logging API.

4.3.1.3.3. The invoker-proxy-binding-name element

The i nvoker - pr oxy- bi ndi ng- nane element specifies the name of the default invoker to use. In the absence of a
bean level invoker - bi ndi ngs specification, the i nvoker - proxy- bi ndi ng whose name matches the i nvoker -
pr oxy- bi ndi ng- nane element value will be used to create home and remote proxies.

4.3.1.3.4. The sync-on-commit-only element

This configures a performance optimization that will cause entity bean state to be synchronized with the database
only at commit time. Normally the state of all the beans in a transaction would need to be synchronized when an
finder method is called or when an remove method is called, for example.

4.3.1.3.5. insert-after-ejb-post-create

This is another entity bean optimization which cause the database insert command for a new entity bean to be
delayed until the ej bPost Cr eat e method is called. This allows normal CMP fields as well as CMR fields to be set
in asingle insert, instead of the default insert followed by an update, which allows removes the requirement for re-
lation ship fields to allow null values.

4.3.1.3.6. call-ejb-store-on-clean

JBoss Release 2 149

EJBs on JBoss

By the specification the container is required to call ej bst or e method on an entity bean instance when transaction
commits even if the instance was not modified in the transaction. Setting this to false will cause JBoss to only call
ej bSt or e for dirty objects.

4.3.1.3.7. The container-interceptors Element

The cont ai ner-i nt er cept or s element specifies one or more interceptor elements that are to be configured as the
method interceptor chain for the container. The value of the interceptor element is afully qualified class name of an
org.jboss.ejb. I nterceptor interface implementation. The container interceptors form al i nked-1i st structure
through which EJB method invocations pass. The first interceptor in the chain is invoked when the MBeanSer ver
passes a method invocation to the container. The last interceptor invokes the business method on the bean. We will
discussthe | nter cept or interface latter in this chapter when we talk about the container plugin framework. Gener-
aly, care must be taken when changing an existing standard EJB interceptor configuration as the EJB contract re-
garding security, transactions, persistence, and thread safety derive from the interceptors.

4.3.1.3.8. The instance-pool element

Thei nst ance- pool element specifies the fully qualified class name of an or g. j boss. ej b. | nst ancePool interface
implementation to use as the container | nst ancePool . We will discuss the InstancePool interface in detail latter in
this chapter when we talk about the container plugin framework.

4.3.1.3.9. The container-pool-conf element

The cont ai ner - pool - conf is passed to the I nst ancePool implementation class given by the i nst ance- pool €le-
ment if it implements the xn Loadabl e interface. All current JBoss | nst ancePool implementations derive from the
org. j boss. ej b. pl ugi ns. Abst ract | nst ancePool classwhich provides support for elements shown in Figure 4.5.

| * Minimu mSizE%

5| * Maximu mSize%

+ container-pool-confg__

7| * su'it:l:lulaximumSizE%

3 * su'i[t‘l'lmenut%

Figure 4.5. The container-pool-conf element DTD

e MinimumsSize: The M ni munsi ze element gives the minimum number of instances to keep in the pool, al-
though JBoss does not currently seed an | nst ancePool to the M ni nunsi ze value.

e« MaximumSize: The mMaxi munsi ze specifies the maximum number of pool instances that are allowed. The de-
fault use of mvaxi munsi ze may not be what you expect. The pool Mvaxi munsi ze is the maximum number of EJB
instances that are kept available, but additional instances can be created if the number of concurrent requests
exceeds the Maxi nunsi ze value.

JBoss Release 2 150

EJBs on JBoss

e drictMaximumSize: If you want to limit the maximum concurrency of an EJB to the pool mMaxi nunsi ze, you
need to set the st ri ct Maxi nunsi ze element to true. When st ri ct Maxi munsi ze is true, only Maxi munsi ze EJB
instances may be active. When there are Maxi munsi ze active instances, any subsequent requests will be blocked
until an instance is freed back to the pool. The default value for st ri ct Maxi nunsi ze isfalse.

e dtrictTimeout: How long a request blocks waiting for an instance pool aobject is controlled by the stri ct -
Ti meout element. The stri ct Ti neout defines the time in milliseconds to wait for an instance to be returned to
the pool when there are Maxi munsi ze active instances. A value less than or equal to O will mean not to wait at
all. When a reguest times out waiting for an instance a j ava. rni . Server Excepti on is generated and the call
aborted. This is parsed as a Long so the maximum possible wait time is 9,223,372,036,854,775,807 or about
292,471,208 years, and thisis the default value.

4.3.1.3.10. The instance-cache element

Thei nst ance- cache element specifies the fully qualified class name of the or g. j boss. €] b. | nst anceCache inter-
face implementation. This element is only meaningful for entity and stateful session beans as these are the only
EJB types that have an associated identity. We will discuss the | nst anceCache interface in detail latter in this
chapter when we talk about the container plugin framework.

4.3.1.3.11. The container-cache-conf element

The cont ai ner - cache- conf element is passed to the I nst anceCache implementation if it supports the X Load-
able interface. All curent JBoss InstanceCache implementations derive from the
org. j boss. ej b. pl ugi ns. Abst ract | nst anceCache class which provides support for the Xn Loadabl e interface and
uses the cache- pol i cy child element as the fully qualified class name of an or g. j boss. uti|. CachePol i cy imple-
mentation that is used as the instance cache store. The cache- pol i cy-conf child element is passed to the cacheP-
ol i cy implementation if it supports the Xm Loadabl e interface. If it does not, the cache- pol i cy- conf will silently
beignored.

There are two JBoss implementations of CachePolicy used by the st andar dj boss. xni configuration that support
the current array of cache- pol i cy- conf child elements. The classes are
org.j boss. ej b. pl ugi ns. LRUENt er pri seCont ext CachePol i cy and
org. j boss. ej b. pl ugi ns. LRUSt at ef ul Cont ext CachePol i cy. The LRUENt er pri seCont ext CachePol i cy iS used by
entity bean containers while the LRUSt at ef ul Cont ext CachePol i cy IS used by stateful session bean containers.
Both cache policies support the following cache- pol i cy- conf child elements, shown in Figure 4.6.

JBoss Release 2 151

EJBs on JBoss

=%
—2)

+ carhe-pnliqr%

+ min-tapaciw%

+ max-capacity%

&) * remmr—perind%

&) * max-hean-life#

&) * mrerager-perind%

+ l:nntainer-tathe-tnnfE

~)

+ cache-policy-conf

& * max-hean-age%

&) * resizer-perind%

G| * max-tache-miss-perind%

€ e min-tad‘te-miss-perind%

L 3)* came-lnad-facmr%

;| # cache-policy-conf-other

Figure 4.6. The container -cache-conf element DTD

e min-capacity: specifies the minimum capacity of this cache
e max-capacity: specifies the maximum capacity of the cache, which cannot be less than ni n- capaci ty.

e overager-period: specifies the period in seconds between runs of the overager task. The purpose of the over-
ager task is to see if the cache contains beans with an age greater than the max- bean- age element value. Any
beans meeting this criterion will be passivated.

¢ max-bean-age: specifies the maximum period of inactivity in seconds a bean can have before it will be passiv-
ated by the overager process.

e resizer-period: specifies the period in seconds between runs of the resizer task. The purpose of the resizer task
is to contract or expand the cache capacity based on the remaining three element values in the following way.
When the resizer task executes it checks the current period between cache misses, and if the period is less than
the ni n- cache- i ss-peri od value the cache is expanded up to the max- capacity value using the cache-
| oad- f act or . If instead the period between cache misses is greater than the max- cache- ni ss- peri od value the
cacheis contracted using the cache- | oad- fact or.

¢ max-cache-miss-period: specifies the time period in seconds in which a cache miss should signal that the

JBoss Release 2 152

EJBs on JBoss

cache capacity be contracted. It is equivalent to the minimum miss rate that will be tolerated before the cacheis
contracted.

e min-cache-miss-period: specifiesthe time period in seconds in which a cache miss should signal that the cache
capacity be expanded. It is equivalent to the maximum miss rate that will be tolerated before the cache is ex-
panded.

» cache-load-factor: specifies the factor by which the cache capacity is contracted and expanded. The factor
should be less than 1. When the cache is contracted the capacity is reduced so that the current ratio of beans to
cache capacity is equa to the cache-load-factor value. When the cache is expanded the new capacity is determ-
ined ascurrent-capacity * 1/ cache-| oad-fact or. The actual expansion factor may be as high as 2 based on
an internal algorithm based on the number of cache misses. The higher the cache miss rate the closer the true
expansion factor will beto 2.

The LRuSt at ef ul Cont ext CachePol i cy also supports the remaining child elements:

* remover-period: specifies the period in seconds between runs of the remover task. The remover task removes
passivated beans that have not been accessed in more than max- bean- 1 i f e seconds. This task prevents stateful
session beans that were not removed by users from filling up the passivation store.

* max-bean-life: specifies the maximum period of inactivity in seconds that a bean can exist before being re-
moved from the passivation store.

An dternative cache policy implementation is the org. j boss. ej b. pl ugi ns. NoPassi vat i onCachePol i cy class,
which simply never passivates instances. It uses an in-memory HashMap implementation that never discards in-
stances unless they are explicitly removed. This class does not support any of the cache- pol i cy-conf configura-
tion elements.

4.3.1.3.12. The persistence-manager element

Thepersi st ence- nanager element value specifies the fully qualified class name of the persistence manager imple-
mentation. The type of the implementation depends on the type of EJB. For stateful session beans it must be an im-
plementation of the org. j boss. ej b. St at ef ul Sessi onPer si st enceManager interface. For BMP entity beans it
must be an implementation of the org. j boss. ej b. Enti t yPersi st enceManager interface, while for CMP entity
beans it must be an implementation of the or g. j boss. ej b. Enti t yPer si st enceSt or e interface.

4.3.1.3.13. The web-class-loader Element

The web- cl ass-1 oader element specifies a subclass of org. j boss. web. Webd assLoader that is used in conjunc-
tion with the webser vi ce MBean to allow dynamic loading of resources and classes from deployed ears, EJB JARS
and WARs. A wbdassLoader IS associated with a Container and must have an
org. j boss. mx. | oadi ng. Uni fi edC assLoader asits parent. It overrides the get URLs() method to return a different
set of URLs for remote loading than what is used for local loading.

Webd aossLoader has two methods meant to be overridden by subclasses: get Key() and get Byt es() . The latter is
a no-op in this implementation and should be overridden by subclasses with bytecode generation ability, such as
the classloader used by the iiop module.

Webd assLoader subclasses must have a constructor with the same signature as the Webd assLoader (Obj ect Narre
cont ai ner Nane, Unifi edCl assLoader parent) constructor.

JBoss Release 2 153

EJBs on JBoss

4.3.1.3.14. The locking-policy element

The | ocki ng- pol i cy element gives the fully qualified class name of the EJB lock implementation to use. This
class must implement the or g. j boss. ej b. BeanLock interface. The current JBoss versions include:

e org.jboss.gb.plugins.lock.QueuedPessimisticEJBL ock: an implementation that holds threads awaiting the
transactional lock to be freed in a fair FIFO queue. Non-transactional threads are also put into this wait queue
as well. This class pops the next waiting transaction from the queue and notifies only those threads waiting as-
sociated with that transaction. The QueuedPessi ni sti cEJBLock is the current default used by the standard con-
figurations.

e orgjboss.gb.plugins.lock.QueuedPessimisticEJBL ockNOADE: This behaves the same as the QueuedPess-
i mi sti cEJBLock except that deadlock detection is disabled.

e orgjboss.gb.pluginslock.SimpleReadWriteEJBL ock: This lock alows multiple read locks concurrently.
Once awriter has requested the lock, future read-lock requests whose transactions do not already have the read
lock will block until al writers are done; then al the waiting readers will concurrently go (depending on the
reentrant setting / methodL ock). A reader who promotes gets first crack at the write lock, ahead of other wait-
ing writers. If there is aready a reader that is promoting, we throw an inconsistent read exception. Of course,
writers have to wait for all read-locks to rel ease before taking the write lock.

e org.jboss.gb.plugins.lock.NoL ock: an anti-locking policy used with the instance per transaction container
configurations.

Locking and deadlock detection will be discussed in more detail in Section 4.4.
4.3.1.3.15. The commit-option and optiond-refresh-rate elements

The commit-option value specifies the EJB entity bean persistent storage commit option. It must be one of A, B, cor
D.

A: the container caches the beans state between transactions. This option assumes that the container is the only
user accessing the persistent store. This assumption allows the container to synchronize the in-memory state
from the persistent storage only when absolutely necessary. This occurs before the first business method ex-
ecutes on a found bean or after the bean is passivated and reactivated to serve another business method. This
behavior isindependent of whether the business method executes inside a transaction context.

e B: the container caches the bean state between transactions. However, unlike option A the container does not as-
sume exclusive access to the persistent store. Therefore, the container will synchronize the in-memory state at
the beginning of each transaction. Thus, business methods executing in a transaction context don't see much be-
nefit from the container caching the bean, whereas business methods executing outside a transaction context
(transaction attributes Never, NotSupported or Supports) access the cached (and potentially invalid) state of the
bean.

e C: the container does not cache bean instances. The in-memory state must be synchronized on every transaction
start. For business methods executing outside a transaction the synchronization is still performed, but the ej b-
Load executes in the same transaction context as that of the caller.

» D:isaJBoss-specific commit option which is not described in the EJB specification. It is alazy read scheme

JBoss Release 2 154

EJBs on JBoss

where bean state is cached between transactions as with option A, but the state is periodically resynchronized
with that of the persistent store. The default time between reloads is 30 seconds, but may configured using the
opti ond-refresh-rate element.

4.3.1.3.16. The security-domain element

The security-domain element gspecifies the JINDI name of the object that implements the
org.j boss. security. Aut henti cati onManager andorg. j boss. securi ty. Real mvappi ng interfaces. It is more typ-
ical to specify the securi ty- domai n under the j boss root element so that all EJBs in a given deployment are se-
cured in the same manner. However, it is possible to configure the security domain for each bean configuration.
The details of the security manager interfaces and configuring the security layer are discussed in Chapter 7.

4.3.1.3.17. cluster-config

Thecl ust er-confi g element allowsto specify cluster specific settings for all EJBs that use the container configur-
ation. Specficiation of the cluster configuration may be done at the container configuration level or at the individual
EJB deployment level.

2|+ parﬁﬁnn-name%

3 * hnme-lnad-halanm-pnliw%

* cluster-config

) * hean-lnad-halante-pnliw%

| * sex5inn-state-manager-jndi-name%

Figure4.7. The cluster-config and related elements

e partition-name: The partition-name element indicates where to find the
org.jboss. ha. framework. i nterfaces. HAParti ti on interface to be used by the container to exchange cluster-
ing information. This is not the full INDI name under which HAParti ti on is bound. Rather, it should corres-
pond to the PartitionNane attribute of the C usterPartitionMBean sService that is managing the desired
cluster. The actual INDI name of the HAPar ti ti on binding will be formed by appending / HASessi onSt at e/ to
the partition-name value. The default value is Def aul t Parti ti on.

* home-load-balance-policy: The hone- | oad- bal ance- pol i cy element indicates the Java class name to be used
to load baance <cals made on the home proxy. The class must implement the
org. j boss. ha. framework. i nt er f ace. LoadBal ancePol i cy interface. The default policy is
org.j boss. ha. framewor k. i nt er f aces. RoundRobi n.

« bean-load-balance-policy: The bean-1 oad- bal ance- pol i cy element indicates the java class name to be used
to load baance «cdls in the bean proxy. The class must implement the
org. j boss. ha. framewor k. i nterf ace. LoadBal ancePol i cy interface. For entity beans and stateful session
beans, the default is org.jboss. ha. framework. i nterfaces. FirstAvail avbl e. For stateless session beans,

JBoss Release 2 155

EJBs on JBoss

org.j boss. ha. framewor k. i nt er f aces. RoundRobi n.

e session-state-manager-jndi-name: The sessi on- st at e- manager - j ndi - nane element indicates the name of
the org. j boss. ha. framewor k. i nt er f aces. HASessi onSt at e t0 be used by the container as a backend for state
session management in the cluster. Unlike the partition-name element, this is a INDI name under which the
HASessi onSt at e implementation is bound. The default location used is/ HASessi onSt at e/ Def aul t .

4.3.1.3.18. The depends element

The depends element gives a IMX Obj ect Name of a service on which the container or EJB depends. Specification
of explicit dependencies on other services avoids having to rely on the deployment order being after the required
services are started.

4.3.2. Container Plug-in Framework

The JBoss EJB container uses a framework pattern that allows one to change implementations of various aspects of
the container behavior. The container itself does not perform any significant work other than connecting the various
behavioral components together. Implementations of the behavioral components are referred to as plugins, because
you can plug in a new implementation by changing a container configuration. Examples of plug-in behavior you
may want to change include persistence management, object pooling, object caching, container invokers and inter-
ceptors. There are four subclasses of the or g. j boss. ej b. Cont ai ner class, each one implementing a particular bean

type:

* org.jboss.gb.EntityContainer: handlesj avax. ej b. Ent i t yBean types

e org.jboss.gb.StatelessSessionContainer: handles Statelessj avax. ej b. Sessi onBean types
» org.jboss.gb.Stateful SessionContainer: handles Stateful j avax. ej b. Sessi onBean types

e org.jboss.ghb.MessageDrivenContainer handlesj avax. ej b. MessageDr i venBean types

The EJB containers delegate much of their behavior to components known as container plug-ins. The interfaces
that make up the container plugin points include the following:

e org.jboss.gjb.ContainerPlugin

e org.jboss.gb.Containerlnvoker

e org.jboss.gjb.Interceptor

e org.jboss.gjb.InstancePool

e org.jboss.gb.InstanceCache

e org.jboss.gb.EntityPersistanceM anager

» org.jboss.gjb.EntityPersistanceStore

» o0rg.jboss.gjb.Statef ul SessionPersi stenceM anager

The container's main responsibility is to manage its plug-ins. This means ensuring that the plug-ins have al the in-
formation they need to implement their functionality.

4.3.2.1. org.jboss.ejb.ContainerPlugin

The cont ai ner Pl ugi n interface is the parent interface of all container plug-in interfaces. It provides a callback that

JBoss Release 2 156

EJBs on JBoss

allows a container to provide each of its plug-ins a pointer to the container the plug-in is working on behalf of. The
Cont ai ner Pl ugi n interface is given below.

Example 4.4. The org.jboss.gfb.Container Plugin interface

public interface ContainerPlugin

ext ends Service, AllowedQperationsFlags
{

/**

* This call back is set by the container so that the plugin
* may access its container

*

* @aram con the contai ner which owns the plugin
*/
public void set Cont ai ner (Cont ai ner con);

4.3.2.2. org.jboss.ejb.Interceptor

The nt er cept or interface enables one to build a chain of method interceptors through which each EJB method in-
vocation must pass. Thel nt er cept or interfaceis given below.

Example 4.5. The org.jboss.gb.Inter ceptor interface

i mport org.jboss.invocation.|nvocation;

public interface Interceptor
ext ends Cont ai ner Pl ugi n

{
public void setNext(Ilnterceptor interceptor);
public Interceptor getNext();
public Object invokeHome(lnvocation m) throws Exception;
public Object invoke(lnvocation m) throws Exception;
}

All interceptors defined in the container configuration are created and added to the container interceptor chain by
the EJBDepl oyer . The last interceptor is not added by the deployer but rather by the container itself because thisis
the interceptor that interacts with the EJB bean implementation.

The order of the interceptor in the chain is important. The idea behind ordering is that interceptors that are not tied
to aparticular Ent er pri seCont ext instance are positioned before interceptors that interact with caches and pools.

Implementers of the I nt er cept or interface form alinked-list like structure through which the | nvocat i on object is
passed. The first interceptor in the chain is invoked when an invoker passes a | nvocat i on to the container via the
JMX bus. The last interceptor invokes the business method on the bean. There are usually on the order of five inter-
ceptors in a chain depending on the bean type and container configuration. | nt ercept or Semantic complexity
ranges from simple to complex. An example of a simple interceptor would be Loggi ngl nt er cept or , while a com-
plex exampleisEnti t ySynchroni zat i onl nt er cept or .

One of the main advantages of an interceptor pattern is flexibility in the arrangement of interceptors. Another ad-
vantage is the clear functional distinction between different interceptors. For example, logic for transaction and se-

JBoss Release 2 157

EJBs on JBoss

curity is cleanly separated between the TXI nt er cept or and Securi tyl nt er cept or respectively.

If any of the interceptors fail, the call is terminated at that point. This is a fail-quickly type of semantic. For ex-
ample, if a secured EJB is accessed without proper permissions, the call will fail asthe Securi tyl nt ercept or be-
fore any transactions are started or instances caches are updated.

4.3.2.3. org.jboss.ejb.InstancePool

An | nstancePool isused to manage the EJB instances that are not associated with any identity. The pools actually
manage subclasses of the org. j boss. ej b. Ent er pri seCont ext Objects that aggregate unassociated bean instances
and related data.

Example 4.6. The org.jboss.g/b.InstancePool interface

public interface |nstancePool
ext ends Cont ai ner Pl ugi n
{

/**

* Get an instance wi thout identity. Can be used
* by finders and create-nmethods, or statel ess beans

@eturn Context /w instance
@xception Renpt eException
/
public EnterpriseContext get() throws Exception;

* X X %

/** Return an anonynous instance after invocation.
*

* @aram ctx
*/
public void free(EnterpriseContext ctx);

/**
* Discard an anonynous instance after invocation.

* This is called if the instance should not be reused,
perhaps due to some exception being thrown fromit.

@ar am ct x
/
public void discard(EnterpriseContext ctx);

*
*
*
*

/**

* Return the size of the pool.

*

* @eturn the size of the pool.
*/
public int getCurrentSize();

/**

* Get the maxi num si ze of the pool.
*

* @eturn the size of the pool.
=
public int getMaxSi ze();

Depending on the configuration, a container may choose to have a certain size of the pool contain recycled in-
stances, or it may choose to instantiate and initialize an instance on demand.

JBoss Release 2 158

EJBs on JBoss

The pool isused by the | nst anceCache implementation to acquire free instances for activation, and it is used by in-
terceptors to acquire instances to be used for Home interface methods (create and finder calls).

4.3.2.4. org.jboss.ebj.InstanceCache

The container | nst anceCache implementation handles al EJB-instances that are in an active state, meaning bean
instances that have an identity attached to them. Only entity and stateful session beans are cached, as these are the
only bean types that have state between method invocations. The cache key of an entity bean is the bean primary
key. The cache key for a stateful session bean isthe session id.

Example 4.7. Theorg.jboss.gjb.I nstanceCache inter face

public interface InstanceCache
ext ends Cont ai ner Pl ugi n
{

*

/
Gets a bean instance fromthis cache given the identity.
This method may involve activation if the instance is not
in the cache.

I mpl enent ati on shoul d have (1) conplexity.

This method is never called for statel ess session beans.

@aramid the primary key of the bean

@eturn the EnterpriseContext related to the given id
@xception RenoteException in case of illegal calls
(concurrent / reentrant), NoSuchObject Exception if
the bean cannot be found.

@ee #rel ease

I R S S I I A

~

public EnterpriseContext get(Qbject id)
t hrows Renot eExcepti on, NoSuchOnhj ect Excepti on
/ *
Inserts an active bean instance after creation or activation
| npl erent ati on shoul d guarantee proper |ocking and O(1) conplexity.

@aramctx the EnterpriseContext to insert in the cache
@ee #renpve

/

public void insert(EnterpriseContext ctx);

L T

~
*

EE S T T

~

Rel eases the given bean instance fromthis cache.

This method may passivate the bean to get it out of the cache.
| npl ement ati on should return al nost i nmedi ately | eaving the
passivation to be executed by another thread.

@aram ctx the EnterpriseContext to rel ease
@Gee #get

public void rel ease(EnterpriseContext ctx);

*

/
Renoves a bean instance fromthis cache given the identity.
I mpl enent ati on shoul d have (1) conpl exity and guarant ee
proper | ocking.

@aramid the pimary key of the bean
@ee #insert

L I N G R

~

public void renmove(Cbject id);

JBoss Release 2 159

EJBs on JBoss

/**

* Checks whether an instance corresponding to a particul ar
* jdis active

* @aramid the pimary key of the bean

* @ee #insert

*/

public bool ean i sActive(Ooject id);

In addition to managing the list of active instances, the | nst anceCache is also responsible for activating and passiv-
ating instances. If an instance with a given identity is requested, and it is not currently active, the | nst anceCache
must use the I nst ancePool to acquire afree instance, followed by the persistence manager to activate the instance.
Similarly, if the | nst anceCache decides to passivate an active instance, it must call the persistence manager to pas-
sivate it and release the instance to the | nst ancePool .

4.3.2.5. org.jboss.ejb.EntityPersistenceManager

TheEnti t yPer si st enceManager isresponsible for the persistence of EntityBeans. This includes the following:

Creating an EJB instance in a storage

L oading the state of a given primary key into an EJB instance
Storing the state of a given EJB instance

Removing an EJB instance from storage

Activating the state of an EJB instance

Passivating the state of an EJB instance

Example 4.8. The org.jboss.g/b.EntityPersistenceM anager interface

public interface EntityPersistenceManager

{

extends Contai ner Pl ugin

/**

* Returns a new instance of the bean class or a subclass of the
* bean cl ass.

*

* @eturn the new instance

=

oj ect creat eBeand assl nstance() throws Exception;

/**

* This nethod is called whenever an entity is to be created. The

* persistence manager is responsible for calling the ejbCreate nethod
* on the instance and to handle the results properly wt the persistent
* store.

*

* @aram mthe create nethod in the home interface that was

* called

* (@aram args any create paraneters

* @araminstance the instance being used for this create call

*

~

voi d createEntity(Method m
bj ect[] args,
EntityEnterpri seContext instance)
throws Exception;

JBoss Release 2 160

EJBs on JBoss

/**

* This nethod is called whenever an entity is to be created. The

* persistence manager is responsible for calling the ejbPostCreate nethod
* on the instance and to handle the results properly wt the persistent
* store.

*

* @aram mthe create nmethod in the home interface that was

* called

* @aram args any create paraneters

* @araminstance the instance being used for this create call

*/

voi d post CreateEntity(Method m
bj ect[] args,
EntityEnterpri seContext instance)
throws Exception;

/**

* This nethod is called when single entities are to be found. The

* persistence manager nust find out whether the wanted instance is

* available in the persistence store, and if so it shall use the

* Cont ai nerl nvoker plugin to create an EJBObj ect to the instance, which
* is to be returned as result.

*

* @aram finderMethod the find method in the honme interface that was
* called

* @aram args any finder paraneters

* @araminstance the instance to use for the finder call

* @eturn an EJBObj ect representing the found entity

*/

oj ect findEntity(Method finderMethod,
bj ect[] args,
EntityEnterpri seContext instance)
throws Exception;

/**

* This nmethod is called when collections of entities are to be

* found. The persistence manager nust find out whether the wanted
* jnstances are available in the persistence store, and if so it
* shall use the Containerlnvoker plugin to create EJBObjects to

* the instances, which are to be returned as result.

*

* @aram finderMethod the find nethod in the hone interface that was
* called

* @aram args any finder paranmeters

* @araminstance the instance to use for the finder call

* @eturn an EJBOoj ect collection representing the found

* entities

*/

Col l ection findEntities(Method finder Met hod,
bj ect[] args,
EntityEnterpri seContext instance)
throws Exception;

*

This method is called when an entity shall be activated. The
persi stence manager nust call the ejbActivate nethod on the
i nst ance.

@aram i nstance the instance to use for the activation

@ hrows Renot eException thrown if sone system exception occurs

E A S T I

~

voi d activateEntity(EntityEnterpriseContext instance)
t hrows Renot eExcepti on;

/**

JBoss Release 2 161

EJBs on JBoss

This nmethod is called whenever an entity shall be |load fromthe
under | yi ng storage. The persistence manager nust |oad the state
fromthe underlying storage and then call ejbLoad on the

suppl i ed i nstance.

@aram i nstance the instance to synchronize

L S R T R R

@ hrows Renot eException thrown if some system exception occurs
/
voi d | oadEntity(EntityEnterpriseContext instance)
t hrows Renot eExcepti on;

*

This method is used to determine if an entity should be stored.

@aram i nstance the instance to check
@eturn true, if the entity has been nodified
@hrows Exception thrown if some system exception occurs

L S

~

bool ean i sModi fied(EntityEnterpriseContext instance) throws Exception;

*

/
This method is called whenever an entity shall be stored to the
underlyi ng storage. The persistence nanager nust call ejbStore
on the supplied instance and then store the state to the

under | yi ng storage.

@aram i nstance the instance to synchronize

@ hrows Renot eException thrown if sone system exception occurs

L S T R R

~

void storeEntity(EntityEnterpriseContext instance)
t hrows Renot eExcepti on;

/**
* This nmethod is called when an entity shall be passivate. The

* persistence manager must call the ejbPassivate nethod on the
i nst ance.

@aram i nstance the instance to passivate

@ hrows Renot eException thrown if some system exception occurs
/
voi d passivateEntity(EntityEnterpriseContext instance)
throws Renot eExcepti on;

*
*
*
*
*
*

*

This method is called when an entity shall be renoved fromthe
under | yi ng storage. The persistence manager nust call ejbRenpve
on the instance and then renpove its state fromthe underlying
st or age.

@aram i nstance the instance to renove

@ hrows Renot eException thrown if sone system exception occurs
@ hrows RenpveException thrown if the instance could not be renoved

L I S . R I I

-~

voi d renoveEntity(EntityEnterpriseContext instance)
t hr ows Renot eExcepti on, RenpbveExcepti on;

4.3.2.6. The org.jboss.ejb.EntityPersistenceStore interface

JBoss Release 2 162

EJBs on JBoss

As per the EJB 2.1 specification, JBoss supports two entity bean persistence semantics. container managed persist-
ence (CMP) and bean managed persistence (BMP). The CMP implementation uses an implementation of the
org. jboss. ejb. EntityPersistanceStore interface. By default this is the
org. j boss. ej b. pl ugi ns. cnp. j dbc. JDBCSt or eManager Which is the entry point for the CMP2 persistence engine.
TheEntityPersi stanceSt or e interface is shown below.

Example 4.9. The org.jboss.g/b.EntityPersistanceStore interface

public interface EntityPersistenceStore
ext ends Cont ai ner Pl ugi n
{

*

/
Returns a new i nstance of the bean class or a subclass of the
bean cl ass.

@eturn the new i nstance

@ hrows Exception

EE N T

~

Ohj ect creat eBeand assl nst ance()
t hrows Exception;

*

Initializes the instance context.

<p>This nethod is called before createEntity, and shoul d
reset the value of all cnpFields to O or null.

@ar am ct x

@ hr ows Renot eExcepti on

L I . T T R

~

void initEntity(EntityEnterpriseContext ctx);

*

/
This method is called whenever an entity is to be created. The
persi stence nanager is responsible for handling the results
properly wt the persistent store.

@aram mthe create nethod in the honme interface that was
cal l ed

@aram args any create paraneters

@ar am i nstance the instance being used for this create call
@eturn The primary key conputed by CVMP PMor null for BW

@ hrows Exception

L . R T I R I S N

-~

Cbj ect createEntity(Method m
oj ect[] args,
EntityEnt erpri seContext instance)
t hrows Excepti on;

*

This method is called when single entities are to be found. The
persi stence manager nust find out whether the wanted instance
is available in the persistence store, if so it returns the
primary key of the object.

@aram fi nderMethod the find method in the hone interface that was
cal | ed

@aram args any finder paraneters

@aram i nstance the instance to use for the finder call

EE I S R . S N

JBoss Release 2 163

EJBs on JBoss

* @eturn a primary key representing the found entity

*

* @hrows RenpteException thrown if some system exception occurs
* @hrows FinderException thrown if sone heuristic probl emoccurs
*

/
bj ect findEntity(Method finderMet hod,
oj ect[] args,
EntityEnterpri seContext instance)
t hrows Excepti on;

*

This method is called when collections of entities are to be
found. The persistence nmanager nust find out whether the wanted
i nstances are available in the persistence store, and if so it
must return a collection of primaryKeys.

@ar am fi nderMMethod the find method in the hone interface that was
cal | ed

@aram args any finder paraneters

@aram i nstance the instance to use for the finder call

@eturn an primary key collection representing the found

entities

@ hrows Renot eException thrown if sone system exception occurs
@ hrows Fi nder Exception thrown if some heuristic problemoccurs

L I I S I I I T T R

~

Col l ection findEntities(Method finder Met hod,
oj ect[] args,
EntityEnt erpri seContext instance)
t hrows Excepti on;

*

This method is called when an entity shall be activated.

<p>Wth the PersistenceManager factorization nost EJB

calls should not exists However this calls pernmits us to

i ntroduce optim zations in the persistence store. Particularly
the context has a "PersistenceContext" that a PersistenceStore
can use (JAWS does for smart updates) and this is as good a
cal I back as any other to set it up.

@aram i nstance the instance to use for the activation

L . R T I B I N

~

@ hrows Renot eException thrown if some system exception occurs

voi d activateEntity(EntityEnterpriseContext instance)
t hrows Renot eExcepti on;

*

This method is called whenever an entity shall be |oad fromthe
under |l yi ng storage. The persistence manager nust |oad the state
fromthe underlying storage and then call ejbLoad on the

suppl i ed i nstance.

@aram i nstance the instance to synchronize

@ hrows Renot eException thrown if some system exception occurs

L I S R I N N

-~

voi d | oadEntity(EntityEnterpriseContext instance)
t hrows Renpt eExcepti on;

*

This method is used to determine if an entity should be stored.

@aram i nstance the instance to check
@eturn true, if the entity has been nodified
@hrows Exception thrown if some system exception occurs

E I

JBoss Release 2 164

EJBs on JBoss

=
bool ean i sModi fi ed(EntityEnterpriseContext instance)
t hrows Excepti on;

*

This method is called whenever an entity shall be stored to the
under | yi ng storage. The persistence manager nust call ejbStore
on the supplied instance and then store the state to the

under | yi ng storage.

@aram i nstance the instance to synchronize

@ hrows Renot eException thrown if some system exception occurs

I B

~

voi d storeEntity(EntityEnterpriseContext instance)
t hrows Renot eExcepti on;

*

This method is called when an entity shall be passivate. The
persi stence manager nust call the ejbPassivate nethod on the
i nst ance.

<p>See the activate discussion for the reason for
exposi ng EJB cal l back * calls to the store.

@aram i nstance the instance to passivate

E S T S B

~

@ hrows Renot eException thrown if sone system exception occurs

voi d passivateEntity(EntityEnterpriseContext instance)
t hrows Renot eExcepti on;

*

This nmethod is called when an entity shall be renoved fromthe
under | yi ng storage. The persistence manager mnust call ej bRenove
on the instance and then renmbve its state fromthe underlying
st or age.

@aram i nstance the instance to renove

@ hrows Renot eException thrown if some system exception occurs
@ hrows RenoveException thrown if the instance could not be renoved

L R B R I

~

voi d renoveEntity(EntityEnterpriseContext instance)
t hrows Renot eExcepti on, RenpveExcepti on;

The default BMP implementation of the Enti tyPersi st enceManager interface is
org. j boss. ej b. pl ugi ns. BMPPer si st enceManager . The BMP persistence manager is fairly simple since all per-
sistence logic is in the entity bean itself. The only duty of the persistence manager is to perform container call-
backs.

4.3.2.7. org.jboss.ejb.StatefulSessionPersistenceManager

The st at ef ul Sessi onPer si st enceManager IS responsible for the persistence of stateful Sessi onBeans. This in-
cludes the following:

e Creating stateful sessionsin astorage
» Activating stateful sessions from a storage
e Passivating stateful sessionsto a storage

JBoss Release 2 165

EJBs on JBoss

* Removing stateful sessions from a storage

The st at ef ul Sessi onPer si st enceManager interface is shown below.

Example 4.10. The or g.jboss.gj b.Stateful SessionPer sistenceM anager interface

public interface Stateful Sessi onPersi stenceManager
ext ends Cont ai ner Pl ugi n

{
public void createSession(Method m Object[] args,
St at ef ul Sessi onEnt er pri seCont ext ctx)
t hrows Excepti on;
public void activat eSessi on(St at ef ul Sessi onEnt er pri seCont ext ctx)
t hrows Renot eExcepti on;
public voi d passivateSessi on(St at ef ul Sessi onEnt er pri seCont ext ctx)
t hrows Renot eExcepti on;
public void renpoveSessi on(St at ef ul Sessi onEnt er pri seCont ext ct x)
t hrows Renot eException, RenpveExcepti on;
public void renpovePassi vat ed(Qbj ect key);
}
The default implementation of the Statef ul Sessi onPer si st enceManager interface is

org.j boss. ej b. pl ugi ns. St at ef ul Sessi onFi | ePer si st enceManager. AS its name implies, stat ef ul Sessi on-
Fi | ePer si st enceManager Utilizes the file system to persist stateful session beans. More specifically, the persist-
ence manager serializes beansin aflat file whose name is composed of the bean name and session id with a.. ser
extension. The persistence manager restores a bean's state during activation and respectively stores its state during
passivation from the bean's . ser file.

4.4. Entity Bean Locking and Deadlock Detection

This section provides information on what entity bean locking is and how entity beans are accessed and locked
within JBoss. It also describes the problems you may encounter as you use entity beans within your system and
how to combat these issues. Deadlocking is formally defined and examined. And, finally, we walk you through
how to fine tune your system in terms of entity bean locking.

4.4.1. Why JBoss Needs Locking

Locking is about protecting the integrity of your data. Sometimes you need to be sure that only one user can update
critical data at one time. Sometimes, access to sensitive objects in your system need to be serialized so that datais
not corrupted by concurrent reads and writes. Databases traditionally provide this sort of functionality with transac-
tional scopes and table and row locking facilities.

Entity beans are a great way to provide an object-oriented interface to relational data. Beyond that, they can im-
prove performance by taking the load off of the database through caching and delaying updates until absolutely
needed so that the database efficiency can be maximized. But, with caching, data integrity is a problem, so some
form of application server level locking is needed for entity beans to provide the transaction isolation properties
that you are used to with traditional databases.

JBoss Release 2 166

EJBs on JBoss

4.4.2. Entity Bean Lifecycle

With the default configuration of JBoss there is only one active instance of a given entity bean in memory at one
time. This applies for every cache configuration and every type of comni t - opt i on. Thelifecycle for thisinstanceis
different for every commit-option though.

» For commit option A, thisinstance is cached and used between transactions.

» For commit option B, thisinstance is cached and used between transactions, but is marked as dirty at the end of
atransaction. This means that at the start of a new transaction ej bLoad must be called.

« For commit option C, this instance is marked as dirty, released from the cache, and marked for passivation at
the end of atransaction.

« For commit option D, a background refresh thread periodically calls ej bLoad on stale beans within the cache.
Otherwise, this option worksin the same way as A.

When a bean is marked for passivation, the bean is placed in a passivation queue. Each entity bean container has a
passivation thread that periodically passivates beans that have been placed in the passivation queue. A bean is
pulled out of the passivation queue and reused if the application requests access to a bean of the same primary key.

On an exception or transaction rollback, the entity bean instance is thrown out of cache entirely. It is not put into
the passivation queue and is not reused by an instance pool. Except for the passivation queue, there is no entity
bean instance pooling.

4.4.3. Default Locking Behavior

Entity bean locking is totally decoupled from the entity bean instance. The logic for locking is totally isolated and
managed in a separate lock object. Because there is only one allowed instance of a given entity bean active at one
time, JBoss employs two types of locks to ensure data integrity and to conform to the EJB spec.

e« Method Lock: The method lock ensures that only one thread of execution at a time can invoke on a given En-
tity Bean. Thisis required by the EJB spec.

e Transaction Lock: A transaction lock ensures that only one transaction at a time has access to a give Entity
Bean. This ensures the ACID properties of transactions at the application server level. Since, by default, there is
only one active instance of any given Entity Bean at one time, JBoss must protect this instance from dirty reads
and dirty writes. So, the default entity bean locking behavior will lock an entity bean within a transaction until
it completes. This means that if any method at all is invoked on an entity bean within a transaction, no other
transaction can have access to this bean until the holding transaction commits or is rolled back.

4.4.4. Pluggable Interceptors and Locking Policy

We saw that the basic entity bean lifecycle and behavior is defined by the container configuration defined in
st andar dj boss. xni descriptor. Let's [ook at the cont ai ner-i nt er cept or s definition for the Sandard CMP 2.x
EntityBean configuration.

<cont ai ner-i nt ercept or s>
<i nt er cept or>org. j boss. ej b. pl ugi ns. ProxyFact or yFi nder | nt er cept or </ i nt er cept or >

JBoss Release 2 167

EJBs on JBoss

<
<
<
<
<
<
<
<
<

nt er cept or >or g. j boss. ej b. pl ugi ns. Logl nt er cept or </ i nt er cept or >
nt er cept or >or g. j boss. ej b. pl ugi ns. Securitylnterceptor</interceptor>
nt er cept or >or g. j boss. ej b. pl ugi ns. TxI nt er cept or CMI</ i nt er cept or >
nt er cept or>org. j boss. ej b. pl ugi ns. Cal | Val i dati onl nt ercept or </ i nt er cept or >
nterceptor netricsEnabl ed="true">org.jboss.ejb.plugins. Metricslnterceptor</interceptor>
nt er cept or >org. j boss. ej b. pl ugi ns. Enti tyCreati onl nt er cept or</i nterceptor>
nt er cept or >or g. j boss. ej b. pl ugi ns. Enti t yLockl nt er cept or </ i nt er cept or >
nt er cept or >or g. j boss. ej b. pl ugi ns. Enti tyl nst ancel nt er cept or </ i nt er cept or >
nt er cept or >or g. j boss. ej b. pl ugi ns. Enti t yReent r ancel nt er cept or </ i nt er cept or >
<i nt ercept or>or g. j boss. resour ce. connecti onmanager . CachedConnect i onl nt er cept or </ i nt er cept or >
<i nterceptor>org.jboss. ejb.plugins. EntitySynchroni zati onl nterceptor</interceptor>
<i nterceptor>org.j boss. ej b. pl ugi ns. cnp. j dbc. JDBCRel ati onl nt er cept or </ i nt er cept or >
</ cont ai ner-i nterceptors>

The interceptors shown above define most of the behavior of the entity bean. Below is an explanation of the inter-
ceptorsthat are relevant to this section.

» EntityL ocklnterceptor: Thisinterceptor'sroleisto schedule any locks that must be acquired before the invoc-
ation is allowed to proceed. This interceptor is very lightweight and delegates all locking behavior to a plug-
gable locking policy.

e Entitylnstancel nterceptor: The job of this interceptor is to find the entity bean within the cache or create a
new one. Thisinterceptor also ensures that there is only one active instance of abean in memory at one time.

» EntitySynchronizationl nterceptor: The role of this interceptor is to synchronize the state of the cache with
the underlying storage. It does this with the ej bLoad and ej bSt or e semantics of the EJB specification. In the
presence of atransaction thisistriggered by transaction demarcation. It registers a callback with the underlying
transaction monitor through the JTA interfaces. If there is no transaction the policy isto store state upon return-
ing from invocation. The synchronization polices A, B and C of the specification are taken care of here as well
as the JBoss specific commit-option D.

4.45. Deadlock

Finding deadlock problems and resolving them is the topic of this section. We will describe what deadlocking
MBeans, how you can detect it within your application, and how you can resolve deadlocks. Deadlock can occur
when two or more threads have locks on shared resources. Figure 4.8 illustrates a simple deadlock scenario. Here,
Thread 1 hasthe lock for Bean A, and Thread 2 hasthe lock for Bean B. At alater time, Thread 1 tries to lock
Bean B and blocks because Thread 2 hasit. Likewise, as Thread 2 triesto lock A it also blocks because Thread 1
has the lock. At this point both threads are deadlocked waiting for access to the resource aready locked by the oth-
er thread.

JBoss Release 2 168

EJBs on JBoss

Thread 1 Thread 2

@--- ___, locks acquired
"1OT1®

Figure 4.8. Deadlock definition example

-
m

attempt to acaquire locks
results in deadlock

The default locking policy of JBossis to lock an Entity bean when an invocation occurs in the context of a transac-
tion until the transaction completes. Because of this, it is very easy to encounter deadlock if you have long running
transactions that access many entity beans, or if you are not careful about ordering the access to them. Various
techniques and advanced configurations can be used to avoid deadlocking problems. They are discussed later in
this section.

4.45.1. Deadlock Detection

Fortunately, JBoss is able to perform deadlock detection. JBoss holds a global internal graph of waiting transac-
tions and what transactions they are blocking on. Whenever a thread determines that it cannot acquire an entity
bean lock, it figures out what transaction currently holds the lock on the bean and add itself to the blocked transac-
tion graph. An example of what the graph may look likeis givenin Table 4.1.

Table4.1. An example blocked transaction table

Blocking TX Tx that holds needed lock
Tx1 T2
T3 Tx4
Tx4 Tx1

Before the thread actually blocks it tries to detect whether there is deadlock problem. It does this by traversing the
block transaction graph. As it traverses the graph, it keeps track of what transactions are blocked. If it sees a
blocked node more than once in the graph, then it knows there is deadlock and will throw an Appl i cat i onDead-
| ockExcept i on. Thisexception will cause a transaction rollback which will cause all locks that transaction holds to
be released.

4.4.5.2. Catching ApplicationDeadlockException

Since JBoss can detect application deadlock, you should write your application so that it can retry a transaction if
the invocation fails because of the Appl i cati onDeadl ockExcept i on. Unfortunately, this exception can be deeply

JBoss Release 2 169

EJBs on JBoss

embedded within a Renot eExcept i on, SO you have to search for it in your catch block. For example:

try {
1. ..

} catch (RenoteException ex) ({
Thr owabl e cause = nul | ;
Renot eExcepti on rex = ex;
while (rex.detail !'= null) {
cause = rex.detail;
i f (cause instanceof ApplicationDeadl ockException) {
/1 ... W have deadl ock, force a retry of the transaction.
br eak;

}

i f (cause instanceof RenoteException) {
rex = (RenoteException) cause;
}

4.4.5.3. Viewing Lock Information

TheEntityLockMni t or MBean service allows one to view basic locking statistics as well as printing out the state
of the transaction locking table. To enable this monitor uncomment its configuration in the conf/
j boss-service. xm :

<nbean code="org.jboss.nonitor.EntityLockMonitor"
nane="j boss. nmoni t or: name=Enti tyLockMoni tor"/>

TheEnti t yLockMoni t or has no configurable attributes. It does have the following read-only attributes:

 MedianWaitTime: The median value of all times threads had to wait to acquire alock.

« AverageContenders: The ratio of the total number of contentions to the sum of all threads that had to wait for
alock.

e TotalContentions. The total number of threads that had to wait to acquire the transaction lock. This happens
when athread attemptsto acquire alock that is associated with another transaction

« MaxContenders: The maximum number of threads that were waiting to acquire the transaction lock.

It also has the following operations:

« clearMonitor: This operation resets the lock monitor state by zeroing all counters.

* printLockMonitor: This operation prints out a table of all EJB locks that lists the ej bNane of the bean, the
total time spent waiting for the lock, the count of times the lock was waited on and the number of transactions
that timed out waiting for the lock.

4.4.6. Advanced Configurations and Optimizations

The default locking behavior of entity beans can cause deadlock. Since access to an entity bean locks the bean into
the transaction, this also can present a huge performance/throughput problem for your application. This section
walks through various techniques and configurations that you can use to optimize performance and reduce the pos-

JBoss Release 2 170

EJBs on JBoss

sibility of deadlock.

4.4.6.1. Short-lived Transactions

Make your transactions as short-lived and fine-grained as possible. The shorter the transaction you have, the less
likelihood you will have concurrent access collisions and your application throughput will go up.

4.4.6.2. Ordered Access

Ordering the access to your entity beans can help lessen the likelihood of deadlock. This means making sure that
the entity beans in your system are always accessed in the same exact order. In most cases, user applications are
just too complicated to use this approach and more advanced configurations are needed.

4.4.6.3. Read-Only Beans

Entity beans can be marked as read-only. When a bean is marked as read-only, it never takes part in a transaction.
This meansthat it is never transactionally locked. Using commit-option D with this option is sometimes very useful
when your read-only bean's data is sometimes updated by an external source.

To mark abean as read-only, use ther ead- onl y flag inthej boss. xn deployment descriptor.

Example 4.11. Marking an entity bean read-only using jboss.xml

<j boss>
<ent erpri se- beans>
<entity>
<ej b- name>MyEnt i t yBean</ ej b- name>
<j ndi - name>M/Ent i t yHomeRenot e</ j ndi - name>
<r ead-onl y>Tr ue</ r ead- onl y>
</entity>
</ enterprise-beans>
</ j boss>

4.4.6.4. Explicitly Defining Read-Only Methods

After reading and understanding the default locking behavior of entity beans, you're probably wondering, "Why
lock the bean if its not modifying the data?' JBoss allows you to define what methods on your entity bean are read
only so that it will not lock the bean within the transaction if only these types of methods are called. Y ou can define
these read only methods within aj boss. xnl deployment descriptor. Wildcards are allowed for method names. The
following is an example of declaring all getter methods and the anot her Readnl yMet hod as read-only.

Example 4.12. Defining entity bean methods asread only

<j boss>
<ent erpri se- beans>
<entity>
<ej b- name>next gen. Ent erpri seEnti ty</ ej b- name>
<j ndi - name>next gen. Ent er pri seEnti t y</j ndi - name>
<met hod- attri but es>
<met hod>

JBoss Release 2 171

EJBs on JBoss

<met hod- nane>get * </ net hod- name>
<r ead-onl y>true</read-onl y>

</ met hod>

<met hod>
<met hod- name>anot her ReadOnl yMet hod</ met hod- nanme>
<r ead- onl y>true</read- onl y>

</ met hod>

</ met hod-attri butes>
</entity>
</enterprise-beans>
</j boss>

4.4.6.5. Instance Per Transaction Policy

The Instance Per Transaction policy is an advanced configuration that can totally wipe away deadlock and through-
put problems caused by JBoss's default locking policy. The default Entity Bean locking policy isto only allow one
active instance of a bean. The Instance Per Transaction policy breaks this requirement by allocating a new instance
of a bean per transaction and dropping this instance at the end of the transaction. Because each transaction has its
own copy of the bean, thereis no need for transaction based locking.

This option does sound great but does have some drawbacks right now. First, the transactional isolation behavior of
this option is equivalent to READ_cowM TTED. This can create repeatable reads when they are not desired. In other
words, atransaction could have a copy of a stale bean. Second, this configuration option currently requires commit-
option B or C which can be a performance drain since an gjbL.oad must happen at the beginning of the transaction.
But, if your application currently requires commit-option B or C anyways, then thisis the way to go. The JBoss de-
velopers are currently exploring ways to allow commit-option A as well (which would allow the use of caching for
this option).

JBoss has container configurations named | nst ance Per Transaction CWMP 2.x EntityBean and | nstance Per
Transaction BMP EntityBean defined in the standardjboss.xml that implement this locking policy. To use this
configuration, you just have to reference the name of the container configuration to use with your bean in the
jboss.xml deployment descriptor as show below.

Example 4.13. An example of using the I nstance Per Transaction policy.

<j boss>
<ent erpri se- beans>
<entity>
<ej b- name>MyCMP2Bean</ ej b- nanme>
<j ndi - name>MyCVP2</ j ndi - nane>
<confi gurati on- nane>
I nstance Per Transaction CMP 2.x EntityBean
</ confi gurati on- nane>
</entity>
<entity>
<ej b- name>MyBMPBean</ ej b- name>
<j ndi - name>MyBMP</ j ndi - nane>
<confi gurati on- name>
I nstance Per Transaction BMP EntityBean
</ confi guration- name>
</entity>
</ enterprise-beans>
</j boss>

JBoss Release 2 172

EJBs on JBoss

4.4.7. Running Within a Cluster

Currently there is no distributed locking capability for entity beans within the cluster. This functionality has been
delegated to the database and must be supported by the application developer. For clustered entity beans, it is sug-
gested to use commit-option B or C in combination with a row locking mechanism. For CMP, there is a row-
locking configuration option. This option will use a SQL sel ect for update when the bean is loaded from the
database. With commit-option B or C, this implements a transactional lock that can be used across the cluster. For
BMP, you must explicitly implement the select for update invocation within the BMP's ej bLoad method.

4.4.8. Troubleshooting

This section will describe some common locking problems and their solution.

4.4.8.1. Locking Behavior Not Working

Many JBoss users observe that locking does not seem to be working and see concurrent access to their beans, and
thus dirty reads. Here are some common reasons for this:

¢ If you have custom cont ai ner - conf i gur at i ons, make sure you have updated these configurations.

« Make absolutely sure that you have implemented equal s and hashCode correctly from custom/complex primary
key classes.

« Make absolutely sure that your custom/complex primary key classes serialize correctly. One common mistake
is assuming that member variableinitializations will be executed when a primary key is unmarshalled.

4.4.8.2. lllegalStateException

An Illegal StateException with the message "removing bean lock and it has tx set!" usually means that you have not
implemented equal s and/or hashCode correctly for your custom/complex primary key class, or that your primary
key classis not implemented correctly for serialization.

4.4.8.3. Hangs and Transaction Timeouts

One long outstanding bug of JBoss is that on a transaction timeout, that transaction is only marked for a rollback
and not actually rolled back. This responsibility is delegated to the invocation thread. This can cause major prob-
lems if the invocation thread hangs indefinitely since things like entity bean locks will never be released. The solu-
tion to this problem is not agood one. You really just need to avoid doing stuff within a transaction that could hang
indefinitely. One common mistake is making connections across the internet or running a web-crawler within a
transaction.

4.5. EJB Timer Configuration

The J2EE timer service alows for any EJB object to register for atimer callback either at a designated time in the
future. Timer events can be used for auditing, reporting or other cleanup tasks that need to need to happen at some
given time in the future. Timer events are intended to be persistent and should be executed even in the event of a
server failure. Coding to EJB timersis a standard part of the J2EE specification, so we won't explore the program-

JBoss Release 2 173

EJBs on JBoss

ming model. We will, instead, look at the configuration of the timer service in JBoss so that you can understand
how to make timers work best in your environment

The EJB timer service is configure by several related MBeans in the ej b- depl oyer. xni file. The primary MBean
isthe EJBTi mer Servi ce MBean.

<nbean code="org.j boss. ej b.txti ner. EJBTi ner Servi cel mpl " name="j boss. ej b: servi ce=EJBTi ner Servi ce" >
<attribute name="RetryPolicy">jboss. ejb: servi ce=EJBTi mer Servi ce, retryPol i cy=fi xedDel ay</attri bute>
<attribute name="PersistencePolicy">jboss. ejb:servi ce=EIBTi mer Ser vi ce, per si st encePol i cy=dat abase</ at t
<attribute name="Ti nerl dGenerat or G assNane" >or g. j boss. ej b. t xti mer. Bi gl nt eger Ti ner | dGenerat or</attri bt
<attribute name="Ti nedObj ect | nvoker Cl assNanme" >org. j boss. ej b. t xti mer. Ti mnedCoj ect | nvoker | npl </ attri but e
</ mbean>

The EJBTi ner Ser vi ce has the following configurabl e attributes:

RetryPolicy: This is name of the MBean that implements the retry policy. The MBean must support the
org.jboss.ejb.txtimer.RetryPolicy interface. JBOSS provides one implementation, Fi xedDel ayRet r yPo-
I'i cy, which will be described later.

e PersistencePalicy: Thisisthe name of the MBean that implements the the persistence strategy for saving timer
events. The MBean must support the or g. j boss. ej b. t xt i mer . Per si st encePol i cy interface. JBoss provides
two implementations, NoopPersistencePolicy and DatabasePersistencePolicy, which will be described later.

e TimerldGenerator ClassName: Thisis the name of a class that provides the timer ID generator strategy. This
class must implement the org.jboss.ejb.txtinmer. TinerldGenerator interface. JBoss provides the
org.jboss. ej b. txtimer.Bi gl nt eger Ti mer | dGener at or implementation.

¢ TimedObjectlnvoker Classname: This is the name of a class that provides the timer method invocation
strategy. This class must implement the org.jboss. ej b. t xti mer. Ti medoj ect | nvoker interface. JBoss
providestheor g. j boss. ej b. t xti mer. Ti medj ect | nvoker I npl implementation.

Theretry policy MBean definition used is shown here:

<nbean code="org. | boss. ejb.txtiner.Fi xedDel ayRetryPol i cy"
nanme="j boss. ej b: servi ce=EJBTi mer Servi ce, retryPol i cy=fi xedDel ay" >
<attribute name="Del ay">100</attri bute>
</ mbean>

The retry policy takes one configuration value:

» Delay: Thisisthe delay (ms) before retrying afailed timer execution. The default delay is 100ms.

If EJB timers do not need to be persisted, the NoopPer si st ence policy can be used. This MBean is commented out
by default, but when enabled will ook like this:

<nbean code="org.jboss. ejb.txtinmer.NoopPersi stencePolicy"
nanme="j boss. ej b: servi ce=EJBTi mer Ser vi ce, per si st encePol i cy=noop"/ >

Most applications that use timers will want timers to be persisted. For that the Dat abasePer si t encePol i cy MBean
should be used.

<nbean code="org.jboss. ejb.txtinmer. Dat abasePersi stencePol i cy"

JBoss Release 2 174

EJBs on JBoss

nanme="j boss. ej b: servi ce=EJBTi nmer Ser vi ce, per si st encePol i cy=dat abase" >
<!-- DataSource JNDI nane -->
<depends optional -attribute-name="Dat aSour ce">j boss. j ca: servi ce=Dat aSour ceBi ndi ng, nane=Def aul t DS</ deg
<l-- The plugin that handl es database persistence -->
<attri bute name="Dat abasePer si st encePl ugi n">org. j boss. ej b. t xti mer. Gener al Pur poseDat abasePer si st encePl
</ mbean>

« DataSource: Thisisthe MBean for the DataSource that timer datawill be written to.

» DatabasePersistencePlugin: Thisisthe name of the class the implements the persistence strategy. This should
beorg.jboss. ej b. txti mer. Gener al Pur poseDat abasePer si st encePl ugi n.

JBoss Release 2 175

Messaging on JBoss

JMS Configuration and Architecture

The IMS API stands for Java Message Service Application Programming Interface, and it is used by applicationsto
send asynchronous business-quality messages to other applications. In the messaging world, messages are not sent
directly to other applications. Instead, messages are sent to destinations, known as queues or topics. Applications
sending messages do not need to worry if the receiving applications are up and running, and conversely, receiving
applications do not need to worry about the sending application's status. Both senders, and receivers only interact
with the destinations.

The IMS API is the standardized interface to a JIMS provider, sometimes called a Message Oriented Middleware
(MOM) system. JBoss comes with a JMS 1.1 compliant IMS provider called JBoss Messaging or JBossMQ. When
you use the IMS API with JBoss, you are using the JBoss Messaging engine transparently. JBoss Messaging fully
implements the IMS specification; therefore, the best JBoss Messaging user guide is the IMS specification. For
more information about the IMS API please visit the IMS Tutorial or IMS Downloads & Specifications.

This chapter focuses on the JBoss specific aspects of using JMS and message driven beans as well as the JBoss
Messaging configuration and MBeans.

5.1. IMS Examples

In this section we discuss the basics needed to use the JBoss IM S implementation. JM S leaves the details of access-
ing JM S connection factories and destinations as provider specific details. What you need to know to use the JBoss

Messaging layer is:

» The location of the queue and topic connect factories: In JBoss both connection factory implementations are
located under the INDI name Connect i onFact ory.

* How to lookup JMS destinations (queues and topics): Destinations are configured via MBeans as we will see
when we discuss the messaging MBeans. JBoss comes with a few gqueues and topics preconfigured. You can
find them under the j boss. ng. dest i nat i on domain in the IMX Console..

e Which JARS IMS requires: Theseinclude concurrent.jar,jbossng-client.jar,jboss-common-client.jar,
j boss-systemclient.jar,jnp-client.jar andl og4j.jar.

In the following sections we will look at examples of the various IMS messaging models and message driven
beans. The chapter example source is located under the src/ mai n/ or g/ j boss/ book/ j s directory of the book ex-
amples.

5.1.1. A Point-To-Point Example

JBoss Release 2 176

Messaging on JBoss

Let's start out with a point-to-point (P2P) example. In the P2P model, a sender delivers messages to a queue and a
single receiver pulls the message off of the queue. The receiver does not need to be listening to the queue at the
time the message is sent. Example 5.1 shows a complete P2P example that sends aj avax. j ms. Text Message to the
gueue queue/ t est Queue and asynchronously receives the message from the same queue.

Example5.1. A P2P JM Sclient example

package org.j boss. book. j ns. ex1;

i mport javax.jns. JMSExcepti on;

i mport javax.jns. Message;

i mport javax. | ns. Messageli stener;

i mport javax.j nms. Queue;

i mport javax. | ns. QueueConnecti on;

i mport javax. | nms. QueueConnecti onFactory;
i mport javax. | ns. QueueRecei ver;

i mport javax.j ms. QueueSender ;

i mport javax.j nms. QueueSessi on;

i mport javax.jms. Text Message;

i mport javax.nam ng. | nitial Context;

i mport javax. nam ng. Nam ngExcepti on;

i mport EDU. oswego. cs.dl . util.concurrent. Count Down;
i mport org.apache. | og4j. Logger;
i mport org.jboss.util.ChapterExRepository;

/**
* A conplete JM5 client exanple programthat sends a

* Text Message to a Queue and asynchronously receives the
message fromthe same Queue.

*
*
* @uthor Scott. Stark@ boss. org
* @ersion $Revision: 1.2 $
=
public class SendRecvd i ent
{

static Logger |og;

static Count Down done = new Count Down(1);

QueueConnecti on conn;
QueueSessi on sessi on;
Queue que;

public static class ExListener
i mpl enents Messageli st ener

{
public void onMessage(Message nsgQ)
{
done. rel ease();
Text Message tm = (Text Message) nsg;
try {
| og.info("onMessage, recv text=" + tmgetText());
} catch(Throwable t) {
t.printStackTrace();
}
}
}

public void setupPTP()
t hrons JMSExcepti on,
Nam ngExcepti on

Initial Context iniCtx = new Initial Context();

JBoss Release 2 177

Messaging on JBoss

oject tnmp = ini Ctx.lookup("ConnectionFactory");
QueueConnecti onFactory gqcf = (QueueConnectionFactory) tnp;
conn = qcf.creat eQueueConnection();
que = (Queue) ini Cx.lookup("queue/testQeue");
session = conn. creat eQueueSessi on(fal se,
QueueSessi on. AUTO_ACKNOWLEDGE) ;
conn.start();

public void sendRecvAsync(String text)
t hrows JVMSExcepti on,
Nam ngExcepti on

| 0og.info("Begin sendRecvAsync");
/1 Setup the PTP connection, session
set upPTP() ;

/1 Set the async |istener
QueueRecei ver recv = session. creat eRecei ver(que);
recv. set Messageli st ener (new ExLi stener());

/'l Send a text msg

QueueSender send = session. creat eSender (que);

Text Message tm = sessi on. cr eat eText Message(text);
send. send(tm;

| og.info("sendRecvAsync, sent text=" + tmgetText());
send. cl ose();

| 0og.info("End sendRecvAsync");

public void stop()
t hrows JMSException

{
conn. stop();
sessi on. cl ose();
conn. cl ose();

}

public static void main(String args[])
throws Exception

{
Chapt er ExReposi tory.init(SendRecvd i ent.cl ass);
| og = Logger. get Logger (" SendRecvCient");
| og.info("Begin SendRecvClient, now=" + SystemcurrentTimeMIlis());
SendRecvd ient client = new SendRecvd i ent();
client.sendRecvAsync("A text nsg");
client.done.acquire();
client.stop();
| og.info("End SendRecvdient");
System exit(0);

}

The client may be run using the following command line:

[exanpl es] $ ant - Dchap=j ns - Dex=1p2p run-exanpl e

run- exanpl elp2p:
[java] [INFQ SendRecvd ient] Begin SendRecvd ient, now=1102808673386
[java] [INFO SendRecvCient] Begin sendRecvAsync
[java] [INFO, SendRecvC i ent] onMessage, recv text=A text nsg
[java] [INFO SendRecvC ient] sendRecvAsync, sent text=A text nsg
[java] [INFO, SendRecvd i ent] End sendRecvAsync

JBoss Release 2 178

Messaging on JBoss

[java] [INFO, SendRecvC ient] End SendRecvd i ent

5.1.2. A Pub-Sub Example

The IMS publish/subscribe (Pub-Sub) message model is a one-to-many model. A publisher sends a message to a
topic and al active subscribers of the topic receive the message. Subscribers that are not actively listening to the
topic will miss the published message. shows a complete IMS client that sends aj avax. j ms. Text Message 10 atop-
ic and asynchronously receives the message from the same topic.

Example5.2. A Pub-Sub JM S client example

package org.j boss. book. j nms. ex1;

i mport javax.jns. JMSExcepti on;

i mport javax.j ms. Message;

i mport javax.j ns. Messageli st ener;

i mport javax.j ns. Topic;

i mport javax. | ns. Topi cConnecti on;

i mport javax.j nms. Topi cConnecti onFactory;
i mport javax.jns. Topi cPubli sher;

i mport javax.j nms. Topi cSubscri ber;

i mport javax. | ns. Topi cSessi on;

i mport javax.j ms. Text Message;

i mport javax.nam ng.lnitial Context;

i mport javax. nam ng. Nam ngExcepti on;

i mport EDU. oswego. cs.dl . util.concurrent. Count Down;

*

/
A conpl ete JMS client exanple programthat sends a Text Message to
a Topic and asynchronously receives the nessage fromthe sane
Topi c.

@ut hor Scott. Stark@ boss. org
@ersion $Revision: 1.2 $

L A T T

~

public class Topi cSendRecvd i ent

static Count Down done = new Count Down(1);
Topi cConnecti on conn nul | ;

Topi cSessi on sessi on nul | ;

Topic topic = null;

public static class ExListener inplements Messageli st ener

{
public void onMessage(Message nsgQ)
{
done. rel ease();
Text Message tm = (Text Message) nsg;
try {
System out . println("onMessage, recv text=" + tmgetText());
} catch(Throwable t) {
t.printStackTrace();
}
}
}

public void setupPubSub()
t hrows JVMSExcepti on, Nam ngException

JBoss Release 2 179

Messaging on JBoss

Initial Context iniCtx = new Initial Context();
oject tnmp = ini Ctx.lookup("ConnectionFactory");
Topi cConnecti onFactory tcf = (Topi cConnecti onFactory) tnp;
conn = tcf.createTopi cConnection();
topic = (Topic) iniCtx.|lookup("topic/testTopic");
session = conn. creat eTopi cSessi on(fal se,
Topi cSessi on. AUTO_ACKNOWNLEDCE) ;
conn.start();

public void sendRecvAsync(String text)
throws JMSExcepti on, Nam ngException

System out . println("Begi n sendRecvAsync");
/] Setup the PubSub connection, session
set upPubSub();

/1 Set the async |istener

Topi cSubscri ber recv = session. createSubscri ber (topic);

recv. set Messageli st ener (new ExLi stener());

/'l Send a text msg

Topi cPubl i sher send = sessi on. creat ePubl i sher(topic);

Text Message tm = sessi on. cr eat eText Message(text);

send. publish(tm;

System out . printl n("sendRecvAsync, sent text=" + tmgetText());
send. cl ose();

System out . println("End sendRecvAsync");

public void stop() throws JMSException

conn. stop();
session. cl ose();
conn. cl ose();

public static void nain(String args[]) throws Exception

System out. println("Begin Topi cSendRecvd i ent, now=" +
SystemcurrentTimeM I 1is());

Topi cSendRecvd i ent client = new Topi cSendRecvd ient();

client.sendRecvAsync("A text nsg, now="+SystemcurrentTimeMIlis());

client.done.acquire();

client.stop();

System out. println("End Topi cSendRecvd ient");

System exit(0);

The client may be run using the following command line:

[exanpl es]$ ant -Dchap=j ns - Dex=1ps run-exanpl e

run- exanpl elps:
[java] Begi n Topi cSendRecvd i ent, now=1102809427043
[java] Begi n sendRecvAsync
[java] onMessage, recv text=A text nmsg, now=1102809427071
[java] sendRecvAsync, sent text=A text nmsg, now=1102809427071
[java] End sendRecvAsync
[java]l End Topi cSendRecvd i ent

JBoss Release 2 180

Messaging on JBoss

Now let's break the publisher and subscribers into separate programs to demonstrate that subscribers only receive
messages while they are listening to atopic. Example 5.3 shows a variation of the previous pub-sub client that only
publishes messages to thet opi c/ t est Topi ¢ topic. The subscriber only client is shown in Example 5.3.

Example 5.3. A IM S publisher client

package org.]j boss. book. j nms. ex1;

i mport javax.j nms. JMSExcepti on;

i mport javax. | ns. Message;

i mport javax.j ms. Messageli st ener;

i mport javax.j ns. Topic;

i mport javax.j ms. Topi cConnecti on;

i mport javax. | ns. Topi cConnecti onFactory;
i mport javax.j ms. Topi cPubli sher;

i mport javax.jns. TopicSlistubscriber;
i mport javax.j ms. Topi cSessi on;

i mport javax.j nms. Text Message;

i mport javax.nam ng.Initial Context;

i mport javax. nam ng. Nam ngExcepti on;

/**
* A JMS client exanmple programthat sends a Text Message to a Topic
*
* @uthor Scott.Stark@boss. org
* @ersion $Revision: 1.2 $

“f
public class Topi cSendd i ent
{
Topi cConnection conn = null;
Topi cSessi on session = nul | ;

Topic topic = null;

public void setupPubSub()
t hrows JMBSException, Nam ngException
{

Initial Context iniCtx = new Initial Context();
Cbject tnp = iniCx.|lookup("ConnectionFactory");
Topi cConnecti onFactory tcf = (Topi cConnecti onFactory) tnp;
conn = tcf.createTopi cConnection();
topic = (Topic) iniCtx.lookup("topic/testTopic");
sessi on = conn. creat eTopi cSessi on(fal se,
Topi cSessi on. AUTO_ACKNOWNLEDGE) ;
conn.start();

public void sendAsync(String text)
throws JMSException, Nam ngException

{
System out . println("Begi n sendAsync");
/1 Setup the pub/sub connection, session
set upPubSub();
/1 Send a text nsg
Topi cPubl i sher send = sessi on. creat ePubl i sher(topic);
Text Message tm = sessi on. cr eat eText Message(text);
send. publish(tm;
System out . println("sendAsync, sent text=" + tmgetText());
send. cl ose();
System out . println("End sendAsync");
}

public void stop()
t hrows JMSException

JBoss Release 2 181

Messaging on JBoss

{
conn. stop();
sessi on. cl ose();
conn. cl ose();

}

public static void nain(String args[])
throws Exception
{

System out . println("Begin Topi cSendClient, now=" +
SystemcurrentTineM I lis());
Topi cSendCl i ent client = new Topi cSendd ient();
client.sendAsync("A text nmsg, now="+SystemcurrentTimeMIlis());
client.stop();
System out. println("End Topi cSendd ient");
System exit(0);

Example5.4. A IMS subscriber client

package org.j boss. book. j ns. ex1;

i mport javax.j ns. JMSExcepti on;

i mport javax.jns. Message;

i mport javax.j nms. Messageli st ener;

i nport javax.jns. Topi c;

i mport javax.j nms. Topi cConnecti on;

i mport javax.j ns. Topi cConnecti onFactory;
i mport javax.j nms. Topi cPubli sher;

i mport javax. | ns. Topi cSubscri ber;

i mport javax.j nms. Topi cSessi on;

i mport javax.j nms. Text Message;

i mport javax.nam ng. I nitial Context;

i mport javax.nam ng. Nam ngExcepti on;

/**

* A JMS client exanple programthat synchronously receives a nessage a Topic
*

* @ut hor Scott.Stark@ boss. org

* @ersion $Revision: 1.2 $

=
public class Topi cRecvC i ent
{
Topi cConnection conn = null;
Topi cSessi on session = null;

Topic topic = null;

public void setupPubSub()
throws JMSException, Nam ngException
{

Initial Context iniCtx = new Initial Context();
Cbject tnp = iniCx.lookup("ConnectionFactory");
Topi cConnecti onFactory tcf = (Topi cConnecti onFactory) tnp;
conn = tcf.createTopi cConnection();
topic = (Topic) ini Ctx.lookup("topic/testTopic");
sessi on = conn. creat eTopi cSessi on(fal se,
Topi cSessi on. AUTO_ACKNOWLEDGE) ;
conn.start();

JBoss Release 2 182

Messaging on JBoss

public void recvSync()
t hrows JVMSExcepti on, Nam ngException
{

System out. println("Begin recvSync");
/1 Setup the pub/sub connection, session
set upPubSub();

/1 Wait upto 5 seconds for the nessage

Topi cSubscri ber recv = session. createSubscri ber (topic);

Message nmsg = recv. recei ve(5000);
if (msg == null) {

Systemout. println("Tinmed out waiting for nmsg");

} else {

}

System out. println("Topi cSubscri ber.recv, nsgt="+nmsqg);

public void stop()
throws JMSException

{
conn. stop();
session. cl ose();
conn. cl ose();

}

public static void nain(String args[])
throws Exception

{

System out . println("Begin Topi cRecvCient, now="
SystemcurrentTimeM I lis());

Topi cRecvCient client = new Topi cRecvdient();
client.recvSync();
client.stop();
System out . println("End Topi cRecvC ient");
System exit (0);

}

Run the Topi cSendd i ent followed by the Topi cRecvd i ent asfollows:

[exanpl es]$ ant -Dchap=j nms - Dex=1ps2 run-exanpl e

run- exanpl elps2:
[java] Begin Topi cSendd ient, now=1102810007899
[java] Begin sendAsync

[java] sendAsync, sent text=A text nmsg, now=1102810007909

[java] End sendAsync

[java] End Topi cSendd i ent

[java] Begin Topi cRecvdient, now=1102810011524
[java] Begin recvSync

[java] Tinmed out waiting for mnsg

[java] End Topi cRecvd i ent

The output shows that the topic subscriber client (Topi cRecvd i ent) fails to receive the message sent by the pub-

lisher due to atimeout.

5.1.3. A Pub-Sub With Durable Topic Example

JMS supports a messaging model that is a cross between the P2P and pub-sub models. When a pub-sub client

JBoss Release 2

183

Messaging on JBoss

wants to receive all messages posted to the topic it subscribes to even when it is not actively listening to the topic,
the client may achieve this behavior using a durable topic. Let's look at a variation of the preceding subscriber cli-
ent that uses a durable topic to ensure that it receives al messages, include those published when the client is not
listening to the topic. Example 5.5 shows the durable topic client with the key differences between the Example 5.4
client highlighted in bold.

Example 5.5. A durable topic JIM Sclient example

package org.j boss. book. j ns. ex1;

i mport javax
i mport javax
i mport j avax
i mport javax
i mport j avax
i mport javax
i mport javax
i mport javax
i mport javax
i mport javax
i mport javax
i mport javax

/**

. j ms. JMSExcept i on;
. j ms. Message;
.j ms. Messageli st ener;

. j ms. Topi
. j ms. Topi
. j ms. Topi
. j ms. Topi
. j ms. Topi
. j ms. Topi

C;
cConnecti on;

cConnecti onFact ory;

cPubl i sher;
cSubscri ber;
cSessi on;

. j ms. Text Message;

. nham ng. I ni tial Cont ext;

. ham ng. Nam ngExcepti on;

* A JMS client exanple programthat synchronously receives a nessage a Topic

*

* @uthor Scott.Stark@ boss. org

* @ersion $Revision: 1.2 $

*/

public class Durabl eTopi cRecvd i ent

{

Topi cConnecti on conn
Topi cSessi on sessi on

Topic to

pic = nul

nul | ;
nul | ;

public void setupPubSub()

t hrows JMSExcepti on,

{

I nitial Cont ext

Nami ngExcepti on

iniCtx = new Initial Context();

bject tnp = ini Cx.|lookup("ConnectionFactory");

Topi cConnecti onFactory tcf

conn
t opi

= (Topi cConnecti onFactory) tnp;

= tcf.createTopi cConnection("john",
c) iniCtx.lookup("topic/testTopic");

c = (Topi

sessi on = conn. creat eTopi cSessi on(fal se,
Topi cSessi on. AUTO_ACKNOWLEDGE) ;

conn.start();

public void recvSync()

t hrows JVMSExcepti on,

Nanmi ngExcepti on

System out . println("Begin recvSync");

/1 Setup the pub/sub connection, session
set upPubSub();
/1 Wait upto 5 seconds for the nessage

Topi cSubscri ber recv = session. creat ebDurabl eSubscri ber (topi c,

Message nsg = recv. recei ve(5000);
nmsg == null) {
Systemout.println("Timed out waiting for nsg");

if(

} el

se {

"needl e");

"j ms- ex1dt ps");

JBoss Release 2

184

Messaging on JBoss

System out . printl n("Durabl eTopi cRecvC i ent.recv, nsgt=" + nsQg);

}

public void stop()
t hrows JMSExcepti on

{
conn. stop();
session. cl ose();
conn. cl ose();

}

public static void main(String args[])
throws Exception

{
System out. println("Begi n Durabl eTopi cRecvd i ent, now=" +
SystemcurrentTineM I 1is());
Dur abl eTopi cRecvC i ent client = new Durabl eTopi cRecvC ient();
client.recvSync();
client.stop();
System out . println("End Durabl eTopi cRecvdient");
System exit (0);
}

Now run the previous topic publisher with the durable topic subscriber as follows:

[exanpl es]$ ant -Dchap=j ns - Dex=1psdt run-exanple

run- exanpl elpsdt:
[java] Begi n Durabl eTopi cSet up
[java] End Dur abl eTopi cSet up
[java] Begin Topi cSendd ient, now=1102899834273
[java] Begin sendAsync
[java] sendAsync, sent text=A text nmsg, now=1102899834345
[java] End sendAsync
[java] End Topi cSendd i ent
[java] Begi n Durabl eTopi cRecvC i ent, now=1102899840043
[java] Begin recvSync
[java] Durabl eTopi cRecvCient.recv, mnmsgt=SpyText Message {
[java] Header {

[java] jmsDestination : TOPIC. testTopic.Durabl eSubscription|
client| d=Durabl eSubscri ber Exanpl e name=j ns- ex1dt ps sel ect or=nul |]

[javal jmsDel i veryMode : 2

[java] j msExpiration 0

[java] jmsPriority 4

[javal j msMessagel D : 1D 3-11028998375501

[java] j meTi meSt anp ;1102899837550

[java] jmsCorrel ationl D: null

[java] j msRepl yTo : null

[java] j msType : null

[java] jmsRedel ivered : fal se

[java] j msProperties A}

[java] j msPropReadWite: false

[java] msgReadOnl y : true

[java] producerCientld: ID:3

[java] }

[java] Body {

[java] t ext :A text msg, now=1102899834345

[java] }

[java]

[java] End Durabl eTopi cRecvd i ent

JBoss Release 2 185

Messaging on JBoss

Items of note for the durable topic example include:

e The Topi cConnect i onFact ory creation in the durable topic client used a username and password, and the Top-
i cSubscri ber creation was done using the cr eat eDur abl eSubscri ber (Topi ¢, String) method. Thisisare
quirement of durable topic subscribers. The messaging server needs to know what client is requesting the dur-
able topic and what the name of the durable topic subscription is. We will discuss the details of durable topic
setup in the configuration section.

e Anorg.|boss. book. j ms. Dur abl eTopi cSet up client was run prior to the Topi cSendd i ent . The reason for this
is a durable topic subscriber must have registered a subscription at some point in the past in order for the mes-
saging server to save messages. JBoss supports dynamic durable topic subscribers and the Dur abl eTopi cSet up
client simply creates a durable subscription receiver and the exits. This leaves an active durable topic subscriber
on thet opi ¢/ t est Topi ¢ and the messaging server knows that any messages posted to this topic must be saved
for latter delivery.

e The Topi cSendd i ent does not change for the durable topic. The notion of a durable topic is a subscriber only
notion.

e The Dur abl eTopi cRecvd i ent Sees the message published to the t opi ¢/ t est Topi ¢ even though it was not
listening to the topic at the time the message was published.

5.1.4. A Point-To-Point With MDB Example

Example 5.6 shows an message driven bean (MDB) that transforms the Text Messages it receives and sends the
transformed messages to the queue found in the incoming message JMsRepl yTo header.

Example 5.6. A TextM essage processing MDB

package org.]j boss. book. j ns. ex2;

i mport javax.ejb. MessageDri venBean;

i mport javax.ejb. MessageDri venCont ext ;
i mport javax.ejb. EJBExcepti on;

i mport javax.jns. JMSExcepti on;

i mport javax.jns. Message;

i mport javax.j nms. Messageli st ener;

i mport javax.jnms. Queue;

i mport javax.j nms. QueueConnecti on;

i mport javax.j nms. QueueConnecti onFactory;
i mport javax.j nms. QueueSender;

i nport javax.jns. QueueSessi on;

i mport javax.j nms. Text Message;

i mport javax. nami ng.lnitial Context;

i mport j avax. nam ng. Nam ngExcepti on;

*

/
An MDB that transfornms the Text Messages it receives and send the
transforned messages to the Queue found in the incom ng nessage
JMBRepl yTo header .

@ut hor Scott. Stark@ boss. org
@ersion $Revision: 1.2 $

L T T

~

public class Text VDB

JBoss Release 2 186

Messaging on JBoss

i mpl enents MessageDri venBean, Messageli stener
private MessageDrivenContext ctx = null;
private QueueConnection conn;

private QueueSessi on session;

public Text MDB()

{
System out. println("Text MDB. ctor, this="+hashCode());
}
public void set MessageDri venCont ext (MessageDri venCont ext ctx)
{
this.ctx = ctx;
System out . printl n(" Text MDB. set MessageDri venCont ext, this=" +
hashCode());
}
public void ejbCreate()
{
System out . println("Text MDB. ej bCreate, this="+hashCode());
try {
set upPTP() ;
} catch (Exception e) {
t hrow new EJBException("Failed to init Text NDB", e);
}
}
public void ej bRenmove()
{
System out . printl n(" Text VDB. ej bRenmove, this="+hashCode());
ctx = null;
try {
if (session !=null) {
session. cl ose();
}
if (conn !'=null) {
conn. cl ose();
}
} catch(JMSException e) {
e.printStackTrace();
}
}
public void onMessage(Message nsgQ)
{
System out . printl n(" Text MDB. onMessage, thi s="+hashCode());
try {
Text Message tm = (Text Message) nsg;
String text = tmgetText() + "processed by: "+hashCode();
Queue dest = (Queue) nsg. get IMSRepl yTo();
sendRepl y(text, dest);
} catch(Throwable t) {
t.printStackTrace();
}
}

private void setupPTP()
t hrows JMBSException, Nam ngException
{

Initial Context iniCtx = new Initial Context();
Cbject tnp = iniCx.|ookup("java: conp/ env/jns/ QCF");
QueueConnecti onFactory qcf = (QueueConnecti onFactory) tnp;
conn = qcf. createQueueConnection();
session = conn. creat eQueueSessi on(fal se,
QueueSessi on. AUTO_ACKNOWLEDGE) ;

JBoss Release 2 187

Messaging on JBoss

conn.start();

}

private void sendReply(String text, Queue dest)
t hrows JMSException

{

System out. printl n(" Text MDB. sendReply, this=" +
hashCode() + ", dest="+dest);

QueueSender sender = session. creat eSender (dest);
Text Message tm = sessi on. creat eText Message(text);
sender. send(tm
sender . cl ose();

}

The MDB ej b-j ar.xm andj boss. xm deployment descriptors are shown in Example 5.7 and Example 5.8.

Example5.7. The MDB g b-jar.xml descriptor

<?xm version="1.0"?>
<I DOCTYPE ej b-jar PUBLIC
"-//Sun M crosystens, Inc.//DTD Enterpri se JavaBeans 2.0//EN'
"http://java.sun.com dtd/ejb-jar_2_0.dtd">
<ej b-jar>
<enterpri se- beans>
<nessage-dri ven>
<ej b- name>Text MDB</ ej b- name>
<ej b-cl ass>org. j boss. book. j ns. ex2. Text MDB</ ej b- cl ass>
<transacti on-type>Cont ai ner </ transacti on-type>
<acknow edge- nbde>AUTO_ACKNOW.EDGE</ acknow edge- node>
<message- dri ven-desti nati on>
<destination-type>j avax.j ms. Queue</ desti nati on-type>
</ message-dri ven-desti nati on>
<res-ref-nanme>j ns/ QCF</res-r ef - nane>
<resource-ref>
<res-type>j avax. j ms. QueueConnecti onFact ory</res-type>
<r es- aut h>Cont ai ner </ r es- aut h>
</resource-ref>
</ message-dri ven>
</enterprise-beans>
</ejb-jar>

Example 5.8. The MDB jboss.xml descriptor

<?xm version="1.0"?>
<j boss>
<ent erpri se- beans>
<nessage-dri ven>
<ej b- nanme>Text MDB</ ej b- nane>
<desti nati on-j ndi - name>queue/ B</ dest i nat i on-j ndi - name>
<resource-ref>
<res-ref-nanme>j ns/ QCF</res-r ef - nane>
<j ndi - name>Connect i onFact or y</j ndi - name>
</resource-ref>
</ message-driven>
</enterprise-beans>
</j boss>

JBoss Release 2 188

Messaging on JBoss

Example 5.9 shows a variation of the P2P client that sends several messages to the queue/ B destination and asyn-
chronously receives the messages as modified by Text MDB from queue A.

Example 5.9. A IM Sclient that interactswith the TextM DB

package org.j boss. book. j ns. ex2;

i mport javax.jns. JMSExcepti on;

i mport javax.jns. Message;

i mport javax.j nms. Messageli st ener;

i mport javax.j ms. Queue;

i mport javax.j nms. QueueConnecti on;

i mport javax.j ms. QueueConnecti onFactory;
i mport javax.j nms. QueueRecei ver;

i mport javax.j ms. QueueSender;

i mport javax.j ns. QueueSessi on;

i mport javax.jms. Text Message,;

i mport javax.nam ng. | nitial Context;

i nport javax.nam ng. Nam ngExcepti on;

i mport EDU. oswego. cs.dl . util.concurrent. Count Down;

*

-~

EE N S

~

A conplete JMS client exanple programthat sends N Text Messages to
a Queue B and asynchronously receives the nessages as nodified by
Text MDB from Queue A

@ut hor Scott. Stark@ boss. org
@ersion $Revision: 1.2 $

public class SendRecvd i ent
{
static final int N = 10;
static Count Down done = new Count Down(N);

QueueConnecti on conn;
QueueSessi on sessi on;
Queue queA;
Queue queB;

public static class ExLi stener
i mpl enents Messageli st ener

{
public void onMessage(Message mnsgQ)
{
done. rel ease();
Text Message tm = (Text Message) nsg;
try {
System out . println("onMessage, recv text="+tm getText());
} catch(Throwable t) {
t.printStackTrace();
}
}
}

public void setupPTP()
t hrows JVMSExcepti on, Nam ngException
{

Initial Context iniCtx = new Initial Context();

oject tnmp = ini Ctx.lookup("ConnectionFactory");
QueueConnectionFactory gqcf = (QueueConnectionFactory) tnp;
conn = qcf.creat eQueueConnection();

queA = (Queue) ini &x.|ookup("queue/A");

JBoss Release 2 189

Messaging on JBoss

queB = (Queue) ini Ctx. | ookup("queue/B");
sessi on = conn. cr eat eQueueSessi on(fal se,

QueueSessi on. AUTO_ACKNOW_EDGE) ;
conn.start();

public void sendRecvAsync(String textBase)
throws JMSExcepti on, Nam ngException, |nterruptedException

System out . println("Begi n sendRecvAsync");

/1l Setup the PTP connection, session
set upPTP() ;

/1 Set the async l|istener for queA
QueueRecei ver recv = session. createRecei ver (queA);
recv. set Messageli st ener (new ExLi stener());

/1 Send a few text nsgs to queB
QueueSender send = session. creat eSender (queB);

for(int m=0; m< 10; m ++) {
Text Message tm = sessi on. creat eText Message(t ext Base+"#" +n) ;
t m set IMSRepl yTo(queA) ;
send. send(tm;
System out. println("sendRecvAsync, sent text=" + tmgetText());

}
System out . println("End sendRecvAsync");

public void stop()
t hrows JMSException

{
conn. stop();
sessi on. cl ose();
conn. cl ose();

}

public static void main(String args[])
throws Exception

System out . println("Begin SendRecvd i ent, now=" +
SystemcurrentTimeM I 1is());

SendRecvd ient client = new SendRecvd i ent();

client.sendRecvAsync("A text nsg");

client.done.acquire();

client.stop();

System exit (0);

Systemout. println("End SendRecvC ient");

Run the client as follows:

[exanpl es] $ ant -Dchap=jnms -Dex=2 run-exanpl e
run- exanpl e2:

[java] Begin SendRecvdient, now=1102900541558
[java] Begi n sendRecvAsync

[java] sendRecvAsync, sent text=A text msg#0
[java] sendRecvAsync, sent text=A text nsg#l
[java] sendRecvAsync, sent text=A text nmsg#2

JBoss Release 2 190

Messaging on JBoss

sendRecvAsync,
sendRecvAsync,
sendRecvAsync,
sendRecvAsync,
sendRecvAsync,
sendRecvAsync,
sendRecvAsync,

sent
sent
sent
sent
sent
sent
sent

End sendRecvAsync

onMessage,
onMessage,
onMessage,
onMessage,
onMessage,
onMessage,
onMessage,
onMessage,
onMessage,
onMessage,

recv
recv
recv
recv
recv
recv
recv
recv
recv
recv

text =A text nsg#0processed bhy:
text =A text mnsg#5processed by:
text =A text nsg#9processed by:
text =A text msg#3processed by:
text =A text nsg#4processed by:
text =A text msg#2processed by:
text =A text nsg#7processed by:
text =A text msg#lprocessed by:
text =A text nsg#8processed by:
text =A text msg#6processed by:

text=
text=
text=
text=
text=
text=
text=

A text nsg#3
A text nsg#4
A text nmsg#5
A text nsg#6
A text nmsg#7
A text nsg#8
A text nsg#9

The corresponding JBoss server console output is:

19: 15: 40, 232
19: 15: 41, 498

jme-ex2.ja
19: 15: 45, 606
19: 15: 45, 620
19: 15: 45, 627
19: 15: 45, 638
19: 15: 45, 640
19: 15: 45, 640
19: 15: 45, 649
19: 15: 45, 658
19: 15: 45, 661
19: 15: 45, 742
19: 15: 45, 744
19: 15: 45, 744
19: 15: 45, 763
19: 15: 45, 764
19: 15: 45, 764
19: 15: 45, 777
19: 15: 45, 779
19: 15: 45, 779
19: 15: 45, 792
19: 15: 45, 798
19: 15: 45, 799
19: 15: 45, 815
19: 15: 45, 816
19: 15: 45, 817
19: 15: 45, 829
19: 15: 45, 831
19: 15: 45, 864
19: 15: 45, 903
19: 15: 45, 906
19: 15: 45, 906
19: 15: 46, 236
19: 15: 46, 238
19: 15: 46, 734
19: 15: 46, 736
19: 15: 46, 737
19: 15: 46, 768
19: 15: 46, 768
19: 15: 46, 774
19: 15: 46, 903
19: 15: 46, 904
19: 15: 46, 927

I NFO

I NFO
r

I NFO

I NFO

I NFO

[Ej bMbdul

[Text MDB]
[Text MDB]
[Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text VDB]
I NFO [Text MDB]
I NFO [Text VDB]
I NFO [Text MDB]
I NFO [Text VDB]
I NFO [Text MDB]
I NFO [Text VDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]
I NFO [Text MDB]

e] Depl oyi ng Text VDB

[EJBDepl oyer] Depl

Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.
Text MDB.

oyed:
ctor, this=10775981
ctor, this=1792333

set MessageDri venCont ext ,
ej bCreate, this=10775981
set MessageDr i venCont ext ,
ej bCreate, this=1792333

ctor, this=12855623

set MessageDri venCont ext ,
ej bCreate, this=12855623
ctor, this=8153998

set MessageDr i venCont ext ,
ej bCreate, this=8153998

ctor, this=10118602

set MessageDri venCont ext ,
ej bCreate, this=10118602
ctor, this=9399816

set MessageDri venCont ext ,
ej bCreate, this=9399816

ctor, this=15679078

set MessageDri venCont ext ,
ej bCreate, this=15679078
ctor, this=14251014

set MessageDri venCont ext ,
ej bCreate, this=14251014
ctor, thi s=6056676

set MessageDri venCont ext ,
ctor, this=6598158

ej bCreate, this=6056676

set MessageDri venCont ext ,
ej bCreate, this=6598158

onMessage, this=12855623

t hi

t hi

t hi

t hi

t hi

t hi

t hi

t hi

t hi

t hi

12855623
9399816
6598158
8153998
10118602
1792333
14251014
10775981
6056676
15679078

file:/jboss-4.0.5. GA server/defaul t/depl oy/

$=10775981

$=1792333

$=12855623

$=8153998

$=10118602

$=9399816

$=15679078

$=14251014

$=6056676

$=6598158

sendRepl y, this=12855623, dest=QUEUE. A

onMessage, this=9399816
onMessage, this=8153998
onMessage, this=6598158

sendRepl y, this=9399816, dest=QUEUE. A
sendRepl y, this=6598158, dest=QUEUE. A
sendReply, this=8153998, dest=QUEUE. A

onMessage, this=10118602

sendRepl y, this=10118602, dest=QUEUE. A

onMessage, this=1792333

JBoss Release 2

191

Messaging on JBoss

19: 15: 46, 928 I NFO [Text MDB] Text MDB. sendReply, this=1792333, dest=QUEUE. A
19: 15: 47,002 | NFO [Text MDB] Text MDB. onMessage, this=14251014

19: 15: 47,007 I NFO [Text MDB] Text MDB. sendReply, this=14251014, dest=QUEUE. A
19: 15: 47,051 I NFO [Text MDB] Text MDB. onMessage, this=10775981

19: 15: 47,051 I NFO [Text MDB] Text MDB. sendReply, this=10775981, dest=QUEUE. A
19: 15: 47,060 | NFO [Text MDB] Text MDB. onMessage, thi s=6056676

19: 15: 47,061 I NFO [Text MDB] Text MDB. sendReply, thi s=6056676, dest=QUEUE. A
19: 15: 47,064 | NFO [Text MDB] Text MDB. onMessage, thi s=15679078

19: 15: 47,065 | NFO [Text MDB] Text MDB. sendReply, this=15679078, dest=QUEUE. A

Items of note in this example include:

* The JMS client has no explicit knowledge that it is dealing with an MDB. The client simply uses the standard
JMS APIs to send messages to a queue and receive messages from another queue.

e The MDB declares whether it will listen to a queue or topic in the ej b-j ar. xm descriptor. The name of the
gueue or topic must be specified using aj boss. xm descriptor. In this example the MDB a so sends messages
to aJM S queue. MDBs may act as queue senders or topic publishers within their onMessage callback.

» The messages received by the client include a "processed by: NNN" suffix, where NNN is the hashCode value
of the MDB instance that processed the message. This shows that many MDBs may actively process messages
posted to a destination. Concurrent processing is one of the benefits of MDBs.

5.2. JBoss Messaging Overview

JBossMQ is composed of several services working together to provide JIMS API level services to client applica
tions. The services that make up the JBossMQ JM S implementation are introduced in this section.

5.2.1. Invocation Layer

The Invocation Layer (IL) services are responsible for handling the communication protocols that clients use to
send and receive messages. JBossMQ can support running different types of Invocation Layers concurrently. All
Invocation Layers support bidirectional communication which allows clients to send and receive messages concur-
rently. ILs only handle the transport details of messaging. They delegate messages to the IM S server IMX gateway
service known as the invoker. Thisis similar to how the detached invokers expose the EJB container via different
transports.

Each IL service binds a IM S connection factory to a specific location in the INDI tree. Clients choose the protocol
they wish to use by the INDI location used to obtain the IMS connection factory. JBossMQ currently has several
different invocation layers.

e« UIL2 IL: The Unified Invocation Layer version 2(UIL2) is the preferred invocation layer for remote mes-
saging. A multiplexing layer is used to provide bidirectional communication. The multiplexing layer creates
two virtual sockets over one physical socket. This allows communication with clients that cannot have a con-
nection created from the server back to the client due to firewall or other restrictions. Unlike the older UIL in-
vocation layer which used a blocking round-trip message at the socket level, the UIL2 protocol uses true asyn-
chronous send and receive messaging at the transport level, providing for improved throughput and utilization.

e JVM IL: The Java Virtua Machine (JVvM) Invocation Layer was developed to cut out the TCP/IP overhead

JBoss Release 2 192

Messaging on JBoss

when the IMS client is running in the same JVM as the server. This IL uses direct method calls for the server to
service the client requests. This increases efficiency since no sockets are created and there is no need for the as-
sociated worker threads. Thisisthe IL that should be used by Message Driven Beans (MDB) or any other com-
ponent that runs in the same virtual machine as the server such as servlets, MBeans, or EJBs.

e HTTPIL: The HTTP Invocation Layer (HTTPIL) alows for accessing the JBossMQ service over the HTTP or
HTTPS protocols. This IL relies on the servlet deployed in the depl oy/ j ns/ j bossnyg- htt pi | . sar to handle the
http traffic. ThisIL isuseful for accessto IM S through a firewall when the only port allowed requires HTTP.

5.2.2. Security Manager

The JBossMQ Securi t yManager IS the service that enforces an access control list to guard access to your destina-
tions. This subsystem works closely with the st at eManager Service.

5.2.3. Destination Manager

The Dest i nat i onManager can be thought as being the central service in JBossMQ. It keeps track of al the destina-
tions that have been created on the server. It also keeps track of the other key services such as the MessageCache,
St at eManager , and Per si st enceManager .

5.2.4. Message Cache

Messages created in the server are passed to the MessageCache for memory management. VM memory usage goes
up as messages are added to a destination that does not have any receivers. These messages are held in the main
memory until the receiver picks them up. If the MessageCache notices that the VM memory usage starts passing
the defined limits, the MessageCache starts moving those messages from memory to persistent storage on disk. The
MessageCache Uses aleast recently used (LRU) algorithm to determine which messages should go to disk.

5.2.5. State Manager

The st at eManager (SM) isin charge of keeping track of who is alowed to log into the server and what their dur-
able subscriptions are.

5.2.6. Persistence Manager

The Per si st enceManager (PM) is used by a destination to store messages marked as being persistent. JBossMQ
has several different implementations of the persistent manager, but only one can be enabled per server instance.
Y ou should enable the persistence manager that best matches your requirements.

e JDBC2 persistence manager: The JDBC2 persistence manager allows you to store persistent messagesto are-
lational database using JDBC. The performance of this PM is directly related to the performance that can be ob-
tained from the database. This PM has a very low memory overhead compared to the other persistence man-
agers. Furthermore it is also highly integrated with the MessageCache to provide efficient persistence on a sys-
tem that has avery active MessageCache.

e Null Persistence Manager: A wrapper persistence manager that can delegate to a rea persistence manager.

JBoss Release 2 193

Messaging on JBoss

Configuration on the destinations decide whether persistence and caching is actually performed. The example
configuration can be found in docs/ exanpl es/ j ms. To use the null persistence manager backed by area per-
sistence manager, you need to change the j ect Nane of the real persistence manager and link the new name to
the null persistence manager.

5.2.7. Destinations

A degtination is the object on the JBossMQ server that clients use to send and receive messages. There are two
types of destination objects, Queues and Topi cs. References to the destinations created by JBossMQ are stored in
JINDI.

5.2.7.1. Queues

Clients that are in the point-to-point paradigm typically use queues. They expect that message sent to a queue will
be receive by only one other client once and only once. If multiple clients are receiving messages from a single
queue, the messages will be load balanced across the receivers. Queue objects, by default, will be stored under the
INDI queue/ sub context.

5.2.7.2. Topics

Topics are used in the publish-subscribe paradigm. When a client publishes a message to a topic, he expects that a
copy of the message will be delivered to each client that has subscribed to the topic. Topic messages are delivered
in the same manner atelevision show is delivered. Unless you have the TV on and are watching the show, you will
missit. Similarly, if the client is not up, running and receiving messages from the topics, it will miss messages pub-
lished to the topic. To get around this problem of missing messages, clients can start a durable subscription. Thisis
like having aVVCR record a show you cannot watch at its scheduled time so that you can see what you missed when
you turn your TV back on.

5.3. JBoss Messaging Configuration and MBeans

This section defines the MBean services that correspond to the components introduced in the previous section
along with their MBean attributes. The configuration and service files that make up the JBossM Q system include:

* deploy/hsgldb-jdbc-state-service.xml: This configures the JDBC state service for storing state in the embed-
ded Hypersonic database.

* deploy/jms/hsgldb-jdbc2-servicexml: This service descriptor configures the Destinati onManager, Mes-
sageCache, and jdbc2 per si st enceManager for the embedded Hypersonic database.

* deploy/jmg/jbossmg-destinations-servicexml: This service describes defines default IMS queue and topic
destination configurations used by the testsuite unit tests. You can add/remove destinations to this file, or de-
ploy another *- servi ce. xm descriptor with the destination configurations.

e jbossmg-httpil.sar: This SAR file configures the HTTP invocation layer.

e deploy/jmg/jbossmg-servicexml: This service descriptor configures the core JBossMQ MBeans like the I n-
voker, Securit yManager, Dynani cSt at eManager , and core interceptor stack. It also defines the MDB default

JBoss Release 2 194

Messaging on JBoss

dead letter queue DLQ.

¢ deploy/jmsgjms-ds.xml: Thisis a JCA connection factory and IMS provider MDB integration services config-
uration which sets JBossMQ as the IMS provider.

e deploy/jmsjms-rarar: ThisisaJCA resource adaptor for IMS providers.

* deploy/jms/jvm-il-servicexml: This service descriptor configures the JvMser ver | LServi ce which provides
the VM IL transport.

» deploy/jms/rmi-il-service.xxml: This service descriptor configures the RM Ser ver | LSer vi ce which provides the
RMI IL. The queue and topic connection factory for this IL is bound under the name RM Connect i onFact ory.

» deploy/jms/uil2-servicexml: This service descriptor configures the Ul LSer ver | LSer vi ce which provides the
UIL2 transport. The queue and topic connection factory for this IL is bound under the name
U L2Connect i onFact ory aswell asul LConnect i onFact ory to replace the deprecated version 1 UIL service.

We will discuss the associated MBeans in the following subsections.

5.3.1. org.jboss.mq.il.jvm.JVMServerlLService

Theorg.jboss. my.il.jvm JVMserverl LServi ce MBean isused to configure the VM IL. The configurable attrib-
utes are as follows:

« Invoker: This attribute specifies IMX ObjectName of the IM S entry point service that is used to pass incoming
requests to the JMS server. This is not something you would typicaly change from the
j boss. my: ser vi ce=I nvoker Setting unless you change the entry point service.

e ConnectionFactoryJNDIRef: The JNDI location that this IL will bind a Connect i onFact ory Setup to use this
IL.

e XAConnectionFactoryJNDIRef: The JNDI location that this IL will bind a XAConnecti onFact ory Setup to
usethislL.

¢ PingPeriod: How often, in milliseconds, the client should send a ping message to the server to validate that the
connection is still valid. If thisis set to zero, then no ping message will be sent. Since it isimpossible for VM
IL connection to go bad, it is recommended that you keep this set to O.

5.3.2. org.jboss.mq.il.uil2.UILServerILService

The org.jboss. my.il.uil2. U LServerlLService is used to configure the UIL2 IL. The configurable attributes
are asfollows:

« Invoker: This attribute specifies IMX bj ect Name of the IMS entry point service that is used to pass incoming
requests to the JIMS server. This is not something you would typically change from the
j boss. n: servi ce=I nvoker Setting unless you change the entry point service.

¢ ConnectionFactoryJNDIRef: The JNDI location that this IL will bind a Connect i onFact ory setup to use this
IL.

JBoss Release 2 195

Messaging on JBoss

e XAConnectionFactoryJNDIRef: The INDI location that this IL will bind a XAConnect i onFact ory Setup to
usethis|IL.

e PingPeriod: How often, in milliseconds, the client should send a ping message to the server to validate that the
connection isstill valid. If thisis set to zero, then no ping message will be sent.

* ReadTimeout: The period in milliseconds is passed onto as the SoTi neout value of the UIL2 socket. This al-
lows detection of dead sockets that are not responsive and are not capable of receiving ping messages. Note that
this setting should be longer in duration than the Pi ngPeri od Setting.

« BufferSize: The size in bytes used as the buffer over the basic socket streams. This corresponds to the
j ava. i 0. Buf f er edQut put St r eambuffer size.

e ChunkSize: The size in bytes between stream listener notifications. The UIL2 layer uses the
org.jboss.util.stream Notifyi ngBuf f er edOut put St reamand Not i f yi ngBuf f er edl nput Streamimplement—
ations that support the notion of a heartbeat that is triggered based on data read/written to the stream. Whenever
ChunksSi ze bytes are read/written to a stream. This allows serves as a ping or keepalive notification when large
reads or writes require a duration greater than the pi ngPer i od.

» ServerBindPort: The protocol listening port for this IL. If not specified default is 0, which means that a ran-
dom port will be chosen.

» BindAddress: The specific address this IL listens on. This can be used on a multi-homed host for a
java. net . Server Socket that will only accept connection requests on one of its addresses.

» EnableTcpNoDelay: TcpNoDel ay causes TCP/IP packets to be sent as soon as the request is flushed. This may
improve request response times. Otherwise request packets may be buffered by the operating system to create
larger | P packets.

e ServerSocketFactory: The j avax. net. Server Socket Fact ory implementation class name to use to create the
service java.net.ServerSocket. If not specified the default factory will be obtained from
j avax. net. Server Socket Factory. get Defaul t ().

» ClientAddress: The address passed to the client as the address that should be used to connect to the server.

e ClientSocketFactory: The j avax. net. Socket Fact ory implementation class name to use on the client. If not
specified the default factory will be obtained from j avax. net . Socket Fact ory. get Defaul t () .

e SecurityDomain: Specify the security domain name to use with JBoss SSL aware socket factories. Thisis the
JNDI name of the security manager implementation as described for the security-domi n element of the
j boss. xm andj boss-web. xm descriptorsin Section 7.3.1.

5.3.2.1. Configuring UIL2 for SSL

The UIL2 service support the use of SSL through custom socket factories that integrate JSSE using the security do-
main associated with the IL service. An example UIL2 service descriptor fragment that illustrates the use of the
custom JBoss SSL socket factories is shown in Example 5.10.

Example 5.10. An example UIL 2 config fragment for using SSL

JBoss Release 2 196

Messaging on JBoss

<nbean code="org.jboss.mg.il.uil2. U LServerlLService"
nanme="j boss. ng: servi ce=l nvocati onLayer, t ype=HTTPSUI L2" >
<depends optional -attribute-name="1nvoker" >j boss. ng: servi ce=l nvoker </ depends>
<attribute name="Connecti onFact or yJNDI Ref " >SSLConnecti onFactory</attri but e>
<attri bute name="XAConnecti onFact or yJNDI Ref " >SSLXAConnect i onFact ory</attri bute>

<l-- ... -->

<I-- SSL Socket Factories -->
<attribute name="Cl i ent Socket Fact ory" >

org.j boss.security.ssl.CientSocket Factory
</attribute>
<attribute name="Server Socket Fact ory">

org. j boss. security.ssl.Domai nServer Socket Fact ory
</attribute>

<l-- Security domain - see below -->

<attribute name="SecurityDomai n">java:/jaas/ SSL</attri bute>
</ mbean>
<I-- Configures the keystore on the "SSL" security donain

This nbean is better placed in conf/jboss-service.xm where it
can be used by other services, but it will work from anywhere.
Use keytool fromthe sdk to create the keystore. -->

<nbean code="org.jboss. security. plugins.JaasSecurityDonai n"
nanme="j boss. security: servi ce=JaasSecurityDomai n, domai n=SSL" >
<l-- This nust correlate with the java:/jaas/SSL above -->
<construct or>
<arg type="java.lang. String" val ue="SSL"/>
</ const ruct or >
<l-- The location of the keystore resource: |oads fromthe
cl asspath and the server conf dir is a good default -->
<attribute name="KeyStoreURL">resource: uil 2. keystore</attri bute>
<attri bute name="KeySt or ePass" >changene</attri but e>
</ mbean>

5.3.2.2. IMS client properties for the UIL2 transport

There are severa system properties that a IMS client using the UIL 2 transport can set to control the client connec-
tion back to the server

e orgjbossmgq.il.uil2.useServerHost: This system property allows a client to connect to the server I net Ad-
dr ess. get Host Nane rather than thel net Addr ess. get Host Addr ess value. This will only make a difference if
name resolution differs between the server and client environments.,

e orgjbossmgq.il.uil2.localAddr: This system property allows a client to define the local interface to which its
sockets should be bound.

e org.jbossmgq.il.uil2.localPort: This system property allows a client to define the local port to which its sockets
should be bound

e orgjbossmgq.il.uil2.server Addr: This system property allows a client to override the address to which it at-
tempts to connect to. Thisis useful for networks where NAT is occcurring between the client and IMS server.

e org.jbossmgq.il.uil2.serverPort: This system property allows a client to override the port to which it attempts
to connect. Thisis useful for networks where port forwarding is occurring between the client and jms server.

JBoss Release 2 197

Messaging on JBoss

e org.jbossmgq.il.uil2.retryCount: This system property controls the number of attempts to retry connecting to
the IMS server. Retries are only made for j ava. net . Connect Except i on failures. A value <= 0 means no retry
attempts will be made.

* org.jbossmag.il.uil2retryDelay: This system property controls the delay in milliseconds between retries due to
Connect Except i on failures.

5.3.3. org.jboss.mq.il.http.HTTPServerlLService

Theorg.jboss.my.il.http. HTTPServer | LServi ce is used to manage the HTTP/S IL. This IL alows for the use
of the JMS service over HTTP or HTTPS connections. The relies on the servlet deployed in the depl oy/
jms/j bossmg-httpil.sar to handlethe HTTP traffic. The configurable attributes are as follows:

* TimeOut: The default timeout in seconds that the client HTTP requests will wait for messages. This can be
overridden on the client by setting the system property org.jboss.mg.il.http.tinmeout to the number of
seconds.

« Restinterval: The number of seconds the client will sleep after each request. The default is 0, but you can set
this value in conjunction with the Ti recut value to implement a pure timed based polling mechanism. For ex-
ample, you could simply do a short lived request by setting the Ti mecut value to 0 and then setting the
Rest I nt erval to 60. This would cause the client to send a single non-blocking request to the server, return any
messages if available, then sleep for 60 seconds, before issuing another request. Like the Ti requt value, this
can be explicitly overridden on agiven client by specifying theorg. j boss. ng.il. http.restinterval withthe
number of seconds you wish to wait between requests.

* URL: Set the servlet URL. This value takes precedence over any individual values set (i.e. the URLPrefi x,
URLSuf fi x, URLPort, €tc.) It my be aactual URL or a property name which will be used on the client side to re-
solve the proper URL by calling System get Property(propertynane). If not specified the URL will be
formed from URLPrefi x + URLHost Name + ":" + URLPort + "/" + URLSuffix.

* URLPrefix: The prefix portion of the serviet URL.

* URLHostName: The hostname portion of the serviet URL.
* URLPort: The port portion of the URL.

» URL Suffix: The trailing path portion of the URL.

e UseHostName: A flag that if set to true the default setting for the URLHost Nane attribute will be taken from 1 n-
et Addr ess. get Local Host (). get Host Narre() . If false the default setting for the URLHost Nane attribute will be
taken from | net Addr ess. get Local Host () . get Host Addr ess() .

5.3.4. org.jboss.mq.server.jmx.Invoker

The org.j boss. ng. server. jnx. I nvoker iS used to pass IL requests down to the destination manager service
through an interceptor stack. The configurable attributes are as follows:

e Nextinterceptor: The IMX vj ect Nare Of the next request interceptor. This attribute is used by all the inter-

JBoss Release 2 198

Messaging on JBoss

ceptors to create the interceptor stack. The last interceptor in the chain should be the Dest i nat i onManager .

5.3.5. org.jboss.mqg.server.jmx.InterceptorLoader

The org. j boss. my. server. j mx. I nt er cept or Loader S used to load a generic interceptor and make it part of the
interceptor stack. This MBean is typicaly wused to load custom interceptors like
org. j boss. ny. server. Traci ngl nt er cept or, Which is can be used to efficiently log all client requests via trace
level log messages. The configurable attributes are as follows:

* Nextlnterceptor: The IMX vj ect Nane Of the next request interceptor. This attribute is used by all the inter-
ceptors to create the interceptor stack. The last interceptor in the chain should be the Dest i nat i onManager . This
attribute should be setup viaa<depends opti onal -attri but e- name="Next | nt er cept or > XML tag.

» InterceptorClass. The class name of the interceptor that will be loaded and made part of the interceptor stack.
This class specified here must extend the or g. j boss. ng. server. JMSSer ver | nt er cept or Class.

5.3.6. org.jboss.mqg.sm.jdbc.JDBCStateManager

The JDBCst at eManager MBean is used as the default state manager assigned to the DestinationM anager service. It
stores user and durable subscriber information in the database. The configurable attributes are as follows:

e ConnectionManager: Thisis the j ect Name of the datasource that the JDBC state manager will write to. For
Hypersonic, it isj boss. j ca: ser vi ce=Dat aSour ceBi ndi ng, name=Def aul t DS.

» SglProperties: The sql Properti es define the SQL statements to be used to persist IMS state data. If the un-
derlying database is changed, the SQL statements used may need to change.

5.3.7. org.jboss.mq.security.SecurityManager

If the org. j boss. my. security. SecurityManager is part of the interceptor stack, then it will enforce the access
control lists assigned to the destinations. The Securi t yManager uses JAAS, and as such requires that at application
policy be setup for in the JBoss | ogi n- confi g. xm file. The default configuration is shown below.

<appl i cati on-policy name="jbossng">
<aut henti cati on>
<l ogi n- nodul e code="org. | boss. security. auth. spi . Dat abaseSer ver Logi nvbdul e"
flag="required">
<nmodul e- opti on name="unaut henti cat edl dentity">guest </ nodul e- opti on>
<nodul e- opti on nanme="dsJndi Nane" >j ava: / Def aul t DS</ nodul e- opti on>
<nmodul e- opti on nane="pri nci pal sQuery" >SELECT PASSWD FROM JMS_USERS
VWHERE USERI D=?</ nodul e- opti on>
<npdul e- opti on nane="rol esQuery">SELECT ROLEID, 'Roles' FROM
JM5_ROLES WHERE USERI D=?</ nodul e- opti on>
</ | ogi n- modul e>
</ aut henti cati on>
</ application-policy>

The configurable attributes of the SecurityManager are as follows:

JBoss Release 2 199

Messaging on JBoss

« Nextinterceptor: The IMX vj ect Narme Of the next request interceptor. This attribute is used by all the inter-
ceptors to create the interceptor stack. The last interceptor in the chain should be the Dest i nat i onManager .

e SecurityDomain: Specify the security domain name to use for authentication and role based authorization. This
isthe INDI name of the JAAS domain to be used to perform authentication and authorization against.

» DefaultSecurityConfig: This element specifies the default security configuration settings for destinations. This
applies to temporary queues and topics as well as queues and topics that do not specifically specify a security
configuration. The Def aul t Securi tyConfi g should declare some number of rol e elements which represent
each role that is allowed access to a destination. Each r ol e should have the following attributes:

* npame The nane attribute defines the name of therole.

e create: Thecreat e attribute is atrue/false value that indicates whether the role has the ability to create dur-
able subscriptions on the topic.

e read: Theread attribute is a true/false value that indicates whether the role can receive messages from the
destination.

e write Thewite atribute is atrue/false value that indicates whether the role can send messages to the des-
tination.

5.3.8. org.jboss.mq.server.jmx.DestinationManager

The org. j boss. my. server. j mx. Dest i nati onManager must be the last interceptor in the interceptor stack. The
configurable attributes are as follows:

e PersistenceManager: The IMX bj ect Nane of the persistence manager service the server should use.
» StateManager: The IMX bj ect Nane Of the state manager service the server should use.
* MessageCache: The IMX bj ect Name of the message cache service the server should use.

Additional read-only attributes and operations that support monitoring include:

¢ ClientCount: The number of clients connected to the server.

* Clients; A java.util.Mp<org.jboss. . ConnectionToken, org.jboss.ng. server.d ientConsuner> in-
stances for the clients connected to the server.

* MessageCounter: An array of org.jboss.mq.server.MessageCounter instances that provide statistics for a IMS
destination.

« listMessageCounter (): This operation generates an HTML table that contains:

e Type: Either Queue or Topi ¢ indicating the destination type.

« Name: The name of the destination.

JBoss Release 2 200

Messaging on JBoss

* Subscription: The subscription ID for atopic.

e Durable: A boolean indicating if the topic subscription is durable.

e Count: The number of message delivered to the destination.

« CountDelta: The change in message count since the previous access of count.

* Depth: The number of messages in the destination.

» DepthDelta: The changein the number of messages in the destination since the previous access of depth.

e Last Add: The date/time string in Dat eFor mat . SHORT/Dat eFor mat . MEDI UM format of the last time a mes-
sage was added to the destination.

* resetMessageCounter(): This zeros all destination counts and last added times.

Queues and topics can be created and destroyed at runtime through the Dest i nat i onManager MBean. The Dest i n-

ati onManager providescreat eQueue and cr eat eTopi ¢ operations for this. Both methods have a one argument ver-
sion which takes the destination name and a two argument version which takes the destination and the JINDI name
of the destination. Queues and topics can be removed using the dest r oyQueue and dest r oy Topi ¢ operations, both
of which take a destination name is input.

5.3.9. org.jboss.mq.server.MessageCache

The server determines when to move messages to secondary storage by using the
org. j boss. ny. server. MessageCache MBean. The configurable attributes are as follows:

e CacheStore: The IMX j ect Nare of the service that will act as the cache store. The cache store is used by the
MessageCache t0 move messages to persistent storage. The value you set here typically depends on the type of
persi stence manager you are using.

* HighMemoryMark: The amount of JVM heap memory in megabytes that must be reached before the Mes-
sageCache starts to move messages to secondary storage.

* MaxMemoryMark: The maximum amount of JVM heap memory in megabytes that the MessageCache con-
siders to be the max memory mark. As memory usage approaches the max memory mark, the MessageCache
will move messages to persistent storage so that the number of messages kept in memory approaches zero.

» MakeSoftReferences: This controls whether or not the message cache will keep soft references to messages
that need to be removed. The default is true.

e MinimumHard: The minimum number of the in memory cache. JBoss won't try to go below this number of
messages in the cache. The default valueis 1.

e MaximumHard: The upper bound on the number of hard references to messages in the cache. JBoss will
soften messages to reduce the number of hard references to thislevel. A value of 0 means that there is no size
based upper bound. The default is 0.

« SoftenWaitMillis: The maximum wait time before checking whether messages need softening. The default is

JBoss Release 2 201

Messaging on JBoss

1000 milliseconds (1 second).

e SoftenNoM oreOftenThanMillis: The minimum amount of time between checks to soften messages. A value
of 0 means that this check should be skipped. The default is O milliseconds.

« SoftenAtLeastEveryMillis. The maximum amount of time between checks to soften messages. A value of 0
means that this check should be skipped. The default is 0.

Additional read-only cache attribute that provide statistics include:

e CacheHits: The number of times a hard referenced message was accessed

e CacheMisses: The number of times a softened message was accessed.

« HardRefCacheSize: The number of messagesin the cache that are not softened.
» SoftRefCacheSize: The number of messages that are currently softened.

« SoftenedSize: The total number of messages softened since the last boot.

« TotalCacheSize: Thetotal number of messages that are being managed by the cache.

5.3.10. org.jboss.mqg.pm.jdbc2.PersistenceManager

Theorg. j boss. ng. pm j dbc. Per si st enceManager should be used as the persistence manager assigned to the Des-
ti nati onManager if you wish to store messages in a database. This PM has been tested against the HypersonSQL,
MS SQL, Oracle, MySQL and Postgres databases. The configurable attributes are as follows:

e MessageCache: The JMX ojectName Of the MessageCache that has been assigned to the
Desti nat i onManager ..

e ConnectionManager: The IMX bj ect Namre of the JCA data source that will be used to obtain JDBC connec-
tions.

e ConnectionRetryAttempts: An integer count used to allow the PM to retry attempts at getting a connection to
the JDBC store. There is a 1500 millisecond delay between each connection failed connection attempt and the
next attempt. This must be greater than or equal to 1 and defaultsto 5.

» SglProperties: A property list is used to define the SQL Queries and other JIDBC2 Persistence Manager op-
tions. Y ou will need to adjust these properties if you which to run against another database other than Hyper-
sonic. Example 5.11 shows default setting for this attribute for the Hypersonic database.

Example 5.11. Default JDBC2 PeristenceM anager SqlProperties

<attribute name="Sql Properties">
CREATE_TABLES ON STARTUP = TRUE
CREATE_USER TABLE = CREATE TABLE JMS_USERS \
(USERI D VARCHAR(32) NOT NULL, PASSWD VARCHAR(32) NOT NULL, \
CLI ENTI D VARCHAR(128), PRI MARY KEY(USERI D))
CREATE_ROLE TABLE = CREATE TABLE JMS ROLES \

JBoss Release 2 202

Messaging on JBoss

(ROLEI D VARCHAR(32) NOT NULL, USERI D VARCHAR(32) NOT NULL, \
PRI MARY KEY(USERI D, ROLEI D))
CREATE_SUBSCRI PTI ON TABLE = CREATE TABLE JMS_SUBSCRI PTI ONS \

(CLI ENTI D VARCHAR(128) NOT NULL, \

SUBNAME VARCHAR(128) NOT NULL, TOPI C VARCHAR(255) NOT NULL, \

SELECTOR VARCHAR(255), PRI MARY KEY(CLI ENTI D, SUBNAME))

CET_SUBSCRI PTI ON = SELECT TOPI C, SELECTOR FROM JMS_SUBSCRI PTI ONS \

WHERE CLI ENTI D=? AND SUBNAME=?

LOCK_SUBSCRI PTI ON = SELECT TOPRPI C, SELECTOR FROM JMsS_SUBSCRI PTI ONS \

WHERE CLI ENTI D=7 AND SUBNAME=?

GET_SUBSCRI PTI ONS_FOR _TOPI C =

SELECT CLI ENTI D, SUBNANME, SELECTOR FROM JMS_SUBSCRI PTI ONS WHERE TOPI C=?
| NSERT_SUBSCRI PTI ON = \

I NSERT | NTO JMS_SUBSCRI PTI ONS (CLI ENTI D, SUBNAME, TOPIC, SELECTOR) VALUES(?, ?,7?,7?)
UPDATE_SUBSCRI PTI ON = \

UPDATE JM5_SUBSCRI PTI ONS SET TOPI C=?, SELECTOR=? WHERE CLI| ENTI D=7 AND SUBNAME=?
REMOVE_SUBSCRI PTI ON = DELETE FROM JMS_SUBSCRI PTI ONS WHERE CLI ENTI D=? AND SUBNAME=?
CGET_USER BY_CLI ENTI D = SELECT USERI D, PASSWD, CLIENTI D FROM JMS_USERS WHERE CLI ENTI D=?
GET_USER = SELECT PASSWD, CLI ENTI D FROM JM5_USERS WHERE USERI D=?

POPULATE. TABLES. 01 = | NSERT | NTO JMS_USERS (USERI D, PASSWD) \
VALUES (' guest', 'guest')

POPULATE. TABLES. 02 = I NSERT | NTO JMS_USERS (USERI D, PASSWD) \
VALUES ('] 2ee', 'j2ee')

POPULATE. TABLES. 03 = I NSERT | NTO JMS_USERS (USERI D, PASSWD, CLIENTID) \
VALUES ('john', 'needle', 'Durabl eSubscriberExanple')

POPULATE. TABLES. 04 = I NSERT | NTO JMS_USERS (USERI D, PASSWD) \
VALUES (' nobody', 'nobody')

POPULATE. TABLES. 05 = I NSERT | NTO JMS_USERS (USERI D, PASSWD) \
VALUES ('dynsub', 'dynsub')

POPULATE. TABLES. 06 = I NSERT | NTO JMS5_ROLES (ROLEI D, USERI D) \
VALUES (' guest','guest')

POPULATE. TABLES. 07 = I NSERT | NTO JMS5_ROLES (ROLEI D, USERI D) \
VALUES ('] 2ee','guest')

POPULATE. TABLES. 08 = | NSERT | NTO JMS5_ROLES (ROLEI D, USERI D) \
VALUES ('john','guest')

POPULATE. TABLES. 09 = I NSERT | NTO JMS5_ROLES (ROLEI D, USERI D) \
VALUES (' subscriber','john")

POPULATE. TABLES. 10 = I NSERT | NTO JM5_ROLES (ROLEI D, USERI D) \
VALUES (' publisher','john")

POPULATE. TABLES. 11 = I NSERT | NTO JM5 ROLES (ROLEID, USERI D) \
VALUES (' publisher',' dynsub')

POPULATE. TABLES. 12 = | NSERT | NTO JM5_ROLES (ROLEID, USERI D) \
VALUES (' durpublisher',"john")

POPULATE. TABLES. 13 = I NSERT | NTO JM5_ROLES (ROLEI D, USERI D) \
VALUES (' durpublisher',' dynsub')

POPULATE. TABLES. 14 = | NSERT | NTO JMS5_ROLES (ROLEI D, USERI D) \
VALUES (' noacc', ' nobody')

</attribute>

Example 5.12 shows an alternate setting for Oracle.

Example 5.12. A sample JDBC2 PeristenceM anager SglPropertiesfor Oracle

<attribute name="Sql Properties">

BLOB_TYPE=BI NARYSTREAM BLOB

I NSERT_TX = | NSERT | NTO JM5_TRANSACTI ONS (TXI D) val ues(?)

| NSERT_MESSAGE = \
| NSERT | NTO JMS_MESSAGES (MESSAGEI D, DESTI NATI ON, MESSAGEBLOB, TXID, TXOP) \
VALUES(?, 2, 2, 2, ?)

SELECT_ALL_UNCOMM TED TXS = SELECT TXI D FROM JMS_TRANSACTI ONS

SELECT_MAX_TX = SELECT MAX(TXI D) FROM JMS_MESSAGES

SELECT _MESSAGES | N DEST = \

JBoss Release 2

203

Messaging on JBoss

SELECT MESSAGEI D, MESSAGEBLOB FROM JMS MESSAGES WHERE DESTI NATI ON=?
SELECT_MESSAGE =\

SELECT MESSAGEI D, MESSAGEBLOB FROM JMS MESSAGES WHERE MESSACGEI D=7 AND DESTI NATI ON=?
MARK_MESSAGE = \

UPDATE JMS_MESSAGES SET TXI D=?, TXOP=? WHERE MESSAGEI D=? AND DESTI NATI ON=?
UPDATE_MESSAGE = \

UPDATE JMS_MESSAGES SET MESSAGEBLOB=? WHERE MESSAGEI D=? AND DESTI NATI ON=?
UPDATE_MARKED MESSAGES = UPDATE JM5_MESSAGES SET TXI D=?, TXOP=? WHERE TXOP=?
UPDATE_MARKED MESSAGES W TH TX = \

UPDATE JM5_MESSAGES SET TXI D=?, TXOP=? WHERE TXOP=? AND TXI D=?
DELETE_MARKED MESSAGES W TH TX = \

DELETE FROM JMS_MESSAGES MESS WHERE TXOP=:1 AND EXI STS \

(SELECT TXI D FROM JMS_TRANSACTI ONS TX WHERE TX. TXI D = MESS. TXI D)

DELETE TX = DELETE FROM JVM5_TRANSACTI ONS WHERE TXID = ?
DELETE_MARKED MESSAGES = DELETE FROM JMS_MESSAGES WHERE TXI D=? AND TXOP=?
DELETE _TEMPORARY_MESSAGES = DELETE FROM JMS_MESSAGES WHERE TXOP='T'
DELETE_MESSAGE = DELETE FROM JMS_MESSAGES WHERE MESSAGEI D=? AND DESTI NATI ON=?
CREATE_MESSAGE _TABLE = CREATE TABLE JMS5_MESSAGES (MESSACGEI D | NTEGER NOT NULL, \
DESTI NATI ON VARCHAR(255) NOT NULL, TXI D | NTEGER, TXOP CHAR(1), \
MESSAGEBLOB BLOB, PRI MARY KEY (MESSAGEI D, DESTI NATI ON))
CREATE_| DX_MESSAGE_TXOP_TXI D =\
CREATE | NDEX JMS_MESSAGES TXOP_TXI D ON JMS_MESSAGES (TXOP, TXI D)
CREATE_| DX_MESSAGE_DESTI NATI ON =\
CREATE | NDEX JMS_MESSAGES DESTI NATI ON ON JMS_MESSAGES (DESTI NATI ON)
CREATE_TX TABLE = CREATE TABLE JMS_TRANSACTI ONS (TXI D I NTEGER, PRI MARY KEY (TXID))
CREATE_TABLES ON STARTUP = TRUE
</attribute>

Additional examples can be found in the docs/ exanpl es/ j ms directory of the distribution.

5.3.11. Destination MBeans

This section describes the destination MBeans used in the j bossng- desti nati ons-servi ce. xmi and j bossny-
servi ce. xn descriptors.

5.3.11.1. org.jboss.mq.server.jmx.Queue

The Queue is used to define a queue destination in JBoss. The following shows the configuration of one of the de-
fault JBoss queues.

<nbean code="org.jboss. ng. server.jnk. Queue"
nanme="j boss. ng. desti nati on: servi ce=Queue, nane=t est Queue" >

<depends optional -attribute-name="Desti nati onManager" >

j boss. ng: servi ce=Dest i nat i oniManager
</ depends>
<depends optional -attri bute-nane="SecurityManager" >

j boss. ng: servi ce=Securi t yManager
</ depends>
<attribute name="MessageCounterH storyDayLimt">-1</attri bute>
<attribute name="SecurityConf">

<security>

<rol e nane="guest" read="true" wite="true"/>
<rol e name="publisher" read="true" wite="true" create="false"/>
<rol e nanme="noacc" read="fal se" wite="fal se" create="fal se"/>

</security>
</attribute>
</ mhean>

JBoss Release 2 204

Messaging on JBoss

The nane attribute of the IMX object name of this MBean is used to determine the destination name. For example.
In the case of the queue we just looked at, the name of the queue ist est Queue. The configurable attributes are as
follows:

» DestinationM anager: The IMX ObjectName of the destination manager service for the server. This attribute
should be set viaa <depends opti onal -attri but e- nanme="Dest i nat i onManager “> XML tag.

e SecurityManager: The IMX oj ect Nare of the security manager service that is being used to validate client
requests.

e SecurityConf: This element specifiesa XML fragment which describes the access control list to be used by the
Securit yManager to authorize client operations against the destination. The content model is the same as for
the Securi t yManager SecurityConf attribute.

* JNDIName: The location in JNDI to which the queue object will be bound. If thisis not set it will be bound
under the queue context using the name of the queue. For the t est Queue shown above, the INDI name would
be queue/ t est Queue.

» MaxDepth: The MaxDept h is an upper limit to the backlog of messages that can exist for a destination. If ex-
ceeded, attempts to add new messages will result in a org.jboss. my. Desti nati onFul | Exception. The
MaxDept h can still be exceeded in a number of situations, e.g. when a message is placed back into the queue.
Also transactions performing read committed processing, look at the current size of queue, ignoring any mes-
sages that may be added as a result of the current transaction or other transactions. This is because we don't
want the transaction to fail during the commit phase when the message is physically added to the queue.

* MessageCounterHistoryDayL imit: Sets the destination message counter history day limit with a value less
than 0 indicating unlimited history, a 0 value disabling history and a value greater than 0 giving the history days
count.

Additional read-only attributes that provide statistics information include:

¢ MessageCounter: An array of org. j boss. my. server . MessageCount er instances that provide statistics for this
destination.

* QueueDepth: The current backlog of waiting messages.
» ReceiversCount: The number of receivers currently associated with the queue.

» ScheduledM essageCount: The number of messages waiting in the queue for their scheduled delivery time to
arrive.

The following are some of the operations available on queues.

» listMessageCounter(): This operation generates an HTML table that contains the same data we as the | i st -
MessageCount er Operation on the Dest i nat i onManager , but only for this one queue.

» resetMessageCounter(): This zeros all destination counts and last added times.

* listMessageCounterHistory(): This operation display an HTML table showing the hourly message counts per
hour for each day in the history.

JBoss Release 2 205

Messaging on JBoss

* resetMessageCounterHistory(): This operation resets the day history message counts.

¢ removeAllMessages(): This method removes all the messages on the queue.

5.3.11.2. org.jboss.mq.server.jmx.Topic

Theorg. j boss. my. server. j nx. Topi ¢ iSused to define a topic destination in JBoss. The following shows the con-
figuration of one of the default JBoss topics.

<nmbean code="org. | boss. ng. server.jnx. Topi c"
nanme="j boss. ng. desti nati on: servi ce=Topi ¢, hame=t est Topi c" >
<depends optional -attri bute-name="Desti nati onManager" >
j boss. ng: servi ce=Dest i nati onManager
</ depends>
<depends optional -attribute-name="SecurityManager">
j boss. ng: servi ce=Securit yManager
</ depends>
<attribute name="SecurityConf">
<security>
<rol e nane="guest" read="true" wite="true" />
<rol e name="publisher" read="true" wite="true" create="fal se" />
<rol e nane="dur publ i sher" read="true" wite="true" create="true" />
</security>
</attribute>
</ nbean>

The nane attribute of the IMX object name of this MBean is used to determine the destination name. For example,
in the case of the topic we just looked at, the name of the topic ist est Topi c¢. The configurable attributes are as fol-
lows:

» DestinationManager: The IMX object name of the destination manager configured for the server.
e SecurityManager: The IMX object name of the security manager that is being used to validate client requests.

e SecurityConf: This element specifies a XML fragment which describes the access control list to be used by the
Securit yManager to authorize client operations against the destination. The content model is the same as that
for the Securi t ymanager SecurityConf attribute.

« JNDIName: Thelocation in INDI to which the topic object will be bound. If thisis not set it will be bound un-
der the t opi ¢ context using the name of the queue. For the t est Topi ¢ shown above, the INDI name would be
topi c/test Topic.

* MaxDepth: The MaxDept h is an upper limit to the backlog of messages that can exist for a destination, and if
exceeded, attempts to add new messages will result in a org.jboss. mg. Desti nati onFul | Exception. The
MaxDept h can still be exceeded in a number of situations, e.g. when a message is knacked back into the queue.
Also transactions performing read committed processing, look at the current size of queue, ignoring any mes-
sages that may be added as a result of the current transaction or other transactions. This is because we don't
want the transaction to fail during the commit phase when the message is physically added to the topic.

* MessageCounterHistoryDayL imit: Sets the destination message counter history day limit with avalue< 0in-
dicating unlimited history, a 0 value disabling history, and avalue > 0 giving the history days count.

Additional read-only attributes that provide statistics information include:

JBoss Release 2 206

Messaging on JBoss

« AlIMessageCount: The message count across al queue types associated with the topic.
e AllSubscriptionsCount: The count of durable and non-durable subscriptions.

« DurableM essageCount: The count of messages in durable subscription queues.

» dDurableSubscriptionsCount: The count of durable subscribers.

¢ MessageCounter: An array of org. j boss. mq. server . MessageCount er instances that provide statistics for this
destination.

¢ NonDurableM essageCount: The count on messages in non-durable subscription queues.

NonDur ableSubscriptionsCount: The count of non-durable subscribers.

The following are some of the operations available on topics.

* listMessageCounter(): This operation generates an HTML table that contains the same data we as the | i st -
MessageCount er operation on the Dest i nat i onManager , but only for this one topic. Message counters are only
maintained for each active subscription, durable or otherwise.

e resetMessageCounter(): This zeros all destination counts and last added times.

« listMessageCounterHistory(): This operation display an HTML table showing the hourly message counts per
hour for each day of history.

* resetMessageCounterHistory(): This operation resets the day history message counts.

5.4. Specifying the MDB JMS Provider

Up to this point we have looked at the standard JM S client/server architecture. The JMS specification defines an
advanced set of interfaces that allow for concurrent processing of a destination's messages, and collectively this
functionality is referred to as application server facilities (ASF). Two of the interfaces that support concurrent mes-
Sage processing, j avax. j ms. Ser ver Sessi onPool and j avax. j ms. Ser ver Sessi on, must be provided by the applic-
ation server in which the processing will occur. Thus, the set of components that make up the JBossMQ ASF in-
volves both JBossMQ components as well as JBoss server components. The JBoss server MDB container utilizes
the IM S service's ASF to concurrently process messages sent to MDBs.

The responsibilities of the ASF domains are well defined by the JIM S specification and so we won't go into a dis-
cussion of how the ASF components are implemented. Rather, we want to discuss how ASF components used by
the JBoss MDB layer are integrated using MBeans that allow either the application server interfaces, or the IMS
provider interfaces to be replaced with alternate implementations.

Let's start with the org. j boss. j ms. j ndi . IMSPr ovi der Loader MBean. This MBean is responsible for loading an
instance of the org. | boss.jns. j ndi . JMSPr ovi der Adapt or interface into the JBoss server and binding it into
JNDI. The JmsProvi der Adapt or interface is an abstraction that defines how to get the root JINDI context for the
JMS provider, and an interface for getting and setting the INDI names for the Cont ext . PROVI DER_URL for the root
Initial Context, and the QueueConnecti onFactory and Topi cConnecti onFact ory locations in the root context.
Thisisall that is really necessary to bootstrap use of a JMS provider. By abstracting this information into an inter-

JBoss Release 2 207

Messaging on JBoss

face, dternate JIMS ASF provider implementations can be used with the JBoss MDB container. The
org.jboss.jms.jndi.JBossMProvider is the default implementation of JMSProvi der Adapt or interface, and
provides the adaptor for the JBossMQ JM S provider. To replace the JBBossMQ provider with an alternate IMS ASF
implementation, simply create an implementation of the JMsPr ovi der Adapt or interface and configure the JM SPro-
viderL oader with the class name of the implementation. We'll see an example of this in the configuration section.

In addition to being able to replace the JMS provider used for MDBs, you can aso replace the
javax.jms.ServerSessionPool interface implementation. This is possible by configuring the class name of the
org. j boss.jns. asf. Server Sessi onPool Fact ory implementation using the
org.jboss. | ns. asf. Server Sessi onPool Loader MBean Pool Fact oryd ass attribute. The default Server Ses-
si onPool Fact ory factory implementation isthe JBoSSor g. j boss. j ns. asf. St dSer ver Sessi onPool Fact ory Class.

5.4.1. org.jboss.jms.jndi.JMSProviderLoader MBean

The JVsPr ovi der Loader MBean service creates a JMS provider adaptor and binds it into JNDI. A JMS provider
adaptor is a class that implements the or g. j boss. j ms. j ndi . IMSPr ovi der Adapt er interface. It is used by the mes-
sage driven bean container to access a JMS service provider in a provider independent manner. The configurable
attributes of the JVMsPr ovi der Loader Service are:

* ProviderName: A unique name for the IMS provider. This will be used to bind the JvsPr ovi der Adapt er in-
stance into JNDI under j ava: / <Pr ovi der Name> unless overridden by the Adapt er JNDI Nane attribute.

» Provider Adapter Class: The fully qualified class name of the org.jboss.jms.jndi.JM SProviderAdapter interface
to create an instance of .

e FactoryRef: The INDI name under which the provider j avax. j ms. Connect i onFact ory will be bound.

¢ QueueFactoryRef: The INDI name under which the provider j avax. j ms. QueueConnecti onFact ory will be
bound.

e TopicFactoryRef: The INDI name under which thej avax. j ms. Topi cConnect i onFact ory will be bound.

e Properties: The INDI properties of theinitial context used to look up the factories.

Example 5.13. A JM SProviderL oader for accessing a remote JBossM Q ser ver

<nbean code="org.jboss.|ns.|ndi.JMProvi derLoader"
nanme="j boss. ng: ser vi ce=JMSPr ovi der Loader , name=Renpt eJBossMPr ovi der " >
<attribute nanme="Provi der Nane" >Renot eJMSPr ovi der </ attri but e>
<attribute name="ProviderUl"></attribute>
<attribute name="Provi der Adapt er d ass" >
org.jboss.jns.jndi.JBossM¥Provider
</attribute>
<attribute name="Fact oryRef " >XAConnecti onFactory</attri bute>
<attri bute nanme="QueueFact or yRef ">XAConnecti onFactory</attri but e>
<attribute name="Topi cFact or yRef">XAConnecti onFactory</attri bute>
<attribute name="Properties>
java.nam ng.factory.initial =org.jnp.interfaces. Nam ngCont ext Factory
java. nam ng. factory. url.pkgs=org.jboss. nam ng: org.jnp.interfaces
j ava. nam ng. provider . url =j np: //renot ehost : 1099
</attribute>
</ nbean>

JBoss Release 2 208

Messaging on JBoss

The RemoteJM SProvider can be referenced on the MDB invoker config as shown in thej boss. xm fragment given
in Example 5.14.

Example 5.14. A jboss.xml fragment for specifyingthe MDB JM S provider adaptor

<proxy-factory-config>
<JMSPr ovi der Adapt er INDI >Renot eJMSPr ovi der </ JMSPr ovi der Adapt er INDI >
<Ser ver Sessi onPool Fact or yJNDI >St dJMSPool </ Ser ver Sessi onPool Fact or yJNDI >
<Maxi muni ze>15</ Maxi muntSi ze>
<MaxMessages>1</ MaxMessages>
<MDBConfi g>
<Reconnect | nt er val Sec>10</ Reconnect | nt er val Sec>

<DLQConfi g>
<Dest i nati onQueue>queue/ DLQ</ Dest i nat i onQueue>
<MaxTi mesRedel i ver ed>10</ MaxTi nesRedel i ver ed>
<Ti meToLi ve>0</ Ti neToLi ve>

</ DLQConfi g>
</ NDBConf i g>
</ proxy-factory-config>

Incidentally, because one can specify multiple i nvoker - pr oxy- bi ndi ng elements, this allows an MDB to listen to
the same queue/topic on multiple servers by configuring multiple bindings with different JvsPr ovi der Adapt er JNDI
settings.

Alternatively, one can integrate the JIMS provider using JCA configuration like that shown in Example 5.15.

Example 5.15. A jms-ds.xml descriptor for integrating a JM S provider adaptor via JCA

<t x- connection-factory>
<j ndi - nane>Renot eJns XA</ j ndi - nanme>
<xa-transaction/>
<adapt er - di spl ay- nane>JM5 Adapt er </ adapt er - di spl ay- name>
<confi g- property nane="JMSProvi der Adapt er JNDI "
type="java.l ang. Stri ng" >Renot eJMSPr ovi der </ confi g- property>
<confi g- property nane="Sessi onDef aul t Type"
type="java.l ang. Stri ng">j avax.j ms. Topi c</ confi g- property>

<security-donmai n- and- appl i cati on>JnmsXAReal nx/ security-domai n- and- appl i cati on>
</tx-connection-factory>

5.4.2. org.jboss.jms.asf.ServerSessionPoolLoader MBean

The Server Sessi onPool Loader MBean service manages a factory for j avax. j ms. Server Sessi onPool Objects
used by the message driven bean container. The configurable attributes of the Ser ver Sessi onPool Loader Service

are:
» PoolName: A unique name for the session pool. This will be used to bind the Ser ver Sessi onPool Fact ory in-
stance into JNDI under j ava: / Pool Nane.

» PoolFactoryClass: The fully qualified class name of the or g. j boss. j ns. asf. Ser ver Sessi onPool Fact ory in-
terface to create an instance of .

JBoss Release 2 209

Messaging on JBoss

e XidFactory: The IMX j ect Narre Of the service to use for generating j avax. transacti on. xa. Xi d values for
local transactions when two phase commit is not required. The Xi dFact ory MBean must provide an | nst ance
operation which returns aor g. j boss. t m Xi dFact or yMBean instance.

5.4.3. Integrating non-JBoss JMS Providers

We have mentioned that one can replace the JBossMQ JMS implementation with a foreign implementation. Here
we summarize the various approaches one can take to do the replacement:

* Replace the IM SProviderL oader JBossM QProvider class with one that instantiates the correct INDI context for
communicating with the foreign IM S providers managed objects.

* Usethe Ext er nal Cont ext MBean to federate the foreign JM S providers managed objects into the JBoss JNDI
tree.

* Use MBeans to instantiate the foreign JM S objects into the JBoss JNDI tree. An example of this approach can
be found for Websphere MQ at http://wiki.jboss.org/wiki/Wiki.jsp?page=IntegrationWithWebSphereM QSeries.

JBoss Release 2 210

http://wiki.jboss.org/wiki/Wiki.jsp?page=IntegrationWithWebSphereMQSeries

Connectors on JBoss
The JCA Configuration and Architecture

This chapter discusses the JBoss server implementation of the J2EE Connector Architecture (JCA). JCA isare-
source manager integration APl whose goal is to standardize access to non-relational resources in the same way the
JDBC API standardized access to relational data. The purpose of this chapter is to introduce the utility of the JCA
APIs and then describe the architecture of JCA in JBoss

6.1. JCA Overview

J2EE 1.4 contains a connector architecture (JCA) specification that allows for the integration of transacted and se-
cure resource adaptors into a J2EE application server environment. The JCA specification describes the notion of
such resource managers as Enterprise Information Systems (EIS). Examples of EIS systems include enterprise re-
source planning packages, mainframe transaction processing, hon-Javalegacy applications, etc.

The reason for focusing on EIS is primarily because the notions of transactions, security, and scalability are re-
quirements in enterprise software systems. However, the JCA is applicable to any resource that needs to integrate
into JBoss in a secure, scalable and transacted manner. In this introduction we will focus on resource adapters as a
generic notion rather than something specific to the EIS environment.

The connector architecture defines a standard SPI (Service Provider Interface) for integrating the transaction, secur-
ity and connection management facilities of an application server with those of a resource manager. The SPI
defines the system level contract between the resource adaptor and the application server.

The connector architecture also defines a Common Client Interface (CCl) for accessing resources. The CCl is tar-
geted at EIS development tools and other sophisticated users of integrated resources. The CCl provides a way to
minimize the EIS specific code required by such tools. Typically J2EE developers will access a resource using such
atool, or aresource specific interface rather than using CCI directly. The reason is that the CCI is not a type specif-
ic API. To be used effectively it must be used in conjunction with metadata that describes how to map from the
generic CCl API to the resource manager specific data types used internally by the resource manager.

The purpose of the connector architecture is to enable a resource vendor to provide a standard adaptor for its
product. A resource adaptor is a system-level software driver that is used by a Java application to connect to re-
source. The resource adaptor plugs into an application server and provides connectivity between the resource man-
ager, the application server, and the enterprise application. A resource vendor need only implement a JCA compli-
ant adaptor once to allow use of the resource manager in any JCA capable application server.

An application server vendor extends its architecture once to support the connector architecture and is then assured
of seamless connectivity to multiple resource managers. Likewise, a resource manager vendor provides one stand-
ard resource adaptor and it has the capability to plug in to any application server that supports the connector archi-
tecture.

JBoss Release 2 211

Connectors on JBoss

Application Server
Component 1\ o JZEE API »| Application
Container Component
JCA CCI
Connection or RA AP
Pooling
Transaction | | JCA SPI L Resource
Manager Adaptor
Security
Manager Resource
API
Resource

Figure6.1. Therelationship between a J2EE application server and a JCA resour ce adaptor

Figure 6.1 illustrates that the application server is extended to provide support for the JCA SPI to allow a resource
adaptor to integrate with the server connection pooling, transaction management and security management facilit-
ies. Thisintegration APl defines athree-part system contract.

« Connection management: a contract that allows the application server to pool resource connections. The pur-
pose of the pool management is to allow for scalability. Resource connections are typically expense objects to
create and pooling them allows for more effective reuse and management.

¢ Transaction Management: a contract that allows the application server transaction manager to manage trans-
actions that engage resource managers.

» Security Management: acontract that enables secured access to resource managers.

The resource adaptor implements the resource manager side of the system contract. This entails using the applica-
tion server connection pooling, providing transaction resource information and using the security integration in-
formation. The resource adaptor also exposes the resource manager to the application server components. This can
be done using the CCI and/or a resource adaptor specific API.

The application component integrates into the application server using a standard J2EE container to component
contract. For an EJB component this contract is defined by the EJB specification. The application component inter-
acts with the resource adaptor in the same way as it would with any other standard resource factory, for example, a
j avax. sql . Dat aSour ce JDBC resource factory. The only difference with a JCA resource adaptor is that the client

JBoss Release 2 212

Connectors on JBoss

has the option of using the resource adaptor independent CCI API if the resource adaptor supports this.

Figure 6.2 (from the JCA 1.5 specification) illustrates the relationship between the JCA architecture participants in
terms of how they relate to the JCA SPI, CCl and JTA packages.

s s s o0l Commees | innd ac fary o v oA, e | R

(r javax, rasouros, spl \ [. interface I intesf mse |]

Javax. refosuros. ool

SLamplepentation Dupass

Do fanlt Connect isnbigr

v o o Wl ormsee |l ondlrssger

inEszface |

PR o } CCIRPIERENTATIONL | A | P P T P— I

+ o o WAL ManagodCosmes FioaFactory - o acter i Comssrrt §snlmpl

imtertace winplementationl lasss | Coimplementationt Insas
o o o SR Hanage dConnec b2 on PahagedConmsst i oalngl Connect Lol artoryingl
0.1 D..l

integface

[’
w o Sl araagedU oo B oo Fallaba I | COumplenentatl ol L aryss
| Fanagedd oure-t i oafiet abat alopl

InTerface
- - Epd. Cornmes FlonEvent Lis bensr

(= P |

incecface g] eRen At ianl | i

« o oA, LecalTrama Lion i Bl Lowal Trassect donlnpd

[app server specific | i
Coinplameniatiosl]asasy | |

Cnmaerstinafgr impl

| <{'=i".|!l4!r|:-'\|:-:lvrl|:|.4|-;'-f.-'.-. rescurce adaptor specific

|[ConnectionEvestListenerinpl
" _

javax. transaction.xa ! [T =
[eimplementationC] asess

inees e o e e e o FEResoarcelngl
| .. Braresac o, xa. Sl romrce

\(

L TR |

Figure 6.2. The JCA 1.0 specification class diagram for the connection management ar chitecture.

The JBossCX architecture provides the implementation of the application server specific classes. Figure 6.2 shows
that this comes down to the implementation of the javax.resource. spi. ConnectionManager and
j avax. resour ce. spi . Connect i onEvent Li st ener interfaces. The key aspects of this implementation are discussed
in the following section on the JBossCX architecture.

6.2. An Overview of the JBossCX Architecture

The JBossCX framework provides the application server architecture extension required for the use of JCA re-
source adaptors. Thisis primarily a connection pooling and management extension along with a number of MBeans
for loading resource adaptors into the JBoss server.

There are three coupled MBeans that make up a RAR deployment. These are the

JBoss Release 2 213

Connectors on JBoss

org.j boss. resource. depl oynment . RARDepl oynent, org.j boss.resource. connecti onmanager . RARDepl oynent ,
and org.j boss. resource. connecti onmanager . BaseConnect i onManager 2. The
org.j boss. resource. depl oyment . RARDepl oyrment iS sSimply an encapsulation of the metadata of a RAR META-
I NF/ ra. xm descriptor. It exposes this information as a DynamicMBean simply to make it available to the
org.j boss. resource. connect i onmanager . RARDepl oynent MBean.

The RARDeployer service handles the deployment of archives files containing resource adaptors (RARS). It
creathes the or g. j boss. resour ce. depl oyment . RARDepl oyment MBeans when a RAR file is deployed. Deploying
the RAR file is the first step in making the resource adaptor available to application components. For each de-
ployed RAR, one or more connection factories must be configured and bound into JNDI. This task performed using
a JBoss service descriptor that sets up a org. j boss. resource. connect i onmanager . BaseConnect i onManager 2
MBean implementation with aor g. j boss. resour ce. connect i onngr . RARDepl oyment dependent.

6.2.1. BaseConnectionManager2 MBean

The org. j boss. resour ce. connect i onmanager . BaseConnect i onManager 2 MBean is a base class for the various
types of connection managers required by the JCA spec. Subclasses include NoTxConnect i onManager , Local Tx-
Connect i onManager and XATxConnect i onManager . These correspond to resource adaptors that support no transac-
tions, local transaction and XA transaction respectively. Y ou choose which subclass to use based on the type of
transaction semantics you want, provided the JCA resource adaptor supports the corresponding transaction capabil-

ity.

The common attributes supported by the BaseConnectionManager2 MBean are:

¢ ManagedConnectionPool: This specifies the ObjectName of the MBean representing the pool for this connec-
tion manager. The MBean must have an ManagedConnect i onPool attribute that is an implementation of the
org. j boss. resour ce. connect i onmanager . ManagedConnect i onPool interface. Normally it will be an embed-
ded MBean in adepends tag rather than an oj ect Nane reference to an existing MBean. The default MBean for
use is the org. j boss. resour ce. connect i onmanager . JBossManagedConnect i onPool . Its configurable attrib-
utes are discussed below.

¢ CachedConnectionM anager: This specifies the j ect Nane of the CachedConnect i onManager MBean imple-
mentation used by the connection manager. Normally this is specified using a depends tag with the tbj ect Nane
of the unique CachedConnect i onManager for the server. The name
j boss. j ca: servi ce=CachedConnect i onManager isthe standard setting to use.

e SecurityDomainJndiName: This specifies the INDI name of the security domain to use for authentication and
authorization of resource connections. Thisis typically of the formj ava: / j aas/ <domai n> where the <domai n>
value is the name of an entry in the conf/1 ogi n-config. xm JAAS login module configuration file. This
defines which JAAS login modules execute to perform authentication. Chapter 7 has more information on the
security settings.

e JaasSecurityManager Service: This is the mj ect Nane of the security manager service. This should be set to
the security manager MBean name as defined in the conf / j boss- servi ce. xni descriptor, and currently thisis
j boss. security: servi ce=JaasSecuri t yManager . This attribute will likely be removed in the future.

6.2.2. RARDeployment MBean

The org. j boss. resour ce. connect i onmanager . RARDepl oynment MBean manages configuration and instantiation

JBoss Release 2 214

Connectors on JBoss

ManagedConnect i onFact ory instance. It does this using the resource adaptor metadata settings from the RAR
META- | NF/ ra. xni descriptor along with the RARDepl oyrent attributes. The configurable attributes are:

¢ OldRarDeployment: This is the j ect Nane of the org. j boss. resource. Rar Depl oyment MBean that con-
tains the resource adaptor metadata. The form of this name is
j boss. j ca: servi ce=RARDepl oynent , name=<r a- di spl ay- nane> where the <r a- di spl ay- nane> is the ra. xni
descriptor di spl ay- nane attribute value. The RARDepl oyer creates this when it deploys a RAR file. This attrib-
ute will likely be removed in the future.

« ManagedConnectionFactoryProperties: This is a collection of (name, type, value) triples that define attrib-
utes of the ManagedConnect i onFact ory instance. Therefore, the names of the attributes depend on the resource
adaptor ManagedConnect i onFact or y instance. The following example shows the structure of the content of this
attribute.

<properties>

<confi g- property>
<confi g- property-nane>AttrONane</ confi g- property- name>
<confi g-property-type>Attr0Type</config-property-type>
<confi g- property-val ue>AttrO0OVal ue</ confi g- property-val ue>

</ confi g- property>

<confi g- property>
<confi g- property-name>Attr 1Name</ confi g- property- name>
<confi g-property-type>Attr2Type</confi g-property-type>
<confi g- property-val ue>Attr2Val ue</ confi g- property-val ue>

</ confi g- property>

</ properties>

At t r XNane isthe Xth attribute name, At t r XType isthe fully qualified Java type of the attribute, and At t r Xval ue
is the string representation of the value. The conversion from string to AttrXType IS done using the
j ava. beans. Proper t yEdi t or classfor the Att r XType.

¢ JndiName: Thisisthe JNDI name under which the resource adaptor will be made available. Clients of the re-
source adaptor use this name to obtain either thej avax. resour ce. cci . Connecti onFact ory Or resource adaptor
specific connection factory. The full INDI name will be j ava: / <Jndi Name> meaning that the Jndi Nane attrib-
ute value will be prefixed with j ava: /. This prevents use of the connection factory outside of the JBoss server
VM. In the future this restriction may be configurable.

6.2.3. JBossManagedConnectionPool MBean

The org. j boss. resource. connect i onmanager . JBossManagedConnect i onPool MBean is a connection pooling
MBean. It is typicaly used as the embedded MBean value of the BaseConnect i onManager 2 ManagedConnect i on-
Pool attribute. When you setup a connection manager MBean you typically embed the pool configuration in the
connection manager descriptor. The configurable attributes of the JBossManagedConnect i onPool are:

* ManagedConnectionFactoryName: This specifies the bjectName of the MBean that creates
j avax. resour ce. spi . ManagedConnecti onFact ory instances. Normally this is configured as an embedded
MBean in a depends element rather than a separate MBean reference using the RARDepl oynent MBean. The
MBean must provide an appropriate st ar t ManagedConnect i onFact ory operation.

¢ MinSize: This attribute indicates the minimum number of connections this pool should hold. These are not cre-
ated until a subj ect is known from a request for a connection. M nSi ze connections will be created for each

JBoss Release 2 215

Connectors on JBoss

sub-pool.

 MaxSize: This attribute indicates the maximum number of connections for a pool. No more than MaxSize con-
nections will be created in each sub-pool.

¢ BlockingTimeoutMillis: This attribute indicates the maximum time to block while waiting for a connection be-
fore throwing an exception. Note that this blocks only while waiting for a permit for a connection, and will nev-
er throw an exception if creating a new connection takes an inordinately long time.

e |dleTiemoutMinutes: This attribute indicates the maximum time a connection may be idle before being closed.
The actual maximum time depends also on the idle remover thread scan time, which is 1/2 the smallest idle
timeout of any pool.

* NoTxSeparatePools: Setting this to true doubles the available pools. One pool is for connections used outside
atransaction the other inside a transaction. The actual pools are lazily constructed on first use. Thisis only rel-
evant when setting the pool parameters associated with the Local TxConnect i onManager and XATxConnect i on-
Manager . Its use case is for Oracle (and possibly other vendors) XA implementations that don't like using an
XA connection with and without a JTA transaction.

e Criteria: This attribute indicates if the JAASj avax. securi ty. aut h. Subj ect from security domain associated
with the connection, or app supplied parameters (such as from get Connecti on(user, pw)) are used to distin-
guish connections in the pool. The allowed values are:

» ByContainer: use subj ect

« ByApplication: use application supplied parameters only

« ByContainer AndApplication: use both

« ByNothing: all connections are equivalent, usually if adapter supports reauthentication

6.2.4. CachedConnectionManager MBean

Theorg. j boss. resour ce. connect i onmanager . CachedConnect i onManager MBean manages associations between
meta-aware objects (those accessed through interceptor chains) and connection handles, as well as between user
transactions and connection handles. Normally there should only be one such MBean, and this is configured in the
core j boss-servi ce. xn descriptor. It is used by CachedConnecti onl nt er cept or, JTA User Transacti on imple-
mentation and all BaseConnect i onManager 2 instances. The configurable attributes of the CachedConnect i onvan-
ager MBean are;

e SpecCompliant: Enable this boolean attribute for spec compliant non-shareable connections reconnect pro-
cessing. This allows a connection to be opened in one call and used in another. Note that specifying this behavi-
or disables connection close processing.

» Debug: Enable this boolean property for connection close processing. At the completion of an EJB method in-
vocation, unclosed connections are registered with a transaction synchronization. If the transaction ends without
the connection being closed, an error is reported and JBoss closes the connection. Thisis a development feature
that should be turned off in production for optimal performance.

e TransactionM anager ServiceName: This attribute specifies the IMX bj ect Nane of the JTA transaction man-
ager service. Connection close processing is now synchronized with the transaction manager and this attribute
specifies the transaction manager to use.

JBoss Release 2 216

Connectors on JBoss

6.2.5. A Sample Skeleton JCA Resource Adaptor

To conclude our discussion of the JBoss JCA framework we will create and deploy a single non-transacted re-
source adaptor that simply provides a skeleton implementation that stubs out the required interfaces and logs all
method calls. We will not discuss the details of the requirements of a resource adaptor provider as these are dis-
cussed in detail in the JCA specification. The purpose of the adaptor is to demonstrate the steps required to create
and deploy a RAR in JBoss, and to see how JBoss interacts with the adaptor.

The adaptor we will create could be used as the starting point for a non-transacted file system adaptor. The source
to the example adaptor can be found in the src/ mai n/ or g/ j boss/ book/ j cal ex1 directory of the book examples. A
class diagram that shows the mapping from the required j avax. r esour ce. spi interfaces to the resource adaptor
implementation is given in Figure 6.3.

O Referenceable

Javax. resource. spi. HanagedConrection .
. javar. naming. directory. DirContext ozg. ib hap?. ext.

A [F +DirContext getConnection()

don{$ubjest subject, FiRequestInfo fsInfo) Catesory log=Cat (irc 1.class)

ection{Object obi) ~ConnectionManager manager

~ManagedConnectionFactory factory

~F$RequestInfo fsInfo

Reference reference

Dirc (c manager, M ac factary, FSR tInfo £sInfo)

+DirContext getConnectioni)
+DirContext getComnection(String user, String password)
T |#voia ce (Reference reference]

+Reference getReference()

l

Javax. resource.

ile rootbir)

javax. resource. spi. ManagedConmectionFactory

1 o
+5tring tojtring() A
Py)

String EISProductane
String ETSProducty =] Serializable
int maxConne

String userlame

cn)
tion(Subject subject, ComnectionRequestinfo infa)
e ac. = (set. Subject subject, ComnectionRequestInfo infa)

+boolesn equalsiObject other)
+int hashCode(]

Printiriter loghriter
§tring £ilefysteuRootDir

Figure 6.3. Thefile system RAR class diagram

We will build the adaptor, deploy it to the JBoss server and then run an example client against an EJB that uses the
resource adaptor to demonstrate the basic steps in a complete context. We'll then take alook at the JBoss server log
to see how the JBoss JCA framework interacts with the resource adaptor to help you better understand the compon-
entsin the JCA system level contract.

To build the example and deploy the RAR to the JBoss server depl oy/ i b directory, execute the following Ant
command in the book examples directory.

[exanpl es] $ ant -Dchap=jca buil d-chap

The deployed filesinclude aj ca- ex1. sar and anot xf s- servi ce. xn service descriptor. The example resource ad-
aptor deployment descriptor is shown in Example 6.1.

Example 6.1. The nontransactional file system resour ce adaptor deployment descriptor.

JBoss Release 2 217

Connectors on JBoss

<?xm version="1.0" encodi ng="UTF-8"?>
<connector xm ns="http://java.sun.com xm /ns/j2ee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocation="http://java. sun. comi xm / ns/j 2ee
http://java.sun. com xm / ns/j2ee/ connector _1 5. xsd" version="1.5">
<di spl ay- nane>Fi | e System Adapt er </ di spl ay- nanme>
<vendor - name>JBoss</ vendor - nanme>
<ei s-type>Fi | eSyst enx/ ei s-type>
<r esour ceadapt er - ver si on>1. 0</ r esour ceadapt er - ver si on>
<l i cense>
<descri pti on>LGPL</ descri pti on>
<l i cense-requi red>fal se</|icense-required>
</license>
<r esour ceadapt er >
<r esour ceadapt er - cl ass>
org.j boss. resource. depl oynent . DurmyResour ceAdapt er
</ resour ceadapt er - cl ass>
<out bound- r esour ceadapt er >
<connecti on-definition>
<managedconnecti onf act ory-cl ass>
org.j boss. book. j ca. ex1. ra. FSManagedConnect i onFact ory
</ managedconnecti onf act ory-cl ass>
<confi g- property>
<confi g- property-name>Fi | eSyst enRoot Di r </ confi g- property- name>
<confi g- property-type>j ava. |l ang. Stri ng</confi g-property-type>
<confi g- property-val ue>/tnp/ db/fs_store</config-property-val ue>
</ confi g- property>
<confi g- property>
<confi g- property-nane>User Nanme</ confi g- property- nane>
<confi g- property-type>j ava.l ang. Stri ng</confi g-property-type>
<confi g- property-val ue/ >
</ confi g- property>
<confi g- property>
<confi g- property- name>Passwor d</ confi g- property- name>
<confi g- property-type>j ava.l ang. Stri ng</confi g-property-type>
<confi g- property-val ue/ >
</ confi g- property>
<connectionfactory-interface>
org. j boss. book. j ca. ex1.ra. Di r Cont ext Fact ory
</ connecti onfactory-interface>
<connectionfactory-inpl-cl ass>
org.j boss. book. j ca. ex1.ra. D r Cont ext Fact oryl npl
</ connecti onfactory-inpl - cl ass>
<connecti on-i nterface>
j avax. nam ng. di rect ory. Di r Cont ext
</ connection-i nterface>
<connection-inpl - cl ass>
org.j boss. book. j ca. ex1.ra. FSDi r Cont ext
</ connecti on-i npl - cl ass>
</ connecti on-definition>
<transacti on- support >NoTr ansacti on</transacti on-support >
<aut henti cati on- mechani sne
<aut henti cati on- mechani smtype>Basi cPasswor d</ aut henti cati on- mechani smtype>
<credential -i nterface>
j avax. resource. spi . security. PasswordCredenti a
</credential -interface>
</ aut henti cati on- nechani sn»
<reaut henti cati on-support >true</reaut henti cati on-support >
</ out bound- r esour ceadapt er >
<security-perm ssi on>
<descri ption> Read/ Wite access is required to the contents of the
Fi | eSyst enmRoot Di r </ descri ption>
<security-perm ssion-spec> perm ssion java.io.Fil ePerm ssion
"/tnp/db/fs_store/*", "read,wite";
</ security-perm ssion-spec>
</ security-perm ssi on>

JBoss Release 2 218

Connectors on JBoss

</ resour ceadapt er >
</ connect or >

The key itemsin the resource adaptor deployment descriptor are highlighted in bold. These define the classes of the
resource adaptor, and the elements are:

* managedconnectionfactory-class:. The implementation of the MnagedConnectionFactory interface,
org.j boss. book. j ca. ex1.ra. FSManagedConnect i onFact ory

» connectionfactory-interface: This is the interface that clients will obtain when they lookup the connection
factory instance from JINDI, here a proprietary resource adaptor value,
org. j boss. book. j ca. ex1.ra. Dir Context Factory. This value will be needed when we create the JBoss
ds. xnl to use the resource.

e connectionfactory-impl-class: Thisisthe classthat provides the implementation of the connecti onf actory-inter-
face, org.j boss. book. j ca. exl.ra. D r Cont ext Fact oryl npl .

» connection-interface: This is the interface for the connections returned by the resource adaptor connection
factory, herethe INDI j avax. nani ng. di rect ory. bi r Cont ext interface.

e connection-impl-class: This is he class that provides the connection-interface implementation,
org.j boss. book. j ca. exl.ra. FSDi r Cont ext .

e transaction-support: The level of transaction support, here defined as NoTr ansact i on, meaning the file system
resource adaptor does not do transactional work.

The RAR classes and deployment descriptor only define a resource adaptor. To use the resource adaptor it must be
integrated into the JBoss application server using ads. xm descriptor file. An example of this for the file system
adaptor is shown in Example 6.2.

Example 6.2. The notxfs-ds.xml resour ce adaptor M Beans ser vice descriptor.

<I DOCTYPE connection-factories PUBLIC
"-//JBoss// DTD JBOSS JCA Config 1.5//EN'
"http://ww.jboss. org/j2ee/dtd/jboss-ds_1 5.dtd">
<I--
The non-transaction Fil eSystem resource adaptor service configuration
caD
<connecti on-factories>
<no-t x-connection-factory>
<j ndi - nane>NoTr ansFS</j ndi - nane>
<rar - nane>j ca- ex1.rar</rar - name>
<connecti on-definition>
org. j boss. book. j ca. ex1.ra. Di r Cont ext Fact ory
</ connecti on-definition>
<confi g-property nane="Fil eSystenRootDi r"
type="java.lang. String">/tnp/db/fs_store</config-property>
</ no-tx-connection-factory>
</ connection-factories>

The main attributes are:

JBoss Release 2 219

Connectors on JBoss

e jndi-name: This specifies where the connection factory will be bound into JNDI. For this deployment that
binding will bej ava: / NoTr ansFs.

e rar-name: Thisis the name of the RAR file that contains the definition for the resource we want to provide.
For nested RAR files, the name would look like nyappl i cati on. ear #ny. rar. In thisexample, itissimply j ca-
exl.rar.

« connection-definition: Thisis the connection factory interface class. It should match the connect i onf act ory-i nter -

face in the ra. xm file. Here our connection factory interface is
org.j boss. book. j ca. exl1.ra. D r Cont ext Factory.

« config-property: This can be used to provide non-default settings to the resource adaptor connection factory.
Herethe Fi | eSyst enRoot Di r isbeing set to/t np/ db/ fs_st or e. This overrides the default value in the ra. xm
file.

To deploy the RAR and connection manager configuration to the JBoss server, run the following:

[exanpl es] $ ant - Dchap=jca config

The server console will display some logging output indicating that the resource adaptor has been deployed.

Now we want to test access of the resource adaptor by a J2EE component. To do this we have created a trivia
stateless session bean that has a single method called echo. Inside of the echo method the EJB accesses the re-
source adaptor connection factory, creates a connection, and then immediately closes the connection. The echo
method code is shown below.

Example 6.3. The stateless session bean echo method code that shows the access of the resource adaptor
connection factory.

public String echo(String arQg)

{
| og.info("echo, arg="+arg);
try {
Initial Context ctx = new I nitial Context();
bj ect ref = ctx.lookup("java: conp/env/ral/DirContextFactory");
| 0og.info("echo, ral/DirContextFactory=" + ref);
Di r Cont ext Factory dcf = (DirContextFactory) ref;
| og.info("echo, found dcf=" + dcf);
Di r Cont ext dc = dcf. get Connection();
| 0og.info("echo, |ookup dc=" + dc);
dc. cl ose();
} catch(Nami ngException e) {
|l og.error("Failed during JNDI access", e);
}
return arg;
}

The EJB is not using the CCI interface to access the resource adaptor. Rather, it is using the resource adaptor spe-
cific APl based on the proprietary Di r Cont ext Fact ory interface that returns a JNDI bi r Cont ext Object as the con-
nection object. The example EJB is simply exercising the system contract layer by looking up the resource adaptor

JBoss Release 2 220

Connectors on JBoss

connection factory, creating a connection to the resource and closing the connection. The EJB does not actually do
anything with the connection, as this would only exercise the resource adaptor implementation since this is a non-
transactional resource.

Run the test client which calls the EchoBean. echo method by running Ant as follows from the examples directory:

[exanpl es]$ ant -Dchap=jca -Dex=1 run-exanpl e

Y ou'll see some output from the bean in the system console, but much more detailed logging output can be found in
the server/defaul t/1 og/ server. | og file. Don't worry if you see exceptions. They are just stack traces to high-
light the call path into parts of the adaptor. To help understand the interaction between the adaptor and the JBoss
JCA layer, we'll summarize the events seen in the log using a sequence diagram. Figure 6.4 is a sequence diagram
that summarizes the events that occur when the EchoBean accesses the resource adaptor connection factory from
JNDI and creates a connection.

BanpICo e CLLOAE ACLOCE

Basefool Ietasnaliansgedonnsceianbeal Fiangr&lennactinFustary

g i I I
PArContextractory Cmms Lot (TSR ET A LT ImierpalPesl
i bieComtantFac coprylng WuTuleesmec t1onHanager : o
&

Echaliean T T T
B e i bacatacmnection hungeeCommedtisnTartacy, Cues choniaquan tInEs 1 0 act

—_— { |

|

1

: Hansscd umacylivn |
20 el PERRALAE B SR] T T T

Figure 6.4. A sequence diagram illustrating the key inter actions between the JBossCX framework and the
example resour ce adaptor that result when the EchoBean accesses the resour ce adaptor connection factory.

The starting point is the client's invocation of the EchoBean. echo method. For the sake of conciseness of the dia-
gram, the client is shown directly invoking the EchoBean.echo method when in reality the JBoss EJB container
handles the invocation. There are three distinct interactions between the EchoBean and the resource adaptor; the
lookup of the connection factory, the creation of a connection, and the close of the connection.

The lookup of the resource adaptor connection factory isillustrated by the 1.1 sequences of events. The events are:
e 1, the echo method invokes the get Connecti on method on the resource adaptor connection factory obtained

from the JNDI lookup on the java: conp/env/ralDirContext Factory hame which is a link to the
j ava: / NoTr ansFS location.

JBoss Release 2 221

Connectors on JBoss

« 1.1, the DirContext Fact oryl npl class asks its associated Connecti onManager to alocate a connection. It
passes in the ManagedConnect i onFact ory and FSRequest I nf o that were associated with the Di r Cont ext Fact -
oryl npl during its construction.

e 1.1.1, the connecti onManager invokes its get ManagedConnect i on method with the current Subj ect and Fs-
Request | nf o.

* 11.1.1, the Connecti onManager asks its object pool for a connection object. The JBossManagedConnect i on-
Pool $BasePool is get the key for the connection and then asks the matching I nt er nal Pool for aconnection.

« 1.1.1.1.1, Since no connections have been created the pool must create a new connection. This is done by re-
guesting a new managed connection from the ManagedConnect i onFact ory. The Subj ect associated with the
pool as well as the FSRequest | nf o data are passed as arguments to the cr eat eManagedConnect i on method in-
vocation.

¢ 1.1.1.1.1.1, the Connecti onFact ory creates a new FSManagedConnect i on instance and passes in the Subj ect
and FSRequest | nf o data.

e 1.1.1.2 ajavax.resource. spi. Connecti onLi st ener instance is created. The type of listener created is based
on the type of Connect i onManager . In this case it is an
org. j boss. resource. connect i onngr. BaseConnect i onManager 2$NoTr ansact i onLi st ener instance.

e 1.1.1.2.1, thelistener registersas aj avax. r esour ce. spi . Connect i onEvent Li st ener With the ManagedConnec-
ti on instancecreatedin 1.2.1.1.

e 1.1.2, the ManagedConnect i on is asked for the underlying resource manager connection. The Subj ect and Fs-
Request | nf o data are passed as arguments to the get Connect i on method invocation.

» The resulting connection object is cast to a j avax. nani ng. di rect ory. Di r Cont ext instance since this is the
public interface defined by the resource adaptor.

» After the EchoBean has obtained the Di r Cont ext for the resource adaptor, it simply closes the connection to in-
dicate itsinteraction with the resource manager is complete.

This concludes the resource adaptor example. Our investigation into the interaction between the JBossCX layer and
atrivial resource adaptor should give you sufficient understanding of the steps required to configure any resource
adaptor. The example adaptor can also serve as a starting point for the creation of your own custom resource ad-
aptorsif you need to integrate non-JDBC resources into the JBOss server environment.

6.3. Configuring JDBC DataSources

Rather than configuring the connection manager factory related MBeans discussed in the previous section via a
mbean services deployment descriptor, JBoss provides a simplified datasource centric descriptor. This is trans-
formed into the standard j boss- servi ce. xm MBean services deployment descriptor using a XSL transform ap-
plied by the or g. j boss. depl oynent . XSLSubDepl oyer included in the j boss-j ca. sar deployment. The simplified
configuration descriptor is deployed the same as other deployable components. The descriptor must be hamed us-
inga*-ds. xm patternin order to be recognized by the XSLSubDepl oyer .

The schema for the top-level datasource elements of the *-ds. xni configuration deployment file is shown in Fig-

JBoss Release 2 222

Connectors on JBoss

ure 6.5.

|+ mbeang
;f
j;’ + local-ix-datasource i
1 + xa-datasource
+ datasourcesy &/
HH + no-ix-datasource g

\ | * ha-local-tx-datasource

HL + ha-xa-datasnun:eE

Figure 6.5. The simplified JCA DataSour ce configuration descriptor top-level schema elements

Multiple datasource configurations may be specified in a configuration deployment file. The child elements of the
datasources root are:

mbean: Any number mbean elements may be specified to define MBean services that should be included in the
j boss-service. xm descriptor that results from the transformation. This may be used to configure services
used by the datasources.

no-tx-datasource: This element is used to specify the (org. j boss. resour ce. connect i onmanager) NoTxCon-
necti onManager Service configuration. NoTxConnect i onManager iSaJCA connection manager with no transac-
tion support. The no- t x- dat asour ce child element schemais given in Figure 6.6.

local-tx-datasour ce: This element is used to specify the (or g. j boss. resour ce. connect i onmanager) Local Tx-
Connect i onManager Service configuration. Local TxConnect i onManager implements a Connecti onEvent L-
i stener that implements XAResour ce to manage transactions through the transaction manager. To ensure that
al work in alocal transaction occurs over the same ManagedConnect i on, it includes a xid to ManagedConnec-
ti on map. When a Connection is requested or a transaction started with a connection handlein use, it checksto
see if a ManagedConnect i on aready exists enrolled in the global transaction and uses it if found. Otherwise, a
free ManagedConnect i on has its Local Transacti on started and is used. The | ocal -t x- dat asour ce child ele-
ment schemais given in Figure 6.7

xa-datasour ce: This element is used to specify the (or g. j boss. resour ce. connect i onmanager) XATxConnec-
ti onManager Service configuration. XATxConnect i onManager implements a Connect i onEvent Li st ener that ob-
tains the XAResour ce t0 manage transactions through the transaction manager from the adaptor ManagedCon-
necti on. To ensure that all work in alocal transaction occurs over the same ManagedConnecti on, it includes a
xid to ManagedConnect i on map. When a Connecti on is requested or a transaction started with a connection
handlein use, it checksto seeif a ManagedConnect i on already exists enrolled in the global transaction and uses
it if found. Otherwise, a free ManagedConnecti on has its Local Transacti on started and is used. The xa-
dat asour ce child element schemais givenin Figure 6.8.

JBoss Release 2 223

Connectors on JBoss

« ha-local-tx-datasource: This element is identical to | ocal - t x- dat asour ce, with the addition of the experi-

mental datasource failover capability allowing JBoss to failover to an aternate database in the event of a data-
base failure.

¢ ha-xa-datasource: This element is identical to xa- dat asour ce, with the addition of the experimental data-
source failover capability allowing JBossto failover to an alternate database in the event of a database failure.

* ndi-nane m

?l * Uﬂ—jm-mntlﬂt4
|

|"' connection-urly

* :I'iulr-rhm:

(% * (ONneion-propenyms

r-f| * pasmrdq

i * ippl!:itlun-rrumnﬂl-:-u:unh';l

(3 + wefurity-domaing

-““x_ # U Ty —O i i — 2 o -2 pplCarion p

(7| * min-pool-sizey
* m-tx-dilasuun:e:_,_l F* ma:—pml-:u:e#

:T'i:. hlud-;ing"-lmnu.l.-niliaq

(4 + HH—IFI'I‘IPHI]-I’—I'I'II'IIJI'!"L:

(3| * new-connecion-sgly

7" dﬂ—ﬁld—mnn&:ﬂm—ﬂqlq

(7 * vahd -Lnﬂnemnn-dltd.u—:h.ﬂ--nmq'

-;‘_-?; + r:rr[ﬂim-‘hnrtlr-rh“-n:rr-;

(7| * TrACk—STATEmEnTS —

(7| * prepared-statement-cache-size

(7| * share-prepared-statements

:_5‘_|"' depmds-q

_(3* type-mapping g

Figure 6.6. The non-transactional DataSour ce configuration schema

JBoss Release 2 224

Connectors on JBoss

+ pndi-name

E

* uu-jn:-:nm:tq

* CONMECTion-ur s

* drrver-dassy

| * Transacion—isolaken n

1}

+* r.mn!l:l:m—pmp-ertfq
| # Luer-name -

s

| * password g

LETH

i * mpiralh-mmg-.&-pmﬁ|-|

sf,w.(# security-domain

e smntr-dmmn—am-a.pnl:i.umq

-
B
-

¥ an—pnnI—ﬂu#

+ hocal-te-datasource T nm—pnnl-il:&*

oy + Il ki —Tirrvesdn on - |6S -

il

[* hﬂt—'ﬁnmrt—ninmsq

* no-tu-separ ';ié-;'-'m'hl-l

Eal

7| ¥ NEW-COnNnecson-sgls

| * cheds-valid -connection-sql

ksl

Lol 1
)

* “H—Ehm&mm—ﬂim—ﬂl!!—ﬂlm#

7| * excepuon-sorter-class-name g

| # Irack-SIatements -

5| * prepared-statement-cache-sizeyy

P + share-prepaned-stalements

ol ¥ dependsy

|5 F Ty =-mapning

Figure 6.7. The non-XA DataSour ce configuration schema

JBoss Release 2

225

Connectors on JBoss

+ Xa-datasounce

|"' e =java~rnntext 5

]

* m—mm-w—mcl

+ xa-datasource-dassy

f .'-|'* ¥a=datasnuroe-progeeriy

1t I:SamRH—mmu—valutq

7 mmmnn—um*

3 4 wser-name

.-_;,::{-i pamdﬂ

|*# applicaton-managed-securivy -

i ’*'i:dhﬁl&ﬁﬁiﬁq

_:* ::rurit'p—:hrrla.h—lnd—appliuﬁurlq

!

* mm—pnnl-slzeq

]

2 mu-pﬂd—mtq

]

|"' Hnrhngvhmul-mllsq

—

+ idle-EmEsUT- M nUTEES

=

+ no-x-separate-pools, |

il

* nw=ronnection=sql

—
Dty

* mul:—ulu—tnmmnn—:qiﬂ

)

!

+ \ald—mmm-medur—dﬂs-mmq

ph

* grnphnn-mrlrr-dm-n:u‘n-h{

fi,:|'+ rack-statements —

(7| * prepared-smatement-cache-sizey

73|+ share-prepared-statements |

[_{* depends =

7| * type-mapping g

Figure 6.8. The XA DataSour ce configuration schema

JBoss Release 2

226

Connectors on JBoss

* jndi-name

3|2 taa—jeva—contexty

™ I:I:II'H'I-E:I]M—III'I#

+ uﬂuﬁﬁﬁ
|- driver -rlass o

1:| * ransaction-izolation 5

Lk

<) ® COONACTION-PIOPeTTY e

* user-mame

[

?1 * paiswond s

| * applicabon-managed-secu ity

.-"'f |'I :acurm*-nlnrrmnq

JA,

=
B

- ummp.unum-ud-:ppnuunq

=]

* mll-m|-!l!!4

i hl—lﬂﬂ]—tﬂ.m!

b - m.al—fnﬂl-u?g-ﬂl

-,:|-t hincking timeout millisg

1.1 * inlle-riEmenun—mimnes =

71 no-x-separate-pools-

|"' new-connection-sals

it

bl ﬂllﬂ*ﬂﬂrﬂmmm-ﬂlg

I=d]

]

+ valid-connection- checker-dass-name 4

AN

L Hll'pm--mr\l'-d.lll-ﬂ.'-q

—
r

) mﬂ:-mtemerm:_l

-_.1 * prepared-starement—cache-size o

e R r_lﬁm-prr;nmd—:t:lrm—h

-1 * depemd:s

+{ * ype-mappingy

Figure 6.9. The schema for the experimental non-XA DataSour ce with failover

JBoss Release 2

227

Connectors on JBoss

|I' jmdi-name

|'_.i.|‘ m.i-—j.m—rmwn:!

|' tratk—ounnes o n-by-Us -
1

|“ sa-dalasare-caiig

::_{-l' WO TIITRCA LT - A P
|* - Ty

|"u|—|kln|l:'|.uj

i-'!'ii irﬁ.nq..l-mrﬂdr-nhqq

i ;:-.I * ITANSACTINN - ol atha n

,-jliuw-naruq

'?",. Iimrmp-mn

|
.11* lnhr-wul-ﬂr-,,i

" qun-rlruum-md-:pplrmm!i
* hg-Ma :hh:.m: |

,Ili 2~ Y = ST

,-I'.ll' I:Hn-:n'hg-t-'lnnl.rt-nns::

.-_,.{-?Tii;_m'_"ﬁ;ﬂmu
.1|* OETH =58 (e - b |
;'I;-l-i - L AECTRA N il:'=|

,-;r',ll' dﬂ-\nﬂ-mmd:ﬂ#

.?:Il- Wl I T w55 Tt
i3 | # pEreqian- mr-rhﬂ-rl.lru#
;:,'-,I'I' track - STATEmEnTs|

;-;..I # propared -sistementcache-uzey

il ANATe—(Ir P pared - SLATEN TS
.:=.|1 dependse

-0} opscnoyeee

Figure 6.10. The schema for the experimental XA Datasour ce with failover

Elements that are common to all datasources include:

e jndi-name: The JNDI name under which the Dat aSour ce wrapper will be bound. Note that this nameisrelative
tothejava: / context, unlessuse-j ava- cont ext is set to false. Dat aSour ce wrappers are not usable outside of
the server VM, so they are normally bound under thej ava: /, which isn't shared outside the local VM.

* usejava-context: If thisis set to false the the datasource will be bound in the global INDI context rather than

JBoss Release 2 228

Connectors on JBoss

thej ava: context.

user-name: This element specifies the default username used when creating a new connection. The actual user-
name may be overridden by the application code get Connect i on parameters or the connection creation context
JAAS Subject.

passwor d: This element specifies the default password used when creating a new connection. The actual pass-
word may be overridden by the application code get Connect i on parameters or the connection creation context
JAAS Subject.

application-managed-security: Specifying this element indicates that connections in the pool should be distin-
guished by application code supplied parameters, such as from get Connecti on(user, pw).

security-domain: Specifying this element indicates that connections in the pool should be distinguished by
JAAS Subject based information. The content of the securi t y- domai n is the name of the JAAS security man-
ager that will handle authentication. This name correlates to the JAAS | ogi n- confi g. xni descriptor appl i ca-
tion- pol i cy/ nane attribute.

security-domain-and-application: Specifying this element indicates that connections in the pool should be
distinguished both by application code supplied parameters and JAAS Subject based information. The content
of the securi ty-domai n is the name of the JAAS security manager that will handle authentication. This name
correlatesto the JAAS | ogi n- confi g. xm descriptor appl i cati on- pol i cy/ name attribute.

min-pool-size: This element specifies the minimum number of connections a pool should hold. These pool in-
stances are not created until an initial request for a connection is made. This default to O.

max-pool-size: This element specifies the maximum number of connections for a pool. No more than the nax-
pool - si ze humber of connections will be created in a pool. This defaults to 20.

blocking-timeout-millis: This element specifies the maximum time in milliseconds to block while waiting for
a connection before throwing an exception. Note that this blocks only while waiting for a permit for a connec-
tion, and will never throw an exception if creating a new connection takes an inordinately long time. The de-
fault is 5000.

idle-timeout-minutes: This element specifies the maximum time in minutes a connection may be idle before
being closed. The actual maximum time depends also on the | dl eRenover scan time, which is 1/2 the smallest
idle-timeout-minutes of any pool.

new-connection-sgl: Thisis a SQL statement that should be executed when a new connection is created. This
can be used to configure a connection with database specific settings not configurable via connection proper-
ties.

check-valid-connection-sgl: Thisis a SQL statement that should be run on a connection before it is returned
from the pool to test its validity to test for stale pool connections. An example statement could be: sel ect
count (*) from x.

exception-sor ter -class-name: This specifies a class that implements the
org. j boss. resource. adapt er . j dbc. Excepti onSorter interface to examine database exceptions to determine
whether or not the exception indicates a connection error. Current implementations include:

e org.jboss.resource.adapter.jdbc.vendor.OracleExceptionSorter

JBoss Release 2 229

Connectors on JBoss

e org.jboss.resource.adapter.jdbc.vendor.MySQL ExceptionSorter
* org.jboss.resource.adapter.jdbc.vendor.SybaseExceptionSorter
e org.jboss.resource.adapter.jdbc.vendor.lnformixExceptionSorte

» valid-connection-checker-class-name: This specifies a class that implements the
org. j boss. resource. adapt er . j dbc. Val i dConnect i onChecker interface to provide a SQLException isVval -
i dConnecti on(Connection e) method that is called with a connection that is to be returned from the pool to
test its validity. This overrides the check- val i d- connecti on-sgl when present. The only provided implement-
ationisorg. j boss. resour ce. adapt er . j dbc. vendor . Or acl eVal i dConnect i onChecker .

e track-statements: This boolean element specifies whether to check for unclosed statements when a connection
is returned to the pool. If true, a warning message is issued for each unclosed statement. If the logdj category
org. j boss. resource. adapt er . j dbc. W appedConnect i on has trace level enabled, a stack trace of the connec-
tion close call islogged aswell. Thisis adebug feature that can be turned off in production.

e prepared-statement-cache-size: This element specifies the number of prepared statements per connection in
an LRU cache, which is keyed by the SQL query. Setting this to zero disables the cache.

e depends: The depends element specifies the IMX bj ect Nane string of a service that the connection manager
services depend on. The connection manager service will not be started until the dependent services have been
started.

* type-mapping: This element declares a default type mapping for this datasource. The type mapping should
match at ype- mappi ng/ name e ement from st andar dj bosscnp- j dbc. xn .

Additional common child e ements for both no- t x- dat asour ce and | ocal - t x- dat asour ce include:

e connection-url: This is the JDBC driver connection URL string, for example, jd-
bc: hsqgl db: hsqgl : / /1 ocal host: 1701.

e driver-class: Thisisthe fully qualified name of the JDBC driver class, for example, or g. hsql db. j dbcDri ver.

» connection-property: The connecti on- property element allows you to passin arbitrary connection properties
tothejava. sql . Driver. connect (url, props) method. Each connecti on-property specifies a string name/
value pair with the property name coming from the name attribute and the value coming from the element con-
tent.

Elements in common to the | ocal - t x- dat asour ce and xa- dat asour ce are;

e transaction-isolation: This element specifies thej ava. sql . Connecti on transaction isolation level to use. The
constants defined in the Connection interface are the possible el ement content values and include:

* TRANSACTION_READ_UNCOMMITTED
» TRANSACTION_READ_COMMITTED

* TRANSACTION_REPEATABLE_READ

» TRANSACTION_SERIALIZABLE

* TRANSACTION_NONE

e no-tx-separate-pools. The presence of this element indicates that two connection pools are required to isolate
connections used with JTA transaction from those used without a JTA transaction. The pools are lazily con-

JBoss Release 2 230

Connectors on JBoss

structed on first use. Its use case is for Oracle (and possibly other vendors) XA implementations that don't like
using an XA connection with and without a JTA transaction.

The unique xa- dat asour ce child elements are:

track-connection-by-tx: Specifying atrue value for this element makes the connection manager keep an xid to
connection map and only put the connection back in the pool when the transaction completes and all the con-
nection handles are closed or disassociated (by the method calls returning). As a side effect, we never suspend
and resume the xid on the connection's xAResour ce. Thisis the same connection tracking behavior used for loc-
a transactions.

The XA spec implies that any connection may be enrolled in any transaction using any xid for that transaction
at any time from any thread (suspending other transactions if necessary). The original JCA implementation as-
sumed this and aggressively delisted connections and put them back in the pool as soon as control left the EJB
they were used in or handles were closed. Since some other transaction could be using the connection the next
time work needed to be done on the original transaction, there is no way to get the original connection back. It
turns out that most xAbat aSour ce driver vendors do not support this, and require that al work done under a
particular xid go through the same connection.

xa-datasour ce-class: The fully qualified name of the j avax. sql . XADat aSour ce implementation class, for ex-
ample, com i nf orni x. j dbex. | f xXADat aSour ce.

xa-datasour ce-property: The xa- dat asour ce- property element allows for specification of the properties to
assign to the xAbat aSour ce implementation class. Each property is identified by the name attribute and the
property value is given by the xa- dat asour ce- property element content. The property is mapped onto the
XADat aSour ce implementation by looking for a JavaBeans style getter method for the property name. If found,
the value of the property is set using the JavaBeans setter with the element text translated to the true property
type using thej ava. beans. Propert yEdi t or for thetype.

isSameRM-override-value:. A boolean flag that alows one to override the behavior of the
j avax. transacti on. xa. XAResour ce. i sSameRM XAResour ce xaRes) method behavior on the XA managed
connection. If specified, this value is used unconditionally as the i sSaneRM xaRes) return value regardless of
the xaRes parameter.

The failover options common to ha- xa- dat asour ce and ha- | ocal -t x- dat asour ce are:

url-delimeter: This element specifies a character used to separate multiple JDBC URLSs.

url-property: In the case of XA datasources, this property specifies the name of the xa- dat asour ce- property
that containsthe list of JDBC URLSsto use.

Example configurations for many third-party JDBC drivers are included in the JB0SS_DI ST/ docs/ exanpl es/ j ca
directory. Current example configurations include:

asapxcess-jb3.2-ds.xml
cicsr9s-servicexml
db2-ds.xml
db2-xa-ds.xml
facets-ds.xml

JBoss Release 2 231

Connectors on JBoss

o fast-objects-jboss32-ds.xml
e firebird-ds.xml

e firstsgl-ds.xml

o firstsgl-xa-ds.xml

e generic-ds.xml

e hsgldb-ds.xml

e informix-ds.xml

e informix-xa-ds.xml
e jdatastore-ds.xml

e jms-dsxml

* jsgl-dsxml

e lido-versant-service.xml
e mimer-ds.xml

e mimer-xa-ds.xml

* msaccess-ds.xml

* mssgl-ds.xml

e mssgl-xa-ds.xml

e mysgl-ds.xml

e oracle-ds.xml

e oracle-xa-dsxml

e postgres-ds.xml

» sapdb-ds.xml

e sapr3-ds.xml

e solid-ds.xml

e sybase-ds.xml

6.4. Configuring Generic JCA Adaptors

The XSL SubDeployer aso supports the deployment of arbitrary non-JDBC JCA resource adaptors. The schemafor
the top-level connection factory elements of the*- ds. xm configuration deployment file is shown in Figure 6.11.

+ mheanE

+ connection-factoriesy 5 * x-connection-factoryg

* no-tx-connection-factoryg

Figure 6.11. The simplified JCA adaptor connection factory configuration descriptor top-level schema
elements

Multiple connection factory configurations may be specified in a configuration deployment file. The child elements
of the connecti on-fact ori es root are:

* mbean: Any number mbean elements may be specified to define MBean services that should be included in the

JBoss Release 2 232

Connectors on JBoss

j boss-service. xm descriptor that results from the transformation. This may be used to configure additional
services used by the adaptor.

¢ no-tx-connection-factory: this element is used to specify the (org. | boss. resource. connecti onmanager)
NoTxConnect i onManager Service configuration. NoTxConnect i onManager isaJCA connection manager with no
transaction support. The no-t x- connecti on- f act ory child element schemais given in Figure 6.12.

* tx-connection-factory: this element is used to specify the (or g. j boss. r esour ce. connect i onmanager) TxCon-
necti onManager service configuration. The t x- connecti on-fact ory child element schema is given in Fig-
ure 6.13.

+ jndi—name%

7 * rar-name%

@ * mnnecﬁnn-deﬁniﬁnn%

g mnﬁg-pmpem%

+ application-managed-security

@ + seu:uriqr-dnmain%

+ no-tx-connection-factory

+ securiw-dnmain-and-applitaﬁnn%

5 * min-pnnl-size%

) * max-punl-size%

@ * hludting-timenut-millis%

5 * idle-ﬁmeuut-minutes%

II.-"H.

3) ¢ depends%

| 5 * t'ml!-mappinga

Figure 6.12. The no-tx-connection-factory element schema

JBoss Release 2 233

Connectors on JBoss

jndi-name%

+ In[al-l]'ansal:linnE
= <
+ Xa-transaction

@ + track-connection-by-tx

= o
7 ¢ rar name%

7 * mnne:ﬁnn-deﬁniﬂnn%

@ * tnnﬁg-pmperw%

+ application-managed-security

* D-connection-factory

@ * securit',f-dnmain%

. 5El:uriw-dnmain-and-appli[atinn%

7 * min-pnnl-size%

> i
7| * max-pool smﬁ

@ * hlntking-timenut—millis%

7 * idle-l:imenut-minutes%

+ -X- =
(7| * no-tx-separate-pools

@ * depends%

| * type-mapping%

Figure 6.13. The tx-connection-factory element schema

The majority of the elements are the same as those of the datasources configuration. The element unique to the con-

JBoss Release 2 234

Connectors on JBoss

nection factory configuration include:

adaptor-display-name: A human readable display name to assign to the connection manager MBean.
local-transaction: This element specifies that thet x- connect i on-f act ory supportslocal transactions.
xa-transaction: This element specifies that thet x- connect i on-f act ory supports XA transactions.

track-connection-by-tx: This element specifies that a connection should be used only on a single transaction
and that a transaction should only be associated with one connection.

rar-name: This is the name of the RAR file that contains the definition for the resource we want to provide.
For nested RAR files, the name would look like nyappl i cati on. ear #ny. rar.

connection-definition: Thisisthe connection factory interface class. It should match the connecti onfact ory-inter-
face inthera. xnl file.

config-property: Any number of properties to supply to the ManagedConnect i onFact ory (MCF) MBean ser-
vice configuration. Each confi g-property element specifies the vaue of a MCF property. The confi g-
property element has two required attributes:

* name: The name of the property
» type Thefully qualified type of the property

The content of the confi g- property element provides the string representation of the property value. This will
be converted to the true property type using the associated type Pr opert yEdi t or .

JBoss Release 2 235

Security on JBoss
J2EE Security Configuration and Architecture

Security is afundamental part of any enterprise application. Y ou need to be able to restrict who is allowed to access
your applications and control what operations application users may perform. The J2EE specifications define a
simple role-based security model for EJBs and web components. The JBoss component framework that handles se-
curity is the JBossSX extension framework. The JBossSX security extension provides support for both the role-
based declarative J2EE security model and integration of custom security via a security proxy layer. The default
implementation of the declarative security model is based on Java Authentication and Authorization Service
(JAAYS) login modules and subjects. The security proxy layer allows custom security that cannot be described using
the declarative model to be added to an EJB in away that is independent of the EJB business object. Before getting
into the JBoss security implementation details, we will review EJB and servlet specification security models, as
well as JAASto establish the foundation for these details.

7.1. J2EE Declarative Security Overview

The J2EE security model declarative in that you describe the security roles and permissions in a standard XML
descriptor rather than embedding security into your business component. This isolates security from business-level
code because security tends to be more a function of where the component is deployed than an inherent aspect of
the component's business logic. For example, consider an ATM component that is to be used to access a bank ac-
count. The security requirements, roles and permissions will vary independently of how you access the bank ac-
count, based on what bank is managing the account, where the ATM islocated, and so on.

Securing a J2EE application is based on the specification of the application security requirements via the standard
J2EE deployment descriptors. Y ou secure access to EJBs and web components in an enterprise application by using
theejb-jar.xm andweb. xni deployment descriptors. The following sections look at the purpose and usage of the
various security elements.

7.1.1. Security References

Both EJBs and servlets can declare one or moresecuri ty-rol e-ref elementsas shown in Figure 7.1. This element
declares that a component is using the r ol e- nanme value as an argument to the i sCal | er I nRol e(String) method.
By using thei scal | er I nRol e method, a component can verify whether the caller isin arole that has been declared
with asecurity-rol e-ref/rol e-name element. Therol e- nane element value must link to asecurity-rol e ee-
ment through ther ol e-1i nk element. Thetypical use of i sCal | er I nRol e isto perform a security check that cannot
be defined by using the role-based net hod- per ni ssi ons elements.

JBoss Release 2 236

Security on JBoss

= ® i -
(7 =
S
e R desmpﬁnn%
| descriptionType

+ security-role-refz|| |+ mle-name%
security-role-refType role-nameType

+ role-link

e
HE
role-nameType

Figure 7.1. The security-role-ref element

Example 7.1 showsthe use of security-role-ref inanejb-jar. xm .

Example 7.1. An g b-jar.xml descriptor fragment that illustratesthe security-role-ref element usage.

<l-- A sanple ejb-jar.xm fragment -->
<ej b-j ar>
<ent erpri se- beans>
<sessi on>
<ej b- name>ASessi onBean</ ej b- name>

<security-role-ref>
<r ol e- nane>TheRol el Check</r ol e- nane>
<rol e-1ink>TheAppl i cati onRol e</rol e-li nk>
</security-role-ref>
</ sessi on>
</ enterprise-beans>

</éjb-jar>

Example 7.2 showsthe use of security-rol e-ref inaweb. xm .

Example 7.2. An example web.xml descriptor fragment that illustratesthe security-role-ref element usage.

<web- app>
<servl et >
<ser vl et - name>ASer vl et </ ser vl et - nanme>

<security-role-ref>
<r ol e- name>TheSer vl et Rol e</ r ol e- name>
<rol e-1ink>TheAppl i cati onRol e</rol e-1ink>
</security-role-ref>
</servlet>

</ web- app>

JBoss Release 2 237

Security on JBoss

7.1.2. Security Identity

An EJB has the capability to specify what identity an EJB should use when it invokes methods on other compon-
entsusing thesecurity-i dentity element, shownin Figure 7.2

— @[1dg
D ;
e desmpﬁnn%
" | descriptionType

* security-identityz_ - -
security-identiby Type o + use-caller-iden Uty

_u‘;{ EmMptyType
“~__|* run-as]
run-asType

Figure 7.2. The security-identity element

The invocation identity can be that of the current caller, or it can be a specific role. The application assembler uses
the security-identity element with ause-caller-identity child element to indicate that the current caler's
identity should be propagated as the security identity for method invocations made by the EJB. Propagation of the
caller'sidentity isthe default used in the absence of an explicit securi ty-identity element declaration.

Alternatively, the application assembler can use the r un- as/ r ol e- nane child element to specify that a specific se-
curity role given by the rol e- nane value should be used as the security identity for method invocations made by
the EJB. Note that this does not change the caller's identity as seen by the EJBCont ext . get Cal | er Pri nci pal ()
method. Rather, the caler's security roles are set to the single role specified by the run- as/rol e- name element
value. One use case for the r un- as element isto prevent external clients from accessing internal EJBs. Y ou accom-
plish this by assigning the internal EJB net hod- per ni ssi on elements that restrict access to a role never assigned to
an external client. EJBs that need to use internal EJB are then configured with ar un- as/ rol e- name equal to the re-
stricted role. The following descriptor fragment that illustratessecuri ty-i denti ty element usage.

<l-- A sanple ejb-jar.xm fragnment -->
<ej b-jar>
<ent er pri se- beans>
<sessi on>
<ej b- nane>ASessi onBean</ ej b- nanme>
<l-- ... -->

<security-identity>
<use-cal ler-identity/>
</security-identity>
</ sessi on>
<sessi on>
<ej b- name>RunAsBean</ ej b- name>
<l-- ... -->
<security-identity>
<run-as>
<description>A private internal role</description>
<r ol e- name>| nt er nal Rol e</r ol e- nane>
</run-as>
</security-identity>
</ sessi on>

JBoss Release 2 238

Security on JBoss

</ enterprise-beans>
<l-- ... -->
</ejb-jar>

When you use r un- as to assign a specific role to outgoing calls, JBoss associates a principal named anonynous. |If
you want another prinicipal to be associated with the call, you need to associate ar un- as- pri nci pal with the bean
inthej boss. xm file. The following fragment associates a principal named i nt er nal with RunAsBean from the pri-
or example.

<sessi on>
<ej b- name>RunAsBean</ ej b- name>
<security-identity>
<run-as- princi pal >i nternal </run-as-princi pal >
</security-identity>
</ sessi on>

Therun-as element is aso available in servlet definitions in aweb. xni file. The following example shows how to
assigntherole| nt er nal Rol e to aservlet:

<servl et >
<ser vl et - nane>ASer vl et </ ser vl et - nane>
<l-- .. -->
<run-as>
<r ol e- nanme>I nt er nal Rol e</ r ol e- nane>
</run-as>
</ servl et >

Calls from this serviet will be associated with the anonymous pri nci pal . Therun- as- pri nci pal element is avail-
able in the j boss-web. xni file to assign a specific principa to go along with the r un- as role. The following frag-
ment shows how to associate a principal named i nt er nal to the servlet in the prior example.

<servl et >
<ser vl et - name>ASer vl et </ ser vl et - nanme>
<run-as- princi pal >i nternal </run-as-princi pal >
</servl et >

7.1.3. Security roles

The security role name referenced by either the security-rol e-ref Or security-identity element needsto map
to one of the application's declared roles. An application assembler defines logical security roles by declaring se-
curity-role elements. The rol e-nane value is a logical application role name like Administrator, Architect,
SalesManager, etc.

The J2EE specifications note that it isimportant to keep in mind that the security roles in the deployment descriptor
are used to define the logical security view of an application. Roles defined in the J2EE deployment descriptors
should not be confused with the user groups, users, principals, and other concepts that exist in the target enterprise's
operational environment. The deployment descriptor roles are application constructs with application domain-spe-
cific names. For example, a banking application might use role names such as BankManager, Teller, or Customer.

JBoss Release 2 239

Security on JBoss

— @[* idg
D ;

e desmpﬁnn%
descriptionType

+ security-role z_
SECUrity-roleType S iEEname F_Hr' id n
= 3 -

role-nameType ‘ D)

Figure 7.3. The security-role element

In JBoss, asecurity-rol e element is only used to map security-rol e-ref/rol e- nane values to the logica role
that the component role references. The user's assigned roles are a dynamic function of the application's security
manager, as you will see when we discuss the JBossSX implementation details. JBoss does not require the defini-
tion of security-rol e elements in order to declare method permissions. However, the specification of securi ty-
rol e elements is still a recommended practice to ensure portability across application servers and for deployment
descriptor maintenance. Example 7.3 shows the usage of thesecurity-rol e inanej b-jar. xm file.

Example 7.3. An g b-jar.xml descriptor fragment that illustrates the security-role element usage.

<I-- A sanple ejb-jar.xm fragment -->
<ej b-j ar>
<l-- ... -->
<assenbl y- descri ptor>
<security-rol e>
<descri pti on>The single application rol e</description>
<r ol e- nane>TheAppl i cati onRol e</r ol e- name>
</security-rol e>
</ assenbl y- descri pt or >
</ejb-jar>

Example 7.4 shows the usage of the security-rol e inanweb. xm file.

Example 7.4. An example web.xml descriptor fragment that illustrates the security-role element usage.

<I-- A sanple web.xm fragnment -->
<web- app>
<l-- ... -->
<security-rol e>
<descri pti on>The single application rol e</description>
<r ol e- name>TheAppl i cati onRol e</r ol e- nane>
</security-rol e>
</ web- app>

7.1.4. EJB method permissions

JBoss Release 2 240

Security on JBoss

An application assembler can set the roles that are allowed to invoke an EJB's home and remote interface methods
through method-permission element declarations.

r g

f'?.-" id] |
_:)JD =..

+ description
descriptionType

L=

—®

:

+ role-name
role-nameType

o

.h_r
r'“ﬁ.{::f-:k

-“-\-\-\""'\-_

’

+ I.II'Iﬂ'IEﬂ{EdE

emptyType

+ method-permission g
method-permissionType

il

L3 + mel:hndE

methodType

Figure 7.4. The method-per missions element

Each net hod- per ni ssi on element contains one or more role-name child elements that define the logical roles that
are allowed to access the EJB methods as identified by method child elements. Y ou can also specify an unchecked
element instead of ther ol e- name element to declare that any authenticated user can access the methods identified
by method child elements. In addition, you can declare that no one should have access to a method that has the ex-
clude-1ist element. If an EJB has methods that have not been declared as accessible by a role using a net hod-
perm ssi on element, the EJB methods default to being excluded from use. This is equivalent to defaulting the
methods into the excl ude-1i st.

r =

- r—’frl id)
Yp
- * ==
e dgsc_npunn%
descriptiohType
+ Ejh-namea
ejb-nameType
| * method-intf,
L% "
method-intfType
+ method z—
methodType * mﬂ:hnd-name%
method-nameType
—{@* iad
D J
3| * method-paramsz_ =) + method-param
. o
method-paramsType java-typeType

JBoss Release 2

241

Security on JBoss

Figure 7.5. The method element

There are three supported styles of method element declarations.
Thefirst is used for referring to all the home and component interface methods of the named enterprise bean:

<net hod>
<ej b- name>EJBNAME</ ej b- nane>
<met hod- name>* </ met hod- nanme>
</ met hod>

The second style is used for referring to a specified method of the home or component interface of the named enter-
prise bean:

<net hod>
<ej b- name>EJBNAME</ ej b- nanme>
<net hod- nane>METHOD</ net hod- nane>
</ met hod>

If there are multiple methods with the same overloaded name, this style refersto all of the overloaded methods.
The third styleis used to refer to a specified method within a set of methods with an overloaded name:

<met hod>
<ej b- name>EJBNAME</ ej b- nanme>
<met hod- nane>METHOD</ net hod- nanme>
<net hod- par ans>
<met hod- par anPPARAMETER 1</ et hod- par an>
<l-- ... -->
<met hod- par anPPARAMETER_N</ net hod- par an»
</ met hod- par ans>
</ met hod>

The method must be defined in the specified enterprise bean's home or remote interface. The method-param ele-
ment values are the fully qualified name of the corresponding method parameter type. If there are multiple methods
with the same overloaded signature, the permission appliesto all of the matching overloaded methods.

The optional et hod-i nt f element can be used to differentiate methods with the same name and signature that are
defined in both the home and remote interfaces of an enterprise bean.

Example 7.5 provides complete examples of the net hod- per mi ssi on element usage.

Example 7.5. An g b-jar.xml descriptor fragment that illustratesthe method-per mission element usage.

<ej b-j ar>
<assenbl y-descri pt or>
<met hod- per m ssi on>

<descri pti on>The enpl oyee and tenp-enpl oyee rol es may access any
nmet hod of the Enpl oyeeServi ce bean </description>

<r ol e- nane>enpl oyee</r ol e- name>

<r ol e- name>t enp- enpl oyee</r ol e- nane>

<met hod>
<ej b- name>Enpl oyeeSer vi ce</ ej b- nane>
<met hod- nane>* </ met hod- nane>

</ met hod>

JBoss Release 2 242

Security on JBoss

</ met hod- per nm ssi on>
<nmet hod- per m ssi on>
<descri pti on>The enpl oyee rol e nay access the findByPri maryKey,
get Enpl oyeel nfo, and the updat eEnpl oyeel nfo(String) nethod of
the AardvarkPayrol| bean </description>
<r ol e- nane>enpl oyee</r ol e- name>
<met hod>
<ej b- name>Aar dvar kPayr ol | </ ej b- nane>
<met hod- nane>f i ndByPri mar yKey</ met hod- nane>
</ met hod>
<met hod>
<ej b- name>Aar dvar kPayr ol | </ ej b- nane>
<net hod- nane>get Enpl oyeel nf o</ net hod- nanme>
</ met hod>
<met hod>
<ej b- name>Aar dvar kPayr ol | </ ej b- nane>
<met hod- nane>updat eEnpl oyeel nf o</ net hod- nanme>
<net hod- par ans>
<met hod- par an®j ava. | ang. Stri ng</ net hod- par an>
</ met hod- par ans>
</ met hod>
</ met hod- per m ssi on>
<net hod- per m ssi on>
<descri pti on>The admin role may access any nethod of the
Enpl oyeeServi ceAdni n bean </description>
<r ol e- name>adni n</r ol e- nane>
<met hod>
<ej b- nanme>Enpl oyeeSer vi ceAdm n</ ej b- nane>
<met hod- nane>* </ met hod- nane>
</ met hod>
</ met hod- per ni ssi on>
<met hod- per m ssi on>
<descri pti on>Any authenticated user may access any nethod of the
Enpl oyeeSer vi ceHel p bean</ descri pti on>
<unchecked/ >
<met hod>
<ej b- name>Enpl oyeeSer vi ceHel p</ ej b- name>
<nmet hod- nane>* </ net hod- nanme>
</ met hod>
</ met hod- per ni ssi on>
<excl ude-|ist>
<descri ption>No fireTheCTO net hods of the Enpl oyeeFiring bean may be
used in this depl oyment </ description>
<met hod>
<ej b- name>Enpl oyeeFi ri ng</ ej b- name>
<met hod- nane>f i r eTheCTO</ net hod- name>
</ met hod>
</ excl ude-1Ii st>
</ assenbl y-descri pt or >
</ejb-jar>

7.1.5. Web Content Security Constraints

In aweb application, security is defined by the roles that are allowed access to content by a URL pattern that iden-
tifies the protected content. This set of information is declared by using the web. xn security-constraint ele
ment.

JBoss Release 2 243

Security on JBoss

r -
£ o {‘{"} - Id=
D J

k, -

1

R display-name%

" | display-nameType

-.-'._ -
—] ll:.n.?} = |d=

b -

+ weh-msnum-name%
string

@ * des:ripu‘nn%
(4| * web-resource-collectionz_ descriptionType

e o ;
web-resource-collectionType] - IH'I-[IEIIETI‘I%
. url-patternType

(=) * hup-method
* security-constraintz_ “ | http-methodType
security-constraintType | T R

Pl N

@) 9

@ * descriplinn%

@ + al-l[h'EDI'ISIIEiI'I[E descriptionType
auth-constraintType =) mle-name#
role-nameType

r !
@2 \s

L, -

@) * des:ripﬁnn%
|| * user-data-constraintg descriptionType
user-data-constraintType e h'anspnrt-guarantee%
transpnrt—quarantEET\.'rJF_

Figure 7.6. The security-constraint element

The content to be secured is declared using one or more web-r esource-col | ecti on elements. Each web-re-
sour ce- col | ecti on element contains an optional series of url - pat t er n elements followed by an optional series of
ht t p- met hod elements. Theur | - pat t er n element value specifies a URL pattern against which arequest URL must
match for the request to correspond to an attempt to access secured content. The ht t p- net hod element value spe-
cifiesatype of HTTP request to allow.

The optional user - dat a- const rai nt element specifies the requirements for the transport layer of the client to serv-
er connection. The requirement may be for content integrity (preventing data tampering in the communication pro-
cess) or for confidentiality (preventing reading while in transit). The transport-guarantee element value specifies
the degree to which communication between the client and server should be protected. Its values are NONE, | NTEG-

RAL, and CONFI DENTI AL. A value of NONE means that the application does not require any transport guarantees. A
value of | NTEGRAL means that the application requires the data sent between the client and server to be sent in such
away that it can't be changed in transit. A value of CONFI DENTI AL means that the application requires the data to be

JBoss Release 2 244

Security on JBoss

transmitted in a fashion that prevents other entities from observing the contents of the transmission. In most cases,
the presence of the | NTEGRAL or CONFI DENTI AL flag indicates that the use of SSL is required.

The optional | ogi n- confi g element is used to configure the authentication method that should be used, the realm
name that should be used for rhw application, and the attributes that are needed by the form login mechanism.

[i g "
"

(7) * i[i::
i

L™ o

| * auth-method
auth-methodType

) * malm-name%

string
+ login-configz_! F= e)
login-configType — (7 IDI =
+ fnrm-lngin-page%
St = ~pathT
__(3) * form-login-configz_ R
form-login-configType + fnrm-errnr-pagl!%
war-pathType

Figure 7.7. Thelogin-config element

The aut h- met hod child element specifies the authentication mechanism for the web application. As a prerequisite
to gaining access to any web resources that are protected by an authorization constraint, a user must have authentic-
ated using the configured mechanism. Legal aut h- et hod values are BASI C, DI GEST, FORM and CLI ENT- CERT. The
real m name child element specifies the realm name to use in HTTP basic and digest authorization. The f or m | o-
gi n-confi g child element specifies the log in as well as error pages that should be used in form-based login. If the
aut h- met hod value is not FORM then f or m | ogi n- conf i g and its child elements are ignored.

As an example, theweb. xm descriptor fragment given in Example 7.6 indicates that any URL lying under the web
application's/restri cted path requires an Aut hori zedUser role. There is no required transport guarantee and the
authentication method used for obtaining the user identity is BASIC HT TP authentication.

Example 7.6. A web.xml descriptor fragment which illustrates the use of the security-constraint and related
elements.

<web- app>
<l-- ... -->
<security-constraint>
<web-resour ce-col | ecti on>
<web- r esour ce- nanme>Secur e Cont ent </ web- r esour ce- nane>
<url-pattern>/restricted/ *</url -pattern>
</ web-r esource-col | ecti on>
<aut h- const rai nt >
<r ol e- nane>Aut hori zedUser </ r ol e- nane>
</ aut h- constrai nt >

JBoss Release 2 245

Security on JBoss

<user - dat a- constrai nt >
<transport - guar ant ee>NONE</ t r ansport - guar ant ee>
</ user - dat a- const r ai nt >
</security-constraint>
<l-- ... -->
<l ogi n- confi g>
<aut h- met hod>BASI C</ aut h- net hod>
<real m nane>The Restricted Zone</real m name>
</ ogi n- confi g>
<l-- ... -->
<security-rol e>
<description>The role required to access restricted content </description>
<r ol e- nane>Aut hori zedUser </ r ol e- name>
</security-rol e>
</ web- app>

7.1.6. Enabling Declarative Security in JBoss

The J2EE security elements that have been covered so far describe the security requirements only from the applica-
tion's perspective. Because J2EE security elements declare logical roles, the application deployer maps the roles
from the application domain onto the deployment environment. The J2EE specifications omit these application
server-specific details. In JBoss, mapping the application roles onto the deployment environment entails specifying
a security manager that implements the J2EE security model using JBoss server specific deployment descriptors.
The details behind the security configuration are discussed in Section 7.3.

7.2. An Introduction to JAAS

The JBossSX framework is based on the JAAS API. It isimportant that you understand the basic elements of the
JAAS API to understand the implementation details of JBossSX. The following sections provide an introduction to
JAASto prepare you for the JBossSX architecture discussion later in this chapter.

7.2.1. What is JAAS?

The JAAS 1.0 API consists of a set of Java packages designed for user authentication and authorization. It imple-
ments a Java version of the standard Pluggable Authentication Module (PAM) framework and compatibly extends
the Java 2 Platform's access control architecture to support user-based authorization. JAAS was first released as an
extension package for JDK 1.3 and is bundled with JDK 1.4+. Because the JBossSX framework uses only the au-
thentication capabilities of JAAS to implement the declarative role-based J2EE security model, this introduction fo-
cuses on only that topic.

JAAS authentication is performed in a pluggable fashion. This permits Java applications to remain independent
from underlying authentication technol ogies and allows the JBossSX security manager to work in different security
infrastructures. Integration with a security infrastructure can be achieved without changing the JBossSX security
manager implementation. All that needs to change is the configuration of the authentication stack that JAAS uses.

7.2.1.1. The JAAS Core Classes

The JAAS core classes can be broken down into three categories. common, authentication, and authorization. The
following list presents only the common and authentication classes because these are the specific classes used to

JBoss Release 2 246

Security on JBoss

implement the functionality of JBossSX covered in this chapter.

The are the common classes:

e Subject (j avax.security. auth. Subj ect)
e Principal (java.security.Principal)

These are the authentication classes;

e Call back (j avax. security. aut h. cal | back. Cal | back)

e Cal | backHandl er (j avax. security. aut h. cal | back. Cal | backHandl er)
e Configuration (javax. security. auth. | ogin. Configuration)

* Logi nCont ext (j avax. security. auth. | ogi n. Logi nCont ext)

e Logi nMdul e (j avax. securi ty. aut h. spi . Logi nMbdul €)

7.2.1.1.1. The Subject and Principal Classes

To authorize access to resources, applications first need to authenticate the request's source. The JAAS framework
defines the term subject to represent a request's source. The Subj ect classisthe central classin JAAS. A Subj ect
represents information for a single entity, such as a person or service. It encompasses the entity's principals, public
credentials, and private credentials. The JAAS APIs use the existing Java 2 j ava. securi ty. Pri nci pal interface to
represent a principal, which is essentialy just atyped name.

During the authentication process, a subject is populated with associated identities, or principals. A subject may
have many principals. For example, a person may have a name principal (John Doe), a socia security number prin-
cipa (123-45-6789), and a username principal (johnd), all of which help distinguish the subject from other sub-
jects. To retrieve the principals associated with a subject, two methods are available:

public Set getPrincipals() {...}
public Set getPrincipals(Cass c) {...}

The first method returns al principals contained in the subject. The second method returns only those principals
that are instances of class ¢ or one of its subclasses. An empty set is returned if the subject has no matching prin-
cipals. Note that thej ava. securi ty. acl . G oup interface is a subinterface of j ava. security. Princi pal , SO anin-
stance in the principals set may represent alogical grouping of other principals or groups of principals.

7.2.1.1.2. Authentication of a Subject

Authentication of a subject requiresa JAAS login. The login procedure consists of the following steps:

1. Anapplication instantiates a Logi nCont ext and passes in the name of the login configuration and a cal | back-
Handl er to populate the cal | back objects, as required by the configuration Logi nMbdul es.

2. The Logi nCont ext consults a Confi gurati on to load al the Logi nMbdul es included in the named login con-
figuration. If no such named configuration exists the ot her configuration is used as a default.

3. Theapplication invokes the Logi nCont ext . | ogi n method.

4. The login method invokes all the loaded Logi nMbdul eS. As each Logi nvbdul e attempts to authenticate the
subject, it invokes the handle method on the associated cal | backHand! er to obtain the information required
for the authentication process. The required information is passed to the handle method in the form of an array

JBoss Release 2 247

Security on JBoss

of cal I back objects. Upon success, the Logi nMbdul es associate relevant principals and credentials with the

subject.

5. TheLogi nCont ext returns the authentication status to the application. Success is represented by a return from

the login method. Failure is represented through a L oginException being thrown by the login method.

6. If authentication succeeds, the application retrieves the authenticated subject using the Logi nCon-
t ext . get Subj ect method.

7. After the scope of the subject authentication is complete, al principals and related information associated with

the subject by the login method can be removed by invoking the Logi nCont ext . | ogout method.

The Logi nCont ext class provides the basic methods for authenticating subjects and offers a way to develop an ap-
plication that is independent of the underlying authentication technology. The Logi nCont ext consults a Confi gur -
ati on to determine the authentication services configured for a particular application. Logi nMbdul e classes repres-
ent the authentication services. Therefore, you can plug different login modules into an application without chan-
ging the application itself. The following code shows the steps required by an application to authenticate a subject.

Cal | backHandl er handl er = new MyHandl er () ;

Logi nCont ext

try {
Ic.login

| ¢ = new Logi nCont ext ("sone-config", handler);

0);

Subj ect subject = Ic.getSubject();

} catch(Logi

nException e) {

Systemout. println("authentication failed");
e.printStackTrace();
}
/1 Performwork as authenticated Subject
...
/1 Scope of work conplete, |ogout to rempbve authentication info
try {
I c.logout();

} catch(Logi

nException e) {
ut.println("logout failed");

e.printStackTrace();

System o
}
/1 A sanple
cl ass MyHand
i mpl enen
{
public v
I OEX
{
f or
}
}

MyHandl er cl ass
| er
ts Cal | backHandl er

oi d handl e(Cal | back[] cal |l backs) throws
ception, UnsupportedCal | backException

(int i =0; i < callbacks.length; i++) {
if (callbacks[i] instanceof NaneCallback) {
NaneCal | back nc = (NaneCal | back) cal | backs[i];
nc. set Name(user nane) ;
} else if (callbacks[i] instanceof PasswordCall back) {
Passwor dCal | back pc = (PasswordCal | back) cal | backs[i];
pc. set Passwor d(passwor d) ;
} else {
t hr ow new Unsupport edCal | backExcepti on(cal | backs[i],
"Unr ecogni zed Cal | back");

JBoss Release 2

248

Security on JBoss

Developers integrate with an authentication technology by creating an implementation of the Logi nModul e inter-
face. This allows an administrator to plug different authentication technologies into an application. You can chain
together multiple Logi nMbdul es to alow for more than one authentication technology to participate in the authen-
tication process. For example, one Logi nMbdul e may perform username/password-based authentication, while an-
other may interface to hardware devices such as smart card readers or biometric authenticators.

The life cycle of aLogi nvdul e is driven by the Logi nCont ext object against which the client creates and issues
the login method. The process consists of two phases. The steps of the process are as follows:

e ThelLogi nCont ext creates each configured Logi nMbdul e using its public no-arg constructor.

e Each Logi nWdul e isinitialized with a call to its initialize method. The Subj ect argument is guaranteed to be
non-null. The signature of the initialize method is: public void initialize(Subject subject, Callback-
Handl er cal | backHandl er, Map sharedState, Map options).

e Thelogi n method is caled to start the authentication process. For example, a method implementation might
prompt the user for a username and password and then verify the information against data stored in a naming
service such as NIS or LDAP. Alternative implementations might interface to smart cards and biometric
devices, or simply extract user information from the underlying operating system. The validation of user iden-
tity by each Logi nModul e is considered phase 1 of JAAS authentication. The signature of the | ogi n method is
bool ean 1 ogin() throws Logi nException. A Logi nExcepti on indicates failure. A return value of true indic-
ates that the method succeeded, whereas a return valueof false indicates that the login module should be ig-
nored.

e |If the Logi nCont ext 's overall authentication succeeds, comni t isinvoked on each Logi nModul e. If phase 1 suc-
ceeds for aLogi nMbdul e, then the commit method continues with phase 2 and associates the relevant principals,
public credentials, and/or private credentials with the subject. If phase 1 fails for a Logi nModul e, then commi t
removes any previously stored authentication state, such as usernames or passwords. The signature of the com
m t method is: bool ean conmit() throws Logi nExcepti on. Failureto complete the commit phaseisindicated
by throwing a Logi nExcept i on. A return of true indicates that the method succeeded, whereas a return of false
indicates that the login module should be ignored.

e If the Logi nCont ext 's overall authentication fails, then the abort method isinvoked on each Logi nMbdul e. The
abort method removes or destroys any authentication state created by the login or initialize methods. The sig-
nature of the abort method iSbool ean abort () throws Logi nExcepti on. Failure to complete the abort phase
isindicated by throwing a Logi nExcept i on. A return of true indicates that the method succeeded, whereas are-
turn of false indicates that the login module should be ignored.

« To remove the authentication state after a successful login, the application invokes | ogout on the Logi nCon-
text. Thisin turn results in al ogout method invocation on each Logi nModul e. The | ogout method removes
the principals and credentials originally associated with the subject during the conmmri t operation. Credentials
should be destroyed upon removal. The signature of the | ogout method is: bool ean | ogout () throws Lo-
gi nExcept i on. Failure to complete the logout process is indicated by throwing a Logi nExcept i on. A return of
true indicates that the method succeeded, whereas a return of false indicates that the login module should be ig-
nored.

When a Logi nMbdul e must communicate with the user to obtain authentication information, it uses a cal | back-
Handl er object. Applications implement the Cal | backHandl er interface and passit to the LoginContext, which for-
wards it directly to the underlying login modules. Login modules use the Cal | backHandl er both to gather input

JBoss Release 2 249

Security on JBoss

from users, such as a password or smart card PIN, and to supply information to users, such as status information.
By alowing the application to specify the cal | backHandl er, underlying Logi nMbdul eS remain independent from
the different ways applications interact with users. For example, a Cal | backHandl er 's implementation for a GUI
application might display a window to solicit user input. On the other hand, a cal | backhandl er 's implementation
for a non-GUI environment, such as an application server, might simply obtain credential information by using an
application server API. Thecal | backhandl er interface has one method to implement:

voi d handl e(Cal | back[] cal | backs)
throws java.io.| OExcepti on,
Unsupport edCal | backExcepti on;

The cal | back interface is the last authentication class we will look at. Thisis atagging interface for which several
default implementations are provided, including the NanmecCal | back and Passwor dCal | back used in an earlier ex-
ample. A Logi nMbdul e USeS a Cal | back to request information required by the authentication mechanism. Logi n-
Mbdul eS pass an array of Cal | backsdirectly to the Cal | backHandl er . handl e method during the authentication's lo-
gin phase. If acal | backhandl er does not understand how to use a cal | back object passed into the handle method,
it throws an Unsuppor t edCal | backExcept i on to abort the login call.

7.3. The JBoss Security Model

Similar to the rest of the JBoss architecture, security at the lowest level is defined as a set of interfaces for which al-
ternate implementations may be provided. Three basic interfaces define the JBoss server security layer:
org.j boss.security. Aut henti cati onManager, org.j boss. security. Real nivappi ng, and
org.jboss. security. SecurityProxy. Figure 7.8 shows a class diagram of the security interfaces and their rela-
tionship to the EJB container architecture.

org.jboss.ejb. Container Securityinterceptor
#container : org jhoss.ejb.Container
+getMethodPermissions{ m : Method, iface :int} : Set ;real;nga:ap_lr;g_: R_eallml'u'lapplng
+getRealmMapping() | RealmMapping #run S. ide ”nc_liath ticationM
+getSecurityManager(; AuthenticationManager securityManager : AuthanticationManager
+getSecurityProxy() : Object) -checkSecurityAssociation(mi : Invocation) : void
+gefTransactionManager() : TransactionManager +getContainer() : org jhoss.ejb.Container
+getWebClassLoader() : ClassLoader 1 0.1 [+invoke{ mi: Invocation) : Object
+involke(mi: Invocation) : Object +invokeHome(mi : Invocation) : Object
+invekeHome(mi: Invocation) : Object +resetStatistic() : void
+setRealmMapping(rm : RealmMapping) : void +retrieveStatistic() : Map
+setSecurityManager(sm : AuthenticationManager) : void +Securityinterceptor)
+setSecurityProxy(proxy | Object) : void +setContainer{ container ; org.jboss.ejb.Container) : void
+start() : void
1 1.x 1
0.1
-Role Mappin
0.1 0.1 _Authentication £hed
= SR RealmMapping O
SecurityProxyinterceptor AuthenticationManager G
= = = - = = = = +doeslserHaveRolef principal : Principal, roles : Set) : boolean
#container : org.jboss.ejb.Container +isValid{ principal : Frincipal, credential : Object) : boolk +getPrinci incipal - Principal) - Principal
#securityManager : AuthenticationManager +gewser£ott;.;{prr’nrcw|!-"Pffn;mal,l 'Setr
#securityProxy : SecurityProxy ; o
+getContainer() : org.jboss.ejb.Container
+invoke(mi: Invocation) : Object
+invokeHome(mi : Invocation) : Object = =
+SecurityProxyinterceptor) SubjectSecurityManager B
+setContainer(container : org.jboss.ejb.Container) : void +getActiveSubject() : Subject
*startg :vold +getSecurityDomain() : String
] +isValid(principal ; Principal, credential : Object, activeSubject : Subject) ; boolean
1 -Custom Security T
SecurityDomain
SecurityProxy O vy o
+getkeyManagerFactory() . KeyManagerFactor,
+initf beanHome . Class, beanRemote - Class, securityMgr . Object) ; void +$ﬂ(e‘f;torege' Ke‘,fstg:g pieane0n i
+initf{ beanHome : Class, beanRemote : Class, beanLocalHome : Class, beanLocal : Class, securityMgr: Object) : void +getTrustif : rEactons() - Trustl ctory
+invoke(m : Method, args : Objectf], bean : Object) : void +getTrustStora() . KeyStore
+invokeHome(m : Method, args : Objectl]) : void
+setE JBContext{ cix - EJBContext) : void

JBoss Release 2 250

Security on JBoss

Figure 7.8. The key security model interfaces and their relationship to the JBoss server EJB container
elements.

The light blue classes represent the security interfaces while the yellow classes represent the EJB container layer.
The two interfaces required for the implementation of the J2EE security model are
org.j boss. security. Aut henti cati onManager and org. j boss. securi ty. Real mvappi ng. The roles of the security
interfaces presented in Figure 7.8 are summarized in the following list.

¢ AuthenticationManager: This interface is responsible for validating credentials associated with principals.
Principals are identities, such as usernames, employee numbers, and social security numbers. Credentials are
proof of the identity, such as passwords, session keys, and digital signatures. Thei sval i d method isinvoked to
determine whether a user identity and associated credentials as known in the operational environment are valid
proof of the user'sidentity.

« RealmMapping: This interface is responsible for principal mapping and role mapping. The get Pri nci pal
method takes a user identity as known in the operational environment and returns the application domain iden-
tity. The doesUser HaveRol e method validates that the user identity in the operation environment has been as-
signed the indicated role from the application domain.

e SecurityProxy: This interface describes the requirements for a custom Securi t yProxyl nt er cept or plugin. A
Securit yProxy alows for the externalization of custom security checks on a per-method basis for both the EJB
home and remote interface methods.

e SubjectSecurityManager: This is a subinterface of Aut henti cati onManager that adds accessor methods for
obtaining the security domain name of the security manager and the current thread's authenticated Subj ect .

e SecurityDomain: Thisis an extension of the Aut hent i cat i onManager , Real mvappi ng, and Subj ect Securi t y-
Manager interfaces. It is a move to a comprehensive security interface based on the JAAS Subject, a
j ava. security. KeyStore, and the JSSE com sun. net. ssl . KeyManager Fact ory and
com sun. net . ssl . Trust Manager Fact ory interfaces. This interface is a work in progress that will be the basis
of a multi-domain security architecture that will better support ASP style deployments of applications and re-
sources.

Note that the Aut hent i cat i onManager , Real mvappi ng and Securi t yPr oxy interfaces have no association to JAAS
related classes. Although the JBossSX framework is heavily dependent on JAAS, the basic security interfaces re-
quired for implementation of the J2EE security model are not. The JBossSX framework is smply an implementa-
tion of the basic security plug-in interfaces that are based on JAAS. The component diagram presented in Fig-
ure 7.9 illustrates this fact. The implication of this plug-in architecture is that you are free to replace the JAAS
based JBossSX implementation classes with your own custom security manager implementation that does not make
use of JAAS, if you so desire. You'll see how to do this when you look at the JBossSX MBeans available for the
configuration of JBossSX in Figure 7.9.

JBoss Release 2 251

Security on JBoss

JBozs EJB Core

Container
--------- > O
securicy plug-in

Interceptor

% Securitylnterceptor %Secu: ityProdyInterceptor

—
|

|
:
;
L
;
|

I
I
tj;uut.henr,m&tinn -.\me“w mapping Q.d:usmm Security
Authenticationtanager RealuMapping securityProxy
JEOS 33K
Jaasiecuritylanager SubjecciccurityProxy

Figure 7.9. Theredationship between the JBossSX framewor k implementation classes and the JBoss server
EJB container layer.

7.3.1. Enabling Declarative Security in JBoss Revisited

Earlier in this chapter, the discussion of the J2EE standard security model ended with a requirement for the use of
JBoss server-specific deployment descriptor to enable security. The details of this configuration are presented here.
Figure 7.10 shows the JBoss-specific EJB and web application deployment descriptor's security-related elements.

JBoss Release 2 252

Security on JBoss

. |+ security-demain
e
+ |possg [

! 3 # unawthentic sbed-principal
|
|
| = * anterprise-beans B

1
i iy
|

|| * session,

| * entity 3 * security-proxy

*
message-driven

|
|
. * contain trrtﬂl"ll'lillrlﬂﬂ-l‘ll?

. * container<enfiguration g,

| % contiinér-nimea

&L * security-domain
jhoss, wml :

S— T E— T E— T — Y — —_ — i —) —

* jboss-webg | # gecurity-domain

.7

Figure 7.10. The security element subsets of the JBoss server jboss.xml and jboss-web.xml deployment
descriptors.

The value of asecurity-domi n element specifies the INDI name of the security manager interface implementa-
tion that JBoss uses for the EJB and web containers. This is an object that implements both of the Aut henti ca-

ti onManager and Real mvappi ng interfaces. When specified as a top-level element it defines what security domain
in effect for all EJBs in the deployment unit. This is the typical usage because mixing security managers within a
deployment unit complicates inter-component operation and administration.

To specify the security domain for an individual EJB, you specify the securi t y- domai n at the container configura-
tion level. Thiswill override any top-level security-domain element.

The unaut hent i cat ed- pri nci pal element specifies the name to use for the pri nci pal object returned by the EJB-
Cont ext . get User Pri nci pal method when an unauthenticated user invokes an EJB. Note that this conveys no spe-
cia permissions to an unauthenticated caller. Its primary purpose is to allow unsecured servlets and JSP pages to
invoke unsecured EJBs and alow the target EJB to obtain a non-null princi pal for the caller using the get User -
Pri nci pal method. Thisis a J2EE specification requirement.

JBoss Release 2 253

Security on JBoss

The securi ty- proxy element identifies a custom security proxy implementation that allows per-request security
checks outside the scope of the EJB declarative security model without embedding security logic into the EJB im-
plementation. This may be an implementation of the or g. j boss. securi ty. Securi t yProxy interface, or just an ob-
ject that implements methods in the home, remote, local home or local interfaces of the EJB to secure without im-
plementing any common interface. If the given class does not implement the Securi t yPr oxy interface, the instance
must be wrapped in a Securi tyProxy implementation that delegates the method invocations to the object. The
org.j boss. security. Subj ect SecurityProxy IS an example SecurityProxy implementation used by the default
JBossSX installation.

Take alook at a simple example of a custom Securi t yProxy in the context of atrivial stateless session bean. The
custom Securi t yProxy validates that no one invokes the bean's echo method with a four-letter word as its argu-
ment. This is a check that is not possible with role-based security; you cannot define a Four Let t er Echol nvoker
role because the security context is the method argument, not a property of the caller. The code for the custom Se-
curityProxy is given in Example 7.7, and the full source code is avalable in the src/
mai n/ or g/ j boss/ book/ securi ty/ ex1 directory of the book examples.

Example 7.7. The example 1 custom EchoSecurityProxy implementation that enforces the echo
argument-based security constraint.

package org.]j boss. book. security. exl;

i mport java.lang.reflect.Method;
i mport javax.ejb. EJBCont ext;

i mport org.apache. | og4j. Category;
i mport org.jboss.security. SecurityProxy;

/** A sinple exanple of a custom SecurityProxy inplenentation
* that denobnstrates nmethod argument based security checks.
* @uthor Scott.Stark@ boss. org
* @ersion $Revision: 1.2 $
*/
public class EchoSecurityProxy inplements SecurityProxy
{
Category | og = Category.getlnstance(EchoSecurityProxy.cl ass);
Met hod echo;

public void init(Cl ass beanHonme, C ass beanRenot e,
Ooj ect securityMr)
throws Instantiati onException

| og. debug("init, beanHonme="+beanHone
+ ", beanRenot e="+beanRenpt e
+ ", securityMyr="+securityMr);
/1 Get the echo nethod for equality testing in invoke
try {
Cl ass[] parans = {String.class};
echo = beanRenot e. get Decl ar edMet hod(" echo", parans);
} catch(Exception e) {
String nsg = "Failed to finde an echo(String) method";
| og.error(nsg, e);
throw new I nstanti ati onExcepti on(nsg);

}

public void set EJBCont ext (EJBCont ext ct x)
{

JBoss Release 2 254

Security on JBoss

| 0og. debug(" set EJBCont ext, ctx="+ctXx);
}

public void i nvokeHone(Method m Cbject[] args)
throws SecurityException

{
}

public void i nvoke(Method m Object[] args, Object bean)
throws SecurityException

/1 We don't validate access to hone net hods

{
| og. debug("i nvoke, n¥E"+n);
/1 Check for the echo nethod
if (mequal s(echo)) {
/1 Validate that the nsg arg is not 4 letter word
String arg = (String) args[0];
if (arg == null || arg.length() == 4)
throw new SecurityException("No 4 letter words");
}
/1 W are not responsible for doing the invoke
}

The EchoSecurityProxy checks that the method to be invoked on the bean instance corresponds to the
echo(St ri ng) method loaded the init method. If there is a match, the method argument is obtained and its length
compared against 4 or null. Either case results in a Securi t yExcept i on being thrown. Certainly thisis a contrived
example, but only in its application. It is a common requirement that applications must perform security checks
based on the value of method arguments. The point of the example is to demonstrate how custom security beyond
the scope of the standard declarative security model can be introduced independent of the bean implementation.
This allows the specification and coding of the security requirements to be delegated to security experts. Since the
security proxy layer can be done independent of the bean implementation, security can be changed to match the de-
ployment environment requirements.

The associated j boss. xni descriptor that installs the EchoSecuri t yProxy as the custom proxy for the EchoBean is
given in Example 7.8.

Example 7.8. The jbossxml descriptor, which configures the EchoSecurityProxy as the custom security
proxy for the EchoBean.

<j boss>
<security-domai n>j ava: /j aas/ ot her</security-domai n>

<ent erpri se- beans>
<sessi on>
<ej b- name>EchoBean</ ej b- nane>
<security-proxy>org.jboss. book. security.exl. EchoSecurityProxy</security-proxy>
</ sessi on>
</ enterprise-beans>
</j boss>

Now test the custom proxy by running a client that attempts to invoke the EchoBean. echo method with the argu-
ments Hel | o and Four asillustrated in this fragment:

JBoss Release 2 255

Security on JBoss

public class ExCient
{

public static void nain(String args[])
throws Exception
{

Logger | og = Logger. getlLogger("ExClient");
| og.info("Looking up EchoBean");

Initial Context iniCtx = new Initial Context();
Qoj ect ref = ini Gx.|ookup("EchoBean");
EchoHone hone = (EchoHone) ref;

Echo echo = hone.create();

| og.info("Created Echo");
| og.info("Echo.echo('Hello') = "+echo.echo("Hello"));
| og. i nfo("Echo.echo(' Four') = "+echo. echo("Four"));

The first call should succeed, while the second should fail due to the fact that Four is a four-letter word. Run the
client as follows using Ant from the examples directory:

[exanpl es] $ ant - Dchap=security -Dex=1 run-exanple
run- exanpl el:

[echo] Waiting for 5 seconds for deploy...

[java] [INFO Exdient] Looking up EchoBean

[java] [INFO ExClient] Created Echo

[java] [INFO Exdient] Echo.echo('Hello') = Hello

[java] Exception in thread "main" java.rm .AccessException: SecurityException; nested exception is:
[javal java.l ang. SecurityException: No 4 |etter words

[java] Caused by: java.lang. SecurityException: No 4 |letter words

Theresult isthat theecho(' Hel | o') method call succeeds as expected and the echo(' Four') method call resultsin
a rather messy looking exception, which is aso expected. The above output has been truncated to fit in the book.
The key part to the exception isthat the Securi t yException("No 4 letter words") generated by the EchoSecur -
i t yProxy was thrown to abort the attempted method invocation as desired.

7.4. The JBoss Security Extension Architecture

The preceding discussion of the general JBoss security layer has stated that the JBossSX security extension frame-
work is an implementation of the security layer interfaces. Thisis the primary purpose of the JBossSX framework.
The details of the implementation are interesting in that it offers a great deal of customization for integration into
existing security infrastructures. A security infrastructure can be anything from a database or LDAP server to a
sophisticated security software suite. The integration flexibility is achieved using the pluggable authentication
model availablein the JAAS framework.

The heart of the JBossSX framework iSorg. j boss. securi ty. pl ugi ns. JaasSecuri t yManager . Thisis the default
implementation of the Aut hent i cati onManager and Real mvappi ng interfaces. Figure 7.11 shows how the Jaas Se-
curi tyManager integratesinto the EJB and web container layers based on the securi t y- domai n element of the cor-
responding component deployment descriptor.

JBoss Release 2 256

Security on JBoss

wahb . wm]

jhess] } security-domai n=jwdomain

{ gjb-jar .:ml }Meth:-ﬂ and URL Roles
jboss-wab ,xoml

JEBoss Serwver

- HTTR
H [] 1]
= g
) o
e ﬁg{ Sacurityvinterceptor |
) o
0 g g
= [T} [
- o
i+t
B
= - FMT
o i]
3 E [=]}:Fﬁ
ﬂ =]
= o
-IJ BN Tecur ity lnterceptor)
ot o
o
: ! N —
1
= wi L
3 " J
-1
il
t) JAAS LoginConfig
JaasSecurityManager
jwdomain {
Jwdomain LoginModulel
000 _
LoginModulen

. l Activesubject

PrincipalsSet

@ Roles
H’i |l:a1'|erPrin-::"|pa1

Figure 7.11. Therelationship between the security-domain component deployment descriptor value, the
component container and the JaasSecurityM anager .

b .

Figure 7.11 depicts an enterprise application that contains both EJBs and web content secured under the security
domain j wdonai n. The EJB and web containers have a request interceptor architecture that includes a security in-
terceptor, which enforces the container security model. At deployment time, the securi t y- domai n element valuein
the j boss. xm and j boss-web. xm descriptors is used to obtain the security manager instance associated with the

JBoss Release 2 257

Security on JBoss

container. The security interceptor then uses the security manager to perform its role. When a secured component is
requested, the security interceptor delegates security checks to the security manager instance associated with the
container.

The JBossSX JaasSecuri t yManager implementation performs security checks based on the information associated
with the subj ect instance that results from executing the JAAS login modules configured under the name matching
the securi ty-domai n element value. We will drill into the JaasSecuri t yManager implementation and its use of
JAAS in the following section.

7.4.1. How the JaasSecurityManager Uses JAAS

The JaasSecuri t yManager usesthe JAAS packages to implement the Aut hent i cat i onManager and Real mvappi ng
interface behavior. In particular, its behavior derives from the execution of the login module instances that are con-
figured under the name that matches the security domain to which the JaasSecuri t ymanager has been assigned.
The login modules implement the security domain's principal authentication and role-mapping behavior. Thus, you
can use the JaasSecuri t yManager across different security domains simply by plugging in different login module
configurations for the domains.

To illustrate the details of the JaasSecuri t ymManager 's usage of the JAAS authentication process, you will walk
through a client invocation of an EJB home method invocation. The prerequisite setting is that the EJB has been
deployed in the JBoss server and its home interface methods have been secured using net hod- per i ssi on ele-
ments in the ej b-j ar. xm descriptor, and it has been assigned a security domain named j wdormai n using the
j boss. xni descriptor securi t y- domai n €lement.

JBoss Release 2 258

Security on JBoss

Client
1 LoginContext lc("other™, ._.);
' lc.login(); I
mh‘ér {
Bean ClientLoginModule
Home required;
2 }

marshal method info,
principal and credentials

JBoss Server

3. Security) dedslisai Iﬁfl:dﬁ' Eigjﬁw
oesUserHaveRole
a Interceptor > _Manager

LoginContext ke("jwdomain”, ...);
lc_laging);
Subject s = lc.getSubject()

jwdomain {
serverLoginModule
required;

B ——————————————————————————

Figure7.12. Anillustration of the stepsinvolved in the authentication and authorization of a secured EJB
home method invocation.

Figure 7.12 provides aview of the client to server communication we will discuss. The numbered steps shown are:

1. Theclient first has to perform a JAAS login to establish the principal and credentials for authentication, and
thisis labeled Client Sde Login in the figure. Thisis how clients establish their login identities in JBoss. Sup-

JBoss Release 2 259

Security on JBoss

port for presenting the login information via JNDI 1 ni ti al Cont ext properties is provided via an alternate
configuration. A JAAS login entails creating a Logi nCont ext instance and passing the name of the configura-
tion to use. The configuration name is ot her . This one-time login associates the login principal and credentials
with al subsequent EJB method invocations. Note that the process might not authenticate the user. The nature
of the client-side login depends on the login module configuration that the client uses. In this example, the
other client-side login configuration entry is set up to use the dientLogi nMbdule module (an
org.jboss. security. dientLogi nMdul e). Thisisthe default client side module that simply binds the user-
name and password to the JBoss EJB invocation layer for later authentication on the server. The identity of the
client is not authenticated on the client.

2. Later, the client obtains the EJB home interface and attempts to create a bean. This event is labeled as Home
Method Invocation. This results in a home interface method invocation being sent to the JBoss server. Thein-
vocation includes the method arguments passed by the client along with the user identity and credentials from
the client-side JAAS login performed in step 1.

3. Onthe server side, the security interceptor first requires authentication of the user invoking the call, which, as
on theclient side, involvesa JAASlogin.

4. The security domain under which the EJB is secured determines the choice of login modules. The security do-
main name is used as the login configuration entry name passed to the Logi nCont ext constructor. The EJB se-
curity domain isj wdormai n. If the JAAS login authenticates the user, a JAAS Subj ect is created that contains
thefollowing initsPri nci pal sSet :

e Ajava. security. Principal that corresponds to the client identity as known in the deployment security
environment.

e Ajava. security.acl.Goup hamed Rol es that contains the role names from the application domain to
which the user has been assigned. or g. j boss. security. Si npl ePri nci pal objects are used to represent
the role names; Si npl ePri nci pal is asimple string-based implementation of pri nci pal . These roles are
used to vadidate the roles assigned to methods in ejb-jar.xm and the EJBCon-
text.isCallerlnRol e(String) method implementation.

e An optiona java.security.acl.Goup hamed CallerPrincipal, which contains a single
org.j boss. security. Sinpl ePrinci pal that corresponds to the identity of the application domain's caller.
The callerPrincipal sole group member will be the value returned by the EJBCon-
text . get Cal | er Pri nci pal () method. The purpose of this mapping is to allow a Pri nci pal as known in
the operational security environment to map to a Pri nci pal with a name known to the application. In the
absence of acal | er Pri nci pal mapping the deployment security environment principal is used asthe get -
cal l er Pri nci pal method value. That is, the operational principal is the same as the application domain
principal.

5. Thefinal step of the security interceptor check is to verify that the authenticated user has permission to invoke
the requested method Thisis labeled as Server Sde Authorization in Figure 7.12. Performing the authorization
this entails the following steps:

» Obtain the names of the roles allowed to access the EJB method from the EJB container. The role names
are determined by ej b-j ar. xm descriptor role-name elements of all net hod- per i ssi on elements con-
taining the invoked method.

JBoss Release 2 260

Security on JBoss

» If no roles have been assigned, or the method is specified in an excl ude- 1 i st element, then access to the
method is denied. Otherwise, the doesUser HaveRol e method is invoked on the security manager by the se-
curity interceptor to see if the caller has one of the assigned role names. This method iterates through the
role names and checks if the authenticated user's Subject Rol es group contains a Si npl ePri nci pal with
the assigned role name. Access is alowed if any role name is a member of the Rol es group. Access is
denied if none of the role names are members.

« |f the EJB was configured with a custom security proxy, the method invocation is delegated to it. If the se-
curity proxy wants to deny access to the caller, it will throw aj ava. | ang. Securit yExcepti on. If NO Se-
curi tyExcepti on isthrown, access to the EJB method is alowed and the method invocation passes to the
next container interceptor. Note that the Securi t yPr oxyl nt er cept or handles this check and this intercept-
or is not shown.

Every secured EJB method invocation, or secured web content access, requires the authentication and authorization
of the caller because security information is handled as a stateless attribute of the request that must be presented
and validated on each request. This can be an expensive operation if the JAAS login involves client-to-server com-
munication. Because of this, the JaasSecuri t yManager supports the notion of an authentication cache that is used
to store principal and credential information from previous successful logins. You can specify the authentication
cache instance to use as part of the JaasSecurityManager configuration as you will see when the associated
MBean service is discussed in following section. In the absence of any user-defined cache, a default cache that
maintains credential information for a configurable period of timeis used.

7.4.2. The JaasSecurityManagerService MBean

The JaasSecurit yManager Servi ce MBean service manages security managers. Although its name begins with
Jaas, the security managers it handles need not use JAAS in their implementation. The name arose from the fact
that the default security manager implementation isthe JaasSecuri t ymanager . The primary role of the JaasSecur -
i t yManager Ser vi ce iS to externalize the security manager implementation. You can change the security manager
implementation by providing an alternate implementation of the Aut hent i cati onManager and Real mvappi ng inter-
faces.

The second fundamental role of the JaasSecurityManagerService is to provide a JNDI
j avax. nam ng. spi . Obj ect Fact ory implementation to allow for simple code-free management of the JNDI name
to security manager implementation mapping. It has been mentioned that security is enabled by specifying the
JNDI name of the security manager implementation via the securi ty-domai n deployment descriptor element.
When you specify a INDI name, there has to be an object-binding there to use. To simplify the setup of the JNDI
name to security manager bindings, the JaasSecuri t yManager Ser vi ce manages the association of security man-
ager instances to names by binding a next naming system reference with itself as the INDI ObjectFactory under the
name j ava: / j aas. This allows one to use a naming convention of the form j ava: / j aas/ Xyz as the value for the
security-domai n element, and the security manager instance for the xyz security domain will be created as needed
for you. The security manager for the domain Xyz is created on the first lookup against the j ava: / j aas/ XYz bind-
ing by creating an instance of the class specified by the Securi t yManager d assNane attribute using a constructor
that takes the name of the security domain. For example, consider the following container security configuration
snippet:

<j boss>
<I-- Configure all containers to be secured under the "hades" security domain -->
<security-domai n>j ava: / j aas/ hades</ security-domai n>
<l-- ... -->

JBoss Release 2 261

Security on JBoss

</ j boss>

Any lookup of the name j ava: /j aas/ hades will return a security manager instance that has been associated with
the security domain named hades. This security manager will implement the AuthenticationManager and
RealmMapping security interfaces and will be of the type specified by the JaasSecuri t yManager Ser vi ce Secur -
i t yManager C assNane attribute.

The JaasSecuri t yManager Ser vi ce MBean is configured by default for use in the standard JBoss distribution, and
you can often use the default configuration as is. The configurable attributes of the JaasSecuri t yManager Ser vi ce
include:

» SecurityManager ClassName: The name of the class that provides the security manager implementation. The
implementation must support both the org.jboss. security. Aut henti cati onManager and
org. j boss. security. Real mvappi ng interfaces. If not specified this defaults to the JAAS-based
org.j boss. security. plugi ns. JaasSecurityManager.

» CallbackHandler ClassName: The name of the class that provides the
j avax. security. aut h. cal | back. Cal | backHandl er implementation used by the JaasSecurit yManager. You
can overide the handler used by the JaasSecuritymanager if the default implementation
(org.jboss.security.auth. cal | back. SecurityAssoci ati onHandl er) does not meet your needs. This is a
rather deep configuration that generally should not be set unless you know what you are doing.

e SecurityProxyFactoryClassName: The name of the class that provides the
org.jboss.security. SecurityProxyFactory implementation. If not specified this defaults to
org.j boss. security. Subj ect SecurityProxyFactory.

« AuthenticationCacheJndiName: Specifies the location of the security credential cache policy. This is first
treated as an bj ect Fact ory location capable of returning CachePol i cy instances on a per-security-domain
basis. Thisis done by appending the name of the security domain to this name when looking up the cachepol -
i cy for adomain. If this fails, the location is treated as a single CachePol i cy for al security domains. As a de-
fault, atimed cache policy is used.

« DefaultCacheTimeout: Specifies the default timed cache policy timeout in seconds. The default value is 1800
seconds (30 minutes). The value you use for the timeout is a tradeoff between frequent authentication opera-
tions and how long credential information may be out of synch with respect to the security information store. If
you want to disable caching of security credentials, set thisto O to force authentication to occur every time. This
has no affect if the Aut hent i cat i onCacheJdndi Nare has been changed from the default value.

» DefaultCacheResolution: Specifies the default timed cache policy resolution in seconds. This controls the in-
terval at which the cache current timestamp is updated and should be less than the Def aul t CacheTi meout in or-
der for the timeout to be meaningful. The default resolution is 60 seconds(1 minute). This has no affect if the
Aut hent i cat i onCacheJndi Narme has been changed from the default value.

« DefaultUnauthenticatedPrincipal: Specifies the principal to use for unauthenticated users. This setting makes
it possible to set default permissions for users who have not been authenticated.

The JaasSecuri t yManager Ser vi ce aso supports a number of useful operations. These include flushing any secur-
ity domain authentication cache at runtime, getting the list of active users in a security domain authentication
cache, and any of the security manager interface methods.

JBoss Release 2 262

Security on JBoss

Flushing a security domain authentication cache can be used to drop all cached credentials when the underlying
store has been updated and you want the store state to be used immediately. The MBean operation signature is:
public void flushAuthenticati onCache(String securityDonain).

This can be invoked programmatically using the following code snippet:

MBeanSer ver server e
String jaasMgr Nane "j boss. security: servi ce=JaasSecurityManager";

Ooj ect Nanme j aasMgr new Cbj ect Nane(j aasMgr Nane) ;

bj ect[] paranms = {domai nNane};

String[] signature = {"java.lang. String"};

server.invoke(jaasMyr, "flushAuthenticationCache", parans, signature);

Getting the list of active users provides a snapshot of the princi pal s keys in a security domain authentication
cache that are not expired. The MBean operation signature is. public List getAuthenticationCachePrin-
cipal s(String securityDomain).

This can be invoked programmatically using the following code snippet:

MBeanSer ver server B

String jaasMgrName = "j boss. security: servi ce=JaasSecurityManager";

Cbj ect Nane j aasMyr new bj ect Narme(j aasMgr Nane) ;

Obj ect[] paranms = {domai nNane};

String[] signature = {"java.lang. String"};

Li st users = (List) server.invoke(jaasMyr, "getAuthenticationCachePrincipals",
parans, signature);

The security manager has afew additional access methods.

public bool ean isValid(String securityDomain, Principal principal, Ooject credential);
public Principal getPrincipal (String securityDomain, Principal principal);
publ i c bool ean doesUser HaveRol e(String securityDomai n, Principal principal,
Cbj ect credential, Set roles);
public Set getUserRoles(String securityDomain, Principal principal, Object credential);

They provide access to the corresponding Aut hent i cat i onManager and Real mvappi ng interface method of the as-
sociated security domain named by the securi t yDomai n argument.

7.4.3. The JaasSecurityDomain MBean

The org. j boss. security. pl ugi ns. JaasSecurit yDomai n IS an extension of JaasSecurityManager that adds the
notion of akeySt or e, a JSSE KeyManager Fact ory and a Tr ust Manager Fact or y for supporting SSL and other cryp-
tographic use cases. The additional configurable attributes of the JaasSecuri t yDomai n include:

 KeyStoreType: The type of the KeyStore implementation. This is the type argument passed to the
java.security. KeyStore. getlnstance(String type) factory method. The default is Jks.

« KeyStoreURL: A URL to the location of the kKey St or e database. Thisis used to obtain an I nput St r eamto ini-
tializethe keySt or e. If the string is not avalue URL, it istreated as afile.

» KeyStorePass: The password associated with the Keyst or e database contents. The Key St or ePass is aso used
in combination with the salt and I terati onCount attributes to create a PBE secret key used with the encode/
decode operations. The Key St or ePass attribute value format is one of the following:

JBoss Release 2 263

Security on JBoss

* The plaintext password for the KeySt ore Thet oChar Array() vaue of the string is used without any manip-
ulation.

« A command to execute to obtain the plaintext password. The format is{EXT}... wherethe. .. isthe exact
command line that will be passed to the Runti ne. exec(String) method to execute a platform-specific
command. Thefirst line of the command output is used as the password.

e A class to create to obtain the plaintext password. The format is { CLASS} ¢l assnane[: ct or ar g] Where the
[:ctorarg] isan optional string that will be passed to the constructor when instantiating the cl assnane.
The password is obtained from classname by invoking a t ochar Array() method if found, otherwise, the
toString() method isused.

¢ Salt: The PBEPar anet er Spec salt value.
* |terationCount: The PBEPar anet er Spec iteration count value.

e TrustStoreType: The type of the Trust Store implementation. This is the type argument passed to the
java. security. KeyStore. getlnstance(String type) factory method. The default is Jks.

* TrustStoreURL: A URL to the location of the Tr ust St or e database. Thisis used to obtain an | nput St r eamto
initialize the key St or e. If the string is not avalue URL, it istreated as afile.

* TrustStorePass: The password associated with the trust store database contents. The Trust St or ePass IS @
simple password and doesn't have the same configuration options as the Key St or ePass.

« Manager ServiceName: Sets the IMX object name string of the security manager service MBean. Thisis used
to register the defaults to register the JaasSecurityDomain as a the security manager under
java: /j aas/ <domai n> Where <domai n> is the name passed to the MBean constructor. The name defaults to
j boss. security:service=JaasSecurityManager.

7.5. Defining Security Domains

The standard way of configuring security domains for authentication and authorization in JBoss is to use the XML
login configuration file. The login configuration policy defines a set of named security domains that each define a
stack of login modulesthat will be called upon to authenticate and authorize users.

The XML configuration file conforms to the DTD given by Figure 7.13. This DTD can be found in docs/
dtd/security_config.dtd.

r .

(» nameé
L&tring)
*+ policyg 3 + application-policyz_ + authentication g - + login-module

JBoss Release 2 264

Security on JBoss

flag = ® codeg
Jlenumeration LELring
+ login-moduleg_| = * mndule-npu‘nn% # nameg
ket Lstring]

LS -

Figure 7.13. The XML LoginConfig DTD

The following example shows a simple configuration named jmx-console that is backed by a single login module.
The login module is configured by a simple set of name/value configuration pairs that have meaning to the login
module in question. We'll see what these options mean later, for now we'll just be concerned with the structure of
the configuration file.

<appl i cati on-policy nane="j nk-consol e">
<aut henti cati on>
<l ogi n- rodul e code="org.j boss. security. auth. spi.UsersRol esLogi nvbdul e" flag="required">
<rmodul e- opti on nane="user sProperties">props/jnx-consol e-users. properties</nodul e- opti on>
<nodul e- opti on name="r ol esProperties">props/jnmx-consol e-rol es. properti es</nodul e- opti on>
</l ogi n- modul e>
</ aut henti cati on>
</ application-policy>

The nare attribute of the appl i cati on-pol i cy isthe login configuration name. Applications policy elements will
be bound by that name in JNDI under the the j ava: /j aas context. Applications will link to security domains
through this INDI name in their deployment descriptors. (Seethesecurity- domai n elementsinj boss. xni , j boss-
web. xni and j boss-servi ce. xm filesfor examples)

The code attribute of the | ogi n- nodul e element specifies the class name of the login module implementation. The
requi r ed flag attribute controls the overall behavior of the authentication stack. The alowed values and meanings
are:

* required: Thelogin moduleis required to succeed for the authentication to be successful. If any required mod-
ule fails, the authentication will fail. The remaining login modules in the stack will be called regardless of the
outcome of the authentication.

e requisite: The login module is required to succeed. If it succeeds, authentication continues down the login
stack. If it fails, control immediately returns to the application.

« sufficient: The login module is not required to succeed. If it does succeed, control immediately returns to the
application. If it fails, authentication continues down the login stack.

« optional: The login module is not required to succeed. Authentication still continues to proceed down the login
stack regardless of whether the login module succeeds or fails.

The following example shows the definition of a security domain that uses multiple login modules. Since both
modules are marked as sufficient, only one of them need to succeed for login to proceed.

<appl i cation-policy name="t odo">
<aut henti cati on>
<l ogi n- rodul e code="org.jboss. security. auth. spi.LdapLogi nMdul e"

JBoss Release 2 265

Security on JBoss

flag="sufficient">
<l-- LDAP configuration -->
</ | ogi n- modul e>
<l ogi n- rodul e code="org.jboss. security. auth. spi.Dat abaseServer Logi nMbdul e"
flag="sufficient">
<!-- database configuration -->
</ | ogi n- modul e>
</ aut henti cati on>
</ application-policy>

Each login module has its own set of configuration options. These are set as name/value pairs using the nodul e-
opti on elements. We'll cover module options in more depth when we look at the individual login modules avail-
ablein JBoss AS.

7.5.1. Loading Security Domains

Authentication security domains are configured statically in the conf /| ogi n-confi g. xnl file. The XM_Logi nConf i g
MBean is resp onsible for loading security configurations from this configurations from alocal configuration file.
The MBean is defined as shown below.

<nmbean code="org.jboss. security.auth.|ogin. XM_.Logi nConfi g"
nane="j boss. security: servi ce=XM.Logi nConfi g">
<attribute name="Confi gResource">l ogi n-config.xm </attribute>
</ mbean>

The MBean supports the following attributes:

« ConfigURL: specifies the URL of the XML login configuration file that should be loaded by this MBean on
startup. This must be avalid URL string representation.

« ConfigResour ce: specifies the resource name of the XML login configuration file that should be loaded by this
MBean on startup. The name is treated as a classpath resource for which a URL is located using the thread con-
text class |oader.

« ValidateDTD: aflag indicating if the XML configuration should be validated against its DTD. This defaultsto
true.

The MBean also supports the following operations that allow one to dynamically extend the login configurations at
runtime. Note that any operation that attempts to ater login configuration requires a
j avax. security. aut h. Aut hPer ni ssi on("r ef reshLogi nConfi gurati on") when running with a security manager.
The org. j boss. book. security. service. SecurityConfig Service demonstrates how this can be used to add/
remove a deployment specific security configuration dynamically.

e void addAppConfig(String appName, AppConfigurationEntry[] entries): thisadds the given login mod-
ule configuration stack to the current configuration under the given appNane. This replaces any existing entry
under that name.

e void renmoveAppConfig(String appNane): this removes the login module configuration registered under the
given appNane.

e String[] |oadConfig(URL configURL) throws Exception: thisloads one or more login configurations from

JBoss Release 2 266

Security on JBoss

a URL representing either an XML or legacy Sun login configuration file. Note that all login configurations
must be added or none will be added. It returns the names of the login configurations that were added.

e void renoveConfigs(String[] appNames): thisremovesthelogin configurations specified appNanes array.

e String displayAppConfig(String appNane) : this operation displays a simple string format of the named con-
figuration if it exists.

The SecurityConfi g MBean is responsible for selecting the j avax. security. aut h. | ogi n. Confi guration to be
used. The default configuration simply references the XM.Logi nConfi g MBean.

<nbean code="org.j boss. security. plugins. SecurityConfig"
nanme="j boss. security: servi ce=SecurityConfig">
<attri bute name="Logi nConfi g">j boss. security: servi ce=XM_.Logi nConfi g</attribute>
</ mbean>

There is one configurable attribute:

¢ LoginConfig: Specifiesthe IMX bj ect Nare string of the MBean that provides the default JAAS login config-
uration. When the SecurityConfig is stated, this MBean is queried for its
javax. security. aut h. 1 ogi n. Configuration by calling its get Confi guration(Configuration currentCon-
fig) operation. If the Logi nConfi g attribute is not specified then the default Sun Confi gur ati on implementa-
tion described in the Conf i gur at i on class JavaDocs is used.

In addition to allowing for a custom JAAS login configuration implementation, this service alows configurations
to be chained together in a stack at runtime. This allows one to push alogin configuration onto the stack and latter
pop it. Thisis afeature used by the security unit tests to install custom login configurations into a default JBoss in-
stallation. Pushing a new configuration is done using:

public void pushLogi nConfig(String obj ect Name) throws
JMException, Ml fornmedObj ect NanmeExcepti on;

The obj ect Nane parameters specifies an MBean similar to the Logi nConfi g attribute. The current login configura-
tion may be removed using:

public voi d popLogi nConfig() throws JMException;

7.5.2. The DynamicLoginConfig service

Security domains defined in the | ogi n-confi g. xnl file are essentially static. They are read when JBoss starts up,
but there is no easy way to add a new security domain or change the definition for an existing one. The Dynani cLo-
gi nConfi g service allows you to dynamically deploy security domains. This allows you to specify JAAS login con-
figuration as part of a deployment (or just as a standalone service) rather than having to edit the static | ogi n- con-
fig. xn file

The service supports the following attributes:

e AuthConfig: The resource path to the JAAS login configuration file to use. This defaultsto | ogi n- confi g. xm

¢ LoginConfigService: the XM_Logi nConf i g service name to use for loading. This service must support astring

JBoss Release 2 267

Security on JBoss

| oadConfi g(URL) operation to load the configurations.

e SecurityManager Service: The Securi t yManager Servi ce hame used to flush the registered security domains.
This service must support af | ushAut hent i cati onCache(String) operation to flush the case for the argument
security domain. Setting thistriggers the flush of the authentication caches when the service is stopped.

Hereis an example MBean definition using the Dynani cLogi nConf i g Service.

<server>
<nmbean code="org.]j boss. security.auth.| ogin.Dynanm cLogi nConfi g" name="...">
<attribute name="Aut hConfig">l ogi n-config.xmn </attribute>

<I-- The service which supports dynani c processing of |ogin-config.xni
configurations.
-->
<depends optional -attri bute-name="Logi nConfi gService">
j boss. security: servi ce=XM.Logi nConfi g </depends>

<I-- Optionally specify the security ngr service to use when
this service is stopped to flush the auth caches of the domains
regi stered by this service.
-->
<depends optional -attri bute-nane="SecurityManager Servi ce">
j boss. security: servi ce=JaasSecurityManager </depends>
</ nbean>
</ server>

This will load the specified Aut hConfi g resource using the specified Logi nConfi gServi ce MBean by invoking
| oadConf i g with the appropriate resource URL. When the service is stopped the configurations are removed. The
resource specified may be either an XML file, or a Sun JAAS login configuration.

7.5.3. Using JBoss Login Modules

JBoss includes several bundled login modules suitable for most user management needs. JBoss can read user in-
formation from a relational database, an LDAP server or flat files. In addition to these core login modules, JBoss
provides several other login modules that provide user information for very customized needs in JBoss. Before we
explore the individual login modules, let's take alook at a few login module configuration options that are common
to multiple modules.

7.5.3.1. Password Stacking

Multiple login modules can be chained together in a stack, with each login module providing both the authentica-
tion and authorization components. This works for many use cases, but sometimes authentication and authorization
are split across multiple user management stores. A previous example showed how to combine LDAP and a rela-
tional database, allowing a user to be authenticated by either system. However, consider the case where users are
managed in a central LDAP server but application-specific roles are stored in the application's relational database.
The password-stacking module option captures this relationship.

e password-stacking: When passwor d- st acki ng option is set to useFi rst Pass, this module first looks for a
shared username and password under the property names javax.security.auth.|ogin.nane and
javax. security. aut h. | ogi n. passwor d respectively in the login module shared state map. If found these are
used as the principal name and password. If not found the principal name and password are set by this login

JBoss Release 2 268

Security on JBoss

module and stored under the property names javax.security.auth.login. name and
j avax. security. aut h. | ogi n. passwor d respectively.

To use password stacking, each login module should set passwor d- st acki ng t0 usefFi r st Pass. If a previous mod-
ule configured for password stacking has authenticated the user, all the other stacking modules will consider the
user authenticated and only attempt to provide a set of roles for the authorization step.

The following listing shows how password stacking could be used:

<appl i cati on-policy nane="todo">
<aut henti cati on>
<l ogi n- nodul e code="org.jboss. security. auth. spi.LdapLogi nMdul e"
flag="required">
<l-- LDAP configuration -->
<nmodul e- opti on nane="passwor d- st acki ng" >useFi r st Pass</ nodul e- opti on>
</ I ogi n- nodul e>
<l ogi n- nodul e code="org.j boss. security. auth. spi . Dat abaseSer ver Logi nivbdul e"
flag="required">
<!-- database configuration -->
<nodul e- opti on name="passwor d- st acki ng" >useFi r st Pass</ nodul e- opti on>
</ | ogi n- nodul e>
</ aut henti cati on>
</ appl i cati on-policy>

When using password stacking, it is usually appropriate to set all modules to be required to make sure that all mod-
ules are considered and have chance to contribute roles to the authorization process.

7.5.3.2. Password Hashing

Most of the login modules need to compare a client-supplied password to a password stored in a user management
system. These modules generally work with plain text passwords, but can also be configured to support hashed
passwords to prevent plain text passwords from being stored on the server side.

e hashAlgorithm: The name of the java. security. MessageDi gest agorithm to use to hash the password.
Thereisno default so this option must be specified to enable hashing. Typical values are MD5 and SHA.

* hashEncoding: The string format for the hashed pass and must be either base64, hex or rf c2617. The default is
base64.

« hashCharset: The encoding used to convert the clear text password to a byte array. The platform default en-
coding isthe default.

« hashUserPassword: This indicates that the hashing algorithm should be applied to the password the user sub-
mits. The hashed user password will be compared against the value in the login module, which is expected to be
ahash of the password. The default is true.

« hashStorePassword: This indicates that the hashing algorithm should be applied to the password stored on the
server side. Thisis used for digest authentication where the user submits a hash of the user password aong with
a reguest-specific tokens from the server to be comare. JBoss uses the hash agorithm (for digest, this would be
rf c2617) to compute a server-side hash that should match the hashed value sent from the client.

The following is an login module configuration that assigns unauthenticated users the principal name nobody and
contains based64-encoded, M D5 hashes of the passwordsin auser sb64. properti es file.

JBoss Release 2 269

Security on JBoss

<pol i cy>
<appl i cation-policy nanme="test User sRol es" >
<aut henti cati on>
<l ogi n- rodul e code="org.jboss. security.auth. spi.UsersRol esLogi nMbdul e"
flag="required">
<nodul e- opti on name="hashAl gori t hni' >MD5</ nodul e- opti on>
<nmodul e- opti on nane="hashEncodi ng" >base64</ nodul e- opti on>
</ I ogi n- nodul e>
</ aut henti cati on>
</ appl i cati on-policy>
</ pol i cy>

If you need to generate passwords in code, the org. | boss.security. Uil class provides a static helper method
that will hash a password using a given encoding.

String hashedPassword = Util.createPasswordHash(" MD5"
Util . BASE64_ENCODI NG,
nul |,
nul |,
"password");

OpenSSL provides an alternative way to quickly generate hashed passwords.

echo -n password | openssl dgst -nd5 -binary | openssl base64

In both cases, the text password should hash to "X03MO1gnzdY dgyfeulLPmQ==". This is the value that would
need to be stored in the user store.

7.5.3.3. Unauthenticated Identity

Not all requests come in authenticated. The unauthenticated identity is alogin module configuration option that as-
signs a specific identity (guest, for example) to requests that are made with no associated authentication informa-
tion. This can be used to allow unprotected servlets to invoke methods on EJBs that do not require a specific role.
Such a principal has no associated roles and so can only access either unsecured EJBs or EJB methods that are as-
sociated with the unchecked permission constraint.

e unauthenticatedl dentity: This defines the principal name that should be assigned to requests that contain no
authentication information.

7.5.3.4. UsersRolesLoginModule

The User sRol esLogi nModul e isasimple login module that supports multiple users and user roles loaded from Java
properties files. The username-to-password mapping file is called users. properties and the username-to-roles
mapping file is called rol es. properties. The properties files are loaded during initialization using the initialize
method thread context class loader. This means that these files can be placed into the J2EE deployment JAR, the
JBoss configuration directory, or any directory on the JBoss server or system classpath. The primary purpose of
this login module is to easily test the security settings of multiple users and roles using properties files deployed
with the application.

Theusers. properti es file usesauser nane=passwor d format with each user entry on a separate line as show here:

user nanel=passwor dl
user nane2=passwor d2

JBoss Release 2 270

Security on JBoss

The rol es. properties file uses as usernane=rol el, rol e2,... format with an optional group name value. For
example:

usernanel=rolel,role2,...
user nanel. Rol eGroupl=rol e3,rol e4, ...
user nane2=rol el,role3, ...

The user nane. Xxx form of property name is used to assign the username roles to a particular named group of roles
where the xxx portion of the property name is the group name. The usernane=... form is an abbreviation for
user nane. Rol es=. . . , where the Rol es group name is the standard name the JaasSecuri t yManager expectsto con-
tain the roles which define the users permissions.

The following would be equivalent definitions for the j duke username:

j duke=TheDuke, Ani mat edChar act er
j duke. Rol es=TheDuke, Ani mat edChar act er

The supported login module configuration options include the following:

e usersProperties: The name of the properties resource containing the username to password mappings. This de-
faultstousers. properti es.

« rolesProperties: The name of the properties resource containing the username to roles mappings. This defaults
torol es. properties.

This login module supports password stacking, password hashing and unauthenticated identity.

7.5.3.5. LdapLoginModule

The LdapLogi nMbdul e iSaLogi nModul e implementation that authenticates against an LDAP server. Y ou would use
the LdapLogi nModul e if your username and credentials are stored in an LDAP server that is accessible using a
JNDI LDAP provider.

The LDAP connectivity information is provided as configuration options that are passed through to the environ-
ment object used to create INDI initial context. The standard LDAP JNDI properties used include the following:

* java.naming.factory.initial: The classname of the I ni ti al Cont ext Fact ory implementation. This defaults to
the Sun LDAP provider implementation com sun. j ndi . | dap. LdapCt xFact ory.

e java.naming.provider.url: The LDAP URL for the LDAP server
e java.naming.security.authentication: The security level to use. This defaults to si npl e.
e java.naming.security.protocol: The transport protocol to use for secure access, such as, SSL.

e java.naming.security.principal: The principal for authenticating the caller to the service. This is built from
other properties as described below.

e java.naming.security.credentials. The value of the property depends on the authentication scheme. For ex-

JBoss Release 2 271

Security on JBoss

ample, it could be a hashed password, clear-text password, key, certificate, and so on.

The supported login module configuration options include the following:

e principalDNPrefix: A prefix to add to the username to form the user distinguished name. See pri nci pal D\-
suf fi x for moreinfo.

e principalDNSuffix: A suffix to add to the username when forming the user distinguished name. This is useful
if you prompt a user for a username and you don't want the user to have to enter the fully distinguished name.
Using this property and pri nci pal DNSuf fi x the user DN will be formed as pri nci pal DNPrefi x + usernane +
princi pal DNSuf fi x

» useObjectCredential: A true/false value that indicates that the credential should be obtained as an opaque Co-
ject using the org.jboss. security. auth. cal | back. Obj ect Cal | back type of Cal | back rather than as a
char[] password using a JAAS Passwor dCal | back. This alows for passing non-char[] credential information
tothe LDAP server.

¢ rolesCtxDN: The fixed distinguished name to the context to search for user roles.

¢ userRolesCtxDNAttributeName: The name of an attribute in the user object that contains the distinguished
name to the context to search for user roles. This differs from rol esC xDN in that the context to search for a
user's roles can be unique for each user.

» roleAttributel D: The name of the attribute that contains the user roles. If not specified this defaultstor ol es.

* roleAttributel SDN: A flag indicating whether ther ol eAt t ri but el D contains the fully distinguished name of a
role object, or the role name. If false, the role name is taken from the value of rol eAttri but el D. If true, the
role attribute represents the distinguished name of a role object. The role name is taken from the value of the
rol eNaneAttri but el d attribute of the context name by the distinguished name. In certain directory schemas
(e.g., MS ActiveDirectory), role attributes in the user object are stored as DNs to role objects instead of as
simple names, in which case, this property should be set to true. The default isfalse.

« roleNameAttributel D: The name of the attribute of the context pointed to by the rol ecx xDN distinguished
name value which contains the role name. If the rol eAt t ri but el sDN property is set to true, this property is
used to find the role object's name attribute. The default is gr oup.

« uidAttributel D: The name of the attribute in the object containing the user roles that corresponds to the userid.
Thisis used to locate the user roles. If not specified this defaults to ui d.

* matchOnUser DN: A true/false flag indicating if the search for user roles should match on the user's fully dis-
tinguished name. If false, just the username is used as the match value against the ui dAt t ri but eNarre attribute.
If true, the full user DNis used as the match value.

e unauthenticatedl dentity: The principal name that should be assigned to requests that contain no authentication
information. This behavior isinherited from the User nanePasswor dLogi nMbdul e superclass.

e allowEmptyPasswords: A flag indicating if empty (length 0) passwords should be passed to the LDAP server.
An empty password is treated as an anonymous login by some LDAP servers and this may not be a desirable
feature. Set this to false to reject empty passwords or true to have the LDAP server validate the empty pass-
word. The default is true.

JBoss Release 2 272

Security on JBoss

The authentication of a user is performed by connecting to the LDAP server based on the login module configura-
tion options. Connecting to the LDAP server is done by creating an I ni ti al LdapCont ext With an environment
composed of the LDAP JNDI properties described previously in this section. The Cont ext . SECURI TY_PRI NCI PAL iS
set to the distinguished name of the user as obtained by the callback handler in combination with the pri nci pal D\
Prefix and pri nci pal DNSuf fi x option values, and the Cont ext . SECURI TY_CREDENTI ALS property is either set to

the st ri ng password or the tbj ect credential depending on the usej ect Cr edent i al option.

Once authentication has succeeded by virtue of being able to create an I niti al LdapCont ext instance, the user's
roles are queried by performing a search on the r ol esCt xDN location with search attributes set to therol eAttri b-
ut eName and ui dAt t ri but eNanme option values. The roles names are obtaining by invoking thet oSt ri ng method on
therole attributes in the search result set.

Thefollowingisasamplel ogi n-confi g. xm entry.

<appl i cation-policy nane="t est LDAP">
<aut henti cati on>
<l ogi n- rodul e code="org.jboss. security. auth. spi.LdapLogi nMdul e"

flag="required">
<nmodul e- opti on nane="j ava. nam ng.factory.initial">
com sun. j ndi . | dap. LdapCt xFact ory
</ modul e- opti on>
<nodul e- opti on nanme="j ava. nam ng. provi der.url">
| dap: / /| daphost . j boss. or g: 1389/
</ modul e- opti on>
<nmodul e- opti on name="j ava. nami ng. security. authentication">
sinpl e
</ modul e- opti on>
<nodul e- opti on name="pri nci pal DNPr ef i X" >ui d=</ nodul e- opti on>
<nmodul e- opti on nane="pri nci pal DNSuf fi x" >
, ou=Peopl e, dc=j boss, dc=org
</ modul e- opti on>

<nmodul e- opti on nane="r ol esCt xDN" >
ou=Rol es, dc=j boss, dc=org
</ modul e- opti on>
<nmodul e- opti on nane="ui dAttri butel D'>mrenber </ nodul e- opti on>
<modul e- opti on name="mat chOnUser DN' >t r ue</ nodul e- opti on>

<nmodul e- opti on name="rol eAttri butel D'>cn</ nodul e- opti on>

<nmodul e- opti on nane="rol eAttributel sSDN'>fal se </ nodul e-opti on>

</ | ogi n- modul e>
</ aut henti cati on>
</ appl i cati on-policy>

An LDIF file representing the structure of the directory this data operates against is shown below.

dn: dc=j boss,
obj ect cl ass:
obj ect cl ass:
obj ect cl ass:
dc: j boss

o: JBoss

dc=
t op

org

dcObj ect

org

ani zat i on

dn: ou=Peopl e, dc=j boss, dc=or g

obj ect cl ass:
obj ect cl ass:
ou: People

t op
org

ani zat i onal Uni t

dn: ui d=j duke, ou=Peopl e, dc=j boss, dc=or g

obj ect cl ass:

top

JBoss Release 2

273

Security on JBoss

obj ectcl ass: ui dbj ect
obj ectcl ass: person

ui d: j duke

cn: Java Duke

sn: Duke

user Passwor d: theduke

dn: ou=Rol es, dc=j boss, dc=org
obj ectcl ass: top

obj ectcl ass: organi zati onal Uni t
ou: Rol es

dn: cn=JBossAdmi n, ou=Rol es, dc=j boss, dc=or g
obj ectcl ass: top

obj ectcl ass: groupOf Nanes

cn: JBossAdm n

menber : ui d=j duke, ou=Peopl e, dc=j boss, dc=or g
description: the JBossAdm n group

Looking back a the testLDAP login module configuration, the java.nanmi ng.factory.initial,
java. naming. factory. url andjava. nam ng. security optionsindicate the Sun LDAP JNDI provider implement-
ation will be used, the LDAP server is located on host | daphost . j boss. org on port 1389, and that the LDAP
simple authentication method will be use to connect to the LDAP server.

The login modul e attempts to connect to the LDAP server using a DN representing the user it is trying to authentic-
ate. This DN is constructed from the pri nci pal DNPr ef i x, passed in, the username of the user and the pri nci p-
alDNSuffix as described above. In this example, the wusername jduke would map to
ui d=j duke, ou=Peopl e, dc=j boss, dc=or g. We've assumed the LDAP server authenticates users using the user -
Password attribute of the user's entry (t heduke in this example). This is the way most LDAP servers work,
however, if your LDAP server handles authentication differently you will need to set the authentication credentials
in away that makes sense for your server.

Once authentication succeeds, the roles on which authorization will be based are retrieved by performing a subtree
search of the rol esCt xDN for entries whose ui dAt t ri but el D match the user. If mat chOnUser DN is true the search
will be based on the full DN of the user. Otherwise the search will be based on the actual user name entered. In this
example, the search is under ou=Rol es, dc=j boss, dc=or g for any entries that have a nenber attribute equal to
ui d=j duke, ou=Peopl e, dc=j boss, dc=or g. The search would locate cn=JBossAdni n under the roles entry.

The search returns the attribute specified in the rol eAt t ri but el D option. In this example, the attribute is cn. The
value returned would be JBossAdni n, so the jduke user is assigned to the JBossAdni n role.

It's often the case that alocal LDAP server provides identity and authentication services but is unable to use the au-
thorization services. Thisis because application roles don't always map well onto LDAP groups, and LDAP admin-
istrators are often hesitant to allow external application-specific data in central LDAP servers. For this reason, the
LDAP authentication module is often paired with another login module, such as the database login module, that can
provide roles more suitable to the application being developed.

Thislogin module also supports unauthenticated identity and password stacking.

7.5.3.6. DatabaseServerLoginModule

The Dat abaseSer ver Logi nMbdul e is a JDBC based login module that supports authentication and role mapping.
Y ou would use this login module if you have your username, password and role information relational database.
The Dat abaseSer ver Logi nMbdul e is based on two logical tables:

JBoss Release 2 274

Security on JBoss

Tabl e Princi pal s(PrincipallD text, Password text)
Tabl e Rol es(PrincipallD text, Role text, RoleGoup text)

The Pri nci pal s table associates the user Pri nci pal | D with the valid password and the Rol es table associates the
user Principal I D with its role sets. The roles used for user permissions must be contained in rows with a
Rol eGroup column value of Rol es. The tables are logical in that you can specify the SQL query that the login mod-
ule uses. All that isrequired isthat the j ava. sql . Resul t Set has the same logical structure as the Pri nci pal s and
Rol es tables described previously. The actual names of the tables and columns are not relevant as the results are ac-
cessed based on the column index. To clarify this notion, consider a database with two tables, Pri nci pal s and
Rol es, as aready declared. The following statements build the tables to contain a Pri nci pal | Dj ava with a Pass-
wor d of echoman inthe Princi pal s table, a Pri nci pal | Dj ava with arole named Echo in the Rol es Rol eG oup in
the Rol es table, and a Pri nci pal | D j ava with arole named cal | er _j ava in the cal | er Pri nci pal Rol eGroup in
the Rol es table:

I NSERT | NTO Princi pals VALUES('java', 'echoman')
I NSERT | NTO Rol es VALUES('java', 'Echo', 'Roles')
I NSERT | NTO Rol es VALUES('java', 'caller_java', 'CallerPrincipal')

The supported login module configuration options include the following:

dsJndiName: The INDI name for the Dat aSour ce of the database containing the logical Pri nci pal s and Rol es
tables. If not specified this defaultsto j ava: / Def aul t DS.

e principalsQuery: The prepared statement query equivalent to: sel ect Password from Principals where
Pri nci pal | D=2. If not specified thisis the exact prepared statement that will be used.

¢ rolesQuery: The prepared statement query equivalent to: sel ect Rol e, Rol eGoup from Rol es where Prin-
ci pal | D=2. If not specified thisisthe exact prepared statement that will be used.

« ignorePasswordCase: A boolean flag indicating if the password comparison should ignore case. This can be
useful for hashed password encoding where the case of the hashed password is not significant.

* principalClass: An option that specifies a Pri nci pal implementation class. This must support a constructor
taking a string argument for the principal name.

As an example Dat abaseSer ver Logi nModul e configuration, consider a custom table schema like the following:

CREATE TABLE User s(user name VARCHAR(64) PRI MARY KEY, passwd VARCHAR(64))
CREATE TABLE User Rol es(user name VARCHAR(64), userRol es VARCHAR(32))

A corresponding | ogi n- confi g. xn entry would be:

<pol i cy>
<appl i cation-policy nane="test DB">
<aut henti cati on>
<l ogi n- modul e code="org.jboss. security. auth. spi.Dat abaseServer Logi nMdul e"
flag="required">
<nodul e- opti on name="dsJndi Nane">j ava: / MyDat abaseDS</ nodul e- opti on>
<nodul e- opti on nanme="pri nci pal sQuery">
sel ect passwd from Users usernane where usernane=?</nodul e- opti on>
<nmodul e- opti on nane="rol esQuery">
sel ect userRoles, 'Roles' from UserRol es where usernane=?</nodul e- opti on>
</ | ogi n- nodul e>
</ aut henti cati on>

JBoss Release 2 275

Security on JBoss

</ application-policy>
</ pol i cy>

This module supports password stacking, password hashing and unathenticated identity.

7.5.3.7. BaseCertLoginModule

Thisis alogin module which authenticates users based on X509 certificates. A typical use case for thislogin mod-
ule is CLI ENT- CERT authentication in the web tier. This login module only performs authentication. You need to
combine it with another login module capable of acquiring the authorization roles to completely define accessto a
secured web or EJB component. Two subclasses of this login module, Cert Rol esLogi nMbdul e and Dat abase-

Cer t Logi nMbdul e extend the behavior to obtain the authorization roles from either a properties file or database.

The BaseCertLoginvpdule needs a KeyStore to perform user validation. This is obtained through a
org. j boss. security. SecurityDomai n implementation. Typicaly, the SecurityDomai n implementation is con-
figured using the org. | boss. security. pl ugi ns. JaasSecurityDomai n MBean as shown in this j boss-ser-
vi ce. xn configuration fragment:

<nbean code="org.jboss. security. plugins.JaasSecurityDonai n"
nanme="j boss. ch8: servi ce=Securi t yDonai n" >
<construct or >
<arg type="java.lang. String" val ue="j nx-consol e"/ >
</ const ructor>
<attribute name="KeySt or eURL" >r esour ce: | ocal host . keystore</attri bute>
<attribute name="KeyStorePass">unit-tests-server</attribute>
</ mbean>

This creates a security domain with the name j mx- consol e whose Securi t yDormai n implementation is available via
JNDI under the namej ava: / j aas/ j mx- consol e following the JBossSX security domain naming pattern. To secure
a web application such as the j nx- consol e. war using client certs and role based authorization, one would first
modify the web. xm to declare the resources to be secured, along with the allowed roles and security domain to be
used for authentication and authorization.

<?xm version="1.0"?>

<! DOCTYPE web-app PUBLI C
"-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN
"http://java. sun. com dt d/ web-app_2_3.dtd">

<web- app>

<security-constraint>
<web-r esour ce-col | ecti on>
<web-r esour ce- name>Ht m Adapt or </ web- r esour ce- nane>
<descri pti on>An exanpl e security config that only allows users with
the role JBossAdnmin to access the HTM. JMX consol e web
application </description>
<url-pattern>/*</url-pattern>
<ht t p- met hod>GET</ ht t p- met hod>
<ht t p- met hod>PCOST</ ht t p- met hod>
</ web-resour ce-col | ecti on>
<aut h-constrai nt>
<r ol e- namre>JBossAdnmi n</r ol e- name>
</ aut h- constrai nt >
</security-constraint>
<l ogi n-confi g>
<aut h- met hod>CLI ENT- CERT</ aut h- net hod>
<r eal m nane>JBoss JMX Consol e</real m name>
</ ogi n- confi g>
<security-rol e>

JBoss Release 2 276

Security on JBoss

<r ol e- nane>JBossAdm n</r ol e- name>
</security-rol e>
</ web- app>

Next we, need to specify the JBoss security domain in j boss- web. xni :

<j boss- web>
<security-domai n>j ava: /j aas/j nx- consol e</ security-domai n>
</j boss-web>

Finally, you need to define the login module configuration for the jmx-console security domain you just specified.
Thisisdoneintheconf /1 ogi n-config. xn file.

<appl i cation-policy name="jnx-consol e">
<aut henti cati on>
<l ogi n- nodul e code="org.j boss. security. auth. spi.BaseCert Logi nivbdul e"
flag="required">
<nmodul e- opti on nane="passwor d- st acki ng" >useFi r st Pass</ nodul e- opti on>
<nodul e- opti on name="securityDomai n">j ava: /] aas/j nx- consol e</ nodul e- opti on>
</ | ogi n- nodul e>
<l ogi n- rodul e code="org.jboss. security.auth. spi.UsersRol esLogi nMdul e"
flag="required">
<nodul e- opti on name="passwor d- st acki ng" >useFi r st Pass</ nodul e- opti on>
<nodul e- opti on nane="user sProperties">j nx-consol e-users. properti es</ nodul e-opti on>
<nmodul e- opti on nane="rol esProperties">j nx-consol e-rol es. properties</nodul e-opti on>
</ | ogi n- nodul e>
</ aut henti cati on>
</ appl i cati on-policy>

Here the BaseCer t Logi nMbdul e is used for authentication of the client cert, and the User sRol esLogi nvbdul e iS
only used for authorization due to the passwor d- st acki ng=useFi r st Pass option. Both the | ocal host . keyst ore
and the j mx- consol e-rol es. properti es need an entry that maps to the principal associated with the client cert.
By default, the principal is created using the client certificate distinguished name. Consider the following certific-
ate:

[star ksm@anshee9100 conf]$ keytool -printcert -file unit-tests-client.export
Omner: CN=unit-tests-client, OU=JBoss Inc., O=JBoss Inc., ST=Washi ngton, C=US
| ssuer: CN=j boss.com C=US, ST=Washi ngton, L=Snoqual m e Pass, EMAl LADDRESS=adm n
@ boss. com OUF=QA, O=JBoss Inc.
Serial nunmber: 100103
Valid from Wed May 26 07:34:34 PDT 2004 until: Thu May 26 07:34:34 PDT 2005
Certificate fingerprints:

MD5: 4A: 9C: 2B: CD: 1B: 50: AA: 85: DD: 89: F6: 1D: F5: AF: 9E: AB

SHAL1: DE: DE: 86: 59: 05: 6C: 00: E8: CC: C0: 16: D3: C2: 68: BF: 95: B8: 83: E9: 58

The | ocal host . keyst ore would need this cert stored with an alias of CN=uni t-tests-client, OU=JBoss Inc.,
O=JBoss Inc., ST=Washington, C=USs and thejnx-consol e-rol es. properties would aso need an entry for the
same entry. Since the DN contains many characters that are normally treated as delimiters, you will need to escape
the problem characters using a backslash (\) as shown here:

A sanple roles.properties file for use with the UsersRol esLogi nMbdul e
CN\ =unit-tests-client,\ OMA=JBoss\ Inc.,\ O=JBoss\ Inc.,\ ST\=Washi ngton,\ C =US=JBossAdm n
adm n=JBossAdni n

7.5.3.8. IdentityLoginModule

JBoss Release 2 277

Security on JBoss

The I denti t yLogi nMbdul e is a simple login module that associates a hard-coded user name a to any subject au-
thenticated against the module. It creates a Si npl ePri nci pal instance using the name specified by the pri nci pal
option. This login module is useful when you need to provide a fixed identity to a service and in development en-
vironments when you want to test the security associated with a given principal and associated roles.

The supported login module configuration options include:

e principal: Thisisthe name to use for the si npl ePri nci pal al users are authenticated as. The principal name
defaults to guest if no principal option is specified.

* roles: Thisisacomma-delimited list of roles that will be assigned to the user.

A sample XMLLoginConfig configuration entry that would authenticate all users as the principal named j duke and
assign role names of Thebuke, and Ani mat edChar act er iS:

<pol i cy>
<application-policy nane="testldentity">
<aut henti cati on>
<l ogi n- rodul e code="org.jboss. security.auth.spi.ldentitylLogi nModul e"
flag="required">
<nodul e- opti on name="pri nci pal ">j duke</ nodul e- opti on>
<nmodul e- opti on nane="r ol es" >TheDuke, Ani nat edChar at er </ nodul e- opti on>
</ | ogi n- nodul e>
</ aut henti cati on>
</ application-policy>
</ policy>

This module supports password stacking.

7.5.3.9. RunAsLoginModule

JBoss has a helper login module called RunAsLogi nMbdul e that pushes a run as role for the duration of the login
phase of authentication, and pops the run as role in either the commit or abort phase. The purpose of this login
module is to provide arole for other login modules that need to access secured resources in order to perform their
authentication. An example would be alogin module that accesses an secured EJB. This login module must be con-
figured ahead of the login module(s) that need a run as role established.

The only login module configuration option is:

« roleName: the name of the role to use as the run as role during login phase. If not specified a default of nobody
isused.

7.5.3.10. ClientLoginModule

The d i ent Logi nMbdul e isan implementation of Logi nMbdul e for use by JBoss clients for the establishment of the
caller identity and credentials. Thissimply setsthe org. j boss. security. Securit yAssoci ati on. pri nci pal tothe
value of the NareCal | back filled in by the cal | backhandl er, and the
org.jboss. security. SecurityAssociation.credential tothe vaue of the PasswordCal | back filled in by the
cal | backhandl er. This is the only supported mechanism for a client to establish the current thread's caller. Both
stand-alone client applications and server environments, acting as JBoss EJB clients where the security environ-
ment has not been configured to use JBossSX transparently, need to use the d i ent Logi nMbdul e. Of course, you

JBoss Release 2 278

Security on JBoss

could always set the org. j boss. security. Securi t yAssoci ati on information directly, but this is considered an
internal API that is subject to change without notice.

Note that this login module does not perform any authentication. It merely copies the login information provided to
it into the JBoss server EJB invocation layer for subsequent authentication on the server. If you need to perform cli-
ent-side authentication of users you would need to configure another login module in addition to the d i ent Logi n-
Modul e.

The supported login module configuration options include the following:

« multi-threaded: When the multi-threaded option is set to true, each login thread has its own principal and cre-
dential storage. This is useful in client environments where multiple user identities are active in separate
threads. When true, each separate thread must perform its own login. When set to false the login identity and
credentials are global variables that apply to al threadsin the VM. The default for this option isfalse.

* password-stacking: When passwor d- st acki ng option is set to useFi r st Pass, this module first looks for a
shared username and password using j avax. security. aut h. | ogi n. nane and
javax. security. aut h. | ogi n. passwor d respectively in the login module shared state map. This allows a mod-
ule configured prior to this one to establish avalid username and password that should be passed to JBoss. Y ou
would use this option if you want to perform client-side authentication of clients using some other login module
such asthe LdapLogi nMbdul e.

e restore-login-identity: When restore-1ogi n-identity istrue, the SecurityAssoci ati on principal and cre-
dential seen on entry to the I ogi n() method are saved and restored on either abort or logout. When false (the
default), the abort and logout simply clear the SecurityAssoci ation. A restore-|ogin-identity Of trueis
needed if one need to change identities and then restore the original caller identity.

A sample login configuration for d i ent Logi nModul e isthe default configuration entry found in the JBoss distribu-
tionclient/aut h. conf file. The configurationis:

ot her {
/1 Put your |ogin nmodul es that work without jBoss here

/1 jBoss Logi nModul e
org.j boss.security.dientlLogi nModul e required;

/1 Put your |ogin nodules that need jBoss here

7.5.4. Writing Custom Login Modules

If the login modules bundled with the JBossSX framework do not work with your security environment, you can
write your own custom login module implementation that does. Recall from the section on the JaasSecuri t yMan-
ager architecture that the JaasSecurit yManager expected a particular usage pattern of the Subj ect principals set.
Y ou need to understand the JAAS Subject class's information storage features and the expected usage of these fea-
tures to be able to write a login module that works with the JaasSecuri t yManager . This section examines this re-
quirement and introduces two abstract base Logi nMbdul e implementations that can help you implement your own
custom login modules.

Y ou can obtain security information associated with a Subj ect in six waysin JBoss using the following methods:

java.util.Set getPrincipals()

JBoss Release 2 279

Security on JBoss

java.util.Set getPrincipals(java.lang.C ass c)

java. util.Set getPrivateCredential s()

java.util.Set getPrivateCredential s(java.lang.C ass c)
java.util.Set getPublicCredential s()

java.util.Set getPublicCredential s(java.lang.C ass c)

For subj ect identities and roles, JBossSX has selected the most natural choice: the principals sets obtained via
get Princi pal s() and get Pri nci pal s(j ava. | ang. O ass) . The usage pattern is as follows:

e User identities (username, social security number, employee ID, and so on) are stored as
java.security. Principal objectsinthe Subject Principal s set. The Princi pal implementation that repres-
ents the user identity must base comparisons and equality on the name of the principal. A suitable implementa-
tionisavailableastheorg. j boss. security. Si mpl ePri nci pal class. Other Pri nci pal instances may be added
to the Subj ect Princi pal s Set as needed.

e The assigned user roles are also stored in the Pri nci pal s set, but they are grouped in named role sets using
java. security. acl. G oup instances. The & oup interface defines a collection of Princi pal s and/or Groups,
and is a subinterface of j ava. security. Princi pal . Any number of role sets can be assigned to a Subj ect .
Currently, the JBossSX framework uses two well-known role sets with the names Rol es and Cal | er Pri nci pal .
The Rol es Group is the collection of Pri nci pal s for the named roles as known in the application domain under
which the subject has been authenticated. This role set is used by methods like the EJBCon-
text.isCallerlnRol e(String), which EJBs can use to seeif the current caller belongs to the named applica-
tion domain role. The security interceptor logic that performs method permission checks also uses this role set.
The cal | er Princi pal Group consists of the single pri nci pal identity assigned to the user in the application
domain. The EJBCont ext . get Cal | er Pri nci pal () method uses the cal | er Pri nci pal to alow the application
domain to map from the operation environment identity to a user identity suitable for the application. If a Sub-
ject doesnot have acal | er Princi pal G oup, the application identity is the same as operational environment
identity.

7.5.4.1. Support for the Subject Usage Pattern

To simplify correct implementation of the Subj ect usage patterns described in the preceding section, JBossSX in-
cludes two abstract login modules that handle the population of the authenticated subj ect with a template pattern
that enforces correct Subj ect usage. The most generic of the two is the
org.j boss. security. aut h. spi . Abst ract Ser ver Logi nModul e class. It provides a concrete implementation of the
javax. security. aut h. spi . Logi nMbdul e interface and offers abstract methods for the key tasks specific to an op-
eration environment security infrastructure. The key details of the class are highlighted in the following class frag-
ment. The JavaDoc comments detail the responsibilities of subclasses.

package org.j boss. security. auth. spi;
/**
* This class inplenments the common functionality required for a JAAS
* server-side Logi nMbdul e and i npl ements the JBossSX standard
* Subj ect usage pattern of storing identities and roles. Subclass
* this npbdule to create your own custom Logi nMbdul e and override the
* login(), getRoleSets(), and getldentity() methods.
*/
public abstract class Abstract ServerLogi nMbdul e
i mpl enents j avax. security. auth. spi.Logi nModul e
{

prot ected Subject subject;
prot ected Cal | backHandl er cal | backHandl er;
protected Map sharedState;

JBoss Release 2 280

Security on JBoss

protected Map opti ons;
prot ected Logger | og;

/** Flag indicating if the shared credential should be used */
prot ect ed bool ean useFi r st Pass;

/**

* Flag indicating if the |ogin phase succeeded. Subcl asses that
* override the |ogin method nust set this to true on successful
* conpl etion of |ogin

*/

prot ect ed bool ean | ogi nCk;

I

/**

* |nitialize the login nodule. This stores the subject,

* cal | backHandl er and sharedState and options for the |ogin

* session. Subclasses should override if they need to process

* their owm options. Acall to super.initialize(...) must be

* made in the case of an override.

*

* <p>

* The options are checked for the <enppassword-stacking</en> paraneter.

* |f this is set to "useFirstPass", the login identity will be taken fromthe
* <code>j avax. security. auth.| ogi n. name</ code> val ue of the sharedState map,

* and the proof of identity fromthe

* <code>j avax. security. auth.| ogi n. passwor d</ code> val ue of the sharedState nmap.
*

* @aram subj ect the Subject to update after a successful |ogin.

* @aram cal | backHandl er the Cal | backHandl er that will be used to obtain the
* the user identity and credential s.

* @aram sharedState a Map shared between all configured | ogin nodul e i nstances
* @aram options the paraneters passed to the | ogi n nodul e.

*

/

public void initialize(Subject subject,

Cal | backHandl er cal | backHandl er,
Map sharedSt at e,

Map opti ons)

{

Il
}
/**
* Looks for javax.security.auth.login.name and
* javax.security.auth.login.password values in the sharedState
* map if the useFirstPass option was true and returns true if
* they exist. If they do not or are null this method returns
* fal se.
* Note that subclasses that override the | ogin nethod
* nmust set the loginCk var to true if the login succeeds in
* order for the commt phase to popul ate the Subject. This
* inplenentation sets loginCk to true if the l[ogin() nethod
* returns true, otherwise, it sets loginCk to false.
*/

publ i c bool ean | ogi n()
throws Logi nException

Il

/**

* Qverridden by subclasses to return the Principal that
* corresponds to the user primary identity.

*/

abstract protected Principal getldentity();

JBoss Release 2 281

Security on JBoss

/**

* Qverridden by subclasses to return the G oups that correspond
* to the role sets assigned to the user. Subcl asses shoul d

* create at least a G oup naned "Rol es" that contains the roles
* assigned to the user. A second comon group is

* "CallerPrincipal," which provides the application identity of
* the user rather than the security donain identity.

*

* @eturn Goup[] containing the sets of roles

*/

abstract protected Group[] getRol eSets() throws Logi nExcepti on;

You'll need to pay attention to the | ogi nCk instance variable. This must be set to true if the login succeeds, false
otherwise by any subclasses that override the login method. Failure to set this variable correctly will result in the
commit method either not updating the subject when it should, or updating the subject when it should not. Tracking
the outcome of the login phase was added to alow login modules to be chained together with control flags that do
not require that the login module succeed in order for the overall login to succeed.

The second abstract base login module suitable for custom login modules is the
org. j boss. security. aut h. spi . User namePasswor dLogi nMbdul e. This login module further simplifies custom lo-
gin module implementation by enforcing a string-based username as the user identity and achar[] password as the
authentication credentials. It also supports the mapping of anonymous users (indicated by a null username and
password) to a principal with no roles. The key details of the class are highlighted in the following class fragment.
The JavaDoc comments detail the responsibilities of subclasses.

package org.j boss.security. auth. spi;
/ *
An abstract subcl ass of Abstract ServerLogi nMbdul e that inmposes a
an identity == String usernane, credentials == String password
view on the | ogin process. Subclasses override the
get User sPasswor d() and get UsersRol es() nmethods to return the
expect ed password and roles for the user.

L I S

public abstract class User nanePasswor dLogi nMbdul e
extends Abstract Server Logi nModul e

[** The login identity */

private Principal identity;

[** The proof of login identity */

private char[] credential;

/** The principal to use when a null username and password are seen */
private Principal unauthenticatedldentity;

/**
* The nmessage digest algorithmused to hash passwords. |If null then
* plain passwords will be used. */

private String hashAl gorithm = null;

/**

* The nanme of the charset/encoding to use when converting the
* password String to a byte array. Default is the platfornms

* default encoding.

*/

private String hashCharset = null;

/** The string encoding format to use. Defaults to base64. */
private String hashEncoding = null;

Il

JBoss Release 2 282

Security on JBoss

*

Override the superclass nethod to | ook for an
unaut henti catedl dentity property. This nmethod first invokes
t he super version.

@ar am opti ons,

@ption unauthenticatedldentity: the name of the principal to
assign and authenticate when a null username and password are
seen.

* % 3k 3k % X X X X %

-~

public void initialize(Subject subject,
Cal | backHandl er cal | backHandl er,
Map sharedSt at e,
Map options)

super.initialize(subject, callbackHandl er, sharedState,
options);

/| Check for unauthenticatedldentity option.
oj ect option = options.get("unauthenticatedldentity");
String nane = (String) option;
if (name !'= null) {

unaut henti catedl dentity = new Si npl ePri nci pal (nane) ;
}

Il

*

A hook that allows subclasses to change the validation of the
i nput password agai nst the expected password. This version
checks that neither inputPassword or expectedPassword are null
and that inputPassword. equal s(expect edPassword) is true;

@eturn true if the inputPassword is valid, fal se otherw se.

L T T

~

prot ected bool ean val i dat ePassword(String i nput Password,
String expect edPasswor d)

{
i f (inputPassword == null || expectedPassword == null) {
return fal se;
}
return input Password. equal s(expect edPasswor d) ;
}
/**
* Cet the expected password for the current username avail abl e
* via the getUsernanme() nethod. This is called fromw thin the
* login() nmethod after the Call backHandl er has returned the
* usernane and candi dat e password.
*
* @eturn the valid password String
*/

abstract protected String getUsersPassword()
t hrows Logi nExcepti on;

The choice of subclassing the Abstract Server Logi nMbdul e Versus User nanePasswor dLogi nMbdul e iS simply
based on whether a string-based username and credentials are usable for the authentication technology you are
writing the login module for. If the string-based semantic is valid, then subclass User namePasswor dLogi nMbdul e,
otherwise subclass Abst r act Ser ver Logi nMbdul e.

The steps you are required to perform when writing a custom login module are summarized in the following de-

JBoss Release 2 283

Security on JBoss

pending on which base login module class you choose. When writing a custom login module that integrates with
your security infrastructure, you should start by subclassing Abst r act Ser ver Logi nModul e Or User namePasswor d-
Logi nModul e to ensure that your login module provides the authenticated Pri nci pal information in the form ex-
pected by the JBossSX security manager.

When subclassing the Abst r act Ser ver Logi nModul e, You need to override the following:

e wvoid initialize(Subject, CallbackHandl er, Map, Map): if you have custom optionsto parse.

* bool ean | ogin(): to perform the authentication activity. Be sure to set the | ogi nOk instance variable to true if
login succeeds, falseif it fails.

e Principal getldentity():toreturntheprincipal object for the user authenticated by the | og() step.

* Goup[] getRoleSets():toreturn at least one G oup named Rol es that contains the roles assigned to the Pri n-
ci pal authenticated during | ogi n() . A second common G oup iS named Cal | er Pri nci pal and provides the
user's application identity rather than the security domain identity.

When subclassing the User namePasswor dLogi nhbdul e, you need to override the following:

e wvoid initialize(Subject, CallbackHandl er, Map, Map): if you have custom optionsto parse.

* Goup[] getRoleSets():toreturn at least one G oup named Rol es that contains the roles assigned to the Pri n-
ci pal authenticated during | ogi n(). A second common G oup iS named Cal | er Pri nci pal and provides the
user's application identity rather than the security domain identity.

e String getUsersPassword(): to return the expected password for the current username available via the
get User nane() method. The get User sPasswor d() method is called from within | ogi n() after the cal | back-
handl er returns the username and candidate password.

7.5.4.2. A Custom LoginModule Example

In this section we will develop a custom login module example. It will extend the User nanePasswor dLogi nVbdul e
and obtains a user's password and role names from a JINDI |ookup. The ideais that there is a INDI context that will
return a user's password if you perform a lookup on the context using a name of the form passwor d/ <user nane>
where <user name> is the current user being authenticated. Similarly, a lookup of the form r ol es/ <user name> re-
turns the requested user's roles.

The source code for the example is located in the sr ¢/ mai n/ or g/ j boss/ book/ securi ty/ ex2 directory of the book
examples. Example 7.9 shows the source code for the Jndi User AndPass custom login module. Note that because
this extends the JBoss User nanePasswor dLogi nModul e, al the Indi User AndPass does is abtain the user's password
and roles from the JNDI store. The Jndi User AndPass does not concern itself with the JAAS Logi nMbdul e opera-
tions.

Example 7.9. A IndiUser AndPass custom login module

package org.j boss. book. security. ex2;

i mport java.security.acl.G oup;
i mport java.util.Mp;

JBoss Release 2 284

Security on JBoss

i mport javax.nam ng.|nitial Context;

i mport javax. nam ng. Nam ngExcepti on;

i mport javax.security.auth. Subject;

i mport javax.security. auth. call back. Cal | backHandl er;
i mport javax.security.auth.login.Logi nExcepti on;

i mport org.jboss. security. Si npl eG oup;
i mport org.jboss.security. SinplePrincipal;
i mport org.jboss. security.auth. spi.UsernanePasswor dLogi nvbdul e;

/

for a user froma JNDI | ookup.

* % %k F

@ut hor Scott. Stark@ boss. org
* @ersion $Revision: 1.2 $
*/
public class Jndi User AndPass
ext ends User nanmePasswor dLogi nvbdul e

An exanpl e custom | ogi n nodul e that obtains passwords and rol es

{
/** The JNDI nanme to the context that handl es the password/ usernanme | ookup */
private String userPathPrefix;
/** The JNDI nane to the context that handl es the rol es/ usernane | ookup */
private String rol esPathPrefix;
/**
* Qverride to obtain the userPathPrefix and rol esPat hPrefix options.
*/
public void initialize(Subject subject, CallbackHandl er call backHandl er,
Map sharedState, Map options)
{
super.initialize(subject, callbackHandl er, sharedState, options);
userPat hPrefix = (String) options.get("userPathPrefix");
rol esPathPrefix = (String) options.get("rol esPathPrefix");
}
/**
* Cet the roles the current user belongs to by querying the
* rolesPathPrefix + '/' + super.getUsername() JNDI |ocation.
*/
protected G oup[] getRol eSets() throws Logi nException
{
try {
Initial Context ctx = new Initial Context();
String rolesPath = rol esPathPrefix + '/' + super.get Usernane();
String[] roles = (String[]) ctx.|ookup(rolesPath);
G oup[] groups = {new Si npl eG oup("Rol es")};
log.info("Getting roles for user="+super.getUsernane());
for(int r = 0; r <roles.length; r ++) {
Si npl ePrincipal role = new Sinpl ePrincipal (roles[r]);
| og.info("Found rol e="+roles[r]);
gr oups[0] . addMenber (rol e);
return groups;
} catch(Nami ngException e) {
log.error("Failed to obtain groups for
user =" +super. get User nanme(), e);
t hrow new Logi nException(e.toString(true));
}
}
/**
* Get the password of the current user by querying the
* userPathPrefix + '/' + super.getUsernane() JNDI |ocation.
*/
JBoss Release 2 285

Security on JBoss

protected String getUsersPassword()

throws Logi nException

new | nitial Context();

String userPath = userPathPrefix + '/' + super.getUsernanme();
log.info("Getting password for user="+super.getUsernane());
String passwd = (String) ctx.|ookup(userPath);

user =" +super. get Usernane(), e);
t hrow new Logi nException(e.toString(true));

{
try {
Initial Context ctx =
| 0og.info("Found password="+passwd) ;
return passwd;
} cat ch(Nam ngException e) {
log.error("Failed to obtain password for
}
}

The details of the INDI store are found in the or g. j boss. book. security. ex2. servi ce. Jndi St ore MBean. This
service binds an oj ect Fact or y that returns aj avax. nani ng. Cont ext proxy into INDI. The proxy handles |lookup
operations done against it by checking the prefix of the lookup name against passwor d and r ol es. When the name
begins with passwor d, a user's password is being requested. When the name begins with r ol es the user's roles are
being requested. The example implementation always returns a password of t heduke and an array of roles names
equal to {" TheDuke", "Echo"} regardless of what the username is. You can experiment with other implementa-

tions as you wish.

The example code includes a simple session bean for testing the custom login module. To build, deploy and run the

example, execute the following command in the examples directory.

[exanpl es] $ ant - Dchap=security -Dex=2 run-exanple

run- exanpl e2:
[echo] Waiting for 5 seconds for deploy..
[java] [INFO Exdient] Login wth usernanme=jduke, password=t heduke
[java] [INFQ Exdient] Looking up EchoBean2
[java] [INFO Exdient] Created Echo
[java] [INFO ExClient] Echo.echo('Hello') = Hello

The choice of using the Jndi User AndPass custom login module for the server side authentication of the user is de-
termined by the login configuration for the example security domain. The EJB JAR META- I NF/j boss. xni

descriptor sets the security domain

<?xm version="1.0"?>

<j boss>
<security-domai n>j ava: /j aas/ security-ex2</security-domai n>

</j boss>

The SAR META- I NF/ 1 ogi n- confi g. xm descriptor defines the login module configuration.

<application-policy name = "security-ex2">
<aut henti cati on>
<l ogi n- rodul e code="org. j boss. book. security. ex2.Jndi User AndPass"
flag="required">

<nmodul e- opti on nane = "userPat hPrefix">/security/store/password</ nodul e-opti on>
<nodul e-opti on nanme = "rol esPat hPrefi x">/security/store/rol es</ nodul e-opti on>

</ | ogi n- modul e>
</ aut henti cati on>
</ application-policy>

JBoss Release 2

286

Security on JBoss

7.6. The Secure Remote Password (SRP) Protocol

The SRP protocol is an implementation of a public key exchange handshake described in the Internet standards
working group request for comments 2945(RFC2945). The RFC2945 abstract states:

This document describes a cryptographically strong network authentication mechanism known as the Secure Re-
mote Password (SRP) protocol. This mechanism is suitable for negotiating secure connections using a user-
supplied password, while eliminating the security problems traditionally associated with reusable passwords. This
system also performs a secure key exchange in the process of authentication, allowing security layers (privacy and/
or integrity protection) to be enabled during the session. Trusted key servers and certificate infrastructures are not
required, and clients are not required to store or manage any long-term keys. SRP offers both security and deploy-
ment advantages over existing challenge-response techniques, making it an ideal drop-in replacement where secure
password authentication is needed.

Note: The complete RFC2945 specification can be obtained from http://www.rfc-editor.org/rfc.html. Additional in-
formation on the SRP algorithm and its history can be found at http://www-cs-students.stanford.edu/~tjw/srp/.

SRP is similar in concept and security to other public key exchange algorithms, such as Diffie-Hellman and RSA.
SRP is based on simple string passwords in away that does not require a clear text password to exist on the server.
Thisisin contrast to other public key-based algorithms that require client certificates and the corresponding certi-
ficate management infrastructure.

Algorithms like Diffie-Hellman and RSA are known as public key exchange algorithms. The concept of public key
algorithms is that you have two keys, one public that is available to everyone, and one that is private and known
only to you. When someone wants to send encrypted information to you, then encrpyt the information using your
public key. Only you are able to decrypt the information using your private key. Contrast this with the more tradi-
tional shared password based encryption schemes that require the sender and receiver to know the shared password.
Public key algorithms eliminate the need to share passwords.

The JBossSX framework includes an implementation of SRP that consists of the following elements:

« Animplementation of the SRP handshake protocol that is independent of any particular client/server protocol
* AnRMI implementation of the handshake protocol as the default client/server SRP implementation

* A client side JAAS Logi nMdul e implementation that uses the RMI implementation for use in authenticating
clientsin a secure fashion

* A IJMX MBean for managing the RMI server implementation. The MBean allows the RMI server implementa-
tion to be plugged into a IMX framework and externalizes the configuration of the verification information
store. It also establishes an authentication cache that is bound into the JBoss server INDI namespace.

e A server side JAAS Logi nModul e implementation that uses the authentication cache managed by the SRP IMX
MBean.

Figure 7.14 gives a diagram of the key components involved in the JBossSX implementation of the SRP client/
server framework.

JBoss Release 2 287

http://www.rfc-editor.org/rfc.html
http://www-cs-students.stanford.edu/~tjw/srp/

Security on JBoss

Clienz

%m[‘] ientfession

i

|
%m Loginfodule

3 ®

SREServerinterface SREVerifierStorsServicelBaan

JBozz Jerver

SRPVerifieritoreSecvice
————
e
,..-"' SRMWerifiecStore
SREFRenotederver |7
e~ e
auchentication ‘h‘_
b

A i = SRPService
verifier
muth ﬂue&d: ‘\x mAnAges O
h"-u. B T
e s e i B O SREFServicedBesn

|

I T

| Session WYL jupdates
|

Wauth seasion !

FRPServeciession TimedCache \!’
b o e e e
agssion caches [
CachaPolicoy

Figure 7.14. The JBossSX components of the SRP client-server framework.

SRPServerlistensr

On the client side, SRP shows up as a custom JAAS Logi nMdul e implementation that communicates to the au-
thentication server through an or g. j boss. security. srp. SRPServer I nter f ace proxy. A client enables authentica-
tion using SRP by creating a login configuration entry that includes the
org.jboss. security. srp.jaas. SRPLogi nModul e. This module supports the following configuration options:

e principalClassName: This option is no longer supported. The principal class is now aways
org.j boss. security.srp.jaas. SRPPrinci pal .

* gsrpServerJndiName: The INDI name of the SRPSer ver I nter f ace Object to use for communicating with the
SRP authentication server. If both srpServerJndi Nanme and srpServerRmi Url options are specified, the
srpSer ver Jndi Nane istried before srpServer Rmi Ul .

e grpServerRmiUrl: The RMI protocol URL string for the location of the SRPSer ver I nt er f ace proxy to use for
communicating with the SRP authentication server.

JBoss Release 2 288

Security on JBoss

e externalRandomA: A true/false flag indicating if the random component of the client public key A should
come from the user callback. This can be used to input a strong cryptographic random number coming from a
hardware token for example.

* hasAuxChallenge: A trueffalse flag indicating that a string will be sent to the server as an additional challenge
for the server to validate. If the client session supports an encryption cipher then atemporary cipher will be cre-
ated using the session private key and the challenge object sent asaj avax. crypt o. Seal edQbj ect .

« multipleSessions: atrue/false flag indicating if a given client may have multiple SRP login sessions active sim-
ultaneously.

Any other options passed in that do not match one of the previous named options is treated as a INDI property to
use for the environment passed to the I ni ti al Cont ext constructor. Thisis useful if the SRP server interface is not
available from the default 1 ni ti al Cont ext .

The sRPLogi nMbdul e needs to be configured along with the standard d i ent Logi nMbdul e to allow the SRP authen-
tication credentials to be used for validation of access to security J2EE components. An example login configura-
tion entry that demonstrates such asetup is:

srp {
org.j boss.security.srp.jaas. SRPLogi nMbdul e required
srpSer ver Jndi Nane=" SRPSer ver | nt er f ace"

org.j boss.security.dientLogi nMbdul e required
passwor d- st acki ng="useFi r st Pass"

On the JBoss server side, there are two MBeans that manage the objects that collectively make up the SRP server.
The primary service is the org. j boss. security. srp. SRPServi ce MBean, and it is responsible for exposing an
RMI accessible version of the SRPServerinterface as well as updating the SRP authentication session cache. The
configurable SRPService MBean attributes include the following:

¢ JndiName: The JINDI name from which the SRPServerinterface proxy should be available. Thisisthe location
where the srPSer vi ce binds the serializable dynamic proxy to the SRPSer ver I nt er f ace. If not specified it de-
faultsto sr p/ SRPSer ver I nter f ace.

* Verifier SourceJndiName: The JINDI name of the SrRPveri fi er Sour ce implementation that should be used by
the SRPSer vi ce. If not set it defaultsto sr p/ Def aul t Veri fi er Sour ce.

¢ AuthenticationCacheJndiName: The JINDI name under which the authentication
org.jboss. util. CachePol i cy implementation to be used for caching authentication information is bound. The
SRP session cache is made available for use through this binding. If not specified it defaults to srp/
Aut henti cati onCache.

e ServerPort: RMI port for the SRPRenot eSer ver | nt er f ace. If not specified it defaults to 10099.

* ClientSocketFactory: An optional custom j ava. rmi. server.RM O i ent Socket Fact ory implementation class
name used during the export of the SRPSer ver I nt er f ace. If not specified the default RM C i ent Socket Fact ory
isused.

JBoss Release 2 289

Security on JBoss

e ServerSocketFactory: An optional custom j ava. rni . server. RM Ser ver Socket Fact ory implementation class
name used during the export of the SRPSer ver I nt er f ace. If not specified the default RM Ser ver Socket Fact ory
isused.

* AuthenticationCacheTimeout: Specifies the timed cache policy timeout in seconds. If not specified this de-
faults to 1800 seconds(30 minutes).

* AuthenticationCacheResolution: Specifies the timed cache policy resolution in seconds. This controls the in-
terval between checks for timeouts. If not specified this defaults to 60 seconds(1 minute).

¢ RequireAuxChallenge: Set if the client must supply an auxiliary challenge as part of the verify phase. This
gives control over whether the SRPLogi nMbdul e configuration used by the client must have the useAuxChal -
| enge option enabled.

« OverwriteSessions: A flag indicating if a successful user auth for an existing session should overwrite the cur-
rent session. This controls the behavior of the server SRP session cache when clients have not enabled the mul-
tiple session per user mode. The default is false meaning that the second attempt by a user to authentication will
succeed, but the resulting SRP session will not overwrite the previous SRP session state.

The one input setting isthe Veri fi er Sour cedndi Nane attribute. Thisis the location of the SRP password informa-
tion store implementation that must be provided and made available through JNDI. The or g. j boss. security. srp
SRPVer i fi er StoreServi ce IS an example MBean service that binds an implementation of the SRPveri fier Store
interface that uses afile of serialized objects as the persistent store. Although not realistic for a production environ-
ment, it does allow for testing of the SRP protocol and provides an example of the requirements for an SrRPverii fi -
er St or e Service. The configurable SRPVer i f i er St or eSer vi ce MBean attributes include the following:

¢ JndiName: The JNDI name from which the SRPveri fi er St or e implementation should be available. If not spe-
cified it defaultsto srp/ Def aul t Veri fi er Sour ce.

e StoreFile: The location of the user password verifier serialized object store file. This can be either a URL or a
resource name to be found in the classpath. If not specified it defaultsto SRPVeri fi er Store. ser.

The srRPVeri fi er St or eSer vi ce MBean also supports addUuser and del User operations for addition and deletion of
users. The signatures are:

public void addUser(String usernanme, String password) throws | OException;
public void del User(String usernane) throws | OException;

An example configuration of these servicesis presented in Section 7.6.

7.6.1. Providing Password Information for SRP

The default implementation of the SRPveri fi er St or e interface is not likely to be suitable for you production secur-
ity environment as it requires all password hash information to be available as a file of serialized objects. Y ou need
to provide an MBean service that provides an implementation of the SRPVeri fi er St or e interface that integrates
with your existing security information stores. The SRPVeri fi er St or e interface is shown in.

Example 7.10. The SRPVerifier Storeinterface

JBoss Release 2 290

Security on JBoss

package org.]j boss. security.srp;

i mport java.io.| OException;

i mport java.io.Serializable;

i mport java.security. KeyExcepti on;

public interface SRPVerifierStore

{
public static class Verifierlinfo inplenments Serializable
{
/**
* The username the information applies to. Perhaps redundant
* put it nmakes the object self contained.
*/
public String usernane;
/** The SRP password verifier hash */
public byte[] verifier;
/** The random password salt originally used to verify the password */
public byte[] salt;
/** The SRP algorithmprimtive generator */
public byte[] g;
/** The al gorithm safe-prinme nodul us */
public byte[] N
}
/**
* Get the indicated user's password verifier infornation.
*/
public Verifierlnfo getUserVerifier(String usernane)
throws KeyException, | OException;
/**
* Set the indicated users' password verifier information. This
* is equivalent to changing a user's password and shoul d
* generally invalidate any existing SRP sessions and caches.
=
public void setUserVerifier(String usernane, Verifierlnfo info)
throws | OExcepti on;
/**
* Verify an optional auxiliary challenge sent fromthe client to
* the server. The auxChall enge object will have been decrypted
*if it was sent encrypted fromthe client. An exanple of a
* auxiliary challenge woul d be the validation of a hardware token
* (Safewsrd, SecurelD, iButton) that the server validates to
* further strengthen the SRP password exchange.
*/
public void verifyUserChall enge(String usernane, Object auxChall enge)
throws SecurityException;
}

The primary function of a SRPverifierStore implementation is to provide access to the SRPverifier-
Store. Verifierinfo object for a given username. The get User Verifier(String) method is caled by the
SRPSer vi ce at that start of a user SRP session to obtain the parameters needed by the SRP algorithm. The elements
of theverifierlnfo objectsare:

* username: Theuser'sname or id used to login.

« verifier: This is the one-way hash of the password or PIN the user enters as proof of their identity. The
org.jboss.security. Uil class has a cal cul ateverifier method that performs that password hashing al-
gorithm. The output password H(salt | H(username | ':' | password)) asdefined by RFC2945. Here His

JBoss Release 2 291

Security on JBoss

the SHA secure hash function. The username is converted from a string to abyt e[] using the UTF-8 encoding.

e salt: Thisis arandom number used to increase the difficulty of a brute force dictionary attack on the verifier
password database in the event that the database is compromised. It is a value that should be generated from a
cryptographically strong random number algorithm when the user's existing clear-text password is hashed.

* @ The SRP agorithm primitive generator. In general this can be a well known fixed parameter rather than a
per-user setting. Theor g. j boss. securi ty. srp. SRPConf Uutility class provides several settings for g including a
good default which can obtained via SRPConf . get Def aul t Params() . g() .

¢ N: The SRP agorithm safe-prime modulus. In genera this can be a well known fixed parameter rather than a
per-user setting. Theor g. j boss. securi ty. srp. SRPConf Utility class provides several settings for Nincluding a
good default which can obtained via SRPConf . get Def aul t Params() . N() .

So, step 1 of integrating your existing password store is the creation of a hashed version of the password informa-
tion. If your passwords are already store in an irreversible hashed form, then this can only be done on a per-user
basis as part of an upgrade procedure for example. Note that the set User Veri fier(String, Verifierlnfo) meth-
od is not used by the current SRPSerivce and may be implemented as no-op method, or even one that throws an ex-
ception stating that the store is read-only.

Step 2 is the creation of the custom SRPveri fi er St ore interface implementation that knows how to obtain the
Verifierlnfo from the store you created in step 1. The veri f yUser Chal | enge(String, bject) method of the
interface is only called if the client SRPLogi nMbdul e configuration specifies the hasAuxChal | enge option. This can
be used to integrate existing hardware token based schemes like SafeWord or Radius into the SRP algorithm.

Step 3 is the creation of an MBean that makes the step 2 implementation of the SRPveri fi er St or e interface avail-
able via JNDI, and exposes any configurable parameters you need. In addition to the default
org.jboss.security.srp. SRPVerifierStoreService example, the SRP example presented later in this chapter
provides a Java properties file based SRPveri fi er St ore implementation. Between the two examples you should
have enough to integrate your security store.

7.6.2. Inside of the SRP algorithm

The appeal of the SRP agorithm is that is allows for mutual authentication of client and server using smple text
passwords without a secure communication channel. You might be wondering how this is done. If you want the
complete details and theory behind the algorithm, refer to the SRP references mentioned in a note earlier. There are
Six stepsthat are performed to complete authentication:

1. Theclient side SRPLogi nMbdul e retrieves the SRPServerinterface instance for the remote authentication server
from the naming service.

2. The client side SRPLogi nMbdul e hext requests the SRP parameters associated with the username attempting
the login. There are a number of parameters involved in the SRP algorithm that must be chosen when the user
password is first transformed into the verifier form used by the SRP agorithm. Rather than hard-coding the
parameters (which could be done with minimal security risk), the JBossSX implementation allows a user to re-
trieve this information as part of the exchange protocol. The get SRPPar anet er s(user nane) call retrieves the
SRP parameters for the given username.

JBoss Release 2 292

Security on JBoss

3. Theclient side SRPLogi nWbdul e begins an SRP session by creating an SRPA i ent Sessi on object using the lo-
gin username, clear-text password, and SRP parameters obtained from step 2. The client then creates arandom
number A that will be used to build the private SRP session key. The client then initializes the server side of
the SRP session by invoking the SrRPSer ver I nterface. i nit method and passes in the username and client
generated random number A. The server returns its own random number B. This step corresponds to the ex-
change of public keys.

4. Theclient side SRPLogi nModul e obtains the private SRP session key that has been generated as a result of the
previous messages exchanges. This is saved as a private credential in the login Subj ect . The server challenge
response M2 from step 4 is verified by invoking the sSrRPd i ent Sessi on. veri fy method. If this succeeds, mu-
tual authentication of the client to server, and server to client have been completed. The client side SRPLogi n-
Mbdul e next creates a challenge ML to the server by invoking SRPO i ent Sessi on. r esponse method passing the
server random number B as an argument. This challenge is sent to the server via the SRPServer!nter-
face. veri fy method and server'sresponse is saved as M. This step corresponds to an exchange of challenges.
At this point the server has verified that the user iswho they say they are.

5. Theclient side SRPLogi nModul e saves the login username and M. challenge into the Logi nvbdul e sharedState
map. This is used as the Principal name and credentials by the standard JBoss d i ent Logi nModul e. The mi
challenge is used in place of the password as proof of identity on any method invocations on J2EE compon-
ents. The ML challenge is a cryptographically strong hash associated with the SRP session. Its interception via
athird partly cannot be used to obtain the user's password.

6. At the end of this authentication protocol, the SRPServerSession has been placed into the SRPService authen-
tication cache for subsequent use by the SRPCachelLogi nhvbdul e.

Although SRP has many interesting properties, it is still an evolving component in the JBossSX framework and has
some limitations of which you should be aware. I ssues of note include the following:

* Because of how JBoss detaches the method transport protocol from the component container where authentica-
tion is performed, an unauthorized user could snoop the SRP M. challenge and effectively use the challenge to
make requests as the associated username. Custom interceptors that encrypt the challenge using the SRP ses-
sion key can be used to prevent thisissue.

* The SRPService maintains a cache of SRP sessions that time out after a configurable period. Once they time
out, any subsequent J2EE component access will fail because there is currently no mechanism for transparently
renegotiating the SRP authentication credentials. Y ou must either set the authentication cache timeout very long
(up to 2,147,483,647 seconds, or approximately 68 years), or handle re-authentication in your code on failure.

« By default there can only be one SRP session for a given username. Because the negotiated SRP session pro-
duces a private session key that can be used for encryption/decryption between the client and server, the session
is effectively a stateful one. JBoss supports for multiple SRP sessions per user, but you cannot encrypt data
with one session key and then decrypt it with another.

To use end-to-end SRP authentication for J2EE component calls, you need to configure the security domain under
which the components are secured to use the org. j boss. security. srp.j aas. SRPCacheLogi nModul e. The SRP-
Cachelogi nMbdul e has a single configuration option named cacheJndi Name that sets the INDI location of the SRP
authentication CachePol i cy instance. This must correspond to the Aut hent i cati onCacheJndi Nane attribute value
of the srRPServi ce MBean. The SRPCacheLogi nMbdul e authenticates user credentials by obtaining the client chal-
lenge from the SRPSer ver Sessi on object in the authentication cache and comparing this to the challenge passed as

JBoss Release 2 293

Security on JBoss

the user credentials. Figure 7.15 illustrates the operation of the SRPCachel oginModule.login method implementa-
tion.

LoginModule futhCache cacheCredential
SRPCachelogintfodule CachePolicy SRP3erveriession

JaasSecurityManager

I

isValid:=login():boole |
=S I

I

_E_errincipal, clientChallehge:=gEtT.T3E1:InE|:|I]:vuid
JNDI lookup (cachedndillane |

cachelCredential: =get[userr ipal):0bject

'-E: ____________
I
oot |
izValid:=validateCachecachiCredential):boolean
chal lenge: =getElientRespun3}L []:bwtel]
| "]
fe————————————————————————T— ———————————
I
izValid = Arraws.edqualsichillenge, clientChallenge):
I
.ﬂ_% __________

Figure 7.15. A sequence diagram illustrating the interaction of the SRPCachel oginM odule with the SRP
session cache.

7.6.2.1. An SRP example

We have covered quite a bit of material on SRP and now its time to demonstrate SRP in practice with an example.
The example demonstrates client side authentication of the user via SRP as well as subseguent secured access to a
simple EJB using the SRP session challenge as the user credential. The test code deploys an EJB JAR that includes
a SAR for the configuration of the server side login module configuration and SRP services. Asin the previous ex-
amples we will dynamically install the server side login module configuration using the Securi t yConfi g MBean.
In this example we also use a custom implementation of the SrRPveri fi er St or e interface that uses an in memory
store that is seeded from a Java properties file rather than a serialized object store as used by the srRPveri fi er -

St or eSer vi ce. This custom service is or g. j boss. book. security. ex3. servi ce. PropertiesVerifierStore. The
following shows the contents of the JAR that contains the example EJB and SRP services.

[exanpl es]$ jar tf output/security/security-ex3.jar
META- | NF/ MANI FEST. MF

META- | NF/ ej b-j ar . xm

META- | NF/ j boss. xm

or g/ j boss/ book/ security/ex3/ Echo. cl ass

or g/ j boss/ book/ security/ ex3/ EchoBean. cl ass

or g/ j boss/ book/ security/ex3/ EchoHone. cl ass

rol es. properties

users. properties

JBoss Release 2 294

Security on JBoss

security-ex3.sar

The key SRP related items in this example are the SRP MBean services configuration, and the SRP login module
configurations. The j boss-servi ce. xn descriptor of the securi ty-ex3. sar isgiven in Example 7.11, while Ex-
ample 7.12 and Example 7.13 give the example client side and server side login module configurations.

Example 7.11. The security-ex3.sar jboss-service.xml descriptor for the SRP services

<server>
<l-- The custom JAAS | ogin configuration that installs
a Configuration capable of dynami cally updating the
config settings -->

<mbean code="org. | boss. book. security.service. SecurityConfig"
nane="j boss. docs. security: servi ce=Logi nConfi g- EX3" >
<attribute name="Aut hConfi g">META-| NF/ | ogi n-config.xm </attribute>
<attribute name="SecurityConfigNane">j boss. security: nane=SecurityConfig</attribute>
</ nbean>

<I-- The SRP service that provides the SRP RM server and server side
aut henti cation cache -->
<nbean code="org.j boss. security.srp. SRPServi ce"
nanme="j boss. docs. security: servi ce=SRPSer vi ce">
<attribute name="Verifier SourceJndi Name" >sr p-test/security-ex3</attri bute>
<attribute name="Jndi Nane" >srp-test/ SRPServerlnterface</attribute>
<attribute name="Aut henticati onCacheJndi Name" >sr p-test/ Aut henti cati onCache</attri bute>
<attribute name="ServerPort">0</attribute>
<depends>j boss. docs. security: servi ce=PropertiesVerifierStore</depends>
</ mbean>

<I-- The SRP store handl er service that provides the user password verifier
information -->
<nbean code="org.jboss. security.ex3.service.PropertiesVerifierStore"
nane="j boss. docs. security: servi ce=PropertiesVerifierStore">
<attribute name="Jndi Nane">srp-test/security-ex3</attribute>
</ nbean>
</ server>

Example 7.12. The client side standard JAAS configur ation

srp {
org.j boss. security.srp.jaas. SRPLogi nMbdul e required
srpSer ver Jndi Name="sr p-t est/ SRPServer | nterface"

org.j boss.security.dientLogi nMbdul e required
passwor d- st acki ng="useFi r st Pass"

Example 7.13. The server side XML L oginConfig configuration

<appl i cation-policy nanme="security-ex3">
<aut henti cati on>

JBoss Release 2 295

Security on JBoss

<l ogi n- nodul e code="org.j boss. security.srp.jaas. SRPCacheLogi nvbdul e"
flag = "required">
<nmodul e- opti on nane="cacheJndi Nane" >sr p-t est/ Aut henti cat i onCache</ nodul e- opti on>
</| ogi n- modul e>
<l ogi n- nodul e code="org.j boss. security. auth. spi.UsersRol esLogi nMbdul e"
flag = "required">
<rmodul e- opti on nane="passwor d- st acki ng" >useFi r st Pass</ nodul e- opti on>
</| ogi n- modul e>
</ aut hentication>
</ appl i cati on-policy>

The example services are the Servi ceConfi g and the PropertiesVerifierStore and SRPServi ce MBeans. Note
that the andi Narre attribute of the PropertiesVerifierStore isequa tothe veri fi er Sour ceJndi Nane attribute of
the SRPSer vi ce, and that the SRPSer vi ce depends on the Properti esVerifierStore. Thisis required because the
SRPSer vi ce needs an implementation of the SrRPveri fi er St or e interface for accessing user password verification
information.

The client side login module configuration makes use of the SRPLogi nModul e With a srpSer ver IJndi Name option
value that corresponds to the JBoss server component SRPService JndiName attribute value(srp-
test/ SRPServerlnterface). Also needed is the di ent Logi nMbdul e configured with the password- st ack-
i ng="useFi rst Pass" value to propagate the user authentication credentials generated by the SRPLogi nModul e to
the EJB invocation layer.

There are two issues to note about the server side login module configuration. First, note the cachedndi -
ame=sr p-t est / Aut henti cati onCache configuration option tells the SRPCacheLogi nModul e the location of the
CachePol i cy that contains the srRPSer ver Sessi on for users who have authenticated against the srRPSer vi ce. This
value corresponds to the SRPSer vi ce Aut hent i cat i onCacheJndi Nare attribute value. Second, the configuration in-
cludes a User sRol esLogi nModul e With the passwor d- st acki ng=useFi r st Pass configuration option. It is required
to use a second login module with the SRPCacheLogi nModul e because SRP is only an authentication technology. A
second login module needs to be configured that accepts the authentication credentials validated by the SRPCachel-
ogi nMbdul e to set the principal's roles that determines the principal's permissions. The User sRol esLogi nMbdul e iS
augmenting the SRP authentication with properties file based authorization. The user's roles are coming the
rol es. properti es fileincluded in the EJB JAR.

Now, run the example 3 client by executing the following command from the book examples directory:

[exanpl es] $ ant - Dchap=security -Dex=3 run-exanple

run- exanpl e3:
[echo] Waiting for 5 seconds for deploy...
[java] Logging in using the 'srp' configuration
[java] Created Echo
[java] Echo. echo()#1
[java] Echo. echo()#2

This is call 1
This is call 2

In the exanpl es/ | ogs directory you will find afile called ex3-trace. | og. Thisis a detailed trace of the client side
of the SRP algorithm. The traces show step-by-step the construction of the public keys, challenges, session key and
verification.

Note that the client has taken a long time to run relative to the other simple examples. The reason for this is the
construction of the client's public key. Thisinvolves the creation of a cryptographically strong random number, and
this process takes quite a bit of time the first time it occurs. If you were to log out and log in again within the same
VM, the process would be much faster. Also note that Echo. echo() #2 fails with an authentication exception. The

JBoss Release 2 296

Security on JBoss

client code sleeps for 15 seconds after making the first call to demonstrate the behavior of the sRPServi ce cache
expiration. The SRPSer vi ce cache policy timeout has been set to a mere 10 seconds to force this issue. As stated
earlier, you need to make the cache timeout very long, or handle re-authentication on failure.

7.7. Running JBoss with a Java 2 security manager

By default the JBoss server does not start with a Java 2 security manager. If you want to restrict privileges of code
using Java 2 permissions you need to configure the JBoss server to run under a security manager. This is done by
configuring the Java VM options in the run. bat or run. sh scripts in the JBoss server distribution bin directory.
The two required VM options are as follows:

e java.security.manager: This is used without any value to specify that the default security manager should be
used. This is the preferred security manager. Y ou can also pass a value to the j ava. securi ty. manager option
to specify a custom security manager implementation. The value must be the fully qualified class name of a
subclass of j ava. | ang. Securi t yManager . This form specifies that the policy file should augment the default
security policy as configured by the VM installation.

e java.security.policy: Thisis used to specify the policy file that will augment the default security policy inform-
ation for the VM. This option takes two forms. java.security.policy=policyFileURL and
java. security. pol i cy==pol i cyFi | eURL. The first form specifies that the policy file should augment the de-
fault security policy as configured by the VM installation. The second form specifies that only the indicated
policy file should be used. The pol i cyFi | eURL value can be any URL for which a protocol handler exists, or a
file path specification.

Both therun. bat and run. sh start scripts reference an JAVA_OPTS variable which you can use to set the security
manager properties.

Enabling Java 2 security is the easy part. The difficult part of Java 2 security is establishing the alowed permis-
sions. If you look at the server. pol i cy file that is contained in the default configuration file set, you'll see that it
contains the following permission grant statement:

grant {
/1 Allow everything for now
perni ssion java.security. Al Perm ssion;

}s

This effectively disables security permission checking for al code asit says any code can do anything, which is not
areasonable default. What is areasonable set of permissionsis entirely up to you.

The current set of JBoss specificj ava. | ang. Runti mePer mi ssi ons that are required include:

TargetName What the permission allows Risks
org.jboss.security.SecurityAssociat Access to the The ability to see the current thread
ion.getPrincipalInfo org.jboss.security.SecurityAssociat | caller and credentials.

ion getPrincipal() and getCreden-
tials() methods.

org.jboss.security.SecurityAssociat Access to the The ability to set the current thread
ion.setPrincipallnfo org.jboss.security.SecurityAssociat = caller and credentials.

JBoss Release 2 297

Security on JBoss

TargetName What the permission allows Risks

ion setPrincipal() and setCreden-
tials() methods.

org.jboss.security.SecurityAssociat = Access to the The ability to enable or disable
ion.setServer org.jboss.security.SecurityAssociat multithread storage of the caller

ion setServer method. principal and credential.
org.jboss.security.SecurityAssociat = Access to the The ability to change the current
ion.setRunAsRole org.jboss.security.SecurityAssociat caller run-as role principal .

ion pushRunAsRole and popRun-

AsRole methods.

To conclude this discussion, here is a little-known tidbit on debugging security policy settings. There are various
debugging flag that you can set to determine how the security manager is using your security policy file as well as
what policy files are contributing permissions. Running the VM as follows shows the possible debugging flag set-
tings:

[bin]$ java -Djava. security. debug=hel p

al | turn on all debuggi ng

access print all checkPermission results
conbi ner Subj ect Dormai nConbi ner debuggi ng

jar jar verification

| ogi ncontext login context results

policy | oadi ng and granting

provi der security provider debugging

scl perm ssi ons Secur eC assLoader assigns

The foll ow ng can be used with access:

st ack i ncl ude stack trace

domai n dunps all domains in context

failure bef ore throw ng exception, dunp stack
and domain that didn't have perm ssion

Note: Separate nultiple options with a comma

Running with - Oj ava. security. debug=al | provides the most output, but the output volume is torrential. This
might be a good placeto start if you don't understand a given security failure at al. A less verbose setting that helps
debug permission failuresis to use - Oj ava. securi ty. debug=access, fai l ure. Thisis still relatively verbose, but
not nearly as bad as the all mode as the security domain information is only displayed on access failures.

7.8. Using SSL with JBoss using JSSE

JBoss uses JSEE, the Java Secure Socket Extension (JSSE), for SSL. JSSE is bundled with JDK 1.4. To get started
with JSSE you need a public key/private key pair in the form of an X509 certificate for use by the SSL server sock-
ets. For the purpose of this example we have created a self-signed certificate using the JDK keytool and included
the resulting keystore file, exanpl e. keyst or e. It was created using the following command and input:

keyt ool -genkey -keystore exanpl e. keystore -storepass rm +ssl -keypass rm +ssl -keyal g RSA -alias exanp

JBoss Release 2 298

Security on JBoss

This produces a keystore file called exanpl e. keyst ore. A keystore is a database of security keys. There are two
different types of entriesin akeystore:

» key entries: each entry holds very sensitive cryptographic key information, which is stored in a protected
format to prevent unauthorized access. Typicaly, akey stored in this type of entry is a secret key, or a private
key accompanied by the certificate chain for the corresponding public key. The keyt ool and j ar si gner tools
only handle the later type of entry, that is private keys and their associated certificate chains.

» trusted certificate entries: each entry contains a single public key certificate belonging to another party. It is
called atrusted certificate because the keystore owner trusts that the public key in the certificate indeed belongs
to the identity identified by the subject (owner) of the certificate. The issuer of the certificate vouches for this,
by signing the certificate.

Listing the src/ mai n/ or g/ j boss/ book/ securi ty/ exanpl e. keyst ore examples file contents using the keytool
shows one self-signed certificate:

[exanpl es] $ keytool -list -v -keystore src/main/org/jboss/book/security/exanple. keystore
Enter keystore password: rm +ssl

Keystore type: jks
Keystore provider: SUN

Your keystore contains 1 entry

Ali as nanme: exanpl e
Creation date: Cct 31, 2006
Entry type: keyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=exanpl e, OU=admi n book, DC=jboss, DC=org
| ssuer: CN=exanpl e, OU=adm n book, DC=jboss, DC=org
Serial nunber: 45481clb
Valid from Tue Oct 31 22:01:31 CST 2006 until: Fri Oct 28 23:01:31 CDT 2016
Certificate fingerprints:
MD5: C2: CA: CA: D3: 00: 71: 3E: 32: CB: B3: C8: A8: 4E: 68: 9A: BB
SHAL: AG: 44: EF: 66: 2A: 49: 14: BO: A4: 14: 74: 8B: 64: 61: E4: E6: AF: E3: 70: 41

R O Sk Sk R R R kR R Rk S S

IR Rk S S S S S

With JSSE working and a keystore with the certificate you will use for the JBoss server, your are ready to config-
ure JBoss to use SSL for EJB access. This is done by configuring the EJB invoker RMI socket factories. The
JBossSX framework includes implementations of the java.rni.server. RM Server Socket Factory and
java.rm.server. RM O i ent Socket Fact ory interfaces that enable the use of RMI over SSL encrypted sockets.
The implementation classes are org. jboss. security.ssl.RM SSLSer ver Socket Fact ory and
org.jboss.security.ssl.RM SSLd i ent Socket Fact ory respectively. There are two steps to enable the use of
SSL for RMI access to EJBs. The first isto enable the use of a keystore as the database for the SSL server certific-
ate, which is done by configuring an or g. j boss. securi ty. pl ugi ns. JaasSecurityDomai n MBean. The j boss-
servi ce. xm descriptor in the book/ securi ty/ ex4 directory includes the JaasSecuri t yDonai n definition shown in
Example 7.14.

Example 7.14. A sample JaasSecurityDomain config for RM|/SSL

JBoss Release 2 299

Security on JBoss

<!-- The SSL domain setup -->
<nbean code="org.jboss. security. plugins.JaasSecurityDonai n"
nanme="j boss. security: servi ce=JaasSecurityDonmai n, domai n=RM +SSL" >
<constructor >
<arg type="java.lang. String" val ue="RM +SSL"/ >
</ const ructor >
<attribute name="KeySt or eURL" >exanpl e. keystore</attri bute>
<attribute name="KeyStorePass">rm +ssl </attri bute>
</ mbean>

The JaasSecuri t yDomai n is a subclass of the standard JaasSecuri t yManager class that adds the notions of a key-
store as well JSSE KeyManager Fact ory and Tr ust Manager Fact ory access. It extends the basic security manager to
allow support for SSL and other cryptographic operations that require security keys. This configuration simply
loads the example.keystore from the example 4 MBean SAR using the indicated password.

The second step is to define an EJB invoker configuration that uses the JBossSX RMI socket factories that support
SSL. To do this you need to define a custom configuration for the JRVPI nvoker we saw in Chapter 4 as well as an
EJB setup that makes use of this invoker. The top of the listing shows the j boss-servi ce. xmi descriptor that
defines the custom JRVPI novker

<nmbean code="org.j boss.invocation.jrnp.server.JRWI nvoker"
nane="j boss: servi ce=i nvoker, t ype=j r np, socket Type=SSL" >
<attribute name="RM Obj ect Port">14445</attri bute>
<attribute name="RM C i ent Socket Fact ory" >
org. jboss.security.ssl.RM SSLO i ent Socket Fact ory
</attribute>
<attribute name="RM Server Socket Fact ory" >
org.j boss.security.ssl.RM SSLServer Socket Fact ory
</attribute>
<attribute name="SecurityDomai n">j ava:/jaas/ RM +SSL</ attri bute>
<depends>j boss. security: servi ce=JaasSecurityDomai n, domai n=RM +SSL</ depends>
</ mbean>

To set up an SSL invoker, we will create an invoker binding named st at el ess- ssl -i nvoker that uses our custom
JRMPInvoker. We can declare the invoker binding and connect it to EchoBean4 as shown in the following
j boss. xni file.

<?xm version="1.0"?>
<j boss>
<ent erpri se- beans>
<sessi on>
<ej b- name>EchoBean4</ ej b- name>
<configuration-name>St andard Statel ess Sessi onBean</confi gurati on-name>
<i nvoker - bi ndi ngs>
<i nvoker >
<i nvoker - pr oxy- bi ndi ng- nane>
st at el ess-ssl -i nvoker
</i nvoker - pr oxy- bi ndi ng- nane>
</i nvoker >
</i nvoker - bi ndi ngs>
</ sessi on>
</enterprise-beans>

<i nvoker - pr oxy- bi ndi ngs>
<i nvoker - pr oxy- bi ndi ng>
<nane>st at el ess- ssl -i nvoker </ nane>
<i nvoker - nhean>j boss: servi ce=i nvoker, t ype=j r np, socket Type=SSL</ i nvoker - mhean>
<proxy-factory>org.jboss. proxy. ej b. ProxyFact ory</ proxy-factory>
<proxy-factory-config>

JBoss Release 2 300

Security on JBoss

<client-interceptors>
<home>
<i nt er cept or >or g. j boss. proxy. ej b. Honmel nt er cept or </ i nt er cept or >
<i nt er cept or >or g. j boss. proxy. Securityl nterceptor</interceptor>
<i nt er cept or>org. j boss. proxy. Transacti onl nt er cept or </ i nt er cept or >
<i nterceptor>org.jboss.invocation.|nvokerlnterceptor</interceptor>
</ home>
<bean>
<i nterceptor>org.j boss. proxy. ej b. St at el essSessi onl nt er cept or </ i nt er cept or >
<i nt er cept or >or g. j boss. proxy. Securityl nterceptor</interceptor>
<i nterceptor>org.jboss. proxy. Transacti onl nt er cept or </ i nt er cept or >
<i nterceptor>org.jboss.invocation.|nvokerlnterceptor</interceptor>
</ bean>
</client-interceptors>
</ proxy-factory-config>
</i nvoker - pr oxy- bi ndi ng>
</i nvoker - pr oxy- bi ndi ngs>
</j boss>

The example 4 code is located under the src/ mai n/ or g/ j boss/ book/ securi ty/ ex4 directory of the book ex-
amples. Thisis another simple statel ess session bean with an echo method that returns its input argument. It is hard
to tell when SSL isin use unlessit fails, so well run the example 4 client in two different ways to demonstrate that
the EJB deployment is in fact using SSL. Start the JBoss server using the default configuration and then run ex-
ample 4b asfollows:

[exanpl es] $ ant -Dchap=security -Dex=4b run-exanpl e
run- exanpl e4b

[java] Exception in thread "main" java.rm . Connectl| OException: error during JRWP connect
i on establishnent; nested exception is:

[java] j avax. net . ssl . SSLHandshakeExcepti on: sun. security.validator. ValidatorExceptio
n: No trusted certificate found

The resulting exception is expected, and is the purpose of the 4b version of the example. Note that the exception
stack trace has been edited to fit into the book format, so expect some difference. The key item to notice about the
exception isit clearly shows you are using the Sun JSSE classes to communicate with the JBoss EJB container. The
exception is saying that the self-signed certificate you are using as the JBoss server certificate cannot be validated
as signed by any of the default certificate authorities. This is expected because the default certificate authority key-
store that ships with the JSSE package only includes well known certificate authorities such as VeriSign, Thawte,
and RSA Data Security. To get the EJB client to accept your self-signed certificate as valid, you need to tell the
JSSE classes to use your exanpl e. keyst or e asitstruststore. A truststore is just a keystore that contains public key
certificates used to sign other certificates. To do this, run example 4 using - Dex=4 rather than - Dex=4b to pass the
location of the correct truststore using thej avax. net . ssl . t r ust St or e System property:

[exanpl es] $ ant - Dchap=security -Dex=4 run-exanple

run- exanpl e4:
[copy] Copying 1 file to /tnp/jboss-4.0.1/server/default/depl oy
[echo] Waiting for 5 seconds for deploy...

[java] Created Echo
[java] Echo.echo()#1 = This is call 1

This time the only indication that an SSL socket is involved is because of the SSL handshakeConpl et ed message.
This is coming from the RM sSLd i ent Socket Fact ory class as a debug level log message. If you did not have the

JBoss Release 2 301

Security on JBoss

client configured to print out log4j debug level messages, there would be no direct indication that SSL was in-
volved. If you note the run times and the load on your system CPU, there definitely is a difference. SSL, like SRP,
involves the use of cryptographically strong random numbers that take time to seed the first time they are used.
This shows up as high CPU utilization and start up times.

One consequence of thisisthat if you are running on a system that is ower than the one used to run the examples
for the book, such as when running example 4b, you may seen an exception similar to the following:

j avax. nam ng. NameNot FoundExcepti on: EchoBean4 not bound
at sun.rm.transport. StreanRenot eCal | . excepti onRecei vedFr onSer ver

The problem is that the JBoss server has not finished deploying the example EJB in the time the client allowed.
This is due to the initial setup time of the secure random number generator used by the SSL server socket. If you
see this issue, simply rerun the example again or increase the deployment wait time in the bui | d-securi ty. xni
Ant script.

7.9. Configuring JBoss for use Behind a Firewall

JBoss comes with many socket based services that open listening ports. In this section we list the services that open
ports that might need to be configured to work when accessing JBoss behind a firewall. The following table shows
the ports, socket type, associated service for the services in the default configuration file set. Table 7.2 shows the
same information for the additional ports that exist in the all configuration file set.

Table 7.1. The portsfound in the default configuration

Port Type Service

1098 TCP org. j boss. nani ng. Nam ngSer vi ce

1099 TCP org.j boss. nami ng. Nami ngSer vi ce

4444 TCP org.j boss.invocation.jrnp.server.JRWPI nvoker
4445 TCP org.j boss.invocation. pool ed. server. Pool edl nvoker
8009 TCP org.j boss. web.tontat .t c4. EnbeddedTontat Ser vi ce
8080 TCP org. j boss. web. t ontat . t c4. EnbeddedTontat Ser vi ce
8083 TCP org.j boss. web. WebSer vi ce

8093 TCP org.jboss.ng.il.uil2. ULServerlLService

Table 7.2. Additional portsin theall configuration

Port Type Service
1100 TCP org.j boss. ha. j ndi . HANani ngSer vi ce
1101 TCP org.j boss. ha. j ndi . HANani ngSer vi ce

JBoss Release 2 302

Security on JBoss

Port Type Service

1102 UDP org.j boss. ha. j ndi . HANani ngSer vi ce

1161 UDP org.j boss.jnx. adapt or. snnp. agent . SnnpAgent Ser vi ce
1162 ubP org.j boss.jnx. adaptor. snnp. trapd. TrapdSer vi ce
3528 TCP org.jboss.invocation.iiop.!|OPlnvoker

4447 TCP org.jboss.invocation.jrnp.server. JRVPI nvoker HA
455662 uUbDP org.j boss. ha. framewor k. server. Cl usterPartition

8Plus two additional anonymous UDP ports, one can be set using ther cv_por t , and the other cannot be set.

7.10. How to Secure the JBoss Server

JBoss comes with several admin access points that need to be secured or removed to prevent unauthorized accessto
administrative functions in a deployment. This section describes the various admin services and how to secure
them.

7.10.1. The JMX Console

The j nx- consol e. war found in the deploy directory provides an html view into the IMX microkernel. As such, it
provides access to arbitrary admin type access like shutting down the server, stopping services, deploying new ser-
vices, etc. It should either be secured like any other web application, or removed.

7.10.2. The Web Console

The web- consol e. war found in the depl oy/ managenent directory is another web application view into the IMX
microkernel. This uses a combination of an applet and aHTML view and provides the same level of access to ad-
min functionality as the j nx- consol e. war . As such, it should either be secured or removed. The web- consol e. war

contains commented out templates for basic security in its WEB- | NF/ web. xmi as well as commented out setup for a
security domain in WEB- | NF/ j boss- web. xni .

7.10.3. The HTTP Invokers

Thehtt p-i nvoker. sar found in the deploy directory is a service that provides RMI/HTTP access for EJBs and the
JNDI nNaming servicee This includes a servlet that processes posts of marshalled
org.jboss.invocation. I nvocation objects that represent invocations that should be dispatched onto the
MBeanSer ver . Effectively this allows access to MBeans that support the detached invoker operation via HTTP since
one could figure out how to format an appropriate HTTP post. To security this access point you would need to se-
cure the IMXi nvoker Ser vl et servlet found in the ht t p-i nvoker. sar/i nvoker. war/ WEB- | NF/ web. xni descriptor.
There is a secure mapping defined for the / restri ct ed/ IMXI nvoker Servl et path by default, one would simply
have to remove the other paths and configure the http-invoker security domain setup in the http-in-
voker . sar/ i nvoker . war / WEB- | NF/ j boss-web. xni descriptor.

JBoss Release 2 303

Security on JBoss

7.10.4. The JMX Invoker

The j mx-i nvoker - adapt or - server. sar IS a service that exposes the IMX MBeanServer interface via an RMI
compatible interface using the RMI/JRMP detached invoker service. The only way for this service to be secured
currently would be to switch the protocol to RMI/HTTP and secure the ht t p-i nvoker . sar as described in the pre-

vious section. In the future this service will be deployed as an XMBean with a security interceptor that supports
role based access checks.

JBoss Release 2 304

Additional Services

This chapter discusses useful MBean services that are not discussed elsewhere either because they are utility ser-
vices not necessary for running JBoss, or they don't fit into a current section of the book.

8.1. Memory and Thread Monitoring

Thej boss. syst em t ype=Ser ver | nf o MBean provides severa attributes that can be used to monitor the thread and
memory usage in a JBoss instance. These attributes can be monitored in many ways: through the IMX Console,
from athird-party IMX management tool, from shell scripts using the twiddle command, etc... The most interesting
attributes are shown below.

FreeMemory
Thisisthe current free memory available in the VM.

ActiveT hreadCount
Thisisthe number of active threadsin the VM.

ActiveT hreadGroupCount
Thisisthe number of active thread groupsin the VM.

These are useful metrics for monitoring and alerting, but developers and administrators need a little more insite
than this. The Java 5 JVMs from Sun provide more detailed information about the current state of the VM. Some
of these details are exposed by JBoss through operations on the Systeminfo MBean.

listMemoryPools
This operations shows the size and current usage of al VM memory pools. This operation is only available
when using Java 5.

listThreadDump
This operations shows all threads currently running in the VM. When using Java 5, JBoss will display a com-
plete stack trace for each thread, showing you exactly what code each thread is executing.

listThreadCpuUtilization
This operations shows al threads currently running in the VM along with the total CPU time each thread has
used. The operationisonly availablein Javas.

8.2. The Log4j Service

The Log4j Servi ce MBean configures the Apache logdj system. JBoss uses the logdj framework as its internal log-

JBoss Release 2 305

Additiona Services

ging API.

» ConfigurationURL: The URL for the logdj configuration file. This can refer to either a XML document parsed
by the org.apache.log4j.xm .DOMConfigurator or a Java properties file parsed by the
org. apache. | og4j . PropertyConfi gurator. The type of the file is determined by the URL content type, or if
thisis null, the file extension. The default setting of r esource: | og4j . xn refersto the conf/ 1 og4j . xm file of
the active server configuration file set.

« RefreshPeriod: The time in seconds between checks for changes in the log4 configuration specified by the
Confi gur ati onURL attribute. The default value is 60 seconds.

e CatchSystemErr: This boolean flag if true, indicates if the System err stream should be redirected onto a
log4j category called STDERR. The default istrue.

e CatchSystemOut: This boolean flag if true, indicates if the Syst em out stream should be redirected onto a
log4j category called sTpbouT. The default istrue.

* Log4jQuietMode: This boolean flag if true, sets the or g. apache. | og4j . hel pers. LogLog. set Qui t eMbde. AS
of log4j1.2.8 this needs to be set to avoid a possible deadlock on exception at the appender level. See
bug#696819.

8.3. System Properties Management

The management of system properties can be done using the system properties service. It supports setting of the
VM global property values just asj ava. | ang. Syst em set Property method and the VM command line arguments
do.

Its configurable attributes include:

e Properties: a gpecification of multiple property name=val ue pairs using the
java.util.Properites.load(java.io.|nputStreamy method format. Each property=val ue Statement is giv-
en on a separate line within the body of the Proper ti es attribute element.

e« URLList: a comma separated list of URL strings from which to load properties file formatted content. If a
component in the list is a relative path rather than a URL it will be treated as a file path relative to the
<j boss-di st >/ server/ <confi g> directory. For example, a component of conf/I ocal . properties would be
treated as a file URL that points to the <j boss- di st >/ server/defaul t/conf/local . properties file when
running with the def aul t configuration file set.

The following illustrates the usage of the system properties service with an external propertiesfile.

<nbean code="org.jboss. vari a. property. Syst enPropertiesService"
nanme="j boss. util:type=Servi ce, name=Syst enPr operties">

<I-- Load properties fromeach of the given conma separated URLS -->
<attribute name="URLLi st">
http://sonehost/sone-| ocation. properties,
./ conf/sonel ocal . properties
</attribute>
</ nbean>

JBoss Release 2 306

Additiona Services

The following illustrates the usage of the system properties service with an embedded properties list.

<nbean code="org.jboss.varia. property. SystenPropertiesService"
nanme="j boss. util:type=Service, nanme=Syst enProperties">
<I-- Set properties using the properties file style. -->
<attribute name="Properties">
propertyl=This is the value of ny property
property2=This is the value of ny other property
</attribute>

</ mbean>

8.4. Property Editor Management

In JBoss, JavaBean property editors are used for reading data types from service files and for editing values in the
JMX console. Thej ava. bean. Propert yEdi t or Manager class controlsthej ava. bean. Propert yEdi t or instancesin
the system. The property editor manager can be managed in JBoss using the
org.jboss.varia. property. PropertyEdi t or Manager Servi ce MBean. The property editor manager service is
configured in depl oy/ proper ti es-servi ce. xm and supports the following attributes:

« BootstrapEditors: Thisisalisting of property_editor_cl ass=edi t or _val ue_t ype_cl ass pairs defining the
property editor to type mappings that should be preloaded into the property editor manager. The value type of
this attribute is a string so that it may be set from a string without requiring a custom property editor.

e Editors. This serves the same function as the BootstrapEditors attribute, but its type is
java.util.Properties. Setting it from a string value in a service file requires a custom property editor for
properties objects already be loaded. JBoss provides a suitable property editor.

< Editor SearchPath: This attribute allows one to set the editor packages search path on the Propert yEdi t or -
Manager editor packages search path. Since there can be only one search path, setting this value overrides the
default search path established by JBoss. If you set this, make sure to add the JBoss search path,
org.jboss.util.propertyeditor and org.jboss.nx.util.propertyeditor, to the front of the new search
path.

8.5. Services Binding Management

With all of the independently deployed services available in JBoss, running multiple instances on a given machine
can be atedious exercise in configuration file editing to resolve port conflicts. The binding service allows you cent-
rally configure the ports for multiple JBoss instances. After the service is normally loaded by JBoss, the Ser vi ce-
Confi gurat or queries the service binding manager to apply any overrides that may exist for the service. The ser-
vice binding manager is configured in conf /j boss- servi ce. xm . The set of configurable attributes it supports in-
clude:

* ServerName: This is the name of the server configuration this JBoss instance is associated with. The binding
manager will apply the overrides defined for the named configuration.

e StoreFactoryClassName: This is the name of the class that implements the Ser vi cesSt or eFact ory interface.
You may provide your own implementation, or use the default XML based store

JBoss Release 2 307

Additiona Services

org. j boss. servi ces. bi ndi ng. XM_Ser vi cesSt or eFact ory. The factory provides a Servi cesStore instance
responsible for providing the names configuration sets.

e StoreURL: Thisisthe URL of the configuration store contents, which is passed to the Ser vi cesSt or e instance
to load the server configuration sets from. For the XML store, thisisasimple service binding file.

The following is a sample service binding manager configuration that uses the ports- 01 configuration from the
sanpl e- bi ndi ngs. xm file provided in the JBoss examples directory.

<nbean code="org.jboss. servi ces. bi ndi ng. Servi ceBi ndi ngManager "
nanme="j boss. syst em servi ce=Ser vi ceBi ndi ngManager " >
<attribute name="Server Nane" >ports-01</attri bute>
<attribute name="StoreURL">
../ docs/ exanpl es/ bi ndi ng- manager / sanpl e- bi ndi ngs. xmi
</attribute>
<attribute name="StoreFactoryd assNane">
org. j boss. servi ces. bi ndi ng. XM_Ser vi cesSt or eFact ory
</attribute>
</ nbean>

The structure of the binding fileis shown in Figure 8.1.

#®service-bindings

E].

2 *
~ sewerE

®nzme ®delegateClass
siring string

G) ® delegate-config . ®portName ®hostName
- E =iring string
E #®binding . ®port ®name ®host
E siring string lring

Figure 8.1. The binding servicefile structure

#service-config

E:

The elements are;

» service-bindings: The root element of the configuration file. It contains one or more server elements.

e server: Thisisthe base of a JBoss server instance configuration. It has arequired nare attribute that defines the
JBoss instance name to which it applies. This is the name that correlates with the Ser vi ceBi ndi ngManager
Ser ver Nane attribute value. The server el ement content consists of one or more ser vi ce- conf i g el ements.

» service-config: This element represents a configuration override for an MBean service. It has a required name
attribute that is the IMX vj ect Nane string of the MBean service the configuration applies to. It also has are-
quired del egat ed ass nhame attribute that specifies the class name of the Ser vi cesConf i gDel egat e implement-
ation that knows how to handle bindings for the target service. Its contents consists of an optional del egat e- con-
fi g element and one or more binding elements.

JBoss Release 2 308

Additiona Services

e binding: A bi ndi ng element specifies a named port and address pair. It has an optional nare that can be used to
provide multiple binding for a service. An example would be multiple virtual hosts for a web container. The
port and address are specified via the optional port and host attributes respectively. If the port is not specified
it defaults to O meaning choose an anonymous port. If the host is not specified it defaults to null meaning any
address.

« delegate-config: The del egat e- confi g element is an arbitrary XML fragment for use by the Ser vi cesConfi g-
Del egat e implementation. The host Name and por t Nane attributes only apply to the At t ri but eMappi ngDel eg-
at e of the example and are there to prevent DTD aware editors from complaining about their existence in the
Attri but eMappi ngDel egat e configurations. Generally both the attributes and content of the del egat e- confi g
are arbitrary, but there is no way to specify and a element can have any number of attributes with aDTD.

The three Ser vi cesConf i gDel egat e implementations are At t ri but eMappi ngDel egat e, XSLTConf i gDel egat e, and
XSLTFi | eDel egat e.

8.5.1. AttributeMappingDelegate

The At t ri but eMappi ngDel egat e class is an implementation of the Ser vi cesConf i gDel egat e that expects adel eg-
at e- conf i g element of the form:

<del egat e-confi g portNane="port AttrNane" host Nane="host Attr Nane">
<attribute name="soneAttrName">soneHost Port Expr</attri bute>
<l-- ... -->

</ del egat e- confi g>

The port At t r Nare is the attribute name of the MBean service to which the binding port value should be applied,
and the host At t r Nane is the attribute name of the MBean service to which the binding host value should be ap-
plied. If the port Nane attribute is not specified then the binding port is not applied. Likewise, if the host Nare at-
tribute is not specified then the binding host is not applied. The optional attribute element(s) specify arbitrary
MBean attribute names whose values are a function of the host and/or port settings. Any reference to ${ host} in
the attribute content is replaced with the host binding and any ${port} reference is replaced with the port binding.
The por t Nane, host Nare attribute values and attribute element content may reference system properties using the
${x} syntax that is supported by the JBoss services descriptor.

The sample listing illustrates the usage of At t ri but eMappi ngDel egat e.

<service-confi g name="j boss: servi ce=Nam ng"
del egat ed ass="org. j boss. servi ces. bi ndi ng. Attri but eMappi ngDel egat e" >
<del egat e-confi g portName="Port"/>
<bi ndi ng port="1099" />
</ servi ce-confi g>

Here the j boss: servi ce=Nani ng MBean service has its Port attribute value overridden to 1099. The correspond-
ing setting from the jbossl server configuration overrides the port to 1199.

8.5.2. XSLTConfigDelegate

The XSLTConf i gDel egat e class is an implementation of the Ser vi cesConf i gDel egat e that expects adel egat e- con-
fi g element of the form:

<del egat e- confi g>

JBoss Release 2 309

Additiona Services

<xslt-config configNanme="Confi gurati onEl ement"><![CDATA[
Any XSL docunent contents...
11>
</ xslt-config>
<xsl t - par am nane="par am nane" >par am val ue</ xsl t - par an»
<l-- ... -->
</ del egat e- confi g>

The xsl t-config child element content specifies an arbitrary XSL script fragment that is to be applied to the
MBean service attribute named by the configNane attribute. The named attribute must be of type
org. w3c. dom El enent . The optional xsl t - param elements specify XSL script parameter values for parameters
used in the script. There are two XSL parameters defined by default called host and port, and their values are set
to the configuration host and port bindings.

The XSLTConf i gDel egat e iS used to transform services whose port /i nter f ace configuration is specified using a
nested XML fragment. The following example maps the port number on hypersonic datasource:

<service-confi g name="j boss. j ca: servi ce=ManagedConnect i onFact ory, name=Def aul t DS"
del egat eC ass="org. j boss. servi ces. bi ndi ng. XSLTConf i gDel egat e" >
<del egat e- confi g>
<xsl t-config confi gName="ManagedConnecti onFact or yProperti es"><![CDATA|
<xsl : styl esheet
xm ns: xsl =" http://ww. w3. org/ 1999/ XSL/ Transform version="1.0"'>

<xsl : out put nethod="xm" />
<xsl : param nane="host "/ >
<xsl : param name="port"/>

<xsl:tenplate match="/">
<xsl : appl y-tenpl at es/ >
</ xsl : t enpl at e>

<xsl:tenpl ate mat ch="confi g- property[@ane="' Connecti onURL']">
<config-property type="java.lang. String" name="Connecti onURL" >
j dbc: hsql db: hsql : // <xsl : val ue- of sel ect =" $host'/>: <xsl : val ue-of sel ect=' $port'/>
</ confi g-property>
</ xsl : tenpl at e>

<xsl:tenplate match="*| @">
<xsl : copy>
<xsl:apply-tenpl ates sel ect="@| node()"/>
</ xsl : copy>
</ xsl : t enpl at e>
</ xsl : styl esheet >
11>
</ xslt-config>
</ del egat e- confi g>
<bi ndi ng host ="| ocal host" port="1901"/>
</ servi ce-confi g>

8.5.3. XSLTFileDelegate

The XSLTFi | eDel egat e class works similarly to the XSLTConf i gDel egat e except that instead of transforming an
embedded XML fragment, the XSLT script transforms a file read in from the file system. The del egat e- confi g
takes exactly the same form:

<del egat e- confi g>
<xsl t-config configName="Confi gurationEl ement" ><![CDATA|

JBoss Release 2 310

Additiona Services

Any XSL docunent contents...
11>
</xslt-config>
<xsl t - par am nanme="par am nane" >par am val ue</ xsl t - par an»
<l-- . -->
</ del egat e- confi g>

The xsl t-config child element content specifies an arbitrary XSL script fragment that is to be applied to the
MBean service attribute named by the confi gNarme attribute. The named attribute must be a String value corres-
ponding to an XML file that will be transformed. The optional xsI t - par amelements specify XSL script parameter
values for parameters used in the script. There are two XSL parameters defined by default called host and port,
and their values are set to the configuration host and port bindings.

The following example maps the host and port values for the Tomcat connectors:

<service-confi g name="j boss. web: servi ce=\ebServer"
del egat ed ass="org. j boss. servi ces. bi ndi ng. XSLTFi | eDel egat e" >
<del egat e- confi g>
<xslt-config configNane="Confi gFil e"><![CDATA]
<xsl : styl esheet
xm ns: xsl =" http://ww. w3. org/ 1999/ XSL/ Transform version="1.0"'>

<xsl : out put nethod="xm" />
<xsl : param name="port"/>

<xsl:variabl e name="port AJP" sel ect="$port - 71"/>
<xsl:variabl e name="portHtt ps" sel ect="$port + 363"/>

<xsl:tenplate match="/">
<xsl : appl y-tenpl at es/ >
</ xsl : tenpl at e>

<xsl:tenplate match = "Connector">
<Connect or >
<xsl :for-each select="@">
<xsl : choose>
<xsl:when test="(nane() = 'port' and . = '8080")">
<xsl:attribute nane="port">
<xsl : val ue- of sel ect="%port" />
</xsl:attribute>
</ xsl : when>
<xsl :when test="(nane() = 'port' and . = '8009')">
<xsl:attribute name="port">
<xsl :val ue- of sel ect="$port AJP" />
</xsl:attribute>
</ xsl : when>
<xsl:when test="(nane() = 'redirectPort')">
<xsl:attribute nane="redirectPort">
<xsl:val ue-of select="$portHttps" />
</ xsl:attribute>
</ xsl : when>
<xsl:when test="(nane() = 'port' and . = '8443")">
<xsl:attribute name="port">
<xsl :val ue-of select="$portHttps" />
</xsl:attribute>
</ xsl : when>
<xsl : ot her wi se>
<xsl:attribute name="{nanme()}"><xsl:val ue-of select="." /></xsl:attribute>
</ xsl : ot her wi se>
</ xsl : choose>
</ xsl : for-each>
<xsl : appl y-tenpl at es/ >

JBoss Release 2 311

Additiona Services

</ Connect or >
</ xsl : t enpl at e>

<xsl:tenplate match="*| @">
<xsl : copy>
<xsl :apply-tenpl ates sel ect="@| node()"/>
</ xsl : copy>
</ xsl : t enpl at e>
</ xsl : styl esheet >

11>
</ xslt-config>
</ del egat e-confi g>
<bi ndi ng port="8280"/>
</ servi ce-config>

8.5.4. The Sample Bindings File

JBoss ships with service binding configuration file for starting up to three separate JBoss instances on one host.
Here we will walk through the steps to bring up the two instances and look at the sample configuration. Start by
making two server configuration file sets called j boss0 and j boss1 by running the following command from the
book examples directory:

[exanpl es] $ ant - Dchap=mi sc -Dex=1 run-exanpl e

This creates duplicates of the server/ defaul t configuration file sets as server/j boss0 and server/j boss1, and
then replaces the conf / j boss- servi ce. xm descriptor with one that has the Ser vi ceBi ndi ngManager configuration
enabled as follows:

<nmbean code="org. | boss. servi ces. bi ndi ng. Servi ceBi ndi ngManager "
nanme="j boss. syst em servi ce=Ser vi ceBi ndi ngManager " >
<attribute name="Server Nane" >${j boss. server. nane}</attri but e>
<attribute name="StoreURL">${] boss. server. base. di r}/ m sc-ex1-bi ndi ngs. xm </attribute>
<attribute name="StoreFactoryd assNane">
org. j boss. servi ces. bi ndi ng. XM_Ser vi cesSt or eFact ory
</attribute>
</ mbean>

Here the configuration name is ${j boss. server. nane} . JBoss will replace that with name of the actual JBoss serv-
er configuration that we pass to the run script with the - ¢ option. That will be either j boss0 or j boss1, depending
on which configuration is being run. The binding manager will find the corresponding server configuration section
from the ni sc- ex1- bi ndi ngs. xmi and apply the configured overrides. The j boss0 configuration uses the default
settings for the ports, while the j boss1 configuration adds 100 to each port number.

To test the sample configuration, start two JBoss instances using the j boss0 and j boss1 configuration file sets cre-
ated previously. You can observe that the port numbers in the console log are different for the j boss1 server. To
test out that both instances work correctly, try accessing the web server of the first JBoss on port 8080 and then try
the second JBoss instance on port 8180.

8.6. RMI Dynamic Class Loading

The webser vi ce MBean provides dynamic class loading for RMI access to the server EJBs. The configurable at-
tributes for the service are as follows:

JBoss Release 2 312

Additiona Services

Port: the webSer vi ce listening port number. A port of O will use any available port.
Host: Set the name of the public interface to use for the host portion of the RMI codebase URL.

BindAddress: the specific address the webSer vi ce listens on. This can be used on a multi-homed host for a
j ava. net. Server Socket that will only accept connect requests to one of its addresses.

Backlog: The maximum queue length for incoming connection indications (a request to connect) is set to the
backl og parameter. If a connection indication arrives when the queue is full, the connection is refused.

DownloadServer Classes: A flag indicating if the server should attempt to download classes from thread con-
text class loader when arequest arrives that does not have a class loader key prefix.

DownloadResour ces: A flag indicating whether the server should attempt to download non-class file resources
using the thread context class loader. Note that allowing this is generally a security risk as it allows access to
server configuration files which may contain security settings.

ThreadPool: The org.jboss. util.threadpool . Basi cThr eadPool MBean instance thread pool used for the
class loading.

8.7. Scheduling Tasks

Java includes a smple timer based capability through the java. util.Tinmer and java.util. Ti mer Task utility
classes. IMX also includes a mechanism for scheduling IMX notifications at a given time with an optional repeat
interval asthej avax. managenent . ti mer. Ti mer MBean agent service.

JBoss includes two variations of the JIMX timer service in the org.j boss. vari a. schedul er. Schedul er and
org. j boss. vari a. schedul er. Schedul eManager MBeans. Both MBeans rely on the IMX timer service for the ba-
sic scheduling. They extend the behavior of the timer service as described in the following sections.

8.7.1. org.jboss.varia.scheduler.Scheduler

The Scheduler differs from the Ti mer MBean in that the Schedul er directly invokes a callback on an instance of a
user defined class, or an operation of auser specified MBean.

InitialStartDate: Date when the initial call is scheduled. It can be either:

* Now date will be the current time plus 1 seconds
* A number representing the milliseconds since 1/1/1970

« Date as String able to be parsed by Si npl eDat eFor mat with default format pattern "M d/yy h: nm a". If the
date is in the past the schedul er will search a start date in the future with respect to the initial repetitions
and the period between calls. This means that when you restart the MBean (restarting JBoss etc.) it will start
at the next scheduled time. When no start date is available in the future the Schedul er will not start.

For example, if you start your Schedul abl e everyday at Noon and you restart your JBoss server then it will
start at the next Noon (the same if started before Noon or the next day if start after Noon).

JBoss Release 2 313

Additiona Services

< InitialRepetitions. The number of times the scheduler will invoke the target's callback. If -1 then the callback
will be repeated until the server is stopped.

o StartAtStartup: A flag that determines if the schedul er will start when it receives its startService life cycle
notification. If true the Schedul er starts on its startup. If false, an explicit st art Schedul e operation must be in-
voked on the Schedul er to begin.

» SchedulePeriod: The interval between scheduled calls in milliseconds. This value must be bigger than O.

» SchedulableClass: The fully qualified class name of the or g. j boss. vari a. schedul er. Schedul abl e interface
implementation that is to be used by the Schedul er . The Schedul abl eAr gument s and Schedul abl eAr gunent -
Types must be populated to correspond to the constructor of the Schedul abl e implementation.

« SchedulableArguments: A comma separated list of arguments for the Schedul abl e implementation class con-
structor. Only primitive datatypes, st ri ng and classes with a constructor that accepts a st ri ng as its sole argu-
ment are supported.

e SchedulableArgumentTypes: A comma separated list of argument types for the Schedul abl e implementation
class constructor. This will be used to find the correct constructor via reflection. Only primitive data types,
st ri ng and classes with a constructor that acceptsa st ri ng asits sole argument are supported.

» SchedulableMBean: Specifies the fully qualified IMX Obj ect Name name of the schedulable MBean to be
called. If the MBean is not available it will not be called but the remaining repetitions will be decremented.
When using Schedul abl eMBean the Schedul abl eMBeanMet hod must also be specified.

» SchedulableM BeanM ethod: Specifies the operation name to be called on the schedulable MBean. It can op-
tionally be followed by an opening bracket, a comma separated list of parameter keywords, and a closing brack-
et. The supported parameter keywords include:

e NoTI FI cATI oNwhich will be replaced by the timers notification instance (javax.management.Notification)
» DATE which will be replaced by the date of the notification call (java.util.Date)

e REPETI TI NS which will be replaced by the number of remaining repetitions (long)

* SCHEDULER_NAME which will be replaced by the tbj ect Nane of the Schedul er

« Any fully qualified class name which the Schedul er will set to null.

A given Scheduler instance only support a single schedulable instance. If you need to configure multiple scheduled
events you would use multiple schedul er instances, each with a unique j ect Name. The following is an example
of configuring a Schedul er to call aSchedul abl e implementation as well as a configuration for calling a MBean.

<server>

<nbean code="org.j boss. vari a. schedul er. Schedul er"
nane="j boss. docs: servi ce=Schedul er" >
<attribute name="StartAtStartup">true</attribute>
<attribute name="Schedul abl ed ass">org.] boss. book. m sc. ex2. ExSchedul abl e</attri bute>
<attri bute name="Schedul abl eAr gunent s" >TheName, 123456789</ attri but e>
<attribute name="Schedul abl eAr gunent Types">j ava. |l ang. String, | ong</attri bute>

<attribute nanme="Initial StartDate">NOM/attribute>
<attribute nanme="Schedul ePeri od">60000</attri but e>

JBoss Release 2 314

Additiona Services

<attribute name="Initial Repetitions">-1</attri bute>
</ mbean>

</ server >

The Schedul abl ed ass or g. j boss. book. ni sc. ex2. ExSchedul abl e example classis given below.

package org.]j boss. book. m sc. ex2;

i nport java.util.Date;
i mport org.jboss.varia.schedul er. Schedul abl e;

i mport org.apache. | og4j . Logger

/**
* A sinple Schedul abl e exanpl e.

* @ut hor Scott.Stark@ boss. org
* @ersion $Revision: 1.2 $

*/
public class ExSchedul abl e i npl ements Schedul abl e
{
private static final Logger |og = Logger.getLogger (ExSchedul abl e. cl ass);
private String name;
private |ong val ue;
publ i c ExSchedul abl e(String nane, |ong val ue)
{
thi s. name = nane;
this.value = val ue;
| og.info("ctor, name: " + nane + ", value: " + value);
}
public void perform Date now, |ong renaini ngRepetitions)
{
|l og.info("perform now. " + now +
", remaini ngRepetitions: " + renaini ngRepetitions +
", nane: " + nane + ", value: " + value);
}
}

Deploy the timer SAR by running:

[exanpl es]$ ant -Dchap=mi sc -Dex=2 run-exanpl e

The server console shows the following which includes the first two timer invocations, separated by 60 seconds:

21:09: 27,716 I NFO [ExSchedul able] ctor, nanme: TheNane, val ue: 123456789

21:09: 28,925 I NFO [ExSchedul able] perform now. Mon Dec 20 21:09: 28 CST 2004,
remai ni ngRepetitions: -1, nanme: TheNane, val ue: 123456789

21:10: 28,899 I NFO [ExSchedul able] perform now Mon Dec 20 21:10:28 CST 2004,
remai ni ngRepetitions: -1, nanme: TheNane, val ue: 123456789

21:11: 28,897 I NFO [ExSchedul able] perform now Mon Dec 20 21:11:28 CST 2004,
remai ni ngRepetitions: -1, nanme: TheNane, val ue: 123456789

8.8. The Timer Service

The IMX standard defines atimer MBean (j avax. managenent . ti mer. Ti mer) which can send notifications at pre-

JBoss Release 2 315

Additiona Services

determined times. The atimer MBean can be instantiated within JBoss as any other MBean.

<nbean code="j avax.managenent.timer. Ti mer" nanme="j boss. nonitor: nane=Heart beat, type=Ti ner"/>

A standard JIMX timer doesn't produce any timer events unless it is asked to. To aid in the configuration of the
timer MBean, JBoss provides a complementary Ti mer Ser vi ce MBean. It interacts with the timer MBean to config-
ure timer events at regular intervals and to transform them into IMX notifications more suitable for other services.
The Ti ner Ser vi ce MBean takes the following attributes:

* NotificationType: Thisisthe type of the notification to be generated.
* NotificationM essage: Thisisthe message that should be associated with the generated notification.

« TimerPeriod: Thisisthe time period between notification. The time period is in milliseconds, unless otherwise
specified with a unit like "30min" or "4h". Valid time suffixes are nsec, sec, ni n and h.

* Repeatitions: Thisis the number of times the alert should be generated. A value of 0 indicates the alert should
repeat indefinitely.

e TimerMbean: Thisisthe Obj ect Nane of the time MBean that this Ti ner Ser vi ce instance should configure no-
tifications for.

The following sampleillustrates the the use of the Ti ner Ser vi ce MBean.

<nbean code="org.jboss. nonitor.services. Ti mer Servi ce"
nanme="j boss. noni t or : name=Hear t beat , t ype=Ti ner Ser vi ce" >
<attribute name="NotificationType">jboss.nonitor.heartbeat</attribute>
<attribute name="Notificati onMessage">JBoss is alivel</attribute>
<attribute name="Ti merPeri od">60sec</attri bute>
<depends optional -attribute-name="Ti mer MBean" >
j boss. noni t or: name=Hear t beat , t ype=Ti nmer
</ depends>
</ mbean>

This MBean configuration configures the j boss. noni tor: name=Hear t beat , t ype=Ti ner timer to generate a
j boss. noni t or . heart beat notification every 60 seconds. Any service that that wants to receive this periodic noti-
fications can subscribe to the notification.

As an example, JBoss provides a simple Not i fi cati onLi st ener MBean that can listen for a particular notifcation
and log a log message when an event is generated. This MBean is very useful for debugging or manually observing
notifications. The following MBean definition listens for any events generated by the heartbeat timer used in the
previous examples.

<nbean code="org.jboss.nonitor.services.NotificationListener"
nane="j boss. noni t or: servi ce=Noti fi cati onLi st ener">
<attribute name="SubscriptionList">
<subscription-list>
<nmbean name="j boss. noni t or: name=Heart beat , t ype=Ti mer" />
</ subscription-list>
</attribute>
</ mbean>

The subscription-1ist element lists which MBeans the listener should listen to. Notice that the MBean we are
listening to is the name of the actual timer MBean and not the Ti ner Ser vi ce MBean. Because the timer might gen-

JBoss Release 2 316

Additiona Services

erate multiple events, configured by multiple Ti ner Ser vi ce instances, you may need to filter by notification type.
Thefilter element can be used to create notification filters that select only the notification types desired. The fol-
lowing listing shows how we can limit notifications to only the j boss. noni t or. hear t beat type the timer service
configured.

<nbean code="org.jboss.nonitor.services.NotificationListener"
nane="j boss. noni tor: servi ce=Noti ficati onLi stener">
<attribute name="SubscriptionList">
<subscription-list>
<mbean nanme="j boss. noni t or: nane=Hear t beat , t ype=Ti mer ">
<filter factory="NotificationFilterSupportFactory">
<enabl e type="j boss. noni tor. heartbeat"/>
</filter>
</ mbean>
</subscription-list>
</attribute>
</ nbean>

As an example of a dightly more interesting listener, we'll ook at the ScriptingListener. This listener listens for
particular events and then executes a specified script when events are received. The script can be writen in any
bean shell scripting language. The ScriptingListener accepts has the following parameters.

e ScriptLanguage: This is the language the script is written in. This should be beanshel I, unless you have
loaded libraries for another beanshell compatible language.

e Script: Thisisthe text of the script to evaluate. It is good practice to enclose the script in a CDATA section to
minimize conflicts between scripting language syntax and XML syntax.

e SubscriptionList: Thisisthelist of MBeans that this MBean will listen to for events that will trigger the script.

The following example illustrates the use of the Scri pti ngLi st ener . When the previoudly configured timer gener-
ates a heartbeat notification, the beanshell script will execute, printing the current memory values to STDOUT.
(This output will be redirected to the log files) Notice that the beanshell script has a reference to the MBean server
and can execute operations against other MBeans.

<nmbean code="org.j boss. nmoni tor.services. ScriptingListener"
nane="j boss. noni t or: servi ce=Scri ptingLi st ener" >
<attribute name="SubscriptionList">
<subscription-list>
<mbean name="j boss. noni t or: nane=Hear t beat, t ype=Ti ner"/ >
</ subscription-list>
</attribute>
<attribute name="Scri pt Language" >beanshel | </ attri but e>
<attribute name="Script">
<! [CDATA]
i mport j avax. managenent. Qbj ect Nane;

/* poll free nmenory and thread count */
Cbj ect Nane target = new bj ect Nane("j boss. system type=Server|nfo");

|l ong freeMenory = server.getAttribute(target, "FreeMenory");
| ong threadCount = server.getAttribute(target, "ActiveThreadCount");

log.info("freeMenory" + freeMenory + ", threadCount" + threadCount);
11>

</attribute>
</ mbean>

JBoss Release 2 317

Additiona Services

Of course, you are not limited to these JBoss-provided notification listeners. Other services such as the barrier ser-
vice (see Section 8.9) receive and act on notifications that could be generated from a timer. Additionally, any
MBean can be coded to listen for timer-generated notifications.

8.9. The BarrierController Service

Expressing dependencies between services using the <depends> tag is a convenient way to make the lifecycle of
one service depend on the lifecycle of another. For example, when ser vi ceA depends on ser vi ceB JBoss will en-
sure the serviceB. create() is called before serviceA create() and serviceB.start() is caled before ser-
viceA start().

However, there are cases where services do not conform to the JBoss lifecycle model, i.e. they don't expose create/
start/stop/destroy lifesycle methods). Thisis the case for j boss. syst em t ype=Server Mean, which represents the
JBoss server itself. No lifecycle operations are exposed so you cannot simply express a dependcy like: if JBoss is
fully started then start my own service.

Or, even if they do conform to the JBoss lifecycle model, the completion of a lifecycle method (e.g. the start
method) may not be sufficient to describe a dependency. For example the j boss. web: ser vi ce=WebSer ver MBean
that wraps the embedded Tomcat server in JBoss does not start the Tomcat connectors until after the server is fully
started. So putting a dependency on this MBean, if we want to hit awebpage through Tomcat, will do no good.

Resolving such non-trivial dependencies is currently performed using JMX natifications. For example the
j boss. system t ype=Ser ver MBean emits a notification of type or g. j boss. system server. started when it has
completed startup, and a notification of type org. j boss. syst em server. st opped When it shuts down. Similarly,
j boss. web: servi ce=WebSer ver emits a notification of typej boss. t ontat . connect ors. st art ed when it starts up.
Services can subscribe to those notifications in order to implement more complex dependencies. This technique has
been generalized with the barrier controller service.

The barrier controller is a relatively smple MBean service that extends Li st ener Ser vi ceMBeanSupport and thus
can subscribe to any notification in the system. It uses the received notifications to control the lifecycle of adynam-
ically created MBean called the barrier.

The barrier is instantiated, registered and brought to the create state when the barrier controller is deployed. After
that, the barrier is started and stopped when matching notifications are received. Thus, other services need only de-
pend on the barrier MBean using the usual <depends> tag, without having to worry about complex lifecycle issues.
They will be started and stopped in tandem with the Barrier. When the barrier controller is undeployed the barrier
is destroyed.

The noatifications of interest are configured in the barrier controller using the subscri pti onLi st attribute. In order
to identify the starting and stopping notifications we associate with each subscription a handback string object.
Handback objects, if specified, are passed back along with the delivered notifications at reception time (i.e. when
handl eNot i fi cation() iscalled) to qualify the received notifications, so that you can identify quickly from which
subscription a notification is originating (because your listener can have many active subscriptions).

So we tag the subscriptions that produce the starting/stopping notifications of interest using any handback strings,
and we configure this same string to the St art Bar ri er Handback (and St opBar ri er Handback correspondingly) at-
tribute of the barrier controller. Thus we can have more than one notifications triggering the starting or stopping of
the barrier.

JBoss Release 2 318

Additiona Services

The following example shows a service that depends on the Tomcat connectors. In fact, thisis a very common pat-
tern for services that want to hit a servlet inside tomcat. The service that depends on the Barrier in the example, isa
simple memory monitor that creates a background thread and monitors the memory usage, emitting notifications
when thresholds get crossed, but it could be anything. We've used this because it prints out to the console starting
and stopping messages, so we know when the service gets activated/deactivated.

<?xm version="1.0" encodi ng="UTF-8"?>
<l-- $ld: nmaster.xnl,v 1.2 2006/11/01 18:14:13 nrichards Exp $ -->

<server>
<l--
In this exanple we have the BarrierController controlling a Barrier
that is started when we receive the "jboss.tontat.connectors.started"
notification fromthe Tontat nbean, and stopped when we receive the
"org.jboss. system server. stopped” notification fromthe server nbean

The dependent services need only define a dependency on the Barrier nbean
oo
<nbean code="org.jboss.system BarrierController"
nanme="j boss: servi ce=BarrierControl | er">

<I-- \Whether to have the Barrier initially started or not -->
<attribute name="Barri er Enabl edOnSt art up">f al se</attri bute>

<I-- \Wether to subscribe for notifications after startup -->
<attri bute name="Dynam cSubscri ptions">true</attri bute>

<I'-- Dependent services will depend on this nbean -->
<attribute name="Barrier Qbj ect Nane" >j boss: nane=Tontat Connect or, t ype=Barrier</attri bute>

<I-- The notification subscription handback that starts the barrier -->
<attribute name="StartBarrierHandback">start</attribute>

<l-- The notification subscription handback that stops the barrier -->
<attribute name="StopBarrier Handback" >st op</attri but e>

<I-- The notifications to subscribe for, along with their handbacks -->
<attribute name="SubscriptionList">
<subscription-1ist>
<nbean nane="j boss. web: servi ce=\W\bServer" handback="start">
<filter factory="NotificationFilterSupportFactory">
<enabl e type="j boss.tontat.connectors.started"/>
</filter>
</ mbean>
<nbean nanme="j boss. system type=Server" handback="st op">
<filter factory="NotificationFilterSupportFactory">
<enabl e type="org.j boss. system server. st opped"/>
</filter>
</ nbean>
</subscription-list>
</attribute>
</ mbean>

<l--
An exanpl e service that depends on the Barrier we decl ared above.
This services creates a background thread and nonitors the nenory
usage. Wen it exceeds the defined thresholds it emits notifications
-->
<nmbean code="org.j boss. nonitor.services. Menoryhbnitor"
nanme="j boss. noni t or: servi ce=Menor yMoni t or ">

<attribute name="FreeMenor yWar ni ngThr eshol d">20nx/attri but e>
<attribute name="FreeMenoryCritical Threshol d">15nx/attri but e>

JBoss Release 2 319

Additiona Services

<l-- The BarrierCbjectNane configured in the BarrierController -->
<depends>j boss: nanme=Tontat Connect or, t ype=Barri er </ depends>
</ nbean>
</ server>

If you hot-deploy this on a running server the Barrier will be stopped because by the time the barrier controller is
deployed the starting notification is already seen. (There are ways to overcome this.) However, if you re-start the
server, the barrier will be started just after the Tomcat connectors get activated. Y ou can also manualy start or stop
the barrier by using the startBarrier() and stopBarrier() operations on the barrier controller. The attribute
Barri er St at eSt ri ng indicates the status of the barrier.

8.10. Exposing MBean Events via SNMP

JBoss has an SNMP adaptor service that can be used to intercept IMX notifications emitted by MBeans, convert
them to traps and send them to SNMP managers. In this respect the snmp-adaptor acts as a SNMP agent. Future
versions may offer support for full agent get/set functionality that maps onto MBean attributes or operations.

This service can be used to integrate JBoss with higher order system/network management platforms (HP Open-
View, for example), making the MBeans visible to those systems. The MBean developer can instrument the
MBeans by producing notifications for any significant event (e.g. server coldstart), and adaptor can then be con-
figured to intercept the naotification and map it onto an SNMP traps. The adaptor uses the JoeSNMP package from
OpenNMSS as the SNMP engine.

The SNMP service is configured in snnp- adapt or . sar. This service is only available in the al I configuration, so
you'll need to copy it to your configuration if you want to use it. Inside the snmp-adaptor.sar directory, there are
two configuration files that control the SNMP service.

* managers.xml: configures where to send traps. The content model for thisfileis shown in Figure 8.2.

» notifications.xml: specifies the exact mapping of each notification type to a corresponding SNMP trap. The
content model! for thisfileis shownin Figure 8.3.

The sNvPAgent Servi ce MBean is configured in snnp- adapt or . sar/ META- | NF/ j boss- ser vi ce. xm . The configur-
able parameters are:

» HeartBeatPeriod: The period in seconds at which heartbeat notifications are generated.
* Manager sResName: Specifies the resource name of the managers. xni file.
¢ NotificationM apResName: Specifies the resource name of thenot i cati ons. xn file.

e TrapFactoryClassName: The org. j boss. j mx. adapt or. snnp. agent . Tr apFact ory implementation class that
takes care of trandation of IMX Notificationsinto SNMP V1 and V2 traps.

e TimerName: Specifiesthe IMX ObjectName of the IMX timer serviceto use for heartbeat notifications.

e SubscriptionList: Specifies which MBeans and notifications to listen for.

JBoss Release 2 320

Additiona Services

+* address%

string

¥ pnrta
integer

*+ manager-listz | * managerg + Incal-address%
string

@ Im:al-pnrl:q

inteqer

+ versinn.#
integer

Figure 8.2. The schema for the SNM P managersfile

+* nmiﬁl:atinn-wpe%
string

+ genericpy

integer

+ specificy

integer

+ notification-map-listg ! + mappingg | + En[erprisg%
string

r a!
wrapper-classg
&tring 2

| 4

ot
+ var-bind-listz_ | * var-bindg strin

R -
+ md%
strin

Figure 8.3. The schema for the notification to trap mappingfile

TrapdServi ce iS a sSsimple MBean that acts as an SNMP Manager. It listens to a configurable port for incoming
traps and logs them as DEBUG messages using the system logger. Y ou can modify the log4j configuration to redir-
ect the log output to afile. SnnpAgent Ser vi ce and Tr apdSer vi ce are not dependent on each other.

JBoss Release 2 321

Book Example Installation

The book comes with the source code for the examples discussed in the book. The examples are included with the
book archive. Unzipping the example code archive creates a JBoss j boss4gui de directory that contains an ex-
anpl es subdirectory. Thisisthe exanpl es directory referred to by the book.

The only customization needed before the examples may be used is to set the location of the JBoss server distribu-
tion. This may be done by editing the exanpl es/ bui | d. xni file and changing the j boss. di st property value. This
is shown in bold below:

<proj ect nane="JBoss book exanpl es" default="build-all" basedir=".">
<I-- Allow override fromlocal properties file -->
<property file="ant.properties"/>

<I-- Override with your JBoss server bundl e dist |location -->
<property nane="j boss. dist" val ue="/tnp/jboss-4.0.3"/>
<property nane="j boss. depl oy. conf" val ue="default"/>

or by creating an . ant. properties file in the examples directory that contains a definition for the j boss. di st
property. For example:

j boss. di st=/usr/|ocal/jboss/jboss-4.0.1

Part of the verification process validates that the version you are running the examples against matches what the
book examples were tested against. If you have a problem running the examples first look for the output of the val-
idate target such as the following:

val i dat e:
[java] InplenentationTitle: JBoss [Zion]
[java] | nplenentati onVendor: JBoss Inc.
[java] Inplenentati onVersion: 4.0.1 (build: CVSTag=JBoss_4_0_1 date=200412230944)
[java] SpecificationTitle: JBoss
[java] SpecificationVendor: JBoss (http://ww.]jboss.org/)
[java] SpecificationVersion: 4.0.1
[java] JBoss version is: 4.0.1

JBoss Release 2 322

	The JBoss 4 Application Server J2EE Reference
	Table of Contents
	Chapter 1. The JBoss JMX Microkernel
	1.1. An Introduction to JMX
	1.1.1. Instrumentation Level
	1.1.2. Agent Level
	1.1.3. Distributed Services Level
	1.1.4. JMX Component Overview
	1.1.4.1. Managed Beans or MBeans
	1.1.4.2. Notification Model
	1.1.4.3. MBean Metadata Classes
	1.1.4.4. MBean Server
	1.1.4.5. Agent Services

	1.2. JBoss JMX Implementation Architecture
	1.2.1. The JBoss ClassLoader Architecture
	1.2.2. Class Loading and Types in Java
	1.2.2.1. ClassCastExceptions - I'm Not Your Type
	1.2.2.2. IllegalAccessException - Doing what you should not
	1.2.2.3. LinkageErrors - Making Sure You Are Who You Say You Are
	1.2.2.3.1. Debugging Class Loading Issues

	1.2.2.4. Inside the JBoss Class Loading Architecture
	1.2.2.4.1. Viewing Classes in the Loader Repository
	1.2.2.4.2. Scoping Classes
	1.2.2.4.3. The Complete Class Loading Model

	1.2.3. JBoss XMBeans
	1.2.3.1. Descriptors
	1.2.3.2. The Management Class
	1.2.3.3. The Constructors
	1.2.3.4. The Attributes
	1.2.3.5. The Operations
	1.2.3.6. Notifications

	1.3. Connecting to the JMX Server
	1.3.1. Inspecting the Server - the JMX Console Web Application
	1.3.1.1. Securing the JMX Console

	1.3.2. Connecting to JMX Using RMI
	1.3.3. Command Line Access to JMX
	1.3.3.1. Connecting twiddle to a Remote Server
	1.3.3.2. Sample twiddle Command Usage

	1.3.4. Connecting to JMX Using Any Protocol

	1.4. Using JMX as a Microkernel
	1.4.1. The Startup Process
	1.4.2. JBoss MBean Services
	1.4.2.1. The SARDeployer MBean
	1.4.2.2. The Service Life Cycle Interface
	1.4.2.3. The ServiceController MBean
	1.4.2.3.1. The create(ObjectName) method
	1.4.2.3.2. The start(ObjectName) method
	1.4.2.3.3. The stop(ObjectName) method
	1.4.2.3.4. The destroy(ObjectName) method

	1.4.2.4. Specifying Service Dependencies
	1.4.2.5. Identifying Unsatisfied Dependencies
	1.4.2.6. Hot Deployment of Components, the URLDeploymentScanner

	1.4.3. Writing JBoss MBean Services
	1.4.3.1. A Standard MBean Example
	1.4.3.2. XMBean Examples
	1.4.3.2.1. Version 1, The Annotated JNDIMap XMBean
	1.4.3.2.2. Version 2, Adding Persistence to the JNDIMap XMBean

	1.4.4. Deployment Ordering and Dependencies

	1.5. JBoss Deployer Architecture
	1.5.1. Deployers and ClassLoaders

	1.6. Remote Access to Services, Detached Invokers
	1.6.1. A Detached Invoker Example, the MBeanServer Invoker Adaptor Service
	1.6.2. Detached Invoker Reference
	1.6.2.1. The JRMPInvoker - RMI/JRMP Transport
	1.6.2.2. The PooledInvoker - RMI/Socket Transport
	1.6.2.3. The IIOPInvoker - RMI/IIOP Transport
	1.6.2.4. The JRMPProxyFactory Service - Building Dynamic JRMP Proxies
	1.6.2.5. The HttpInvoker - RMI/HTTP Transport
	1.6.2.6. The HA JRMPInvoker - Clustered RMI/JRMP Transport
	1.6.2.7. The HA HttpInvoker - Clustered RMI/HTTP Transport
	1.6.2.8. HttpProxyFactory - Building Dynamic HTTP Proxies
	1.6.2.9. Steps to Expose Any RMI Interface via HTTP

	Chapter 2. Naming on JBoss
	2.1. An Overview of JNDI
	2.1.1. Names
	2.1.2. Contexts
	2.1.2.1. Obtaining a Context using InitialContext

	2.2. The JBossNS Architecture
	2.3. The Naming InitialContext Factories
	2.3.1. The standard naming context factory
	2.3.2. The org.jboss.naming.NamingContextFactory
	2.3.3. Naming Discovery in Clustered Environments
	2.3.4. The HTTP InitialContext Factory Implementation
	2.3.5. The Login InitialContext Factory Implementation
	2.3.6. The ORBInitialContextFactory

	2.4. JNDI over HTTP
	2.4.1. Accessing JNDI over HTTP
	2.4.2. Accessing JNDI over HTTPS
	2.4.3. Securing Access to JNDI over HTTP
	2.4.4. Securing Access to JNDI with a Read-Only Unsecured Context

	2.5. Additional Naming MBeans
	2.5.1. JNDI Binding Manager
	2.5.2. The org.jboss.naming.NamingAlias MBean
	2.5.3. org.jboss.naming.ExternalContext MBean
	2.5.4. The org.jboss.naming.JNDIView MBean

	2.6. J2EE and JNDI - The Application Component Environment
	2.6.1. ENC Usage Conventions
	2.6.1.1. Environment Entries
	2.6.1.2. EJB References
	2.6.1.3. EJB References with jboss.xml and jboss-web.xml
	2.6.1.4. EJB Local References
	2.6.1.5. Resource Manager Connection Factory References
	2.6.1.6. Resource Manager Connection Factory References with jboss.xml and jboss-web.xml
	2.6.1.7. Resource Environment References
	2.6.1.8. Resource Environment References and jboss.xml, jboss-web.xml

	Chapter 3. Transactions on JBoss
	3.1. Transaction/JTA Overview
	3.1.1. Pessimistic and optimistic locking
	3.1.2. The components of a distributed transaction
	3.1.3. The two-phase XA protocol
	3.1.4. Heuristic exceptions
	3.1.5. Transaction IDs and branches

	3.2. JBoss Transaction Internals
	3.2.1. Adapting a Transaction Manager to JBoss
	3.2.2. The Default Transaction Manager
	3.2.2.1. org.jboss.tm.XidFactory

	3.2.3. UserTransaction Support

	Chapter 4. EJBs on JBoss
	4.1. The EJB Client Side View
	4.1.1. Specifying the EJB Proxy Configuration

	4.2. The EJB Server Side View
	4.2.1. Detached Invokers - The Transport Middlemen
	4.2.2. The HA JRMPInvoker - Clustered RMI/JRMP Transport
	4.2.3. The HA HttpInvoker - Clustered RMI/HTTP Transport

	4.3. The EJB Container
	4.3.1. EJBDeployer MBean
	4.3.1.1. Verifying EJB deployments
	4.3.1.2. Deploying EJBs Into Containers
	4.3.1.3. Container configuration information
	4.3.1.3.1. The container-name element
	4.3.1.3.2. The call-logging element
	4.3.1.3.3. The invoker-proxy-binding-name element
	4.3.1.3.4. The sync-on-commit-only element
	4.3.1.3.5. insert-after-ejb-post-create
	4.3.1.3.6. call-ejb-store-on-clean
	4.3.1.3.7. The container-interceptors Element
	4.3.1.3.8. The instance-pool element
	4.3.1.3.9. The container-pool-conf element
	4.3.1.3.10. The instance-cache element
	4.3.1.3.11. The container-cache-conf element
	4.3.1.3.12. The persistence-manager element
	4.3.1.3.13. The web-class-loader Element
	4.3.1.3.14. The locking-policy element
	4.3.1.3.15. The commit-option and optiond-refresh-rate elements
	4.3.1.3.16. The security-domain element
	4.3.1.3.17. cluster-config
	4.3.1.3.18. The depends element

	4.3.2. Container Plug-in Framework
	4.3.2.1. org.jboss.ejb.ContainerPlugin
	4.3.2.2. org.jboss.ejb.Interceptor
	4.3.2.3. org.jboss.ejb.InstancePool
	4.3.2.4. org.jboss.ebj.InstanceCache
	4.3.2.5. org.jboss.ejb.EntityPersistenceManager
	4.3.2.6. The org.jboss.ejb.EntityPersistenceStore interface
	4.3.2.7. org.jboss.ejb.StatefulSessionPersistenceManager

	4.4. Entity Bean Locking and Deadlock Detection
	4.4.1. Why JBoss Needs Locking
	4.4.2. Entity Bean Lifecycle
	4.4.3. Default Locking Behavior
	4.4.4. Pluggable Interceptors and Locking Policy
	4.4.5. Deadlock
	4.4.5.1. Deadlock Detection
	4.4.5.2. Catching ApplicationDeadlockException
	4.4.5.3. Viewing Lock Information

	4.4.6. Advanced Configurations and Optimizations
	4.4.6.1. Short-lived Transactions
	4.4.6.2. Ordered Access
	4.4.6.3. Read-Only Beans
	4.4.6.4. Explicitly Defining Read-Only Methods
	4.4.6.5. Instance Per Transaction Policy

	4.4.7. Running Within a Cluster
	4.4.8. Troubleshooting
	4.4.8.1. Locking Behavior Not Working
	4.4.8.2. IllegalStateException
	4.4.8.3. Hangs and Transaction Timeouts

	4.5. EJB Timer Configuration

	Chapter 5. Messaging on JBoss
	5.1. JMS Examples
	5.1.1. A Point-To-Point Example
	5.1.2. A Pub-Sub Example
	5.1.3. A Pub-Sub With Durable Topic Example
	5.1.4. A Point-To-Point With MDB Example

	5.2. JBoss Messaging Overview
	5.2.1. Invocation Layer
	5.2.2. Security Manager
	5.2.3. Destination Manager
	5.2.4. Message Cache
	5.2.5. State Manager
	5.2.6. Persistence Manager
	5.2.7. Destinations
	5.2.7.1. Queues
	5.2.7.2. Topics

	5.3. JBoss Messaging Configuration and MBeans
	5.3.1. org.jboss.mq.il.jvm.JVMServerILService
	5.3.2. org.jboss.mq.il.uil2.UILServerILService
	5.3.2.1. Configuring UIL2 for SSL
	5.3.2.2. JMS client properties for the UIL2 transport

	5.3.3. org.jboss.mq.il.http.HTTPServerILService
	5.3.4. org.jboss.mq.server.jmx.Invoker
	5.3.5. org.jboss.mq.server.jmx.InterceptorLoader
	5.3.6. org.jboss.mq.sm.jdbc.JDBCStateManager
	5.3.7. org.jboss.mq.security.SecurityManager
	5.3.8. org.jboss.mq.server.jmx.DestinationManager
	5.3.9. org.jboss.mq.server.MessageCache
	5.3.10. org.jboss.mq.pm.jdbc2.PersistenceManager
	5.3.11. Destination MBeans
	5.3.11.1. org.jboss.mq.server.jmx.Queue
	5.3.11.2. org.jboss.mq.server.jmx.Topic

	5.4. Specifying the MDB JMS Provider
	5.4.1. org.jboss.jms.jndi.JMSProviderLoader MBean
	5.4.2. org.jboss.jms.asf.ServerSessionPoolLoader MBean
	5.4.3. Integrating non-JBoss JMS Providers

	Chapter 6. Connectors on JBoss
	6.1. JCA Overview
	6.2. An Overview of the JBossCX Architecture
	6.2.1. BaseConnectionManager2 MBean
	6.2.2. RARDeployment MBean
	6.2.3. JBossManagedConnectionPool MBean
	6.2.4. CachedConnectionManager MBean
	6.2.5. A Sample Skeleton JCA Resource Adaptor

	6.3. Configuring JDBC DataSources
	6.4. Configuring Generic JCA Adaptors

	Chapter 7. Security on JBoss
	7.1. J2EE Declarative Security Overview
	7.1.1. Security References
	7.1.2. Security Identity
	7.1.3. Security roles
	7.1.4. EJB method permissions
	7.1.5. Web Content Security Constraints
	7.1.6. Enabling Declarative Security in JBoss

	7.2. An Introduction to JAAS
	7.2.1. What is JAAS?
	7.2.1.1. The JAAS Core Classes
	7.2.1.1.1. The Subject and Principal Classes
	7.2.1.1.2. Authentication of a Subject

	7.3. The JBoss Security Model
	7.3.1. Enabling Declarative Security in JBoss Revisited

	7.4. The JBoss Security Extension Architecture
	7.4.1. How the JaasSecurityManager Uses JAAS
	7.4.2. The JaasSecurityManagerService MBean
	7.4.3. The JaasSecurityDomain MBean

	7.5. Defining Security Domains
	7.5.1. Loading Security Domains
	7.5.2. The DynamicLoginConfig service
	7.5.3. Using JBoss Login Modules
	7.5.3.1. Password Stacking
	7.5.3.2. Password Hashing
	7.5.3.3. Unauthenticated Identity
	7.5.3.4. UsersRolesLoginModule
	7.5.3.5. LdapLoginModule
	7.5.3.6. DatabaseServerLoginModule
	7.5.3.7. BaseCertLoginModule
	7.5.3.8. IdentityLoginModule
	7.5.3.9. RunAsLoginModule
	7.5.3.10. ClientLoginModule

	7.5.4. Writing Custom Login Modules
	7.5.4.1. Support for the Subject Usage Pattern
	7.5.4.2. A Custom LoginModule Example

	7.6. The Secure Remote Password (SRP) Protocol
	7.6.1. Providing Password Information for SRP
	7.6.2. Inside of the SRP algorithm
	7.6.2.1. An SRP example

	7.7. Running JBoss with a Java 2 security manager
	7.8. Using SSL with JBoss using JSSE
	7.9. Configuring JBoss for use Behind a Firewall
	7.10. How to Secure the JBoss Server
	7.10.1. The JMX Console
	7.10.2. The Web Console
	7.10.3. The HTTP Invokers
	7.10.4. The JMX Invoker

	Chapter 8. Additional Services
	8.1. Memory and Thread Monitoring
	8.2. The Log4j Service
	8.3. System Properties Management
	8.4. Property Editor Management
	8.5. Services Binding Management
	8.5.1. AttributeMappingDelegate
	8.5.2. XSLTConfigDelegate
	8.5.3. XSLTFileDelegate
	8.5.4. The Sample Bindings File

	8.6. RMI Dynamic Class Loading
	8.7. Scheduling Tasks
	8.7.1. org.jboss.varia.scheduler.Scheduler

	8.8. The Timer Service
	8.9. The BarrierController Service
	8.10. Exposing MBean Events via SNMP

	Appendix A. Book Example Installation

