
The JBoss 4 Application Server J2EE Reference

JBoss AS 4.0.5

Release 2

Copyright © 2006 JBoss, Inc.

Table of Contents
1. The JBoss JMX Microkernel ...1

1.1. An Introduction to JMX ..1
1.1.1. Instrumentation Level ..3
1.1.2. Agent Level ..3
1.1.3. Distributed Services Level ...4
1.1.4. JMX Component Overview ..4

1.1.4.1. Managed Beans or MBeans ...5
1.1.4.2. Notification Model ...5
1.1.4.3. MBean Metadata Classes ..5
1.1.4.4. MBean Server ..6
1.1.4.5. Agent Services ...6

1.2. JBoss JMX Implementation Architecture ...7
1.2.1. The JBoss ClassLoader Architecture ...7
1.2.2. Class Loading and Types in Java ..7

1.2.2.1. ClassCastExceptions - I'm Not Your Type ..7
1.2.2.2. IllegalAccessException - Doing what you should not ..12
1.2.2.3. LinkageErrors - Making Sure You Are Who You Say You Are14
1.2.2.4. Inside the JBoss Class Loading Architecture ...19

1.2.3. JBoss XMBeans ..26
1.2.3.1. Descriptors ...27
1.2.3.2. The Management Class ...29
1.2.3.3. The Constructors ..29
1.2.3.4. The Attributes ..30
1.2.3.5. The Operations ...31
1.2.3.6. Notifications ...32

1.3. Connecting to the JMX Server ..33
1.3.1. Inspecting the Server - the JMX Console Web Application ..33

1.3.1.1. Securing the JMX Console ..35
1.3.2. Connecting to JMX Using RMI ..37
1.3.3. Command Line Access to JMX ..40

1.3.3.1. Connecting twiddle to a Remote Server ..40
1.3.3.2. Sample twiddle Command Usage ..40

1.3.4. Connecting to JMX Using Any Protocol ...43
1.4. Using JMX as a Microkernel ...44

1.4.1. The Startup Process ...44
1.4.2. JBoss MBean Services ...45

1.4.2.1. The SARDeployer MBean ...46
1.4.2.2. The Service Life Cycle Interface ..49
1.4.2.3. The ServiceController MBean ...49
1.4.2.4. Specifying Service Dependencies ..51
1.4.2.5. Identifying Unsatisfied Dependencies ..52
1.4.2.6. Hot Deployment of Components, the URLDeploymentScanner53

1.4.3. Writing JBoss MBean Services ..54
1.4.3.1. A Standard MBean Example ...55

JBoss Release 2 ii

1.4.3.2. XMBean Examples ...58
1.4.4. Deployment Ordering and Dependencies ..65

1.5. JBoss Deployer Architecture ...75
1.5.1. Deployers and ClassLoaders ..76

1.6. Remote Access to Services, Detached Invokers ..78
1.6.1. A Detached Invoker Example, the MBeanServer Invoker Adaptor Service80
1.6.2. Detached Invoker Reference ..84

1.6.2.1. The JRMPInvoker - RMI/JRMP Transport ...84
1.6.2.2. The PooledInvoker - RMI/Socket Transport ...85
1.6.2.3. The IIOPInvoker - RMI/IIOP Transport ...86
1.6.2.4. The JRMPProxyFactory Service - Building Dynamic JRMP Proxies86
1.6.2.5. The HttpInvoker - RMI/HTTP Transport ..86
1.6.2.6. The HA JRMPInvoker - Clustered RMI/JRMP Transport87
1.6.2.7. The HA HttpInvoker - Clustered RMI/HTTP Transport87
1.6.2.8. HttpProxyFactory - Building Dynamic HTTP Proxies ...87
1.6.2.9. Steps to Expose Any RMI Interface via HTTP ..88

2. Naming on JBoss ..90
2.1. An Overview of JNDI ..90

2.1.1. Names ..90
2.1.2. Contexts ...91

2.1.2.1. Obtaining a Context using InitialContext ..91
2.2. The JBossNS Architecture ..92
2.3. The Naming InitialContext Factories ...95

2.3.1. The standard naming context factory ..95
2.3.2. The org.jboss.naming.NamingContextFactory ...96
2.3.3. Naming Discovery in Clustered Environments ..96
2.3.4. The HTTP InitialContext Factory Implementation ...97
2.3.5. The Login InitialContext Factory Implementation ...98
2.3.6. The ORBInitialContextFactory ...98

2.4. JNDI over HTTP ..99
2.4.1. Accessing JNDI over HTTP ...99
2.4.2. Accessing JNDI over HTTPS ... 102
2.4.3. Securing Access to JNDI over HTTP .. 104
2.4.4. Securing Access to JNDI with a Read-Only Unsecured Context 105

2.5. Additional Naming MBeans .. 107
2.5.1. JNDI Binding Manager .. 107
2.5.2. The org.jboss.naming.NamingAlias MBean .. 108
2.5.3. org.jboss.naming.ExternalContext MBean .. 109
2.5.4. The org.jboss.naming.JNDIView MBean .. 110

2.6. J2EE and JNDI - The Application Component Environment ... 113
2.6.1. ENC Usage Conventions .. 115

2.6.1.1. Environment Entries ... 115
2.6.1.2. EJB References .. 116
2.6.1.3. EJB References with jboss.xml and jboss-web.xml ... 118
2.6.1.4. EJB Local References ... 119
2.6.1.5. Resource Manager Connection Factory References ... 120
2.6.1.6. Resource Manager Connection Factory References with jboss.xml and jboss-web.xml
... 122
2.6.1.7. Resource Environment References ... 122

The JBoss 4 Application Server J2EE Reference

JBoss Release 2 iii

2.6.1.8. Resource Environment References and jboss.xml, jboss-web.xml 123
3. Transactions on JBoss ... 125

3.1. Transaction/JTA Overview ... 125
3.1.1. Pessimistic and optimistic locking .. 126
3.1.2. The components of a distributed transaction .. 126
3.1.3. The two-phase XA protocol ... 127
3.1.4. Heuristic exceptions .. 127
3.1.5. Transaction IDs and branches ... 128

3.2. JBoss Transaction Internals ... 128
3.2.1. Adapting a Transaction Manager to JBoss ... 129
3.2.2. The Default Transaction Manager ... 129

3.2.2.1. org.jboss.tm.XidFactory .. 130
3.2.3. UserTransaction Support .. 130

4. EJBs on JBoss .. 131
4.1. The EJB Client Side View .. 131

4.1.1. Specifying the EJB Proxy Configuration ... 134
4.2. The EJB Server Side View .. 138

4.2.1. Detached Invokers - The Transport Middlemen ... 138
4.2.2. The HA JRMPInvoker - Clustered RMI/JRMP Transport ... 142
4.2.3. The HA HttpInvoker - Clustered RMI/HTTP Transport ... 142

4.3. The EJB Container ... 143
4.3.1. EJBDeployer MBean ... 143

4.3.1.1. Verifying EJB deployments ... 144
4.3.1.2. Deploying EJBs Into Containers .. 144
4.3.1.3. Container configuration information .. 145

4.3.2. Container Plug-in Framework .. 156
4.3.2.1. org.jboss.ejb.ContainerPlugin .. 156
4.3.2.2. org.jboss.ejb.Interceptor .. 157
4.3.2.3. org.jboss.ejb.InstancePool ... 158
4.3.2.4. org.jboss.ebj.InstanceCache ... 159
4.3.2.5. org.jboss.ejb.EntityPersistenceManager .. 160
4.3.2.6. The org.jboss.ejb.EntityPersistenceStore interface .. 162
4.3.2.7. org.jboss.ejb.StatefulSessionPersistenceManager .. 165

4.4. Entity Bean Locking and Deadlock Detection .. 166
4.4.1. Why JBoss Needs Locking ... 166
4.4.2. Entity Bean Lifecycle .. 167
4.4.3. Default Locking Behavior .. 167
4.4.4. Pluggable Interceptors and Locking Policy .. 167
4.4.5. Deadlock .. 168

4.4.5.1. Deadlock Detection .. 169
4.4.5.2. Catching ApplicationDeadlockException ... 169
4.4.5.3. Viewing Lock Information .. 170

4.4.6. Advanced Configurations and Optimizations ... 170
4.4.6.1. Short-lived Transactions .. 171
4.4.6.2. Ordered Access .. 171
4.4.6.3. Read-Only Beans .. 171
4.4.6.4. Explicitly Defining Read-Only Methods .. 171
4.4.6.5. Instance Per Transaction Policy ... 172

4.4.7. Running Within a Cluster ... 172

The JBoss 4 Application Server J2EE Reference

JBoss Release 2 iv

4.4.8. Troubleshooting .. 173
4.4.8.1. Locking Behavior Not Working ... 173
4.4.8.2. IllegalStateException .. 173
4.4.8.3. Hangs and Transaction Timeouts ... 173

4.5. EJB Timer Configuration .. 173
5. Messaging on JBoss .. 176

5.1. JMS Examples ... 176
5.1.1. A Point-To-Point Example ... 176
5.1.2. A Pub-Sub Example .. 179
5.1.3. A Pub-Sub With Durable Topic Example .. 183
5.1.4. A Point-To-Point With MDB Example ... 186

5.2. JBoss Messaging Overview .. 192
5.2.1. Invocation Layer ... 192
5.2.2. Security Manager .. 193
5.2.3. Destination Manager .. 193
5.2.4. Message Cache .. 193
5.2.5. State Manager ... 193
5.2.6. Persistence Manager .. 193
5.2.7. Destinations .. 194

5.2.7.1. Queues ... 194
5.2.7.2. Topics .. 194

5.3. JBoss Messaging Configuration and MBeans ... 194
5.3.1. org.jboss.mq.il.jvm.JVMServerILService .. 195
5.3.2. org.jboss.mq.il.uil2.UILServerILService ... 195

5.3.2.1. Configuring UIL2 for SSL .. 196
5.3.2.2. JMS client properties for the UIL2 transport ... 197

5.3.3. org.jboss.mq.il.http.HTTPServerILService .. 198
5.3.4. org.jboss.mq.server.jmx.Invoker ... 198
5.3.5. org.jboss.mq.server.jmx.InterceptorLoader .. 199
5.3.6. org.jboss.mq.sm.jdbc.JDBCStateManager ... 199
5.3.7. org.jboss.mq.security.SecurityManager ... 199
5.3.8. org.jboss.mq.server.jmx.DestinationManager .. 200
5.3.9. org.jboss.mq.server.MessageCache ... 201
5.3.10. org.jboss.mq.pm.jdbc2.PersistenceManager ... 202
5.3.11. Destination MBeans ... 204

5.3.11.1. org.jboss.mq.server.jmx.Queue .. 204
5.3.11.2. org.jboss.mq.server.jmx.Topic ... 206

5.4. Specifying the MDB JMS Provider ... 207
5.4.1. org.jboss.jms.jndi.JMSProviderLoader MBean .. 208
5.4.2. org.jboss.jms.asf.ServerSessionPoolLoader MBean ... 209
5.4.3. Integrating non-JBoss JMS Providers .. 210

6. Connectors on JBoss ... 211
6.1. JCA Overview ... 211
6.2. An Overview of the JBossCX Architecture .. 213

6.2.1. BaseConnectionManager2 MBean .. 214
6.2.2. RARDeployment MBean ... 214
6.2.3. JBossManagedConnectionPool MBean ... 215
6.2.4. CachedConnectionManager MBean .. 216
6.2.5. A Sample Skeleton JCA Resource Adaptor ... 216

The JBoss 4 Application Server J2EE Reference

JBoss Release 2 v

6.3. Configuring JDBC DataSources .. 222
6.4. Configuring Generic JCA Adaptors ... 232

7. Security on JBoss .. 236
7.1. J2EE Declarative Security Overview ... 236

7.1.1. Security References ... 236
7.1.2. Security Identity .. 238
7.1.3. Security roles .. 239
7.1.4. EJB method permissions .. 240
7.1.5. Web Content Security Constraints .. 243
7.1.6. Enabling Declarative Security in JBoss ... 246

7.2. An Introduction to JAAS .. 246
7.2.1. What is JAAS? .. 246

7.2.1.1. The JAAS Core Classes .. 246
7.3. The JBoss Security Model .. 250

7.3.1. Enabling Declarative Security in JBoss Revisited .. 252
7.4. The JBoss Security Extension Architecture .. 256

7.4.1. How the JaasSecurityManager Uses JAAS .. 258
7.4.2. The JaasSecurityManagerService MBean .. 261
7.4.3. The JaasSecurityDomain MBean .. 263

7.5. Defining Security Domains ... 264
7.5.1. Loading Security Domains ... 266
7.5.2. The DynamicLoginConfig service .. 267
7.5.3. Using JBoss Login Modules ... 268

7.5.3.1. Password Stacking .. 268
7.5.3.2. Password Hashing .. 269
7.5.3.3. Unauthenticated Identity ... 270
7.5.3.4. UsersRolesLoginModule ... 270
7.5.3.5. LdapLoginModule .. 271
7.5.3.6. DatabaseServerLoginModule .. 274
7.5.3.7. BaseCertLoginModule .. 276
7.5.3.8. IdentityLoginModule .. 277
7.5.3.9. RunAsLoginModule ... 278
7.5.3.10. ClientLoginModule ... 278

7.5.4. Writing Custom Login Modules ... 279
7.5.4.1. Support for the Subject Usage Pattern .. 280
7.5.4.2. A Custom LoginModule Example .. 284

7.6. The Secure Remote Password (SRP) Protocol .. 287
7.6.1. Providing Password Information for SRP .. 290
7.6.2. Inside of the SRP algorithm ... 292

7.6.2.1. An SRP example .. 294
7.7. Running JBoss with a Java 2 security manager ... 297
7.8. Using SSL with JBoss using JSSE ... 298
7.9. Configuring JBoss for use Behind a Firewall .. 302
7.10. How to Secure the JBoss Server .. 303

7.10.1. The JMX Console .. 303
7.10.2. The Web Console .. 303
7.10.3. The HTTP Invokers ... 303
7.10.4. The JMX Invoker .. 304

8. Additional Services ... 305

The JBoss 4 Application Server J2EE Reference

JBoss Release 2 vi

8.1. Memory and Thread Monitoring ... 305
8.2. The Log4j Service .. 305
8.3. System Properties Management ... 306
8.4. Property Editor Management .. 307
8.5. Services Binding Management .. 307

8.5.1. AttributeMappingDelegate ... 309
8.5.2. XSLTConfigDelegate .. 309
8.5.3. XSLTFileDelegate ... 310
8.5.4. The Sample Bindings File .. 312

8.6. RMI Dynamic Class Loading .. 312
8.7. Scheduling Tasks ... 313

8.7.1. org.jboss.varia.scheduler.Scheduler .. 313
8.8. The Timer Service .. 315
8.9. The BarrierController Service ... 318
8.10. Exposing MBean Events via SNMP ... 320

A. Book Example Installation .. 322

The JBoss 4 Application Server J2EE Reference

JBoss Release 2 vii

1
The JBoss JMX Microkernel

Modularly developed from the ground up, the JBoss server and container are completely implemented using com-
ponent-based plug-ins. The modularization effort is supported by the use of JMX, the Java Management Extension
API. Using JMX, industry-standard interfaces help manage both JBoss/Server components and the applications de-
ployed on it. Ease of use is still the number one priority, and the JBoss Server architecture sets a new standard for
modular, plug-in design as well as ease of server and application management.

This high degree of modularity benefits the application developer in several ways. The already tight code can be
further trimmed down to support applications that must have a small footprint. For example, if EJB passivation is
unnecessary in your application, simply take the feature out of the server. If you later decide to deploy the same ap-
plication under an Application Service Provider (ASP) model, simply enable the server's passivation feature for
that web-based deployment. Another example is the freedom you have to drop your favorite object to relational
database (O-R) mapping tool, such as TOPLink, directly into the container.

This chapter will introduce you to JMX and its role as the JBoss server component bus. You will also be introduced
to the JBoss MBean service notion that adds life cycle operations to the basic JMX management component.

1.1. An Introduction to JMX

The success of the full Open Source J2EE stack lies with the use of JMX (Java Management Extension). JMX is
the best tool for integration of software. It prov ides a common spine that allows the user to integrate modules, con-
tainers, and plug-ins. Figure 1.1 shows the role of JMX as an integration spine or bus into which components plug.
Components are declared as MBean services that are then loaded into JBoss. The components may subsequently be
administered using JMX.

JBoss Release 2 1

Figure 1.1. The JBoss JMX integration bus and the standard JBoss components

Before looking at how JBoss uses JMX as its component bus, it would help to get a basic overview what JMX is by
touching on some of its key aspects.

JMX components are defined by the Java Management Extensions Instrumentation and Agent Specification, v1.2,
which is available from the JSR003 Web page at http://jcp.org/en/jsr/detail?id=3. The material in this JMX over-
view section is derived from the JMX instrumentation specification, with a focus on the aspects most used by
JBoss. A more comprehensive discussion of JMX and its application can be found in JMX: Managing J2EE with
Java Management Extensions written by Juha Lindfors (Sams, 2002).

JMX is a standard for managing and monitoring all varieties of software and hardware components from Java. Fur-
ther, JMX aims to provide integration with the large number of existing management standards. Figure 1.2 shows
examples of components found in a JMX environment, and illustrates the relationship between them as well as how
they relate to the three levels of the JMX model. The three levels are:

• Instrumentation, which are the resources to manage

• Agents, which are the controllers of the instrumentation level objects

• Distributed services, the mechanism by which administration applications interact with agents and their man-
aged objects

The JBoss JMX Microkernel

JBoss Release 2 2

http://jcp.org/en/jsr/detail?id=3

Figure 1.2. The Relationship between the components of the JMX architecture

1.1.1. Instrumentation Level

The instrumentation level defines the requirements for implementing JMX manageable resources. A JMX manage-
able resource can be virtually anything, including applications, service components, devices, and so on. The man-
ageable resource exposes a Java object or wrapper that describes its manageable features, which makes the resource
instrumented so that it can be managed by JMX-compliant applications.

The user provides the instrumentation of a given resource using one or more managed beans, or MBeans. There are
four varieties of MBean implementations: standard, dynamic, model, and open. The differences between the vari-
ous MBean types is discussed in Managed Beans or MBeans.

The instrumentation level also specifies a notification mechanism. The purpose of the notification mechanism is to
allow MBeans to communicate changes with their environment. This is similar to the JavaBean property change
notification mechanism, and can be used for attribute change notifications, state change notifications, and so on.

1.1.2. Agent Level

The agent level defines the requirements for implementing agents. Agents are responsible for controlling and ex-

The JBoss JMX Microkernel

JBoss Release 2 3

posing the managed resources that are registered with the agent. By default, management agents are located on the
same hosts as their resources. This collocation is not a requirement.

The agent requirements make use of the instrumentation level to define a standard MBeanServer management
agent, supporting services, and a communications connector. JBoss provides both an html adaptor as well as an
RMI adaptor.

The JMX agent can be located in the hardware that hosts the JMX manageable resources when a Java Virtual Ma-
chine (JVM) is available. This is how the JBoss server uses the MBeanServer. A JMX agent does not need to know
which resources it will serve. JMX manageable resources may use any JMX agent that offers the services it re-
quires.

Managers interact with an agent's MBeans through a protocol adaptor or connector, as described in the Sec-
tion 1.1.3 in the next section. The agent does not need to know anything about the connectors or management ap-
plications that interact with the agent and its MBeans.

1.1.3. Distributed Services Level

The JMX specification notes that a complete definition of the distributed services level is beyond the scope of the
initial version of the JMX specification. This was indicated by the component boxes with the horizontal lines in
Figure 1.2. The general purpose of this level is to define the interfaces required for implementing JMX manage-
ment applications or managers. The following points highlight the intended functionality of the distributed services
level as discussed in the current JMX specification.

• Provide an interface for management applications to interact transparently with an agent and its JMX manage-
able resources through a connector

• Exposes a management view of a JMX agent and its MBeans by mapping their semantic meaning into the con-
structs of a data-rich protocol (for example HTML or SNMP)

• Distributes management information from high-level management platforms to numerous JMX agents

• Consolidates management information coming from numerous JMX agents into logical views that are relevant
to the end user's business operations

• Provides security

It is intended that the distributed services level components will allow for cooperative management of networks of
agents and their resources. These components can be expanded to provide a complete management application.

1.1.4. JMX Component Overview

This section offers an overview of the instrumentation and agent level components. The instrumentation level com-
ponents include the following:

• MBeans (standard, dynamic, open, and model MBeans)
• Notification model elements
• MBean metadata classes

The JBoss JMX Microkernel

JBoss Release 2 4

The agent level components include:

• MBean server
• Agent services

1.1.4.1. Managed Beans or MBeans

An MBean is a Java object that implements one of the standard MBean interfaces and follows the associated design
patterns. The MBean for a resource exposes all necessary information and operations that a management applica-
tion needs to control the resource.

The scope of the management interface of an MBean includes the following:

• Attribute values that may be accessed by name
• Operations or functions that may be invoked
• Notifications or events that may be emitted
• The constructors for the MBean's Java class

JMX defines four types of MBeans to support different instrumentation needs:

• Standard MBeans: These use a simple JavaBean style naming convention and a statically defined manage-
ment interface. This is the most common type of MBean used by JBoss.

• Dynamic MBeans: These must implement the javax.management.DynamicMBean interface, and they expose
their management interface at runtime when the component is instantiated for the greatest flexibility. JBoss
makes use of Dynamic MBeans in circumstances where the components to be managed are not known until
runtime.

• Open MBeans: These are an extension of dynamic MBeans. Open MBeans rely on basic, self-describing, user-
friendly data types for universal manageability.

• Model MBeans: These are also an extension of dynamic MBeans. Model MBeans must implement the
javax.management.modelmbean.ModelMBean interface. Model MBeans simplify the instrumentation of re-
sources by providing default behavior. JBoss XMBeans are an implementation of Model MBeans.

We will present an example of a Standard and a Model MBean in the section that discusses extending JBoss with
your own custom services.

1.1.4.2. Notification Model

JMX Notifications are an extension of the Java event model. Both the MBean server and MBeans can send notific-
ations to provide information. The JMX specification defines the javax.management package Notification event
object, NotificationBroadcaster event sender, and NotificationListener event receiver interfaces. The spe-
cification also defines the operations on the MBean server that allow for the registration of notification listeners.

1.1.4.3. MBean Metadata Classes

There is a collection of metadata classes that describe the management interface of an MBean. Users can obtain a
common metadata view of any of the four MBean types by querying the MBean server with which the MBeans are
registered. The metadata classes cover an MBean's attributes, operations, notifications, and constructors. For each

The JBoss JMX Microkernel

JBoss Release 2 5

of these, the metadata includes a name, a description, and its particular characteristics. For example, one character-
istic of an attribute is whether it is readable, writable, or both. The metadata for an operation contains the signature
of its parameter and return types.

The different types of MBeans extend the metadata classes to be able to provide additional information as required.
This common inheritance makes the standard information available regardless of the type of MBean. A manage-
ment application that knows how to access the extended information of a particular type of MBean is able to do so.

1.1.4.4. MBean Server

A key component of the agent level is the managed bean server. Its functionality is exposed through an instance of
the javax.management.MBeanServer. An MBean server is a registry for MBeans that makes the MBean manage-
ment interface available for use by management applications. The MBean never directly exposes the MBean object
itself; rather, its management interface is exposed through metadata and operations available in the MBean server
interface. This provides a loose coupling between management applications and the MBeans they manage.

MBeans can be instantiated and registered with the MBeanServer by the following:

• Another MBean
• The agent itself
• A remote management application (through the distributed services)

When you register an MBean, you must assign it a unique object name. The object name then becomes the unique
handle by which management applications identify the object on which to perform management operations. The
operations available on MBeans through the MBean server include the following:

• Discovering the management interface of MBeans
• Reading and writing attribute values
• Invoking operations defined by MBeans
• Registering for notifications events
• Querying MBeans based on their object name or their attribute values

Protocol adaptors and connectors are required to access the MBeanServer from outside the agent's JVM. Each ad-
aptor provides a view via its protocol of all MBeans registered in the MBean server the adaptor connects to. An ex-
ample adaptor is an HTML adaptor that allows for the inspection and editing of MBeans using a Web browser. As
was indicated in Figure 1.2, there are no protocol adaptors defined by the current JMX specification. Later versions
of the specification will address the need for remote access protocols in standard ways.

A connector is an interface used by management applications to provide a common API for accessing the MBean
server in a manner that is independent of the underlying communication protocol. Each connector type provides the
same remote interface over a different protocol. This allows a remote management application to connect to an
agent transparently through the network, regardless of the protocol. The specification of the remote management
interface will be addressed in a future version of the JMX specification.

Adaptors and connectors make all MBean server operations available to a remote management application. For an
agent to be manageable from outside of its JVM, it must include at least one protocol adaptor or connector. JBoss
currently includes a custom HTML adaptor implementation and a custom JBoss RMI adaptor.

1.1.4.5. Agent Services

The JBoss JMX Microkernel

JBoss Release 2 6

The JMX agent services are objects that support standard operations on the MBeans registered in the MBean serv-
er. The inclusion of supporting management services helps you build more powerful management solutions. Agent
services are often themselves MBeans, which allow the agent and their functionality to be controlled through the
MBean server. The JMX specification defines the following agent services:

• A dynamic class loading MLet (management applet) service: This allows for the retrieval and instantiation
of new classes and native libraries from an arbitrary network location.

• Monitor services: These observe an MBean attribute's numerical or string value, and can notify other objects
of several types of changes in the target.

• Timer services: These provide a scheduling mechanism based on a one-time alarm-clock notification or on a
repeated, periodic notification.

• The relation service: This service defines associations between MBeans and enforces consistency on the rela-
tionships.

Any JMX-compliant implementation will provide all of these agent services. However, JBoss does not rely on any
of these standard agent services.

1.2. JBoss JMX Implementation Architecture

1.2.1. The JBoss ClassLoader Architecture

JBoss employs a class loading architecture that facilitates sharing of classes across deployment units and hot de-
ployment of services and applications. Before discussing the JBoss specific class loading model, we need to under-
stand the nature of Java's type system and how class loaders fit in.

1.2.2. Class Loading and Types in Java

Class loading is a fundamental part of all server architectures. Arbitrary services and their supporting classes must
be loaded into the server framework. This can be problematic due to the strongly typed nature of Java. Most de-
velopers know that the type of a class in Java is a function of the fully qualified name of the class. However the
type is also a function of the java.lang.ClassLoader that is used to define that class. This additional qualification
of type is necessary to ensure that environments in which classes may be loaded from arbitrary locations would be
type-safe.

However, in a dynamic environment like an application server, and especially JBoss with its support for hot de-
ployment are that class cast exceptions, linkage errors and illegal access errors can show up in ways not seen in
more static class loading contexts. Let's take a look at the meaning of each of these exceptions and how they can
happen.

1.2.2.1. ClassCastExceptions - I'm Not Your Type

A java.lang.ClassCastException results whenever an attempt is made to cast an instance to an incompatible
type. A simple example is trying to obtain a String from a List into which a URL was placed:

The JBoss JMX Microkernel

JBoss Release 2 7

ArrayList array = new ArrayList();
array.add(new URL("file:/tmp"));
String url = (String) array.get(0);

java.lang.ClassCastException: java.net.URL
at org.jboss.book.jmx.ex0.ExCCEa.main(Ex1CCE.java:16)

The ClassCastException tells you that the attempt to cast the array element to a String failed because the actual
type was URL. This trivial case is not what we are interested in however. Consider the case of a JAR being loaded
by different class loaders. Although the classes loaded through each class loader are identical in terms of the byte-
code, they are completely different types as viewed by the Java type system. An example of this is illustrated by the
code shown in Example 1.1.

Example 1.1. The ExCCEc class used to demonstrate ClassCastException due to duplicate class loaders

package org.jboss.book.jmx.ex0;

import java.io.File;
import java.net.URL;
import java.net.URLClassLoader;
import java.lang.reflect.Method;

import org.apache.log4j.Logger;

import org.jboss.util.ChapterExRepository;
import org.jboss.util.Debug;

/**
* An example of a ClassCastException that
* results from classes loaded through
* different class loaders.
* @author Scott.Stark@jboss.org
* @version $Revision: 1.2 $
*/

public class ExCCEc
{

public static void main(String[] args) throws Exception
{

ChapterExRepository.init(ExCCEc.class);

String chapDir = System.getProperty("chapter.dir");
Logger ucl0Log = Logger.getLogger("UCL0");
File jar0 = new File(chapDir+"/j0.jar");
ucl0Log.info("jar0 path: "+jar0.toString());
URL[] cp0 = {jar0.toURL()};
URLClassLoader ucl0 = new URLClassLoader(cp0);
Thread.currentThread().setContextClassLoader(ucl0);
Class objClass = ucl0.loadClass("org.jboss.book.jmx.ex0.ExObj");
StringBuffer buffer = new

StringBuffer("ExObj Info");
Debug.displayClassInfo(objClass, buffer, false);
ucl0Log.info(buffer.toString());
Object value = objClass.newInstance();

File jar1 = new File(chapDir+"/j0.jar");
Logger ucl1Log = Logger.getLogger("UCL1");
ucl1Log.info("jar1 path: "+jar1.toString());
URL[] cp1 = {jar1.toURL()};
URLClassLoader ucl1 = new URLClassLoader(cp1);
Thread.currentThread().setContextClassLoader(ucl1);
Class ctxClass2 = ucl1.loadClass("org.jboss.book.jmx.ex0.ExCtx");

The JBoss JMX Microkernel

JBoss Release 2 8

buffer.setLength(0);
buffer.append("ExCtx Info");
Debug.displayClassInfo(ctxClass2, buffer, false);
ucl1Log.info(buffer.toString());
Object ctx2 = ctxClass2.newInstance();

try {
Class[] types = {Object.class};
Method useValue =

ctxClass2.getMethod("useValue", types);
Object[] margs = {value};
useValue.invoke(ctx2, margs);

} catch(Exception e) {
ucl1Log.error("Failed to invoke ExCtx.useValue", e);
throw e;

}
}

}

Example 1.2. The ExCtx, ExObj, and ExObj2 classes used by the examples

package org.jboss.book.jmx.ex0;

import java.io.IOException;
import org.apache.log4j.Logger;
import org.jboss.util.Debug;

/**
* A classes used to demonstrate various class
* loading issues
* @author Scott.Stark@jboss.org
* @version $Revision: 1.2 $
*/

public class ExCtx
{

ExObj value;

public ExCtx()
throws IOException

{
value = new ExObj();
Logger log = Logger.getLogger(ExCtx.class);
StringBuffer buffer = new StringBuffer("ctor.ExObj");
Debug.displayClassInfo(value.getClass(), buffer, false);
log.info(buffer.toString());
ExObj2 obj2 = value.ivar;
buffer.setLength(0);
buffer = new StringBuffer("ctor.ExObj.ivar");
Debug.displayClassInfo(obj2.getClass(), buffer, false);
log.info(buffer.toString());

}

public Object getValue()
{

return value;
}

public void useValue(Object obj)
throws Exception

{
Logger log = Logger.getLogger(ExCtx.class);
StringBuffer buffer = new

The JBoss JMX Microkernel

JBoss Release 2 9

StringBuffer("useValue2.arg class");
Debug.displayClassInfo(obj.getClass(), buffer, false);
log.info(buffer.toString());
buffer.setLength(0);
buffer.append("useValue2.ExObj class");
Debug.displayClassInfo(ExObj.class, buffer, false);
log.info(buffer.toString());
ExObj ex = (ExObj) obj;

}

void pkgUseValue(Object obj)
throws Exception

{
Logger log = Logger.getLogger(ExCtx.class);
log.info("In pkgUseValue");

}
}

package org.jboss.book.jmx.ex0;

import java.io.Serializable;

/**
* @author Scott.Stark@jboss.org
* @version $Revision: 1.2 $
*/

public class ExObj
implements Serializable

{
public ExObj2 ivar = new ExObj2();

}

package org.jboss.book.jmx.ex0;

import java.io.Serializable;

/**
* @author Scott.Stark@jboss.org
* @version $Revision: 1.2 $
*/

public class ExObj2
implements Serializable

{
}

The ExCCEc.main method uses reflection to isolate the classes that are being loaded by the class loaders ucl0 and
ucl1 from the application class loader. Both are setup to load classes from the output/jmx/j0.jar, the contents of
which are:

[examples]$ jar -tf output/jmx/j0.jar
...
org/jboss/book/jmx/ex0/ExCtx.class
org/jboss/book/jmx/ex0/ExObj.class
org/jboss/book/jmx/ex0/ExObj2.class

We will run an example that demonstrates how a class cast exception can occur and then look at the specific issue
with the example. See Appendix A for instructions on installing the examples accompanying the book, and then run
the example from within the examples directory using the following command:

[examples]$ ant -Dchap=jmx -Dex=0c run-example

The JBoss JMX Microkernel

JBoss Release 2 10

...
[java] java.lang.reflect.InvocationTargetException
[java] at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
[java] at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39)
[java] at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl

.java:25)
[java] at java.lang.reflect.Method.invoke(Method.java:585)
[java] at org.jboss.book.jmx.ex0.ExCCEc.main(ExCCEc.java:58)
[java] Caused by: java.lang.ClassCastException: org.jboss.book.jmx.ex0.ExObj
[java] at org.jboss.book.jmx.ex0.ExCtx.useValue(ExCtx.java:44)
[java] ... 5 more

Only the exception is shown here. The full output can be found in the logs/jmx-ex0c.log file. At line 55 of Ex-
CCEc.java we are invoking ExcCCECtx.useValue(Object) on the instance loaded and created in lines 37-48 using
ucl1. The ExObj passed in is the one loaded and created in lines 25-35 via ucl0. The exception results when the
ExCtx.useValue code attempts to cast the argument passed in to a ExObj. To understand why this fails consider the
debugging output from the jmx-ex0c.log file shown in Example 1.3.

Example 1.3. The jmx-ex0c.log debugging output for the ExObj classes seen

[INFO,UCL0] ExObj Info
org.jboss.book.jmx.ex0.ExObj(f8968f).ClassLoader=java.net.URLClassLoader@2611a7
..java.net.URLClassLoader@2611a7
....file:/Users/orb/proj/jboss/jboss-docs/jbossas/j2ee/examples/output/jmx/j0.jar
++++CodeSource: (file:/Users/orb/proj/jboss/jboss-docs/jbossas/j2ee/examples/output/

jmx/j0.jar <no signer certificates>)
Implemented Interfaces:
++interface java.io.Serializable(41b571)
++++ClassLoader: null
++++Null CodeSource
[INFO,ExCtx] useValue2.ExObj class
org.jboss.book.jmx.ex0.ExObj(bc8e1e).ClassLoader=java.net.URLClassLoader@6bd8ea
..java.net.URLClassLoader@6bd8ea
....file:/Users/orb/proj/jboss/jboss-docs/jbossas/j2ee/examples/output/jmx/j0.jar
++++CodeSource: (file:/Users/orb/proj/jboss/jboss-docs/jbossas/j2ee/examples/output/

jmx/j0.jar <no signer certificates>)
Implemented Interfaces:
++interface java.io.Serializable(41b571)
++++ClassLoader: null
++++Null CodeSource

The first output prefixed with [INFO,UCL0] shows that the ExObj class loaded at line ExCCEc.java:31 has a hash
code of f8968f and an associated URLClassLoader instance with a hash code of 2611a7, which corresponds to ucl0.
This is the class used to create the instance passed to the ExCtx.useValue method. The second output prefixed with
[INFO,ExCtx] shows that the ExObj class as seen in the context of the ExCtx.useValue method has a hash code of
bc8e1e and a URLClassLoader instance with an associated hash code of 6bd8ea, which corresponds to ucl1. So
even though the ExObj classes are the same in terms of actual bytecode since it comes from the same j0.jar, the
classes are different as seen by both the ExObj class hash codes, and the associated URLClassLoader instances.
Hence, attempting to cast an instance of ExObj from one scope to the other results in the ClassCastException.

This type of error is common when redeploying an application to which other applications are holding references to
classes from the redeployed application. For example, a standalone WAR accessing an EJB. If you are redeploying
an application, all dependent applications must flush their class references. Typically this requires that the depend-
ent applications themselves be redeployed.

The JBoss JMX Microkernel

JBoss Release 2 11

An alternate means of allowing independent deployments to interact in the presence of redeployment would be to
isolate the deployments by configuring the EJB layer to use the standard call-by-value semantics rather than the
call-by-reference JBoss will default to for components collocated in the same VM. An example of how to enable
call-by-value semantics is presented in Chapter 4

1.2.2.2. IllegalAccessException - Doing what you should not

A java.lang.IllegalAccessException is thrown when one attempts to access a method or member that visibility
qualifiers do not allow. Typical examples are attempting to access private or protected methods or instance vari-
ables. Another common example is accessing package protected methods or members from a class that appears to
be in the correct package, but is really not due to caller and callee classes being loaded by different class loaders.
An example of this is illustrated by the code shown in Example 1.5.

Example 1.4. The ExIAEd class used to demonstrate IllegalAccessException due to duplicate class loaders

package org.jboss.book.jmx.ex0;

import java.io.File;
import java.net.URL;
import java.net.URLClassLoader;
import java.lang.reflect.Method;

import org.apache.log4j.Logger;

import org.jboss.util.ChapterExRepository;
import org.jboss.util.Debug;

/**
* An example of IllegalAccessExceptions due to
* classes loaded by two class loaders.
* @author Scott.Stark@jboss.org
* @version $Revision: 1.2 $
*/

public class ExIAEd
{

public static void main(String[] args) throws Exception
{

ChapterExRepository.init(ExIAEd.class);

String chapDir = System.getProperty("chapter.dir");
Logger ucl0Log = Logger.getLogger("UCL0");
File jar0 = new File(chapDir+"/j0.jar");
ucl0Log.info("jar0 path: "+jar0.toString());
URL[] cp0 = {jar0.toURL()};
URLClassLoader ucl0 = new URLClassLoader(cp0);
Thread.currentThread().setContextClassLoader(ucl0);

StringBuffer buffer = new
StringBuffer("ExIAEd Info");

Debug.displayClassInfo(ExIAEd.class, buffer, false);
ucl0Log.info(buffer.toString());

Class ctxClass1 = ucl0.loadClass("org.jboss.book.jmx.ex0.ExCtx");
buffer.setLength(0);
buffer.append("ExCtx Info");
Debug.displayClassInfo(ctxClass1, buffer, false);
ucl0Log.info(buffer.toString());
Object ctx0 = ctxClass1.newInstance();

try {

The JBoss JMX Microkernel

JBoss Release 2 12

Class[] types = {Object.class};
Method useValue =

ctxClass1.getDeclaredMethod("pkgUseValue", types);
Object[] margs = {null};
useValue.invoke(ctx0, margs);

} catch(Exception e) {
ucl0Log.error("Failed to invoke ExCtx.pkgUseValue", e);

}
}

}

The ExIAEd.main method uses reflection to load the ExCtx class via the ucl0 class loader while the ExIEAd class
was loaded by the application class loader. We will run this example to demonstrate how the IllegalAccessEx-

ception can occur and then look at the specific issue with the example. Run the example using the following com-
mand:

[examples]$ ant -Dchap=jmx -Dex=0d run-example
Buildfile: build.xml
...
[java] java.lang.IllegalAccessException: Class org.jboss.book.jmx.ex0.ExIAEd

can not access a member of class org.jboss.book.jmx.ex0.ExCtx with modifiers ""
[java] at sun.reflect.Reflection.ensureMemberAccess(Reflection.java:65)
[java] at java.lang.reflect.Method.invoke(Method.java:578)
[java] at org.jboss.book.jmx.ex0.ExIAEd.main(ExIAEd.java:48)

The truncated output shown here illustrates the IllegalAccessException. The full output can be found in the
logs/jmx-ex0d.log file. At line 48 of ExIAEd.java the ExCtx.pkgUseValue(Object) method is invoked via re-
flection. The pkgUseValue method has package protected access and even though both the invoking class ExIAEd

and the ExCtx class whose method is being invoked reside in the org.jboss.book.jmx.ex0 package, the invocation
is seen to be invalid due to the fact that the two classes are loaded by different class loaders. This can be seen by
looking at the debugging output from the jmx-ex0d.log file.

[INFO,UCL0] ExIAEd Info
org.jboss.book.jmx.ex0.ExIAEd(7808b9).ClassLoader=sun.misc.Launcher$AppClassLoader@a9c85c
..sun.misc.Launcher$AppClassLoader@a9c85c
...
[INFO,UCL0] ExCtx Info
org.jboss.book.jmx.ex0.ExCtx(64c34e).ClassLoader=java.net.URLClassLoader@a9c85c
..java.net.URLClassLoader@5d88a
...

The ExIAEd class is seen to have been loaded via the default application class loader instance
sun.misc.Launcher$AppClassLoader@a9c85c, while the ExCtx class was loaded by the
java.net.URLClassLoader@a9c85c instance. Because the classes are loaded by different class loaders, access to
the package protected method is seen to be a security violation. So, not only is type a function of both the fully
qualified class name and class loader, the package scope is as well.

An example of how this can happen in practice is to include the same classes in two different SAR deployments. If
classes in the deployment have a package protected relationship, users of the SAR service may end up loading one
class from SAR class loading at one point, and then load another class from the second SAR at a later time. If the
two classes in question have a protected access relationship an IllegalAccessError will result. The solution is to
either include the classes in a separate jar that is referenced by the SARs, or to combine the SARs into a single de-
ployment. This can either be a single SAR, or an EAR that includes both SARs.

The JBoss JMX Microkernel

JBoss Release 2 13

1.2.2.3. LinkageErrors - Making Sure You Are Who You Say You Are

Loading constraints validate type expectations in the context of class loader scopes to ensure that a class X is con-
sistently the same class when multiple class loaders are involved. This is important because Java allows for user
defined class loaders. Linkage errors are essentially an extension of the class cast exception that is enforced by the
VM when classes are loaded and used.

To understand what loading constraints are and how they ensure type-safety we will first introduce the nomen-
clature of the Liang and Bracha paper along with an example from this paper. There are two type of class loaders,
initiating and defining. An initiating class loader is one that a ClassLoader.loadClass method has been invoked
on to initiate the loading of the named class. A defining class loader is the loader that calls one of the ClassLoad-

er.defineClass methods to convert the class byte code into a Class instance. The most complete expression of a
class is given by <C,Ld>

Li , where C is the fully qualified class name, Ld is the defining class loader, and Li is the
initiating class loader. In a context where the initiating class loader is not important the type may be represented by
<C,Ld>, while when the defining class loader is not important, the type may be represented by C

Li . In the latter
case, there is still a defining class loader, it's just not important what the identity of the defining class loader is.
Also, a type is completely defined by <C,Ld>. The only time the initiating loader is relevant is when a loading con-
straint is being validated. Now consider the classes shown in Example 1.5.

Example 1.5. Classes demonstrating the need for loading constraints

class <C,L1> {
void f() {

<Spoofed, L1>L1x = <Delegated, L2>L2

x.secret_value = 1; // Should not be allowed
}

}

class <Delegated,L2> {
static <Spoofed, L2>L3 g() {...}
}

}

class <Spoofed, L1> {
public int secret_value;

}

class <Spoofed, L2> {
private int secret_value;

}

The class C is defined by L1 and so L1 is used to initiate loading of the classes Spoofed and Delegated referenced
in the C.f() method. The Spoofed class is defined by L1, but Delegated is defined by L2 because L1 delegates to
L2. Since Delegated is defined by L2, L2 will be used to initiate loading of Spoofed in the context of the Deleg-

ated.g() method. In this example both L1 and L2 define different versions of Spoofed as indicated by the two ver-
sions shown at the end of Example 1.5. Since C.f() believes x is an instance of <Spoofed,L1> it is able to access
the private field secret_value of <Spoofed,L2> returned by Delegated.g() due to the 1.1 and earlier Java VM's
failure to take into account that a class type is determined by both the fully qualified name of the class and the de-
fining class loader.

The JBoss JMX Microkernel

JBoss Release 2 14

Java addresses this problem by generating loader constraints to validate type consistency when the types being used
are coming from different defining class loaders. For the Example 1.5 example, the VM generates a constraint
Spoofed

L1
=Spoofed

L2 when the first line of method C.f() is verified to indicate that the type Spoofed must be the
same regardless of whether the load of Spoofed is initiated by L1 or L2. It does not matter if L1 or L2, or even some
other class loader defines Spoofed. All that matters is that there is only one Spoofed class defined regardless of
whether L1 or L2 was used to initiate the loading. If L1 or L2 have already defined separate versions of Spoofed

when this check is made a LinkageError will be generated immediately. Otherwise, the constraint will be recorded
and when Delegated.g() is executed, any attempt to load a duplicate version of Spoofed will result in a Link-

ageError.

Now let's take a look at how a LinkageError can occur with a concrete example. Example 1.6 gives the example
main class along with the custom class loader used.

Example 1.6. A concrete example of a LinkageError

package org.jboss.book.jmx.ex0;
import java.io.File;
import java.net.URL;

import org.apache.log4j.Logger;
import org.jboss.util.ChapterExRepository;
import org.jboss.util.Debug;

/**
* An example of a LinkageError due to classes being defined by more
* than one class loader in a non-standard class loading environment.
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.2 $
*/

public class ExLE
{

public static void main(String[] args)
throws Exception

{
ChapterExRepository.init(ExLE.class);

String chapDir = System.getProperty("chapter.dir");
Logger ucl0Log = Logger.getLogger("UCL0");
File jar0 = new File(chapDir+"/j0.jar");
ucl0Log.info("jar0 path: "+jar0.toString());
URL[] cp0 = {jar0.toURL()};
Ex0URLClassLoader ucl0 = new Ex0URLClassLoader(cp0);
Thread.currentThread().setContextClassLoader(ucl0);
Class ctxClass1 = ucl0.loadClass("org.jboss.book.jmx.ex0.ExCtx");
Class obj2Class1 = ucl0.loadClass("org.jboss.book.jmx.ex0.ExObj2");
StringBuffer buffer = new StringBuffer("ExCtx Info");
Debug.displayClassInfo(ctxClass1, buffer, false);
ucl0Log.info(buffer.toString());
buffer.setLength(0);
buffer.append("ExObj2 Info, UCL0");
Debug.displayClassInfo(obj2Class1, buffer, false);
ucl0Log.info(buffer.toString());

File jar1 = new File(chapDir+"/j1.jar");
Logger ucl1Log = Logger.getLogger("UCL1");
ucl1Log.info("jar1 path: "+jar1.toString());
URL[] cp1 = {jar1.toURL()};
Ex0URLClassLoader ucl1 = new Ex0URLClassLoader(cp1);
Class obj2Class2 = ucl1.loadClass("org.jboss.book.jmx.ex0.ExObj2");

The JBoss JMX Microkernel

JBoss Release 2 15

buffer.setLength(0);
buffer.append("ExObj2 Info, UCL1");
Debug.displayClassInfo(obj2Class2, buffer, false);
ucl1Log.info(buffer.toString());

ucl0.setDelegate(ucl1);
try {

ucl0Log.info("Try ExCtx.newInstance()");
Object ctx0 = ctxClass1.newInstance();
ucl0Log.info("ExCtx.ctor succeeded, ctx0: "+ctx0);

} catch(Throwable e) {
ucl0Log.error("ExCtx.ctor failed", e);

}
}

}

package org.jboss.book.jmx.ex0;

import java.net.URLClassLoader;
import java.net.URL;

import org.apache.log4j.Logger;

/**
* A custom class loader that overrides the standard parent delegation
* model
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.2 $
*/

public class Ex0URLClassLoader extends URLClassLoader
{

private static Logger log = Logger.getLogger(Ex0URLClassLoader.class);
private Ex0URLClassLoader delegate;

public Ex0URLClassLoader(URL[] urls)
{

super(urls);
}

void setDelegate(Ex0URLClassLoader delegate)
{

this.delegate = delegate;
}

protected synchronized Class loadClass(String name, boolean resolve)
throws ClassNotFoundException

{
Class clazz = null;
if (delegate != null) {

log.debug(Integer.toHexString(hashCode()) +
"; Asking delegate to loadClass: " + name);

clazz = delegate.loadClass(name, resolve);
log.debug(Integer.toHexString(hashCode()) +

"; Delegate returned: "+clazz);
} else {

log.debug(Integer.toHexString(hashCode()) +
"; Asking super to loadClass: "+name);

clazz = super.loadClass(name, resolve);
log.debug(Integer.toHexString(hashCode()) +

"; Super returned: "+clazz);
}
return clazz;

}

protected Class findClass(String name)

The JBoss JMX Microkernel

JBoss Release 2 16

throws ClassNotFoundException
{

Class clazz = null;
log.debug(Integer.toHexString(hashCode()) +

"; Asking super to findClass: "+name);
clazz = super.findClass(name);
log.debug(Integer.toHexString(hashCode()) +

"; Super returned: "+clazz);
return clazz;

}
}

The key component in this example is the URLClassLoader subclass Ex0URLClassLoader. This class loader imple-
mentation overrides the default parent delegation model to allow the ucl0 and ucl1 instances to both load the Ex-

Obj2 class and then setup a delegation relationship from ucl0 to ucl1. At lines 30 and 31. the ucl0

Ex0URLClassLoader is used to load the ExCtx and ExObj2 classes. At line 45 of ExLE.main the ucl1

Ex0URLClassLoader is used to load the ExObj2 class again. At this point both the ucl0 and ucl1 class loaders have
defined the ExObj2 class. A delegation relationship from ucl0 to ucl1 is then setup at line 51 via the
ucl0.setDelegate(ucl1) method call. Finally, at line 54 of ExLE.main an instance of ExCtx is created using the
class loaded via ucl0. The ExCtx class is the same as presented in Example 1.2, and the constructor was:

public ExCtx()
throws IOException

{
value = new ExObj();
Logger log = Logger.getLogger(ExCtx.class);
StringBuffer buffer = new StringBuffer("ctor.ExObj");
Debug.displayClassInfo(value.getClass(), buffer, false);
log.info(buffer.toString());
ExObj2 obj2 = value.ivar;
buffer.setLength(0);
buffer = new StringBuffer("ctor.ExObj.ivar");
Debug.displayClassInfo(obj2.getClass(), buffer, false);
log.info(buffer.toString());

}

Now, since the ExCtx class was defined by the ucl0 class loader, and at the time the ExCtx constructor is executed,
ucl0 delegates to ucl1, line 24 of the ExCtx constructor involves the following expression which has been rewritten
in terms of the complete type expressions:

<ExObj2,ucl0>ucl0 obj2 = <ExObj,ucl1>ucl0 value * ivar

This generates a loading constraint of ExObj2ucl0 = ExObj2
ucl1 since the ExObj2 type must be consistent across the

ucl0 and ucl1 class loader instances. Because we have loaded ExObj2 using both ucl0 and ucl1 prior to setting up
the delegation relationship, the constraint will be violated and should generate a LinkageError when run. Run the
example using the following command:

[examples]$ ant -Dchap=jmx -Dex=0e run-example
Buildfile: build.xml
...
[java] java.lang.LinkageError: loader constraints violated when linking

org/jboss/book/jmx/ex0/ExObj2 class
[java] at org.jboss.book.jmx.ex0.ExCtx.<init>(ExCtx.java:24)
[java] at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
[java] at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessor

Impl.java:39)
[java] at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructor

The JBoss JMX Microkernel

JBoss Release 2 17

AccessorImpl.java:27)
[java] at java.lang.reflect.Constructor.newInstance(Constructor.java:494)
[java] at java.lang.Class.newInstance0(Class.java:350)
[java] at java.lang.Class.newInstance(Class.java:303)
[java] at org.jboss.book.jmx.ex0.ExLE.main(ExLE.java:53)

As expected, a LinkageError is thrown while validating the loader constraints required by line 24 of the ExCtx con-
structor.

1.2.2.3.1. Debugging Class Loading Issues

Debugging class loading issues comes down to finding out where a class was loaded from. A useful tool for this is
the code snippet shown in Example 1.7 taken from the org.jboss.util.Debug class of the book examples.

Example 1.7. Obtaining debugging information for a Class

Class clazz =...;
StringBuffer results = new StringBuffer();

ClassLoader cl = clazz.getClassLoader();
results.append("\n" + clazz.getName() + "(" +

Integer.toHexString(clazz.hashCode()) + ").ClassLoader=" + cl);
ClassLoader parent = cl;

while (parent != null) {
results.append("\n.."+parent);
URL[] urls = getClassLoaderURLs(parent);

int length = urls != null ? urls.length : 0;
for(int u = 0; u < length; u ++) {

results.append("\n...."+urls[u]);
}

if (showParentClassLoaders == false) {
break;

}
if (parent != null) {

parent = parent.getParent();
}

}

CodeSource clazzCS = clazz.getProtectionDomain().getCodeSource();
if (clazzCS != null) {

results.append("\n++++CodeSource: "+clazzCS);
} else {

results.append("\n++++Null CodeSource");
}

The key items are shown in bold. The first is that every Class object knows its defining ClassLoader and this is
available via the getClassLoader() method. The defines the scope in which the Class type is known as we have
just seen in the previous sections on class cast exceptions, illegal access exceptions and linkage errors. From the
ClassLoader you can view the hierarchy of class loaders that make up the parent delegation chain. If the class
loader is a URLClassLoader you can also see the URLs used for class and resource loading.

The defining ClassLoader of a Class cannot tell you from what location that Class was loaded. To determine this
you must obtain the java.security.ProtectionDomain and then the java.security.CodeSource. It is the Code-

The JBoss JMX Microkernel

JBoss Release 2 18

Source that has the URL p location from which the class originated. Note that not every Class has a CoPdeSource.
If a class is loaded by the bootstrap class loader then its CodeSource will be null. This will be the case for all
classes in the java.* and javax.* packages, for example.

Beyond that it may be useful to view the details of classes being loaded into the JBoss server. You can enable verb-
ose logging of the JBoss class loading layer using a Log4j configuration fragment like that shown in Example 1.8.

Example 1.8. An example log4j.xml configuration fragment for enabling verbose class loading logging

<appender name="UCL" class="org.apache.log4j.FileAppender">
<param name="File" value="${jboss.server.home.dir}/log/ucl.log"/>
<param name="Append" value="false"/>
<layout class="org.apache.log4j.PatternLayout">

<param name="ConversionPattern" value="[%r,%c{1},%t] %m%n"/>
</layout>

</appender>

<category name="org.jboss.mx.loading" additivity="false">
<priority value="TRACE" class="org.jboss.logging.XLevel"/>
<appender-ref ref="UCL"/>

</category>

This places the output from the classes in the org.jboss.mx.loading package into the ucl.log file of the server
configurations log directory. Although it may not be meaningful if you have not looked at the class loading code, it
is vital information needed for submitting bug reports or questions regarding class loading problems.

1.2.2.4. Inside the JBoss Class Loading Architecture

Now that we have the role of class loaders in the Java type system defined, let's take a look at the JBoss class load-
ing architecture. Figure 1.3.

Figure 1.3. The core JBoss class loading components

The central component is the org.jboss.mx.loading.UnifiedClassLoader3 (UCL) class loader. This is an exten-
sion of the standard java.net.URLClassLoader that overrides the standard parent delegation model to use a shared

The JBoss JMX Microkernel

JBoss Release 2 19

repository of classes and resources. This shared repository is the
org.jboss.mx.loading.UnifiedLoaderRepository3. Every UCL is associated with a single UnifiedLoaderRe-

pository3, and a UnifiedLoaderRepository3 typically has many UCLs. A UCL may have multiple URLs associ-
ated with it for class and resource loading. Deployers use the top-level deployment's UCL as a shared class loader
and all deployment archives are assigned to this class loader. We will talk about the JBoss deployers and their in-
teraction with the class loading system in more detail latter in Section 1.4.2.

When a UCL is asked to load a class, it first looks to the repository cache it is associated with to see if the class has
already been loaded. Only if the class does not exist in the repository will it be loaded into the repository by the
UCL. By default, there is a single UnifiedLoaderRepository3 shared across all UCL instances. This means the
UCLs form a single flat class loader namespace. The complete sequence of steps that occur when a UnfiedClass-

Loader3.loadClass(String, boolean) method is called is:

1. Check the UnifiedLoaderRepository3 classes cache associated with the UnifiedClassLoader3. If the class is
found in the cache it is returned.

2. Else, ask the UnfiedClassLoader3 if it can load the class. This is essentially a call to the superclass URLClass-
Loader.loadClass(String, boolean) method to see if the class is among the URLs associated with the class
loader, or visible to the parent class loader. If the class is found it is placed into the repository classes cache
and returned.

3. Else, the repository is queried for all UCLs that are capable of providing the class based on the repository
package name to UCL map. When a UCL is added to a repository an association between the package names
available in the URLs associated with the UCL is made, and a mapping from package names to the UCLs with
classes in the package is updated. This allows for a quick determination of which UCLs are capable of loading
the class. The UCLs are then queried for the requested class in the order in which the UCLs were added to the
repository. If a UCL is found that can load the class it is returned, else a java.lang.ClassNotFoundException

is thrown.

1.2.2.4.1. Viewing Classes in the Loader Repository

Another useful source of information on classes is the UnifiedLoaderRepository itself. This is an MBean that con-
tains operations to display class and package information. The default repository is located under a standard JMX
name of JMImplementation:name=Default,service=LoaderRepository, and its MBean can be accessed via the
JMX console by following its link from the front page. The JMX console view of this MBean is shown in Fig-
ure 1.4.

The JBoss JMX Microkernel

JBoss Release 2 20

Figure 1.4. The default class LoaderRepository MBean view in the JMX console

Two useful operations you will find here are getPackageClassLoaders(String) and displayClassInfo(String).
The getPackageClassLoaders operation returns a set of class loaders that have been indexed to contain classes or
resources for the given package name. The package name must have a trailing period. If you type in the package
name org.jboss.ejb., the following information is displayed:

[org.jboss.mx.loading.UnifiedClassLoader3@e26ae7{
url=file:/private/tmp/jboss-4.0.1/server/default/tmp/deploy/tmp11895jboss-service.xml,
addedOrder=2}]

This is the string representation of the set. It shows one UnifiedClassLoader3 instance with a primary URL point-

The JBoss JMX Microkernel

JBoss Release 2 21

ing to the jboss-service.xml descriptor. This is the second class loader added to the repository (shown by adde-

dOrder=2). It is the class loader that owns all of the JARs in the lib directory of the server configuration (e.g.,
server/default/lib).

The view the information for a given class, use the displayClassInfo operation, passing in the fully qualified
name of the class to view. For example, if we use org.jboss.jmx.adaptor.html.HtmlAdaptorServlet which is
from the package we just looked at, the following description is displayed:

The information is a dump of the information for the Class instance in the loader repository if one has been loaded,
followed by the class loaders that are seen to have the class file available. If a class is seen to have more than one
class loader associated with it, then there is the potential for class loading related errors.

1.2.2.4.2. Scoping Classes

If you need to deploy multiple versions of an application you need to use deployment based scoping. With deploy-
ment based scoping, each deployment creates its own class loader repository in the form of a HeirarchicalLoad-

erRepository3 that looks first to the UnifiedClassLoader3 instances of the deployment units included in the EAR

The JBoss JMX Microkernel

JBoss Release 2 22

before delegating to the default UnifiedLoaderRepository3. To enable an EAR specific loader repository, you
need to create a META-INF/jboss-app.xml descriptor as shown in Example 1.9.

Example 1.9. An example jboss-app.xml descriptor for enabled scoped class loading at the EAR level.

<jboss-app>
<loader-repository>some.dot.com:loader=webtest.ear</loader-repository>

</jboss-app>

The value of the loader-repository element is the JMX object name to assign to the repository created for the
EAR. This must be unique and valid JMX ObjectName, but the actual name is not important.

1.2.2.4.3. The Complete Class Loading Model

The previous discussion of the core class loading components introduced the custom UnifiedClassLoader3 and
UnifiedLoaderRepository3 classes that form a shared class loading space. The complete class loading picture
must also include the parent class loader used by UnifiedClassLoader3s as well as class loaders introduced for
scoping and other specialty class loading purposes. Figure 1.5 shows an outline of the class hierarchy that would
exist for an EAR deployment containing EJBs and WARs.

The JBoss JMX Microkernel

JBoss Release 2 23

Figure 1.5. A complete class loader view

The following points apply to this figure:

• System ClassLoaders: The System ClassLoaders node refers to either the thread context class loader (TCL) of
the VM main thread or of the thread of the application that is loading the JBoss server if it is embedded.

• ServerLoader: The ServerLoader node refers to the a URLClassLoader that delegates to the System ClassLoad-
ers and contains the following boot URLs:

• All URLs referenced via the jboss.boot.library.list system property. These are path specifications rel-
ative to the libraryURL defined by the jboss.lib.url property. If there is no jboss.lib.url property spe-

The JBoss JMX Microkernel

JBoss Release 2 24

cified, it defaults to jboss.home.url + /lib/. If there is no jboss.boot.library property specified, it de-
faults to jaxp.jar, log4j-boot.jar, jboss-common.jar, and jboss-system.jar.

• The JAXP JAR which is either crimson.jar or xerces.jar depending on the -j option to the Main entry
point. The default is crimson.jar.

• The JBoss JMX jar and GNU regex jar, jboss-jmx.jar and gnu-regexp.jar.

• Oswego concurrency classes JAR, concurrent.jar

• Any JARs specified as libraries via -L command line options

• Any other JARs or directories specified via -C command line options

• Server: The Server node represent a collection of UCLs created by the org.jboss.system.server.Server in-
terface implementation. The default implementation creates UCLs for the patchDir entries as well as the server
conf directory. The last UCL created is set as the JBoss main thread context class loader. This will be com-
bined into a single UCL now that multiple URLs per UCL are supported.

• All UnifiedClassLoader3s: The All UnifiedClassLoader3 node represents the UCLs created by deployers. This
covers EARs, jars, WARs, SARs and directories seen by the deployment scanner as well as JARs referenced by
their manifests and any nested deployment units they may contain. This is a flat namespace and there should
not be multiple instances of a class in different deployment JARs. If there are, only the first loaded will be used
and the results may not be as expected. There is a mechanism for scoping visibility based on EAR deployment
units that we discussed in Section 1.2.2.4.2. Use this mechanism if you need to deploy multiple versions of a
class in a given JBoss server.

• EJB DynClassLoader: The EJB DynClassLoader node is a subclass of URLClassLoader that is used to provide
RMI dynamic class loading via the simple HTTP WebService. It specifies an empty URL[] and delegates to the
TCL as its parent class loader. If the WebService is configured to allow system level classes to be loaded, all
classes in the UnifiedLoaderRepository3 as well as the system classpath are available via HTTP.

• EJB ENCLoader: The EJB ENCLoader node is a URLClassLoader that exists only to provide a unique context
for an EJB deployment's java:comp JNDI context. It specifies an empty URL[] and delegates to the EJB Dyn-

ClassLoader as its parent class loader.

• Web ENCLoader: The Web ENCLoader node is a URLClassLoader that exists only to provide a unique context
for a web deployment's java:comp JNDI context. It specifies an empty URL[] and delegates to the TCL as its
parent class loader.

• WAR Loader: The WAR Loader is a servlet container specific classloader that delegates to the Web ENC-
Loader as its parent class loader. The default behavior is to load from its parent class loader and then the WAR
WEB-INF classes and lib directories. If the servlet 2.3 class loading model is enabled it will first load from the
its WEB-INF directories and then the parent class loader.

In its current form there are some advantages and disadvantages to the JBoss class loading architecture. Advantages
include:

• Classes do not need to be replicated across deployment units in order to have access to them.

The JBoss JMX Microkernel

JBoss Release 2 25

• Many future possibilities including novel partitioning of the repositories into domains, dependency and conflict
detection, etc.

Disadvantages include:

• Existing deployments may need to be repackaged to avoid duplicate classes. Duplication of classes in a loader
repository can lead to class cast exceptions and linkage errors depending on how the classes are loaded.

• Deployments that depend on different versions of a given class need to be isolated in separate EARs and a
unique HeirarchicalLoaderRepository3 defined using a jboss-app.xml descriptor.

1.2.3. JBoss XMBeans

XMBeans are the JBoss JMX implementation version of the JMX model MBean. XMBeans have the richness of
the dynamic MBean metadata without the tedious programming required by a direct implementation of the Dynam-

icMBean interface. The JBoss model MBean implementation allows one to specify the management interface of a
component through a XML descriptor, hence the X in XMBean. In addition to providing a simple mechanism for
describing the metadata required for a dynamic MBean, XMBeans also allow for the specification of attribute per-
sistence, caching behavior, and even advanced customizations like the MBean implementation interceptors. The
high level elements of the jboss_xmbean_1_2.dtd for the XMBean descriptor is given in Figure 1.6.

Figure 1.6. The JBoss 1.0 XMBean DTD Overview (jboss_xmbean_1_2.dtd)

The mbean element is the root element of the document containing the required elements for describing the man-
agement interface of one MBean (constructors, attributes, operations and notifications). It also includes an optional
description element, which can be used to describe the purpose of the MBean, as well as an optional descriptors
element which allows for persistence policy specification, attribute caching, etc.

The JBoss JMX Microkernel

JBoss Release 2 26

1.2.3.1. Descriptors

The descriptors element contains all the descriptors for a containing element, as subelements. The descriptors sug-
gested in the JMX specification as well as those used by JBoss have predefined elements and attributes, whereas
custom descriptors have a generic descriptor element with name and value attributes as show in Figure 1.7.

Figure 1.7. The descriptors element content model

The key descriptors child elements include:

• interceptors: The interceptors element specifies a customized stack of interceptors that will be used in place
of the default stack. Currently this is only used when specified at the MBean level, but it could define a custom
attribute or operation level interceptor stack in the future. The content of the interceptors element specifies a
custom interceptor stack. If no interceptors element is specified the standard ModelMBean interceptors will be
used. The standard interceptors are:

• org.jboss.mx.interceptor.PersistenceInterceptor
• org.jboss.mx.interceptor.MBeanAttributeInterceptor
• org.jboss.mx.interceptor.ObjectReferenceInterceptor

When specifying a custom interceptor stack you would typically include the standard interceptors along with
your own unless you are replacing the corresponding standard interceptor.

The JBoss JMX Microkernel

JBoss Release 2 27

Each interceptor element content value specifies the fully qualified class name of the interceptor implementa-
tion. The class must implement the org.jboss.mx.interceptor.Interceptor interface. The interceptor class
must also have either a no-arg constructor, or a constructor that accepts a javax.management.MBeanInfo.

The interceptor elements may have any number of attributes that correspond to JavaBean style properties on the
interceptor class implementation. For each interceptor element attribute specified, the interceptor class is
queried for a matching setter method. The attribute value is converted to the true type of the interceptor class
property using the java.beans.PropertyEditor associated with the type. It is an error to specify an attribute
for which there is no setter or PropertyEditor.

• persistence: The persistence element allows the specification of the persistPolicy, persistPeriod, per-
sistLocation, and persistName persistence attributes suggested by the JMX specification. The persistence
element attributes are:

• persistPolicy: The persistPolicy attribute defines when attributes should be persisted and its value must
be one of

• Never: attribute values are transient values that are never persisted

• OnUpdate: attribute values are persisted whenever they are updated

• OnTimer: attribute values are persisted based on the time given by the persistPeriod.

• NoMoreOftenThan: attribute values are persisted when updated but no more often than the persist-

Period.

• persistPeriod: The persistPeriod attribute gives the update frequency in milliseconds if the perisit-

Policy attribute is NoMoreOftenThan or OnTimer.

• persistLocation: The persistLocation attribute specifies the location of the persistence store. Its form de-
pends on the JMX persistence implementation. Currently this should refer to a directory into which the at-
tributes will be serialized if using the default JBoss persistence manager.

• persistName: The persistName attribute can be used in conjunction with the persistLocation attribute to
further qualify the persistent store location. For a directory persistLocation the persistName specifies the
file to which the attributes are stored within the directory.

• currencyTimeLimit: The currencyTimeLimit element specifies the time in seconds that a cached value of an
attribute remains valid. Its value attribute gives the time in seconds. A value of 0 indicates that an attribute
value should always be retrieved from the MBean and never cached. A value of -1 indicates that a cache value
is always valid.

• display-name: The display-name element specifies the human friendly name of an item.

• default: The default element specifies a default value to use when a field has not been set. Note that this value
is not written to the MBean on startup as is the case with the jboss-service.xml attribute element content
value. Rather, the default value is used only if there is no attribute accessor defined, and there is no value ele-
ment defined.

The JBoss JMX Microkernel

JBoss Release 2 28

• value: The value element specifies a management attribute's current value. Unlike the default element, the
value element is written through to the MBean on startup provided there is a setter method available.

• persistence-manager: The persistence-manager element gives the name of a class to use as the persistence
manager. The value attribute specifies the class name that supplies the
org.jboss.mx.persistence.PersistenceManager interface implementation. The only implementation cur-
rently supplied by JBoss is the org.jboss.mx.persistence.ObjectStreamPersistenceManager which serial-
izes the ModelMBeanInfo content to a file using Java serialization.

• descriptor: The descriptor element specifies an arbitrary descriptor not known to JBoss. Its name attribute
specifies the type of the descriptor and its value attribute specifies the descriptor value. The descriptor ele-
ment allows for the attachment of arbitrary management metadata.

• injection: The injection element describes an injection point for receiving information from the microkernel.
Each injection point specifies the type and the set method to use to inject the information into the resource. The
injection element supports type attributes:

• id: The id attribute specifies the injection point type. The current injection point types are:

• MBeanServerType: An MBeanServerType injection point receives a reference to the MBeanServer that
the XMBean is registered with.

• MBeanInfoType: An MBeanInfoType injection point receives a reference to the XMBean ModelM-
BeanInfo metadata.

• ObjectNameType: The ObjectName injection point receives the ObjectName that the XMBean is re-
gistered under.

• setMethod: The setMethod attribute gives the name of the method used to set the injection value on the re-
source. The set method should accept values of the type corresponding to the injection point type.

Note that any of the constructor, attribute, operation or notification elements may have a descriptors element to
specify the specification defined descriptors as well as arbitrary extension descriptor settings.

1.2.3.2. The Management Class

The class element specifies the fully qualified name of the managed object whose management interface is de-
scribed by the XMBean descriptor.

1.2.3.3. The Constructors

The constructor element(s) specifies the constructors available for creating an instance of the managed object.
The constructor element and its content model are shown in Figure 1.8.

The JBoss JMX Microkernel

JBoss Release 2 29

Figure 1.8. The XMBean constructor element and its content model

The key child elements are:

• description: A description of the constructor.

• name: The name of the constructor, which must be the same as the implementation class.

• parameter: The parameter element describes a constructor parameter. The parameter element has the following
attributes:

• description: An optional description of the parameter.

• name: The required variable name of the parameter.

• type: The required fully qualified class name of the parameter type.

• descriptors: Any descriptors to associate with the constructor metadata.

1.2.3.4. The Attributes

The attribute element(s) specifies the management attributes exposed by the MBean. The attribute element and
its content model are shown in Figure 1.9.

The JBoss JMX Microkernel

JBoss Release 2 30

Figure 1.9. The XMBean attribute element and its content model

The attribute element supported attributes include:

• access: The optional access attribute defines the read/write access modes of an attribute. It must be one of:

• read-only: The attribute may only be read.

• write-only: The attribute may only be written.

• read-write: The attribute is both readable and writable. This is the implied default.

• getMethod: The getMethod attribute defines the name of the method which reads the named attribute. This
must be specified if the managed attribute should be obtained from the MBean instance.

• setMethod: The setMethod attribute defines the name of the method which writes the named attribute. This
must be specified if the managed attribute should be obtained from the MBean instance.

The key child elements of the attribute element include:

• description: A description of the attribute.

• name: The name of the attribute as would be used in the MBeanServer.getAttribute() operation.

• type: The fully qualified class name of the attribute type.

• descriptors: Any additional descriptors that affect the attribute persistence, caching, default value, etc.

1.2.3.5. The Operations

The management operations exposed by the XMBean are specified via one or more operation elements. The opera-
tion element and its content model are shown in Figure 1.10.

The JBoss JMX Microkernel

JBoss Release 2 31

Figure 1.10. The XMBean operation element and its content model

The impact attribute defines the impact of executing the operation and must be one of:

• ACTION: The operation changes the state of the MBean component (write operation)

• INFO: The operation should not alter the state of the MBean component (read operation).

• ACTION_INFO: The operation behaves like a read/write operation.

The child elements are:

• description: This element specifies a human readable description of the operation.

• name: This element contains the operation's name

• parameter: This element describes the operation's signature.

• return-type: This element contains a fully qualified class name of the return type from this operation. If not
specified, it defaults to void.

• descriptors: Any descriptors to associate with the operation metadata.

1.2.3.6. Notifications

The notification element(s) describes the management notifications that may be emitted by the XMBean. The
notification element and its content model is shown in Figure 1.11.

The JBoss JMX Microkernel

JBoss Release 2 32

Figure 1.11. The XMBean notification element and content model

The child elements are:

• description: This element gives a human readable description of the notification.

• name: This element contains the fully qualified name of the notification class.

• notification-type: This element contains the dot-separated notification type string.

• descriptors: Any descriptors to associate with the notification metadata.

1.3. Connecting to the JMX Server

JBoss includes adaptors that allow access to the JMX MBeanServer from outside of the JBoss server VM. The cur-
rent adaptors include HTML, an RMI interface, and an EJB.

1.3.1. Inspecting the Server - the JMX Console Web Application

JBoss comes with its own implementation of a JMX HTML adaptor that allows one to view the server's MBeans
using a standard web browser. The default URL for the console web application is ht-
tp://localhost:8080/jmx-console/. If you browse this location you will see something similar to that presented in
Figure 1.12.

The JBoss JMX Microkernel

JBoss Release 2 33

http://localhost:8080/jmx-console/
http://localhost:8080/jmx-console/

Figure 1.12. The JBoss JMX console web application agent view

The top view is called the agent view and it provides a listing of all MBeans registered with the MBeanServer sor-
ted by the domain portion of the MBean's ObjectName. Under each domain are the MBeans under that domain.
When you select one of the MBeans you will be taken to the MBean view. This allows one to view and edit an
MBean's attributes as well as invoke operations. As an example, Figure 1.13 shows the MBean view for the
jboss.system:type=Server MBean.

The JBoss JMX Microkernel

JBoss Release 2 34

Figure 1.13. The MBean view for the "jboss.system:type=Server" MBean

The source code for the JMX console web application is located in the varia module under the src/

main/org/jboss/jmx directory. Its web pages are located under varia/src/resources/jmx. The application is a
simple MVC servlet with JSP views that utilize the MBeanServer.

1.3.1.1. Securing the JMX Console

The JBoss JMX Microkernel

JBoss Release 2 35

Since the JMX console web application is just a standard servlet, it may be secured using standard J2EE role based
security. The jmx-console.war that is deployed as an unpacked WAR that includes template settings for quickly
enabling simple username and password based access restrictions. If you look at the jmx-console.war in the serv-

er/default/deploy directory you will find the web.xml and jboss-web.xml descriptors in the WEB-INF directory.
The jmx-console-roles.properties and jmx-console-users.properties files are located in the server/de-

fault/conf/props directory.

By uncommenting the security sections of the web.xml and jboss-web.xml descriptors as shown in Example 1.10,
you enable HTTP basic authentication that restricts access to the JMX Console application to the user admin with
password admin. The username and password are determined by the admin=admin line in the jmx-con-

sole-users.properties file.

Example 1.10. The jmx-console.war web.xml descriptors with the security elements uncommented.

<?xml version="1.0"?>
<!DOCTYPE web-app PUBLIC

"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
<!-- ... -->

<!-- A security constraint that restricts access to the HTML JMX console
to users with the role JBossAdmin. Edit the roles to what you want and
uncomment the WEB-INF/jboss-web.xml/security-domain element to enable
secured access to the HTML JMX console.

-->
<security-constraint>

<web-resource-collection>
<web-resource-name>HtmlAdaptor</web-resource-name>
<description> An example security config that only allows users with

the role JBossAdmin to access the HTML JMX console web
application </description>

<url-pattern>/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>JBossAdmin</role-name>
</auth-constraint>

</security-constraint>
<login-config>

<auth-method>BASIC</auth-method>
<realm-name>JBoss JMX Console</realm-name>

</login-config>
<security-role>

<role-name>JBossAdmin</role-name>
</security-role>

</web-app>

Example 1.11. The jmx-console.war jboss-web.xml descriptors with the security elements uncommented.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jboss-web

PUBLIC "-//JBoss//DTD Web Application 2.3//EN"
"http://www.jboss.org/j2ee/dtd/jboss-web_3_0.dtd">

<jboss-web>

The JBoss JMX Microkernel

JBoss Release 2 36

<!--
Uncomment the security-domain to enable security. You will
need to edit the htmladaptor login configuration to setup the
login modules used to authentication users.

-->
<security-domain>java:/jaas/jmx-console</security-domain>

</jboss-web>

Make these changes and then when you try to access the JMX Console URL. You will see a dialog similar to that
shown in Figure 1.14.

Figure 1.14. The JMX Console basic HTTP login dialog.

You probably to use the properties files for securing access to the JMX console application. To see how to properly
configure the security settings of web applications see Chapter 7.

1.3.2. Connecting to JMX Using RMI

JBoss supplies an RMI interface for connecting to the JMX MBeanServer. This interface is
org.jboss.jmx.adaptor.rmi.RMIAdaptor. The RMIAdaptor interface is bound into JNDI in the default location of
jmx/invoker/RMIAdaptor as well as jmx/rmi/RMIAdaptor for backwards compatibility with older clients.

Example 1.12 shows a client that makes use of the RMIAdaptor interface to query the MBeanInfo for the JNDIView

MBean. It also invokes the MBean's list(boolean) method and displays the result.

Example 1.12. A JMX client that uses the RMIAdaptor

The JBoss JMX Microkernel

JBoss Release 2 37

public class JMXBrowser
{

/**
* @param args the command line arguments
*/
public static void main(String[] args) throws Exception
{

InitialContext ic = new InitialContext();
RMIAdaptor server = (RMIAdaptor) ic.lookup("jmx/invoker/RMIAdaptor");

// Get the MBeanInfo for the JNDIView MBean
ObjectName name = new ObjectName("jboss:service=JNDIView");
MBeanInfo info = server.getMBeanInfo(name);
System.out.println("JNDIView Class: " + info.getClassName());

MBeanOperationInfo[] opInfo = info.getOperations();
System.out.println("JNDIView Operations: ");
for(int o = 0; o < opInfo.length; o ++) {

MBeanOperationInfo op = opInfo[o];

String returnType = op.getReturnType();
String opName = op.getName();
System.out.print(" + " + returnType + " " + opName + "(");

MBeanParameterInfo[] params = op.getSignature();
for(int p = 0; p < params.length; p++) {

MBeanParameterInfo paramInfo = params[p];

String pname = paramInfo.getName();
String type = paramInfo.getType();

if (pname.equals(type)) {
System.out.print(type);

} else {
System.out.print(type + " " + name);

}

if (p < params.length-1) {
System.out.print(',');

}
}
System.out.println(")");

}

// Invoke the list(boolean) op
String[] sig = {"boolean"};
Object[] opArgs = {Boolean.TRUE};
Object result = server.invoke(name, "list", opArgs, sig);

System.out.println("JNDIView.list(true) output:\n"+result);
}

}

To test the client access using the RMIAdaptor, run the following:

[examples]$ ant -Dchap=jmx -Dex=4 run-example
...

run-example4:
[java] JNDIView Class: org.jboss.mx.modelmbean.XMBean
[java] JNDIView Operations:
[java] + java.lang.String list(boolean jboss:service=JNDIView)
[java] + java.lang.String listXML()
[java] + void create()

The JBoss JMX Microkernel

JBoss Release 2 38

[java] + void start()
[java] + void stop()
[java] + void destroy()
[java] + void jbossInternalLifecycle(java.lang.String jboss:service=JNDIView)
[java] + java.lang.String getName()
[java] + int getState()
[java] + java.lang.String getStateString()
[java] JNDIView.list(true) output:
[java] <h1>java: Namespace</h1>
[java] <pre>
[java] +- XAConnectionFactory (class: org.jboss.mq.SpyXAConnectionFactory)
[java] +- DefaultDS (class: javax.sql.DataSource)
[java] +- SecurityProxyFactory (class: org.jboss.security.SubjectSecurityProxyFactory)
[java] +- DefaultJMSProvider (class: org.jboss.jms.jndi.JNDIProviderAdapter)
[java] +- comp (class: javax.naming.Context)
[java] +- JmsXA (class: org.jboss.resource.adapter.jms.JmsConnectionFactoryImpl)
[java] +- ConnectionFactory (class: org.jboss.mq.SpyConnectionFactory)
[java] +- jaas (class: javax.naming.Context)
[java] | +- JmsXARealm (class: org.jboss.security.plugins.SecurityDomainContext)
[java] | +- jbossmq (class: org.jboss.security.plugins.SecurityDomainContext)
[java] | +- HsqlDbRealm (class: org.jboss.security.plugins.SecurityDomainContext)
[java] +- timedCacheFactory (class: javax.naming.Context)
[java] Failed to lookup: timedCacheFactory, errmsg=null
[java] +- TransactionPropagationContextExporter (class: org.jboss.tm.TransactionPropag

ationContextFactory)
[java] +- StdJMSPool (class: org.jboss.jms.asf.StdServerSessionPoolFactory)
[java] +- Mail (class: javax.mail.Session)
[java] +- TransactionPropagationContextImporter (class: org.jboss.tm.TransactionPropag

ationContextImporter)
[java] +- TransactionManager (class: org.jboss.tm.TxManager)
[java] </pre>
[java] <h1>Global JNDI Namespace</h1>
[java] <pre>
[java] +- XAConnectionFactory (class: org.jboss.mq.SpyXAConnectionFactory)
[java] +- UIL2ConnectionFactory[link -> ConnectionFactory] (class: javax.naming.Lin

kRef)
[java] +- UserTransactionSessionFactory (proxy: $Proxy11 implements interface org.jbos

s.tm.usertx.interfaces.UserTransactionSessionFactory)
[java] +- HTTPConnectionFactory (class: org.jboss.mq.SpyConnectionFactory)
[java] +- console (class: org.jnp.interfaces.NamingContext)
[java] | +- PluginManager (proxy: $Proxy36 implements interface org.jboss.console.ma

nager.PluginManagerMBean)
[java] +- UIL2XAConnectionFactory[link -> XAConnectionFactory] (class: javax.naming

.LinkRef)
[java] +- UUIDKeyGeneratorFactory (class: org.jboss.ejb.plugins.keygenerator.uuid.UUID

KeyGeneratorFactory)
[java] +- HTTPXAConnectionFactory (class: org.jboss.mq.SpyXAConnectionFactory)
[java] +- topic (class: org.jnp.interfaces.NamingContext)
[java] | +- testDurableTopic (class: org.jboss.mq.SpyTopic)
[java] | +- testTopic (class: org.jboss.mq.SpyTopic)
[java] | +- securedTopic (class: org.jboss.mq.SpyTopic)
[java] +- queue (class: org.jnp.interfaces.NamingContext)
[java] | +- A (class: org.jboss.mq.SpyQueue)
[java] | +- testQueue (class: org.jboss.mq.SpyQueue)
[java] | +- ex (class: org.jboss.mq.SpyQueue)
[java] | +- DLQ (class: org.jboss.mq.SpyQueue)
[java] | +- D (class: org.jboss.mq.SpyQueue)
[java] | +- C (class: org.jboss.mq.SpyQueue)
[java] | +- B (class: org.jboss.mq.SpyQueue)
[java] +- ConnectionFactory (class: org.jboss.mq.SpyConnectionFactory)
[java] +- UserTransaction (class: org.jboss.tm.usertx.client.ClientUserTransaction)
[java] +- jmx (class: org.jnp.interfaces.NamingContext)
[java] | +- invoker (class: org.jnp.interfaces.NamingContext)
[java] | | +- RMIAdaptor (proxy: $Proxy35 implements interface org.jboss.jmx.adapt

or.rmi.RMIAdaptor,interface org.jboss.jmx.adaptor.rmi.RMIAdaptorExt)
[java] | +- rmi (class: org.jnp.interfaces.NamingContext)

The JBoss JMX Microkernel

JBoss Release 2 39

[java] | | +- RMIAdaptor[link -> jmx/invoker/RMIAdaptor] (class: javax.naming.L
inkRef)

[java] +- HiLoKeyGeneratorFactory (class: org.jboss.ejb.plugins.keygenerator.hilo.HiLo
KeyGeneratorFactory)

[java] +- UILXAConnectionFactory[link -> XAConnectionFactory] (class: javax.naming.
LinkRef)

[java] +- UILConnectionFactory[link -> ConnectionFactory] (class: javax.naming.Link
Ref)

[java] </pre>

1.3.3. Command Line Access to JMX

JBoss provides a simple command line tool that allows for interaction with a remote JMX server instance. This tool
is called twiddle (for twiddling bits via JMX) and is located in the bin directory of the distribution. Twiddle is a
command execution tool, not a general command shell. It is run using either the twiddle.sh or twiddle.bat

scripts, and passing in a -h(--help) argument provides the basic syntax, and --help-commands shows what you
can do with the tool:

[bin]$./twiddle.sh -h
A JMX client to 'twiddle' with a remote JBoss server.

usage: twiddle.sh [options] <command> [command_arguments]

options:
-h, --help Show this help message

--help-commands Show a list of commands
-H=<command> Show command specific help
-c=command.properties Specify the command.properties file to use
-D<name>[=<value>] Set a system property
-- Stop processing options
-s, --server=<url> The JNDI URL of the remote server
-a, --adapter=<name> The JNDI name of the RMI adapter to use
-q, --quiet Be somewhat more quiet

1.3.3.1. Connecting twiddle to a Remote Server

By default the twiddle command will connect to the localhost at port 1099 to lookup the default jmx/

rmi/RMIAdaptor binding of the RMIAdaptor service as the connector for communicating with the JMX server. To
connect to a different server/port combination you can use the -s (--server) option:

[bin]$./twiddle.sh -s toki serverinfo -d jboss
[bin]$./twiddle.sh -s toki:1099 serverinfo -d jboss

To connect using a different RMIAdaptor binding use the -a (--adapter) option:

[bin]$./twiddle.sh -s toki -a jmx/rmi/RMIAdaptor serverinfo -d jboss

1.3.3.2. Sample twiddle Command Usage

To access basic information about a server, use the serverinfo command. This currently supports:

[bin]$./twiddle.sh -H serverinfo
Get information about the MBean server

usage: serverinfo [options]

The JBoss JMX Microkernel

JBoss Release 2 40

options:
-d, --domain Get the default domain
-c, --count Get the MBean count
-l, --list List the MBeans
-- Stop processing options

[bin]$./twiddle.sh --server=toki serverinfo --count
460
[bin]$./twiddle.sh --server=toki serverinfo --domain
jboss

To query the server for the name of MBeans matching a pattern, use the query command. This currently supports:

[bin]$./twiddle.sh -H query
Query the server for a list of matching MBeans

usage: query [options] <query>
options:

-c, --count Display the matching MBean count
-- Stop processing options

Examples:
query all mbeans: query '*:*'
query all mbeans in the jboss.j2ee domain: query 'jboss.j2ee:*'

[bin]$./twiddle.sh -s toki query 'jboss:service=invoker,*'
jboss:readonly=true,service=invoker,target=Naming,type=http
jboss:service=invoker,type=jrmp
jboss:service=invoker,type=local
jboss:service=invoker,type=pooled
jboss:service=invoker,type=http
jboss:service=invoker,target=Naming,type=http

To get the attributes of an MBean, use the get command:

[bin]$./twiddle.sh -H get
Get the values of one or more MBean attributes

usage: get [options] <name> [<attr>+]
If no attribute names are given all readable attributes are retrieved

options:
--noprefix Do not display attribute name prefixes
-- Stop processing options

[bin]$./twiddle.sh get jboss:service=invoker,type=jrmp RMIObjectPort StateString
RMIObjectPort=4444
StateString=Started
[bin]$./twiddle.sh get jboss:service=invoker,type=jrmp
ServerAddress=0.0.0.0
RMIClientSocketFactoryBean=null
StateString=Started
State=3
RMIServerSocketFactoryBean=org.jboss.net.sockets.DefaultSocketFactory@ad093076
EnableClassCaching=false
SecurityDomain=null
RMIServerSocketFactory=null
Backlog=200
RMIObjectPort=4444
Name=JRMPInvoker
RMIClientSocketFactory=null

To query the MBeanInfo for an MBean, use the info command:

[bin]$./twiddle.sh -H info
Get the metadata for an MBean

The JBoss JMX Microkernel

JBoss Release 2 41

usage: info <mbean-name>
Use '*' to query for all attributes

[bin]$ Description: Management Bean.
+++ Attributes:
Name: ServerAddress
Type: java.lang.String
Access: rw
Name: RMIClientSocketFactoryBean
Type: java.rmi.server.RMIClientSocketFactory
Access: rw
Name: StateString
Type: java.lang.String
Access: r-
Name: State
Type: int
Access: r-
Name: RMIServerSocketFactoryBean
Type: java.rmi.server.RMIServerSocketFactory
Access: rw
Name: EnableClassCaching
Type: boolean
Access: rw
Name: SecurityDomain
Type: java.lang.String
Access: rw
Name: RMIServerSocketFactory
Type: java.lang.String
Access: rw
Name: Backlog
Type: int
Access: rw
Name: RMIObjectPort
Type: int
Access: rw
Name: Name
Type: java.lang.String
Access: r-
Name: RMIClientSocketFactory
Type: java.lang.String
Access: rw

+++ Operations:
void start()
void jbossInternalLifecycle(java.lang.String java.lang.String)
void create()
void stop()
void destroy()

To invoke an operation on an MBean, use the invoker command:

[bin]$./twiddle.sh -H invoke
Invoke an operation on an MBean

usage: invoke [options] <query> <operation> (<arg>)*

options:
-q, --query-type[=<type>] Treat object name as a query
-- Stop processing options

query type:
f[irst] Only invoke on the first matching name [default]
a[ll] Invoke on all matching names

[bin]$./twiddle.sh invoke jboss:service=JNDIView list true
<h1>java: Namespace</h1>
<pre>

+- XAConnectionFactory (class: org.jboss.mq.SpyXAConnectionFactory)

The JBoss JMX Microkernel

JBoss Release 2 42

+- DefaultDS (class: javax.sql.DataSource)
+- SecurityProxyFactory (class: org.jboss.security.SubjectSecurityProxyFactory)
+- DefaultJMSProvider (class: org.jboss.jms.jndi.JNDIProviderAdapter)
+- comp (class: javax.naming.Context)
+- JmsXA (class: org.jboss.resource.adapter.jms.JmsConnectionFactoryImpl)
+- ConnectionFactory (class: org.jboss.mq.SpyConnectionFactory)
+- jaas (class: javax.naming.Context)
| +- JmsXARealm (class: org.jboss.security.plugins.SecurityDomainContext)
| +- jbossmq (class: org.jboss.security.plugins.SecurityDomainContext)
| +- HsqlDbRealm (class: org.jboss.security.plugins.SecurityDomainContext)
+- timedCacheFactory (class: javax.naming.Context)

Failed to lookup: timedCacheFactory, errmsg=null
+- TransactionPropagationContextExporter (class: org.jboss.tm.TransactionPropagationContext

Factory)
+- StdJMSPool (class: org.jboss.jms.asf.StdServerSessionPoolFactory)
+- Mail (class: javax.mail.Session)
+- TransactionPropagationContextImporter (class: org.jboss.tm.TransactionPropagationContext

Importer)
+- TransactionManager (class: org.jboss.tm.TxManager)

</pre>
<h1>Global JNDI Namespace</h1>
<pre>

+- XAConnectionFactory (class: org.jboss.mq.SpyXAConnectionFactory)
+- UIL2ConnectionFactory[link -> ConnectionFactory] (class: javax.naming.LinkRef)
+- UserTransactionSessionFactory (proxy: $Proxy11 implements interface org.jboss.tm.usertx.

interfaces.UserTransactionSessionFactory)
+- HTTPConnectionFactory (class: org.jboss.mq.SpyConnectionFactory)
+- console (class: org.jnp.interfaces.NamingContext)
| +- PluginManager (proxy: $Proxy36 implements interface org.jboss.console.manager.Plugin

ManagerMBean)
+- UIL2XAConnectionFactory[link -> XAConnectionFactory] (class: javax.naming.LinkRef)
+- UUIDKeyGeneratorFactory (class: org.jboss.ejb.plugins.keygenerator.uuid.UUIDKeyGenerator

Factory)
+- HTTPXAConnectionFactory (class: org.jboss.mq.SpyXAConnectionFactory)
+- topic (class: org.jnp.interfaces.NamingContext)
| +- testDurableTopic (class: org.jboss.mq.SpyTopic)
| +- testTopic (class: org.jboss.mq.SpyTopic)
| +- securedTopic (class: org.jboss.mq.SpyTopic)
+- queue (class: org.jnp.interfaces.NamingContext)
| +- A (class: org.jboss.mq.SpyQueue)
| +- testQueue (class: org.jboss.mq.SpyQueue)
| +- ex (class: org.jboss.mq.SpyQueue)
| +- DLQ (class: org.jboss.mq.SpyQueue)
| +- D (class: org.jboss.mq.SpyQueue)
| +- C (class: org.jboss.mq.SpyQueue)
| +- B (class: org.jboss.mq.SpyQueue)
+- ConnectionFactory (class: org.jboss.mq.SpyConnectionFactory)
+- UserTransaction (class: org.jboss.tm.usertx.client.ClientUserTransaction)
+- jmx (class: org.jnp.interfaces.NamingContext)
| +- invoker (class: org.jnp.interfaces.NamingContext)
| | +- RMIAdaptor (proxy: $Proxy35 implements interface org.jboss.jmx.adaptor.rmi.RMIAd

aptor,interface org.jboss.jmx.adaptor.rmi.RMIAdaptorExt)
| +- rmi (class: org.jnp.interfaces.NamingContext)
| | +- RMIAdaptor[link -> jmx/invoker/RMIAdaptor] (class: javax.naming.LinkRef)
+- HiLoKeyGeneratorFactory (class: org.jboss.ejb.plugins.keygenerator.hilo.HiLoKeyGenerator

Factory)
+- UILXAConnectionFactory[link -> XAConnectionFactory] (class: javax.naming.LinkRef)
+- UILConnectionFactory[link -> ConnectionFactory] (class: javax.naming.LinkRef)

</pre>

1.3.4. Connecting to JMX Using Any Protocol

With the detached invokers and a somewhat generalized proxy factory capability, you can really talk to the JMX

The JBoss JMX Microkernel

JBoss Release 2 43

server using the InvokerAdaptorService and a proxy factory service to expose an RMIAdaptor or similar interface
over your protocol of choice. We will introduce the detached invoker notion along with proxy factories in Sec-
tion 1.6. See Section 1.6.1 for an example of an invoker service that allows one to access the MBean server using to
the RMIAdaptor interface over any protocol for which a proxy factory service exists.

1.4. Using JMX as a Microkernel

When JBoss starts up, one of the first steps performed is to create an MBean server instance
(javax.management.MBeanServer). The JMX MBean server in the JBoss architecture plays the role of a microker-
nel. All other manageable MBean components are plugged into JBoss by registering with the MBean server. The
kernel in that sense is only an framework, and not a source of actual functionality. The functionality is provided by
MBeans, and in fact all major JBoss components are manageable MBeans interconnected through the MBean serv-
er.

1.4.1. The Startup Process

In this section we will describe the JBoss server startup process. A summary of the steps that occur during the
JBoss server startup sequence is:

1. The run start script initiates the boot sequence using the org.jboss.Main.main(String[]) method entry
point.

2. The Main.main method creates a thread group named jboss and then starts a thread belonging to this thread
group. This thread invokes the Main.boot method.

3. The Main.boot method processes the Main.main arguments and then creates an
org.jboss.system.server.ServerLoader using the system properties along with any additional properties
specified as arguments.

4. The XML parser libraries, jboss-jmx.jar, concurrent.jar and extra libraries and classpaths given as argu-
ments are registered with the ServerLoader .

5. The JBoss server instance is created using the ServerLoader.load(ClassLoader) method with the current
thread context class loader passed in as the ClassLoader argument. The returned server instance is an imple-
mentation of the org.jboss.system.server.Server interface. The creation of the server instance entails:

• Creating a java.net.URLClassLoader with the URLs of the jars and directories registered with the
ServerLoader . This URLClassLoader uses the ClassLoader passed in as its parent and it is pushed as the
thread context class loader.

• The class name of the implementation of the Server interface to use is determined by the
jboss.server.type property. This defaults to org.jboss.system.server.ServerImpl.

• The Server implementation class is loaded using the URLClassLoader created in step 6 and instantiated
using its no-arg constructor. The thread context class loader present on entry into the ServerLoader.load

method is restored and the server instance is returned.

The JBoss JMX Microkernel

JBoss Release 2 44

6. The server instance is initialized with the properties passed to the ServerLoader constructor using the Serv-

er.init(Properties) method.

7. The server instance is then started using the Server.start() method. The default implementation performs
the following steps:

• Set the thread context class loader to the class loader used to load the ServerImpl class.

• Create an MBeanServer under the jboss domain using the MBeanServerFact-

ory.createMBeanServer(String) method.

• Register the ServerImpl and ServerConfigImpl MBeans with the MBean server.

• Initialize the unified class loader repository to contain all JARs in the optional patch directory as well as
the server configuration file conf directory, for example, server/default/conf. For each JAR and direct-
ory an org.jboss.mx.loading.UnifiedClassLoader is created and registered with the unified repository.
One of these UnifiedClassLoader is then set as the thread context class loader. This effectively makes all
UnifiedClassLoaders available through the thread context class loader.

• The org.jboss.system.ServiceController MBean is created. The ServiceController manages the
JBoss MBean services life cycle. We will discuss the JBoss MBean services notion in detail in Sec-
tion 1.4.2.

• The org.jboss.deployment.MainDeployer is created and started. The MainDeployer manages deploy-
ment dependencies and directing deployments to the correct deployer.

• The org.jboss.deployment.JARDeployer is created and started. The JARDeployer handles the deploy-
ment of JARs that are simple library JARs.

• The org.jboss.deployment.SARDeployer is created and started. The SARDeployer handles the deploy-
ment of JBoss MBean services.

• The MainDeployer is invoked to deploy the services defined in the conf/jboss-service.xml of the cur-
rent server file set.

• Restore the thread context class loader.

The JBoss server starts out as nothing more than a container for the JMX MBean server, and then loads its person-
ality based on the services defined in the jboss-service.xml MBean configuration file from the named configura-
tion set passed to the server on the command line. Because MBeans define the functionality of a JBoss server in-
stance, it is important to understand how the core JBoss MBeans are written, and how you should integrate your ex-
isting services into JBoss using MBeans. This is the topic of the next section.

1.4.2. JBoss MBean Services

As we have seen, JBoss relies on JMX to load in the MBean services that make up a given server instance's person-
ality. All of the bundled functionality provided with the standard JBoss distribution is based on MBeans. The best
way to add services to the JBoss server is to write your own JMX MBeans.

There are two classes of MBeans: those that are independent of JBoss services, and those that are dependent on

The JBoss JMX Microkernel

JBoss Release 2 45

JBoss services. MBeans that are independent of JBoss services are the trivial case. They can be written per the
JMX specification and added to a JBoss server by adding an mbean tag to the deploy/user-service.xml file.
Writing an MBean that relies on a JBoss service such as naming requires you to follow the JBoss service pattern.
The JBoss MBean service pattern consists of a set of life cycle operations that provide state change notifications.
The notifications inform an MBean service when it can create, start, stop, and destroy itself. The management of
the MBean service life cycle is the responsibility of three JBoss MBeans: SARDeployer, ServiceConfigurator and
ServiceController.

1.4.2.1. The SARDeployer MBean

JBoss manages the deployment of its MBean services via a custom MBean that loads an XML variation of the
standard JMX MLet configuration file. This custom MBean is implemented in the
org.jboss.deployment.SARDeployer class. The SARDeployer MBean is loaded when JBoss starts up as part of the
bootstrap process. The SAR acronym stands for service archive.

The SARDeployer handles services archives. A service archive can be either a jar that ends with a .sar suffix and
contains a META-INF/jboss-service.xml descriptor, or a standalone XML descriptor with a naming pattern that
matches *-service.xml. The DTD for the service descriptor is jboss-service_4.0.dtd and is shown in Fig-
ure 1.15.

Figure 1.15. The DTD for the MBean service descriptor parsed by the SARDeployer

The JBoss JMX Microkernel

JBoss Release 2 46

The elements of the DTD are:

• loader-repository: This element specifies the name of the UnifiedLoaderRepository MBean to use for the
SAR to provide SAR level scoping of classes deployed in the sar. It is a unique JMX ObjectName string. It may
also specify an arbitrary configuration by including a loader-repository-config element. The optional load-
erRepositoryClass attribute specifies the fully qualified name of the loader repository implementation class. It
defaults to org.jboss.mx.loading.HeirachicalLoaderRepository3.

• loader-repository-config: This optional element specifies an arbitrary configuration that may be used to
configure the loadRepositoryClass. The optional configParserClass attribute gives the fully qualified
name of the org.jboss.mx.loading.LoaderRepositoryFactory.LoaderRepositoryConfigParser imple-
mentation to use to parse the loader-repository-config content.

• local-directory: This element specifies a path within the deployment archive that should be copied to the serv-

er/<config>/db directory for use by the MBean. The path attribute is the name of an entry within the deploy-
ment archive.

• classpath: This element specifies one or more external JARs that should be deployed with the MBean(s). The
optional archives attribute specifies a comma separated list of the JAR names to load, or the * wild card to sig-
nify that all jars should be loaded. The wild card only works with file URLs, and http URLs if the web server
supports the WEBDAV protocol. The codebase attribute specifies the URL from which the JARs specified in
the archive attribute should be loaded. If the codebase is a path rather than a URL string, the full URL is built
by treating the codebase value as a path relative to the JBoss distribution server/<config> directory. The order
of JARs specified in the archives as well as the ordering across multiple classpath element is used as the
classpath ordering of the JARs. Therefore, if you have patches or inconsistent versions of classes that require a
certain ordering, use this feature to ensure the correct ordering.

• mbean: This element specifies an MBean service. The required code attribute gives the fully qualified name of
the MBean implementation class. The required name attribute gives the JMX ObjectName of the MBean. The
optional xmbean-dd attribute specifies the path to the XMBean resource if this MBean service uses the JBoss
XMBean descriptor to define a Model MBean management interface.

• constructor: The constructor element defines a non-default constructor to use when instantiating the
MBean The arg element specify the constructor arguments in the order of the constructor signature. Each
arg has a type and value attribute.

• attribute: Each attribute element specifies a name/value pair of the attribute of the MBean. The name of the
attribute is given by the name attribute, and the attribute element body gives the value. The body may be a
text representation of the value, or an arbitrary element and child elements if the type of the MBean attrib-
ute is org.w3c.dom.Element. For text values, the text is converted to the attribute type using the JavaBean
java.beans.PropertyEditor mechanism.

• server/mbean/depends and server/mbean/depends-list: these elements specify a dependency from the
MBean using the element to the MBean(s) named by the depends or depends-list elements. Sec-
tion 1.4.2.4. Note that the dependency value can be another mbean element which defines a nested mbean.

MBean attribute values don't need to be hardcoded literal strings. Service files may contain references to system
properties using the ${name} notation, where name is the name of a Java system property. The value of this system

The JBoss JMX Microkernel

JBoss Release 2 47

property, as would be returned from the call System.getProperty("name"). Multiple properties can be specified
separated by commas like ${name1,name2,name3}. If there is no system property named name1, name2 will be tried
and then name3. This allows multiple levels of substitution to be used. Finally, a default value can be added using a
colon separator. The substitution ${name:default value} would substitute the the text "default value" if the
system property name didn't exist. If none of the listed properties exist and no default value is given, no substitution
will occur.

When the SARDeployer is asked to deploy a service performs several steps. Figure 1.16 is a sequence diagram that
shows the init through start phases of a service.

Figure 1.16. A sequence diagram highlighting the main activities performed by the SARDeployer to start a
JBoss MBean service

In Figure 1.16 the following is illustrated:

• Methods prefixed with 1.1 correspond to the load and parse of the XML service descriptor.

The JBoss JMX Microkernel

JBoss Release 2 48

• Methods prefixed with 1.2 correspond to processing each classpath element in the service descriptor to create
an independent deployment that makes the jar or directory available through a UnifiedClassLoader registered
with the unified loader repository.

• Methods prefixed with 1.3 correspond to processing each local-directory element in the service descriptor.
This does a copy of the SAR elements specified in the path attribute to the server/<config>/db directory.

• Method 1.4. Process each deployable unit nested in the service a child deployment is created and added to the
service deployment info subdeployment list.

• Method 2.1. The UnifiedClassLoader of the SAR deployment unit is registered with the MBean Server so that
is can be used for loading of the SAR MBeans.

• Method 2.2. For each MBean element in the descriptor, create an instance and initialize its attributes with the
values given in the service descriptor. This is done by calling the ServiceController.install method.

• Method 2.4.1. For each MBean instance created, obtain its JMX ObjectName and ask the ServiceController to
handle the create step of the service life cycle. The ServiceController handles the dependencies of the MBean
service. Only if the service's dependencies are satisfied is the service create method invoked.

• Methods prefixed with 3.1 correspond to the start of each MBean service defined in the service descriptor. For
each MBean instance created, obtain its JMX ObjectName and ask the ServiceController to handle the start
step of the service life cycle. The ServiceController handles the dependencies of the MBean service. Only if
the service's dependencies are satisfied is the service start method invoked.

1.4.2.2. The Service Life Cycle Interface

The JMX specification does not define any type of life cycle or dependency management for MBeans. The JBoss
ServiceController MBean introduces this notion. A JBoss MBean is an extension of the JMX MBean in that an
MBean is expected to decouple creation from the life cycle of its service duties. This is necessary to implement any
type of dependency management. For example, if you are writing an MBean that needs a JNDI naming service to
be able to function, your MBean needs to be told when its dependencies are satisfied. This ranges from difficult to
impossible to do if the only life cycle event is the MBean constructor. Therefore, JBoss introduces a service life
cycle interface that describes the events a service can use to manage its behavior. The following listing shows the
org.jboss.system.Service interface:

package org.jboss.system;
public interface Service
{

public void create() throws Exception;
public void start() throws Exception;
public void stop();
public void destroy();

}

The ServiceController MBean invokes the methods of the Service interface at the appropriate times of the ser-
vice life cycle. We'll discuss the methods in more detail in the ServiceController section.

1.4.2.3. The ServiceController MBean

JBoss manages dependencies between MBeans via the org.jboss.system.ServiceController custom MBean.
The SARDeployer delegates to the ServiceController when initializing, creating, starting, stopping and destroying

The JBoss JMX Microkernel

JBoss Release 2 49

MBean services. Figure 1.17 shows a sequence diagram that highlights interaction between the SARDeployer and
ServiceController.

Figure 1.17. The interaction between the SARDeployer and ServiceController to start a service

The ServiceController MBean has four key methods for the management of the service life cycle: create,
start, stop and destroy.

1.4.2.3.1. The create(ObjectName) method

The create(ObjectName) method is called whenever an event occurs that affects the named services state. This
could be triggered by an explicit invocation by the SARDeployer, a notification of a new class, or another service
reaching its created state.

When a service's create method is called, all services on which the service depends have also had their create
method invoked. This gives an MBean an opportunity to check that required MBeans or resources exist. A service
cannot utilize other MBean services at this point, as most JBoss MBean services do not become fully functional un-
til they have been started via their start method. Because of this, service implementations often do not implement
create in favor of just the start method because that is the first point at which the service can be fully functional.

The JBoss JMX Microkernel

JBoss Release 2 50

1.4.2.3.2. The start(ObjectName) method

The start(ObjectName) method is called whenever an event occurs that affects the named services state. This
could be triggered by an explicit invocation by the SARDeployer, a notification of a new class, or another service
reaching its started state.

When a service's start method is called, all services on which the service depends have also had their start meth-
od invoked. Receipt of a start method invocation signals a service to become fully operational since all services
upon which the service depends have been created and started.

1.4.2.3.3. The stop(ObjectName) method

The stop(ObjectName) method is called whenever an event occurs that affects the named services state. This could
be triggered by an explicit invocation by the SARDeployer, notification of a class removal, or a service on which
other services depend reaching its stopped state.

1.4.2.3.4. The destroy(ObjectName) method

The destroy(ObjectName) method is called whenever an event occurs that affects the named services state. This
could be triggered by an explicit invocation by the SARDeployer, notification of a class removal, or a service on
which other services depend reaching its destroyed state.

Service implementations often do not implement destroy in favor of simply implementing the stop method, or
neither stop nor destroy if the service has no state or resources that need cleanup.

1.4.2.4. Specifying Service Dependencies

To specify that an MBean service depends on other MBean services you need to declare the dependencies in the
mbean element of the service descriptor. This is done using the depends and depends-list elements. One differ-
ence between the two elements relates to the optional-attribute-name attribute usage. If you track the Object-

Names of dependencies using single valued attributes you should use the depends element. If you track the Object-

Names of dependencies using java.util.List compatible attributes you would use the depends-list element. If
you only want to specify a dependency and don't care to have the associated service ObjectName bound to an attrib-
ute of your MBean then use whatever element is easiest. The following listing shows example service descriptor
fragments that illustrate the usage of the dependency related elements.

<mbean code="org.jboss.mq.server.jmx.Topic"
name="jms.topic:service=Topic,name=testTopic">

<!-- Declare a dependency on the "jboss.mq:service=DestinationManager" and
bind this name to the DestinationManager attribute -->

<depends optional-attribute-name="DestinationManager">
jboss.mq:service=DestinationManager

</depends>

<!-- Declare a dependency on the "jboss.mq:service=SecurityManager" and
bind this name to the SecurityManager attribute -->

<depends optional-attribute-name="SecurityManager">
jboss.mq:service=SecurityManager

</depends>

<!-- ... -->

<!-- Declare a dependency on the
"jboss.mq:service=CacheManager" without
any binding of the name to an attribute-->

The JBoss JMX Microkernel

JBoss Release 2 51

<depends>jboss.mq:service=CacheManager</depends>
</mbean>

<mbean code="org.jboss.mq.server.jmx.TopicMgr"
name="jboss.mq.destination:service=TopicMgr">

<!-- Declare a dependency on the given topic destination mbeans and
bind these names to the Topics attribute -->

<depends-list optional-attribute-name="Topics">
<depends-list-element>jms.topic:service=Topic,name=A</depends-list-element>
<depends-list-element>jms.topic:service=Topic,name=B</depends-list-element>
<depends-list-element>jms.topic:service=Topic,name=C</depends-list-element>

</depends-list>
</mbean>

Another difference between the depends and depends-list elements is that the value of the depends element may
be a complete MBean service configuration rather than just the ObjectName of the service. Example 1.13 shows an
example from the hsqldb-service.xml descriptor. In this listing the
org.jboss.resource.connectionmanager.RARDeployment service configuration is defined using a nested mbean

element as the depends element value. This indicates that the
org.jboss.resource.connectionmanager.LocalTxConnectionManager MBean depends on this service. The
jboss.jca:service=LocalTxDS,name=hsqldbDS ObjectName will be bound to the ManagedConnectionFactory-

Name attribute of the LocalTxConnectionManager class.

Example 1.13. An example of using the depends element to specify the complete configuration of a depended
on service.

<mbean code="org.jboss.resource.connectionmanager.LocalTxConnectionManager"
name="jboss.jca:service=LocalTxCM,name=hsqldbDS">

<depends optional-attribute-name="ManagedConnectionFactoryName">
<!--embedded mbean-->
<mbean code="org.jboss.resource.connectionmanager.RARDeployment"

name="jboss.jca:service=LocalTxDS,name=hsqldbDS">
<attribute name="JndiName">DefaultDS</attribute>
<attribute name="ManagedConnectionFactoryProperties">

<properties>
<config-property name="ConnectionURL"

type="java.lang.String">
jdbc:hsqldb:hsql://localhost:1476

</config-property>
<config-property name="DriverClass" type="java.lang.String">

org.hsqldb.jdbcDriver
</config-property>
<config-property name="UserName" type="java.lang.String">

sa
</config-property>
<config-property name="Password" type="java.lang.String"/>

</properties>
</attribute>
<!-- ... -->

</mbean>
</depends>
<!-- ... -->

</mbean>

1.4.2.5. Identifying Unsatisfied Dependencies

The ServiceController MBean supports two operations that can help determine which MBeans are not running

The JBoss JMX Microkernel

JBoss Release 2 52

due to unsatisfied dependencies. The first operation is listIncompletelyDeployed. This returns a java.util.List

of org.jboss.system.ServiceContext objects for the MBean services that are not in the RUNNING state.

The second operation is listWaitingMBeans. This operation returns a java.util.List of the JMX ObjectNames of
MBean services that cannot be deployed because the class specified by the code attribute is not available.

1.4.2.6. Hot Deployment of Components, the URLDeploymentScanner

The URLDeploymentScanner MBean service provides the JBoss hot deployment capability. This service watches
one or more URLs for deployable archives and deploys the archives as they appear or change. It also undeploys
previously deployed applications if the archive from which the application was deployed is removed. The configur-
able attributes include:

• URLs: A comma separated list of URL strings for the locations that should be watched for changes. Strings that
do not correspond to valid URLs are treated as file paths. Relative file paths are resolved against the server
home URL, for example, JBOSS_DIST/server/default for the default config file set. If a URL represents a file
then the file is deployed and watched for subsequent updates or removal. If a URL ends in / to represent a dir-
ectory, then the contents of the directory are treated as a collection of deployables and scanned for content that
are to be watched for updates or removal. The requirement that a URL end in a / to identify a directory follows
the RFC2518 convention and allows discrimination between collections and directories that are simply un-
packed archives.

The default value for the URLs attribute is deploy/ which means that any SARs, EARs, JARs, WARs, RARs,
etc. dropped into the server/<name>/deploy directory will be automatically deployed and watched for updates.

Example URLs include:

• deploy/ scans ${jboss.server.url}/deploy/, which is local or remote depending on the URL used to
boot the server

• ${jboss.server.home.dir}/deploy/ scans ${jboss.server.home.dir)/deploy, which is always local

• file:/var/opt/myapp.ear deploys myapp.ear from a local location

• file:/var/opt/apps/ scans the specified directory

• http://www.test.com/netboot/myapp.ear deploys myapp.ear from a remote location

• http://www.test.com/netboot/apps/ scans the specified remote location using WebDAV. This will only
work if the remote http server supports the WebDAV PROPFIND command.

• ScanPeriod: The time in milliseconds between runs of the scanner thread. The default is 5000 (5 seconds).

• URLComparator: The class name of a java.util.Comparator implementation used to specify a deployment
ordering for deployments found in a scanned directory. The implementation must be able to compare two
java.net.URL objects passed to its compare method. The default setting is the
org.jboss.deployment.DeploymentSorter class which orders based on the deployment URL suffix. The or-
dering of suffixes is: deployer, deployer.xml, sar, rar, ds.xml, service.xml, har, jar, war, wsr, ear, zip,
bsh, last.

An alternate implementation is the org.jboss.deployment.scanner.PrefixDeploymentSorter class. This or-

The JBoss JMX Microkernel

JBoss Release 2 53

ders the URLs based on numeric prefixes. The prefix digits are converted to an int (ignoring leading zeroes),
smaller prefixes are ordered ahead of larger numbers. Deployments that do not start with any digits will be de-
ployed after all numbered deployments. Deployments with the same prefix value are further sorted by the De-

ploymentSorter logic.

• Filter: The class name of a java.io.FileFilter implementation that is used to filter the contents of scanned
directories. Any file not accepted by this filter will not be deployed. The default is
org.jboss.deployment.scanner.DeploymentFilter which is an implementation that rejects the following
patterns:

"#*", "%*", ",*", ".*", "_$*", "*#", "*$", "*%", "*.BAK", "*.old", "*.orig", "*.rej", "*.bak", "*.sh", "*,v",
"*~", ".make.state", ".nse_depinfo", "CVS", "CVS.admin", "RCS", "RCSLOG", "SCCS", "TAGS", "core", "tags"

• RecursiveSearch: This property indicates whether or not deploy subdirectories are seen to be holding deploy-
able content. If this is false, deploy subdirectories that do not contain a dot (.) in their name are seen to be un-
packaged JARs with nested subdeployments. If true, then deploy subdirectories are just groupings of deploy-
able content. The difference between the two views shows is related to the depth first deployment model JBoss
supports. The false setting which treats directories as unpackaged JARs with nested content triggers the deploy-
ment of the nested content as soon as the JAR directory is deployed. The true setting simply ignores the direct-
ory and adds its content to the list of deployable packages and calculates the order based on the previous filter
logic. The default is true.

• Deployer: The JMX ObjectName string of the MBean that implements the org.jboss.deployment.Deployer

interface operations. The default setting is to use the MainDeployer created by the bootstrap startup process.

1.4.3. Writing JBoss MBean Services

Writing a custom MBean service that integrates into the JBoss server requires the use of the
org.jboss.system.Service interface pattern if the custom service is dependent on other services. When a custom
MBean depends on other MBean services you cannot perform any service dependent initialization in any of the
javax.management.MBeanRegistration interface methods since JMX has no dependency notion. Instead, you
must manage dependency state using the Service interface create and/or start methods. You can do this using
any one of the following approaches:

• Add any of the Service methods that you want called on your MBean to your MBean interface. This allows
your MBean implementation to avoid dependencies on JBoss specific interfaces.

• Have your MBean interface extend the org.jboss.system.Service interface.

• Have your MBean interface extend the org.jboss.system.ServiceMBean interface. This is a subinterface of
org.jboss.system.Service that adds getName(), getState(), getStateString() methods.

Which approach you choose depends on whether or not you want your code to be coupled to JBoss specific code. If
you don't, then you would use the first approach. If you don't care about dependencies on JBoss classes, the
simplest approach is to have your MBean interface extend from org.jboss.system.ServiceMBean and your
MBean implementation class extend from the abstract org.jboss.system.ServiceMBeanSupport class. This class
implements the org.jboss.system.ServiceMBean interface. ServiceMBeanSupport provides implementations of
the create, start, stop, and destroy methods that integrate logging and JBoss service state management tracking.
Each method delegates any subclass specific work to createService, startService, stopService, and des-

The JBoss JMX Microkernel

JBoss Release 2 54

troyService methods respectively. When subclassing ServiceMBeanSupport, you would override one or more of
the createService, startService, stopService, and destroyService methods as required

1.4.3.1. A Standard MBean Example

This section develops a simple MBean that binds a HashMap into the JBoss JNDI namespace at a location determ-
ined by its JndiName attribute to demonstrate what is required to create a custom MBean. Because the MBean uses
JNDI, it depends on the JBoss naming service MBean and must use the JBoss MBean service pattern to be notified
when the naming service is available.

Version one of the classes, shown in Example 1.14, is based on the service interface method pattern. This version
of the interface declares the start and stop methods needed to start up correctly without using any JBoss-specific
classes.

Example 1.14. JNDIMapMBean interface and implementation based on the service interface method pattern

package org.jboss.book.jmx.ex1;

// The JNDIMap MBean interface
import javax.naming.NamingException;

public interface JNDIMapMBean
{

public String getJndiName();
public void setJndiName(String jndiName) throws NamingException;
public void start() throws Exception;
public void stop() throws Exception;

}

package org.jboss.book.jmx.ex1;

// The JNDIMap MBean implementation
import java.util.HashMap;
import javax.naming.InitialContext;
import javax.naming.Name;
import javax.naming.NamingException;
import org.jboss.naming.NonSerializableFactory;

public class JNDIMap implements JNDIMapMBean
{

private String jndiName;
private HashMap contextMap = new HashMap();
private boolean started;

public String getJndiName()
{

return jndiName;
}
public void setJndiName(String jndiName) throws NamingException
{

String oldName = this.jndiName;
this.jndiName = jndiName;
if (started) {

unbind(oldName);
try {

rebind();
} catch(Exception e) {

NamingException ne = new NamingException("Failedto update jndiName");
ne.setRootCause(e);
throw ne;

The JBoss JMX Microkernel

JBoss Release 2 55

}
}

}

public void start() throws Exception
{

started = true;
rebind();

}

public void stop()
{

started = false;
unbind(jndiName);

}

private void rebind() throws NamingException
{

InitialContext rootCtx = new InitialContext();
Name fullName = rootCtx.getNameParser("").parse(jndiName);
System.out.println("fullName="+fullName);
NonSerializableFactory.rebind(fullName, contextMap, true);

}

private void unbind(String jndiName)
{

try {
InitialContext rootCtx = new InitialContext();
rootCtx.unbind(jndiName);
NonSerializableFactory.unbind(jndiName);

} catch(NamingException e) {
e.printStackTrace();

}
}

}

Version two of the classes, shown in Example 1.14, use the JBoss ServiceMBean interface and ServiceMBeanSup-

port class. In this version, the implementation class extends the ServiceMBeanSupport class and overrides the
startService and stopService methods. JNDIMapMBean also implements the abstract getName method to return a
descriptive name for the MBean. The JNDIMapMBean interface extends the org.jboss.system.ServiceMBean inter-
face and only declares the setter and getter methods for the JndiName attribute because it inherits the service life
cycle methods from ServiceMBean. This is the third approach mentioned at the start of the Section 1.4.2.

Example 1.15. JNDIMap MBean interface and implementation based on the ServiceMBean interface and
ServiceMBeanSupport class

package org.jboss.book.jmx.ex2;

// The JNDIMap MBean interface
import javax.naming.NamingException;

public interface JNDIMapMBean extends org.jboss.system.ServiceMBean
{

public String getJndiName();
public void setJndiName(String jndiName) throws NamingException;

}

package org.jboss.book.jmx.ex2;
// The JNDIMap MBean implementation

The JBoss JMX Microkernel

JBoss Release 2 56

import java.util.HashMap;
import javax.naming.InitialContext;
import javax.naming.Name;
import javax.naming.NamingException;
import org.jboss.naming.NonSerializableFactory;

public class JNDIMap extends org.jboss.system.ServiceMBeanSupport
implements JNDIMapMBean

{
private String jndiName;
private HashMap contextMap = new HashMap();

public String getJndiName()
{

return jndiName;
}

public void setJndiName(String jndiName)
throws NamingException

{
String oldName = this.jndiName;
this.jndiName = jndiName;
if (super.getState() == STARTED) {

unbind(oldName);
try {

rebind();
} catch(Exception e) {

NamingException ne = new NamingException("Failed to update jndiName");
ne.setRootCause(e);
throw ne;

}
}

}

public void startService() throws Exception
{

rebind();
}

public void stopService()
{

unbind(jndiName);
}

private void rebind() throws NamingException
{

InitialContext rootCtx = new InitialContext();
Name fullName = rootCtx.getNameParser("").parse(jndiName);
log.info("fullName="+fullName);
NonSerializableFactory.rebind(fullName, contextMap, true);

}

private void unbind(String jndiName)
{

try {
InitialContext rootCtx = new InitialContext();
rootCtx.unbind(jndiName);
NonSerializableFactory.unbind(jndiName);

} catch(NamingException e) {
log.error("Failed to unbind map", e);

}
}

}

The JBoss JMX Microkernel

JBoss Release 2 57

The source code for these MBeans along with the service descriptors is located in the examples/

src/main/org/jboss/book/jmx/{ex1,ex2} directories.

The jboss-service.xml descriptor for the first version is shown below.

<!-- The SAR META-INF/jboss-service.xml descriptor -->
<server>

<mbean code="org.jboss.book.jmx.ex1.JNDIMap"
name="chap2.ex1:service=JNDIMap">

<attribute name="JndiName">inmemory/maps/MapTest</attribute>
<depends>jboss:service=Naming</depends>

</mbean>
</server>

The JNDIMap MBean binds a HashMap object under the inmemory/maps/MapTest JNDI name and the client code
fragment demonstrates retrieving the HashMap object from the inmemory/maps/MapTest location. The correspond-
ing client code is shown below.

// Sample lookup code
InitialContext ctx = new InitialContext();
HashMap map = (HashMap) ctx.lookup("inmemory/maps/MapTest");

1.4.3.2. XMBean Examples

In this section we will develop a variation of the JNDIMap MBean introduced in the preceding section that exposes
its management metadata using the JBoss XMBean framework. Our core managed component will be exactly the
same core code from the JNDIMap class, but it will not implement any specific management related interface. We
will illustrate the following capabilities not possible with a standard MBean:

• The ability to add rich descriptions to attribute and operations

• The ability to expose notification information

• The ability to add persistence of attributes

• The ability to add custom interceptors for security and remote access through a typed interface

1.4.3.2.1. Version 1, The Annotated JNDIMap XMBean

Let's start with a simple XMBean variation of the standard MBean version of the JNDIMap that adds the descript-
ive information about the attributes and operations and their arguments. The following listing shows the jboss-

service.xml descriptor and the jndimap-xmbean1.xml XMBean descriptor. The source can be found in the src/

main/org/jboss/book/jmx/xmbean directory of the book examples.

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE server PUBLIC

"-//JBoss//DTD MBean Service 3.2//EN"
"http://www.jboss.org/j2ee/dtd/jboss-service_3_2.dtd">

<server>
<mbean code="org.jboss.book.jmx.xmbean.JNDIMap"

name="chap2.xmbean:service=JNDIMap"
xmbean-dd="META-INF/jndimap-xmbean.xml">

<attribute name="JndiName">inmemory/maps/MapTest</attribute>
<depends>jboss:service=Naming</depends>

</mbean>

The JBoss JMX Microkernel

JBoss Release 2 58

</server>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mbean PUBLIC

"-//JBoss//DTD JBOSS XMBEAN 1.0//EN"
"http://www.jboss.org/j2ee/dtd/jboss_xmbean_1_0.dtd">

<mbean>
<description>The JNDIMap XMBean Example Version 1</description>
<descriptors>

<persistence persistPolicy="Never" persistPeriod="10"
persistLocation="data/JNDIMap.data" persistName="JNDIMap"/>

<currencyTimeLimit value="10"/>
<state-action-on-update value="keep-running"/>

</descriptors>
<class>org.jboss.test.jmx.xmbean.JNDIMap</class>
<constructor>

<description>The default constructor</description>
<name>JNDIMap</name>

</constructor>
<!-- Attributes -->
<attribute access="read-write" getMethod="getJndiName" setMethod="setJndiName">

<description>
The location in JNDI where the Map we manage will be bound

</description>
<name>JndiName</name>
<type>java.lang.String</type>
<descriptors>

<default value="inmemory/maps/MapTest"/>
</descriptors>

</attribute>
<attribute access="read-write" getMethod="getInitialValues"

setMethod="setInitialValues">
<description>The array of initial values that will be placed into the

map associated with the service. The array is a collection of
key,value pairs with elements[0,2,4,...2n] being the keys and
elements [1,3,5,...,2n+1] the associated values. The
"[Ljava.lang.String;" type signature is the VM representation of the
java.lang.String[] type. </description>

<name>InitialValues</name>
<type>[Ljava.lang.String;</type>
<descriptors>

<default value="key0,value0"/>
</descriptors>

</attribute>
<!-- Operations -->
<operation>

<description>The start lifecycle operation</description>
<name>start</name>

</operation>
<operation>

<description>The stop lifecycle operation</description>
<name>stop</name>

</operation>
<operation impact="ACTION">

<description>Put a value into the map</description>
<name>put</name>
<parameter>

<description>The key the value will be store under</description>
<name>key</name>
<type>java.lang.Object</type>

</parameter>
<parameter>

<description>The value to place into the map</description>
<name>value</name>
<type>java.lang.Object</type>

The JBoss JMX Microkernel

JBoss Release 2 59

</parameter>
</operation>
<operation impact="INFO">

<description>Get a value from the map</description>
<name>get</name>
<parameter>

<description>The key to lookup in the map</description>
<name>get</name>
<type>java.lang.Object</type>

</parameter>
<return-type>java.lang.Object</return-type>

</operation>
<!-- Notifications -->
<notification>

<description>The notification sent whenever a value is get into the map
managed by the service</description>

<name>javax.management.Notification</name>
<notification-type>org.jboss.book.jmx.xmbean.JNDIMap.get</notification-type>

</notification>
<notification>

<description>The notification sent whenever a value is put into the map
managed by the service</description>

<name>javax.management.Notification</name>
<notification-type>org.jboss.book.jmx.xmbean.JNDIMap.put</notification-type>

</notification>
</mbean>

You can build, deploy and test the XMBean as follows:

[examples]$ ant -Dchap=jmx -Dex=xmbean1 run-example
...
run-examplexmbean1:

[java] JNDIMap Class: org.jboss.mx.modelmbean.XMBean
[java] JNDIMap Operations:
[java] + void start()
[java] + void stop()
[java] + void put(java.lang.Object chap2.xmbean:service=JNDIMap,java.lang.Object

chap2.xmbean:service=JNDIMap)
[java] + java.lang.Object get(java.lang.Object chap2.xmbean:service=JNDIMap)
[java] name=chap2.xmbean:service=JNDIMap
[java] listener=org.jboss.book.jmx.xmbean.TestXMBean1$Listener@f38cf0
[java] key=key0, value=value0
[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:

service=JNDIMap][type=org.jboss.book.jmx.xmbean.JNDIMap.put][message=]
[java] JNDIMap.put(key1, value1) successful
[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:

service=JNDIMap][type=org.jboss.book.jmx.xmbean.JNDIMap.get][message=]
[java] JNDIMap.get(key0): null
[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:

service=JNDIMap][type=org.jboss.book.jmx.xmbean.JNDIMap.get][message=]
[java] JNDIMap.get(key1): value1
[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:

service=JNDIMap][type=org.jboss.book.jmx.xmbean.JNDIMap.put][message=]
[java] handleNotification, event: javax.management.AttributeChangeNotification[source

=chap2.xmbean:service=JNDIMap][type=jmx.attribute.change][message=InitialValues
changed from javax.management.Attribute@82a72a to
javax.management.Attribute@acdb96]

The functionality is largely the same as the Standard MBean with the notable exception of the JMX notifications. A
Standard MBean has no way of declaring that it will emit notifications. An XMBean may declare the notifications
it emits using notification elements as is shown in the version 1 descriptor. We see the notifications from the get
and put operations on the test client console output. Note that there is also an jmx.attribute.change notifica-

The JBoss JMX Microkernel

JBoss Release 2 60

tion emitted when the InitialValues attribute was changed. This is because the ModelMBean interface extends the
ModelMBeanNotificationBroadcaster which supports AttributeChangeNotificationListeners.

The other major difference between the Standard and XMBean versions of JNDIMap is the descriptive metadata.
Look at the chap2.xmbean:service=JNDIMap in the JMX Console, and you will see the attributes section as shown
in Figure 1.18.

Figure 1.18. The Version 1 JNDIMapXMBean jmx-console view

Notice that the JMX Console now displays the full attribute description as specified in the XMBean descriptor
rather than MBean Attribute text seen in standard MBean implementations. Scroll down to the operations and you
will also see that these now also have nice descriptions of their function and parameters.

1.4.3.2.2. Version 2, Adding Persistence to the JNDIMap XMBean

In version 2 of the XMBean we add support for persistence of the XMBean attributes. The updated XMBean de-
ployment descriptor is given below.

The JBoss JMX Microkernel

JBoss Release 2 61

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE mbean PUBLIC

"-//JBoss//DTD JBOSS XMBEAN 1.0//EN"
"http://www.jboss.org/j2ee/dtd/jboss_xmbean_1_0.dtd">

<mbean>
<description>The JNDIMap XMBean Example Version 2</description>
<descriptors>

<persistence persistPolicy="OnUpdate" persistPeriod="10"
persistLocation="${jboss.server.data.dir}" persistName="JNDIMap.ser"/>

<currencyTimeLimit value="10"/>
<state-action-on-update value="keep-running"/>
<persistence-manager value="org.jboss.mx.persistence.ObjectStreamPersistenceManager"/>

</descriptors> <class>org.jboss.test.jmx.xmbean.JNDIMap</class>
<constructor>

<description>The default constructor</description>
<name>JNDIMap</name>

</constructor>
<!-- Attributes -->
<attribute access="read-write" getMethod="getJndiName" setMethod="setJndiName">

<description>
The location in JNDI where the Map we manage will be bound

</description>
<name>JndiName</name>
<type>java.lang.String</type>
<descriptors>

<default value="inmemory/maps/MapTest"/>
</descriptors>

</attribute>
<attribute access="read-write" getMethod="getInitialValues"

setMethod="setInitialValues">
<description>The array of initial values that will be placed into the

map associated with the service. The array is a collection of
key,value pairs with elements[0,2,4,...2n] being the keys and
elements [1,3,5,...,2n+1] the associated values</description>

<name>InitialValues</name>
<type>[Ljava.lang.String;</type>
<descriptors>

<default value="key0,value0"/>
</descriptors>

</attribute>
<!-- Operations -->
<operation>

<description>The start lifecycle operation</description>
<name>start</name>

</operation>
<operation>

<description>The stop lifecycle operation</description>
<name>stop</name>

</operation>
<operation impact="ACTION">

<description>Put a value into the nap</description>
<name>put</name>
<parameter>

<description>The key the value will be store under</description>
<name>key</name>
<type>java.lang.Object</type>

</parameter>
<parameter>

<description>The value to place into the map</description>
<name>value</name>
<type>java.lang.Object</type>

</parameter>
</operation>
<operation impact="INFO">

<description>Get a value from the map</description>
<name>get</name>

The JBoss JMX Microkernel

JBoss Release 2 62

<parameter>
<description>The key to lookup in the map</description>
<name>get</name>
<type>java.lang.Object</type>

</parameter>
<return-type>java.lang.Object</return-type>

</operation>
<!-- Notifications -->
<notification>

<description>The notification sent whenever a value is get into the map
managed by the service</description>

<name>javax.management.Notification</name>
<notification-type>org.jboss.book.jmx.xmbean.JNDIMap.get</notification-type>

</notification>
<notification>

<description>The notification sent whenever a value is put into the map
managed by the service</description>

<name>javax.management.Notification</name>
<notification-type>org.jboss.book.jmx.xmbean.JNDIMap.put</notification-type>

</notification>
</mbean>

Build, deploy and test the version 2 XMBean as follows:

[examples]$ ant -Dchap=jmx -Dex=xmbean2 -Djboss.deploy.conf=rmi-adaptor run-example
...
run-examplexmbean2:

[java] JNDIMap Class: org.jboss.mx.modelmbean.XMBean
[java] JNDIMap Operations:
[java] + void start()
[java] + void stop()
[java] + void put(java.lang.Object chap2.xmbean:service=JNDIMap,java.lang.Object cha

p2.xmbean:service=JNDIMap)
[java] + java.lang.Object get(java.lang.Object chap2.xmbean:service=JNDIMap)
[java] + java.lang.String getJndiName()
[java] + void setJndiName(java.lang.String chap2.xmbean:service=JNDIMap)
[java] + [Ljava.lang.String; getInitialValues()
[java] + void setInitialValues([Ljava.lang.String; chap2.xmbean:service=JNDIMap)
[java] handleNotification, event: null
[java] key=key10, value=value10
[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s

ervice=JNDIMap,type=org.jboss.chap2.xmbean.JNDIMap.put,sequenceNumber=7,timeStamp=10986326
93716,message=null,userData=null]

[java] JNDIMap.put(key1, value1) successful
[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s

ervice=JNDIMap,type=org.jboss.chap2.xmbean.JNDIMap.get,sequenceNumber=8,timeStamp=10986326
93857,message=null,userData=null]

[java] JNDIMap.get(key0): null
[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s

ervice=JNDIMap,type=org.jboss.chap2.xmbean.JNDIMap.get,sequenceNumber=9,timeStamp=10986326
93896,message=null,userData=null]

[java] JNDIMap.get(key1): value1
[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s

ervice=JNDIMap,type=org.jboss.chap2.xmbean.JNDIMap.put,sequenceNumber=10,timeStamp=1098632
693925,message=null,userData=null]

There is nothing manifestly different about this version of the XMBean at this point because we have done nothing
to test that changes to attribute value are actually persisted. Perform this test by running example xmbean2a several
times:

[examples] ant -Dchap=jmx -Dex=xmbean2a run-example
...

The JBoss JMX Microkernel

JBoss Release 2 63

[java] InitialValues.length=2
[java] key=key10, value=value10

[examples] ant -Dchap=jmx -Dex=xmbean2a run-example
...

[java] InitialValues.length=4
[java] key=key10, value=value10
[java] key=key2, value=value2

[examples] ant -Dchap=jmx -Dex=xmbean2a run-example
...

[java] InitialValues.length=6
[java] key=key10, value=value10
[java] key=key2, value=value2
[java] key=key3, value=value3

The org.jboss.book.jmx.xmbean.TestXMBeanRestart used in this example obtains the current InitialValues

attribute setting, and then adds another key/value pair to it. The client code is shown below.

package org.jboss.book.jmx.xmbean;

import javax.management.Attribute;
import javax.management.ObjectName;
import javax.naming.InitialContext;

import org.jboss.jmx.adaptor.rmi.RMIAdaptor;

/**
* A client that demonstrates the persistence of the xmbean
* attributes. Every time it run it looks up the InitialValues
* attribute, prints it out and then adds a new key/value to the
* list.
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.2 $
*/

public class TestXMBeanRestart
{

/**
* @param args the command line arguments
*/
public static void main(String[] args) throws Exception
{

InitialContext ic = new InitialContext();
RMIAdaptor server = (RMIAdaptor) ic.lookup("jmx/rmi/RMIAdaptor");

// Get the InitialValues attribute
ObjectName name = new ObjectName("chap2.xmbean:service=JNDIMap");
String[] initialValues = (String[])

server.getAttribute(name, "InitialValues");
System.out.println("InitialValues.length="+initialValues.length);
int length = initialValues.length;
for (int n = 0; n < length; n += 2) {

String key = initialValues[n];
String value = initialValues[n+1];

System.out.println("key="+key+", value="+value);
}
// Add a new key/value pair
String[] newInitialValues = new String[length+2];
System.arraycopy(initialValues, 0, newInitialValues,

The JBoss JMX Microkernel

JBoss Release 2 64

0, length);
newInitialValues[length] = "key"+(length/2+1);
newInitialValues[length+1] = "value"+(length/2+1);

Attribute ivalues = new
Attribute("InitialValues", newInitialValues);

server.setAttribute(name, ivalues);
}

}

At this point you may even shutdown the JBoss server, restart it and then rerun the initial example to see if the
changes are persisted across server restarts:

[examples]$ ant -Dchap=jmx -Dex=xmbean2 run-example
...

run-examplexmbean2:
[java] JNDIMap Class: org.jboss.mx.modelmbean.XMBean
[java] JNDIMap Operations:
[java] + void start()
[java] + void stop()
[java] + void put(java.lang.Object chap2.xmbean:service=JNDIMap,java.lang.Object cha

p2.xmbean:service=JNDIMap)
[java] + java.lang.Object get(java.lang.Object chap2.xmbean:service=JNDIMap)
[java] + java.lang.String getJndiName()
[java] + void setJndiName(java.lang.String chap2.xmbean:service=JNDIMap)
[java] + [Ljava.lang.String; getInitialValues()
[java] + void setInitialValues([Ljava.lang.String; chap2.xmbean:service=JNDIMap)
[java] handleNotification, event: null
[java] key=key10, value=value10
[java] key=key2, value=value2
[java] key=key3, value=value3
[java] key=key4, value=value4
[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s

ervice=JNDIMap,type=org.jboss.book.jmx.xmbean.JNDIMap.put,sequenceNumber=3,timeStamp=10986
33664712,message=null,userData=null]

[java] JNDIMap.put(key1, value1) successful
[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s

ervice=JNDIMap,type=org.jboss.book.jmx.xmbean.JNDIMap.get,sequenceNumber=4,timeStamp=10986
33664821,message=null,userData=null]

[java] JNDIMap.get(key0): null
[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s

ervice=JNDIMap,type=org.jboss.book.jmx.xmbean.JNDIMap.get,sequenceNumber=5,timeStamp=10986
33664860,message=null,userData=null]

[java] JNDIMap.get(key1): value1
[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s

ervice=JNDIMap,type=org.jboss.book.jmx.xmbean.JNDIMap.put,sequenceNumber=6,timeStamp=10986
33664877,message=null,userData=null]

[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s
ervice=JNDIMap,type=org.jboss.book.jmx.xmbean.JNDIMap.put,sequenceNumber=7,timeStamp=10986
33664895,message=null,userData=null]

[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s
ervice=JNDIMap,type=org.jboss.book.jmx.xmbean.JNDIMap.put,sequenceNumber=8,timeStamp=10986
33664899,message=null,userData=null]

[java] handleNotification, event: javax.management.Notification[source=chap2.xmbean:s
ervice=JNDIMap,type=org.jboss.book.jmx.xmbean.JNDIMap.put,sequenceNumber=9,timeStamp=10986
33665614,message=null,userData=null]

You see that the last InitialValues attribute setting is in fact visible.

1.4.4. Deployment Ordering and Dependencies

The JBoss JMX Microkernel

JBoss Release 2 65

We have seen how to manage dependencies using the service descriptor depends and depends-list tags. The de-
ployment ordering supported by the deployment scanners provides a coarse-grained dependency management in
that there is an order to deployments. If dependencies are consistent with the deployment packages then this is a
simpler mechanism than having to enumerate the explicit MBean-MBean dependencies. By writing your own fil-
ters you can change the coarse grained ordering performed by the deployment scanner.

When a component archive is deployed, its nested deployment units are processed in a depth first ordering. Struc-
turing of components into an archive hierarchy is yet another way to manage deployment ordering.You will need to
explicitly state your MBean dependencies if your packaging structure does not happen to resolve the dependencies.
Let's consider an example component deployment that consists of an MBean that uses an EJB. Here is the structure
of the example EAR.

output/jmx/jmx-ex3.ear
+- META-INF/MANIFEST.MF
+- META-INF/jboss-app.xml
+- jmx-ex3.jar (archive) [EJB jar]
| +- META-INF/MANIFEST.MF
| +- META-INF/ejb-jar.xml
| +- org/jboss/book/jmx/ex3/EchoBean.class
| +- org/jboss/book/jmx/ex3/EchoLocal.class
| +- org/jboss/book/jmx/ex3/EchoLocalHome.class
+- jmx-ex3.sar (archive) [MBean sar]
| +- META-INF/MANIFEST.MF
| +- META-INF/jboss-service.xml
| +- org/jboss/book/jmx/ex3/EjbMBeanAdaptor.class
+- META-INF/application.xml

The EAR contains a jmx-ex3.jar and jmx-ex3.sar. The jmx-ex3.jar is the EJB archive and the jmx-ex3.sar is
the MBean service archive. We have implemented the service as a Dynamic MBean to provide an illustration of
their use.

package org.jboss.book.jmx.ex3;

import java.lang.reflect.Method;
import javax.ejb.CreateException;
import javax.management.Attribute;
import javax.management.AttributeList;
import javax.management.AttributeNotFoundException;
import javax.management.DynamicMBean;
import javax.management.InvalidAttributeValueException;
import javax.management.JMRuntimeException;
import javax.management.MBeanAttributeInfo;
import javax.management.MBeanConstructorInfo;
import javax.management.MBeanInfo;
import javax.management.MBeanNotificationInfo;
import javax.management.MBeanOperationInfo;
import javax.management.MBeanException;
import javax.management.MBeanServer;
import javax.management.ObjectName;
import javax.management.ReflectionException;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import org.jboss.system.ServiceMBeanSupport;

/**
* An example of a DynamicMBean that exposes select attributes and
* operations of an EJB as an MBean.
* @author Scott.Stark@jboss.org
* @version $Revision: 1.2 $

The JBoss JMX Microkernel

JBoss Release 2 66

*/
public class EjbMBeanAdaptor extends ServiceMBeanSupport

implements DynamicMBean
{

private String helloPrefix;
private String ejbJndiName;
private EchoLocalHome home;

/** These are the mbean attributes we expose
*/
private MBeanAttributeInfo[] attributes = {

new MBeanAttributeInfo("HelloPrefix", "java.lang.String",
"The prefix message to append to the session echo reply",
true, // isReadable
true, // isWritable
false), // isIs

new MBeanAttributeInfo("EjbJndiName", "java.lang.String",
"The JNDI name of the session bean local home",
true, // isReadable
true, // isWritable
false) // isIs

};

/**
* These are the mbean operations we expose
*/
private MBeanOperationInfo[] operations;

/**
* We override this method to setup our echo operation info. It
* could also be done in a ctor.
*/
public ObjectName preRegister(MBeanServer server,

ObjectName name)
throws Exception

{
log.info("preRegister notification seen");

operations = new MBeanOperationInfo[5];

Class thisClass = getClass();
Class[] parameterTypes = {String.class};
Method echoMethod =

thisClass.getMethod("echo", parameterTypes);
String desc = "The echo op invokes the session bean echo method and"

+ " returns its value prefixed with the helloPrefix attribute value";
operations[0] = new MBeanOperationInfo(desc, echoMethod);

// Add the Service interface operations from our super class
parameterTypes = new Class[0];
Method createMethod =

thisClass.getMethod("create", parameterTypes);
operations[1] = new MBeanOperationInfo("The

JBoss Service.create", createMethod);
Method startMethod =

thisClass.getMethod("start", parameterTypes);
operations[2] = new MBeanOperationInfo("The

JBoss Service.start", startMethod);
Method stopMethod =

thisClass.getMethod("stop", parameterTypes);
operations[3] = new MBeanOperationInfo("The

JBoss Service.stop", startMethod);
Method destroyMethod =

thisClass.getMethod("destroy", parameterTypes);
operations[4] = new MBeanOperationInfo("The

JBoss Service.destroy", startMethod);

The JBoss JMX Microkernel

JBoss Release 2 67

return name;
}

// --- Begin ServiceMBeanSupport overides
protected void createService() throws Exception
{

log.info("Notified of create state");
}

protected void startService() throws Exception
{

log.info("Notified of start state");
InitialContext ctx = new InitialContext();
home = (EchoLocalHome) ctx.lookup(ejbJndiName);

}

protected void stopService()
{

log.info("Notified of stop state");
}

// --- End ServiceMBeanSupport overides

public String getHelloPrefix()
{

return helloPrefix;
}
public void setHelloPrefix(String helloPrefix)
{

this.helloPrefix = helloPrefix;
}

public String getEjbJndiName()
{

return ejbJndiName;
}
public void setEjbJndiName(String ejbJndiName)
{

this.ejbJndiName = ejbJndiName;
}

public String echo(String arg)
throws CreateException, NamingException

{
log.debug("Lookup EchoLocalHome@"+ejbJndiName);
EchoLocal bean = home.create();
String echo = helloPrefix + bean.echo(arg);
return echo;

}

// --- Begin DynamicMBean interface methods
/**
* Returns the management interface that describes this dynamic
* resource. It is the responsibility of the implementation to
* make sure the description is accurate.
*
* @return the management interface descriptor.
*/
public MBeanInfo getMBeanInfo()
{

String classname = getClass().getName();
String description = "This is an MBean that uses a session bean in the"

+ " implementation of its echo operation.";
MBeanInfo[] constructors = null;
MBeanNotificationInfo[] notifications = null;

The JBoss JMX Microkernel

JBoss Release 2 68

MBeanInfo mbeanInfo = new MBeanInfo(classname,
description, attributes,
constructors, operations,
notifications);

// Log when this is called so we know when in the
lifecycle this is used

Throwable trace = new Throwable("getMBeanInfo trace");
log.info("Don't panic, just a stack

trace", trace);
return mbeanInfo;

}

/**
* Returns the value of the attribute with the name matching the
* passed string.
*
* @param attribute the name of the attribute.
* @return the value of the attribute.
* @exception AttributeNotFoundException when there is no such
* attribute.
* @exception MBeanException wraps any error thrown by the
* resource when
* getting the attribute.
* @exception ReflectionException wraps any error invoking the
* resource.
*/
public Object getAttribute(String attribute)

throws AttributeNotFoundException,
MBeanException,
ReflectionException

{
Object value = null;
if (attribute.equals("HelloPrefix")) {

value = getHelloPrefix();
} else if(attribute.equals("EjbJndiName")) {

value = getEjbJndiName();
} else {

throw new AttributeNotFoundException("Unknown
attribute("+attribute+") requested");

}
return value;

}

/**
* Returns the values of the attributes with names matching the
* passed string array.
*
* @param attributes the names of the attribute.
* @return an {@link AttributeList AttributeList} of name
* and value pairs.
*/
public AttributeList getAttributes(String[] attributes)
{

AttributeList values = new AttributeList();
for (int a = 0; a < attributes.length; a++) {

String name = attributes[a];
try {

Object value = getAttribute(name);
Attribute attr = new Attribute(name, value);
values.add(attr);

} catch(Exception e) {
log.error("Failed to find attribute: "+name, e);

}
}
return values;

}

The JBoss JMX Microkernel

JBoss Release 2 69

/**
* Sets the value of an attribute. The attribute and new value
* are passed in the name value pair {@link Attribute
* Attribute}.
*
* @see javax.management.Attribute
*
* @param attribute the name and new value of the attribute.
* @exception AttributeNotFoundException when there is no such
* attribute.
* @exception InvalidAttributeValueException when the new value
* cannot be converted to the type of the attribute.
* @exception MBeanException wraps any error thrown by the
* resource when setting the new value.
* @exception ReflectionException wraps any error invoking the
* resource.
*/
public void setAttribute(Attribute attribute)

throws AttributeNotFoundException,
InvalidAttributeValueException,
MBeanException,
ReflectionException

{
String name = attribute.getName();
if (name.equals("HelloPrefix")) {

String value = attribute.getValue().toString();
setHelloPrefix(value);

} else if(name.equals("EjbJndiName")) {
String value = attribute.getValue().toString();
setEjbJndiName(value);

} else {
throw new AttributeNotFoundException("Unknown attribute("+name+") requested");

}
}

/**
* Sets the values of the attributes passed as an
* {@link AttributeList AttributeList} of name and new
* value pairs.
*
* @param attributes the name an new value pairs.
* @return an {@link AttributeList AttributeList} of name and
* value pairs that were actually set.
*/
public AttributeList setAttributes(AttributeList attributes)
{

AttributeList setAttributes = new AttributeList();
for(int a = 0; a < attributes.size(); a++) {

Attribute attr = (Attribute) attributes.get(a);
try {

setAttribute(attr);
setAttributes.add(attr);

} catch(Exception ignore) {
}

}
return setAttributes;

}

/**
* Invokes a resource operation.
*
* @param actionName the name of the operation to perform.
* @param params the parameters to pass to the operation.
* @param signature the signartures of the parameters.
* @return the result of the operation.

The JBoss JMX Microkernel

JBoss Release 2 70

* @exception MBeanException wraps any error thrown by the
* resource when performing the operation.
* @exception ReflectionException wraps any error invoking the
* resource.
*/
public Object invoke(String actionName, Object[] params,

String[] signature)
throws MBeanException,

ReflectionException
{

Object rtnValue = null;
log.debug("Begin invoke, actionName="+actionName);
try {

if (actionName.equals("echo")) {
String arg = (String) params[0];
rtnValue = echo(arg);
log.debug("Result: "+rtnValue);

} else if (actionName.equals("create")) {
super.create();

} else if (actionName.equals("start")) {
super.start();

} else if (actionName.equals("stop")) {
super.stop();

} else if (actionName.equals("destroy")) {
super.destroy();

} else {
throw new JMRuntimeException("Invalid state,
don't know about op="+actionName);

}
} catch(Exception e) {

throw new ReflectionException(e, "echo failed");
}

log.debug("End invoke, actionName="+actionName);
return rtnValue;

}

// --- End DynamicMBean interface methods

}

Believe it or not, this is a very trivial MBean. The vast majority of the code is there to provide the MBean metadata
and handle the callbacks from the MBean Server. This is required because a Dynamic MBean is free to expose
whatever management interface it wants. A Dynamic MBean can in fact change its management interface at
runtime simply by returning different metadata from the getMBeanInfo method. Of course, some clients may not be
happy with such a dynamic object, but the MBean Server will do nothing to prevent a Dynamic MBean from chan-
ging its interface.

There are two points to this example. First, demonstrate how an MBean can depend on an EJB for some of its func-
tionality and second, how to create MBeans with dynamic management interfaces. If we were to write a standard
MBean with a static interface for this example it would look like the following.

public interface EjbMBeanAdaptorMBean
{

public String getHelloPrefix();
public void setHelloPrefix(String prefix);
public String getEjbJndiName();
public void setEjbJndiName(String jndiName);
public String echo(String arg) throws CreateException, NamingException;
public void create() throws Exception;
public void start() throws Exception;

The JBoss JMX Microkernel

JBoss Release 2 71

public void stop();
public void destroy();

}

Moving to lines 67-83, this is where the MBean operation metadata is constructed. The echo(String), create(),
start(), stop() and destroy() operations are defined by obtaining the corresponding java.lang.reflect.Method
object and adding a description. Let's go through the code and discuss where this interface implementation exists
and how the MBean uses the EJB. Beginning with lines 40-51, the two MBeanAttributeInfo instances created
define the attributes of the MBean. These attributes correspond to the getHelloPrefix/setHelloPrefix and getE-

jbJndiName/setEjbJndiName of the static interface. One thing to note in terms of why one might want to use a Dy-
namic MBean is that you have the ability to associate descriptive text with the attribute metadata. This is not
something you can do with a static interface.

Lines 88-103 correspond to the JBoss service life cycle callbacks. Since we are subclassing the ServiceMBeanSup-

port utility class, we override the createService, startService, and stopService template callbacks rather than
the create, start, and stop methods of the service interface. Note that we cannot attempt to lookup the EchoLoc-

alHome interface of the EJB we make use of until the startService method. Any attempt to access the home inter-
face in an earlier life cycle method would result in the name not being found in JNDI because the EJB container
had not gotten to the point of binding the home interfaces. Because of this dependency we will need to specify that
the MBean service depends on the EchoLocal EJB container to ensure that the service is not started before the EJB
container is started. We will see this dependency specification when we look at the service descriptor.

Lines 105-121 are the HelloPrefix and EjbJndiName attribute accessors implementations. These are invoked in re-
sponse to getAttribute/setAttribute invocations made through the MBean Server.

Lines 123-130 correspond to the echo(String) operation implementation. This method invokes the EchoLoc-

al.echo(String) EJB method. The local bean interface is created using the EchoLocalHome that was obtained in
the startService method.

The remainder of the class makes up the Dynamic MBean interface implementation. Lines 133-152 correspond to
the MBean metadata accessor callback. This method returns a description of the MBean management interface in
the form of the javax.management.MBeanInfo object. This is made up of a description, the MBeanAttributeInfo

and MBeanOperationInfo metadata created earlier, as well as constructor and notification information. This MBean
does not need any special constructors or notifications so this information is null.

Lines 154-258 handle the attribute access requests. This is rather tedious and error prone code so a toolkit or infra-
structure that helps generate these methods should be used. A Model MBean framework based on XML called
XBeans is currently being investigated in JBoss. Other than this, no other Dynamic MBean frameworks currently
exist.

Lines 260-310 correspond to the operation invocation dispatch entry point. Here the request operation action name
is checked against those the MBean handles and the appropriate method is invoked.

The jboss-service.xml descriptor for the MBean is given below. The dependency on the EJB container MBean is
highlighted in bold. The format of the EJB container MBean ObjectName is:
"jboss.j2ee:service=EJB,jndiName=" + <home-jndi-name> where the <home-jndi-name> is the EJB home in-
terface JNDI name.

<server>
<mbean code="org.jboss.book.jmx.ex3.EjbMBeanAdaptor"

name="jboss.book:service=EjbMBeanAdaptor">
<attribute name="HelloPrefix">AdaptorPrefix</attribute>

The JBoss JMX Microkernel

JBoss Release 2 72

<attribute name="EjbJndiName">local/chap2.EchoBean</attribute>
<depends>jboss.j2ee:service=EJB,jndiName=local/chap2.EchoBean</depends>

</mbean>
</server>

Deploy the example ear by running:

[examples]$ ant -Dchap=jmx -Dex=3 run-example

On the server console there will be messages similar to the following:

14:57:12,906 INFO [EARDeployer] Init J2EE application: file:/private/tmp/jboss-4.0.1/server/
default/deploy/chap2-ex3.ear
14:57:13,044 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace

at org.jboss.book.jmx.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
...
14:57:13,088 INFO [EjbMBeanAdaptor] preRegister notification seen
14:57:13,093 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace

at org.jboss.book.jmx.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
...
14:57:13,117 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace

at org.jboss.book.jmx.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
...
14:57:13,140 WARN [EjbMBeanAdaptor] Unexcepted error accessing MBeanInfo for null
java.lang.NullPointerException

at org.jboss.system.ServiceMBeanSupport.postRegister(ServiceMBeanSupport.java:418)
...
14:57:13,203 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace

at org.jboss.book.jmx.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
...
14:57:13,232 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace

at org.jboss.book.jmx.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
...
14:57:13,420 INFO [EjbModule] Deploying Chap2EchoInfoBean
14:57:13,443 INFO [EjbModule] Deploying chap2.EchoBean
14:57:13,488 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace

at org.jboss.book.jmx.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
...
14:57:13,542 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace

at org.jboss.book.jmx.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
...
14:57:13,558 INFO [EjbMBeanAdaptor] Begin invoke, actionName=create
14:57:13,560 INFO [EjbMBeanAdaptor] Notified of create state
14:57:13,562 INFO [EjbMBeanAdaptor] End invoke, actionName=create
14:57:13,604 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace

at org.jboss.book.jmx.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
...
14:57:13,621 INFO [EjbMBeanAdaptor] Don't panic, just a stack trace
java.lang.Throwable: getMBeanInfo trace

at org.jboss.book.jmx.ex3.EjbMBeanAdaptor.getMBeanInfo(EjbMBeanAdaptor.java:153)
14:57:13,641 INFO [EjbMBeanAdaptor] Begin invoke, actionName=getState
14:57:13,942 INFO [EjbMBeanAdaptor] Begin invoke, actionName=start
14:57:13,944 INFO [EjbMBeanAdaptor] Notified of start state
14:57:13,951 INFO [EjbMBeanAdaptor] Testing Echo
14:57:13,983 INFO [EchoBean] echo, info=echo info, arg=, arg=startService
14:57:13,986 INFO [EjbMBeanAdaptor] echo(startService) = startService

The JBoss JMX Microkernel

JBoss Release 2 73

14:57:13,988 INFO [EjbMBeanAdaptor] End invoke, actionName=start
14:57:13,991 INFO [EJBDeployer] Deployed: file:/tmp/jboss-4.0.5.GA/server/default/tmp/deploy
/tmp60550jmx-ex3.ear-contents/jmx-ex3.jar
14:57:14,075 INFO [EARDeployer] Started J2EE application: ...

The stack traces are not exceptions. They are traces coming from the EjbMBeanAdaptor code to demonstrate that
clients ask for the MBean interface when they want to discover the MBean's capabilities. Notice that the EJB con-
tainer (lines with [EjbModule]) is started before the example MBean (lines with [EjbMBeanAdaptor]).

Now, let's invoke the echo method using the JMX console web application. Go to the JMX Console (ht-
tp://localhost:8080/jmx-console) and find the service=EjbMBeanAdaptor in the jboss.book domain. Click on the
link and scroll down to the echo operation section. The view should be like that shown in Figure 1.19.

Figure 1.19. The EjbMBeanAdaptor MBean operations JMX console view

As shown, we have already entered an argument string of -echo-arg into the ParamValue text field. Press the In-

The JBoss JMX Microkernel

JBoss Release 2 74

http://localhost:8080/jmx-console
http://localhost:8080/jmx-console

voke button and a result string of AdaptorPrefix-echo-arg is displayed on the results page. The server console
will show several stack traces from the various metadata queries issues by the JMX console and the MBean invoke
method debugging lines:

10:51:48,671 INFO [EjbMBeanAdaptor] Begin invoke, actionName=echo
10:51:48,671 INFO [EjbMBeanAdaptor] Lookup EchoLocalHome@local/chap2.EchoBean
10:51:48,687 INFO [EchoBean] echo, info=echo info, arg=, arg=-echo-arg
10:51:48,687 INFO [EjbMBeanAdaptor] Result: AdaptorPrefix-echo-arg
10:51:48,687 INFO [EjbMBeanAdaptor] End invoke, actionName=echo

1.5. JBoss Deployer Architecture

JBoss has an extensible deployment architecture that allows one to incorporate components into the bare JBoss
JMX microkernel. The MainDeployer is the deployment entry point. Requests to deploy a component are sent to
the MainDeployer and it determines if there is a subdeployer capable of handling the deployment, and if there is, it
delegates the deployment to the subdeployer. We saw an example of this when we looked at how the MainDeployer

used the SARDeployer to deploy MBean services. Among the deployers provided with JBoss are:

• AbstractWebDeployer: This subdeployer handles web application archives (WARs). It accepts deployment
archives and directories whose name ends with a war suffix. WARs must have a WEB-INF/web.xml descriptor
and may have a WEB-INF/jboss-web.xml descriptor.

• EARDeployer: This subdeployer handles enterprise application archives (EARs). It accepts deployment
archives and directories whose name ends with an ear suffix. EARs must have a META-INF/application.xml

descriptor and may have a META-INF/jboss-app.xml descriptor.

• EJBDeployer: This subdeployer handles enterprise bean jars. It accepts deployment archives and directories
whose name ends with a jar suffix. EJB jars must have a META-INF/ejb-jar.xml descriptor and may have a
META-INF/jboss.xml descriptor.

• JARDeployer: This subdeployer handles library JAR archives. The only restriction it places on an archive is
that it cannot contain a WEB-INF directory.

• RARDeployer: This subdeployer handles JCA resource archives (RARs). It accepts deployment archives and
directories whose name ends with a rar suffix. RARs must have a META-INF/ra.xml descriptor.

• SARDeployer: This subdeployer handles JBoss MBean service archives (SARs). It accepts deployment
archives and directories whose name ends with a sar suffix, as well as standalone XML files that end with ser-

vice.xml. SARs that are jars must have a META-INF/jboss-service.xml descriptor.

• XSLSubDeployer: This subdeployer deploys arbitrary XML files. JBoss uses the XSLSubDeployer to deploy
ds.xml files and transform them into service.xml files for the SARDeployer. However, it is not limited to just
this task.

• HARDeployer: This subdeployer deploys hibernate archives (HARs). It accepts deployment archives and dir-
ectories whose name ends with a har suffix. HARs must have a META-INF/hibernate-service.xml descriptor.

• AspectDeployer: This subdeployer deploys AOP archives. It accepts deployment archives and directories
whose name ends with an aop suffix as well as aop.xml files. AOP archives must have a META-

INF/jboss-aop.xml descriptor.

The JBoss JMX Microkernel

JBoss Release 2 75

• ClientDeployer: This subdeployer deploys J2EE application clients. It accepts deployment archives and direct-
ories whose name ends with a jar suffix. J2EE clients must have a META-INF/application-client.xml

descriptor and may have a META-INF/jboss-client.xml descriptor.

• BeanShellSubDeployer: This subdeployer deploys bean shell scripts as MBeans. It accepts files whose name
ends with a bsh suffix.

The MainDeployer, JARDeployer and SARDeployer are hard coded deployers in the JBoss server core. All other
deployers are MBean services that register themselves as deployers with the MainDeployer using the addDeploy-

er(SubDeployer) operation.

The MainDeployer communicates information about the component to be deployed the SubDeployer using a De-

ploymentInfo object. The DeploymentInfo object is a data structure that encapsulates the complete state of a de-
ployable component.

When the MainDeployer receives a deployment request, it iterates through its registered subdeployers and invokes
the accepts(DeploymentInfo) method on the subdeployer. The first subdeployer to return true is chosen. The
MainDeployer will delegate the init, create, start, stop and destroy deployment life cycle operations to the subde-
ployer.

1.5.1. Deployers and ClassLoaders

Deployers are the mechanism by which components are brought into a JBoss server. Deployers are also the creators
of the majority of UCL instances, and the primary creator is the MainDeployer. The MainDeployer creates the
UCL for a deployment early on during its init method. The UCL is created by calling the Deploy-
mentInfo.createClassLoaders() method. Only the topmost DeploymentInfo will actually create a UCL. All subde-
ployments will add their class paths to their parent DeploymentInfo UCL. Every deployment does have a stan-
dalone URLClassLoader that uses the deployment URL as its path. This is used to localize the loading of resources
such as deployment descriptors. Figure 1.20 provides an illustration of the interaction between Deployers, Deploy-
mentInfos and class loaders.

The JBoss JMX Microkernel

JBoss Release 2 76

Figure 1.20. An illustration of the class loaders involved with an EAR deployment

The figure illustrates an EAR deployment with EJB and WAR subdeployments. The EJB deployment references
the lib/util.jar utility jar via its manifest. The WAR includes classes in its WEB-INF/classes directory as well
as the WEB-INF/lib/jbosstest-web-util.jar. Each deployment has a DeploymentInfo instance that has a URL-

ClassLoader pointing to the deployment archive. The DeploymentInfo associated with some.ear is the only one to
have a UCL created. The ejbs.jar and web.war DeploymentInfos add their deployment archive to the some.ear

UCL classpath, and share this UCL as their deployment UCL. The EJBDeployer also adds any manifest jars to the
EAR UCL.

The WARDeployer behaves differently than other deployers in that it only adds its WAR archive to the Deploy-

mentInfo UCL classpath. The loading of classes from the WAR WEB-INF/classes and WEB-INF/lib locations is
handled by the servlet container class loader. The servlet container class loaders delegate to the WAR Deploy-

The JBoss JMX Microkernel

JBoss Release 2 77

mentInfo UCL as their parent class loader, but the server container class loader is not part of the JBoss class loader
repository. Therefore, classes inside of a WAR are not visible to other components. Classes that need to be shared
between web application components and other components such as EJBs, and MBeans need to be loaded into the
shared class loader repository either by including the classes into a SAR or EJB deployment, or by referencing a jar
containing the shared classes through a manifest Class-Path entry. In the case of a SAR, the SAR classpath ele-
ment in the service deployment serves the same purpose as a JAR manifest Class-Path.

1.6. Remote Access to Services, Detached Invokers

In addition to the MBean services notion that allows for the ability to integrate arbitrary functionality, JBoss also
has a detached invoker concept that allows MBean services to expose functional interfaces via arbitrary protocols
for remote access by clients. The notion of a detached invoker is that remoting and the protocol by which a service
is accessed is a functional aspect or service independent of the component. Thus, one can make a naming service
available for use via RMI/JRMP, RMI/HTTP, RMI/SOAP, or any arbitrary custom transport.

Let's begin our discussion of the detached invoker architecture with an overview of the components involved. The
main components in the detached invoker architecture are shown in Figure 1.21.

Figure 1.21. The main components in the detached invoker architecture

The JBoss JMX Microkernel

JBoss Release 2 78

On the client side, there exists a client proxy which exposes the interface(s) of the MBean service. This is the same
smart, compile-less dynamic proxy that we use for EJB home and remote interfaces. The only difference between
the proxy for an arbitrary service and the EJB is the set of interfaces exposed as well as the client side interceptors
found inside the proxy. The client interceptors are represented by the rectangles found inside of the client proxy.
An interceptor is an assembly line type of pattern that allows for transformation of a method invocation and/or re-
turn values. A client obtains a proxy through some lookup mechanism, typically JNDI. Although RMI is indicated
in Figure 1.21, the only real requirement on the exposed interface and its types is that they are serializable between
the client server over JNDI as well as the transport layer.

The choice of the transport layer is determined by the last interceptor in the client proxy, which is referred to as the
Invoker Interceptor in Figure 1.21. The invoker interceptor contains a reference to the transport specific stub of the
server side Detached Invoker MBean service. The invoker interceptor also handles the optimization of calls that oc-
cur within the same VM as the target MBean. When the invoker interceptor detects that this is the case the call is
passed to a call-by-reference invoker that simply passes the invocation along to the target MBean.

The detached invoker service is responsible for making a generic invoke operation available via the transport the
detached invoker handles. The Invoker interface illustrates the generic invoke operation.

package org.jboss.invocation;

import java.rmi.Remote;
import org.jboss.proxy.Interceptor;
import org.jboss.util.id.GUID;

public interface Invoker
extends Remote

{
GUID ID = new GUID();

String getServerHostName() throws Exception;

Object invoke(Invocation invocation) throws Exception;
}

The Invoker interface extends Remote to be compatible with RMI, but this does not mean that an invoker must ex-
pose an RMI service stub. The detached invoker service simply acts as a transport gateway that accepts invocations
represented as the org.jboss.invocation.Invocation object over its specific transport, unmarshalls the invoca-
tion, forwards the invocation onto the destination MBean service, represented by the Target MBean in Figure 1.21,
and marshalls the return value or exception resulting from the forwarded call back to the client.

The Invocation object is just a representation of a method invocation context. This includes the target MBean
name, the method, the method arguments, a context of information associated with the proxy by the proxy factory,
and an arbitrary map of data associated with the invocation by the client proxy interceptors.

The configuration of the client proxy is done by the server side proxy factory MBean service, indicated by the
Proxy Factory component in Figure 1.21. The proxy factory performs the following tasks:

• Create a dynamic proxy that implements the interface the target MBean wishes to expose.

• Associate the client proxy interceptors with the dynamic proxy handler.

• Associate the invocation context with the dynamic proxy. This includes the target MBean, detached invoker

The JBoss JMX Microkernel

JBoss Release 2 79

stub and the proxy JNDI name.

• Make the proxy available to clients by binding the proxy into JNDI.

The last component in Figure 1.21 is the Target MBean service that wishes to expose an interface for invocations to
remote clients. The steps required for an MBean service to be accessible through a given interface are:

• Define a JMX operation matching the signature: public Object in-

voke(org.jboss.invocation.Invocation) throws Exception

• Create a HashMap<Long, Method> mapping from the exposed interface java.lang.reflect.Methods to the
long hash representation using the org.jboss.invocation.MarshalledInvocation.calculateHash method.

• Implement the invoke(Invocation) JMX operation and use the interface method hash mapping to transform
from the long hash representation of the invoked method to the java.lang.reflect.Method of the exposed in-
terface. Reflection is used to perform the actual invocation on the object associated with the MBean service that
actually implements the exposed interface.

1.6.1. A Detached Invoker Example, the MBeanServer Invoker Adaptor Service

In the section on connecting to the JMX server we mentioned that there was a service that allows one to access the
javax.management.MBeanServer via any protocol using an invoker service. In this section we present the
org.jboss.jmx.connector.invoker.InvokerAdaptorService and its configuration for access via RMI/JRMP as
an example of the steps required to provide remote access to an MBean service.

The InvokerAdaptorService is a simple MBean service that only exists to fulfill the target MBean role in the de-
tached invoker pattern.

Example 1.16. The InvokerAdaptorService MBean

package org.jboss.jmx.connector.invoker;
public interface InvokerAdaptorServiceMBean

extends org.jboss.system.ServiceMBean
{

Class getExportedInterface();
void setExportedInterface(Class exportedInterface);

Object invoke(org.jboss.invocation.Invocation invocation)
throws Exception;

}

package org.jboss.jmx.connector.invoker;

import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;
import java.lang.reflect.UndeclaredThrowableException;
import java.util.Collections;
import java.util.HashMap;
import java.util.Map;

import javax.management.MBeanServer;
import javax.management.ObjectName;

import org.jboss.invocation.Invocation;

The JBoss JMX Microkernel

JBoss Release 2 80

import org.jboss.invocation.MarshalledInvocation;
import org.jboss.mx.server.ServerConstants;
import org.jboss.system.ServiceMBeanSupport;
import org.jboss.system.Registry;

public class InvokerAdaptorService
extends ServiceMBeanSupport
implements InvokerAdaptorServiceMBean, ServerConstants

{
private static ObjectName mbeanRegistry;

static {
try {

mbeanRegistry = new ObjectName(MBEAN_REGISTRY);
} catch (Exception e) {

throw new RuntimeException(e.toString());
}

}

private Map marshalledInvocationMapping = new HashMap();
private Class exportedInterface;

public Class getExportedInterface()
{

return exportedInterface;
}

public void setExportedInterface(Class exportedInterface)
{

this.exportedInterface = exportedInterface;
}

protected void startService()
throws Exception

{
// Build the interface method map
Method[] methods = exportedInterface.getMethods();
HashMap tmpMap = new HashMap(methods.length);
for (int m = 0; m < methods.length; m ++) {

Method method = methods[m];
Long hash = new Long(MarshalledInvocation.calculateHash(method));
tmpMap.put(hash, method);

}

marshalledInvocationMapping = Collections.unmodifiableMap(tmpMap);
// Place our ObjectName hash into the Registry so invokers can
// resolve it
Registry.bind(new Integer(serviceName.hashCode()), serviceName);

}

protected void stopService()
throws Exception

{
Registry.unbind(new Integer(serviceName.hashCode()));

}

public Object invoke(Invocation invocation)
throws Exception

{
// Make sure we have the correct classloader before unmarshalling
Thread thread = Thread.currentThread();
ClassLoader oldCL = thread.getContextClassLoader();

// Get the MBean this operation applies to
ClassLoader newCL = null;

The JBoss JMX Microkernel

JBoss Release 2 81

ObjectName objectName = (ObjectName)
invocation.getValue("JMX_OBJECT_NAME");

if (objectName != null) {
// Obtain the ClassLoader associated with the MBean deployment
newCL = (ClassLoader)

server.invoke(mbeanRegistry, "getValue",
new Object[] { objectName, CLASSLOADER },
new String[] { ObjectName.class.getName(),

"java.lang.String" });
}

if (newCL != null && newCL != oldCL) {
thread.setContextClassLoader(newCL);

}

try {
// Set the method hash to Method mapping
if (invocation instanceof MarshalledInvocation) {

MarshalledInvocation mi = (MarshalledInvocation) invocation;
mi.setMethodMap(marshalledInvocationMapping);

}

// Invoke the MBeanServer method via reflection
Method method = invocation.getMethod();
Object[] args = invocation.getArguments();
Object value = null;
try {

String name = method.getName();
Class[] sig = method.getParameterTypes();
Method mbeanServerMethod =

MBeanServer.class.getMethod(name, sig);
value = mbeanServerMethod.invoke(server, args);

} catch(InvocationTargetException e) {
Throwable t = e.getTargetException();
if (t instanceof Exception) {

throw (Exception) t;
} else {

throw new UndeclaredThrowableException(t, method.toString());
}

}

return value;
} finally {

if (newCL != null && newCL != oldCL) {
thread.setContextClassLoader(oldCL);

}
}

}
}

Let's go through the key details of this service. The InvokerAdaptorServiceMBean Standard MBean interface of
the InvokerAdaptorService has a single ExportedInterface attribute and a single invoke(Invocation) opera-
tion. The ExportedInterface attribute allows customization of the type of interface the service exposes to clients.
This has to be compatible with the MBeanServer class in terms of method name and signature. The in-

voke(Invocation) operation is the required entry point that target MBean services must expose to participate in
the detached invoker pattern. This operation is invoked by the detached invoker services that have been configured
to provide access to the InvokerAdaptorService.

Lines 54-64 of the InvokerAdaptorService build the HashMap<Long, Method> of the ExportedInterface Class us-
ing the org.jboss.invocation.MarshalledInvocation.calculateHash(Method) utility method. Because

The JBoss JMX Microkernel

JBoss Release 2 82

java.lang.reflect.Method instances are not serializable, a MarshalledInvocation version of the non-
serializable Invocation class is used to marshall the invocation between the client and server. The MarshalledIn-

vocation replaces the Method instances with their corresponding hash representation. On the server side, the Mar-

shalledInvocation must be told what the hash to Method mapping is.

Line 64 creates a mapping between the InvokerAdaptorService service name and its hash code representation.
This is used by detached invokers to determine what the target MBean ObjectName of an Invocation is. When the
target MBean name is store in the Invocation, its store as its hashCode because ObjectNames are relatively ex-
pensive objects to create. The org.jboss.system.Registry is a global map like construct that invokers use to store
the hash code to ObjectName mappings in.

Lines 77-93 obtain the name of the MBean on which the MBeanServer operation is being performed and lookup
the class loader associated with the MBean's SAR deployment. This information is available via the
org.jboss.mx.server.registry.BasicMBeanRegistry, a JBoss JMX implementation specific class. It is gener-
ally necessary for an MBean to establish the correct class loading context because the detached invoker protocol
layer may not have access to the class loaders needed to unmarshall the types associated with an invocation.

Lines 101-105 install the ExposedInterface class method hash to method mapping if the invocation argument is of
type MarshalledInvocation. The method mapping calculated previously at lines 54-62 is used here.

Lines 107-114 perform a second mapping from the ExposedInterface Method to the matching method of the
MBeanServer class. The InvokerServiceAdaptor decouples the ExposedInterface from the MBeanServer class
in that it allows an arbitrary interface. This is needed on one hand because the standard java.lang.reflect.Proxy

class can only proxy interfaces. It also allows one to only expose a subset of the MBeanServer methods and add
transport specific exceptions like java.rmi.RemoteException to the ExposedInterface method signatures.

Line 115 dispatches the MBeanServer method invocation to the MBeanServer instance to which the InvokerAd-

aptorService was deployed. The server instance variable is inherited from the ServiceMBeanSupport superclass.

Lines 117-124 handle any exceptions coming from the reflective invocation including the unwrapping of any de-
clared exception thrown by the invocation.

Line 126 is the return of the successful MBeanServer method invocation result.

Note that the InvokerAdaptorService MBean does not deal directly with any transport specific details. There is
the calculation of the method hash to Method mapping, but this is a transport independent detail.

Now let's take a look at how the InvokerAdaptorService may be used to expose the same
org.jboss.jmx.adaptor.rmi.RMIAdaptor interface via RMI/JRMP as seen in Connecting to JMX Using RMI.
We will start by presenting the proxy factory and InvokerAdaptorService configurations found in the default
setup in the jmx-invoker-adaptor-service.sar deployment. Example 1.17 shows the jboss-service.xml

descriptor for this deployment.

Example 1.17. The default jmx-invoker-adaptor-server.sar jboss-service.xml deployment descriptor

<server>
<!-- The JRMP invoker proxy configuration for the InvokerAdaptorService -->
<mbean code="org.jboss.invocation.jrmp.server.JRMPProxyFactory"

name="jboss.jmx:type=adaptor,name=Invoker,protocol=jrmp,service=proxyFactory">
<!-- Use the standard JRMPInvoker from conf/jboss-service.xml -->
<attribute name="InvokerName">jboss:service=invoker,type=jrmp</attribute>
<!-- The target MBean is the InvokerAdaptorService configured below -->

The JBoss JMX Microkernel

JBoss Release 2 83

<attribute name="TargetName">jboss.jmx:type=adaptor,name=Invoker</attribute>
<!-- Where to bind the RMIAdaptor proxy -->
<attribute name="JndiName">jmx/invoker/RMIAdaptor</attribute>
<!-- The RMI compabitle MBeanServer interface -->
<attribute name="ExportedInterface">org.jboss.jmx.adaptor.rmi.RMIAdaptor</attribute>
<attribute name="ClientInterceptors">

<iterceptors>
<interceptor>org.jboss.proxy.ClientMethodInterceptor</interceptor>
<interceptor>

org.jboss.jmx.connector.invoker.client.InvokerAdaptorClientInterceptor
</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</iterceptors>
</attribute>
<depends>jboss:service=invoker,type=jrmp</depends>

</mbean>
<!-- This is the service that handles the RMIAdaptor invocations by routing

them to the MBeanServer the service is deployed under. -->
<mbean code="org.jboss.jmx.connector.invoker.InvokerAdaptorService"

name="jboss.jmx:type=adaptor,name=Invoker">
<attribute name="ExportedInterface">org.jboss.jmx.adaptor.rmi.RMIAdaptor</attribute>

</mbean>
</server>

The first MBean, org.jboss.invocation.jrmp.server.JRMPProxyFactory, is the proxy factory MBean service
that creates proxies for the RMI/JRMP protocol. The configuration of this service as shown in Example 1.17 states
that the JRMPInvoker will be used as the detached invoker, the InvokerAdaptorService is the target mbean to
which requests will be forwarded, that the proxy will expose the RMIAdaptor interface, the proxy will be bound into
JNDI under the name jmx/invoker/RMIAdaptor, and the proxy will contain 3 interceptors: ClientMethodInter-
ceptor, InvokerAdaptorClientInterceptor, InvokerInterceptor. The configuration of the InvokerAd-

aptorService simply sets the RMIAdaptor interface that the service is exposing.

The last piece of the configuration for exposing the InvokerAdaptorService via RMI/JRMP is the detached in-
voker. The detached invoker we will use is the standard RMI/JRMP invoker used by the EJB containers for home
and remote invocations, and this is the org.jboss.invocation.jrmp.server.JRMPInvoker MBean service con-
figured in the conf/jboss-service.xml descriptor. That we can use the same service instance emphasizes the de-
tached nature of the invokers. The JRMPInvoker simply acts as the RMI/JRMP endpoint for all RMI/JRMP proxies
regardless of the interface(s) the proxies expose or the service the proxies utilize.

1.6.2. Detached Invoker Reference

1.6.2.1. The JRMPInvoker - RMI/JRMP Transport

The org.jboss.invocation.jrmp.server.JRMPInvoker class is an MBean service that provides the RMI/JRMP
implementation of the Invoker interface. The JRMPInvoker exports itself as an RMI server so that when it is used
as the Invoker in a remote client, the JRMPInvoker stub is sent to the client instead and invocations use the RMI/
JRMP protocol.

The JRMPInvoker MBean supports a number of attribute to configure the RMI/JRMP transport layer. Its configur-
able attributes are:

• RMIObjectPort: sets the RMI server socket listening port number. This is the port RMI clients will connect to
when communicating through the proxy interface. The default setting in the jboss-service.xml descriptor is

The JBoss JMX Microkernel

JBoss Release 2 84

4444, and if not specified, the attribute defaults to 0 to indicate an anonymous port should be used.

• RMIClientSocketFactory: specifies a fully qualified class name for the
java.rmi.server.RMIClientSocketFactory interface to use during export of the proxy interface.

• RMIServerSocketFactory: specifies a fully qualified class name for the
java.rmi.server.RMIServerSocketFactory interface to use during export of the proxy interface.

• ServerAddress: specifies the interface address that will be used for the RMI server socket listening port. This
can be either a DNS hostname or a dot-decimal Internet address. Since the RMIServerSocketFactory does not
support a method that accepts an InetAddress object, this value is passed to the RMIServerSocketFactory im-
plementation class using reflection. A check for the existence of a public void setBindAd-

dress(java.net.InetAddress addr) method is made, and if one exists the RMIServerSocketAddr value is
passed to the RMIServerSocketFactory implementation. If the RMIServerSocketFactory implementation does
not support such a method, the ServerAddress value will be ignored.

• SecurityDomain: specifies the JNDI name of an org.jboss.security.SecurityDomain interface implementa-
tion to associate with the RMIServerSocketFactory implementation. The value will be passed to the
RMIServerSocketFactory using reflection to locate a method with a signature of public void setSecurity-

Domain(org.jboss.security.SecurityDomain d). If no such method exists the SecurityDomain value will be
ignored.

1.6.2.2. The PooledInvoker - RMI/Socket Transport

The org.jboss.invocation.pooled.server.PooledInvoker is an MBean service that provides RMI over a cus-
tom socket transport implementation of the Invoker interface. The PooledInvoker exports itself as an RMI server
so that when it is used as the Invoker in a remote client, the PooledInvoker stub is sent to the client instead and in-
vocations use the custom socket protocol.

The PooledInvoker MBean supports a number of attribute to configure the socket transport layer. Its configurable
attributes are:

• NumAcceptThreads: The number of threads that exist for accepting client connections. The default is 1.

• MaxPoolSize: The number of server threads for processing client. The default is 300.

• SocketTimeout: The socket timeout value passed to the Socket.setSoTimeout() method. The default is
60000.

• ServerBindPort: The port used for the server socket. A value of 0 indicates that an anonymous port should be
chosen.

• ClientConnectAddress: The address that the client passes to the Socket(addr, port) constructor. This de-
faults to the server InetAddress.getLocalHost() value.

• ClientConnectPort: The port that the client passes to the Socket(addr, port) constructor. The default is the
port of the server listening socket.

• ClientMaxPoolSize: The client side maximum number of threads. The default is 300.

The JBoss JMX Microkernel

JBoss Release 2 85

• Backlog: The backlog associated with the server accept socket. The default is 200.

• EnableTcpNoDelay: A boolean flag indicating if client sockets will enable the TcpNoDelay flag on the socket.
The default is false.

• ServerBindAddress: The address on which the server binds its listening socket. The default is an empty value
which indicates the server should be bound on all interfaces.

• TransactionManagerService: The JMX ObjectName of the JTA transaction manager service.

1.6.2.3. The IIOPInvoker - RMI/IIOP Transport

The org.jboss.invocation.iiop.IIOPInvoker class is an MBean service that provides the RMI/IIOP implement-
ation of the Invoker interface. The IIOPInvoker routes IIOP requests to CORBA servants. This is used by the
org.jboss.proxy.ejb.IORFactory proxy factory to create RMI/IIOP proxies. However, rather than creating Java
proxies (as the JRMP proxy factory does), this factory creates CORBA IORs. An IORFactory is associated to a
given enterprise bean. It registers with the IIOP invoker two CORBA servants: anEjbHomeCorbaServant for the
bean's EJBHome and an EjbObjectCorbaServant for the bean's EJBObjects.

The IIOPInvoker MBean has no configurable properties, since all properties are configured from the conf/jac-

orb.properties property file used by the JacORB CORBA service.

1.6.2.4. The JRMPProxyFactory Service - Building Dynamic JRMP Proxies

The org.jboss.invocation.jrmp.server.JRMPProxyFactory MBean service is a proxy factory that can expose
any interface with RMI compatible semantics for access to remote clients using JRMP as the transport.

The JRMPProxyFactory supports the following attributes:

• InvokerName: The server side JRMPInvoker MBean service JMX ObjectName string that will handle the
RMI/JRMP transport.

• TargetName: The server side MBean that exposes the invoke(Invocation) JMX operation for the exported
interface. This is used as the destination service for any invocations done through the proxy.

• JndiName: The JNDI name under which the proxy will be bound.

• ExportedInterface: The fully qualified class name of the interface that the proxy implements. This is the typed
view of the proxy that the client uses for invocations.

• ClientInterceptors: An XML fragment of interceptors/interceptor elements with each interceptor element body
specifying the fully qualified class name of an org.jboss.proxy.Interceptor implementation to include in
the proxy interceptor stack. The ordering of the interceptors/interceptor elements defines the order of the inter-
ceptors.

1.6.2.5. The HttpInvoker - RMI/HTTP Transport

The org.jboss.invocation.http.server.HttpInvoker MBean service provides support for making invocations
into the JMX bus over HTTP. Unlike the JRMPInvoker, the HttpInvoker is not an implementation of Invoker, but
it does implement the Invoker.invoke method. The HttpInvoker is accessed indirectly by issuing an HTTP POST

The JBoss JMX Microkernel

JBoss Release 2 86

against the org.jboss.invocation.http.servlet.InvokerServlet. The HttpInvoker exports a client side proxy
in the form of the org.jboss.invocation.http.interfaces.HttpInvokerProxy class, which is an implementa-
tion of Invoker, and is serializable. The HttpInvoker is a drop in replacement for the JRMPInvoker as the target of
the bean-invoker and home-invoker EJB configuration elements. The HttpInvoker and InvokerServlet are de-
ployed in the http-invoker.sar discussed in the JNDI chapter in the section entitled Accessing JNDI over HTTP

The HttpInvoker supports the following attributes:

• InvokerURL: This is either the http URL to the InvokerServlet mapping, or the name of a system property
that will be resolved inside the client VM to obtain the http URL to the InvokerServlet.

• InvokerURLPrefix: If there is no invokerURL set, then one will be constructed via the concatenation of in-

vokerURLPrefix + the local host + invokerURLSuffix. The default prefix is http://.

• InvokerURLSuffix: If there is no invokerURL set, then one will be constructed via the concatenation of in-

vokerURLPrefix + the local host + invokerURLSuffix. The default suffix is
:8080/invoker/JMXInvokerServlet.

• UseHostName: A boolean flag if the InetAddress.getHostName() or getHostAddress() method should be
used as the host component of invokerURLPrefix + host + invokerURLSuffix. If true getHostName() is used,
otherwise getHostAddress() is used.

1.6.2.6. The HA JRMPInvoker - Clustered RMI/JRMP Transport

The org.jboss.proxy.generic.ProxyFactoryHA service is an extension of the ProxyFactoryHA that is a cluster
aware factory. The ProxyFactoryHA fully supports all of the attributes of the JRMPProxyFactory. This means that
customized bindings of the port, interface and socket transport are available to clustered RMI/JRMP as well. In ad-
dition, the following cluster specific attributes are supported:

• PartitionObjectName: The JMX ObjectName of the cluster service to which the proxy is to be associated with.

• LoadBalancePolicy: The class name of the org.jboss.ha.framework.interfaces.LoadBalancePolicy inter-
face implementation to associate with the proxy.

1.6.2.7. The HA HttpInvoker - Clustered RMI/HTTP Transport

The RMI/HTTP layer allows for software load balancing of the invocations in a clustered environment. The HA
capable extension of the HTTP invoker borrows much of its functionality from the HA-RMI/JRMP clustering. To
enable HA-RMI/HTTP you need to configure the invokers for the EJB container. This is done through either a
jboss.xml descriptor, or the standardjboss.xml descriptor.

1.6.2.8. HttpProxyFactory - Building Dynamic HTTP Proxies

The org.jboss.invocation.http.server.HttpProxyFactory MBean service is a proxy factory that can expose
any interface with RMI compatible semantics for access to remote clients using HTTP as the transport.

The HttpProxyFactory supports the following attributes:

• InvokerName: The server side MBean that exposes the invoke operation for the exported interface. The name

The JBoss JMX Microkernel

JBoss Release 2 87

is embedded into the HttpInvokerProxy context as the target to which the invocation should be forwarded by
the HttpInvoker.

• JndiName: The JNDI name under which the HttpInvokerProxy will be bound. This is the name clients lookup
to obtain the dynamic proxy that exposes the service interfaces and marshalls invocations over HTTP. This may
be specified as an empty value to indicate that the proxy should not be bound into JNDI.

• InvokerURL: This is either the http URL to the InvokerServlet mapping, or the name of a system property
that will be resolved inside the client VM to obtain the http URL to the InvokerServlet.

• InvokerURLPrefix: If there is no invokerURL set, then one will be constructed via the concatenation of in-

vokerURLPrefix + the local host + invokerURLSuffix. The default prefix is http://.

• InvokerURLSuffix: If there is no invokerURL set, then one will be constructed via the concatenation of in-

vokerURLPrefix + the local host + invokerURLSuffix. The default suffix is
:8080/invoker/JMXInvokerServlet.

• UseHostName: A boolean flag indicating if the InetAddress.getHostName() or getHostAddress() method
should be used as the host component of invokerURLPrefix + host + invokerURLSuffix. If true getHost-

Name() is used, otherwise getHostAddress() is used.

• ExportedInterface: The name of the RMI compatible interface that the HttpInvokerProxy implements.

1.6.2.9. Steps to Expose Any RMI Interface via HTTP

Using the HttpProxyFactory MBean and JMX, you can expose any interface for access using HTTP as the trans-
port. The interface to expose does not have to be an RMI interface, but it does have to be compatible with RMI in
that all method parameters and return values are serializable. There is also no support for converting RMI inter-
faces used as method parameters or return values into their stubs.

The three steps to making your object invocable via HTTP are:

• Create a mapping of longs to the RMI interface methods using the MarshalledInvocation.calculateHash

method. Here for example, is the procedure for an RMI SRPRemoteServerInterface interface:

import java.lang.reflect.Method;
import java.util.HashMap;
import org.jboss.invocation.MarshalledInvocation;

HashMap marshalledInvocationMapping = new HashMap();

// Build the Naming interface method map
Method[] methods = SRPRemoteServerInterface.class.getMethods();
for(int m = 0; m < methods.length; m ++) {

Method method = methods[m];
Long hash = new Long(MarshalledInvocation.calculateHash(method));
marshalledInvocationMapping.put(hash, method);

}

• Either create or extend an existing MBean to support an invoke operation. Its signature is Object in-

voke(Invocation invocation) throws Exception, and the steps it performs are as shown here for the SR-

PRemoteServerInterface interface. Note that this uses the marshalledInvocationMapping from step 1 to map
from the Long method hashes in the MarshalledInvocation to the Method for the interface.

The JBoss JMX Microkernel

JBoss Release 2 88

import org.jboss.invocation.Invocation;
import org.jboss.invocation.MarshalledInvocation;

public Object invoke(Invocation invocation)
throws Exception

{
SRPRemoteServerInterface theServer = <the_actual_rmi_server_object>;
// Set the method hash to Method mapping
if (invocation instanceof MarshalledInvocation) {

MarshalledInvocation mi = (MarshalledInvocation) invocation;
mi.setMethodMap(marshalledInvocationMapping);

}

// Invoke the Naming method via reflection
Method method = invocation.getMethod();
Object[] args = invocation.getArguments();
Object value = null;
try {

value = method.invoke(theServer, args);
} catch(InvocationTargetException e) {

Throwable t = e.getTargetException();
if (t instanceof Exception) {

throw (Exception) e;
} else {

throw new UndeclaredThrowableException(t, method.toString());
}

}

return value;
}

• Create a configuration of the HttpProxyFactory MBean to make the RMI/HTTP proxy available through
JNDI. For example:

<!-- Expose the SRP service interface via HTTP -->
<mbean code="org.jboss.invocation.http.server.HttpProxyFactory"

name="jboss.security.tests:service=SRP/HTTP">
<attribute name="InvokerURL">http://localhost:8080/invoker/JMXInvokerServlet</attribute>
<attribute name="InvokerName">jboss.security.tests:service=SRPService</attribute>
<attribute name="ExportedInterface">

org.jboss.security.srp.SRPRemoteServerInterface
</attribute>
<attribute name="JndiName">srp-test-http/SRPServerInterface</attribute>

</mbean>

Any client may now lookup the RMI interface from JNDI using the name specified in the HttpProxyFactory (e.g.,
srp-test-http/SRPServerInterface) and use the obtain proxy in exactly the same manner as the RMI/JRMP ver-
sion.

The JBoss JMX Microkernel

JBoss Release 2 89

2
Naming on JBoss

The JNDI Naming Service

The naming service plays a key role in enterprise Java applications, providing the core infrastructure that is used to
locate objects or services in an application server. It is also the mechanism that clients external to the application
server use to locate services inside the application server. Application code, whether it is internal or external to the
JBoss instance, need only know that it needs to talk to the a message queue named queue/IncomingOrders and
would not need to worry about any of the details of how the queue is configured. In a clustered environment, nam-
ing services are even more valuable. A client of a service would desire to look up the ProductCatalog session bean
from the cluster without worrying which machine the service is residing. Whether it is a big clustered service, a
local resource or just a simple application component that is needed, the JNDI naming service provides the glue
that lets code find the objects in the system by name.

2.1. An Overview of JNDI

JNDI is a standard Java API that is bundled with JDK1.3 and higher. JNDI provides a common interface to a vari-
ety of existing naming services: DNS, LDAP, Active Directory, RMI registry, COS registry, NIS, and file systems.
The JNDI API is divided logically into a client API that is used to access naming services, and a service provider
interface (SPI) that allows the user to create JNDI implementations for naming services.

The SPI layer is an abstraction that naming service providers must implement to enable the core JNDI classes to
expose the naming service using the common JNDI client interface. An implementation of JNDI for a naming ser-
vice is referred to as a JNDI provider. JBoss naming is an example JNDI implementation, based on the SPI classes.
Note that the JNDI SPI is not needed by J2EE component developers.

For a thorough introduction and tutorial on JNDI, which covers both the client and service provider APIs, see the
Sun tutorial at http://java.sun.com/products/jndi/tutorial/.

The main JNDI API package is the javax.naming package. It contains five interfaces, 10 classes, and several ex-
ceptions. There is one key class, InitialContext, and two key interfaces, Context and Name

2.1.1. Names

The notion of a name is of fundamental importance in JNDI. The naming system determines the syntax that the
name must follow. The syntax of the naming system allows the user to parse string representations of names into its
components. A name is used with a naming system to locate objects. In the simplest sense, a naming system is just
a collection of objects with unique names. To locate an object in a naming system you provide a name to the nam-
ing system, and the naming system returns the object store under the name.

As an example, consider the Unix file system's naming convention. Each file is named from its path relative to the

JBoss Release 2 90

http://java.sun.com/products/jndi/tutorial/

root of the file system, with each component in the path separated by the forward slash character ("/"). The file's
path is ordered from left to right. The pathname/usr/jboss/readme.txt, for example, names a file readme.txt in
the directory jboss, under the directory usr, located in the root of the file system. JBoss naming uses a UNIX-style
namespace as its naming convention.

The javax.naming.Name interface represents a generic name as an ordered sequence of components. It can be a
composite name (one that spans multiple namespaces), or a compound name (one that is used within a single hier-
archical naming system). The components of a name are numbered. The indexes of a name with N components
range from 0 up to, but not including, N. The most significant component is at index 0. An empty name has no
components.

A composite name is a sequence of component names that span multiple namespaces. An example of a composite
name would be the hostname and file combination commonly used with UNIX commands like scp. For example,
the following command copies localfile.txt to the file remotefile.txt in the tmp directory on host
ahost.someorg.org:

scp localfile.txt ahost.someorg.org:/tmp/remotefile.txt

A compound name is derived from a hierarchical namespace. Each component in a compound name is an atomic
name, meaning a string that cannot be parsed into smaller components. A file pathname in the UNIX file system is
an example of a compound name. ahost.someorg.org:/tmp/remotefile.txt is a composite name that spans the
DNS and UNIX file system namespaces. The components of the composite name are ahost.someorg.org and /

tmp/remotefile.txt. A component is a string name from the namespace of a naming system. If the component
comes from a hierarchical namespace, that component can be further parsed into its atomic parts by using the
javax.naming.CompoundName class. The JNDI API provides the javax.naming.CompositeName class as the imple-
mentation of the Name interface for composite names.

2.1.2. Contexts

The javax.naming.Context interface is the primary interface for interacting with a naming service. The Context

interface represents a set of name-to-object bindings. Every context has an associated naming convention that de-
termines how the context parses string names into javax.naming.Name instances. To create a name to object bind-
ing you invoke the bind method of a Context and specify a name and an object as arguments. The object can later
be retrieved using its name using the Context lookup method. A Context will typically provide operations for
binding a name to an object, unbinding a name, and obtaining a listing of all name-to-object bindings. The object
you bind into a Context can itself be of type Context . The Context object that is bound is referred to as a subcon-
text of the Context on which the bind method was invoked.

As an example, consider a file directory with a pathname /usr, which is a context in the UNIX file system. A file
directory named relative to another file directory is a subcontext (commonly referred to as a subdirectory). A file
directory with a pathname /usr/jboss names a jboss context that is a subcontext of usr. In another example, a
DNS domain, such as org, is a context. A DNS domain named relative to another DNS domain is another example
of a subcontext. In the DNS domain jboss.org, the DNS domain jboss is a subcontext of org because DNS names
are parsed right to left.

2.1.2.1. Obtaining a Context using InitialContext

All naming service operations are performed on some implementation of the Context interface. Therefore, you
need a way to obtain a Context for the naming service you are interested in using. The

Naming on JBoss

JBoss Release 2 91

javax.naming.IntialContext class implements the Context interface, and provides the starting point for interact-
ing with a naming service.

When you create an InitialContext, it is initialized with properties from the environment. JNDI determines each
property's value by merging the values from the following two sources, in order.

• The first occurrence of the property from the constructor's environment parameter and (for appropriate proper-
ties) the applet parameters and system properties.

• All jndi.properties resource files found on the classpath.

For each property found in both of these two sources, the property's value is determined as follows. If the property
is one of the standard JNDI properties that specify a list of JNDI factories, all of the values are concatenated into a
single colon-separated list. For other properties, only the first value found is used. The preferred method of specify-
ing the JNDI environment properties is through a jndi.properties file, which allows your code to externalize the
JNDI provider specific information so that changing JNDI providers will not require changes to your code or re-
compilation.

The Context implementation used internally by the InitialContext class is determined at runtime. The default
policy uses the environment property java.naming.factory.initial, which contains the class name of the
javax.naming.spi.InitialContextFactory implementation. You obtain the name of the InitialContextFact-

ory class from the naming service provider you are using.

Example 2.1 gives a sample jndi.properties file a client application would use to connect to a JBossNS service
running on the local host at port 1099. The client application would need to have the jndi.properties file avail-
able on the application classpath. These are the properties that the JBossNS JNDI implementation requires. Other
JNDI providers will have different properties and values.

Example 2.1. A sample jndi.properties file

JBossNS properties
java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=jnp://localhost:1099
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

2.2. The JBossNS Architecture

The JBossNS architecture is a Java socket/RMI based implementation of the javax.naming.Context interface. It is
a client/server implementation that can be accessed remotely. The implementation is optimized so that access from
within the same VM in which the JBossNS server is running does not involve sockets. Same VM access occurs
through an object reference available as a global singleton. Figure 2.1 illustrates some of the key classes in the
JBossNS implementation and their relationships.

Naming on JBoss

JBoss Release 2 92

Figure 2.1. Key components in the JBossNS architecture.

We will start with the NamingService MBean. The NamingService MBean provides the JNDI naming service. This
is a key service used pervasively by the J2EE technology components. The configurable attributes for the Naming-

Service are as follows.

• Port: The jnp protocol listening port for the NamingService. If not specified default is 1099, the same as the
RMI registry default port.

• RmiPort: The RMI port on which the RMI Naming implementation will be exported. If not specified the de-
fault is 0 which means use any available port.

• BindAddress: The specific address the NamingService listens on. This can be used on a multi-homed host for a
java.net.ServerSocket that will only accept connect requests on one of its addresses.

• RmiBindAddress: The specific address the RMI server portion of the NamingService listens on. This can be

Naming on JBoss

JBoss Release 2 93

used on a multi-homed host for a java.net.ServerSocket that will only accept connect requests on one of its
addresses. If this is not specified and the BindAddress is, the RmiBindAddress defaults to the BindAddress

value.

• Backlog: The maximum queue length for incoming connection indications (a request to connect) is set to the
backlog parameter. If a connection indication arrives when the queue is full, the connection is refused.

• ClientSocketFactory: An optional custom java.rmi.server.RMIClientSocketFactory implementation class
name. If not specified the default RMIClientSocketFactory is used.

• ServerSocketFactory: An optional custom java.rmi.server.RMIServerSocketFactory implementation class
name. If not specified the default RMIServerSocketFactory is used.

• JNPServerSocketFactory: An optional custom javax.net.ServerSocketFactory implementation class name.
This is the factory for the ServerSocket used to bootstrap the download of the JBossNS Naming interface. If
not specified the javax.net.ServerSocketFactory.getDefault() method value is used.

The NamingService also creates the java:comp context such that access to this context is isolated based on the con-
text class loader of the thread that accesses the java:comp context. This provides the application component private
ENC that is required by the J2EE specs. This segregation is accomplished by binding a javax.naming.Reference

to a context that uses the org.jboss.naming.ENCFactory as its javax.naming.ObjectFactory. When a client per-
forms a lookup of java:comp, or any subcontext, the ENCFactory checks the thread context ClassLoader, and per-
forms a lookup into a map using the ClassLoader as the key.

If a context instance does not exist for the class loader instance, one is created and associated with that class loader
in the ENCFactory map. Thus, correct isolation of an application component's ENC relies on each component re-
ceiving a unique ClassLoader that is associated with the component threads of execution.

The NamingService delegates its functionality to an org.jnp.server.Main MBean. The reason for the duplicate
MBeans is because JBossNS started out as a stand-alone JNDI implementation, and can still be run as such. The
NamingService MBean embeds the Main instance into the JBoss server so that usage of JNDI with the same VM as
the JBoss server does not incur any socket overhead. The configurable attributes of the NamingService are really
the configurable attributes of the JBossNS Main MBean. The setting of any attributes on the NamingService

MBean simply set the corresponding attributes on the Main MBean the NamingService contains. When the Naming-

Service is started, it starts the contained Main MBean to activate the JNDI naming service.

In addition, the NamingService exposes the Naming interface operations through a JMX detyped invoke operation.
This allows the naming service to be accessed via JMX adaptors for arbitrary protocols. We will look at an ex-
ample of how HTTP can be used to access the naming service using the invoke operation later in this chapter.

The details of threads and the thread context class loader won't be explored here, but the JNDI tutorial provides a
concise discussion that is applicable. See http://java.sun.com/products/jndi/tutorial/beyond/misc/classloader.html
for the details.

When the Main MBean is started, it performs the following tasks:

• Instantiates an org.jnp.naming.NamingService instance and sets this as the local VM server instance. This is
used by any org.jnp.interfaces.NamingContext instances that are created within the JBoss server VM to
avoid RMI calls over TCP/IP.

Naming on JBoss

JBoss Release 2 94

http://java.sun.com/products/jndi/tutorial/beyond/misc/classloader.html

• Exports the NamingServer instance's org.jnp.naming.interfaces.Naming RMI interface using the configured
RmiPort, ClientSocketFactory, ServerSocketFactoryattributes.

• Creates a socket that listens on the interface given by the BindAddress and Port attributes.

• Spawns a thread to accept connections on the socket.

2.3. The Naming InitialContext Factories

The JBoss JNDI provider currently supports several different InitialContext factory implementations.

2.3.1. The standard naming context factory

The most commonly used factory is the org.jnp.interfaces.NamingContextFactory implementation. Its proper-
ties include:

• java.naming.factory.initial: The name of the environment property for specifying the initial context factory to
use. The value of the property should be the fully qualified class name of the factory class that will create an
initial context. If it is not specified, a javax.naming.NoInitialContextException will be thrown when an
InitialContext object is created.

• java.naming.provider.url: The name of the environment property for specifying the location of the JBoss
JNDI service provider the client will use. The NamingContextFactory class uses this information to know
which JBossNS server to connect to. The value of the property should be a URL string. For JBossNS the URL
format is jnp://host:port/[jndi_path]. The jnp: portion of the URL is the protocol and refers to the socket/
RMI based protocol used by JBoss. The jndi_path portion of the URL is an optional JNDI name relative to the
root context, for example, apps or apps/tmp. Everything but the host component is optional. The following ex-
amples are equivalent because the default port value is 1099.

• jnp://www.jboss.org:1099/

• www.jboss.org:1099

• www.jboss.org

• java.naming.factory.url.pkgs: The name of the environment property for specifying the list of package pre-
fixes to use when loading in URL context factories. The value of the property should be a colon-separated list
of package prefixes for the class name of the factory class that will create a URL context factory. For the JBoss
JNDI provider this must be org.jboss.naming:org.jnp.interfaces. This property is essential for locating the
jnp: and java: URL context factories of the JBoss JNDI provider.

• jnp.socketFactory: The fully qualified class name of the javax.net.SocketFactory implementation to use to
create the bootstrap socket. The default value is org.jnp.interfaces.TimedSocketFactory. The TimedSock-

etFactory is a simple SocketFactory implementation that supports the specification of a connection and read
timeout. These two properties are specified by:

• jnp.timeout: The connection timeout in milliseconds. The default value is 0 which means the connection will
block until the VM TCP/IP layer times out.

• jnp.sotimeout: The connected socket read timeout in milliseconds. The default value is 0 which means reads

Naming on JBoss

JBoss Release 2 95

will block. This is the value passed to the Socket.setSoTimeout on the newly connected socket.

When a client creates an InitialContext with these JBossNS properties available, the
org.jnp.interfaces.NamingContextFactory object is used to create the Context instance that will be used in
subsequent operations. The NamingContextFactory is the JBossNS implementation of the
javax.naming.spi.InitialContextFactory interface. When the NamingContextFactory class is asked to create a
Context, it creates an org.jnp.interfaces.NamingContext instance with the InitialContext environment and
name of the context in the global JNDI namespace. It is the NamingContext instance that actually performs the task
of connecting to the JBossNS server, and implements the Context interface. The Context.PROVIDER_URL informa-
tion from the environment indicates from which server to obtain a NamingServer RMI reference.

The association of the NamingContext instance to a NamingServer instance is done in a lazy fashion on the first
Context operation that is performed. When a Context operation is performed and the NamingContext has no Nam-

ingServer associated with it, it looks to see if its environment properties define a Context.PROVIDER_URL. A Con-

text.PROVIDER_URL defines the host and port of the JBossNS server the Context is to use. If there is a provider
URL, the NamingContext first checks to see if a Naming instance keyed by the host and port pair has already been
created by checking a NamingContext class static map. It simply uses the existing Naming instance if one for the
host port pair has already been obtained. If no Naming instance has been created for the given host and port, the
NamingContext connects to the host and port using a java.net.Socket, and retrieves a Naming RMI stub from the
server by reading a java.rmi.MarshalledObject from the socket and invoking its get method. The newly obtained
Naming instance is cached in the NamingContext server map under the host and port pair. If no provider URL was
specified in the JNDI environment associated with the context, the NamingContext simply uses the in VM Naming
instance set by the Main MBean.

The NamingContext implementation of the Context interface delegates all operations to the Naming instance associ-
ated with the NamingContext. The NamingServer class that implements the Naming interface uses a
java.util.Hashtable as the Context store. There is one unique NamingServer instance for each distinct JNDI
Name for a given JBossNS server. There are zero or more transient NamingContext instances active at any given
moment that refers to a NamingServer instance. The purpose of the NamingContext is to act as a Context to the
Naming interface adaptor that manages translation of the JNDI names passed to the NamingContext . Because a
JNDI name can be relative or a URL, it needs to be converted into an absolute name in the context of the JBossNS
server to which it refers. This translation is a key function of the NamingContext.

2.3.2. The org.jboss.naming.NamingContextFactory

This version of the InitialContextFactory implementation is a simple extension of the jnp version which differs
from the jnp version in that it stores the last configuration passed to its InitialContextFact-

ory.getInitialContext(Hashtable env) method in a public thread local variable. This is used by EJB handles
and other JNDI sensitive objects like the UserTransaction factory to keep track of the JNDI context that was in ef-
fect when they were created. If you want this environment to be bound to the object even after its serialized across
vm boundaries, then you should the org.jboss.naming.NamingContextFactory. If you want the environment that
is defined in the current VM jndi.properties or system properties, then you should use the
org.jnp.interfaces.NamingContextFactory version.

2.3.3. Naming Discovery in Clustered Environments

When running in a clustered JBoss environment, you can choose not to specify a Context.PROVIDER_URL value and
let the client query the network for available naming services. This only works with JBoss servers running with the

Naming on JBoss

JBoss Release 2 96

all configuration, or an equivalent configuration that has org.jboss.ha.framework.server.ClusterPartition

and org.jboss.ha.jndi.HANamingService services deployed. The discovery process consists of sending a multic-
ast request packet to the discovery address/port and waiting for any node to respond. The response is a HA-RMI
version of the Naming interface. The following InitialContext proerties affect the discovery configuration:

• jnp.partitionName: The cluster partition name discovery should be restricted to. If you are running in an en-
vironment with multiple clusters, you may want to restrict the naming discovery to a particular cluster. There is
no default value, meaning that any cluster response will be accepted.

• jnp.discoveryGroup: The multicast IP/address to which the discovery query is sent. The default is 230.0.0.4.

• jnp.discoveryPort: The port to which the discovery query is sent. The default is 1102.

• jnp.discoveryTimeout: The time in milliseconds to wait for a discovery query response. The default value is
5000 (5 seconds).

• jnp.disableDiscovery: A flag indicating if the discovery process should be avoided. Discovery occurs when
either no Context.PROVIDER_URL is specified, or no valid naming service could be located among the URLs
specified. If the jnp.disableDiscovery flag is true, then discovery will not be attempted.

2.3.4. The HTTP InitialContext Factory Implementation

The JNDI naming service can be accessed over HTTP. From a JNDI client's perspective this is a transparent
change as they continue to use the JNDI Context interface. Operations through the Context interface are translated
into HTTP posts to a servlet that passes the request to the NamingService using its JMX invoke operation. Advant-
ages of using HTTP as the access protocol include better access through firewalls and proxies setup to allow HTTP,
as well as the ability to secure access to the JNDI service using standard servlet role based security.

To access JNDI over HTTP you use the org.jboss.naming.HttpNamingContextFactory as the factory implement-
ation. The complete set of support InitialContext environment properties for this factory are:

• java.naming.factory.initial: The name of the environment property for specifying the initial context factory,
which must be org.jboss.naming.HttpNamingContextFactory.

• java.naming.provider.url (or Context.PROVIDER_URL): This must be set to the HTTP URL of the JNDI fact-
ory. The full HTTP URL would be the public URL of the JBoss servlet container plus /invoker/JNDIFactory.
Examples include:

• http://www.jboss.org:8080/invoker/JNDIFactory

• http://www.jboss.org/invoker/JNDIFactory

• https://www.jboss.org/invoker/JNDIFactory

The first example accesses the servlet using the port 8080. The second uses the standard HTTP port 80, and the
third uses an SSL encrypted connection to the standard HTTPS port 443.

• java.naming.factory.url.pkgs: For all JBoss JNDI provider this must be
org.jboss.naming:org.jnp.interfaces. This property is essential for locating the jnp: and java: URL con-
text factories of the JBoss JNDI provider.

The JNDI Context implementation returned by the HttpNamingContextFactory is a proxy that delegates invoca-

Naming on JBoss

JBoss Release 2 97

tions made on it to a bridge servlet which forwards the invocation to the NamingService through the JMX bus and
marshalls the reply back over HTTP. The proxy needs to know what the URL of the bridge servlet is in order to op-
erate. This value may have been bound on the server side if the JBoss web server has a well known public inter-
face. If the JBoss web server is sitting behind one or more firewalls or proxies, the proxy cannot know what URL is
required. In this case, the proxy will be associated with a system property value that must be set in the client VM.
For more information on the operation of JNDI over HTTP see Section 2.4.1.

2.3.5. The Login InitialContext Factory Implementation

JAAS is the preferred method for authenticating a remote client to JBoss. However, for simplicity and to ease the
migration from other application server environment that do not use JAAS, JBoss alows you the security creden-
tials to be passed through the InitialContext. JAAS is still used under the covers, but there is no manifest use of
the JAAS interfaces in the client application.

The factory class that provides this capability is the org.jboss.security.jndi.LoginInitialContextFactory.
The complete set of support InitialContext environment properties for this factory are:

• java.naming.factory.initial: The name of the environment property for specifying the initial context factory,
which must be org.jboss.security.jndi.LoginInitialContextFactory.

• java.naming.provider.url: This must be set to a NamingContextFactory provider URL. The LoginIntialCon-

text is really just a wrapper around the NamingContextFactory that adds a JAAS login to the existing Naming-

ContextFactory behavior.

• java.naming.factory.url.pkgs: For all JBoss JNDI provider this must be
org.jboss.naming:org.jnp.interfaces. This property is essential for locating the jnp: and java: URL con-
text factories of the JBoss JNDI provider.

• java.naming.security.principal (or Context.SECURITY_PRINCIPAL): The principal to authenticate. This may
be either a java.security.Principal implementation or a string representing the name of a principal.

• java.naming.security.credentials (or Context.SECURITY_CREDENTIALS), The credentials that should be used
to authenticate the principal, e.g., password, session key, etc.

• java.naming.security.protocol: (Context.SECURITY_PROTOCOL) This gives the name of the JAAS login mod-
ule to use for the authentication of the principal and credentials.

2.3.6. The ORBInitialContextFactory

When using Sun's CosNaming it is necessary to use a different naming context factory from the default. CosNam-
ing looks for the ORB in JNDI instead of using the the ORB configured in deploy/iiop-service.xml?. It is nec-
cessary to set the global context factory to org.jboss.iiop.naming.ORBInitialContextFactory, which sets the
ORB to JBoss's ORB. This is done in the conf/jndi.propeties file:

DO NOT EDIT THIS FILE UNLESS YOU KNOW WHAT YOU ARE DOING
#
java.naming.factory.initial=org.jboss.iiop.naming.ORBInitialContextFactory
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

Naming on JBoss

JBoss Release 2 98

It is also necessary to use ORBInitialContextFactory when using CosNaming in an application client.

2.4. JNDI over HTTP

In addition to the legacy RMI/JRMP with a socket bootstrap protocol, JBoss provides support for accessing its
JNDI naming service over HTTP.

2.4.1. Accessing JNDI over HTTP

This capability is provided by http-invoker.sar. The structure of the http-invoker.sar is:

http-invoker.sar
+- META-INF/jboss-service.xml
+- invoker.war
| +- WEB-INF/jboss-web.xml
| +- WEB-INF/classes/org/jboss/invocation/http/servlet/InvokerServlet.class
| +- WEB-INF/classes/org/jboss/invocation/http/servlet/NamingFactoryServlet.class
| +- WEB-INF/classes/org/jboss/invocation/http/servlet/ReadOnlyAccessFilter.class
| +- WEB-INF/classes/roles.properties
| +- WEB-INF/classes/users.properties
| +- WEB-INF/web.xml
| +- META-INF/MANIFEST.MF
+- META-INF/MANIFEST.MF

The jboss-service.xml descriptor defines the HttpInvoker and HttpInvokerHA MBeans. These services handle
the routing of methods invocations that are sent via HTTP to the appropriate target MBean on the JMX bus.

The http-invoker.war web application contains servlets that handle the details of the HTTP transport. The Nam-

ingFactoryServlet handles creation requests for the JBoss JNDI naming service javax.naming.Context imple-
mentation. The InvokerServlet handles invocations made by RMI/HTTP clients. The ReadOnlyAccessFilter al-
lows one to secure the JNDI naming service while making a single JNDI context available for read-only access by
unauthenticated clients.

Figure 2.2. The HTTP invoker proxy/server structure for a JNDI Context

Naming on JBoss

JBoss Release 2 99

Before looking at the configurations let's look at the operation of the http-invoker services. Figure 2.2 shows a lo-
gical view of the structure of a JBoss JNDI proxy and its relationship to the JBoss server side components of the
http-invoker. The proxy is obtained from the NamingFactoryServlet using an InitialContext with the Con-

text.INITIAL_CONTEXT_FACTORY property set to org.jboss.naming.HttpNamingContextFactory, and the Con-

text.PROVIDER_URL property set to the HTTP URL of the NamingFactoryServlet. The resulting proxy is embed-
ded in an org.jnp.interfaces.NamingContext instance that provides the Context interface implementation.

The proxy is an instance of org.jboss.invocation.http.interfaces.HttpInvokerProxy, and implements the
org.jnp.interfaces.Naming interface. Internally the HttpInvokerProxy contains an invoker that marshalls the
Naming interface method invocations to the InvokerServlet via HTTP posts. The InvokerServlet translates these
posts into JMX invocations to the NamingService, and returns the invocation response back to the proxy in the HT-
TP post reponse.

There are several configuration values that need to be set to tie all of these components together and Figure 2.3 il-
lustrates the relationship between configuration files and the corresponding components.

Figure 2.3. The relationship between configuration files and JNDI/HTTP component

The http-invoker.sar/META-INF/jboss-service.xml descriptor defines the HttpProxyFactory that creates the
HttpInvokerProxy for the NamingService. The attributes that need to be configured for the HttpProxyFactory in-
clude:

Naming on JBoss

JBoss Release 2 100

• InvokerName: The JMX ObjectName of the NamingService defined in the conf/jboss-service.xml

descriptor. The standard setting used in the JBoss distributions is jboss:service=Naming.

• InvokerURL or InvokerURLPrefix + InvokerURLSuffix + UseHostName. You can specify the full HTTP
URL to the InvokerServlet using the InvokerURL attribute, or you can specify the hostname independent parts
of the URL and have the HttpProxyFactory fill them in. An example InvokerURL value would be ht-

tp://jbosshost1.dot.com:8080/invoker/JMXInvokerServlet. This can be broken down into:

• InvokerURLPrefix: the URL prefix prior to the hostname. Typically this will be http:// or https:// if
SSL is to be used.

• InvokerURLSuffix: the URL suffix after the hostname. This will include the port number of the web server
as well as the deployed path to the InvokerServlet . For the example InvokerURL value the Invoker-

URLSuffix would be :8080/invoker/JMXInvokerServlet without the quotes. The port number is determ-
ined by the web container service settings. The path to the InvokerServlet is specified in the http-in-

voker.sar/invoker.war/WEB-INF/web.xml descriptor.

• UseHostName: a flag indicating if the hostname should be used in place of the host IP address when build-
ing the hostname portion of the full InvokerURL. If true, InetAddress.getLocalHost().getHostName

method will be used. Otherwise, the InetAddress.getLocalHost().getHostAddress() method is used.

• ExportedInterface: The org.jnp.interfaces.Naming interface the proxy will expose to clients. The actual
client of this proxy is the JBoss JNDI implementation NamingContext class, which JNDI client obtain from
InitialContext lookups when using the JBoss JNDI provider.

• JndiName: The name in JNDI under which the proxy is bound. This needs to be set to a blank/empty string to
indicate the interface should not be bound into JNDI. We can't use the JNDI to bootstrap itself. This is the role
of the NamingFactoryServlet.

The http-invoker.sar/invoker.war/WEB-INF/web.xml descriptor defines the mappings of the NamingFact-

oryServlet and InvokerServlet along with their initialzation parameters. The configuration of the NamingFact-

oryServlet relevant to JNDI/HTTP is the JNDIFactory entry which defines:

• A namingProxyMBean initialization parameter that maps to the HttpProxyFactory MBean name. This is used
by the NamingFactoryServlet to obtain the Naming proxy which it will return in response to HTTP posts. For
the default http-invoker.sar/META-INF/jboss-service.xml settings the name
jboss:service=invoker,type=http,target=Naming.

• A proxy initialzation parameter that defines the name of the namingProxyMBean attribute to query for the Nam-
ing proxy value. This defaults to an attribute name of Proxy.

• The servlet mapping for the JNDIFactory configuration. The default setting for the unsecured mapping is /

JNDIFactory/*. This is relative to the context root of the http-invoker.sar/invoker.war, which by default is
the WAR name minus the .war suffix.

The configuration of the InvokerServlet relevant to JNDI/HTTP is the JMXInvokerServlet which defines:

• The servlet mapping of the InvokerServlet. The default setting for the unsecured mapping is /

JMXInvokerServlet/*. This is relative to the context root of the http-invoker.sar/invoker.war, which by

Naming on JBoss

JBoss Release 2 101

default is the WAR name minus the .war suffix.

2.4.2. Accessing JNDI over HTTPS

To be able to access JNDI over HTTP/SSL you need to enable an SSL connector on the web container. The details
of this are covered in the Integrating Servlet Containers for Tomcat. We will demonstrate the use of HTTPS with a
simple example client that uses an HTTPS URL as the JNDI provider URL. We will provide an SSL connector
configuration for the example, so unless you are interested in the details of the SSL connector setup, the example is
self contained.

We also provide a configuration of the HttpProxyFactory setup to use an HTTPS URL. The following example
shows the section of the http-invoker.sar jboss-service.xml descriptor that the example installs to provide this
configuration. All that has changed relative to the standard HTTP configuration are the InvokerURLPrefix and In-

vokerURLSuffix attributes, which setup an HTTPS URL using the 8443 port.

<!-- Expose the Naming service interface via HTTPS -->
<mbean code="org.jboss.invocation.http.server.HttpProxyFactory"

name="jboss:service=invoker,type=https,target=Naming">
<!-- The Naming service we are proxying -->
<attribute name="InvokerName">jboss:service=Naming</attribute>
<!-- Compose the invoker URL from the cluster node address -->
<attribute name="InvokerURLPrefix">https://</attribute>
<attribute name="InvokerURLSuffix">:8443/invoker/JMXInvokerServlet </attribute>
<attribute name="UseHostName">true</attribute>
<attribute name="ExportedInterface">org.jnp.interfaces.Naming </attribute>
<attribute name="JndiName"/>
<attribute name="ClientInterceptors">

<interceptors>
<interceptor>org.jboss.proxy.ClientMethodInterceptor </interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.naming.interceptors.ExceptionInterceptor </interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor </interceptor>

</interceptors>
</attribute>

</mbean>

At a minimum, a JNDI client using HTTPS requires setting up a HTTPS URL protocol handler. We will be using
the Java Secure Socket Extension (JSSE) for HTTPS. The JSSE documentation does a good job of describing what
is necessary to use HTTPS, and the following steps were needed to configure the example client shown in Ex-
ample 2.2:

• A protocol handler for HTTPS URLs must be made available to Java. The JSSE release includes an HTTPS
handler in the com.sun.net.ssl.internal.www.protocol package. To enable the use of HTTPS URLs you in-
clude this package in the standard URL protocol handler search property, java.protocol.handler.pkgs. We
set the java.protocol.handler.pkgs property in the Ant script.

• The JSSE security provider must be installed in order for SSL to work. This can be done either by installing the
JSSE jars as an extension package, or programatically. We use the programatic approach in the example since
this is less intrusive. Line 18 of the ExClient code demonstrates how this is done.

• The JNDI provider URL must use HTTPS as the protocol. Lines 24-25 of the ExClient code specify an HTTP/
SSL connection to the localhost on port 8443. The hostname and port are defined by the web container SSL
connector.

Naming on JBoss

JBoss Release 2 102

• The validation of the HTTPS URL hostname against the server certificate must be disabled. By default, the
JSSE HTTPS protocol handler employs a strict validation of the hostname portion of the HTTPS URL against
the common name of the server certificate. This is the same check done by web browsers when you connect to
secured web site. We are using a self-signed server certificate that uses a common name of "Chapter 8 SSL

Example" rather than a particular hostname, and this is likely to be common in development environments or in-
tranets. The JBoss HttpInvokerProxy will override the default hostname checking if a
org.jboss.security.ignoreHttpsHost system property exists and has a value of true. We set the
org.jboss.security.ignoreHttpsHost property to true in the Ant script.

Example 2.2. A JNDI client that uses HTTPS as the transport

package org.jboss.chap3.ex1;

import java.security.Security;
import java.util.Properties;
import javax.naming.Context;
import javax.naming.InitialContext;

public class ExClient
{

public static void main(String args[]) throws Exception
{

Properties env = new Properties();
env.setProperty(Context.INITIAL_CONTEXT_FACTORY,

"org.jboss.naming.HttpNamingContextFactory");
env.setProperty(Context.PROVIDER_URL,

"https://localhost:8443/invoker/JNDIFactorySSL");

Context ctx = new InitialContext(env);
System.out.println("Created InitialContext, env=" + env);

Object data = ctx.lookup("jmx/invoker/RMIAdaptor");
System.out.println("lookup(jmx/invoker/RMIAdaptor): " + data);

}
}

To test the client, first build the chapter 3 example to create the chap3 configuration fileset.

[examples]$ ant -Dchap=naming config

Next, start the JBoss server using the naming configuration fileset:

[bin]$ sh run.sh -c naming

And finally, run the ExClient using:

[examples]$ ant -Dchap=naming -Dex=1 run-example
...
run-example1:

[java] Created InitialContext, env={java.naming.provider.url=https://localhost:8443/invo
ker/JNDIFactorySSL, java.naming.factory.initial=org.jboss.naming.HttpNamingContextFactory}

[java] lookup(jmx/invoker/RMIAdaptor): org.jboss.invocation.jrmp.interfaces.JRMPInvokerP
roxy@cac3fa

Naming on JBoss

JBoss Release 2 103

2.4.3. Securing Access to JNDI over HTTP

One benefit to accessing JNDI over HTTP is that it is easy to secure access to the JNDI InitialContext factory as
well as the naming operations using standard web declarative security. This is possible because the server side
handling of the JNDI/HTTP transport is implemented with two servlets. These servlets are included in the http-

invoker.sar/invoker.war directory found in the default and all configuration deploy directories as shown pre-
viously. To enable secured access to JNDI you need to edit the invoker.war/WEB-INF/web.xml descriptor and re-
move all unsecured servlet mappings. For example, the web.xml descriptor shown in Example 2.3 only allows ac-
cess to the invoker.war servlets if the user has been authenticated and has a role of HttpInvoker.

Example 2.3. An example web.xml descriptor for secured access to the JNDI servlets

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC

"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
<!-- ### Servlets -->
<servlet>

<servlet-name>JMXInvokerServlet</servlet-name>
<servlet-class>

org.jboss.invocation.http.servlet.InvokerServlet
</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet> <servlet>
<servlet-name>JNDIFactory</servlet-name>
<servlet-class>

org.jboss.invocation.http.servlet.NamingFactoryServlet
</servlet-class>
<init-param>

<param-name>namingProxyMBean</param-name>
<param-value>jboss:service=invoker,type=http,target=Naming</param-value>

</init-param>
<init-param>

<param-name>proxyAttribute</param-name>
<param-value>Proxy</param-value>

</init-param>
<load-on-startup>2</load-on-startup>

</servlet>
<!-- ### Servlet Mappings -->
<servlet-mapping>

<servlet-name>JNDIFactory</servlet-name>
<url-pattern>/restricted/JNDIFactory/*</url-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>JMXInvokerServlet</servlet-name>
<url-pattern>/restricted/JMXInvokerServlet/*</url-pattern>

</servlet-mapping> <security-constraint>
<web-resource-collection>

<web-resource-name>HttpInvokers</web-resource-name>
<description>An example security config that only allows users with

the role HttpInvoker to access the HTTP invoker servlets </description>
<url-pattern>/restricted/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>HttpInvoker</role-name>
</auth-constraint>

</security-constraint>
<login-config>

Naming on JBoss

JBoss Release 2 104

<auth-method>BASIC</auth-method>
<realm-name>JBoss HTTP Invoker</realm-name>

</login-config> <security-role>
<role-name>HttpInvoker</role-name>

</security-role>
</web-app>

The web.xml descriptor only defines which sevlets are secured, and which roles are allowed to access the secured
servlets. You must additionally define the security domain that will handle the authentication and authorization for
the war. This is done through the jboss-web.xml descriptor, and an example that uses the http-invoker security
domain is given below.

<jboss-web>
<security-domain>java:/jaas/http-invoker</security-domain>

</jboss-web>

The security-domain element defines the name of the security domain that will be used for the JAAS login mod-
ule configuration used for authentication and authorization. See Section 7.1.6 for additional details on the meaning
and configuration of the security domain name.

2.4.4. Securing Access to JNDI with a Read-Only Unsecured Context

Another feature available for the JNDI/HTTP naming service is the ability to define a context that can be accessed
by unauthenticated users in read-only mode. This can be important for services used by the authentication layer.
For example, the SRPLoginModule needs to lookup the SRP server interface used to perform authentication. We'll
now walk through how read-only JNDI works in JBoss.

First, the ReadOnlyJNDIFactory is declared in invoker.sar/WEB-INF/web.xml. It will be mapped to /in-

voker/ReadOnlyJNDIFactory.

<servlet>
<servlet-name>ReadOnlyJNDIFactory</servlet-name>
<description>A servlet that exposes the JBoss JNDI Naming service stub

through http, but only for a single read-only context. The return content
is serialized MarshalledValue containg the org.jnp.interfaces.Naming
stub.

</description>
<servlet-class>org.jboss.invocation.http.servlet.NamingFactoryServlet</servlet-class>
<init-param>

<param-name>namingProxyMBean</param-name>
<param-value>jboss:service=invoker,type=http,target=Naming,readonly=true</param-value>

</init-param>
<init-param>

<param-name>proxyAttribute</param-name>
<param-value>Proxy</param-value>

</init-param>
<load-on-startup>2</load-on-startup>

</servlet>

<!-- ... -->

<servlet-mapping>
<servlet-name>ReadOnlyJNDIFactory</servlet-name>
<url-pattern>/ReadOnlyJNDIFactory/*</url-pattern>

</servlet-mapping>

Naming on JBoss

JBoss Release 2 105

The factory only provides a JNDI stub which needs to be connected to an invoker. Here the invoker is
jboss:service=invoker,type=http,target=Naming,readonly=true. This invoker is declared in the http-

invoker.sar/META-INF/jboss-service.xml file.

<mbean code="org.jboss.invocation.http.server.HttpProxyFactory"
name="jboss:service=invoker,type=http,target=Naming,readonly=true">
<attribute name="InvokerName">jboss:service=Naming</attribute>
<attribute name="InvokerURLPrefix">http://</attribute>
<attribute name="InvokerURLSuffix">:8080/invoker/readonly/JMXInvokerServlet</attribute>
<attribute name="UseHostName">true</attribute>
<attribute name="ExportedInterface">org.jnp.interfaces.Naming</attribute>
<attribute name="JndiName"></attribute>
<attribute name="ClientInterceptors">

<interceptors>
<interceptor>org.jboss.proxy.ClientMethodInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.naming.interceptors.ExceptionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</interceptors>
</attribute>

</mbean>

The proxy on the client side needs to talk back to a specific invoker servlet on the server side. The configuration
here has the actual invocations going to /invoker/readonly/JMXInvokerServlet. This is actually the standard
JMXInvokerServlet with a read-only filter attached.

<filter>
<filter-name>ReadOnlyAccessFilter</filter-name>
<filter-class>org.jboss.invocation.http.servlet.ReadOnlyAccessFilter</filter-class>
<init-param>

<param-name>readOnlyContext</param-name>
<param-value>readonly</param-value>
<description>The top level JNDI context the filter will enforce

read-only access on. If specified only Context.lookup operations
will be allowed on this context. Another other operations or
lookups on any other context will fail. Do not associate this
filter with the JMXInvokerServlets if you want unrestricted
access. </description>

</init-param>
<init-param>

<param-name>invokerName</param-name>
<param-value>jboss:service=Naming</param-value>
<description>The JMX ObjectName of the naming service mbean </description>

</init-param>
</filter>

<filter-mapping>
<filter-name>ReadOnlyAccessFilter</filter-name>
<url-pattern>/readonly/*</url-pattern>

</filter-mapping>

<!-- ... -->
<!-- A mapping for the JMXInvokerServlet that only allows invocations

of lookups under a read-only context. This is enforced by the
ReadOnlyAccessFilter
-->

<servlet-mapping>
<servlet-name>JMXInvokerServlet</servlet-name>
<url-pattern>/readonly/JMXInvokerServlet/*</url-pattern>

</servlet-mapping>

The readOnlyContext parameter is set to readonly which means that when you access JBoss through the

Naming on JBoss

JBoss Release 2 106

ReadOnlyJNDIFactory, you will only be able to access data in the readonly context. Here is a code fragment that
illustrates the usage:

Properties env = new Properties();
env.setProperty(Context.INITIAL_CONTEXT_FACTORY,

"org.jboss.naming.HttpNamingContextFactory");
env.setProperty(Context.PROVIDER_URL,

"http://localhost:8080/invoker/ReadOnlyJNDIFactory");

Context ctx2 = new InitialContext(env);
Object data = ctx2.lookup("readonly/data");

Attempts to look up any objects outside of the readonly context will fail. Note that JBoss doesn't ship with any data
in the readonly context, so the readonly context won't be bound usable unless you create it.

2.5. Additional Naming MBeans

In addition to the NamingService MBean that configures an embedded JBossNS server within JBoss, there are sev-
eral additional MBean services related to naming that ship with JBoss. They are JndiBindingServiceMgr, Namin-
gAlias, ExternalContext, and JNDIView.

2.5.1. JNDI Binding Manager

The JNDI binding manager service allows you to quickly bind objects into JNDI for use by application code. The
MBean class for the binding service is org.jboss.naming.JNDIBindingServiceMgr. It has a single attribute, Bind-
ingsConfig, which accepts an XML document that conforms to the jndi-binding-service_1_0.xsd schema. The
content of the BindingsConfig attribute is unmarshalled using the JBossXB framework. The following is an
MBean definition that shows the most basic form usage of the JNDI binding manager service.

<mbean code="org.jboss.naming.JNDIBindingServiceMgr"
name="jboss.tests:name=example1">

<attribute name="BindingsConfig" serialDataType="jbxb">
<jndi:bindings xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"

xmlns:jndi="urn:jboss:jndi-binding-service"
xs:schemaLocation="urn:jboss:jndi-binding-service resource:jndi-binding-service_1_0.xsd">

<jndi:binding name="bindexample/message">
<jndi:value trim="true">

Hello, JNDI!
</jndi:value>

</jndi:binding>
</jndi:bindings>

</attribute>
</mbean>

This binds the text string "Hello, JNDI!" under the JNDI name bindexample/message. An application would look
up the value just as it would for any other JNDI value. The trim attribute specifies that leading and trailing
whitespace should be ignored. The use of the attribute here is purely for illustrative purposes as the default value is
true.

InitialContext ctx = new InitialContext();
String text = (String) ctx.lookup("bindexample/message");

String values themselves are not that interesting. If a JavaBeans property editor is available, the desired class name
can be specified using the type attribute

Naming on JBoss

JBoss Release 2 107

<jndi:binding name="urls/jboss-home">
<jndi:value type="java.net.URL">http://www.jboss.org</jndi:value>

</jndi:binding>

The editor attribute can be used to specify a particular property editor to use.

<jndi:binding name="hosts/localhost">
<jndi:value editor="org.jboss.util.propertyeditor.InetAddressEditor">

127.0.0.1
</jndi:value>

</jndi:binding>

For more complicated structures, any JBossXB-ready schema may be used. The following example shows how a
java.util.Properties object would be mapped.

<jndi:binding name="maps/testProps">
<java:properties xmlns:java="urn:jboss:java-properties"

xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"
xs:schemaLocation="urn:jboss:java-properties resource:java-properties_1_0.xsd">

<java:property>
<java:key>key1</java:key>
<java:value>value1</java:value>

</java:property>
<java:property>

<java:key>key2</java:key>
<java:value>value2</java:value>

</java:property>
</java:properties>

</jndi:binding>

For more information on JBossXB, see the JBossXB wiki page
[http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossXB].

2.5.2. The org.jboss.naming.NamingAlias MBean

The NamingAlias MBean is a simple utility service that allows you to create an alias in the form of a JNDI
javax.naming.LinkRef from one JNDI name to another. This is similar to a symbolic link in the UNIX file sys-
tem. To an alias you add a configuration of the NamingAlias MBean to the jboss-service.xml configuration file.
The configurable attributes of the NamingAlias service are as follows:

• FromName: The location where the LinkRef is bound under JNDI.

• ToName: The to name of the alias. This is the target name to which the LinkRef refers. The name is a URL, or
a name to be resolved relative to the InitialContext, or if the first character of the name is a dot (.), the name
is relative to the context in which the link is bound.

The following example provides a mapping of the JNDI name QueueConnectionFactory to the name Connection-

Factory.

<mbean code="org.jboss.naming.NamingAlias"
name="jboss.mq:service=NamingAlias,fromName=QueueConnectionFactory">

<attribute name="ToName">ConnectionFactory</attribute>
<attribute name="FromName">QueueConnectionFactory</attribute>

</mbean>

Naming on JBoss

JBoss Release 2 108

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossXB

2.5.3. org.jboss.naming.ExternalContext MBean

The ExternalContext MBean allows you to federate external JNDI contexts into the JBoss server JNDI
namespace. The term external refers to any naming service external to the JBossNS naming service running inside
of the JBoss server VM. You can incorporate LDAP servers, file systems, DNS servers, and so on, even if the JNDI
provider root context is not serializable. The federation can be made available to remote clients if the naming ser-
vice supports remote access.

To incorporate an external JNDI naming service, you have to add a configuration of the ExternalContext MBean
service to the jboss-service.xml configuration file. The configurable attributes of the ExternalContext service
are as follows:

• JndiName: The JNDI name under which the external context is to be bound.

• RemoteAccess: A boolean flag indicating if the external InitialContext should be bound using a Serializ-

able form that allows a remote client to create the external InitialContext . When a remote client looks up
the external context via the JBoss JNDI InitialContext, they effectively create an instance of the external
InitialContext using the same env properties passed to the ExternalContext MBean. This will only work if
the client can do a new InitialContext(env) remotely. This requires that the Context.PROVIDER_URL value of
env is resolvable in the remote VM that is accessing the context. This should work for the LDAP example. For
the file system example this most likely won't work unless the file system path refers to a common network
path. If this property is not given it defaults to false.

• CacheContext: The cacheContext flag. When set to true, the external Context is only created when the
MBean is started and then stored as an in memory object until the MBean is stopped. If cacheContext is set to
false, the external Context is created on each lookup using the MBean properties and InitialContext class.
When the uncached Context is looked up by a client, the client should invoke close() on the Context to pre-
vent resource leaks.

• InitialContext: The fully qualified class name of the InitialContext implementation to use. Must be one of:
javax.naming.InitialContext, javax.naming.directory.InitialDirContext or
javax.naming.ldap.InitialLdapContext. In the case of the InitialLdapContext a null Controls array is
used. The default is javax.naming.InitialContex.

• Properties: The Properties attribute contains the JNDI properties for the external InitialContext. The input
should be the text equivalent to what would go into a jndi.properties file.

• PropertiesURL: This set the jndi.properties information for the external InitialContext from an extern
properties file. This is either a URL, string or a classpath resource name. Examples are as follows:

• file:///config/myldap.properties
• http://config.mycompany.com/myldap.properties
• /conf/myldap.properties
• myldap.properties

The MBean definition below shows a binding to an external LDAP context into the JBoss JNDI namespace under
the name external/ldap/jboss.

<!-- Bind a remote LDAP server -->
<mbean code="org.jboss.naming.ExternalContext"

name="jboss.jndi:service=ExternalContext,jndiName=external/ldap/jboss">

Naming on JBoss

JBoss Release 2 109

<attribute name="JndiName">external/ldap/jboss</attribute>
<attribute name="Properties">

java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory
java.naming.provider.url=ldap://ldaphost.jboss.org:389/o=jboss.org
java.naming.security.principal=cn=Directory Manager
java.naming.security.authentication=simple
java.naming.security.credentials=secret

</attribute>
<attribute name="InitialContext"> javax.naming.ldap.InitialLdapContext </attribute>
<attribute name="RemoteAccess">true</attribute>

</mbean>

With this configuration, you can access the external LDAP context located at
ldap://ldaphost.jboss.org:389/o=jboss.org from within the JBoss VM using the following code fragment:

InitialContext iniCtx = new InitialContext();
LdapContext ldapCtx = iniCtx.lookup("external/ldap/jboss");

Using the same code fragment outside of the JBoss server VM will work in this case because the RemoteAccess

property was set to true. If it were set to false, it would not work because the remote client would receive a Refer-

ence object with an ObjectFactory that would not be able to recreate the external IntialContext

<!-- Bind the /usr/local file system directory -->
<mbean code="org.jboss.naming.ExternalContext"

name="jboss.jndi:service=ExternalContext,jndiName=external/fs/usr/local">
<attribute name="JndiName">external/fs/usr/local</attribute>
<attribute name="Properties">

java.naming.factory.initial=com.sun.jndi.fscontext.RefFSContextFactory
java.naming.provider.url=file:///usr/local

</attribute>
<attribute name="InitialContext">javax.naming.IntialContext</attribute>

</mbean>

This configuration describes binding a local file system directory /usr/local into the JBoss JNDI namespace un-
der the name external/fs/usr/local.

With this configuration, you can access the external file system context located at file:///usr/local from within
the JBoss VM using the following code fragment:

InitialContext iniCtx = new InitialContext();
Context ldapCtx = iniCtx.lookup("external/fs/usr/local");

Note that the use the Sun JNDI service providers, which must be downloaded from ht-
tp://java.sun.com/products/jndi/serviceproviders.html. The provider JARs should be placed in the server configura-
tion lib directory.

2.5.4. The org.jboss.naming.JNDIView MBean

The JNDIView MBean allows the user to view the JNDI namespace tree as it exists in the JBoss server using the
JMX agent view interface. To view the JBoss JNDI namespace using the JNDIView MBean, you connect to the
JMX Agent View using the http interface. The default settings put this at http://localhost:8080/jmx-console/.
On this page you will see a section that lists the registered MBeans sortyed by domain. It should look something
like that shown in Figure 2.4.

Naming on JBoss

JBoss Release 2 110

http://java.sun.com/products/jndi/serviceproviders.html
http://java.sun.com/products/jndi/serviceproviders.html

Figure 2.4. The JMX Console view of the configured JBoss MBeans

Selecting the JNDIView link takes you to the JNDIView MBean view, which will have a list of the JNDIView
MBean operations. This view should look similar to that shown in Figure 2.5.

Naming on JBoss

JBoss Release 2 111

Figure 2.5. The JMX Console view of the JNDIView MBean

The list operation dumps out the JBoss server JNDI namespace as an HTML page using a simple text view. As an
example, invoking the list operation produces the view shown in Figure 2.6.

Naming on JBoss

JBoss Release 2 112

Figure 2.6. The JMX Console view of the JNDIView list operation output

2.6. J2EE and JNDI - The Application Component Environment

JNDI is a fundamental aspect of the J2EE specifications. One key usage is the isolation of J2EE component code
from the environment in which the code is deployed. Use of the application component's environment allows the
application component to be customized without the need to access or change the application component's source
code. The application component environment is referred to as the ENC, the enterprise naming context. It is the re-
sponsibility of the application component container to make an ENC available to the container components in the
form of JNDI Context. The ENC is utilized by the participants involved in the life cycle of a J2EE component in
the following ways.

Naming on JBoss

JBoss Release 2 113

• Application component business logic should be coded to access information from its ENC. The component
provider uses the standard deployment descriptor for the component to specify the required ENC entries. The
entries are declarations of the information and resources the component requires at runtime.

• The container provides tools that allow a deployer of a component to map the ENC references made by the
component developer to the deployment environment entity that satisfies the reference.

• The component deployer utilizes the container tools to ready a component for final deployment.

• The component container uses the deployment package information to build the complete component ENC at
runtime

The complete specification regarding the use of JNDI in the J2EE platform can be found in section 5 of the J2EE
1.4 specification. The J2EE specification is available at http://java.sun.com/j2ee/download.html.

An application component instance locates the ENC using the JNDI API. An application component instance cre-
ates a javax.naming.InitialContext object by using the no argument constructor and then looks up the naming
environment under the name java:comp/env. The application component's environment entries are stored directly
in the ENC, or in its subcontexts. Example 2.4 illustrates the prototypical lines of code a component uses to access
its ENC.

Example 2.4. ENC access sample code

// Obtain the application component's ENC
Context iniCtx = new InitialContext();
Context compEnv = (Context) iniCtx.lookup("java:comp/env");

An application component environment is a local environment that is accessible only by the component when the
application server container thread of control is interacting with the application component. This means that an EJB
Bean1 cannot access the ENC elements of EJB Bean2, and vice versa. Similarly, Web application Web1 cannot ac-
cess the ENC elements of Web application Web2 or Bean1 or Bean2 for that matter. Also, arbitrary client code,
whether it is executing inside of the application server VM or externally cannot access a component's java:comp

JNDI context. The purpose of the ENC is to provide an isolated, read-only namespace that the application compon-
ent can rely on regardless of the type of environment in which the component is deployed. The ENC must be isol-
ated from other components because each component defines its own ENC content. Components A and B, for ex-
ample, may define the same name to refer to different objects. For example, EJB Bean1 may define an environment
entry java:comp/env/red to refer to the hexadecimal value for the RGB color for red, while Web application Web1

may bind the same name to the deployment environment language locale representation of red.

There are three commonly used levels of naming scope in JBoss: names under java:comp, names under java:, and
any other name. As discussed, the java:comp context and its subcontexts are only available to the application com-
ponent associated with that particular context. Subcontexts and object bindings directly under java: are only vis-
ible within the JBoss server virtual machine and not to remote clients. Any other context or object binding is avail-
able to remote clients, provided the context or object supports serialization. You'll see how the isolation of these
naming scopes is achieved in the Section 2.2.

An example of where the restricting a binding to the java: context is useful would be a javax.sql.DataSource

connection factory that can only be used inside of the JBoss server where the associated database pool resides. On
the other hand, an EJB home interface would be bound to a globally visible name that should accessible by remote

Naming on JBoss

JBoss Release 2 114

http://java.sun.com/j2ee/download.html

client.

2.6.1. ENC Usage Conventions

JNDI is used as the API for externalizing a great deal of information from an application component. The JNDI
name that the application component uses to access the information is declared in the standard ejb-jar.xml de-
ployment descriptor for EJB components, and the standard web.xml deployment descriptor for Web components.
Several different types of information may be stored in and retrieved from JNDI including:

• Environment entries as declared by the env-entry elements

• EJB references as declared by ejb-ref and ejb-local-ref elements.

• Resource manager connection factory references as declared by the resource-ref elements

• Resource environment references as declared by the resource-env-ref elements

Each type of deployment descriptor element has a JNDI usage convention with regard to the name of the JNDI con-
text under which the information is bound. Also, in addition to the standard deploymentdescriptor element, there is
a JBoss server specific deployment descriptor element that maps the JNDI name as used by the application com-
ponent to the deployment environment JNDI name.

2.6.1.1. Environment Entries

Environment entries are the simplest form of information stored in a component ENC, and are similar to operating
system environment variables like those found on UNIX or Windows. Environment entries are a name-to-value
binding that allows a component to externalize a value and refer to the value using a name.

An environment entry is declared using an env-entry element in the standard deployment descriptors. The env-

entry element contains the following child elements:

• An optional description element that provides a description of the entry

• An env-entry-name element giving the name of the entry relative to java:comp/env

• An env-entry-type element giving the Java type of the entry value that must be one of:

• java.lang.Byte

• java.lang.Boolean

• java.lang.Character

• java.lang.Double

• java.lang.Float

• java.lang.Integer

• java.lang.Long

• java.lang.Short

• java.lang.String

• An env-entry-value element giving the value of entry as a string

An example of an env-entry fragment from an ejb-jar.xml deployment descriptor is given in Example 2.5. There

Naming on JBoss

JBoss Release 2 115

is no JBoss specific deployment descriptor element because an env-entry is a complete name and value specifica-
tion. Example 2.6 shows a sample code fragment for accessing the maxExemptions and taxRate env-entry values
declared in the deployment descriptor.

Example 2.5. An example ejb-jar.xml env-entry fragment

<!-- ... -->
<session>

<ejb-name>ASessionBean</ejb-name>
<!-- ... -->
<env-entry>

<description>The maximum number of tax exemptions allowed </description>
<env-entry-name>maxExemptions</env-entry-name>
<env-entry-type>java.lang.Integer</env-entry-type>
<env-entry-value>15</env-entry-value>

</env-entry>
<env-entry>

<description>The tax rate </description>
<env-entry-name>taxRate</env-entry-name>
<env-entry-type>java.lang.Float</env-entry-type>
<env-entry-value>0.23</env-entry-value>

</env-entry>
</session>
<!-- ... -->

Example 2.6. ENC env-entry access code fragment

InitialContext iniCtx = new InitialContext();
Context envCtx = (Context) iniCtx.lookup("java:comp/env");
Integer maxExemptions = (Integer) envCtx.lookup("maxExemptions");
Float taxRate = (Float) envCtx.lookup("taxRate");

2.6.1.2. EJB References

It is common for EJBs and Web components to interact with other EJBs. Because the JNDI name under which an
EJB home interface is bound is a deployment time decision, there needs to be a way for a component developer to
declare a reference to an EJB that will be linked by the deployer. EJB references satisfy this requirement.

An EJB reference is a link in an application component naming environment that points to a deployed EJB home
interface. The name used by the application component is a logical link that isolates the component from the actual
name of the EJB home in the deployment environment. The J2EE specification recommends that all references to
enterprise beans be organized in the java:comp/env/ejb context of the application component's environment.

An EJB reference is declared using an ejb-ref element in the deployment descriptor. Each ejb-ref element de-
scribes the interface requirements that the referencing application component has for the referenced enterprise
bean. The ejb-ref element contains the following child elements:

• An optional description element that provides the purpose of the reference.

• An ejb-ref-name element that specifies the name of the reference relative to the java:comp/env context. To
place the reference under the recommended java:comp/env/ejb context, use an ejb/link-name form for the

Naming on JBoss

JBoss Release 2 116

ejb-ref-name value.

• An ejb-ref-type element that specifies the type of the EJB. This must be either Entity or Session.

• A home element that gives the fully qualified class name of the EJB home interface.

• A remote element that gives the fully qualified class name of the EJB remote interface.

• An optional ejb-link element that links the reference to another enterprise bean in the same EJB JAR or in the
same J2EE application unit. The ejb-link value is the ejb-name of the referenced bean. If there are multiple
enterprise beans with the same ejb-name, the value uses the path name specifying the location of the ejb-jar

file that contains the referenced component. The path name is relative to the referencing ejb-jar file. The Ap-
plication Assembler appends the ejb-name of the referenced bean to the path name separated by #. This allows
multiple beans with the same name to be uniquely identified.

An EJB reference is scoped to the application component whose declaration contains the ejb-ref element. This
means that the EJB reference is not accessible from other application components at runtime, and that other applic-
ation components may define ejb-ref elements with the same ejb-ref-name without causing a name conflict. Ex-
ample 2.7 provides an ejb-jar.xml fragment that illustrates the use of the ejb-ref element. A code sample that il-
lustrates accessing the ShoppingCartHome reference declared in Example 2.7 is given in Example 2.8.

Example 2.7. An example ejb-jar.xml ejb-ref descriptor fragment

<!-- ... -->
<session>

<ejb-name>ShoppingCartBean</ejb-name>
<!-- ...-->

</session>

<session>
<ejb-name>ProductBeanUser</ejb-name>
<!--...-->
<ejb-ref>

<description>This is a reference to the store products entity </description>
<ejb-ref-name>ejb/ProductHome</ejb-ref-name>
<ejb-ref-type>Entity</ejb-ref-type>
<home>org.jboss.store.ejb.ProductHome</home>
<remote> org.jboss.store.ejb.Product</remote>

</ejb-ref>

</session>

<session>
<ejb-ref>

<ejb-name>ShoppingCartUser</ejb-name>
<!--...-->
<ejb-ref-name>ejb/ShoppingCartHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>org.jboss.store.ejb.ShoppingCartHome</home>
<remote> org.jboss.store.ejb.ShoppingCart</remote>
<ejb-link>ShoppingCartBean</ejb-link>

</ejb-ref>
</session>

<entity>
<description>The Product entity bean </description>
<ejb-name>ProductBean</ejb-name>
<!--...-->

Naming on JBoss

JBoss Release 2 117

</entity>

<!--...-->

Example 2.8. ENC ejb-ref access code fragment

InitialContext iniCtx = new InitialContext();
Context ejbCtx = (Context) iniCtx.lookup("java:comp/env/ejb");
ShoppingCartHome home = (ShoppingCartHome) ejbCtx.lookup("ShoppingCartHome");

2.6.1.3. EJB References with jboss.xml and jboss-web.xml

The JBoss specific jboss.xml EJB deployment descriptor affects EJB references in two ways. First, the jndi-name

child element of the session and entity elements allows the user to specify the deployment JNDI name for the
EJB home interface. In the absence of a jboss.xml specification of the jndi-name for an EJB, the home interface is
bound under the ejb-jar.xml ejb-name value. For example, the session EJB with the ejb-name of ShoppingCart-
Bean in Example 2.7 would have its home interface bound under the JNDI name ShoppingCartBean in the absence
of a jboss.xml jndi-name specification.

The second use of the jboss.xml descriptor with respect to ejb-refs is the setting of the destination to which a
component's ENC ejb-ref refers. The ejb-link element cannot be used to refer to EJBs in another enterprise ap-
plication. If your ejb-ref needs to access an external EJB, you can specify the JNDI name of the deployed EJB
home using the jboss.xml ejb-ref/jndi-name element.

The jboss-web.xml descriptor is used only to set the destination to which a Web application ENC ejb-ref refers.
The content model for the JBoss ejb-ref is as follows:

• An ejb-ref-name element that corresponds to the ejb-ref-name element in the ejb-jar.xml or web.xml stand-
ard descriptor

• A jndi-name element that specifies the JNDI name of the EJB home interface in the deployment environment

Example 2.9 provides an example jboss.xml descriptor fragment that illustrates the following usage points:

• The ProductBeanUser ejb-ref link destination is set to the deployment name of jboss/store/ProductHome

• The deployment JNDI name of the ProductBean is set to jboss/store/ProductHome

Example 2.9. An example jboss.xml ejb-ref fragment

<!-- ... -->
<session>

<ejb-name>ProductBeanUser</ejb-name>
<ejb-ref>

<ejb-ref-name>ejb/ProductHome</ejb-ref-name>
<jndi-name>jboss/store/ProductHome</jndi-name>

</ejb-ref>
</session>

Naming on JBoss

JBoss Release 2 118

<entity>
<ejb-name>ProductBean</ejb-name>
<jndi-name>jboss/store/ProductHome</jndi-name>
<!-- ... -->

</entity>
<!-- ... -->

2.6.1.4. EJB Local References

EJB 2.0 added local interfaces that do not use RMI call by value semantics. These interfaces use a call by reference
semantic and therefore do not incur any RMI serialization overhead. An EJB local reference is a link in an applica-
tion component naming environment that points to a deployed EJB local home interface. The name used by the ap-
plication component is a logical link that isolates the component from the actual name of the EJB local home in the
deployment environment. The J2EE specification recommends that all references to enterprise beans be organized
in the java:comp/env/ejb context of the application component's environment.

An EJB local reference is declared using an ejb-local-ref element in the deployment descriptor. Each ejb-

local-ref element describes the interface requirements that the referencing application component has for the ref-
erenced enterprise bean. The ejb-local-ref element contains the following child elements:

• An optional description element that provides the purpose of the reference.

• An ejb-ref-name element that specifies the name of the reference relative to the java:comp/env context. To
place the reference under the recommended java:comp/env/ejb context, use an ejb/link-name form for the
ejb-ref-name value.

• An ejb-ref-type element that specifies the type of the EJB. This must be either Entity or Session.

• A local-home element that gives the fully qualified class name of the EJB local home interface.

• A local element that gives the fully qualified class name of the EJB local interface.

• An ejb-link element that links the reference to another enterprise bean in the ejb-jar file or in the same J2EE
application unit. The ejb-link value is the ejb-name of the referenced bean. If there are multiple enterprise
beans with the same ejb-name, the value uses the path name specifying the location of the ejb-jar file that
contains the referenced component. The path name is relative to the referencing ejb-jar file. The Application
Assembler appends the ejb-name of the referenced bean to the path name separated by #. This allows multiple
beans with the same name to be uniquely identified. An ejb-link element must be specified in JBoss to match
the local reference to the corresponding EJB.

An EJB local reference is scoped to the application component whose declaration contains the ejb-local-ref ele-
ment. This means that the EJB local reference is not accessible from other application components at runtime, and
that other application components may define ejb-local-ref elements with the same ejb-ref-name without caus-
ing a name conflict. Example 2.10 provides an ejb-jar.xml fragment that illustrates the use of the ejb-local-ref

element. A code sample that illustrates accessing the ProbeLocalHome reference declared in Example 2.10 is given
in Example 2.11.

Example 2.10. An example ejb-jar.xml ejb-local-ref descriptor fragment

Naming on JBoss

JBoss Release 2 119

<!-- ... -->
<session>

<ejb-name>Probe</ejb-name>
<home>org.jboss.test.perf.interfaces.ProbeHome</home>
<remote>org.jboss.test.perf.interfaces.Probe</remote>
<local-home>org.jboss.test.perf.interfaces.ProbeLocalHome</local-home>
<local>org.jboss.test.perf.interfaces.ProbeLocal</local>
<ejb-class>org.jboss.test.perf.ejb.ProbeBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Bean</transaction-type>

</session>
<session>

<ejb-name>PerfTestSession</ejb-name>
<home>org.jboss.test.perf.interfaces.PerfTestSessionHome</home>
<remote>org.jboss.test.perf.interfaces.PerfTestSession</remote>
<ejb-class>org.jboss.test.perf.ejb.PerfTestSessionBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<ejb-ref>

<ejb-ref-name>ejb/ProbeHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>org.jboss.test.perf.interfaces.SessionHome</home>
<remote>org.jboss.test.perf.interfaces.Session</remote>
<ejb-link>Probe</ejb-link>

</ejb-ref>
<ejb-local-ref>

<ejb-ref-name>ejb/ProbeLocalHome</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<local-home>org.jboss.test.perf.interfaces.ProbeLocalHome</local-home>
<local>org.jboss.test.perf.interfaces.ProbeLocal</local>
<ejb-link>Probe</ejb-link>

</ejb-local-ref>
</session>
<!-- ... -->

Example 2.11. ENC ejb-local-ref access code fragment

InitialContext iniCtx = new InitialContext();
Context ejbCtx = (Context) iniCtx.lookup("java:comp/env/ejb");
ProbeLocalHome home = (ProbeLocalHome) ejbCtx.lookup("ProbeLocalHome");

2.6.1.5. Resource Manager Connection Factory References

Resource manager connection factory references allow application component code to refer to resource factories
using logical names called resource manager connection factory references. Resource manager connection factory
references are defined by the resource-ref elements in the standard deployment descriptors. The Deployer binds
the resource manager connection factory references to the actual resource manager connection factories that exist in
the target operational environment using the jboss.xml and jboss-web.xml descriptors.

Each resource-ref element describes a single resource manager connection factory reference. The resource-ref

element consists of the following child elements:

• An optional description element that provides the purpose of the reference.

• A res-ref-name element that specifies the name of the reference relative to the java:comp/env context. The re-

Naming on JBoss

JBoss Release 2 120

source type based naming convention for which subcontext to place the res-ref-name into is discussed in the
next paragraph.

• A res-type element that specifies the fully qualified class name of the resource manager connection factory.

• A res-auth element that indicates whether the application component code performs resource signon program-
matically, or whether the container signs on to the resource based on the principal mapping information sup-
plied by the Deployer. It must be one of Application or Container.

• An optional res-sharing-scope element. This currently is not supported by JBoss.

The J2EE specification recommends that all resource manager connection factory references be organized in the
subcontexts of the application component's environment, using a different subcontext for each resource manager
type. The recommended resource manager type to subcontext name is as follows:

• JDBC DataSource references should be declared in the java:comp/env/jdbc subcontext.

• JMS connection factories should be declared in the java:comp/env/jms subcontext.

• JavaMail connection factories should be declared in the java:comp/env/mail subcontext.

• URL connection factories should be declared in the java:comp/env/url subcontext.

Example 2.12 shows an example web.xml descriptor fragment that illustrates the resource-ref element usage. Ex-
ample 2.13 provides a code fragment that an application component would use to access the DefaultMail resource
declared by the resource-ref.

Example 2.12. A web.xml resource-ref descriptor fragment

<web>
<!-- ... -->
<servlet>

<servlet-name>AServlet</servlet-name>
<!-- ... -->

</servlet>
<!-- ... -->
<!-- JDBC DataSources (java:comp/env/jdbc) -->
<resource-ref>

<description>The default DS</description>
<res-ref-name>jdbc/DefaultDS</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Container</res-auth>

</resource-ref>
<!-- JavaMail Connection Factories (java:comp/env/mail) -->
<resource-ref>

<description>Default Mail</description>
<res-ref-name>mail/DefaultMail</res-ref-name>
<res-type>javax.mail.Session</res-type>
<res-auth>Container</res-auth>

</resource-ref>
<!-- JMS Connection Factories (java:comp/env/jms) -->
<resource-ref>

<description>Default QueueFactory</description>
<res-ref-name>jms/QueueFactory</res-ref-name>
<res-type>javax.jms.QueueConnectionFactory</res-type>
<res-auth>Container</res-auth>

Naming on JBoss

JBoss Release 2 121

</resource-ref>
<web>

Example 2.13. ENC resource-ref access sample code fragment

Context initCtx = new InitialContext();
javax.mail.Session s = (javax.mail.Session)
initCtx.lookup("java:comp/env/mail/DefaultMail");

2.6.1.6. Resource Manager Connection Factory References with jboss.xml and jboss-web.xml

The purpose of the JBoss jboss.xml EJB deployment descriptor and jboss-web.xml Web application deployment
descriptor is to provide the link from the logical name defined by the res-ref-name element to the JNDI name of
the resource factory as deployed in JBoss. This is accomplished by providing a resource-ref element in the
jboss.xml or jboss-web.xml descriptor. The JBoss resource-ref element consists of the following child ele-
ments:

• A res-ref-name element that must match the res-ref-name of a corresponding resource-ref element from the
ejb-jar.xml or web.xml standard descriptors

• An optional res-type element that specifies the fully qualified class name of the resource manager connection
factory

• A jndi-name element that specifies the JNDI name of the resource factory as deployed in JBoss

• A res-url element that specifies the URL string in the case of a resource-ref of type java.net.URL

Example 2.14 provides a sample jboss-web.xml descriptor fragment that shows sample mappings of the re-

source-ref elements given in Example 2.12.

Example 2.14. A sample jboss-web.xml resource-ref descriptor fragment

<jboss-web>
<!-- ... -->
<resource-ref>

<res-ref-name>jdbc/DefaultDS</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<jndi-name>java:/DefaultDS</jndi-name>

</resource-ref>
<resource-ref>

<res-ref-name>mail/DefaultMail</res-ref-name>
<res-type>javax.mail.Session</res-type>
<jndi-name>java:/Mail</jndi-name>

</resource-ref>
<resource-ref>

<res-ref-name>jms/QueueFactory</res-ref-name>
<res-type>javax.jms.QueueConnectionFactory</res-type>
<jndi-name>QueueConnectionFactory</jndi-name>

</resource-ref>
<!-- ... -->

</jboss-web>

Naming on JBoss

JBoss Release 2 122

2.6.1.7. Resource Environment References

Resource environment references are elements that refer to administered objects that are associated with a resource
(for example, JMS destinations) using logical names. Resource environment references are defined by the re-

source-env-ref elements in the standard deployment descriptors. The Deployer binds the resource environment
references to the actual administered objects location in the target operational environment using the jboss.xml

and jboss-web.xml descriptors.

Each resource-env-ref element describes the requirements that the referencing application component has for the
referenced administered object. The resource-env-ref element consists of the following child elements:

• An optional description element that provides the purpose of the reference.

• A resource-env-ref-name element that specifies the name of the reference relative to the java:comp/env con-
text. Convention places the name in a subcontext that corresponds to the associated resource factory type. For
example, a JMS queue reference named MyQueue should have a resource-env-ref-name of jms/MyQueue.

• A resource-env-ref-type element that specifies the fully qualified class name of the referenced object. For ex-
ample, in the case of a JMS queue, the value would be javax.jms.Queue.

Example 2.15 provides an example resource-ref-env element declaration by a session bean. Example 2.16 gives
a code fragment that illustrates how to look up the StockInfo queue declared by the resource-env-ref.

Example 2.15. An example ejb-jar.xml resource-env-ref fragment

<session>
<ejb-name>MyBean</ejb-name>
<!-- ... -->
<resource-env-ref>

<description>This is a reference to a JMS queue used in the
processing of Stock info

</description>
<resource-env-ref-name>jms/StockInfo</resource-env-ref-name>
<resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>

</resource-env-ref>
<!-- ... -->

</session>

Example 2.16. ENC resource-env-ref access code fragment

InitialContext iniCtx = new InitialContext();
javax.jms.Queue q = (javax.jms.Queue)
envCtx.lookup("java:comp/env/jms/StockInfo");

2.6.1.8. Resource Environment References and jboss.xml, jboss-web.xml

The purpose of the JBoss jboss.xml EJB deployment descriptor and jboss-web.xml Web application deployment
descriptor is to provide the link from the logical name defined by the resource-env-ref-name element to the JNDI

Naming on JBoss

JBoss Release 2 123

name of the administered object deployed in JBoss. This is accomplished by providing a resource-env-ref ele-
ment in the jboss.xml or jboss-web.xml descriptor. The JBoss resource-env-ref element consists of the follow-
ing child elements:

• A resource-env-ref-name element that must match the resource-env-ref-name of a corresponding re-

source-env-ref element from the ejb-jar.xml or web.xml standard descriptors

• A jndi-name element that specifies the JNDI name of the resource as deployed in JBoss

Example 2.17 provides a sample jboss.xml descriptor fragment that shows a sample mapping for the StockInfo

resource-env-ref.

Example 2.17. A sample jboss.xml resource-env-ref descriptor fragment

<session>
<ejb-name>MyBean</ejb-name>
<!-- ... -->
<resource-env-ref>

<resource-env-ref-name>jms/StockInfo</resource-env-ref-name>
<jndi-name>queue/StockInfoQueue</jndi-name>

</resource-env-ref>
<!-- ... -->

</session>

Naming on JBoss

JBoss Release 2 124

3
Transactions on JBoss

The JTA Transaction Service

This chapter discusses transaction management in JBoss and the JBossTX architecture. The JBossTX architecture
allows for any Java Transaction API (JTA) transaction manager implementation to be used. JBossTX includes a
fast in-VM implementation of a JTA compatible transaction manager that is used as the default transaction man-
ager. We will first provide an overview of the key transaction concepts and notions in the JTA to provide sufficient
background for the JBossTX architecture discussion. We will then discuss the interfaces that make up the JBossTX
architecture and conclude with a discussion of the MBeans available for integration of alternate transaction man-
agers.

3.1. Transaction/JTA Overview

For the purpose of this discussion, we can define a transaction as a unit of work containing one or more operations
involving one or more shared resources having ACID properties. ACID is an acronym for atomicity, consistency,
isolation and durability, the four important properties of transactions. The meanings of these terms is:

• Atomicity: A transaction must be atomic. This means that either all the work done in the transaction must be
performed, or none of it must be performed. Doing part of a transaction is not allowed.

• Consistency: When a transaction is completed, the system must be in a stable and consistent condition.

• Isolation: Different transactions must be isolated from each other. This means that the partial work done in one
transaction is not visible to other transactions until the transaction is committed, and that each process in a
multi-user system can be programmed as if it was the only process accessing the system.

• Durability: The changes made during a transaction are made persistent when it is committed. When a transac-
tion is committed, its changes will not be lost, even if the server crashes afterwards.

To illustrate these concepts, consider a simple banking account application. The banking application has a database
with a number of accounts. The sum of the amounts of all accounts must always be 0. An amount of money M is
moved from account A to account B by subtracting M from account A and adding M to account B. This operation
must be done in a transaction, and all four ACID properties are important.

The atomicity property means that both the withdrawal and deposit is performed as an indivisible unit. If, for some
reason, both cannot be done nothing will be done.

The consistency property means that after the transaction, the sum of the amounts of all accounts must still be 0.

The isolation property is important when more than one bank clerk uses the system at the same time. A withdrawal
or deposit could be implemented as a three-step process: First the amount of the account is read from the database;

JBoss Release 2 125

then something is subtracted from or added to the amount read from the database; and at last the new amount is
written to the database. Without transaction isolation several bad things could happen. For example, if two pro-
cesses read the amount of account A at the same time, and each independently added or subtracted something be-
fore writing the new amount to the database, the first change would be incorrectly overwritten by the last.

The durability property is also important. If a money transfer transaction is committed, the bank must trust that
some subsequent failure cannot undo the money transfer.

3.1.1. Pessimistic and optimistic locking

Transactional isolation is usually implemented by locking whatever is accessed in a transaction. There are two dif-
ferent approaches to transactional locking: Pessimistic locking and optimistic locking.

The disadvantage of pessimistic locking is that a resource is locked from the time it is first accessed in a transaction
until the transaction is finished, making it inaccessible to other transactions during that time. If most transactions
simply look at the resource and never change it, an exclusive lock may be overkill as it may cause lock contention,
and optimistic locking may be a better approach. With pessimistic locking, locks are applied in a fail-safe way. In
the banking application example, an account is locked as soon as it is accessed in a transaction. Attempts to use the
account in other transactions while it is locked will either result in the other process being delayed until the account
lock is released, or that the process transaction will be rolled back. The lock exists until the transaction has either
been committed or rolled back.

With optimistic locking, a resource is not actually locked when it is first is accessed by a transaction. Instead, the
state of the resource at the time when it would have been locked with the pessimistic locking approach is saved.
Other transactions are able to concurrently access to the resource and the possibility of conflicting changes is pos-
sible. At commit time, when the resource is about to be updated in persistent storage, the state of the resource is
read from storage again and compared to the state that was saved when the resource was first accessed in the trans-
action. If the two states differ, a conflicting update was made, and the transaction will be rolled back.

In the banking application example, the amount of an account is saved when the account is first accessed in a trans-
action. If the transaction changes the account amount, the amount is read from the store again just before the
amount is about to be updated. If the amount has changed since the transaction began, the transaction will fail it-
self, otherwise the new amount is written to persistent storage.

3.1.2. The components of a distributed transaction

There are a number of participants in a distributed transaction. These include:

• Transaction Manager: This component is distributed across the transactional system. It manages and coordin-
ates the work involved in the transaction. The transaction manager is exposed by the
javax.transaction.TransactionManager interface in JTA.

• Transaction Context: A transaction context identifies a particular transaction. In JTA the corresponding inter-
face is javax.transaction.Transaction.

• Transactional Client: A transactional client can invoke operations on one or more transactional objects in a
single transaction. The transactional client that started the transaction is called the transaction originator. A
transaction client is either an explicit or implicit user of JTA interfaces and has no interface representation in

Transactions on JBoss

JBoss Release 2 126

the JTA.

• Transactional Object: A transactional object is an object whose behavior is affected by operations performed
on it within a transactional context. A transactional object can also be a transactional client. Most Enterprise
Java Beans are transactional objects.

• Recoverable Resource: A recoverable resource is a transactional object whose state is saved to stable storage
if the transaction is committed, and whose state can be reset to what it was at the beginning of the transaction if
the transaction is rolled back. At commit time, the transaction manager uses the two-phase XA protocol when
communicating with the recoverable resource to ensure transactional integrity when more than one recoverable
resource is involved in the transaction being committed. Transactional databases and message brokers like
JBossMQ are examples of recoverable resources. A recoverable resource is represented using the
javax.transaction.xa.XAResource interface in JTA.

3.1.3. The two-phase XA protocol

When a transaction is about to be committed, it is the responsibility of the transaction manager to ensure that either
all of it is committed, or that all of is rolled back. If only a single recoverable resource is involved in the transac-
tion, the task of the transaction manager is simple: It just has to tell the resource to commit the changes to stable
storage.

When more than one recoverable resource is involved in the transaction, management of the commit gets more
complicated. Simply asking each of the recoverable resources to commit changes to stable storage is not enough to
maintain the atomic property of the transaction. The reason for this is that if one recoverable resource has commit-
ted and another fails to commit, part of the transaction would be committed and the other part rolled back.

To get around this problem, the two-phase XA protocol is used. The XA protocol involves an extra prepare phase
before the actual commit phase. Before asking any of the recoverable resources to commit the changes, the transac-
tion manager asks all the recoverable resources to prepare to commit. When a recoverable resource indicates it is
prepared to commit the transaction, it has ensured that it can commit the transaction. The resource is still able to
rollback the transaction if necessary as well.

So the first phase consists of the transaction manager asking all the recoverable resources to prepare to commit. If
any of the recoverable resources fails to prepare, the transaction will be rolled back. But if all recoverable resources
indicate they were able to prepare to commit, the second phase of the XA protocol begins. This consists of the
transaction manager asking all the recoverable resources to commit the transaction. Because all the recoverable re-
sources have indicated they are prepared, this step cannot fail.

3.1.4. Heuristic exceptions

In a distributed environment communications failures can happen. If communication between the transaction man-
ager and a recoverable resource is not possible for an extended period of time, the recoverable resource may decide
to unilaterally commit or rollback changes done in the context of a transaction. Such a decision is called a heuristic
decision. It is one of the worst errors that may happen in a transaction system, as it can lead to parts of the transac-
tion being committed while other parts are rolled back, thus violating the atomicity property of transaction and pos-
sibly leading to data integrity corruption.

Because of the dangers of heuristic exceptions, a recoverable resource that makes a heuristic decision is required to

Transactions on JBoss

JBoss Release 2 127

maintain all information about the decision in stable storage until the transaction manager tells it to forget about the
heuristic decision. The actual data about the heuristic decision that is saved in stable storage depends on the type of
recoverable resource and is not standardized. The idea is that a system manager can look at the data, and possibly
edit the resource to correct any data integrity problems.

There are several different kinds of heuristic exceptions defined by the JTA. The
javax.transaction.HeuristicCommitException is thrown when a recoverable resource is asked to rollback to re-
port that a heuristic decision was made and that all relevant updates have been committed. On the opposite end is
the javax.transaction.HeuristicRollbackException, which is thrown by a recoverable resource when it is
asked to commit to indicate that a heuristic decision was made and that all relevant updates have been rolled back.

The javax.transaction.HeuristicMixedException is the worst heuristic exception. It is thrown to indicate that
parts of the transaction were committed, while other parts were rolled back. The transaction manager throws this
exception when some recoverable resources did a heuristic commit, while other recoverable resources did a heurist-
ic rollback.

3.1.5. Transaction IDs and branches

In JTA, the identity of transactions is encapsulated in objects implementing the javax.transaction.xa.Xid inter-
face. The transaction ID is an aggregate of three parts:

• The format identifier indicates the transaction family and tells how the other two parts should be interpreted.

• The global transaction id identified the global transaction within the transaction family.

• The branch qualifier denotes a particular branch of the global transaction.

Transaction branches are used to identify different parts of the same global transaction. Whenever the transaction
manager involves a new recoverable resource in a transaction it creates a new transaction branch.

3.2. JBoss Transaction Internals

The JBoss application server is written to be independent of the actual transaction manager used. JBoss uses the
JTA javax.transaction.TransactionManager interface as its view of the server transaction manager. Thus,
JBoss may use any transaction manager which implements the JTA TransactionManager interface. Whenever a
transaction manager is used it is obtained from the well-known JNDI location, java:/TransactionManager. This is
the globally available access point for the server transaction manager.

If transaction contexts are to be propagated with RMI/JRMP calls, the transaction manager must also implement
two simple interfaces for the import and export of transaction propagation contexts (TPCs). The interfaces are
TransactionPropagationContextImporter, and TransactionPropagationContextFactory, both in the
org.jboss.tm package.

Being independent of the actual transaction manager used also means that JBoss does not specify the format of type
of the transaction propagation contexts used. In JBoss, a TPC is of type Object, and the only requirement is that the
TPC must implementation the java.io.Serializable interface.

When using the RMI/JRMP protocol for remote calls, the TPC is carried as a field in the

Transactions on JBoss

JBoss Release 2 128

org.jboss.ejb.plugins.jrmp.client.RemoteMethodInvocation class that is used to forward remote method in-
vocation requests.

3.2.1. Adapting a Transaction Manager to JBoss

A transaction manager has to implement the Java Transaction API to be easily integrated with JBoss. As almost
everything in JBoss, the transaction manager is managed as an MBean. Like all JBoss services, it should implement
org.jboss.system.ServiceMBean to ensure proper life-cycle management.

The primary requirement of the transaction manager service on startup is that it binds its implementation of the
three required interfaces into JNDI. These interfaces and their JNDI locations are:

• The javax.transaction.TransactionManager interface is used by the application server to manage transac-
tions on behalf of the transactional objects that use container managed transactions. It must be bound under the
JNDI name java:/TransactionManager.

• The TransactionPropagationContextFactory interface is called by JBoss whenever a transaction propagation
context is needed for transporting a transaction with a remote method call. It must be bound under the JNDI
name java:/TransactionPropagationContextImporter.

• The TransactionPropagationContextImporter interface is called by JBoss whenever a transaction propaga-
tion context from an incoming remote method invocation has to be converted to a transaction that can be used
within the receiving JBoss server VM.

Establishing these JNDI bindings is all the transaction manager service needs to do to install its implementation as
the JBoss server transaction manager.

3.2.2. The Default Transaction Manager

JBoss is by default configured to use the fast in-VM transaction manager. This transaction manager is very fast, but
does have two limitations.

• It does not do transactional logging, and is thus incapable of automated recovery after a server crash.

• While it does support propagating transaction contexts with remote calls, it does not support propagating trans-
action contexts to other virtual machines, so all transactional work must be done in the same virtual machine as
the JBoss server.

The corresponding default transaction manager MBean service is the org.jboss.tm.TransactionManagerService

MBean. It has two configurable attributes:

• TransactionTimeout: The default transaction timeout in seconds. The default value is 300 seconds (5
minutes).

• InterruptThreads: Indicates whether or not the transaction manager should interrupt threads when the transac-
tion times out. The default value is false.

• GlobalIdsEnabled: Indicates whether or not the transaction manager should use global transaction ids. This

Transactions on JBoss

JBoss Release 2 129

should be set to true for transaction demarcation over IIOP The default value is true.

• XidFactory: The JMX ObjectName of the MBean service that provides the org.jboss.tm.XidFactoryMBean

implementation. The XidFactoryMBean interface is used to create javax.transaction.xa.Xid instances. This
is a workaround for XA JDBC drivers that only work with their own Xid implementation. Examples of such
drivers are the older Oracle XA drivers. The default factory is jboss:service=XidFactory.

3.2.2.1. org.jboss.tm.XidFactory

The XidFactory MBean is a factory for javax.transaction.xa.Xid instances in the form of
org.jboss.tm.XidImpl. The XidFactory allows for customization of the XidImpl that it constructs through the
following attributes:

• BaseGlobalId: This is used for building globally unique transaction identifiers. This must be set individually if
multiple JBoss instances are running on the same machine. The default value is the host name of the JBoss
server, followed by a slash.

• GlobalIdNumber: A long value used as initial transaction id. The default is 0.

• Pad: The pad value determines whether the byte[] returned by the Xid getGlobalTransactionId and get-

BranchQualifier methods should be equal to maximum 64 byte length or a variable value <= 64. Some re-
source managers (Oracle, for example) require ids that are max length in size.

3.2.3. UserTransaction Support

The JTA javax.transaction.UserTransaction interface allows applications to explicitly control transactions.
For enterprise session beans that manage transaction themselves (BMT), a UserTransaction can be obtained by
calling the getUserTransaction method on the bean context object, javax.ejb.SessionContext.

The ClientUserTransactionService MBean publishes a UserTransaction implementation under the JNDI name
UserTransaction. When the UserTransaction is obtained with a JNDI lookup from a external client, a very
simple UserTransaction suitable for thin clients is returned. This UserTransaction implementation only controls
the transactions on the server the UserTransaction object was obtained from. Local transactional work done in the
client is not done within the transactions started by this UserTransaction object.

When a UserTransaction object is obtained by looking up JNDI name UserTransaction in the same virtual ma-
chine as JBoss, a simple interface to the JTA TransactionManager is returned. This is suitable for web components
running in web containers embedded in JBoss. When components are deployed in an embedded web server, the de-
ployer will make a JNDI link from the standard java:comp/UserTransaction ENC name to the global UserTrans-
action binding so that the web components can lookup the UserTranaction instance under JNDI name as spe-
cified by the J2EE.

Note: For BMT beans, do not obtain the UserTransaction interface using a JNDI lookup. Doing this violates the
EJB specification, and the returned UserTransaction object does not have the hooks the EJB container needs to
make important checks.

Transactions on JBoss

JBoss Release 2 130

4
EJBs on JBoss

The EJB Container Configuration and Architecture

The JBoss EJB container architecture employs a modular plug-in approach. All key aspects of the EJB container
may be replaced by custom versions of a plug-in and/or an interceptor by a developer. This approach allows for
fine tuned customization of the EJB container behavior to optimally suite your needs. Most of the EJB container
behavior is configurable through the EJB JAR META-INF/jboss.xml descriptor and the default server-wide equival-
ent standardjboss.xml descriptor. We will look at various configuration capabilities throughout this chapter as we
explore the container architecture.

4.1. The EJB Client Side View

We will begin our tour of the EJB container by looking at the client view of an EJB through the home and remote
proxies. It is the responsibility of the container provider to generate the javax.ejb.EJBHome and
javax.ejb.EJBObject for an EJB implementation. A client never references an EJB bean instance directly, but
rather references the EJBHome which implements the bean home interface, and the EJBObject which implements the
bean remote interface. Figure 4.1 shows the composition of an EJB home proxy and its relation to the EJB deploy-
ment.

JBoss Release 2 131

Figure 4.1. The composition of an EJBHome proxy in JBoss.

The numbered items in the figure are:

1. The EJBDeployer (org.jboss.ejb.EJBDeployer) is invoked to deploy an EJB JAR. An EJBModule

(org.jboss.ejb.EJBModule) is created to encapsulate the deployment metadata.

2. The create phase of the EJBModule life cycle creates an EJBProxyFactory (org.jboss.ejb.EJBProxyFactory)
that manages the creation of EJB home and remote interface proxies based on the EJBModule invoker-

proxy-bindings metadata. There can be multiple proxy factories associated with an EJB and we will look at
how this is defined shortly.

3. The ProxyFactory constructs the logical proxies and binds the homes into JNDI. A logical proxy is composed
of a dynamic Proxy (java.lang.reflect.Proxy), the home interfaces of the EJB that the proxy exposes, the
ProxyHandler (java.lang.reflect.InvocationHandler) implementation in the form of the ClientContain-

er (org.jboss.proxy.ClientContainer), and the client side interceptors.

4. The proxy created by the EJBProxyFactory is a standard dynamic proxy. It is a serializable object that proxies
the EJB home and remote interfaces as defined in the EJBModule metadata. The proxy translates requests made
through the strongly typed EJB interfaces into a detyped invocation using the ClientContainer handler asso-
ciated with the proxy. It is the dynamic proxy instance that is bound into JNDI as the EJB home interface that
clients lookup. When a client does a lookup of an EJB home, the home proxy is transported into the client VM
along with the ClientContainer and its interceptors. The use of dynamic proxies avoids the EJB specific
compilation step required by many other EJB containers.

5. The EJB home interface is declared in the ejb-jar.xml descriptor and available from the EJBModule metadata.
A key property of dynamic proxies is that they are seen to implement the interfaces they expose. This is true in
the sense of Java's strong type system. A proxy can be cast to any of the home interfaces and reflection on the
proxy provides the full details of the interfaces it proxies.

6. The proxy delegates calls made through any of its interfaces to the ClientContainer handler. The single
method required of the handler is: public Object invoke(Object proxy, Method m, Object[] args)

throws Throwable. The EJBProxyFactory creates a ClientContainer and assigns this as the ProxyHandler.
The ClientContainer's state consists of an InvocationContext

(org.jboss.invocation.InvocationContext) and a chain of interceptors (org.jboss.proxy.Interceptor).
The InvocationContext contains:

• the JMX ObjectName of the EJB container MBean the Proxy is associated with
• the javax.ejb.EJBMetaData for the EJB
• the JNDI name of the EJB home interface
• the transport specific invoker (org.jboss.invocation.Invoker)

The interceptor chain consists of the functional units that make up the EJB home or remote interface behavior.
This is a configurable aspect of an EJB as we will see when we discuss the jboss.xml descriptor, and the in-
terceptor makeup is contained in the EJBModule metadata. Interceptors (org.jboss.proxy.Interceptor)
handle the different EJB types, security, transactions and transport. You can add your own interceptors as
well.

7. The transport specific invoker associated with the proxy has an association to the server side detached invoker

EJBs on JBoss

JBoss Release 2 132

that handles the transport details of the EJB method invocation. The detached invoker is a JBoss server side
component.

The configuration of the client side interceptors is done using the jboss.xml client-interceptors element. When
the ClientContainer invoke method is called it creates an untyped Invocation

(org.jboss.invocation.Invocation) to encapsulate request. This is then passed through the interceptor chain.
The last interceptor in the chain will be the transport handler that knows how to send the request to the server and
obtain the reply, taking care of the transport specific details.

As an example of the client interceptor configuration usage, consider the default stateless session bean configura-
tion found in the server/default/standardjboss.xml descriptor. Example 4.1 shows the stateless-

rmi-invoker client interceptors configuration referenced by the Standard Stateless SessionBean.

Example 4.1. The client-interceptors from the Standard Stateless SessionBean configuration.

<invoker-proxy-binding>
<name>stateless-rmi-invoker</name>
<invoker-mbean>jboss:service=invoker,type=jrmp</invoker-mbean>
<proxy-factory>org.jboss.proxy.ejb.ProxyFactory</proxy-factory>

<proxy-factory-config>
<client-interceptors>

<home>
<interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor call-by-value="false">

org.jboss.invocation.InvokerInterceptor
</interceptor>
<interceptor call-by-value="true">

org.jboss.invocation.MarshallingInvokerInterceptor
</interceptor>

</home>
<bean>

<interceptor>org.jboss.proxy.ejb.StatelessSessionInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor call-by-value="false">

org.jboss.invocation.InvokerInterceptor
</interceptor>
<interceptor call-by-value="true">

org.jboss.invocation.MarshallingInvokerInterceptor
</interceptor>

</bean>
</client-interceptors>

</proxy-factory-config>
</invoker-proxy-binding>

<container-configuration>
<container-name>Standard Stateless SessionBean</container-name>
<call-logging>false</call-logging>
<invoker-proxy-binding-name>stateless-rmi-invoker</invoker-proxy-binding-name>
<!-- ... -->

</container-configuration>

This is the client interceptor configuration for stateless session beans that is used in the absence of an EJB JAR
META-INF/jboss.xml configuration that overrides these settings. The functionality provided by each client inter-

EJBs on JBoss

JBoss Release 2 133

ceptor is:

• org.jboss.proxy.ejb.HomeInterceptor: handles the getHomeHandle, getEJBMetaData, and remove methods of
the EJBHome interface locally in the client VM. Any other methods are propagated to the next interceptor.

• org.jboss.proxy.ejb.StatelessSessionInterceptor: handles the toString, equals, hashCode, getHandle, getE-
JBHome and isIdentical methods of the EJBObject interface locally in the client VM. Any other methods are
propagated to the next interceptor.

• org.jboss.proxy.SecurityInterceptor: associates the current security context with the method invocation for
use by other interceptors or the server.

• org.jboss.proxy.TransactionInterceptor: associates any active transaction with the invocation method invoc-
ation for use by other interceptors.

• org.jboss.invocation.InvokerInterceptor: encapsulates the dispatch of the method invocation to the transport
specific invoker. It knows if the client is executing in the same VM as the server and will optimally route the
invocation to a by reference invoker in this situation. When the client is external to the server VM, this inter-
ceptor delegates the invocation to the transport invoker associated with the invocation context. In the case of
the Example 4.1 configuration, this would be the invoker stub associated with the
jboss:service=invoker,type=jrmp, the JRMPInvoker service.

org.jboss.invocation.MarshallingInvokerInterceptor: extends the InvokerInterceptor to not optimize in-
VM invocations. This is used to force call-by-value semantics for method calls.

4.1.1. Specifying the EJB Proxy Configuration

To specify the EJB invocation transport and the client proxy interceptor stack, you need to define an invoker-

proxy-binding in either the EJB JAR META-INF/jboss.xml descriptor, or the server standardjboss.xml

descriptor. There are several default invoker-proxy-bindings defined in the standardjboss.xml descriptor for
the various default EJB container configurations and the standard RMI/JRMP and RMI/IIOP transport protocols.
The current default proxy configurations are:

• entity-rmi-invoker: a RMI/JRMP configuration for entity beans

• clustered-entity-rmi-invoker: a RMI/JRMP configuration for clustered entity beans

• stateless-rmi-invoker: a RMI/JRMP configuration for stateless session beans

• clustered-stateless-rmi-invoker: a RMI/JRMP configuration for clustered stateless session beans

• stateful-rmi-invoker: a RMI/JRMP configuration for clustered stateful session beans

• clustered-stateful-rmi-invoker: a RMI/JRMP configuration for clustered stateful session beans

• message-driven-bean: a JMS invoker for message driven beans

• singleton-message-driven-bean: a JMS invoker for singleton message driven beans

• message-inflow-driven-bean: a JMS invoker for message inflow driven beans

EJBs on JBoss

JBoss Release 2 134

• jms-message-inflow-driven-bean: a JMS inflow invoker for standard message driven beans

• iiop: a RMI/IIOP for use with session and entity beans.

To introduce a new protocol binding, or customize the proxy factory, or the client side interceptor stack, requires
defining a new invoker-proxy-binding. The full invoker-proxy-binding DTD fragment for the specification of
the proxy configuration is given in Figure 4.2.

Figure 4.2. The invoker-proxy-binding schema

The invoker-proxy-binding child elements are:

EJBs on JBoss

JBoss Release 2 135

• name: The name element gives a unique name for the invoker-proxy-binding. The name is used to reference
the binding from the EJB container configuration when setting the default proxy binding as well as the EJB de-
ployment level to specify addition proxy bindings. You will see how this is done when we look at the
jboss.xml elements that control the server side EJB container configuration.

• invoker-mbean: The invoker-mbean element gives the JMX ObjectName string of the detached invoker
MBean service the proxy invoker will be associated with.

• proxy-factory: The proxy-factory element specifies the fully qualified class name of the proxy factory, which
must implement the org.jboss.ejb.EJBProxyFactory interface. The EJBProxyFactory handles the configura-
tion of the proxy and the association of the protocol specific invoker and context. The current JBoss implement-
ations of the EJBProxyFactory interface include:

• org.jboss.proxy.ejb.ProxyFactory: The RMI/JRMP specific factory.

• org.jboss.proxy.ejb.ProxyFactoryHA: The cluster RMI/JRMP specific factory.

• org.jboss.ejb.plugins.jms.JMSContainerInvoker: The JMS specific factory.

• org.jboss.proxy.ejb.IORFactory: The RMI/IIOP specific factory.

• proxy-factory-config: The proxy-factory-config element specifies additional information for the proxy-

factory implementation. Unfortunately, its currently an unstructured collection of elements. Only a few of the
elements apply to each type of proxy factory. The child elements break down into the three invocation proto-
cols: RMI/RJMP, RMI/IIOP and JMS.

For the RMI/JRMP specific proxy factories, org.jboss.proxy.ejb.ProxyFactory and
org.jboss.proxy.ejb.ProxyFactoryHA the following elements apply:

• client-interceptors: The client-interceptors define the home, remote and optionally the multi-valued proxy
interceptor stacks.

• web-class-loader: The web class loader defines the instance of the org.jboss.web.WebClassLoader that
should be associated with the proxy for dynamic class loading.

The following proxy-factory-config is for an entity bean accessed over RMI.

<proxy-factory-config>
<client-interceptors>

<home>
<interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor call-by-value="false">

org.jboss.invocation.InvokerInterceptor
</interceptor>
<interceptor call-by-value="true">

org.jboss.invocation.MarshallingInvokerInterceptor
</interceptor>

</home>
<bean>

<interceptor>org.jboss.proxy.ejb.EntityInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>

EJBs on JBoss

JBoss Release 2 136

<interceptor call-by-value="false">
org.jboss.invocation.InvokerInterceptor

</interceptor>
<interceptor call-by-value="true">

org.jboss.invocation.MarshallingInvokerInterceptor
</interceptor>

</bean>
<list-entity>

<interceptor>org.jboss.proxy.ejb.ListEntityInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor call-by-value="false">

org.jboss.invocation.InvokerInterceptor
</interceptor>
<interceptor call-by-value="true">

org.jboss.invocation.MarshallingInvokerInterceptor
</interceptor>

</list-entity>
</client-interceptors>

</proxy-factory-config>

For the RMI/IIOP specific proxy factory, org.jboss.proxy.ejb.IORFactory, the following elements apply:

• web-class-loader: The web class loader defines the instance of the org.jboss.web.WebClassLoader that
should be associated with the proxy for dynamic class loading.

• poa: The portable object adapter usage. Valid values are per-servant and shared.

• register-ejbs-in-jnp-context: A flag indicating if the EJBs should be register in JNDI.

• jnp-context: The JNDI context in which to register EJBs.

• interface-repository-supported: This indicates whether or not a deployed EJB has its own CORBA interface
repository.

The following shows a proxy-factory-config for EJBs accessed over IIOP.

<proxy-factory-config>
<web-class-loader>org.jboss.iiop.WebCL</web-class-loader>
<poa>per-servant</poa>
<register-ejbs-in-jnp-context>true</register-ejbs-in-jnp-context>
<jnp-context>iiop</jnp-context>

</proxy-factory-config>

For the JMS specific proxy factory, org.jboss.ejb.plugins.jms.JMSContainerInvoker, the following elements
apply:

• MinimumSize: This specifies the minimum pool size for MDBs processing . This defaults to 1.

• MaximumSize: This specifies the upper limit to the number of concurrent MDBs that will be allowed for the
JMS destination. This defaults to 15.

• MaxMessages: This specifies the maxMessages parameter value for the createConnectionConsumer method of
javax.jms.QueueConnection and javax.jms.TopicConnection interfaces, as well as the maxMessages para-
meter value for the createDurableConnectionConsumer method of javax.jms.TopicConnection. It is the
maximum number of messages that can be assigned to a server session at one time. This defaults to 1. This

EJBs on JBoss

JBoss Release 2 137

value should not be modified from the default unless your JMS provider indicates this is supported.

• KeepAliveMillis: This specifies the keep alive time interval in milliseconds for sessions in the session pool.
The default is 30000 (30 seconds).

• MDBConfig: Configuration for the MDB JMS connection behavior. Among the elements supported are:

• ReconnectIntervalSec: The time to wait (in seconds) before trying to recover the connection to the JMS
server.

• DeliveryActive: Whether or not the MDB is active at startup. The default is true.

• DLQConfig: Configuration for an MDB's dead letter queue, used when messages are redelivered too many
times.

• JMSProviderAdapterJNDI: The JNDI name of the JMS provider adapter in the java:/ namespace. This
is mandatory for an MDB and must implement org.jboss.jms.jndi.JMSProviderAdapter.

• ServerSessionPoolFactoryJNDI: The JNDI name of the session pool in the java:/ namespace of the JMS
provider's session pool factory. This is mandatory for an MDB and must implement
org.jboss.jms.asf.ServerSessionPoolFactory.

Example 4.2 gives a sample proxy-factory-config fragment taken from the standardjboss.xml descriptor.

Example 4.2. A sample JMSContainerInvoker proxy-factory-config

<proxy-factory-config>
<JMSProviderAdapterJNDI>DefaultJMSProvider</JMSProviderAdapterJNDI>
<ServerSessionPoolFactoryJNDI>StdJMSPool</ServerSessionPoolFactoryJNDI>
<MinimumSize>1</MinimumSize>
<MaximumSize>15</MaximumSize>
<KeepAliveMillis>30000</KeepAliveMillis>
<MaxMessages>1</MaxMessages>
<MDBConfig>

<ReconnectIntervalSec>10</ReconnectIntervalSec>
<DLQConfig>

<DestinationQueue>queue/DLQ</DestinationQueue>
<MaxTimesRedelivered>10</MaxTimesRedelivered>
<TimeToLive>0</TimeToLive>

</DLQConfig>
</MDBConfig>

</proxy-factory-config>

4.2. The EJB Server Side View

Every EJB invocation must end up at a JBoss server hosted EJB container. In this section we will look at how in-
vocations are transported to the JBoss server VM and find their way to the EJB container via the JMX bus.

4.2.1. Detached Invokers - The Transport Middlemen

EJBs on JBoss

JBoss Release 2 138

We looked at the detached invoker architecture in the context of exposing RMI compatible interfaces of MBean
services earlier. Here we will look at how detached invokers are used to expose the EJB container home and bean
interfaces to clients. The generic view of the invoker architecture is presented in Figure 4.3.

Figure 4.3. The transport invoker server side architecture

For each type of home proxy there is a binding to an invoker and its associated transport protocol. A container may
have multiple invocation protocols active simultaneously. In the jboss.xml file, an invoker-proxy-binding-name

maps to an invoker-proxy-binding/name element. At the container-configuration level this specifies the de-
fault invoker that will be used for EJBs deployed to the container. At the bean level, the invoker-bindings specify
one or more invokers to use with the EJB container MBean.

When one specifies multiple invokers for a given EJB deployment, the home proxy must be given a unique JNDI
binding location. This is specified by the invoker/jndi-name element value. Another issue when multiple invokers
exist for an EJB is how to handle remote homes or interfaces obtained when the EJB calls other beans. Any such
interfaces need to use the same invoker used to call the outer EJB in order for the resulting remote homes and inter-
faces to be compatible with the proxy the client has initiated the call through. The invoker/ejb-ref elements al-
low one to map from a protocol independent ENC ejb-ref to the home proxy binding for ejb-ref target EJB
home that matches the referencing invoker type.

An example of using a custom JRMPInvoker MBean that enables compressed sockets for session beans can be
found in the org.jboss.test.jrmp package of the testsuite. The following example illustrates the custom JRMPIn-

voker configuration and its mapping to a stateless session bean.

<server>
<mbean code="org.jboss.invocation.jrmp.server.JRMPInvoker"

name="jboss:service=invoker,type=jrmp,socketType=CompressionSocketFactory">
<attribute name="RMIObjectPort">4445</attribute>
<attribute name="RMIClientSocketFactory">

org.jboss.test.jrmp.ejb.CompressionClientSocketFactory
</attribute>
<attribute name="RMIServerSocketFactory">

org.jboss.test.jrmp.ejb.CompressionServerSocketFactory

EJBs on JBoss

JBoss Release 2 139

</attribute>
</mbean>

</server>

Here the default JRMPInvoker has been customized to bind to port 4445 and to use custom socket factories that en-
able compression at the transport level.

<?xml version="1.0"?>
<!DOCTYPE jboss PUBLIC

"-//JBoss//DTD JBOSS 3.2//EN"
"http://www.jboss.org/j2ee/dtd/jboss_3_2.dtd">

<!-- The jboss.xml descriptor for the jrmp-comp.jar ejb unit -->
<jboss>

<enterprise-beans>
<session>

<ejb-name>StatelessSession</ejb-name>
<configuration-name>Standard Stateless SessionBean</configuration-name>
<invoker-bindings>

<invoker>
<invoker-proxy-binding-name>

stateless-compression-invoker
</invoker-proxy-binding-name>
<jndi-name>jrmp-compressed/StatelessSession</jndi-name>

</invoker>
</invoker-bindings>

</session>
</enterprise-beans>

<invoker-proxy-bindings>
<invoker-proxy-binding>

<name>stateless-compression-invoker</name>
<invoker-mbean>

jboss:service=invoker,type=jrmp,socketType=CompressionSocketFactory
</invoker-mbean>
<proxy-factory>org.jboss.proxy.ejb.ProxyFactory</proxy-factory>
<proxy-factory-config>

<client-interceptors>
<home>

<interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</home>
<bean>

<interceptor>
org.jboss.proxy.ejb.StatelessSessionInterceptor

</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</bean>
</client-interceptors>

</proxy-factory-config>
</invoker-proxy-binding>

</invoker-proxy-bindings>
</jboss>

The StatelessSession EJB invoker-bindings settings specify that the stateless-compression-invoker will be
used with the home interface bound under the JNDI name jrmp-compressed/StatelessSession. The stateless-

compression-invoker is linked to the custom JRMP invoker we just declared.

The following example, org.jboss.test.hello testsuite package, is an example of using the HttpInvoker to con-

EJBs on JBoss

JBoss Release 2 140

figure a stateless session bean to use the RMI/HTTP protocol.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jboss PUBLIC

"-//JBoss//DTD JBOSS 3.2//EN"
"http://www.jboss.org/j2ee/dtd/jboss_3_2.dtd">

<jboss>
<enterprise-beans>

<session>
<ejb-name>HelloWorldViaHTTP</ejb-name>
<jndi-name>helloworld/HelloHTTP</jndi-name>
<invoker-bindings>

<invoker>
<invoker-proxy-binding-name>

stateless-http-invoker
</invoker-proxy-binding-name>

</invoker>
</invoker-bindings>

</session>
</enterprise-beans>
<invoker-proxy-bindings>

<!-- A custom invoker for RMI/HTTP -->
<invoker-proxy-binding>

<name>stateless-http-invoker</name>
<invoker-mbean>jboss:service=invoker,type=http</invoker-mbean>
<proxy-factory>org.jboss.proxy.ejb.ProxyFactory</proxy-factory>
<proxy-factory-config>

<client-interceptors>
<home>

<interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</home>
<bean>

<interceptor>
org.jboss.proxy.ejb.StatelessSessionInterceptor

</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</bean>
</client-interceptors>

</proxy-factory-config>
</invoker-proxy-binding>

</invoker-proxy-bindings>
</jboss>

Here a custom invoker-proxy-binding named stateless-http-invoker is defined. It uses the HttpInvoker MBean
as the detached invoker. The jboss:service=invoker,type=http name is the default name of the HttpInvoker

MBean as found in the http-invoker.sar/META-INF/jboss-service.xml descriptor, and its service descriptor
fragment is show here:

<!-- The HTTP invoker service configuration -->
<mbean code="org.jboss.invocation.http.server.HttpInvoker"

name="jboss:service=invoker,type=http">
<!-- Use a URL of the form http://<hostname>:8080/invoker/EJBInvokerServlet

where <hostname> is InetAddress.getHostname value on which the server
is running. -->

<attribute name="InvokerURLPrefix">http://</attribute>
<attribute name="InvokerURLSuffix">:8080/invoker/EJBInvokerServlet</attribute>
<attribute name="UseHostName">true</attribute>

</mbean>

EJBs on JBoss

JBoss Release 2 141

The client proxy posts the EJB invocation content to the EJBInvokerServlet URL specified in the HttpInvoker

service configuration.

4.2.2. The HA JRMPInvoker - Clustered RMI/JRMP Transport

The org.jboss.invocation.jrmp.server.JRMPInvokerHA service is an extension of the JRMPInvoker that is a
cluster aware invoker. The JRMPInvokerHA fully supports all of the attributes of the JRMPInvoker. This means that
customized bindings of the port, interface and socket transport are available to clustered RMI/JRMP as well. For
additional information on the clustering architecture and the implementation of the HA RMI proxies see the JBoss
Clustering docs.

4.2.3. The HA HttpInvoker - Clustered RMI/HTTP Transport

The RMI/HTTP layer allows for software load balancing of the invocations in a clustered environment. An HA
capable extension of the HTTP invoker has been added that borrows much of its functionality from the HA-
RMI/JRMP clustering.

To enable HA-RMI/HTTP you need to configure the invokers for the EJB container. This is done through either a
jboss.xml descriptor, or the standardjboss.xml descriptor. Example 4.3 shows is an example of a stateless ses-
sion configuration taken from the org.jboss.test.hello testsuite package.

Example 4.3. A jboss.xml stateless session configuration for HA-RMI/HTTP

<jboss>
<enterprise-beans>

<session>
<ejb-name>HelloWorldViaClusteredHTTP</ejb-name>
<jndi-name>helloworld/HelloHA-HTTP</jndi-name>
<invoker-bindings>

<invoker>
<invoker-proxy-binding-name>

stateless-httpHA-invoker
</invoker-proxy-binding-name>

</invoker>
</invoker-bindings>
<clustered>true</clustered>

</session>
</enterprise-beans>
<invoker-proxy-bindings>

<invoker-proxy-binding>
<name>stateless-httpHA-invoker</name>
<invoker-mbean>jboss:service=invoker,type=httpHA</invoker-mbean>
<proxy-factory>org.jboss.proxy.ejb.ProxyFactoryHA</proxy-factory>
<proxy-factory-config>

<client-interceptors>
<home>

<interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</home>
<bean>

<interceptor>
org.jboss.proxy.ejb.StatelessSessionInterceptor

</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>

EJBs on JBoss

JBoss Release 2 142

<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</bean>
</client-interceptors>

</proxy-factory-config>
</invoker-proxy-binding>

</invoker-proxy-bindings>
</jboss>

The stateless-httpHA-invoker invoker-proxy-binding references the jboss:service=invoker,type=httpHA in-
voker service. This service would be configured as shown below.

<mbean code="org.jboss.invocation.http.server.HttpInvokerHA"
name="jboss:service=invoker,type=httpHA">

<!-- Use a URL of the form
http://<hostname>:8080/invoker/EJBInvokerHAServlet
where <hostname> is InetAddress.getHostname value on which the server
is running.

-->
<attribute name="InvokerURLPrefix">http://</attribute>
<attribute name="InvokerURLSuffix">:8080/invoker/EJBInvokerHAServlet</attribute>
<attribute name="UseHostName">true</attribute>

</mbean>

The URL used by the invoker proxy is the EJBInvokerHAServlet mapping as deployed on the cluster node. The
HttpInvokerHA instances across the cluster form a collection of candidate http URLs that are made available to the
client side proxy for failover and/or load balancing.

4.3. The EJB Container

An EJB container is the component that manages a particular class of EJB. In JBoss there is one instance of the
org.jboss.ejb.Container created for each unique configuration of an EJB that is deployed. The actual object that
is instantiated is a subclass of Container and the creation of the container instance is managed by the EJBDeployer

MBean.

4.3.1. EJBDeployer MBean

The org.jboss.ejb.EJBDeployer MBean is responsible for the creation of EJB containers. Given an EJB JAR that
is ready for deployment, the EJBDeployer will create and initialize the necessary EJB containers, one for each type
of EJB. The configurable attributes of the EJBDeployer are:

• VerifyDeployments: a boolean flag indicating if the EJB verifier should be run. This validates that the EJBs in
a deployment unit conform to the EJB 2.1 specification. Setting this to true is useful for ensuring your deploy-
ments are valid.

• VerifierVerbose: A boolean that controls the verboseness of any verification failures/warnings that result from
the verification process.

• StrictVerifier: A boolean that enables/disables strict verification. When strict verification is enable an EJB will
deploy only if verifier reports no errors.

EJBs on JBoss

JBoss Release 2 143

• CallByValue: a boolean flag that indicates call by value semantics should be used by default.

• ValidateDTDs: a boolean flag that indicates if the ejb-jar.xml and jboss.xml descriptors should be validated
against their declared DTDs. Setting this to true is useful for ensuring your deployment descriptors are valid.

• MetricsEnabled: a boolean flag that controls whether container interceptors marked with an metricsEn-

abled=true attribute should be included in the configuration. This allows one to define a container interceptor
configuration that includes metrics type interceptors that can be toggled on and off.

• WebServiceName: The JMX ObjectName string of the web service MBean that provides support for the dy-
namic class loading of EJB classes.

• TransactionManagerServiceName: The JMX ObjectName string of the JTA transaction manager service.
This must have an attribute named TransactionManager that returns that
javax.transaction.TransactionManager instance.

The deployer contains two central methods: deploy and undeploy. The deploy method takes a URL, which either
points to an EJB JAR, or to a directory whose structure is the same as a valid EJB JAR (which is convenient for de-
velopment purposes). Once a deployment has been made, it can be undeployed by calling undeploy on the same
URL. A call to deploy with an already deployed URL will cause an undeploy, followed by deployment of the URL.
JBoss has support for full re-deployment of both implementation and interface classes, and will reload any changed
classes. This will allow you to develop and update EJBs without ever stopping a running server.

During the deployment of the EJB JAR the EJBDeployer and its associated classes perform three main functions,
verify the EJBs, create a container for each unique EJB, initialize the container with the deployment configuration
information. We will talk about each function in the following sections.

4.3.1.1. Verifying EJB deployments

When the VerifyDeployments attribute of the EJBDeployer is true, the deployer performs a verification of EJBs in
the deployment. The verification checks that an EJB meets EJB specification compliance. This entails validating
that the EJB deployment unit contains the required home and remote, local home and local interfaces. It will also
check that the objects appearing in these interfaces are of the proper types and that the required methods are present
in the implementation class. This is a useful behavior that is enabled by default since there are a number of steps
that an EJB developer and deployer must perform correctly to construct a proper EJB JAR, and it is easy to make a
mistake. The verification stage attempts to catch any errors and fail the deployment with an error that indicates
what needs to be corrected.

Probably the most problematic aspect of writing EJBs is the fact that there is a disconnection between the bean im-
plementation and its remote and home interfaces, as well as its deployment descriptor configuration. It is easy to
have these separate elements get out of synch. One tool that helps eliminate this problem is XDoclet. It allows you
to use custom JavaDoc-like tags in the EJB bean implementation class to generate the related bean interfaces, de-
ployment descriptors and related objects. See the XDoclet home page, http://sourceforge.net/projects/xdoclet for
additional details.

4.3.1.2. Deploying EJBs Into Containers

The most important role performed by the EJBDeployer is the creation of an EJB container and the deployment of
the EJB into the container. The deployment phase consists of iterating over EJBs in an EJB JAR, and extracting the
bean classes and their metadata as described by the ejb-jar.xml and jboss.xml deployment descriptors. For each

EJBs on JBoss

JBoss Release 2 144

http://sourceforge.net/projects/xdoclet

EJB in the EJB JAR, the following steps are performed:

• Create subclass of org.jboss.ejb.Container depending on the type of the EJB: stateless, stateful, BMP entity,
CMP entity, or message driven. The container is assigned a unique ClassLoader from which it can load local
resources. The uniqueness of the ClassLoader is also used to isolate the standard java:comp JNDI namespace
from other J2EE components.

• Set all container configurable attributes from a merge of the jboss.xml and standardjboss.xml descriptors.

• Create and add the container interceptors as configured for the container.

• Associate the container with an application object. This application object represents a J2EE enterprise applica-
tion and may contain multiple EJBs and web contexts.

If all EJBs are successfully deployed, the application is started which in turn starts all containers and makes the
EJBs available to clients. If any EJB fails to deploy, a deployment exception is thrown and the deployment module
is failed.

4.3.1.3. Container configuration information

JBoss externalizes most if not all of the setup of the EJB containers using an XML file that conforms to the
jboss_4_0.dtd. The section DTD that relates to container configuration information is shown in Figure 4.4.

EJBs on JBoss

JBoss Release 2 145

Figure 4.4. The jboss_4_0 DTD elements related to container configuration.

The container-configuration element and its subelements specify container configuration settings for a type of

EJBs on JBoss

JBoss Release 2 146

container as given by the container-name element. Each configuration specifies information such as the default in-
voker type, the container interceptor makeup, instance caches/pools and their sizes, persistence manager, security,
and so on. Because this is a large amount of information that requires a detailed understanding of the JBoss con-
tainer architecture, JBoss ships with a standard configuration for the four types of EJBs. This configuration file is
called standardjboss.xml and it is located in the conf directory of any configuration file set that uses EJBs. The
following is a sample of container-configuration from standardjboss.xml.

<container-configuration>
<container-name>Standard CMP 2.x EntityBean</container-name>
<call-logging>false</call-logging>
<invoker-proxy-binding-name>entity-rmi-invoker</invoker-proxy-binding-name>
<sync-on-commit-only>false</sync-on-commit-only>
<insert-after-ejb-post-create>false</insert-after-ejb-post-create>
<call-ejb-store-on-clean>true</call-ejb-store-on-clean>
<container-interceptors>

<interceptor>org.jboss.ejb.plugins.ProxyFactoryFinderInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.LogInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.SecurityInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.TxInterceptorCMT</interceptor>
<interceptor>org.jboss.ejb.plugins.CallValidationInterceptor</interceptor>
<interceptor metricsEnabled="true">

org.jboss.ejb.plugins.MetricsInterceptor
</interceptor>
<interceptor>org.jboss.ejb.plugins.EntityCreationInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.EntityLockInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.EntityInstanceInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.EntityReentranceInterceptor</interceptor>
<interceptor>

org.jboss.resource.connectionmanager.CachedConnectionInterceptor
</interceptor>
<interceptor>org.jboss.ejb.plugins.EntitySynchronizationInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.cmp.jdbc.JDBCRelationInterceptor</interceptor>

</container-interceptors>
<instance-pool>org.jboss.ejb.plugins.EntityInstancePool</instance-pool>
<instance-cache>org.jboss.ejb.plugins.InvalidableEntityInstanceCache</instance-cache>
<persistence-manager>org.jboss.ejb.plugins.cmp.jdbc.JDBCStoreManager</persistence-manager>
<locking-policy>org.jboss.ejb.plugins.lock.QueuedPessimisticEJBLock</locking-policy>
<container-cache-conf>

<cache-policy>org.jboss.ejb.plugins.LRUEnterpriseContextCachePolicy</cache-policy>
<cache-policy-conf>

<min-capacity>50</min-capacity>
<max-capacity>1000000</max-capacity>
<overager-period>300</overager-period>
<max-bean-age>600</max-bean-age>
<resizer-period>400</resizer-period>
<max-cache-miss-period>60</max-cache-miss-period>
<min-cache-miss-period>1</min-cache-miss-period>
<cache-load-factor>0.75</cache-load-factor>

</cache-policy-conf>
</container-cache-conf>
<container-pool-conf>

<MaximumSize>100</MaximumSize>
</container-pool-conf>
<commit-option>B</commit-option>

</container-configuration>

These two examples demonstrate how extensive the container configuration options are. The container configura-
tion information can be specified at two levels. The first is in the standardjboss.xml file contained in the config-
uration file set directory. The second is at the EJB JAR level. By placing a jboss.xml file in the EJB JAR META-

INF directory, you can specify either overrides for container configurations in the standardjboss.xml file, or en-
tirely new named container configurations. This provides great flexibility in the configuration of containers. As you
have seen, all container configuration attributes have been externalized and as such are easily modifiable. Know-

EJBs on JBoss

JBoss Release 2 147

ledgeable developers can even implement specialized container components, such as instance pools or caches, and
easily integrate them with the standard container configurations to optimize behavior for a particular application or
environment.

How an EJB deployment chooses its container configuration is based on the explicit or implict jboss/enter-

prise-beans/<type>/configuration-name element. The configuration-name element is a link to a container-

configurations/container-configuration element in Figure 4.4. It specifies which container configuration to
use for the referring EJB. The link is from a configuration-name element to a container-name element.

You are able to specify container configurations per class of EJB by including a container-configuration ele-
ment in the EJB definition. Typically one does not define completely new container configurations, although this is
supported. The typical usage of a jboss.xml level container-configuration is to override one or more aspects of
a container-configuration coming from the standardjboss.xml descriptor. This is done by specifying con-

tainer-configuration that references the name of an existing standardjboss.xml container-configura-

tion/container-name as the value for the container-configuration/extends attribute. The following example
shows an example of defining a new Secured Stateless SessionBean configuration that is an extension of the
Standard Stateless SessionBean configuration.

<?xml version="1.0"?>
<jboss>

<enterprise-beans>
<session>

<ejb-name>EchoBean</ejb-name>
<configuration-name>Secured Stateless SessionBean</configuration-name>
<!-- ... -->

</session>
</enterprise-beans>
<container-configurations>

<container-configuration extends="Standard Stateless SessionBean">
<container-name>Secured Stateless SessionBean</container-name>
<!-- Override the container security domain -->
<security-domain>java:/jaas/my-security-domain</security-domain>

</container-configuration>
</container-configurations>

</jboss>

If an EJB does not provide a container configuration specification in the deployment unit EJB JAR, the container
factory chooses a container configuration from the standardjboss.xml descriptor based on the type of the EJB.
So, in reality there is an implicit configuration-name element for every type of EJB, and the mappings from the
EJB type to default container configuration name are as follows:

• container-managed persistence entity version 2.0 = Standard CMP 2.x EntityBean

• container-managed persistence entity version 1.1 = Standard CMP EntityBean

• bean-managed persistence entity = Standard BMP EntityBean

• stateless session = Standard Stateless SessionBean

• stateful session = Standard Stateful SessionBean

• message driven = Standard Message Driven Bean

It is not necessary to indicate which container configuration an EJB is using if you want to use the default based on
the bean type. It probably provides for a more self-contained descriptor to include the configuration-name ele-

EJBs on JBoss

JBoss Release 2 148

ment, but this is purely a matter of style.

Now that you know how to specify which container configuration an EJB is using and can define a deployment unit
level override, we now will look at the container-configuration child elements in the following sections. A
number of the elements specify interface class implementations whose configuration is affected by other elements,
so before starting in on the configuration elements you need to understand the org.jboss.metadata.XmlLoadable

interface.

The XmlLoadable interface is a simple interface that consists of a single method. The interface definition is:

import org.w3c.dom.Element;
public interface XmlLoadable
{

public void importXml(Element element) throws Exception;
}

Classes implement this interface to allow their configuration to be specified via an XML document fragment. The
root element of the document fragment is what would be passed to the importXml method. You will see a few ex-
amples of this as the container configuration elements are described in the following sections.

4.3.1.3.1. The container-name element

The container-name element specifies a unique name for a given configuration. EJBs link to a particular container
configuration by setting their configuration-name element to the value of the container-name for the container
configuration.

4.3.1.3.2. The call-logging element

The call-logging element expects a boolean (true or false) as its value to indicate whether or not the LogInter-

ceptor should log method calls to a container. This is somewhat obsolete with the change to log4j, which provides
a fine-grained logging API.

4.3.1.3.3. The invoker-proxy-binding-name element

The invoker-proxy-binding-name element specifies the name of the default invoker to use. In the absence of a
bean level invoker-bindings specification, the invoker-proxy-binding whose name matches the invoker-

proxy-binding-name element value will be used to create home and remote proxies.

4.3.1.3.4. The sync-on-commit-only element

This configures a performance optimization that will cause entity bean state to be synchronized with the database
only at commit time. Normally the state of all the beans in a transaction would need to be synchronized when an
finder method is called or when an remove method is called, for example.

4.3.1.3.5. insert-after-ejb-post-create

This is another entity bean optimization which cause the database insert command for a new entity bean to be
delayed until the ejbPostCreate method is called. This allows normal CMP fields as well as CMR fields to be set
in a single insert, instead of the default insert followed by an update, which allows removes the requirement for re-
lation ship fields to allow null values.

4.3.1.3.6. call-ejb-store-on-clean

EJBs on JBoss

JBoss Release 2 149

By the specification the container is required to call ejbStore method on an entity bean instance when transaction
commits even if the instance was not modified in the transaction. Setting this to false will cause JBoss to only call
ejbStore for dirty objects.

4.3.1.3.7. The container-interceptors Element

The container-interceptors element specifies one or more interceptor elements that are to be configured as the
method interceptor chain for the container. The value of the interceptor element is a fully qualified class name of an
org.jboss.ejb.Interceptor interface implementation. The container interceptors form a linked-list structure
through which EJB method invocations pass. The first interceptor in the chain is invoked when the MBeanServer

passes a method invocation to the container. The last interceptor invokes the business method on the bean. We will
discuss the Interceptor interface latter in this chapter when we talk about the container plugin framework. Gener-
ally, care must be taken when changing an existing standard EJB interceptor configuration as the EJB contract re-
garding security, transactions, persistence, and thread safety derive from the interceptors.

4.3.1.3.8. The instance-pool element

The instance-pool element specifies the fully qualified class name of an org.jboss.ejb.InstancePool interface
implementation to use as the container InstancePool. We will discuss the InstancePool interface in detail latter in
this chapter when we talk about the container plugin framework.

4.3.1.3.9. The container-pool-conf element

The container-pool-conf is passed to the InstancePool implementation class given by the instance-pool ele-
ment if it implements the XmlLoadable interface. All current JBoss InstancePool implementations derive from the
org.jboss.ejb.plugins.AbstractInstancePool class which provides support for elements shown in Figure 4.5.

Figure 4.5. The container-pool-conf element DTD

• MinimumSize: The MinimumSize element gives the minimum number of instances to keep in the pool, al-
though JBoss does not currently seed an InstancePool to the MinimumSize value.

• MaximumSize: The MaximumSize specifies the maximum number of pool instances that are allowed. The de-
fault use of MaximumSize may not be what you expect. The pool MaximumSize is the maximum number of EJB
instances that are kept available, but additional instances can be created if the number of concurrent requests
exceeds the MaximumSize value.

EJBs on JBoss

JBoss Release 2 150

• strictMaximumSize: If you want to limit the maximum concurrency of an EJB to the pool MaximumSize, you
need to set the strictMaximumSize element to true. When strictMaximumSize is true, only MaximumSize EJB
instances may be active. When there are MaximumSize active instances, any subsequent requests will be blocked
until an instance is freed back to the pool. The default value for strictMaximumSize is false.

• strictTimeout: How long a request blocks waiting for an instance pool object is controlled by the strict-

Timeout element. The strictTimeout defines the time in milliseconds to wait for an instance to be returned to
the pool when there are MaximumSize active instances. A value less than or equal to 0 will mean not to wait at
all. When a request times out waiting for an instance a java.rmi.ServerException is generated and the call
aborted. This is parsed as a Long so the maximum possible wait time is 9,223,372,036,854,775,807 or about
292,471,208 years, and this is the default value.

4.3.1.3.10. The instance-cache element

The instance-cache element specifies the fully qualified class name of the org.jboss.ejb.InstanceCache inter-
face implementation. This element is only meaningful for entity and stateful session beans as these are the only
EJB types that have an associated identity. We will discuss the InstanceCache interface in detail latter in this
chapter when we talk about the container plugin framework.

4.3.1.3.11. The container-cache-conf element

The container-cache-conf element is passed to the InstanceCache implementation if it supports the XmlLoad-

able interface. All current JBoss InstanceCache implementations derive from the
org.jboss.ejb.plugins.AbstractInstanceCache class which provides support for the XmlLoadable interface and
uses the cache-policy child element as the fully qualified class name of an org.jboss.util.CachePolicy imple-
mentation that is used as the instance cache store. The cache-policy-conf child element is passed to the CacheP-

olicy implementation if it supports the XmlLoadable interface. If it does not, the cache-policy-conf will silently
be ignored.

There are two JBoss implementations of CachePolicy used by the standardjboss.xml configuration that support
the current array of cache-policy-conf child elements. The classes are
org.jboss.ejb.plugins.LRUEnterpriseContextCachePolicy and
org.jboss.ejb.plugins.LRUStatefulContextCachePolicy. The LRUEnterpriseContextCachePolicy is used by
entity bean containers while the LRUStatefulContextCachePolicy is used by stateful session bean containers.
Both cache policies support the following cache-policy-conf child elements, shown in Figure 4.6.

EJBs on JBoss

JBoss Release 2 151

Figure 4.6. The container-cache-conf element DTD

• min-capacity: specifies the minimum capacity of this cache

• max-capacity: specifies the maximum capacity of the cache, which cannot be less than min-capacity.

• overager-period: specifies the period in seconds between runs of the overager task. The purpose of the over-
ager task is to see if the cache contains beans with an age greater than the max-bean-age element value. Any
beans meeting this criterion will be passivated.

• max-bean-age: specifies the maximum period of inactivity in seconds a bean can have before it will be passiv-
ated by the overager process.

• resizer-period: specifies the period in seconds between runs of the resizer task. The purpose of the resizer task
is to contract or expand the cache capacity based on the remaining three element values in the following way.
When the resizer task executes it checks the current period between cache misses, and if the period is less than
the min-cache-miss-period value the cache is expanded up to the max-capacity value using the cache-

load-factor. If instead the period between cache misses is greater than the max-cache-miss-period value the
cache is contracted using the cache-load-factor.

• max-cache-miss-period: specifies the time period in seconds in which a cache miss should signal that the

EJBs on JBoss

JBoss Release 2 152

cache capacity be contracted. It is equivalent to the minimum miss rate that will be tolerated before the cache is
contracted.

• min-cache-miss-period: specifies the time period in seconds in which a cache miss should signal that the cache
capacity be expanded. It is equivalent to the maximum miss rate that will be tolerated before the cache is ex-
panded.

• cache-load-factor: specifies the factor by which the cache capacity is contracted and expanded. The factor
should be less than 1. When the cache is contracted the capacity is reduced so that the current ratio of beans to
cache capacity is equal to the cache-load-factor value. When the cache is expanded the new capacity is determ-
ined as current-capacity * 1/cache-load-factor. The actual expansion factor may be as high as 2 based on
an internal algorithm based on the number of cache misses. The higher the cache miss rate the closer the true
expansion factor will be to 2.

The LRUStatefulContextCachePolicy also supports the remaining child elements:

• remover-period: specifies the period in seconds between runs of the remover task. The remover task removes
passivated beans that have not been accessed in more than max-bean-life seconds. This task prevents stateful
session beans that were not removed by users from filling up the passivation store.

• max-bean-life: specifies the maximum period of inactivity in seconds that a bean can exist before being re-
moved from the passivation store.

An alternative cache policy implementation is the org.jboss.ejb.plugins.NoPassivationCachePolicy class,
which simply never passivates instances. It uses an in-memory HashMap implementation that never discards in-
stances unless they are explicitly removed. This class does not support any of the cache-policy-conf configura-
tion elements.

4.3.1.3.12. The persistence-manager element

The persistence-manager element value specifies the fully qualified class name of the persistence manager imple-
mentation. The type of the implementation depends on the type of EJB. For stateful session beans it must be an im-
plementation of the org.jboss.ejb.StatefulSessionPersistenceManager interface. For BMP entity beans it
must be an implementation of the org.jboss.ejb.EntityPersistenceManager interface, while for CMP entity
beans it must be an implementation of the org.jboss.ejb.EntityPersistenceStore interface.

4.3.1.3.13. The web-class-loader Element

The web-class-loader element specifies a subclass of org.jboss.web.WebClassLoader that is used in conjunc-
tion with the WebService MBean to allow dynamic loading of resources and classes from deployed ears, EJB JARs
and WARs. A WebClassLoader is associated with a Container and must have an
org.jboss.mx.loading.UnifiedClassLoader as its parent. It overrides the getURLs() method to return a different
set of URLs for remote loading than what is used for local loading.

WebClaossLoader has two methods meant to be overridden by subclasses: getKey() and getBytes(). The latter is
a no-op in this implementation and should be overridden by subclasses with bytecode generation ability, such as
the classloader used by the iiop module.

WebClassLoader subclasses must have a constructor with the same signature as the WebClassLoader(ObjectName

containerName, UnifiedClassLoader parent) constructor.

EJBs on JBoss

JBoss Release 2 153

4.3.1.3.14. The locking-policy element

The locking-policy element gives the fully qualified class name of the EJB lock implementation to use. This
class must implement the org.jboss.ejb.BeanLock interface. The current JBoss versions include:

• org.jboss.ejb.plugins.lock.QueuedPessimisticEJBLock: an implementation that holds threads awaiting the
transactional lock to be freed in a fair FIFO queue. Non-transactional threads are also put into this wait queue
as well. This class pops the next waiting transaction from the queue and notifies only those threads waiting as-
sociated with that transaction. The QueuedPessimisticEJBLock is the current default used by the standard con-
figurations.

• org.jboss.ejb.plugins.lock.QueuedPessimisticEJBLockNoADE: This behaves the same as the QueuedPess-

imisticEJBLock except that deadlock detection is disabled.

• org.jboss.ejb.plugins.lock.SimpleReadWriteEJBLock: This lock allows multiple read locks concurrently.
Once a writer has requested the lock, future read-lock requests whose transactions do not already have the read
lock will block until all writers are done; then all the waiting readers will concurrently go (depending on the
reentrant setting / methodLock). A reader who promotes gets first crack at the write lock, ahead of other wait-
ing writers. If there is already a reader that is promoting, we throw an inconsistent read exception. Of course,
writers have to wait for all read-locks to release before taking the write lock.

• org.jboss.ejb.plugins.lock.NoLock: an anti-locking policy used with the instance per transaction container
configurations.

Locking and deadlock detection will be discussed in more detail in Section 4.4.

4.3.1.3.15. The commit-option and optiond-refresh-rate elements

The commit-option value specifies the EJB entity bean persistent storage commit option. It must be one of A, B, C or
D.

• A: the container caches the beans state between transactions. This option assumes that the container is the only
user accessing the persistent store. This assumption allows the container to synchronize the in-memory state
from the persistent storage only when absolutely necessary. This occurs before the first business method ex-
ecutes on a found bean or after the bean is passivated and reactivated to serve another business method. This
behavior is independent of whether the business method executes inside a transaction context.

• B: the container caches the bean state between transactions. However, unlike option A the container does not as-
sume exclusive access to the persistent store. Therefore, the container will synchronize the in-memory state at
the beginning of each transaction. Thus, business methods executing in a transaction context don't see much be-
nefit from the container caching the bean, whereas business methods executing outside a transaction context
(transaction attributes Never, NotSupported or Supports) access the cached (and potentially invalid) state of the
bean.

• C: the container does not cache bean instances. The in-memory state must be synchronized on every transaction
start. For business methods executing outside a transaction the synchronization is still performed, but the ejb-

Load executes in the same transaction context as that of the caller.

• D: is a JBoss-specific commit option which is not described in the EJB specification. It is a lazy read scheme

EJBs on JBoss

JBoss Release 2 154

where bean state is cached between transactions as with option A, but the state is periodically resynchronized
with that of the persistent store. The default time between reloads is 30 seconds, but may configured using the
optiond-refresh-rate element.

4.3.1.3.16. The security-domain element

The security-domain element specifies the JNDI name of the object that implements the
org.jboss.security.AuthenticationManager and org.jboss.security.RealmMapping interfaces. It is more typ-
ical to specify the security-domain under the jboss root element so that all EJBs in a given deployment are se-
cured in the same manner. However, it is possible to configure the security domain for each bean configuration.
The details of the security manager interfaces and configuring the security layer are discussed in Chapter 7.

4.3.1.3.17. cluster-config

The cluster-config element allows to specify cluster specific settings for all EJBs that use the container configur-
ation. Specficiation of the cluster configuration may be done at the container configuration level or at the individual
EJB deployment level.

Figure 4.7. The cluster-config and related elements

• partition-name: The partition-name element indicates where to find the
org.jboss.ha.framework.interfaces.HAPartition interface to be used by the container to exchange cluster-
ing information. This is not the full JNDI name under which HAPartition is bound. Rather, it should corres-
pond to the PartitionName attribute of the ClusterPartitionMBean service that is managing the desired
cluster. The actual JNDI name of the HAPartition binding will be formed by appending /HASessionState/ to
the partition-name value. The default value is DefaultPartition.

• home-load-balance-policy: The home-load-balance-policy element indicates the Java class name to be used
to load balance calls made on the home proxy. The class must implement the
org.jboss.ha.framework.interface.LoadBalancePolicy interface. The default policy is
org.jboss.ha.framework.interfaces.RoundRobin.

• bean-load-balance-policy: The bean-load-balance-policy element indicates the java class name to be used
to load balance calls in the bean proxy. The class must implement the
org.jboss.ha.framework.interface.LoadBalancePolicy interface. For entity beans and stateful session
beans, the default is org.jboss.ha.framework.interfaces.FirstAvailavble. For stateless session beans,

EJBs on JBoss

JBoss Release 2 155

org.jboss.ha.framework.interfaces.RoundRobin.

• session-state-manager-jndi-name: The session-state-manager-jndi-name element indicates the name of
the org.jboss.ha.framework.interfaces.HASessionState to be used by the container as a backend for state
session management in the cluster. Unlike the partition-name element, this is a JNDI name under which the
HASessionState implementation is bound. The default location used is /HASessionState/Default.

4.3.1.3.18. The depends element

The depends element gives a JMX ObjectName of a service on which the container or EJB depends. Specification
of explicit dependencies on other services avoids having to rely on the deployment order being after the required
services are started.

4.3.2. Container Plug-in Framework

The JBoss EJB container uses a framework pattern that allows one to change implementations of various aspects of
the container behavior. The container itself does not perform any significant work other than connecting the various
behavioral components together. Implementations of the behavioral components are referred to as plugins, because
you can plug in a new implementation by changing a container configuration. Examples of plug-in behavior you
may want to change include persistence management, object pooling, object caching, container invokers and inter-
ceptors. There are four subclasses of the org.jboss.ejb.Container class, each one implementing a particular bean
type:

• org.jboss.ejb.EntityContainer: handles javax.ejb.EntityBean types

• org.jboss.ejb.StatelessSessionContainer: handles Stateless javax.ejb.SessionBean types

• org.jboss.ejb.StatefulSessionContainer: handles Stateful javax.ejb.SessionBean types

• org.jboss.ejb.MessageDrivenContainer handles javax.ejb.MessageDrivenBean types

The EJB containers delegate much of their behavior to components known as container plug-ins. The interfaces
that make up the container plugin points include the following:

• org.jboss.ejb.ContainerPlugin
• org.jboss.ejb.ContainerInvoker
• org.jboss.ejb.Interceptor
• org.jboss.ejb.InstancePool
• org.jboss.ejb.InstanceCache
• org.jboss.ejb.EntityPersistanceManager
• org.jboss.ejb.EntityPersistanceStore
• org.jboss.ejb.StatefulSessionPersistenceManager

The container's main responsibility is to manage its plug-ins. This means ensuring that the plug-ins have all the in-
formation they need to implement their functionality.

4.3.2.1. org.jboss.ejb.ContainerPlugin

The ContainerPlugin interface is the parent interface of all container plug-in interfaces. It provides a callback that

EJBs on JBoss

JBoss Release 2 156

allows a container to provide each of its plug-ins a pointer to the container the plug-in is working on behalf of. The
ContainerPlugin interface is given below.

Example 4.4. The org.jboss.ejb.ContainerPlugin interface

public interface ContainerPlugin
extends Service, AllowedOperationsFlags

{
/**
* This callback is set by the container so that the plugin
* may access its container
*
* @param con the container which owns the plugin
*/
public void setContainer(Container con);

}

4.3.2.2. org.jboss.ejb.Interceptor

The Interceptor interface enables one to build a chain of method interceptors through which each EJB method in-
vocation must pass. The Interceptor interface is given below.

Example 4.5. The org.jboss.ejb.Interceptor interface

import org.jboss.invocation.Invocation;

public interface Interceptor
extends ContainerPlugin

{
public void setNext(Interceptor interceptor);
public Interceptor getNext();
public Object invokeHome(Invocation mi) throws Exception;
public Object invoke(Invocation mi) throws Exception;

}

All interceptors defined in the container configuration are created and added to the container interceptor chain by
the EJBDeployer. The last interceptor is not added by the deployer but rather by the container itself because this is
the interceptor that interacts with the EJB bean implementation.

The order of the interceptor in the chain is important. The idea behind ordering is that interceptors that are not tied
to a particular EnterpriseContext instance are positioned before interceptors that interact with caches and pools.

Implementers of the Interceptor interface form a linked-list like structure through which the Invocation object is
passed. The first interceptor in the chain is invoked when an invoker passes a Invocation to the container via the
JMX bus. The last interceptor invokes the business method on the bean. There are usually on the order of five inter-
ceptors in a chain depending on the bean type and container configuration. Interceptor semantic complexity
ranges from simple to complex. An example of a simple interceptor would be LoggingInterceptor, while a com-
plex example is EntitySynchronizationInterceptor.

One of the main advantages of an interceptor pattern is flexibility in the arrangement of interceptors. Another ad-
vantage is the clear functional distinction between different interceptors. For example, logic for transaction and se-

EJBs on JBoss

JBoss Release 2 157

curity is cleanly separated between the TXInterceptor and SecurityInterceptor respectively.

If any of the interceptors fail, the call is terminated at that point. This is a fail-quickly type of semantic. For ex-
ample, if a secured EJB is accessed without proper permissions, the call will fail as the SecurityInterceptor be-
fore any transactions are started or instances caches are updated.

4.3.2.3. org.jboss.ejb.InstancePool

An InstancePool is used to manage the EJB instances that are not associated with any identity. The pools actually
manage subclasses of the org.jboss.ejb.EnterpriseContext objects that aggregate unassociated bean instances
and related data.

Example 4.6. The org.jboss.ejb.InstancePool interface

public interface InstancePool
extends ContainerPlugin

{
/**
* Get an instance without identity. Can be used
* by finders and create-methods, or stateless beans
*
* @return Context /w instance
* @exception RemoteException
*/
public EnterpriseContext get() throws Exception;

/** Return an anonymous instance after invocation.
*
* @param ctx
*/
public void free(EnterpriseContext ctx);

/**
* Discard an anonymous instance after invocation.
* This is called if the instance should not be reused,
* perhaps due to some exception being thrown from it.
*
* @param ctx
*/
public void discard(EnterpriseContext ctx);

/**
* Return the size of the pool.
*
* @return the size of the pool.
*/
public int getCurrentSize();

/**
* Get the maximum size of the pool.
*
* @return the size of the pool.
*/
public int getMaxSize();

}

Depending on the configuration, a container may choose to have a certain size of the pool contain recycled in-
stances, or it may choose to instantiate and initialize an instance on demand.

EJBs on JBoss

JBoss Release 2 158

The pool is used by the InstanceCache implementation to acquire free instances for activation, and it is used by in-
terceptors to acquire instances to be used for Home interface methods (create and finder calls).

4.3.2.4. org.jboss.ebj.InstanceCache

The container InstanceCache implementation handles all EJB-instances that are in an active state, meaning bean
instances that have an identity attached to them. Only entity and stateful session beans are cached, as these are the
only bean types that have state between method invocations. The cache key of an entity bean is the bean primary
key. The cache key for a stateful session bean is the session id.

Example 4.7. The org.jboss.ejb.InstanceCache interface

public interface InstanceCache
extends ContainerPlugin

{
/**
* Gets a bean instance from this cache given the identity.
* This method may involve activation if the instance is not
* in the cache.
* Implementation should have O(1) complexity.
* This method is never called for stateless session beans.
*
* @param id the primary key of the bean
* @return the EnterpriseContext related to the given id
* @exception RemoteException in case of illegal calls
* (concurrent / reentrant), NoSuchObjectException if
* the bean cannot be found.
* @see #release
*/
public EnterpriseContext get(Object id)

throws RemoteException, NoSuchObjectException;

/**
* Inserts an active bean instance after creation or activation.
* Implementation should guarantee proper locking and O(1) complexity.
*
* @param ctx the EnterpriseContext to insert in the cache
* @see #remove
*/
public void insert(EnterpriseContext ctx);

/**
* Releases the given bean instance from this cache.
* This method may passivate the bean to get it out of the cache.
* Implementation should return almost immediately leaving the
* passivation to be executed by another thread.
*
* @param ctx the EnterpriseContext to release
* @see #get
*/
public void release(EnterpriseContext ctx);

/**
* Removes a bean instance from this cache given the identity.
* Implementation should have O(1) complexity and guarantee
* proper locking.
*
* @param id the pimary key of the bean
* @see #insert
*/
public void remove(Object id);

EJBs on JBoss

JBoss Release 2 159

/**
* Checks whether an instance corresponding to a particular
* id is active
*
* @param id the pimary key of the bean
* @see #insert
*/
public boolean isActive(Object id);

}

In addition to managing the list of active instances, the InstanceCache is also responsible for activating and passiv-
ating instances. If an instance with a given identity is requested, and it is not currently active, the InstanceCache

must use the InstancePool to acquire a free instance, followed by the persistence manager to activate the instance.
Similarly, if the InstanceCache decides to passivate an active instance, it must call the persistence manager to pas-
sivate it and release the instance to the InstancePool.

4.3.2.5. org.jboss.ejb.EntityPersistenceManager

The EntityPersistenceManager is responsible for the persistence of EntityBeans. This includes the following:

• Creating an EJB instance in a storage
• Loading the state of a given primary key into an EJB instance
• Storing the state of a given EJB instance
• Removing an EJB instance from storage
• Activating the state of an EJB instance
• Passivating the state of an EJB instance

Example 4.8. The org.jboss.ejb.EntityPersistenceManager interface

public interface EntityPersistenceManager
extends ContainerPlugin

{
/**
* Returns a new instance of the bean class or a subclass of the
* bean class.
*
* @return the new instance
*/
Object createBeanClassInstance() throws Exception;

/**
* This method is called whenever an entity is to be created. The
* persistence manager is responsible for calling the ejbCreate method
* on the instance and to handle the results properly wrt the persistent
* store.
*
* @param m the create method in the home interface that was
* called
* @param args any create parameters
* @param instance the instance being used for this create call
*/
void createEntity(Method m,

Object[] args,
EntityEnterpriseContext instance)

throws Exception;

EJBs on JBoss

JBoss Release 2 160

/**
* This method is called whenever an entity is to be created. The
* persistence manager is responsible for calling the ejbPostCreate method
* on the instance and to handle the results properly wrt the persistent
* store.
*
* @param m the create method in the home interface that was
* called
* @param args any create parameters
* @param instance the instance being used for this create call
*/
void postCreateEntity(Method m,

Object[] args,
EntityEnterpriseContext instance)

throws Exception;

/**
* This method is called when single entities are to be found. The
* persistence manager must find out whether the wanted instance is
* available in the persistence store, and if so it shall use the
* ContainerInvoker plugin to create an EJBObject to the instance, which
* is to be returned as result.
*
* @param finderMethod the find method in the home interface that was
* called
* @param args any finder parameters
* @param instance the instance to use for the finder call
* @return an EJBObject representing the found entity
*/
Object findEntity(Method finderMethod,

Object[] args,
EntityEnterpriseContext instance)

throws Exception;

/**
* This method is called when collections of entities are to be
* found. The persistence manager must find out whether the wanted
* instances are available in the persistence store, and if so it
* shall use the ContainerInvoker plugin to create EJBObjects to
* the instances, which are to be returned as result.
*
* @param finderMethod the find method in the home interface that was
* called
* @param args any finder parameters
* @param instance the instance to use for the finder call
* @return an EJBObject collection representing the found
* entities
*/
Collection findEntities(Method finderMethod,

Object[] args,
EntityEnterpriseContext instance)

throws Exception;

/**
* This method is called when an entity shall be activated. The
* persistence manager must call the ejbActivate method on the
* instance.
*
* @param instance the instance to use for the activation
*
* @throws RemoteException thrown if some system exception occurs
*/
void activateEntity(EntityEnterpriseContext instance)

throws RemoteException;

/**

EJBs on JBoss

JBoss Release 2 161

* This method is called whenever an entity shall be load from the
* underlying storage. The persistence manager must load the state
* from the underlying storage and then call ejbLoad on the
* supplied instance.
*
* @param instance the instance to synchronize
*
* @throws RemoteException thrown if some system exception occurs
*/
void loadEntity(EntityEnterpriseContext instance)

throws RemoteException;

/**
* This method is used to determine if an entity should be stored.
*
* @param instance the instance to check
* @return true, if the entity has been modified
* @throws Exception thrown if some system exception occurs
*/
boolean isModified(EntityEnterpriseContext instance) throws Exception;

/**
* This method is called whenever an entity shall be stored to the
* underlying storage. The persistence manager must call ejbStore
* on the supplied instance and then store the state to the
* underlying storage.
*
* @param instance the instance to synchronize
*
* @throws RemoteException thrown if some system exception occurs
*/
void storeEntity(EntityEnterpriseContext instance)

throws RemoteException;

/**
* This method is called when an entity shall be passivate. The
* persistence manager must call the ejbPassivate method on the
* instance.
*
* @param instance the instance to passivate
*
* @throws RemoteException thrown if some system exception occurs
*/
void passivateEntity(EntityEnterpriseContext instance)

throws RemoteException;

/**
* This method is called when an entity shall be removed from the
* underlying storage. The persistence manager must call ejbRemove
* on the instance and then remove its state from the underlying
* storage.
*
* @param instance the instance to remove
*
* @throws RemoteException thrown if some system exception occurs
* @throws RemoveException thrown if the instance could not be removed
*/
void removeEntity(EntityEnterpriseContext instance)

throws RemoteException, RemoveException;
}

4.3.2.6. The org.jboss.ejb.EntityPersistenceStore interface

EJBs on JBoss

JBoss Release 2 162

As per the EJB 2.1 specification, JBoss supports two entity bean persistence semantics: container managed persist-
ence (CMP) and bean managed persistence (BMP). The CMP implementation uses an implementation of the
org.jboss.ejb.EntityPersistanceStore interface. By default this is the
org.jboss.ejb.plugins.cmp.jdbc.JDBCStoreManager which is the entry point for the CMP2 persistence engine.
The EntityPersistanceStore interface is shown below.

Example 4.9. The org.jboss.ejb.EntityPersistanceStore interface

public interface EntityPersistenceStore
extends ContainerPlugin

{
/**
* Returns a new instance of the bean class or a subclass of the
* bean class.
*
* @return the new instance
*
* @throws Exception
*/
Object createBeanClassInstance()

throws Exception;

/**
* Initializes the instance context.
*
* <p>This method is called before createEntity, and should
* reset the value of all cmpFields to 0 or null.
*
* @param ctx
*
* @throws RemoteException
*/
void initEntity(EntityEnterpriseContext ctx);

/**
* This method is called whenever an entity is to be created. The
* persistence manager is responsible for handling the results
* properly wrt the persistent store.
*
* @param m the create method in the home interface that was
* called
* @param args any create parameters
* @param instance the instance being used for this create call
* @return The primary key computed by CMP PM or null for BMP
*
* @throws Exception
*/
Object createEntity(Method m,

Object[] args,
EntityEnterpriseContext instance)

throws Exception;

/**
* This method is called when single entities are to be found. The
* persistence manager must find out whether the wanted instance
* is available in the persistence store, if so it returns the
* primary key of the object.
*
* @param finderMethod the find method in the home interface that was
* called
* @param args any finder parameters
* @param instance the instance to use for the finder call

EJBs on JBoss

JBoss Release 2 163

* @return a primary key representing the found entity
*
* @throws RemoteException thrown if some system exception occurs
* @throws FinderException thrown if some heuristic problem occurs
*/
Object findEntity(Method finderMethod,

Object[] args,
EntityEnterpriseContext instance)

throws Exception;

/**
* This method is called when collections of entities are to be
* found. The persistence manager must find out whether the wanted
* instances are available in the persistence store, and if so it
* must return a collection of primaryKeys.
*
* @param finderMethod the find method in the home interface that was
* called
* @param args any finder parameters
* @param instance the instance to use for the finder call
* @return an primary key collection representing the found
* entities
*
* @throws RemoteException thrown if some system exception occurs
* @throws FinderException thrown if some heuristic problem occurs
*/
Collection findEntities(Method finderMethod,

Object[] args,
EntityEnterpriseContext instance)

throws Exception;

/**
* This method is called when an entity shall be activated.
*
* <p>With the PersistenceManager factorization most EJB
* calls should not exists However this calls permits us to
* introduce optimizations in the persistence store. Particularly
* the context has a "PersistenceContext" that a PersistenceStore
* can use (JAWS does for smart updates) and this is as good a
* callback as any other to set it up.
* @param instance the instance to use for the activation
*
* @throws RemoteException thrown if some system exception occurs
*/
void activateEntity(EntityEnterpriseContext instance)

throws RemoteException;

/**
* This method is called whenever an entity shall be load from the
* underlying storage. The persistence manager must load the state
* from the underlying storage and then call ejbLoad on the
* supplied instance.
*
* @param instance the instance to synchronize
*
* @throws RemoteException thrown if some system exception occurs
*/
void loadEntity(EntityEnterpriseContext instance)

throws RemoteException;

/**
* This method is used to determine if an entity should be stored.
*
* @param instance the instance to check
* @return true, if the entity has been modified
* @throws Exception thrown if some system exception occurs

EJBs on JBoss

JBoss Release 2 164

*/
boolean isModified(EntityEnterpriseContext instance)

throws Exception;

/**
* This method is called whenever an entity shall be stored to the
* underlying storage. The persistence manager must call ejbStore
* on the supplied instance and then store the state to the
* underlying storage.
*
* @param instance the instance to synchronize
*
* @throws RemoteException thrown if some system exception occurs
*/
void storeEntity(EntityEnterpriseContext instance)

throws RemoteException;

/**
* This method is called when an entity shall be passivate. The
* persistence manager must call the ejbPassivate method on the
* instance.
*
* <p>See the activate discussion for the reason for
* exposing EJB callback * calls to the store.
*
* @param instance the instance to passivate
*
* @throws RemoteException thrown if some system exception occurs
*/
void passivateEntity(EntityEnterpriseContext instance)

throws RemoteException;

/**
* This method is called when an entity shall be removed from the
* underlying storage. The persistence manager must call ejbRemove
* on the instance and then remove its state from the underlying
* storage.
*
* @param instance the instance to remove
*
* @throws RemoteException thrown if some system exception occurs
* @throws RemoveException thrown if the instance could not be removed
*/
void removeEntity(EntityEnterpriseContext instance)

throws RemoteException, RemoveException;
}

The default BMP implementation of the EntityPersistenceManager interface is
org.jboss.ejb.plugins.BMPPersistenceManager. The BMP persistence manager is fairly simple since all per-
sistence logic is in the entity bean itself. The only duty of the persistence manager is to perform container call-
backs.

4.3.2.7. org.jboss.ejb.StatefulSessionPersistenceManager

The StatefulSessionPersistenceManager is responsible for the persistence of stateful SessionBeans. This in-
cludes the following:

• Creating stateful sessions in a storage
• Activating stateful sessions from a storage
• Passivating stateful sessions to a storage

EJBs on JBoss

JBoss Release 2 165

• Removing stateful sessions from a storage

The StatefulSessionPersistenceManager interface is shown below.

Example 4.10. The org.jboss.ejb.StatefulSessionPersistenceManager interface

public interface StatefulSessionPersistenceManager
extends ContainerPlugin

{
public void createSession(Method m, Object[] args,

StatefulSessionEnterpriseContext ctx)
throws Exception;

public void activateSession(StatefulSessionEnterpriseContext ctx)
throws RemoteException;

public void passivateSession(StatefulSessionEnterpriseContext ctx)
throws RemoteException;

public void removeSession(StatefulSessionEnterpriseContext ctx)
throws RemoteException, RemoveException;

public void removePassivated(Object key);
}

The default implementation of the StatefulSessionPersistenceManager interface is
org.jboss.ejb.plugins.StatefulSessionFilePersistenceManager. As its name implies, StatefulSession-

FilePersistenceManager utilizes the file system to persist stateful session beans. More specifically, the persist-
ence manager serializes beans in a flat file whose name is composed of the bean name and session id with a .ser

extension. The persistence manager restores a bean's state during activation and respectively stores its state during
passivation from the bean's .ser file.

4.4. Entity Bean Locking and Deadlock Detection

This section provides information on what entity bean locking is and how entity beans are accessed and locked
within JBoss. It also describes the problems you may encounter as you use entity beans within your system and
how to combat these issues. Deadlocking is formally defined and examined. And, finally, we walk you through
how to fine tune your system in terms of entity bean locking.

4.4.1. Why JBoss Needs Locking

Locking is about protecting the integrity of your data. Sometimes you need to be sure that only one user can update
critical data at one time. Sometimes, access to sensitive objects in your system need to be serialized so that data is
not corrupted by concurrent reads and writes. Databases traditionally provide this sort of functionality with transac-
tional scopes and table and row locking facilities.

Entity beans are a great way to provide an object-oriented interface to relational data. Beyond that, they can im-
prove performance by taking the load off of the database through caching and delaying updates until absolutely
needed so that the database efficiency can be maximized. But, with caching, data integrity is a problem, so some
form of application server level locking is needed for entity beans to provide the transaction isolation properties
that you are used to with traditional databases.

EJBs on JBoss

JBoss Release 2 166

4.4.2. Entity Bean Lifecycle

With the default configuration of JBoss there is only one active instance of a given entity bean in memory at one
time. This applies for every cache configuration and every type of commit-option. The lifecycle for this instance is
different for every commit-option though.

• For commit option A, this instance is cached and used between transactions.

• For commit option B, this instance is cached and used between transactions, but is marked as dirty at the end of
a transaction. This means that at the start of a new transaction ejbLoad must be called.

• For commit option C, this instance is marked as dirty, released from the cache, and marked for passivation at
the end of a transaction.

• For commit option D, a background refresh thread periodically calls ejbLoad on stale beans within the cache.
Otherwise, this option works in the same way as A.

When a bean is marked for passivation, the bean is placed in a passivation queue. Each entity bean container has a
passivation thread that periodically passivates beans that have been placed in the passivation queue. A bean is
pulled out of the passivation queue and reused if the application requests access to a bean of the same primary key.

On an exception or transaction rollback, the entity bean instance is thrown out of cache entirely. It is not put into
the passivation queue and is not reused by an instance pool. Except for the passivation queue, there is no entity
bean instance pooling.

4.4.3. Default Locking Behavior

Entity bean locking is totally decoupled from the entity bean instance. The logic for locking is totally isolated and
managed in a separate lock object. Because there is only one allowed instance of a given entity bean active at one
time, JBoss employs two types of locks to ensure data integrity and to conform to the EJB spec.

• Method Lock: The method lock ensures that only one thread of execution at a time can invoke on a given En-
tity Bean. This is required by the EJB spec.

• Transaction Lock: A transaction lock ensures that only one transaction at a time has access to a give Entity
Bean. This ensures the ACID properties of transactions at the application server level. Since, by default, there is
only one active instance of any given Entity Bean at one time, JBoss must protect this instance from dirty reads
and dirty writes. So, the default entity bean locking behavior will lock an entity bean within a transaction until
it completes. This means that if any method at all is invoked on an entity bean within a transaction, no other
transaction can have access to this bean until the holding transaction commits or is rolled back.

4.4.4. Pluggable Interceptors and Locking Policy

We saw that the basic entity bean lifecycle and behavior is defined by the container configuration defined in
standardjboss.xml descriptor. Let's look at the container-interceptors definition for the Standard CMP 2.x
EntityBean configuration.

<container-interceptors>
<interceptor>org.jboss.ejb.plugins.ProxyFactoryFinderInterceptor</interceptor>

EJBs on JBoss

JBoss Release 2 167

<interceptor>org.jboss.ejb.plugins.LogInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.SecurityInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.TxInterceptorCMT</interceptor>
<interceptor>org.jboss.ejb.plugins.CallValidationInterceptor</interceptor>
<interceptor metricsEnabled="true">org.jboss.ejb.plugins.MetricsInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.EntityCreationInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.EntityLockInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.EntityInstanceInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.EntityReentranceInterceptor</interceptor>
<interceptor>org.jboss.resource.connectionmanager.CachedConnectionInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.EntitySynchronizationInterceptor</interceptor>
<interceptor>org.jboss.ejb.plugins.cmp.jdbc.JDBCRelationInterceptor</interceptor>

</container-interceptors>

The interceptors shown above define most of the behavior of the entity bean. Below is an explanation of the inter-
ceptors that are relevant to this section.

• EntityLockInterceptor: This interceptor's role is to schedule any locks that must be acquired before the invoc-
ation is allowed to proceed. This interceptor is very lightweight and delegates all locking behavior to a plug-
gable locking policy.

• EntityInstanceInterceptor: The job of this interceptor is to find the entity bean within the cache or create a
new one. This interceptor also ensures that there is only one active instance of a bean in memory at one time.

• EntitySynchronizationInterceptor: The role of this interceptor is to synchronize the state of the cache with
the underlying storage. It does this with the ejbLoad and ejbStore semantics of the EJB specification. In the
presence of a transaction this is triggered by transaction demarcation. It registers a callback with the underlying
transaction monitor through the JTA interfaces. If there is no transaction the policy is to store state upon return-
ing from invocation. The synchronization polices A, B and C of the specification are taken care of here as well
as the JBoss specific commit-option D.

4.4.5. Deadlock

Finding deadlock problems and resolving them is the topic of this section. We will describe what deadlocking
MBeans, how you can detect it within your application, and how you can resolve deadlocks. Deadlock can occur
when two or more threads have locks on shared resources. Figure 4.8 illustrates a simple deadlock scenario. Here,
Thread 1 has the lock for Bean A, and Thread 2 has the lock for Bean B. At a later time, Thread 1 tries to lock
Bean B and blocks because Thread 2 has it. Likewise, as Thread 2 tries to lock A it also blocks because Thread 1

has the lock. At this point both threads are deadlocked waiting for access to the resource already locked by the oth-
er thread.

EJBs on JBoss

JBoss Release 2 168

Figure 4.8. Deadlock definition example

The default locking policy of JBoss is to lock an Entity bean when an invocation occurs in the context of a transac-
tion until the transaction completes. Because of this, it is very easy to encounter deadlock if you have long running
transactions that access many entity beans, or if you are not careful about ordering the access to them. Various
techniques and advanced configurations can be used to avoid deadlocking problems. They are discussed later in
this section.

4.4.5.1. Deadlock Detection

Fortunately, JBoss is able to perform deadlock detection. JBoss holds a global internal graph of waiting transac-
tions and what transactions they are blocking on. Whenever a thread determines that it cannot acquire an entity
bean lock, it figures out what transaction currently holds the lock on the bean and add itself to the blocked transac-
tion graph. An example of what the graph may look like is given in Table 4.1.

Table 4.1. An example blocked transaction table

Blocking TX Tx that holds needed lock

Tx1 Tx2

Tx3 Tx4

Tx4 Tx1

Before the thread actually blocks it tries to detect whether there is deadlock problem. It does this by traversing the
block transaction graph. As it traverses the graph, it keeps track of what transactions are blocked. If it sees a
blocked node more than once in the graph, then it knows there is deadlock and will throw an ApplicationDead-

lockException. This exception will cause a transaction rollback which will cause all locks that transaction holds to
be released.

4.4.5.2. Catching ApplicationDeadlockException

Since JBoss can detect application deadlock, you should write your application so that it can retry a transaction if
the invocation fails because of the ApplicationDeadlockException. Unfortunately, this exception can be deeply

EJBs on JBoss

JBoss Release 2 169

embedded within a RemoteException, so you have to search for it in your catch block. For example:

try {
// ...

} catch (RemoteException ex) {
Throwable cause = null;
RemoteException rex = ex;
while (rex.detail != null) {

cause = rex.detail;
if (cause instanceof ApplicationDeadlockException) {

// ... We have deadlock, force a retry of the transaction.
break;

}
if (cause instanceof RemoteException) {

rex = (RemoteException)cause;
}

}
}

4.4.5.3. Viewing Lock Information

The EntityLockMonitor MBean service allows one to view basic locking statistics as well as printing out the state
of the transaction locking table. To enable this monitor uncomment its configuration in the conf/

jboss-service.xml:

<mbean code="org.jboss.monitor.EntityLockMonitor"
name="jboss.monitor:name=EntityLockMonitor"/>

The EntityLockMonitor has no configurable attributes. It does have the following read-only attributes:

• MedianWaitTime: The median value of all times threads had to wait to acquire a lock.

• AverageContenders: The ratio of the total number of contentions to the sum of all threads that had to wait for
a lock.

• TotalContentions: The total number of threads that had to wait to acquire the transaction lock. This happens
when a thread attempts to acquire a lock that is associated with another transaction

• MaxContenders: The maximum number of threads that were waiting to acquire the transaction lock.

It also has the following operations:

• clearMonitor: This operation resets the lock monitor state by zeroing all counters.

• printLockMonitor: This operation prints out a table of all EJB locks that lists the ejbName of the bean, the
total time spent waiting for the lock, the count of times the lock was waited on and the number of transactions
that timed out waiting for the lock.

4.4.6. Advanced Configurations and Optimizations

The default locking behavior of entity beans can cause deadlock. Since access to an entity bean locks the bean into
the transaction, this also can present a huge performance/throughput problem for your application. This section
walks through various techniques and configurations that you can use to optimize performance and reduce the pos-

EJBs on JBoss

JBoss Release 2 170

sibility of deadlock.

4.4.6.1. Short-lived Transactions

Make your transactions as short-lived and fine-grained as possible. The shorter the transaction you have, the less
likelihood you will have concurrent access collisions and your application throughput will go up.

4.4.6.2. Ordered Access

Ordering the access to your entity beans can help lessen the likelihood of deadlock. This means making sure that
the entity beans in your system are always accessed in the same exact order. In most cases, user applications are
just too complicated to use this approach and more advanced configurations are needed.

4.4.6.3. Read-Only Beans

Entity beans can be marked as read-only. When a bean is marked as read-only, it never takes part in a transaction.
This means that it is never transactionally locked. Using commit-option D with this option is sometimes very useful
when your read-only bean's data is sometimes updated by an external source.

To mark a bean as read-only, use the read-only flag in the jboss.xml deployment descriptor.

Example 4.11. Marking an entity bean read-only using jboss.xml

<jboss>
<enterprise-beans>

<entity>
<ejb-name>MyEntityBean</ejb-name>
<jndi-name>MyEntityHomeRemote</jndi-name>
<read-only>True</read-only>

</entity>
</enterprise-beans>

</jboss>

4.4.6.4. Explicitly Defining Read-Only Methods

After reading and understanding the default locking behavior of entity beans, you're probably wondering, "Why
lock the bean if its not modifying the data?" JBoss allows you to define what methods on your entity bean are read
only so that it will not lock the bean within the transaction if only these types of methods are called. You can define
these read only methods within a jboss.xml deployment descriptor. Wildcards are allowed for method names. The
following is an example of declaring all getter methods and the anotherReadOnlyMethod as read-only.

Example 4.12. Defining entity bean methods as read only

<jboss>
<enterprise-beans>

<entity>
<ejb-name>nextgen.EnterpriseEntity</ejb-name>
<jndi-name>nextgen.EnterpriseEntity</jndi-name>
<method-attributes>

<method>

EJBs on JBoss

JBoss Release 2 171

<method-name>get*</method-name>
<read-only>true</read-only>

</method>
<method>

<method-name>anotherReadOnlyMethod</method-name>
<read-only>true</read-only>

</method>
</method-attributes>

</entity>
</enterprise-beans>

</jboss>

4.4.6.5. Instance Per Transaction Policy

The Instance Per Transaction policy is an advanced configuration that can totally wipe away deadlock and through-
put problems caused by JBoss's default locking policy. The default Entity Bean locking policy is to only allow one
active instance of a bean. The Instance Per Transaction policy breaks this requirement by allocating a new instance
of a bean per transaction and dropping this instance at the end of the transaction. Because each transaction has its
own copy of the bean, there is no need for transaction based locking.

This option does sound great but does have some drawbacks right now. First, the transactional isolation behavior of
this option is equivalent to READ_COMMITTED. This can create repeatable reads when they are not desired. In other
words, a transaction could have a copy of a stale bean. Second, this configuration option currently requires commit-
option B or C which can be a performance drain since an ejbLoad must happen at the beginning of the transaction.
But, if your application currently requires commit-option B or C anyways, then this is the way to go. The JBoss de-
velopers are currently exploring ways to allow commit-option A as well (which would allow the use of caching for
this option).

JBoss has container configurations named Instance Per Transaction CMP 2.x EntityBean and Instance Per

Transaction BMP EntityBean defined in the standardjboss.xml that implement this locking policy. To use this
configuration, you just have to reference the name of the container configuration to use with your bean in the
jboss.xml deployment descriptor as show below.

Example 4.13. An example of using the Instance Per Transaction policy.

<jboss>
<enterprise-beans>

<entity>
<ejb-name>MyCMP2Bean</ejb-name>
<jndi-name>MyCMP2</jndi-name>
<configuration-name>

Instance Per Transaction CMP 2.x EntityBean
</configuration-name>

</entity>
<entity>

<ejb-name>MyBMPBean</ejb-name>
<jndi-name>MyBMP</jndi-name>
<configuration-name>

Instance Per Transaction BMP EntityBean
</configuration-name>

</entity>
</enterprise-beans>

</jboss>

EJBs on JBoss

JBoss Release 2 172

4.4.7. Running Within a Cluster

Currently there is no distributed locking capability for entity beans within the cluster. This functionality has been
delegated to the database and must be supported by the application developer. For clustered entity beans, it is sug-
gested to use commit-option B or C in combination with a row locking mechanism. For CMP, there is a row-
locking configuration option. This option will use a SQL select for update when the bean is loaded from the
database. With commit-option B or C, this implements a transactional lock that can be used across the cluster. For
BMP, you must explicitly implement the select for update invocation within the BMP's ejbLoad method.

4.4.8. Troubleshooting

This section will describe some common locking problems and their solution.

4.4.8.1. Locking Behavior Not Working

Many JBoss users observe that locking does not seem to be working and see concurrent access to their beans, and
thus dirty reads. Here are some common reasons for this:

• If you have custom container-configurations, make sure you have updated these configurations.

• Make absolutely sure that you have implemented equals and hashCode correctly from custom/complex primary
key classes.

• Make absolutely sure that your custom/complex primary key classes serialize correctly. One common mistake
is assuming that member variable initializations will be executed when a primary key is unmarshalled.

4.4.8.2. IllegalStateException

An IllegalStateException with the message "removing bean lock and it has tx set!" usually means that you have not
implemented equals and/or hashCode correctly for your custom/complex primary key class, or that your primary
key class is not implemented correctly for serialization.

4.4.8.3. Hangs and Transaction Timeouts

One long outstanding bug of JBoss is that on a transaction timeout, that transaction is only marked for a rollback
and not actually rolled back. This responsibility is delegated to the invocation thread. This can cause major prob-
lems if the invocation thread hangs indefinitely since things like entity bean locks will never be released. The solu-
tion to this problem is not a good one. You really just need to avoid doing stuff within a transaction that could hang
indefinitely. One common mistake is making connections across the internet or running a web-crawler within a
transaction.

4.5. EJB Timer Configuration

The J2EE timer service allows for any EJB object to register for a timer callback either at a designated time in the
future. Timer events can be used for auditing, reporting or other cleanup tasks that need to need to happen at some
given time in the future. Timer events are intended to be persistent and should be executed even in the event of a
server failure. Coding to EJB timers is a standard part of the J2EE specification, so we won't explore the program-

EJBs on JBoss

JBoss Release 2 173

ming model. We will, instead, look at the configuration of the timer service in JBoss so that you can understand
how to make timers work best in your environment

The EJB timer service is configure by several related MBeans in the ejb-deployer.xml file. The primary MBean
is the EJBTimerService MBean.

<mbean code="org.jboss.ejb.txtimer.EJBTimerServiceImpl" name="jboss.ejb:service=EJBTimerService">
<attribute name="RetryPolicy">jboss.ejb:service=EJBTimerService,retryPolicy=fixedDelay</attribute>
<attribute name="PersistencePolicy">jboss.ejb:service=EJBTimerService,persistencePolicy=database</attribute>
<attribute name="TimerIdGeneratorClassName">org.jboss.ejb.txtimer.BigIntegerTimerIdGenerator</attribute>
<attribute name="TimedObjectInvokerClassName">org.jboss.ejb.txtimer.TimedObjectInvokerImpl</attribute>

</mbean>

The EJBTimerService has the following configurable attributes:

• RetryPolicy: This is name of the MBean that implements the retry policy. The MBean must support the
org.jboss.ejb.txtimer.RetryPolicy interface. JBoss provides one implementation, FixedDelayRetryPo-
licy, which will be described later.

• PersistencePolicy: This is the name of the MBean that implements the the persistence strategy for saving timer
events. The MBean must support the org.jboss.ejb.txtimer.PersistencePolicy interface. JBoss provides
two implementations, NoopPersistencePolicy and DatabasePersistencePolicy, which will be described later.

• TimerIdGeneratorClassName: This is the name of a class that provides the timer ID generator strategy. This
class must implement the org.jboss.ejb.txtimer.TimerIdGenerator interface. JBoss provides the
org.jboss.ejb.txtimer.BigIntegerTimerIdGenerator implementation.

• TimedObjectInvokerClassname: This is the name of a class that provides the timer method invocation
strategy. This class must implement the org.jboss.ejb.txtimer.TimedObjectInvoker interface. JBoss
provides the org.jboss.ejb.txtimer.TimedObjectInvokerImpl implementation.

The retry policy MBean definition used is shown here:

<mbean code="org.jboss.ejb.txtimer.FixedDelayRetryPolicy"
name="jboss.ejb:service=EJBTimerService,retryPolicy=fixedDelay">

<attribute name="Delay">100</attribute>
</mbean>

The retry policy takes one configuration value:

• Delay: This is the delay (ms) before retrying a failed timer execution. The default delay is 100ms.

If EJB timers do not need to be persisted, the NoopPersistence policy can be used. This MBean is commented out
by default, but when enabled will look like this:

<mbean code="org.jboss.ejb.txtimer.NoopPersistencePolicy"
name="jboss.ejb:service=EJBTimerService,persistencePolicy=noop"/>

Most applications that use timers will want timers to be persisted. For that the DatabasePersitencePolicy MBean
should be used.

<mbean code="org.jboss.ejb.txtimer.DatabasePersistencePolicy"

EJBs on JBoss

JBoss Release 2 174

name="jboss.ejb:service=EJBTimerService,persistencePolicy=database">
<!-- DataSource JNDI name -->
<depends optional-attribute-name="DataSource">jboss.jca:service=DataSourceBinding,name=DefaultDS</depends>
<!-- The plugin that handles database persistence -->
<attribute name="DatabasePersistencePlugin">org.jboss.ejb.txtimer.GeneralPurposeDatabasePersistencePlugin</attribute>

</mbean>

• DataSource: This is the MBean for the DataSource that timer data will be written to.

• DatabasePersistencePlugin: This is the name of the class the implements the persistence strategy. This should
be org.jboss.ejb.txtimer.GeneralPurposeDatabasePersistencePlugin.

EJBs on JBoss

JBoss Release 2 175

5
Messaging on JBoss

JMS Configuration and Architecture

The JMS API stands for Java Message Service Application Programming Interface, and it is used by applications to
send asynchronous business-quality messages to other applications. In the messaging world, messages are not sent
directly to other applications. Instead, messages are sent to destinations, known as queues or topics. Applications
sending messages do not need to worry if the receiving applications are up and running, and conversely, receiving
applications do not need to worry about the sending application's status. Both senders, and receivers only interact
with the destinations.

The JMS API is the standardized interface to a JMS provider, sometimes called a Message Oriented Middleware
(MOM) system. JBoss comes with a JMS 1.1 compliant JMS provider called JBoss Messaging or JBossMQ. When
you use the JMS API with JBoss, you are using the JBoss Messaging engine transparently. JBoss Messaging fully
implements the JMS specification; therefore, the best JBoss Messaging user guide is the JMS specification. For
more information about the JMS API please visit the JMS Tutorial or JMS Downloads & Specifications.

This chapter focuses on the JBoss specific aspects of using JMS and message driven beans as well as the JBoss
Messaging configuration and MBeans.

5.1. JMS Examples

In this section we discuss the basics needed to use the JBoss JMS implementation. JMS leaves the details of access-
ing JMS connection factories and destinations as provider specific details. What you need to know to use the JBoss
Messaging layer is:

• The location of the queue and topic connect factories: In JBoss both connection factory implementations are
located under the JNDI name ConnectionFactory.

• How to lookup JMS destinations (queues and topics): Destinations are configured via MBeans as we will see
when we discuss the messaging MBeans. JBoss comes with a few queues and topics preconfigured. You can
find them under the jboss.mq.destination domain in the JMX Console..

• Which JARS JMS requires: These include concurrent.jar, jbossmq-client.jar, jboss-common-client.jar,
jboss-system-client.jar, jnp-client.jar and log4j.jar.

In the following sections we will look at examples of the various JMS messaging models and message driven
beans. The chapter example source is located under the src/main/org/jboss/book/jms directory of the book ex-
amples.

5.1.1. A Point-To-Point Example

JBoss Release 2 176

Let's start out with a point-to-point (P2P) example. In the P2P model, a sender delivers messages to a queue and a
single receiver pulls the message off of the queue. The receiver does not need to be listening to the queue at the
time the message is sent. Example 5.1 shows a complete P2P example that sends a javax.jms.TextMessage to the
queue queue/testQueue and asynchronously receives the message from the same queue.

Example 5.1. A P2P JMS client example

package org.jboss.book.jms.ex1;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Queue;
import javax.jms.QueueConnection;
import javax.jms.QueueConnectionFactory;
import javax.jms.QueueReceiver;
import javax.jms.QueueSender;
import javax.jms.QueueSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import EDU.oswego.cs.dl.util.concurrent.CountDown;
import org.apache.log4j.Logger;
import org.jboss.util.ChapterExRepository;

/**
* A complete JMS client example program that sends a
* TextMessage to a Queue and asynchronously receives the
* message from the same Queue.
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.2 $
*/

public class SendRecvClient
{

static Logger log;
static CountDown done = new CountDown(1);

QueueConnection conn;
QueueSession session;
Queue que;

public static class ExListener
implements MessageListener

{
public void onMessage(Message msg)
{

done.release();
TextMessage tm = (TextMessage) msg;
try {

log.info("onMessage, recv text=" + tm.getText());
} catch(Throwable t) {

t.printStackTrace();
}

}
}

public void setupPTP()
throws JMSException,

NamingException
{

InitialContext iniCtx = new InitialContext();

Messaging on JBoss

JBoss Release 2 177

Object tmp = iniCtx.lookup("ConnectionFactory");
QueueConnectionFactory qcf = (QueueConnectionFactory) tmp;
conn = qcf.createQueueConnection();
que = (Queue) iniCtx.lookup("queue/testQueue");
session = conn.createQueueSession(false,

QueueSession.AUTO_ACKNOWLEDGE);
conn.start();

}

public void sendRecvAsync(String text)
throws JMSException,

NamingException
{

log.info("Begin sendRecvAsync");
// Setup the PTP connection, session
setupPTP();

// Set the async listener
QueueReceiver recv = session.createReceiver(que);
recv.setMessageListener(new ExListener());

// Send a text msg
QueueSender send = session.createSender(que);
TextMessage tm = session.createTextMessage(text);
send.send(tm);
log.info("sendRecvAsync, sent text=" + tm.getText());
send.close();
log.info("End sendRecvAsync");

}

public void stop()
throws JMSException

{
conn.stop();
session.close();
conn.close();

}

public static void main(String args[])
throws Exception

{
ChapterExRepository.init(SendRecvClient.class);
log = Logger.getLogger("SendRecvClient");

log.info("Begin SendRecvClient, now=" + System.currentTimeMillis());
SendRecvClient client = new SendRecvClient();
client.sendRecvAsync("A text msg");
client.done.acquire();
client.stop();
log.info("End SendRecvClient");
System.exit(0);

}
}

The client may be run using the following command line:

[examples]$ ant -Dchap=jms -Dex=1p2p run-example
...
run-example1p2p:

[java] [INFO,SendRecvClient] Begin SendRecvClient, now=1102808673386
[java] [INFO,SendRecvClient] Begin sendRecvAsync
[java] [INFO,SendRecvClient] onMessage, recv text=A text msg
[java] [INFO,SendRecvClient] sendRecvAsync, sent text=A text msg
[java] [INFO,SendRecvClient] End sendRecvAsync

Messaging on JBoss

JBoss Release 2 178

[java] [INFO,SendRecvClient] End SendRecvClient

5.1.2. A Pub-Sub Example

The JMS publish/subscribe (Pub-Sub) message model is a one-to-many model. A publisher sends a message to a
topic and all active subscribers of the topic receive the message. Subscribers that are not actively listening to the
topic will miss the published message. shows a complete JMS client that sends a javax.jms.TextMessage to a top-
ic and asynchronously receives the message from the same topic.

Example 5.2. A Pub-Sub JMS client example

package org.jboss.book.jms.ex1;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Topic;
import javax.jms.TopicConnection;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicPublisher;
import javax.jms.TopicSubscriber;
import javax.jms.TopicSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import EDU.oswego.cs.dl.util.concurrent.CountDown;

/**
* A complete JMS client example program that sends a TextMessage to
* a Topic and asynchronously receives the message from the same
* Topic.
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.2 $
*/

public class TopicSendRecvClient
{

static CountDown done = new CountDown(1);
TopicConnection conn = null;
TopicSession session = null;
Topic topic = null;

public static class ExListener implements MessageListener
{

public void onMessage(Message msg)
{

done.release();
TextMessage tm = (TextMessage) msg;
try {

System.out.println("onMessage, recv text=" + tm.getText());
} catch(Throwable t) {

t.printStackTrace();
}

}
}

public void setupPubSub()
throws JMSException, NamingException

Messaging on JBoss

JBoss Release 2 179

{
InitialContext iniCtx = new InitialContext();
Object tmp = iniCtx.lookup("ConnectionFactory");
TopicConnectionFactory tcf = (TopicConnectionFactory) tmp;
conn = tcf.createTopicConnection();
topic = (Topic) iniCtx.lookup("topic/testTopic");
session = conn.createTopicSession(false,

TopicSession.AUTO_ACKNOWLEDGE);
conn.start();

}

public void sendRecvAsync(String text)
throws JMSException, NamingException

{
System.out.println("Begin sendRecvAsync");
// Setup the PubSub connection, session
setupPubSub();
// Set the async listener

TopicSubscriber recv = session.createSubscriber(topic);
recv.setMessageListener(new ExListener());
// Send a text msg
TopicPublisher send = session.createPublisher(topic);
TextMessage tm = session.createTextMessage(text);
send.publish(tm);
System.out.println("sendRecvAsync, sent text=" + tm.getText());
send.close();
System.out.println("End sendRecvAsync");

}

public void stop() throws JMSException
{

conn.stop();
session.close();
conn.close();

}

public static void main(String args[]) throws Exception
{

System.out.println("Begin TopicSendRecvClient, now=" +
System.currentTimeMillis());

TopicSendRecvClient client = new TopicSendRecvClient();
client.sendRecvAsync("A text msg, now="+System.currentTimeMillis());
client.done.acquire();
client.stop();
System.out.println("End TopicSendRecvClient");
System.exit(0);

}

}

The client may be run using the following command line:

[examples]$ ant -Dchap=jms -Dex=1ps run-example
...
run-example1ps:

[java] Begin TopicSendRecvClient, now=1102809427043
[java] Begin sendRecvAsync
[java] onMessage, recv text=A text msg, now=1102809427071
[java] sendRecvAsync, sent text=A text msg, now=1102809427071
[java] End sendRecvAsync
[java] End TopicSendRecvClient

Messaging on JBoss

JBoss Release 2 180

Now let's break the publisher and subscribers into separate programs to demonstrate that subscribers only receive
messages while they are listening to a topic. Example 5.3 shows a variation of the previous pub-sub client that only
publishes messages to the topic/testTopic topic. The subscriber only client is shown in Example 5.3.

Example 5.3. A JMS publisher client

package org.jboss.book.jms.ex1;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Topic;
import javax.jms.TopicConnection;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicPublisher;
import javax.jms.TopicSlistubscriber;
import javax.jms.TopicSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

/**
* A JMS client example program that sends a TextMessage to a Topic
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.2 $
*/

public class TopicSendClient
{

TopicConnection conn = null;
TopicSession session = null;
Topic topic = null;

public void setupPubSub()
throws JMSException, NamingException

{
InitialContext iniCtx = new InitialContext();
Object tmp = iniCtx.lookup("ConnectionFactory");
TopicConnectionFactory tcf = (TopicConnectionFactory) tmp;
conn = tcf.createTopicConnection();
topic = (Topic) iniCtx.lookup("topic/testTopic");
session = conn.createTopicSession(false,

TopicSession.AUTO_ACKNOWLEDGE);
conn.start();

}

public void sendAsync(String text)
throws JMSException, NamingException

{
System.out.println("Begin sendAsync");
// Setup the pub/sub connection, session
setupPubSub();
// Send a text msg
TopicPublisher send = session.createPublisher(topic);
TextMessage tm = session.createTextMessage(text);
send.publish(tm);
System.out.println("sendAsync, sent text=" + tm.getText());
send.close();
System.out.println("End sendAsync");

}

public void stop()
throws JMSException

Messaging on JBoss

JBoss Release 2 181

{
conn.stop();
session.close();
conn.close();

}

public static void main(String args[])
throws Exception

{
System.out.println("Begin TopicSendClient, now=" +

System.currentTimeMillis());
TopicSendClient client = new TopicSendClient();

client.sendAsync("A text msg, now="+System.currentTimeMillis());
client.stop();
System.out.println("End TopicSendClient");
System.exit(0);

}

}

Example 5.4. A JMS subscriber client

package org.jboss.book.jms.ex1;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Topic;
import javax.jms.TopicConnection;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicPublisher;
import javax.jms.TopicSubscriber;
import javax.jms.TopicSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

/**
* A JMS client example program that synchronously receives a message a Topic
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.2 $
*/

public class TopicRecvClient
{

TopicConnection conn = null;
TopicSession session = null;
Topic topic = null;

public void setupPubSub()
throws JMSException, NamingException

{
InitialContext iniCtx = new InitialContext();
Object tmp = iniCtx.lookup("ConnectionFactory");
TopicConnectionFactory tcf = (TopicConnectionFactory) tmp;
conn = tcf.createTopicConnection();
topic = (Topic) iniCtx.lookup("topic/testTopic");
session = conn.createTopicSession(false,

TopicSession.AUTO_ACKNOWLEDGE);
conn.start();

}

Messaging on JBoss

JBoss Release 2 182

public void recvSync()
throws JMSException, NamingException

{
System.out.println("Begin recvSync");
// Setup the pub/sub connection, session
setupPubSub();

// Wait upto 5 seconds for the message
TopicSubscriber recv = session.createSubscriber(topic);
Message msg = recv.receive(5000);
if (msg == null) {

System.out.println("Timed out waiting for msg");
} else {

System.out.println("TopicSubscriber.recv, msgt="+msg);
}

}

public void stop()
throws JMSException

{
conn.stop();
session.close();
conn.close();

}

public static void main(String args[])
throws Exception

{
System.out.println("Begin TopicRecvClient, now=" +

System.currentTimeMillis());
TopicRecvClient client = new TopicRecvClient();
client.recvSync();
client.stop();
System.out.println("End TopicRecvClient");
System.exit(0);

}

}

Run the TopicSendClient followed by the TopicRecvClient as follows:

[examples]$ ant -Dchap=jms -Dex=1ps2 run-example
...
run-example1ps2:

[java] Begin TopicSendClient, now=1102810007899
[java] Begin sendAsync
[java] sendAsync, sent text=A text msg, now=1102810007909
[java] End sendAsync
[java] End TopicSendClient
[java] Begin TopicRecvClient, now=1102810011524
[java] Begin recvSync
[java] Timed out waiting for msg
[java] End TopicRecvClient

The output shows that the topic subscriber client (TopicRecvClient) fails to receive the message sent by the pub-
lisher due to a timeout.

5.1.3. A Pub-Sub With Durable Topic Example

JMS supports a messaging model that is a cross between the P2P and pub-sub models. When a pub-sub client

Messaging on JBoss

JBoss Release 2 183

wants to receive all messages posted to the topic it subscribes to even when it is not actively listening to the topic,
the client may achieve this behavior using a durable topic. Let's look at a variation of the preceding subscriber cli-
ent that uses a durable topic to ensure that it receives all messages, include those published when the client is not
listening to the topic. Example 5.5 shows the durable topic client with the key differences between the Example 5.4
client highlighted in bold.

Example 5.5. A durable topic JMS client example

package org.jboss.book.jms.ex1;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Topic;
import javax.jms.TopicConnection;
import javax.jms.TopicConnectionFactory;
import javax.jms.TopicPublisher;
import javax.jms.TopicSubscriber;
import javax.jms.TopicSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

/**
* A JMS client example program that synchronously receives a message a Topic
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.2 $
*/

public class DurableTopicRecvClient
{

TopicConnection conn = null;
TopicSession session = null;
Topic topic = null;

public void setupPubSub()
throws JMSException, NamingException

{
InitialContext iniCtx = new InitialContext();
Object tmp = iniCtx.lookup("ConnectionFactory");

TopicConnectionFactory tcf = (TopicConnectionFactory) tmp;
conn = tcf.createTopicConnection("john", "needle");
topic = (Topic) iniCtx.lookup("topic/testTopic");

session = conn.createTopicSession(false,
TopicSession.AUTO_ACKNOWLEDGE);

conn.start();
}

public void recvSync()
throws JMSException, NamingException

{
System.out.println("Begin recvSync");
// Setup the pub/sub connection, session
setupPubSub();
// Wait upto 5 seconds for the message
TopicSubscriber recv = session.createDurableSubscriber(topic, "jms-ex1dtps");
Message msg = recv.receive(5000);
if (msg == null) {

System.out.println("Timed out waiting for msg");
} else {

Messaging on JBoss

JBoss Release 2 184

System.out.println("DurableTopicRecvClient.recv, msgt=" + msg);
}

}

public void stop()
throws JMSException

{
conn.stop();
session.close();
conn.close();

}

public static void main(String args[])
throws Exception

{
System.out.println("Begin DurableTopicRecvClient, now=" +

System.currentTimeMillis());
DurableTopicRecvClient client = new DurableTopicRecvClient();
client.recvSync();
client.stop();
System.out.println("End DurableTopicRecvClient");
System.exit(0);

}

}

Now run the previous topic publisher with the durable topic subscriber as follows:

[examples]$ ant -Dchap=jms -Dex=1psdt run-example
...
run-example1psdt:

[java] Begin DurableTopicSetup
[java] End DurableTopicSetup
[java] Begin TopicSendClient, now=1102899834273
[java] Begin sendAsync
[java] sendAsync, sent text=A text msg, now=1102899834345
[java] End sendAsync
[java] End TopicSendClient
[java] Begin DurableTopicRecvClient, now=1102899840043
[java] Begin recvSync
[java] DurableTopicRecvClient.recv, msgt=SpyTextMessage {
[java] Header {
[java] jmsDestination : TOPIC.testTopic.DurableSubscription[

clientId=DurableSubscriberExample name=jms-ex1dtps selector=null]
[java] jmsDeliveryMode : 2
[java] jmsExpiration : 0
[java] jmsPriority : 4
[java] jmsMessageID : ID:3-11028998375501
[java] jmsTimeStamp : 1102899837550
[java] jmsCorrelationID: null
[java] jmsReplyTo : null
[java] jmsType : null
[java] jmsRedelivered : false
[java] jmsProperties : {}
[java] jmsPropReadWrite: false
[java] msgReadOnly : true
[java] producerClientId: ID:3
[java] }
[java] Body {
[java] text :A text msg, now=1102899834345
[java] }
[java] }
[java] End DurableTopicRecvClient

Messaging on JBoss

JBoss Release 2 185

Items of note for the durable topic example include:

• The TopicConnectionFactory creation in the durable topic client used a username and password, and the Top-

icSubscriber creation was done using the createDurableSubscriber(Topic, String) method. This is a re-
quirement of durable topic subscribers. The messaging server needs to know what client is requesting the dur-
able topic and what the name of the durable topic subscription is. We will discuss the details of durable topic
setup in the configuration section.

• An org.jboss.book.jms.DurableTopicSetup client was run prior to the TopicSendClient. The reason for this
is a durable topic subscriber must have registered a subscription at some point in the past in order for the mes-
saging server to save messages. JBoss supports dynamic durable topic subscribers and the DurableTopicSetup

client simply creates a durable subscription receiver and the exits. This leaves an active durable topic subscriber
on the topic/testTopic and the messaging server knows that any messages posted to this topic must be saved
for latter delivery.

• The TopicSendClient does not change for the durable topic. The notion of a durable topic is a subscriber only
notion.

• The DurableTopicRecvClient sees the message published to the topic/testTopic even though it was not
listening to the topic at the time the message was published.

5.1.4. A Point-To-Point With MDB Example

Example 5.6 shows an message driven bean (MDB) that transforms the TextMessages it receives and sends the
transformed messages to the queue found in the incoming message JMSReplyTo header.

Example 5.6. A TextMessage processing MDB

package org.jboss.book.jms.ex2;

import javax.ejb.MessageDrivenBean;
import javax.ejb.MessageDrivenContext;
import javax.ejb.EJBException;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Queue;
import javax.jms.QueueConnection;
import javax.jms.QueueConnectionFactory;
import javax.jms.QueueSender;
import javax.jms.QueueSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

/**
* An MDB that transforms the TextMessages it receives and send the
* transformed messages to the Queue found in the incoming message
* JMSReplyTo header.
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.2 $
*/

public class TextMDB

Messaging on JBoss

JBoss Release 2 186

implements MessageDrivenBean, MessageListener
{

private MessageDrivenContext ctx = null;
private QueueConnection conn;
private QueueSession session;

public TextMDB()
{

System.out.println("TextMDB.ctor, this="+hashCode());
}

public void setMessageDrivenContext(MessageDrivenContext ctx)
{

this.ctx = ctx;
System.out.println("TextMDB.setMessageDrivenContext, this=" +

hashCode());
}

public void ejbCreate()
{

System.out.println("TextMDB.ejbCreate, this="+hashCode());
try {

setupPTP();
} catch (Exception e) {

throw new EJBException("Failed to init TextMDB", e);
}

}

public void ejbRemove()
{

System.out.println("TextMDB.ejbRemove, this="+hashCode());
ctx = null;
try {

if (session != null) {
session.close();

}
if (conn != null) {

conn.close();
}

} catch(JMSException e) {
e.printStackTrace();

}
}

public void onMessage(Message msg)
{

System.out.println("TextMDB.onMessage, this="+hashCode());
try {

TextMessage tm = (TextMessage) msg;
String text = tm.getText() + "processed by: "+hashCode();
Queue dest = (Queue) msg.getJMSReplyTo();
sendReply(text, dest);

} catch(Throwable t) {
t.printStackTrace();

}
}

private void setupPTP()
throws JMSException, NamingException

{
InitialContext iniCtx = new InitialContext();
Object tmp = iniCtx.lookup("java:comp/env/jms/QCF");
QueueConnectionFactory qcf = (QueueConnectionFactory) tmp;
conn = qcf.createQueueConnection();
session = conn.createQueueSession(false,

QueueSession.AUTO_ACKNOWLEDGE);

Messaging on JBoss

JBoss Release 2 187

conn.start();
}

private void sendReply(String text, Queue dest)
throws JMSException

{
System.out.println("TextMDB.sendReply, this=" +

hashCode() + ", dest="+dest);
QueueSender sender = session.createSender(dest);
TextMessage tm = session.createTextMessage(text);
sender.send(tm);
sender.close();

}
}

The MDB ejb-jar.xml and jboss.xml deployment descriptors are shown in Example 5.7 and Example 5.8.

Example 5.7. The MDB ejb-jar.xml descriptor

<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC

"-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN"
"http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar>
<enterprise-beans>

<message-driven>
<ejb-name>TextMDB</ejb-name>
<ejb-class>org.jboss.book.jms.ex2.TextMDB</ejb-class>
<transaction-type>Container</transaction-type>
<acknowledge-mode>AUTO_ACKNOWLEDGE</acknowledge-mode>
<message-driven-destination>

<destination-type>javax.jms.Queue</destination-type>
</message-driven-destination>
<res-ref-name>jms/QCF</res-ref-name>
<resource-ref>

<res-type>javax.jms.QueueConnectionFactory</res-type>
<res-auth>Container</res-auth>

</resource-ref>
</message-driven>

</enterprise-beans>
</ejb-jar>

Example 5.8. The MDB jboss.xml descriptor

<?xml version="1.0"?>
<jboss>

<enterprise-beans>
<message-driven>

<ejb-name>TextMDB</ejb-name>
<destination-jndi-name>queue/B</destination-jndi-name>
<resource-ref>

<res-ref-name>jms/QCF</res-ref-name>
<jndi-name>ConnectionFactory</jndi-name>

</resource-ref>
</message-driven>

</enterprise-beans>
</jboss>

Messaging on JBoss

JBoss Release 2 188

Example 5.9 shows a variation of the P2P client that sends several messages to the queue/B destination and asyn-
chronously receives the messages as modified by TextMDB from queue A.

Example 5.9. A JMS client that interacts with the TextMDB

package org.jboss.book.jms.ex2;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Queue;
import javax.jms.QueueConnection;
import javax.jms.QueueConnectionFactory;
import javax.jms.QueueReceiver;
import javax.jms.QueueSender;
import javax.jms.QueueSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import EDU.oswego.cs.dl.util.concurrent.CountDown;

/**
* A complete JMS client example program that sends N TextMessages to
* a Queue B and asynchronously receives the messages as modified by
* TextMDB from Queue A.
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.2 $
*/

public class SendRecvClient
{

static final int N = 10;
static CountDown done = new CountDown(N);

QueueConnection conn;
QueueSession session;
Queue queA;
Queue queB;

public static class ExListener
implements MessageListener

{
public void onMessage(Message msg)
{

done.release();
TextMessage tm = (TextMessage) msg;
try {

System.out.println("onMessage, recv text="+tm.getText());
} catch(Throwable t) {

t.printStackTrace();
}

}
}

public void setupPTP()
throws JMSException, NamingException

{
InitialContext iniCtx = new InitialContext();
Object tmp = iniCtx.lookup("ConnectionFactory");
QueueConnectionFactory qcf = (QueueConnectionFactory) tmp;
conn = qcf.createQueueConnection();
queA = (Queue) iniCtx.lookup("queue/A");

Messaging on JBoss

JBoss Release 2 189

queB = (Queue) iniCtx.lookup("queue/B");
session = conn.createQueueSession(false,

QueueSession.AUTO_ACKNOWLEDGE);
conn.start();

}

public void sendRecvAsync(String textBase)
throws JMSException, NamingException, InterruptedException

{
System.out.println("Begin sendRecvAsync");

// Setup the PTP connection, session
setupPTP();

// Set the async listener for queA
QueueReceiver recv = session.createReceiver(queA);
recv.setMessageListener(new ExListener());

// Send a few text msgs to queB
QueueSender send = session.createSender(queB);

for(int m = 0; m < 10; m ++) {
TextMessage tm = session.createTextMessage(textBase+"#"+m);
tm.setJMSReplyTo(queA);
send.send(tm);
System.out.println("sendRecvAsync, sent text=" + tm.getText());

}
System.out.println("End sendRecvAsync");

}

public void stop()
throws JMSException

{
conn.stop();
session.close();
conn.close();

}

public static void main(String args[])
throws Exception

{
System.out.println("Begin SendRecvClient,now=" +

System.currentTimeMillis());
SendRecvClient client = new SendRecvClient();
client.sendRecvAsync("A text msg");
client.done.acquire();
client.stop();
System.exit(0);
System.out.println("End SendRecvClient");

}

}

Run the client as follows:

[examples]$ ant -Dchap=jms -Dex=2 run-example
...
run-example2:
...

[java] Begin SendRecvClient, now=1102900541558
[java] Begin sendRecvAsync
[java] sendRecvAsync, sent text=A text msg#0
[java] sendRecvAsync, sent text=A text msg#1
[java] sendRecvAsync, sent text=A text msg#2

Messaging on JBoss

JBoss Release 2 190

[java] sendRecvAsync, sent text=A text msg#3
[java] sendRecvAsync, sent text=A text msg#4
[java] sendRecvAsync, sent text=A text msg#5
[java] sendRecvAsync, sent text=A text msg#6
[java] sendRecvAsync, sent text=A text msg#7
[java] sendRecvAsync, sent text=A text msg#8
[java] sendRecvAsync, sent text=A text msg#9
[java] End sendRecvAsync
[java] onMessage, recv text=A text msg#0processed by: 12855623
[java] onMessage, recv text=A text msg#5processed by: 9399816
[java] onMessage, recv text=A text msg#9processed by: 6598158
[java] onMessage, recv text=A text msg#3processed by: 8153998
[java] onMessage, recv text=A text msg#4processed by: 10118602
[java] onMessage, recv text=A text msg#2processed by: 1792333
[java] onMessage, recv text=A text msg#7processed by: 14251014
[java] onMessage, recv text=A text msg#1processed by: 10775981
[java] onMessage, recv text=A text msg#8processed by: 6056676
[java] onMessage, recv text=A text msg#6processed by: 15679078

The corresponding JBoss server console output is:

19:15:40,232 INFO [EjbModule] Deploying TextMDB
19:15:41,498 INFO [EJBDeployer] Deployed: file:/jboss-4.0.5.GA/server/default/deploy/

jms-ex2.jar
19:15:45,606 INFO [TextMDB] TextMDB.ctor, this=10775981
19:15:45,620 INFO [TextMDB] TextMDB.ctor, this=1792333
19:15:45,627 INFO [TextMDB] TextMDB.setMessageDrivenContext, this=10775981
19:15:45,638 INFO [TextMDB] TextMDB.ejbCreate, this=10775981
19:15:45,640 INFO [TextMDB] TextMDB.setMessageDrivenContext, this=1792333
19:15:45,640 INFO [TextMDB] TextMDB.ejbCreate, this=1792333
19:15:45,649 INFO [TextMDB] TextMDB.ctor, this=12855623
19:15:45,658 INFO [TextMDB] TextMDB.setMessageDrivenContext, this=12855623
19:15:45,661 INFO [TextMDB] TextMDB.ejbCreate, this=12855623
19:15:45,742 INFO [TextMDB] TextMDB.ctor, this=8153998
19:15:45,744 INFO [TextMDB] TextMDB.setMessageDrivenContext, this=8153998
19:15:45,744 INFO [TextMDB] TextMDB.ejbCreate, this=8153998
19:15:45,763 INFO [TextMDB] TextMDB.ctor, this=10118602
19:15:45,764 INFO [TextMDB] TextMDB.setMessageDrivenContext, this=10118602
19:15:45,764 INFO [TextMDB] TextMDB.ejbCreate, this=10118602
19:15:45,777 INFO [TextMDB] TextMDB.ctor, this=9399816
19:15:45,779 INFO [TextMDB] TextMDB.setMessageDrivenContext, this=9399816
19:15:45,779 INFO [TextMDB] TextMDB.ejbCreate, this=9399816
19:15:45,792 INFO [TextMDB] TextMDB.ctor, this=15679078
19:15:45,798 INFO [TextMDB] TextMDB.setMessageDrivenContext, this=15679078
19:15:45,799 INFO [TextMDB] TextMDB.ejbCreate, this=15679078
19:15:45,815 INFO [TextMDB] TextMDB.ctor, this=14251014
19:15:45,816 INFO [TextMDB] TextMDB.setMessageDrivenContext, this=14251014
19:15:45,817 INFO [TextMDB] TextMDB.ejbCreate, this=14251014
19:15:45,829 INFO [TextMDB] TextMDB.ctor, this=6056676
19:15:45,831 INFO [TextMDB] TextMDB.setMessageDrivenContext, this=6056676
19:15:45,864 INFO [TextMDB] TextMDB.ctor, this=6598158
19:15:45,903 INFO [TextMDB] TextMDB.ejbCreate, this=6056676
19:15:45,906 INFO [TextMDB] TextMDB.setMessageDrivenContext, this=6598158
19:15:45,906 INFO [TextMDB] TextMDB.ejbCreate, this=6598158
19:15:46,236 INFO [TextMDB] TextMDB.onMessage, this=12855623
19:15:46,238 INFO [TextMDB] TextMDB.sendReply, this=12855623, dest=QUEUE.A
19:15:46,734 INFO [TextMDB] TextMDB.onMessage, this=9399816
19:15:46,736 INFO [TextMDB] TextMDB.onMessage, this=8153998
19:15:46,737 INFO [TextMDB] TextMDB.onMessage, this=6598158
19:15:46,768 INFO [TextMDB] TextMDB.sendReply, this=9399816, dest=QUEUE.A
19:15:46,768 INFO [TextMDB] TextMDB.sendReply, this=6598158, dest=QUEUE.A
19:15:46,774 INFO [TextMDB] TextMDB.sendReply, this=8153998, dest=QUEUE.A
19:15:46,903 INFO [TextMDB] TextMDB.onMessage, this=10118602
19:15:46,904 INFO [TextMDB] TextMDB.sendReply, this=10118602, dest=QUEUE.A
19:15:46,927 INFO [TextMDB] TextMDB.onMessage, this=1792333

Messaging on JBoss

JBoss Release 2 191

19:15:46,928 INFO [TextMDB] TextMDB.sendReply, this=1792333, dest=QUEUE.A
19:15:47,002 INFO [TextMDB] TextMDB.onMessage, this=14251014
19:15:47,007 INFO [TextMDB] TextMDB.sendReply, this=14251014, dest=QUEUE.A
19:15:47,051 INFO [TextMDB] TextMDB.onMessage, this=10775981
19:15:47,051 INFO [TextMDB] TextMDB.sendReply, this=10775981, dest=QUEUE.A
19:15:47,060 INFO [TextMDB] TextMDB.onMessage, this=6056676
19:15:47,061 INFO [TextMDB] TextMDB.sendReply, this=6056676, dest=QUEUE.A
19:15:47,064 INFO [TextMDB] TextMDB.onMessage, this=15679078
19:15:47,065 INFO [TextMDB] TextMDB.sendReply, this=15679078, dest=QUEUE.A

Items of note in this example include:

• The JMS client has no explicit knowledge that it is dealing with an MDB. The client simply uses the standard
JMS APIs to send messages to a queue and receive messages from another queue.

• The MDB declares whether it will listen to a queue or topic in the ejb-jar.xml descriptor. The name of the
queue or topic must be specified using a jboss.xml descriptor. In this example the MDB also sends messages
to a JMS queue. MDBs may act as queue senders or topic publishers within their onMessage callback.

• The messages received by the client include a "processed by: NNN" suffix, where NNN is the hashCode value
of the MDB instance that processed the message. This shows that many MDBs may actively process messages
posted to a destination. Concurrent processing is one of the benefits of MDBs.

5.2. JBoss Messaging Overview

JBossMQ is composed of several services working together to provide JMS API level services to client applica-
tions. The services that make up the JBossMQ JMS implementation are introduced in this section.

5.2.1. Invocation Layer

The Invocation Layer (IL) services are responsible for handling the communication protocols that clients use to
send and receive messages. JBossMQ can support running different types of Invocation Layers concurrently. All
Invocation Layers support bidirectional communication which allows clients to send and receive messages concur-
rently. ILs only handle the transport details of messaging. They delegate messages to the JMS server JMX gateway
service known as the invoker. This is similar to how the detached invokers expose the EJB container via different
transports.

Each IL service binds a JMS connection factory to a specific location in the JNDI tree. Clients choose the protocol
they wish to use by the JNDI location used to obtain the JMS connection factory. JBossMQ currently has several
different invocation layers.

• UIL2 IL: The Unified Invocation Layer version 2(UIL2) is the preferred invocation layer for remote mes-
saging. A multiplexing layer is used to provide bidirectional communication. The multiplexing layer creates
two virtual sockets over one physical socket. This allows communication with clients that cannot have a con-
nection created from the server back to the client due to firewall or other restrictions. Unlike the older UIL in-
vocation layer which used a blocking round-trip message at the socket level, the UIL2 protocol uses true asyn-
chronous send and receive messaging at the transport level, providing for improved throughput and utilization.

• JVM IL: The Java Virtual Machine (JVM) Invocation Layer was developed to cut out the TCP/IP overhead

Messaging on JBoss

JBoss Release 2 192

when the JMS client is running in the same JVM as the server. This IL uses direct method calls for the server to
service the client requests. This increases efficiency since no sockets are created and there is no need for the as-
sociated worker threads. This is the IL that should be used by Message Driven Beans (MDB) or any other com-
ponent that runs in the same virtual machine as the server such as servlets, MBeans, or EJBs.

• HTTP IL: The HTTP Invocation Layer (HTTPIL) allows for accessing the JBossMQ service over the HTTP or
HTTPS protocols. This IL relies on the servlet deployed in the deploy/jms/jbossmq-httpil.sar to handle the
http traffic. This IL is useful for access to JMS through a firewall when the only port allowed requires HTTP.

5.2.2. Security Manager

The JBossMQ SecurityManager is the service that enforces an access control list to guard access to your destina-
tions. This subsystem works closely with the StateManager service.

5.2.3. Destination Manager

The DestinationManager can be thought as being the central service in JBossMQ. It keeps track of all the destina-
tions that have been created on the server. It also keeps track of the other key services such as the MessageCache,
StateManager, and PersistenceManager.

5.2.4. Message Cache

Messages created in the server are passed to the MessageCache for memory management. JVM memory usage goes
up as messages are added to a destination that does not have any receivers. These messages are held in the main
memory until the receiver picks them up. If the MessageCache notices that the JVM memory usage starts passing
the defined limits, the MessageCache starts moving those messages from memory to persistent storage on disk. The
MessageCache uses a least recently used (LRU) algorithm to determine which messages should go to disk.

5.2.5. State Manager

The StateManager (SM) is in charge of keeping track of who is allowed to log into the server and what their dur-
able subscriptions are.

5.2.6. Persistence Manager

The PersistenceManager (PM) is used by a destination to store messages marked as being persistent. JBossMQ
has several different implementations of the persistent manager, but only one can be enabled per server instance.
You should enable the persistence manager that best matches your requirements.

• JDBC2 persistence manager: The JDBC2 persistence manager allows you to store persistent messages to a re-
lational database using JDBC. The performance of this PM is directly related to the performance that can be ob-
tained from the database. This PM has a very low memory overhead compared to the other persistence man-
agers. Furthermore it is also highly integrated with the MessageCache to provide efficient persistence on a sys-
tem that has a very active MessageCache.

• Null Persistence Manager: A wrapper persistence manager that can delegate to a real persistence manager.

Messaging on JBoss

JBoss Release 2 193

Configuration on the destinations decide whether persistence and caching is actually performed. The example
configuration can be found in docs/examples/jms. To use the null persistence manager backed by a real per-
sistence manager, you need to change the ObjectName of the real persistence manager and link the new name to
the null persistence manager.

5.2.7. Destinations

A destination is the object on the JBossMQ server that clients use to send and receive messages. There are two
types of destination objects, Queues and Topics. References to the destinations created by JBossMQ are stored in
JNDI.

5.2.7.1. Queues

Clients that are in the point-to-point paradigm typically use queues. They expect that message sent to a queue will
be receive by only one other client once and only once. If multiple clients are receiving messages from a single
queue, the messages will be load balanced across the receivers. Queue objects, by default, will be stored under the
JNDI queue/ sub context.

5.2.7.2. Topics

Topics are used in the publish-subscribe paradigm. When a client publishes a message to a topic, he expects that a
copy of the message will be delivered to each client that has subscribed to the topic. Topic messages are delivered
in the same manner a television show is delivered. Unless you have the TV on and are watching the show, you will
miss it. Similarly, if the client is not up, running and receiving messages from the topics, it will miss messages pub-
lished to the topic. To get around this problem of missing messages, clients can start a durable subscription. This is
like having a VCR record a show you cannot watch at its scheduled time so that you can see what you missed when
you turn your TV back on.

5.3. JBoss Messaging Configuration and MBeans

This section defines the MBean services that correspond to the components introduced in the previous section
along with their MBean attributes. The configuration and service files that make up the JBossMQ system include:

• deploy/hsqldb-jdbc-state-service.xml: This configures the JDBC state service for storing state in the embed-
ded Hypersonic database.

• deploy/jms/hsqldb-jdbc2-service.xml: This service descriptor configures the DestinationManager, Mes-

sageCache, and jdbc2 PersistenceManager for the embedded Hypersonic database.

• deploy/jms/jbossmq-destinations-service.xml: This service describes defines default JMS queue and topic
destination configurations used by the testsuite unit tests. You can add/remove destinations to this file, or de-
ploy another *-service.xml descriptor with the destination configurations.

• jbossmq-httpil.sar: This SAR file configures the HTTP invocation layer.

• deploy/jms/jbossmq-service.xml: This service descriptor configures the core JBossMQ MBeans like the In-

voker, SecurityManager, DynamicStateManager, and core interceptor stack. It also defines the MDB default

Messaging on JBoss

JBoss Release 2 194

dead letter queue DLQ.

• deploy/jms/jms-ds.xml: This is a JCA connection factory and JMS provider MDB integration services config-
uration which sets JBossMQ as the JMS provider.

• deploy/jms/jms-ra.rar: This is a JCA resource adaptor for JMS providers.

• deploy/jms/jvm-il-service.xml: This service descriptor configures the JVMServerILService which provides
the JVM IL transport.

• deploy/jms/rmi-il-service.xml: This service descriptor configures the RMIServerILService which provides the
RMI IL. The queue and topic connection factory for this IL is bound under the name RMIConnectionFactory.

• deploy/jms/uil2-service.xml: This service descriptor configures the UILServerILService which provides the
UIL2 transport. The queue and topic connection factory for this IL is bound under the name
UIL2ConnectionFactory as well as UILConnectionFactory to replace the deprecated version 1 UIL service.

We will discuss the associated MBeans in the following subsections.

5.3.1. org.jboss.mq.il.jvm.JVMServerILService

The org.jboss.mq.il.jvm.JVMServerILService MBean is used to configure the JVM IL. The configurable attrib-
utes are as follows:

• Invoker: This attribute specifies JMX ObjectName of the JMS entry point service that is used to pass incoming
requests to the JMS server. This is not something you would typically change from the
jboss.mq:service=Invoker setting unless you change the entry point service.

• ConnectionFactoryJNDIRef: The JNDI location that this IL will bind a ConnectionFactory setup to use this
IL.

• XAConnectionFactoryJNDIRef: The JNDI location that this IL will bind a XAConnectionFactory setup to
use this IL.

• PingPeriod: How often, in milliseconds, the client should send a ping message to the server to validate that the
connection is still valid. If this is set to zero, then no ping message will be sent. Since it is impossible for JVM
IL connection to go bad, it is recommended that you keep this set to 0.

5.3.2. org.jboss.mq.il.uil2.UILServerILService

The org.jboss.mq.il.uil2.UILServerILService is used to configure the UIL2 IL. The configurable attributes
are as follows:

• Invoker: This attribute specifies JMX ObjectName of the JMS entry point service that is used to pass incoming
requests to the JMS server. This is not something you would typically change from the
jboss.mq:service=Invoker setting unless you change the entry point service.

• ConnectionFactoryJNDIRef: The JNDI location that this IL will bind a ConnectionFactory setup to use this
IL.

Messaging on JBoss

JBoss Release 2 195

• XAConnectionFactoryJNDIRef: The JNDI location that this IL will bind a XAConnectionFactory setup to
use this IL.

• PingPeriod: How often, in milliseconds, the client should send a ping message to the server to validate that the
connection is still valid. If this is set to zero, then no ping message will be sent.

• ReadTimeout: The period in milliseconds is passed onto as the SoTimeout value of the UIL2 socket. This al-
lows detection of dead sockets that are not responsive and are not capable of receiving ping messages. Note that
this setting should be longer in duration than the PingPeriod setting.

• BufferSize: The size in bytes used as the buffer over the basic socket streams. This corresponds to the
java.io.BufferedOutputStream buffer size.

• ChunkSize: The size in bytes between stream listener notifications. The UIL2 layer uses the
org.jboss.util.stream.NotifyingBufferedOutputStream and NotifyingBufferedInputStream implement-
ations that support the notion of a heartbeat that is triggered based on data read/written to the stream. Whenever
ChunkSize bytes are read/written to a stream. This allows serves as a ping or keepalive notification when large
reads or writes require a duration greater than the PingPeriod.

• ServerBindPort: The protocol listening port for this IL. If not specified default is 0, which means that a ran-
dom port will be chosen.

• BindAddress: The specific address this IL listens on. This can be used on a multi-homed host for a
java.net.ServerSocket that will only accept connection requests on one of its addresses.

• EnableTcpNoDelay: TcpNoDelay causes TCP/IP packets to be sent as soon as the request is flushed. This may
improve request response times. Otherwise request packets may be buffered by the operating system to create
larger IP packets.

• ServerSocketFactory: The javax.net.ServerSocketFactory implementation class name to use to create the
service java.net.ServerSocket. If not specified the default factory will be obtained from
javax.net.ServerSocketFactory.getDefault().

• ClientAddress: The address passed to the client as the address that should be used to connect to the server.

• ClientSocketFactory: The javax.net.SocketFactory implementation class name to use on the client. If not
specified the default factory will be obtained from javax.net.SocketFactory.getDefault().

• SecurityDomain: Specify the security domain name to use with JBoss SSL aware socket factories. This is the
JNDI name of the security manager implementation as described for the security-domain element of the
jboss.xml and jboss-web.xml descriptors in Section 7.3.1.

5.3.2.1. Configuring UIL2 for SSL

The UIL2 service support the use of SSL through custom socket factories that integrate JSSE using the security do-
main associated with the IL service. An example UIL2 service descriptor fragment that illustrates the use of the
custom JBoss SSL socket factories is shown in Example 5.10.

Example 5.10. An example UIL2 config fragment for using SSL

Messaging on JBoss

JBoss Release 2 196

<mbean code="org.jboss.mq.il.uil2.UILServerILService"
name="jboss.mq:service=InvocationLayer,type=HTTPSUIL2">
<depends optional-attribute-name="Invoker">jboss.mq:service=Invoker</depends>
<attribute name="ConnectionFactoryJNDIRef">SSLConnectionFactory</attribute>
<attribute name="XAConnectionFactoryJNDIRef">SSLXAConnectionFactory</attribute>

<!-- ... -->

<!-- SSL Socket Factories -->
<attribute name="ClientSocketFactory">

org.jboss.security.ssl.ClientSocketFactory
</attribute>
<attribute name="ServerSocketFactory">

org.jboss.security.ssl.DomainServerSocketFactory
</attribute>
<!-- Security domain - see below -->
<attribute name="SecurityDomain">java:/jaas/SSL</attribute>

</mbean>

<!-- Configures the keystore on the "SSL" security domain
This mbean is better placed in conf/jboss-service.xml where it
can be used by other services, but it will work from anywhere.
Use keytool from the sdk to create the keystore. -->

<mbean code="org.jboss.security.plugins.JaasSecurityDomain"
name="jboss.security:service=JaasSecurityDomain,domain=SSL">

<!-- This must correlate with the java:/jaas/SSL above -->
<constructor>

<arg type="java.lang.String" value="SSL"/>
</constructor>
<!-- The location of the keystore resource: loads from the

classpath and the server conf dir is a good default -->
<attribute name="KeyStoreURL">resource:uil2.keystore</attribute>
<attribute name="KeyStorePass">changeme</attribute>

</mbean>

5.3.2.2. JMS client properties for the UIL2 transport

There are several system properties that a JMS client using the UIL2 transport can set to control the client connec-
tion back to the server

• org.jboss.mq.il.uil2.useServerHost: This system property allows a client to connect to the server InetAd-

dress.getHostName rather than theInetAddress.getHostAddress value. This will only make a difference if
name resolution differs between the server and client environments.

• org.jboss.mq.il.uil2.localAddr: This system property allows a client to define the local interface to which its
sockets should be bound.

• org.jboss.mq.il.uil2.localPort: This system property allows a client to define the local port to which its sockets
should be bound

• org.jboss.mq.il.uil2.serverAddr: This system property allows a client to override the address to which it at-
tempts to connect to. This is useful for networks where NAT is occcurring between the client and JMS server.

• org.jboss.mq.il.uil2.serverPort: This system property allows a client to override the port to which it attempts
to connect. This is useful for networks where port forwarding is occurring between the client and jms server.

Messaging on JBoss

JBoss Release 2 197

• org.jboss.mq.il.uil2.retryCount: This system property controls the number of attempts to retry connecting to
the JMS server. Retries are only made for java.net.ConnectException failures. A value <= 0 means no retry
attempts will be made.

• org.jboss.mq.il.uil2.retryDelay: This system property controls the delay in milliseconds between retries due to
ConnectException failures.

5.3.3. org.jboss.mq.il.http.HTTPServerILService

The org.jboss.mq.il.http.HTTPServerILService is used to manage the HTTP/S IL. This IL allows for the use
of the JMS service over HTTP or HTTPS connections. The relies on the servlet deployed in the deploy/

jms/jbossmq-httpil.sar to handle the HTTP traffic. The configurable attributes are as follows:

• TimeOut: The default timeout in seconds that the client HTTP requests will wait for messages. This can be
overridden on the client by setting the system property org.jboss.mq.il.http.timeout to the number of
seconds.

• RestInterval: The number of seconds the client will sleep after each request. The default is 0, but you can set
this value in conjunction with the TimeOut value to implement a pure timed based polling mechanism. For ex-
ample, you could simply do a short lived request by setting the TimeOut value to 0 and then setting the
RestInterval to 60. This would cause the client to send a single non-blocking request to the server, return any
messages if available, then sleep for 60 seconds, before issuing another request. Like the TimeOut value, this
can be explicitly overridden on a given client by specifying the org.jboss.mq.il.http.restinterval with the
number of seconds you wish to wait between requests.

• URL: Set the servlet URL. This value takes precedence over any individual values set (i.e. the URLPrefix,
URLSuffix, URLPort, etc.) It my be a actual URL or a property name which will be used on the client side to re-
solve the proper URL by calling System.getProperty(propertyname). If not specified the URL will be
formed from URLPrefix + URLHostName + ":" + URLPort + "/" + URLSuffix.

• URLPrefix: The prefix portion of the servlet URL.

• URLHostName: The hostname portion of the servlet URL.

• URLPort: The port portion of the URL.

• URLSuffix: The trailing path portion of the URL.

• UseHostName: A flag that if set to true the default setting for the URLHostName attribute will be taken from In-

etAddress.getLocalHost().getHostName(). If false the default setting for the URLHostName attribute will be
taken from InetAddress.getLocalHost().getHostAddress().

5.3.4. org.jboss.mq.server.jmx.Invoker

The org.jboss.mq.server.jmx.Invoker is used to pass IL requests down to the destination manager service
through an interceptor stack. The configurable attributes are as follows:

• NextInterceptor: The JMX ObjectName of the next request interceptor. This attribute is used by all the inter-

Messaging on JBoss

JBoss Release 2 198

ceptors to create the interceptor stack. The last interceptor in the chain should be the DestinationManager.

5.3.5. org.jboss.mq.server.jmx.InterceptorLoader

The org.jboss.mq.server.jmx.InterceptorLoader is used to load a generic interceptor and make it part of the
interceptor stack. This MBean is typically used to load custom interceptors like
org.jboss.mq.server.TracingInterceptor, which is can be used to efficiently log all client requests via trace
level log messages. The configurable attributes are as follows:

• NextInterceptor: The JMX ObjectName of the next request interceptor. This attribute is used by all the inter-
ceptors to create the interceptor stack. The last interceptor in the chain should be the DestinationManager. This
attribute should be setup via a <depends optional-attribute-name="NextInterceptor"> XML tag.

• InterceptorClass: The class name of the interceptor that will be loaded and made part of the interceptor stack.
This class specified here must extend the org.jboss.mq.server.JMSServerInterceptor class.

5.3.6. org.jboss.mq.sm.jdbc.JDBCStateManager

The JDBCStateManager MBean is used as the default state manager assigned to the DestinationManager service. It
stores user and durable subscriber information in the database. The configurable attributes are as follows:

• ConnectionManager: This is the ObjectName of the datasource that the JDBC state manager will write to. For
Hypersonic, it is jboss.jca:service=DataSourceBinding,name=DefaultDS.

• SqlProperties: The SqlProperties define the SQL statements to be used to persist JMS state data. If the un-
derlying database is changed, the SQL statements used may need to change.

5.3.7. org.jboss.mq.security.SecurityManager

If the org.jboss.mq.security.SecurityManager is part of the interceptor stack, then it will enforce the access
control lists assigned to the destinations. The SecurityManager uses JAAS, and as such requires that at application
policy be setup for in the JBoss login-config.xml file. The default configuration is shown below.

<application-policy name="jbossmq">
<authentication>

<login-module code="org.jboss.security.auth.spi.DatabaseServerLoginModule"
flag="required">

<module-option name="unauthenticatedIdentity">guest</module-option>
<module-option name="dsJndiName">java:/DefaultDS</module-option>
<module-option name="principalsQuery">SELECT PASSWD FROM JMS_USERS

WHERE USERID=?</module-option>
<module-option name="rolesQuery">SELECT ROLEID, 'Roles' FROM

JMS_ROLES WHERE USERID=?</module-option>
</login-module>

</authentication>
</application-policy>

The configurable attributes of the SecurityManager are as follows:

Messaging on JBoss

JBoss Release 2 199

• NextInterceptor: The JMX ObjectName of the next request interceptor. This attribute is used by all the inter-
ceptors to create the interceptor stack. The last interceptor in the chain should be the DestinationManager.

• SecurityDomain: Specify the security domain name to use for authentication and role based authorization. This
is the JNDI name of the JAAS domain to be used to perform authentication and authorization against.

• DefaultSecurityConfig: This element specifies the default security configuration settings for destinations. This
applies to temporary queues and topics as well as queues and topics that do not specifically specify a security
configuration. The DefaultSecurityConfig should declare some number of role elements which represent
each role that is allowed access to a destination. Each role should have the following attributes:

• name: The name attribute defines the name of the role.

• create: The create attribute is a true/false value that indicates whether the role has the ability to create dur-
able subscriptions on the topic.

• read: The read attribute is a true/false value that indicates whether the role can receive messages from the
destination.

• write: The write attribute is a true/false value that indicates whether the role can send messages to the des-
tination.

5.3.8. org.jboss.mq.server.jmx.DestinationManager

The org.jboss.mq.server.jmx.DestinationManager must be the last interceptor in the interceptor stack. The
configurable attributes are as follows:

• PersistenceManager: The JMX ObjectName of the persistence manager service the server should use.

• StateManager: The JMX ObjectName of the state manager service the server should use.

• MessageCache: The JMX ObjectName of the message cache service the server should use.

Additional read-only attributes and operations that support monitoring include:

• ClientCount: The number of clients connected to the server.

• Clients: A java.util.Map<org.jboss.mq.ConnectionToken, org.jboss.mq.server.ClientConsumer> in-
stances for the clients connected to the server.

• MessageCounter: An array of org.jboss.mq.server.MessageCounter instances that provide statistics for a JMS
destination.

• listMessageCounter(): This operation generates an HTML table that contains:

• Type: Either Queue or Topic indicating the destination type.

• Name: The name of the destination.

Messaging on JBoss

JBoss Release 2 200

• Subscription: The subscription ID for a topic.

• Durable: A boolean indicating if the topic subscription is durable.

• Count: The number of message delivered to the destination.

• CountDelta: The change in message count since the previous access of count.

• Depth: The number of messages in the destination.

• DepthDelta: The change in the number of messages in the destination since the previous access of depth.

• Last Add: The date/time string in DateFormat.SHORT/DateFormat.MEDIUM format of the last time a mes-
sage was added to the destination.

• resetMessageCounter(): This zeros all destination counts and last added times.

Queues and topics can be created and destroyed at runtime through the DestinationManager MBean. The Destin-

ationManager provides createQueue and createTopic operations for this. Both methods have a one argument ver-
sion which takes the destination name and a two argument version which takes the destination and the JNDI name
of the destination. Queues and topics can be removed using the destroyQueue and destroyTopic operations, both
of which take a destination name is input.

5.3.9. org.jboss.mq.server.MessageCache

The server determines when to move messages to secondary storage by using the
org.jboss.mq.server.MessageCache MBean. The configurable attributes are as follows:

• CacheStore: The JMX ObjectName of the service that will act as the cache store. The cache store is used by the
MessageCache to move messages to persistent storage. The value you set here typically depends on the type of
persistence manager you are using.

• HighMemoryMark: The amount of JVM heap memory in megabytes that must be reached before the Mes-

sageCache starts to move messages to secondary storage.

• MaxMemoryMark: The maximum amount of JVM heap memory in megabytes that the MessageCache con-
siders to be the max memory mark. As memory usage approaches the max memory mark, the MessageCache

will move messages to persistent storage so that the number of messages kept in memory approaches zero.

• MakeSoftReferences: This controls whether or not the message cache will keep soft references to messages
that need to be removed. The default is true.

• MinimumHard: The minimum number of the in memory cache. JBoss won't try to go below this number of
messages in the cache. The default value is 1.

• MaximumHard: The upper bound on the number of hard references to messages in the cache. JBoss will
soften messages to reduce the number of hard references to this level. A value of 0 means that there is no size
based upper bound. The default is 0.

• SoftenWaitMillis: The maximum wait time before checking whether messages need softening. The default is

Messaging on JBoss

JBoss Release 2 201

1000 milliseconds (1 second).

• SoftenNoMoreOftenThanMillis: The minimum amount of time between checks to soften messages. A value
of 0 means that this check should be skipped. The default is 0 milliseconds.

• SoftenAtLeastEveryMillis: The maximum amount of time between checks to soften messages. A value of 0
means that this check should be skipped. The default is 0.

Additional read-only cache attribute that provide statistics include:

• CacheHits: The number of times a hard referenced message was accessed

• CacheMisses: The number of times a softened message was accessed.

• HardRefCacheSize: The number of messages in the cache that are not softened.

• SoftRefCacheSize: The number of messages that are currently softened.

• SoftenedSize: The total number of messages softened since the last boot.

• TotalCacheSize: The total number of messages that are being managed by the cache.

5.3.10. org.jboss.mq.pm.jdbc2.PersistenceManager

The org.jboss.mq.pm.jdbc.PersistenceManager should be used as the persistence manager assigned to the Des-

tinationManager if you wish to store messages in a database. This PM has been tested against the HypersonSQL,
MS SQL, Oracle, MySQL and Postgres databases. The configurable attributes are as follows:

• MessageCache: The JMX ObjectName of the MessageCache that has been assigned to the
DestinationManager..

• ConnectionManager: The JMX ObjectName of the JCA data source that will be used to obtain JDBC connec-
tions.

• ConnectionRetryAttempts: An integer count used to allow the PM to retry attempts at getting a connection to
the JDBC store. There is a 1500 millisecond delay between each connection failed connection attempt and the
next attempt. This must be greater than or equal to 1 and defaults to 5.

• SqlProperties: A property list is used to define the SQL Queries and other JDBC2 Persistence Manager op-
tions. You will need to adjust these properties if you which to run against another database other than Hyper-
sonic. Example 5.11 shows default setting for this attribute for the Hypersonic database.

Example 5.11. Default JDBC2 PeristenceManager SqlProperties

<attribute name="SqlProperties">
CREATE_TABLES_ON_STARTUP = TRUE
CREATE_USER_TABLE = CREATE TABLE JMS_USERS \

(USERID VARCHAR(32) NOT NULL, PASSWD VARCHAR(32) NOT NULL, \
CLIENTID VARCHAR(128), PRIMARY KEY(USERID))

CREATE_ROLE_TABLE = CREATE TABLE JMS_ROLES \

Messaging on JBoss

JBoss Release 2 202

(ROLEID VARCHAR(32) NOT NULL, USERID VARCHAR(32) NOT NULL, \
PRIMARY KEY(USERID, ROLEID))

CREATE_SUBSCRIPTION_TABLE = CREATE TABLE JMS_SUBSCRIPTIONS \
(CLIENTID VARCHAR(128) NOT NULL, \
SUBNAME VARCHAR(128) NOT NULL, TOPIC VARCHAR(255) NOT NULL, \
SELECTOR VARCHAR(255), PRIMARY KEY(CLIENTID, SUBNAME))

GET_SUBSCRIPTION = SELECT TOPIC, SELECTOR FROM JMS_SUBSCRIPTIONS \
WHERE CLIENTID=? AND SUBNAME=?

LOCK_SUBSCRIPTION = SELECT TOPIC, SELECTOR FROM JMS_SUBSCRIPTIONS \
WHERE CLIENTID=? AND SUBNAME=?

GET_SUBSCRIPTIONS_FOR_TOPIC =
SELECT CLIENTID, SUBNAME, SELECTOR FROM JMS_SUBSCRIPTIONS WHERE TOPIC=?

INSERT_SUBSCRIPTION = \
INSERT INTO JMS_SUBSCRIPTIONS (CLIENTID, SUBNAME, TOPIC, SELECTOR) VALUES(?,?,?,?)

UPDATE_SUBSCRIPTION = \
UPDATE JMS_SUBSCRIPTIONS SET TOPIC=?, SELECTOR=? WHERE CLIENTID=? AND SUBNAME=?

REMOVE_SUBSCRIPTION = DELETE FROM JMS_SUBSCRIPTIONS WHERE CLIENTID=? AND SUBNAME=?
GET_USER_BY_CLIENTID = SELECT USERID, PASSWD, CLIENTID FROM JMS_USERS WHERE CLIENTID=?
GET_USER = SELECT PASSWD, CLIENTID FROM JMS_USERS WHERE USERID=?
POPULATE.TABLES.01 = INSERT INTO JMS_USERS (USERID, PASSWD) \

VALUES ('guest', 'guest')
POPULATE.TABLES.02 = INSERT INTO JMS_USERS (USERID, PASSWD) \

VALUES ('j2ee', 'j2ee')
POPULATE.TABLES.03 = INSERT INTO JMS_USERS (USERID, PASSWD, CLIENTID) \

VALUES ('john', 'needle', 'DurableSubscriberExample')
POPULATE.TABLES.04 = INSERT INTO JMS_USERS (USERID, PASSWD) \

VALUES ('nobody', 'nobody')
POPULATE.TABLES.05 = INSERT INTO JMS_USERS (USERID, PASSWD) \

VALUES ('dynsub', 'dynsub')
POPULATE.TABLES.06 = INSERT INTO JMS_ROLES (ROLEID, USERID) \

VALUES ('guest','guest')
POPULATE.TABLES.07 = INSERT INTO JMS_ROLES (ROLEID, USERID) \

VALUES ('j2ee','guest')
POPULATE.TABLES.08 = INSERT INTO JMS_ROLES (ROLEID, USERID) \

VALUES ('john','guest')
POPULATE.TABLES.09 = INSERT INTO JMS_ROLES (ROLEID, USERID) \

VALUES ('subscriber','john')
POPULATE.TABLES.10 = INSERT INTO JMS_ROLES (ROLEID, USERID) \

VALUES ('publisher','john')
POPULATE.TABLES.11 = INSERT INTO JMS_ROLES (ROLEID, USERID) \

VALUES ('publisher','dynsub')
POPULATE.TABLES.12 = INSERT INTO JMS_ROLES (ROLEID, USERID) \

VALUES ('durpublisher','john')
POPULATE.TABLES.13 = INSERT INTO JMS_ROLES (ROLEID, USERID) \

VALUES ('durpublisher','dynsub')
POPULATE.TABLES.14 = INSERT INTO JMS_ROLES (ROLEID, USERID) \

VALUES ('noacc','nobody')
</attribute>

Example 5.12 shows an alternate setting for Oracle.

Example 5.12. A sample JDBC2 PeristenceManager SqlProperties for Oracle

<attribute name="SqlProperties">
BLOB_TYPE=BINARYSTREAM_BLOB
INSERT_TX = INSERT INTO JMS_TRANSACTIONS (TXID) values(?)
INSERT_MESSAGE = \

INSERT INTO JMS_MESSAGES (MESSAGEID, DESTINATION, MESSAGEBLOB, TXID, TXOP) \
VALUES(?,?,?,?,?)

SELECT_ALL_UNCOMMITED_TXS = SELECT TXID FROM JMS_TRANSACTIONS
SELECT_MAX_TX = SELECT MAX(TXID) FROM JMS_MESSAGES
SELECT_MESSAGES_IN_DEST = \

Messaging on JBoss

JBoss Release 2 203

SELECT MESSAGEID, MESSAGEBLOB FROM JMS_MESSAGES WHERE DESTINATION=?
SELECT_MESSAGE = \

SELECT MESSAGEID, MESSAGEBLOB FROM JMS_MESSAGES WHERE MESSAGEID=? AND DESTINATION=?
MARK_MESSAGE = \

UPDATE JMS_MESSAGES SET TXID=?, TXOP=? WHERE MESSAGEID=? AND DESTINATION=?
UPDATE_MESSAGE = \

UPDATE JMS_MESSAGES SET MESSAGEBLOB=? WHERE MESSAGEID=? AND DESTINATION=?
UPDATE_MARKED_MESSAGES = UPDATE JMS_MESSAGES SET TXID=?, TXOP=? WHERE TXOP=?
UPDATE_MARKED_MESSAGES_WITH_TX = \

UPDATE JMS_MESSAGES SET TXID=?, TXOP=? WHERE TXOP=? AND TXID=?
DELETE_MARKED_MESSAGES_WITH_TX = \

DELETE FROM JMS_MESSAGES MESS WHERE TXOP=:1 AND EXISTS \
(SELECT TXID FROM JMS_TRANSACTIONS TX WHERE TX.TXID = MESS.TXID)

DELETE_TX = DELETE FROM JMS_TRANSACTIONS WHERE TXID = ?
DELETE_MARKED_MESSAGES = DELETE FROM JMS_MESSAGES WHERE TXID=? AND TXOP=?
DELETE_TEMPORARY_MESSAGES = DELETE FROM JMS_MESSAGES WHERE TXOP='T'
DELETE_MESSAGE = DELETE FROM JMS_MESSAGES WHERE MESSAGEID=? AND DESTINATION=?
CREATE_MESSAGE_TABLE = CREATE TABLE JMS_MESSAGES (MESSAGEID INTEGER NOT NULL, \

DESTINATION VARCHAR(255) NOT NULL, TXID INTEGER, TXOP CHAR(1), \
MESSAGEBLOB BLOB, PRIMARY KEY (MESSAGEID, DESTINATION))

CREATE_IDX_MESSAGE_TXOP_TXID = \
CREATE INDEX JMS_MESSAGES_TXOP_TXID ON JMS_MESSAGES (TXOP, TXID)

CREATE_IDX_MESSAGE_DESTINATION = \
CREATE INDEX JMS_MESSAGES_DESTINATION ON JMS_MESSAGES (DESTINATION)

CREATE_TX_TABLE = CREATE TABLE JMS_TRANSACTIONS (TXID INTEGER, PRIMARY KEY (TXID))
CREATE_TABLES_ON_STARTUP = TRUE

</attribute>

Additional examples can be found in the docs/examples/jms directory of the distribution.

5.3.11. Destination MBeans

This section describes the destination MBeans used in the jbossmq-destinations-service.xml and jbossmq-

service.xml descriptors.

5.3.11.1. org.jboss.mq.server.jmx.Queue

The Queue is used to define a queue destination in JBoss. The following shows the configuration of one of the de-
fault JBoss queues.

<mbean code="org.jboss.mq.server.jmx.Queue"
name="jboss.mq.destination:service=Queue,name=testQueue">

<depends optional-attribute-name="DestinationManager">
jboss.mq:service=DestinationManager

</depends>
<depends optional-attribute-name="SecurityManager">

jboss.mq:service=SecurityManager
</depends>
<attribute name="MessageCounterHistoryDayLimit">-1</attribute>
<attribute name="SecurityConf">

<security>
<role name="guest" read="true" write="true"/>
<role name="publisher" read="true" write="true" create="false"/>
<role name="noacc" read="false" write="false" create="false"/>

</security>
</attribute>

</mbean>

Messaging on JBoss

JBoss Release 2 204

The name attribute of the JMX object name of this MBean is used to determine the destination name. For example.
In the case of the queue we just looked at, the name of the queue is testQueue. The configurable attributes are as
follows:

• DestinationManager: The JMX ObjectName of the destination manager service for the server. This attribute
should be set via a <depends optional-attribute-name="DestinationManager"> XML tag.

• SecurityManager: The JMX ObjectName of the security manager service that is being used to validate client
requests.

• SecurityConf: This element specifies a XML fragment which describes the access control list to be used by the
SecurityManager to authorize client operations against the destination. The content model is the same as for
the SecurityManager SecurityConf attribute.

• JNDIName: The location in JNDI to which the queue object will be bound. If this is not set it will be bound
under the queue context using the name of the queue. For the testQueue shown above, the JNDI name would
be queue/testQueue.

• MaxDepth: The MaxDepth is an upper limit to the backlog of messages that can exist for a destination. If ex-
ceeded, attempts to add new messages will result in a org.jboss.mq.DestinationFullException. The
MaxDepth can still be exceeded in a number of situations, e.g. when a message is placed back into the queue.
Also transactions performing read committed processing, look at the current size of queue, ignoring any mes-
sages that may be added as a result of the current transaction or other transactions. This is because we don't
want the transaction to fail during the commit phase when the message is physically added to the queue.

• MessageCounterHistoryDayLimit: Sets the destination message counter history day limit with a value less
than 0 indicating unlimited history, a 0 value disabling history and a value greater than 0 giving the history days
count.

Additional read-only attributes that provide statistics information include:

• MessageCounter: An array of org.jboss.mq.server.MessageCounter instances that provide statistics for this
destination.

• QueueDepth: The current backlog of waiting messages.

• ReceiversCount: The number of receivers currently associated with the queue.

• ScheduledMessageCount: The number of messages waiting in the queue for their scheduled delivery time to
arrive.

The following are some of the operations available on queues.

• listMessageCounter(): This operation generates an HTML table that contains the same data we as the list-

MessageCounter operation on the DestinationManager, but only for this one queue.

• resetMessageCounter(): This zeros all destination counts and last added times.

• listMessageCounterHistory(): This operation display an HTML table showing the hourly message counts per
hour for each day in the history.

Messaging on JBoss

JBoss Release 2 205

• resetMessageCounterHistory(): This operation resets the day history message counts.

• removeAllMessages(): This method removes all the messages on the queue.

5.3.11.2. org.jboss.mq.server.jmx.Topic

The org.jboss.mq.server.jmx.Topic is used to define a topic destination in JBoss. The following shows the con-
figuration of one of the default JBoss topics.

<mbean code="org.jboss.mq.server.jmx.Topic"
name="jboss.mq.destination:service=Topic,name=testTopic">

<depends optional-attribute-name="DestinationManager">
jboss.mq:service=DestinationManager

</depends>
<depends optional-attribute-name="SecurityManager">

jboss.mq:service=SecurityManager
</depends>
<attribute name="SecurityConf">

<security>
<role name="guest" read="true" write="true" />
<role name="publisher" read="true" write="true" create="false" />
<role name="durpublisher" read="true" write="true" create="true" />

</security>
</attribute>

</mbean>

The name attribute of the JMX object name of this MBean is used to determine the destination name. For example,
in the case of the topic we just looked at, the name of the topic is testTopic. The configurable attributes are as fol-
lows:

• DestinationManager: The JMX object name of the destination manager configured for the server.

• SecurityManager: The JMX object name of the security manager that is being used to validate client requests.

• SecurityConf: This element specifies a XML fragment which describes the access control list to be used by the
SecurityManager to authorize client operations against the destination. The content model is the same as that
for the SecurityManager SecurityConf attribute.

• JNDIName: The location in JNDI to which the topic object will be bound. If this is not set it will be bound un-
der the topic context using the name of the queue. For the testTopic shown above, the JNDI name would be
topic/testTopic.

• MaxDepth: The MaxDepth is an upper limit to the backlog of messages that can exist for a destination, and if
exceeded, attempts to add new messages will result in a org.jboss.mq.DestinationFullException. The
MaxDepth can still be exceeded in a number of situations, e.g. when a message is knacked back into the queue.
Also transactions performing read committed processing, look at the current size of queue, ignoring any mes-
sages that may be added as a result of the current transaction or other transactions. This is because we don't
want the transaction to fail during the commit phase when the message is physically added to the topic.

• MessageCounterHistoryDayLimit: Sets the destination message counter history day limit with a value < 0 in-
dicating unlimited history, a 0 value disabling history, and a value > 0 giving the history days count.

Additional read-only attributes that provide statistics information include:

Messaging on JBoss

JBoss Release 2 206

• AllMessageCount: The message count across all queue types associated with the topic.

• AllSubscriptionsCount: The count of durable and non-durable subscriptions.

• DurableMessageCount: The count of messages in durable subscription queues.

• d DurableSubscriptionsCount: The count of durable subscribers.

• MessageCounter: An array of org.jboss.mq.server.MessageCounter instances that provide statistics for this
destination.

• NonDurableMessageCount: The count on messages in non-durable subscription queues.

• NonDurableSubscriptionsCount: The count of non-durable subscribers.

The following are some of the operations available on topics.

• listMessageCounter(): This operation generates an HTML table that contains the same data we as the list-

MessageCounter operation on the DestinationManager, but only for this one topic. Message counters are only
maintained for each active subscription, durable or otherwise.

• resetMessageCounter(): This zeros all destination counts and last added times.

• listMessageCounterHistory(): This operation display an HTML table showing the hourly message counts per
hour for each day of history.

• resetMessageCounterHistory(): This operation resets the day history message counts.

5.4. Specifying the MDB JMS Provider

Up to this point we have looked at the standard JMS client/server architecture. The JMS specification defines an
advanced set of interfaces that allow for concurrent processing of a destination's messages, and collectively this
functionality is referred to as application server facilities (ASF). Two of the interfaces that support concurrent mes-
sage processing, javax.jms.ServerSessionPool and javax.jms.ServerSession, must be provided by the applic-
ation server in which the processing will occur. Thus, the set of components that make up the JBossMQ ASF in-
volves both JBossMQ components as well as JBoss server components. The JBoss server MDB container utilizes
the JMS service's ASF to concurrently process messages sent to MDBs.

The responsibilities of the ASF domains are well defined by the JMS specification and so we won't go into a dis-
cussion of how the ASF components are implemented. Rather, we want to discuss how ASF components used by
the JBoss MDB layer are integrated using MBeans that allow either the application server interfaces, or the JMS
provider interfaces to be replaced with alternate implementations.

Let's start with the org.jboss.jms.jndi.JMSProviderLoader MBean. This MBean is responsible for loading an
instance of the org.jboss.jms.jndi.JMSProviderAdaptor interface into the JBoss server and binding it into
JNDI. The JMSProviderAdaptor interface is an abstraction that defines how to get the root JNDI context for the
JMS provider, and an interface for getting and setting the JNDI names for the Context.PROVIDER_URL for the root
InitialContext, and the QueueConnectionFactory and TopicConnectionFactory locations in the root context.
This is all that is really necessary to bootstrap use of a JMS provider. By abstracting this information into an inter-

Messaging on JBoss

JBoss Release 2 207

face, alternate JMS ASF provider implementations can be used with the JBoss MDB container. The
org.jboss.jms.jndi.JBossMQProvider is the default implementation of JMSProviderAdaptor interface, and
provides the adaptor for the JBossMQ JMS provider. To replace the JBossMQ provider with an alternate JMS ASF
implementation, simply create an implementation of the JMSProviderAdaptor interface and configure the JMSPro-
viderLoader with the class name of the implementation. We'll see an example of this in the configuration section.

In addition to being able to replace the JMS provider used for MDBs, you can also replace the
javax.jms.ServerSessionPool interface implementation. This is possible by configuring the class name of the
org.jboss.jms.asf.ServerSessionPoolFactory implementation using the
org.jboss.jms.asf.ServerSessionPoolLoader MBean PoolFactoryClass attribute. The default ServerSes-

sionPoolFactory factory implementation is the JBoss org.jboss.jms.asf.StdServerSessionPoolFactory class.

5.4.1. org.jboss.jms.jndi.JMSProviderLoader MBean

The JMSProviderLoader MBean service creates a JMS provider adaptor and binds it into JNDI. A JMS provider
adaptor is a class that implements the org.jboss.jms.jndi.JMSProviderAdapter interface. It is used by the mes-
sage driven bean container to access a JMS service provider in a provider independent manner. The configurable
attributes of the JMSProviderLoader service are:

• ProviderName: A unique name for the JMS provider. This will be used to bind the JMSProviderAdapter in-
stance into JNDI under java:/<ProviderName> unless overridden by the AdapterJNDIName attribute.

• ProviderAdapterClass: The fully qualified class name of the org.jboss.jms.jndi.JMSProviderAdapter interface
to create an instance of.

• FactoryRef: The JNDI name under which the provider javax.jms.ConnectionFactory will be bound.

• QueueFactoryRef: The JNDI name under which the provider javax.jms.QueueConnectionFactory will be
bound.

• TopicFactoryRef: The JNDI name under which the javax.jms.TopicConnectionFactory will be bound.

• Properties: The JNDI properties of the initial context used to look up the factories.

Example 5.13. A JMSProviderLoader for accessing a remote JBossMQ server

<mbean code="org.jboss.jms.jndi.JMSProviderLoader"
name="jboss.mq:service=JMSProviderLoader,name=RemoteJBossMQProvider">

<attribute name="ProviderName">RemoteJMSProvider</attribute>
<attribute name="ProviderUrl"></attribute>
<attribute name="ProviderAdapterClass">

org.jboss.jms.jndi.JBossMQProvider
</attribute>
<attribute name="FactoryRef">XAConnectionFactory</attribute>
<attribute name="QueueFactoryRef">XAConnectionFactory</attribute>
<attribute name="TopicFactoryRef">XAConnectionFactory</attribute>
<attribute name="Properties>

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces
java.naming.provider.url=jnp://remotehost:1099

</attribute>
</mbean>

Messaging on JBoss

JBoss Release 2 208

The RemoteJMSProvider can be referenced on the MDB invoker config as shown in the jboss.xml fragment given
in Example 5.14.

Example 5.14. A jboss.xml fragment for specifying the MDB JMS provider adaptor

<proxy-factory-config>
<JMSProviderAdapterJNDI>RemoteJMSProvider</JMSProviderAdapterJNDI>
<ServerSessionPoolFactoryJNDI>StdJMSPool</ServerSessionPoolFactoryJNDI>
<MaximumSize>15</MaximumSize>
<MaxMessages>1</MaxMessages>
<MDBConfig>

<ReconnectIntervalSec>10</ReconnectIntervalSec>
<DLQConfig>

<DestinationQueue>queue/DLQ</DestinationQueue>
<MaxTimesRedelivered>10</MaxTimesRedelivered>
<TimeToLive>0</TimeToLive>

</DLQConfig>
</MDBConfig>

</proxy-factory-config>

Incidentally, because one can specify multiple invoker-proxy-binding elements, this allows an MDB to listen to
the same queue/topic on multiple servers by configuring multiple bindings with different JMSProviderAdapterJNDI
settings.

Alternatively, one can integrate the JMS provider using JCA configuration like that shown in Example 5.15.

Example 5.15. A jms-ds.xml descriptor for integrating a JMS provider adaptor via JCA

<tx-connection-factory>
<jndi-name>RemoteJmsXA</jndi-name>
<xa-transaction/>
<adapter-display-name>JMS Adapter</adapter-display-name>
<config-property name="JMSProviderAdapterJNDI"

type="java.lang.String">RemoteJMSProvider</config-property>
<config-property name="SessionDefaultType"

type="java.lang.String">javax.jms.Topic</config-property>

<security-domain-and-application>JmsXARealm</security-domain-and-application>
</tx-connection-factory>

5.4.2. org.jboss.jms.asf.ServerSessionPoolLoader MBean

The ServerSessionPoolLoader MBean service manages a factory for javax.jms.ServerSessionPool objects
used by the message driven bean container. The configurable attributes of the ServerSessionPoolLoader service
are:

• PoolName: A unique name for the session pool. This will be used to bind the ServerSessionPoolFactory in-
stance into JNDI under java:/PoolName.

• PoolFactoryClass: The fully qualified class name of the org.jboss.jms.asf.ServerSessionPoolFactory in-
terface to create an instance of.

Messaging on JBoss

JBoss Release 2 209

• XidFactory: The JMX ObjectName of the service to use for generating javax.transaction.xa.Xid values for
local transactions when two phase commit is not required. The XidFactory MBean must provide an Instance

operation which returns a org.jboss.tm.XidFactoryMBean instance.

5.4.3. Integrating non-JBoss JMS Providers

We have mentioned that one can replace the JBossMQ JMS implementation with a foreign implementation. Here
we summarize the various approaches one can take to do the replacement:

• Replace the JMSProviderLoader JBossMQProvider class with one that instantiates the correct JNDI context for
communicating with the foreign JMS providers managed objects.

• Use the ExternalContext MBean to federate the foreign JMS providers managed objects into the JBoss JNDI
tree.

• Use MBeans to instantiate the foreign JMS objects into the JBoss JNDI tree. An example of this approach can
be found for Websphere MQ at http://wiki.jboss.org/wiki/Wiki.jsp?page=IntegrationWithWebSphereMQSeries.

Messaging on JBoss

JBoss Release 2 210

http://wiki.jboss.org/wiki/Wiki.jsp?page=IntegrationWithWebSphereMQSeries

6
Connectors on JBoss

The JCA Configuration and Architecture

This chapter discusses the JBoss server implementation of the J2EE Connector Architecture (JCA). JCA is a re-
source manager integration API whose goal is to standardize access to non-relational resources in the same way the
JDBC API standardized access to relational data. The purpose of this chapter is to introduce the utility of the JCA
APIs and then describe the architecture of JCA in JBoss

6.1. JCA Overview

J2EE 1.4 contains a connector architecture (JCA) specification that allows for the integration of transacted and se-
cure resource adaptors into a J2EE application server environment. The JCA specification describes the notion of
such resource managers as Enterprise Information Systems (EIS). Examples of EIS systems include enterprise re-
source planning packages, mainframe transaction processing, non-Java legacy applications, etc.

The reason for focusing on EIS is primarily because the notions of transactions, security, and scalability are re-
quirements in enterprise software systems. However, the JCA is applicable to any resource that needs to integrate
into JBoss in a secure, scalable and transacted manner. In this introduction we will focus on resource adapters as a
generic notion rather than something specific to the EIS environment.

The connector architecture defines a standard SPI (Service Provider Interface) for integrating the transaction, secur-
ity and connection management facilities of an application server with those of a resource manager. The SPI
defines the system level contract between the resource adaptor and the application server.

The connector architecture also defines a Common Client Interface (CCI) for accessing resources. The CCI is tar-
geted at EIS development tools and other sophisticated users of integrated resources. The CCI provides a way to
minimize the EIS specific code required by such tools. Typically J2EE developers will access a resource using such
a tool, or a resource specific interface rather than using CCI directly. The reason is that the CCI is not a type specif-
ic API. To be used effectively it must be used in conjunction with metadata that describes how to map from the
generic CCI API to the resource manager specific data types used internally by the resource manager.

The purpose of the connector architecture is to enable a resource vendor to provide a standard adaptor for its
product. A resource adaptor is a system-level software driver that is used by a Java application to connect to re-
source. The resource adaptor plugs into an application server and provides connectivity between the resource man-
ager, the application server, and the enterprise application. A resource vendor need only implement a JCA compli-
ant adaptor once to allow use of the resource manager in any JCA capable application server.

An application server vendor extends its architecture once to support the connector architecture and is then assured
of seamless connectivity to multiple resource managers. Likewise, a resource manager vendor provides one stand-
ard resource adaptor and it has the capability to plug in to any application server that supports the connector archi-
tecture.

JBoss Release 2 211

Figure 6.1. The relationship between a J2EE application server and a JCA resource adaptor

Figure 6.1 illustrates that the application server is extended to provide support for the JCA SPI to allow a resource
adaptor to integrate with the server connection pooling, transaction management and security management facilit-
ies. This integration API defines a three-part system contract.

• Connection management: a contract that allows the application server to pool resource connections. The pur-
pose of the pool management is to allow for scalability. Resource connections are typically expense objects to
create and pooling them allows for more effective reuse and management.

• Transaction Management: a contract that allows the application server transaction manager to manage trans-
actions that engage resource managers.

• Security Management: a contract that enables secured access to resource managers.

The resource adaptor implements the resource manager side of the system contract. This entails using the applica-
tion server connection pooling, providing transaction resource information and using the security integration in-
formation. The resource adaptor also exposes the resource manager to the application server components. This can
be done using the CCI and/or a resource adaptor specific API.

The application component integrates into the application server using a standard J2EE container to component
contract. For an EJB component this contract is defined by the EJB specification. The application component inter-
acts with the resource adaptor in the same way as it would with any other standard resource factory, for example, a
javax.sql.DataSource JDBC resource factory. The only difference with a JCA resource adaptor is that the client

Connectors on JBoss

JBoss Release 2 212

has the option of using the resource adaptor independent CCI API if the resource adaptor supports this.

Figure 6.2 (from the JCA 1.5 specification) illustrates the relationship between the JCA architecture participants in
terms of how they relate to the JCA SPI, CCI and JTA packages.

Figure 6.2. The JCA 1.0 specification class diagram for the connection management architecture.

The JBossCX architecture provides the implementation of the application server specific classes. Figure 6.2 shows
that this comes down to the implementation of the javax.resource.spi.ConnectionManager and
javax.resource.spi.ConnectionEventListener interfaces. The key aspects of this implementation are discussed
in the following section on the JBossCX architecture.

6.2. An Overview of the JBossCX Architecture

The JBossCX framework provides the application server architecture extension required for the use of JCA re-
source adaptors. This is primarily a connection pooling and management extension along with a number of MBeans
for loading resource adaptors into the JBoss server.

There are three coupled MBeans that make up a RAR deployment. These are the

Connectors on JBoss

JBoss Release 2 213

org.jboss.resource.deployment.RARDeployment, org.jboss.resource.connectionmanager.RARDeployment,
and org.jboss.resource.connectionmanager.BaseConnectionManager2. The
org.jboss.resource.deployment.RARDeployment is simply an encapsulation of the metadata of a RAR META-

INF/ra.xml descriptor. It exposes this information as a DynamicMBean simply to make it available to the
org.jboss.resource.connectionmanager.RARDeployment MBean.

The RARDeployer service handles the deployment of archives files containing resource adaptors (RARs). It
creathes the org.jboss.resource.deployment.RARDeployment MBeans when a RAR file is deployed. Deploying
the RAR file is the first step in making the resource adaptor available to application components. For each de-
ployed RAR, one or more connection factories must be configured and bound into JNDI. This task performed using
a JBoss service descriptor that sets up a org.jboss.resource.connectionmanager.BaseConnectionManager2

MBean implementation with a org.jboss.resource.connectionmgr.RARDeployment dependent.

6.2.1. BaseConnectionManager2 MBean

The org.jboss.resource.connectionmanager.BaseConnectionManager2 MBean is a base class for the various
types of connection managers required by the JCA spec. Subclasses include NoTxConnectionManager, LocalTx-
ConnectionManager and XATxConnectionManager. These correspond to resource adaptors that support no transac-
tions, local transaction and XA transaction respectively. You choose which subclass to use based on the type of
transaction semantics you want, provided the JCA resource adaptor supports the corresponding transaction capabil-
ity.

The common attributes supported by the BaseConnectionManager2 MBean are:

• ManagedConnectionPool: This specifies the ObjectName of the MBean representing the pool for this connec-
tion manager. The MBean must have an ManagedConnectionPool attribute that is an implementation of the
org.jboss.resource.connectionmanager.ManagedConnectionPool interface. Normally it will be an embed-
ded MBean in a depends tag rather than an ObjectName reference to an existing MBean. The default MBean for
use is the org.jboss.resource.connectionmanager.JBossManagedConnectionPool. Its configurable attrib-
utes are discussed below.

• CachedConnectionManager: This specifies the ObjectName of the CachedConnectionManager MBean imple-
mentation used by the connection manager. Normally this is specified using a depends tag with the ObjectName

of the unique CachedConnectionManager for the server. The name
jboss.jca:service=CachedConnectionManager is the standard setting to use.

• SecurityDomainJndiName: This specifies the JNDI name of the security domain to use for authentication and
authorization of resource connections. This is typically of the form java:/jaas/<domain> where the <domain>

value is the name of an entry in the conf/login-config.xml JAAS login module configuration file. This
defines which JAAS login modules execute to perform authentication. Chapter 7 has more information on the
security settings.

• JaasSecurityManagerService: This is the ObjectName of the security manager service. This should be set to
the security manager MBean name as defined in the conf/jboss-service.xml descriptor, and currently this is
jboss.security:service=JaasSecurityManager. This attribute will likely be removed in the future.

6.2.2. RARDeployment MBean

The org.jboss.resource.connectionmanager.RARDeployment MBean manages configuration and instantiation

Connectors on JBoss

JBoss Release 2 214

ManagedConnectionFactory instance. It does this using the resource adaptor metadata settings from the RAR
META-INF/ra.xml descriptor along with the RARDeployment attributes. The configurable attributes are:

• OldRarDeployment: This is the ObjectName of the org.jboss.resource.RarDeployment MBean that con-
tains the resource adaptor metadata. The form of this name is
jboss.jca:service=RARDeployment,name=<ra-display-name> where the <ra-display-name> is the ra.xml

descriptor display-name attribute value. The RARDeployer creates this when it deploys a RAR file. This attrib-
ute will likely be removed in the future.

• ManagedConnectionFactoryProperties: This is a collection of (name, type, value) triples that define attrib-
utes of the ManagedConnectionFactory instance. Therefore, the names of the attributes depend on the resource
adaptor ManagedConnectionFactory instance. The following example shows the structure of the content of this
attribute.

<properties>
<config-property>

<config-property-name>Attr0Name</config-property-name>
<config-property-type>Attr0Type</config-property-type>
<config-property-value>Attr0Value</config-property-value>

</config-property>
<config-property>

<config-property-name>Attr1Name</config-property-name>
<config-property-type>Attr2Type</config-property-type>
<config-property-value>Attr2Value</config-property-value>

</config-property>
...

</properties>

AttrXName is the Xth attribute name, AttrXType is the fully qualified Java type of the attribute, and AttrXValue

is the string representation of the value. The conversion from string to AttrXType is done using the
java.beans.PropertyEditor class for the AttrXType.

• JndiName: This is the JNDI name under which the resource adaptor will be made available. Clients of the re-
source adaptor use this name to obtain either the javax.resource.cci.ConnectionFactory or resource adaptor
specific connection factory. The full JNDI name will be java:/<JndiName> meaning that the JndiName attrib-
ute value will be prefixed with java:/. This prevents use of the connection factory outside of the JBoss server
VM. In the future this restriction may be configurable.

6.2.3. JBossManagedConnectionPool MBean

The org.jboss.resource.connectionmanager.JBossManagedConnectionPool MBean is a connection pooling
MBean. It is typically used as the embedded MBean value of the BaseConnectionManager2 ManagedConnection-

Pool attribute. When you setup a connection manager MBean you typically embed the pool configuration in the
connection manager descriptor. The configurable attributes of the JBossManagedConnectionPool are:

• ManagedConnectionFactoryName: This specifies the ObjectName of the MBean that creates
javax.resource.spi.ManagedConnectionFactory instances. Normally this is configured as an embedded
MBean in a depends element rather than a separate MBean reference using the RARDeployment MBean. The
MBean must provide an appropriate startManagedConnectionFactory operation.

• MinSize: This attribute indicates the minimum number of connections this pool should hold. These are not cre-
ated until a Subject is known from a request for a connection. MinSize connections will be created for each

Connectors on JBoss

JBoss Release 2 215

sub-pool.

• MaxSize: This attribute indicates the maximum number of connections for a pool. No more than MaxSize con-
nections will be created in each sub-pool.

• BlockingTimeoutMillis: This attribute indicates the maximum time to block while waiting for a connection be-
fore throwing an exception. Note that this blocks only while waiting for a permit for a connection, and will nev-
er throw an exception if creating a new connection takes an inordinately long time.

• IdleTiemoutMinutes: This attribute indicates the maximum time a connection may be idle before being closed.
The actual maximum time depends also on the idle remover thread scan time, which is 1/2 the smallest idle
timeout of any pool.

• NoTxSeparatePools: Setting this to true doubles the available pools. One pool is for connections used outside
a transaction the other inside a transaction. The actual pools are lazily constructed on first use. This is only rel-
evant when setting the pool parameters associated with the LocalTxConnectionManager and XATxConnection-

Manager. Its use case is for Oracle (and possibly other vendors) XA implementations that don't like using an
XA connection with and without a JTA transaction.

• Criteria: This attribute indicates if the JAAS javax.security.auth.Subject from security domain associated
with the connection, or app supplied parameters (such as from getConnection(user, pw)) are used to distin-
guish connections in the pool. The allowed values are:

• ByContainer: use Subject

• ByApplication: use application supplied parameters only
• ByContainerAndApplication: use both
• ByNothing: all connections are equivalent, usually if adapter supports reauthentication

6.2.4. CachedConnectionManager MBean

The org.jboss.resource.connectionmanager.CachedConnectionManager MBean manages associations between
meta-aware objects (those accessed through interceptor chains) and connection handles, as well as between user
transactions and connection handles. Normally there should only be one such MBean, and this is configured in the
core jboss-service.xml descriptor. It is used by CachedConnectionInterceptor, JTA UserTransaction imple-
mentation and all BaseConnectionManager2 instances. The configurable attributes of the CachedConnectionMan-

ager MBean are:

• SpecCompliant: Enable this boolean attribute for spec compliant non-shareable connections reconnect pro-
cessing. This allows a connection to be opened in one call and used in another. Note that specifying this behavi-
or disables connection close processing.

• Debug: Enable this boolean property for connection close processing. At the completion of an EJB method in-
vocation, unclosed connections are registered with a transaction synchronization. If the transaction ends without
the connection being closed, an error is reported and JBoss closes the connection. This is a development feature
that should be turned off in production for optimal performance.

• TransactionManagerServiceName: This attribute specifies the JMX ObjectName of the JTA transaction man-
ager service. Connection close processing is now synchronized with the transaction manager and this attribute
specifies the transaction manager to use.

Connectors on JBoss

JBoss Release 2 216

6.2.5. A Sample Skeleton JCA Resource Adaptor

To conclude our discussion of the JBoss JCA framework we will create and deploy a single non-transacted re-
source adaptor that simply provides a skeleton implementation that stubs out the required interfaces and logs all
method calls. We will not discuss the details of the requirements of a resource adaptor provider as these are dis-
cussed in detail in the JCA specification. The purpose of the adaptor is to demonstrate the steps required to create
and deploy a RAR in JBoss, and to see how JBoss interacts with the adaptor.

The adaptor we will create could be used as the starting point for a non-transacted file system adaptor. The source
to the example adaptor can be found in the src/main/org/jboss/book/jca/ex1 directory of the book examples. A
class diagram that shows the mapping from the required javax.resource.spi interfaces to the resource adaptor
implementation is given in Figure 6.3.

Figure 6.3. The file system RAR class diagram

We will build the adaptor, deploy it to the JBoss server and then run an example client against an EJB that uses the
resource adaptor to demonstrate the basic steps in a complete context. We'll then take a look at the JBoss server log
to see how the JBoss JCA framework interacts with the resource adaptor to help you better understand the compon-
ents in the JCA system level contract.

To build the example and deploy the RAR to the JBoss server deploy/lib directory, execute the following Ant
command in the book examples directory.

[examples]$ ant -Dchap=jca build-chap

The deployed files include a jca-ex1.sar and a notxfs-service.xml service descriptor. The example resource ad-
aptor deployment descriptor is shown in Example 6.1.

Example 6.1. The nontransactional file system resource adaptor deployment descriptor.

Connectors on JBoss

JBoss Release 2 217

<?xml version="1.0" encoding="UTF-8"?>
<connector xmlns="http://java.sun.com/xml/ns/j2ee"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/connector_1_5.xsd" version="1.5">
<display-name>File System Adapter</display-name>
<vendor-name>JBoss</vendor-name>
<eis-type>FileSystem</eis-type>
<resourceadapter-version>1.0</resourceadapter-version>
<license>

<description>LGPL</description>
<license-required>false</license-required>

</license>
<resourceadapter>

<resourceadapter-class>
org.jboss.resource.deployment.DummyResourceAdapter

</resourceadapter-class>
<outbound-resourceadapter>

<connection-definition>
<managedconnectionfactory-class>

org.jboss.book.jca.ex1.ra.FSManagedConnectionFactory
</managedconnectionfactory-class>
<config-property>

<config-property-name>FileSystemRootDir</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value>/tmp/db/fs_store</config-property-value>

</config-property>
<config-property>

<config-property-name>UserName</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value/>

</config-property>
<config-property>

<config-property-name>Password</config-property-name>
<config-property-type>java.lang.String</config-property-type>
<config-property-value/>

</config-property>
<connectionfactory-interface>

org.jboss.book.jca.ex1.ra.DirContextFactory
</connectionfactory-interface>
<connectionfactory-impl-class>

org.jboss.book.jca.ex1.ra.DirContextFactoryImpl
</connectionfactory-impl-class>
<connection-interface>

javax.naming.directory.DirContext
</connection-interface>
<connection-impl-class>

org.jboss.book.jca.ex1.ra.FSDirContext
</connection-impl-class>

</connection-definition>
<transaction-support>NoTransaction</transaction-support>
<authentication-mechanism>

<authentication-mechanism-type>BasicPassword</authentication-mechanism-type>
<credential-interface>

javax.resource.spi.security.PasswordCredential
</credential-interface>

</authentication-mechanism>
<reauthentication-support>true</reauthentication-support>

</outbound-resourceadapter>
<security-permission>

<description> Read/Write access is required to the contents of the
FileSystemRootDir </description>

<security-permission-spec> permission java.io.FilePermission
"/tmp/db/fs_store/*", "read,write";

</security-permission-spec>
</security-permission>

Connectors on JBoss

JBoss Release 2 218

</resourceadapter>
</connector>

The key items in the resource adaptor deployment descriptor are highlighted in bold. These define the classes of the
resource adaptor, and the elements are:

• managedconnectionfactory-class: The implementation of the ManagedConnectionFactory interface,
org.jboss.book.jca.ex1.ra.FSManagedConnectionFactory

• connectionfactory-interface: This is the interface that clients will obtain when they lookup the connection
factory instance from JNDI, here a proprietary resource adaptor value,
org.jboss.book.jca.ex1.ra.DirContextFactory. This value will be needed when we create the JBoss
ds.xml to use the resource.

• connectionfactory-impl-class: This is the class that provides the implementation of the connectionfactory-inter-

face, org.jboss.book.jca.ex1.ra.DirContextFactoryImpl.

• connection-interface: This is the interface for the connections returned by the resource adaptor connection
factory, here the JNDI javax.naming.directory.DirContext interface.

• connection-impl-class: This is he class that provides the connection-interface implementation,
org.jboss.book.jca.ex1.ra.FSDirContext.

• transaction-support: The level of transaction support, here defined as NoTransaction, meaning the file system
resource adaptor does not do transactional work.

The RAR classes and deployment descriptor only define a resource adaptor. To use the resource adaptor it must be
integrated into the JBoss application server using a ds.xml descriptor file. An example of this for the file system
adaptor is shown in Example 6.2.

Example 6.2. The notxfs-ds.xml resource adaptor MBeans service descriptor.

<!DOCTYPE connection-factories PUBLIC
"-//JBoss//DTD JBOSS JCA Config 1.5//EN"
"http://www.jboss.org/j2ee/dtd/jboss-ds_1_5.dtd">

<!--
The non-transaction FileSystem resource adaptor service configuration

-->
<connection-factories>

<no-tx-connection-factory>
<jndi-name>NoTransFS</jndi-name>
<rar-name>jca-ex1.rar</rar-name>
<connection-definition>

org.jboss.book.jca.ex1.ra.DirContextFactory
</connection-definition>
<config-property name="FileSystemRootDir"

type="java.lang.String">/tmp/db/fs_store</config-property>
</no-tx-connection-factory>

</connection-factories>

The main attributes are:

Connectors on JBoss

JBoss Release 2 219

• jndi-name: This specifies where the connection factory will be bound into JNDI. For this deployment that
binding will be java:/NoTransFS.

• rar-name: This is the name of the RAR file that contains the definition for the resource we want to provide.
For nested RAR files, the name would look like myapplication.ear#my.rar. In this example, it is simply jca-

ex1.rar.

• connection-definition: This is the connection factory interface class. It should match the connectionfactory-inter-

face in the ra.xml file. Here our connection factory interface is
org.jboss.book.jca.ex1.ra.DirContextFactory.

• config-property: This can be used to provide non-default settings to the resource adaptor connection factory.
Here the FileSystemRootDir is being set to /tmp/db/fs_store. This overrides the default value in the ra.xml

file.

To deploy the RAR and connection manager configuration to the JBoss server, run the following:

[examples]$ ant -Dchap=jca config

The server console will display some logging output indicating that the resource adaptor has been deployed.

Now we want to test access of the resource adaptor by a J2EE component. To do this we have created a trivial
stateless session bean that has a single method called echo. Inside of the echo method the EJB accesses the re-
source adaptor connection factory, creates a connection, and then immediately closes the connection. The echo

method code is shown below.

Example 6.3. The stateless session bean echo method code that shows the access of the resource adaptor
connection factory.

public String echo(String arg)
{

log.info("echo, arg="+arg);
try {

InitialContext ctx = new InitialContext();
Object ref = ctx.lookup("java:comp/env/ra/DirContextFactory");
log.info("echo, ra/DirContextFactory=" + ref);

DirContextFactory dcf = (DirContextFactory) ref;
log.info("echo, found dcf=" + dcf);

DirContext dc = dcf.getConnection();
log.info("echo, lookup dc=" + dc);

dc.close();
} catch(NamingException e) {

log.error("Failed during JNDI access", e);
}
return arg;

}

The EJB is not using the CCI interface to access the resource adaptor. Rather, it is using the resource adaptor spe-
cific API based on the proprietary DirContextFactory interface that returns a JNDI DirContext object as the con-
nection object. The example EJB is simply exercising the system contract layer by looking up the resource adaptor

Connectors on JBoss

JBoss Release 2 220

connection factory, creating a connection to the resource and closing the connection. The EJB does not actually do
anything with the connection, as this would only exercise the resource adaptor implementation since this is a non-
transactional resource.

Run the test client which calls the EchoBean.echo method by running Ant as follows from the examples directory:

[examples]$ ant -Dchap=jca -Dex=1 run-example

You'll see some output from the bean in the system console, but much more detailed logging output can be found in
the server/default/log/server.log file. Don't worry if you see exceptions. They are just stack traces to high-
light the call path into parts of the adaptor. To help understand the interaction between the adaptor and the JBoss
JCA layer, we'll summarize the events seen in the log using a sequence diagram. Figure 6.4 is a sequence diagram
that summarizes the events that occur when the EchoBean accesses the resource adaptor connection factory from
JNDI and creates a connection.

Figure 6.4. A sequence diagram illustrating the key interactions between the JBossCX framework and the
example resource adaptor that result when the EchoBean accesses the resource adaptor connection factory.

The starting point is the client's invocation of the EchoBean.echo method. For the sake of conciseness of the dia-
gram, the client is shown directly invoking the EchoBean.echo method when in reality the JBoss EJB container
handles the invocation. There are three distinct interactions between the EchoBean and the resource adaptor; the
lookup of the connection factory, the creation of a connection, and the close of the connection.

The lookup of the resource adaptor connection factory is illustrated by the 1.1 sequences of events. The events are:

• 1, the echo method invokes the getConnection method on the resource adaptor connection factory obtained
from the JNDI lookup on the java:comp/env/ra/DirContextFactory name which is a link to the
java:/NoTransFS location.

Connectors on JBoss

JBoss Release 2 221

• 1.1, the DirContextFactoryImpl class asks its associated ConnectionManager to allocate a connection. It
passes in the ManagedConnectionFactory and FSRequestInfo that were associated with the DirContextFact-

oryImpl during its construction.

• 1.1.1, the ConnectionManager invokes its getManagedConnection method with the current Subject and FS-

RequestInfo.

• 1.1.1.1, the ConnectionManager asks its object pool for a connection object. The JBossManagedConnection-

Pool$BasePool is get the key for the connection and then asks the matching InternalPool for a connection.

• 1.1.1.1.1, Since no connections have been created the pool must create a new connection. This is done by re-
questing a new managed connection from the ManagedConnectionFactory. The Subject associated with the
pool as well as the FSRequestInfo data are passed as arguments to the createManagedConnection method in-
vocation.

• 1.1.1.1.1.1, the ConnectionFactory creates a new FSManagedConnection instance and passes in the Subject

and FSRequestInfo data.

• 1.1.1.2, a javax.resource.spi.ConnectionListener instance is created. The type of listener created is based
on the type of ConnectionManager. In this case it is an
org.jboss.resource.connectionmgr.BaseConnectionManager2$NoTransactionListener instance.

• 1.1.1.2.1, the listener registers as a javax.resource.spi.ConnectionEventListener with the ManagedConnec-

tion instance created in 1.2.1.1.

• 1.1.2, the ManagedConnection is asked for the underlying resource manager connection. The Subject and FS-

RequestInfo data are passed as arguments to the getConnection method invocation.

• The resulting connection object is cast to a javax.naming.directory.DirContext instance since this is the
public interface defined by the resource adaptor.

• After the EchoBean has obtained the DirContext for the resource adaptor, it simply closes the connection to in-
dicate its interaction with the resource manager is complete.

This concludes the resource adaptor example. Our investigation into the interaction between the JBossCX layer and
a trivial resource adaptor should give you sufficient understanding of the steps required to configure any resource
adaptor. The example adaptor can also serve as a starting point for the creation of your own custom resource ad-
aptors if you need to integrate non-JDBC resources into the JBoss server environment.

6.3. Configuring JDBC DataSources

Rather than configuring the connection manager factory related MBeans discussed in the previous section via a
mbean services deployment descriptor, JBoss provides a simplified datasource centric descriptor. This is trans-
formed into the standard jboss-service.xml MBean services deployment descriptor using a XSL transform ap-
plied by the org.jboss.deployment.XSLSubDeployer included in the jboss-jca.sar deployment. The simplified
configuration descriptor is deployed the same as other deployable components. The descriptor must be named us-
ing a *-ds.xml pattern in order to be recognized by the XSLSubDeployer.

The schema for the top-level datasource elements of the *-ds.xml configuration deployment file is shown in Fig-

Connectors on JBoss

JBoss Release 2 222

ure 6.5.

Figure 6.5. The simplified JCA DataSource configuration descriptor top-level schema elements

Multiple datasource configurations may be specified in a configuration deployment file. The child elements of the
datasources root are:

• mbean: Any number mbean elements may be specified to define MBean services that should be included in the
jboss-service.xml descriptor that results from the transformation. This may be used to configure services
used by the datasources.

• no-tx-datasource: This element is used to specify the (org.jboss.resource.connectionmanager) NoTxCon-

nectionManager service configuration. NoTxConnectionManager is a JCA connection manager with no transac-
tion support. The no-tx-datasource child element schema is given in Figure 6.6.

• local-tx-datasource: This element is used to specify the (org.jboss.resource.connectionmanager) LocalTx-
ConnectionManager service configuration. LocalTxConnectionManager implements a ConnectionEventL-

istener that implements XAResource to manage transactions through the transaction manager. To ensure that
all work in a local transaction occurs over the same ManagedConnection, it includes a xid to ManagedConnec-

tion map. When a Connection is requested or a transaction started with a connection handle in use, it checks to
see if a ManagedConnection already exists enrolled in the global transaction and uses it if found. Otherwise, a
free ManagedConnection has its LocalTransaction started and is used. The local-tx-datasource child ele-
ment schema is given in Figure 6.7

• xa-datasource: This element is used to specify the (org.jboss.resource.connectionmanager) XATxConnec-

tionManager service configuration. XATxConnectionManager implements a ConnectionEventListener that ob-
tains the XAResource to manage transactions through the transaction manager from the adaptor ManagedCon-

nection. To ensure that all work in a local transaction occurs over the same ManagedConnection, it includes a
xid to ManagedConnection map. When a Connection is requested or a transaction started with a connection
handle in use, it checks to see if a ManagedConnection already exists enrolled in the global transaction and uses
it if found. Otherwise, a free ManagedConnection has its LocalTransaction started and is used. The xa-

datasource child element schema is given in Figure 6.8.

Connectors on JBoss

JBoss Release 2 223

• ha-local-tx-datasource: This element is identical to local-tx-datasource, with the addition of the experi-
mental datasource failover capability allowing JBoss to failover to an alternate database in the event of a data-
base failure.

• ha-xa-datasource: This element is identical to xa-datasource, with the addition of the experimental data-
source failover capability allowing JBoss to failover to an alternate database in the event of a database failure.

Figure 6.6. The non-transactional DataSource configuration schema

Connectors on JBoss

JBoss Release 2 224

Figure 6.7. The non-XA DataSource configuration schema

Connectors on JBoss

JBoss Release 2 225

Figure 6.8. The XA DataSource configuration schema

Connectors on JBoss

JBoss Release 2 226

Figure 6.9. The schema for the experimental non-XA DataSource with failover

Connectors on JBoss

JBoss Release 2 227

Figure 6.10. The schema for the experimental XA Datasource with failover

Elements that are common to all datasources include:

• jndi-name: The JNDI name under which the DataSource wrapper will be bound. Note that this name is relative
to the java:/ context, unless use-java-context is set to false. DataSource wrappers are not usable outside of
the server VM, so they are normally bound under the java:/, which isn't shared outside the local VM.

• use-java-context: If this is set to false the the datasource will be bound in the global JNDI context rather than

Connectors on JBoss

JBoss Release 2 228

the java: context.

• user-name: This element specifies the default username used when creating a new connection. The actual user-
name may be overridden by the application code getConnection parameters or the connection creation context
JAAS Subject.

• password: This element specifies the default password used when creating a new connection. The actual pass-
word may be overridden by the application code getConnection parameters or the connection creation context
JAAS Subject.

• application-managed-security: Specifying this element indicates that connections in the pool should be distin-
guished by application code supplied parameters, such as from getConnection(user, pw).

• security-domain: Specifying this element indicates that connections in the pool should be distinguished by
JAAS Subject based information. The content of the security-domain is the name of the JAAS security man-
ager that will handle authentication. This name correlates to the JAAS login-config.xml descriptor applica-
tion-policy/name attribute.

• security-domain-and-application: Specifying this element indicates that connections in the pool should be
distinguished both by application code supplied parameters and JAAS Subject based information. The content
of the security-domain is the name of the JAAS security manager that will handle authentication. This name
correlates to the JAAS login-config.xml descriptor application-policy/name attribute.

• min-pool-size: This element specifies the minimum number of connections a pool should hold. These pool in-
stances are not created until an initial request for a connection is made. This default to 0.

• max-pool-size: This element specifies the maximum number of connections for a pool. No more than the max-

pool-size number of connections will be created in a pool. This defaults to 20.

• blocking-timeout-millis: This element specifies the maximum time in milliseconds to block while waiting for
a connection before throwing an exception. Note that this blocks only while waiting for a permit for a connec-
tion, and will never throw an exception if creating a new connection takes an inordinately long time. The de-
fault is 5000.

• idle-timeout-minutes: This element specifies the maximum time in minutes a connection may be idle before
being closed. The actual maximum time depends also on the IdleRemover scan time, which is 1/2 the smallest
idle-timeout-minutes of any pool.

• new-connection-sql: This is a SQL statement that should be executed when a new connection is created. This
can be used to configure a connection with database specific settings not configurable via connection proper-
ties.

• check-valid-connection-sql: This is a SQL statement that should be run on a connection before it is returned
from the pool to test its validity to test for stale pool connections. An example statement could be: select

count(*) from x.

• exception-sorter-class-name: This specifies a class that implements the
org.jboss.resource.adapter.jdbc.ExceptionSorter interface to examine database exceptions to determine
whether or not the exception indicates a connection error. Current implementations include:

• org.jboss.resource.adapter.jdbc.vendor.OracleExceptionSorter

Connectors on JBoss

JBoss Release 2 229

• org.jboss.resource.adapter.jdbc.vendor.MySQLExceptionSorter
• org.jboss.resource.adapter.jdbc.vendor.SybaseExceptionSorter
• org.jboss.resource.adapter.jdbc.vendor.InformixExceptionSorte

• valid-connection-checker-class-name: This specifies a class that implements the
org.jboss.resource.adapter.jdbc.ValidConnectionChecker interface to provide a SQLException isVal-

idConnection(Connection e) method that is called with a connection that is to be returned from the pool to
test its validity. This overrides the check-valid-connection-sql when present. The only provided implement-
ation is org.jboss.resource.adapter.jdbc.vendor.OracleValidConnectionChecker.

• track-statements: This boolean element specifies whether to check for unclosed statements when a connection
is returned to the pool. If true, a warning message is issued for each unclosed statement. If the log4j category
org.jboss.resource.adapter.jdbc.WrappedConnection has trace level enabled, a stack trace of the connec-
tion close call is logged as well. This is a debug feature that can be turned off in production.

• prepared-statement-cache-size: This element specifies the number of prepared statements per connection in
an LRU cache, which is keyed by the SQL query. Setting this to zero disables the cache.

• depends: The depends element specifies the JMX ObjectName string of a service that the connection manager
services depend on. The connection manager service will not be started until the dependent services have been
started.

• type-mapping: This element declares a default type mapping for this datasource. The type mapping should
match a type-mapping/name element from standardjbosscmp-jdbc.xml.

Additional common child elements for both no-tx-datasource and local-tx-datasource include:

• connection-url: This is the JDBC driver connection URL string, for example, jd-

bc:hsqldb:hsql://localhost:1701.

• driver-class: This is the fully qualified name of the JDBC driver class, for example, org.hsqldb.jdbcDriver.

• connection-property: The connection-property element allows you to pass in arbitrary connection properties
to the java.sql.Driver.connect(url, props) method. Each connection-property specifies a string name/
value pair with the property name coming from the name attribute and the value coming from the element con-
tent.

Elements in common to the local-tx-datasource and xa-datasource are:

• transaction-isolation: This element specifies the java.sql.Connection transaction isolation level to use. The
constants defined in the Connection interface are the possible element content values and include:

• TRANSACTION_READ_UNCOMMITTED
• TRANSACTION_READ_COMMITTED
• TRANSACTION_REPEATABLE_READ
• TRANSACTION_SERIALIZABLE
• TRANSACTION_NONE

• no-tx-separate-pools: The presence of this element indicates that two connection pools are required to isolate
connections used with JTA transaction from those used without a JTA transaction. The pools are lazily con-

Connectors on JBoss

JBoss Release 2 230

structed on first use. Its use case is for Oracle (and possibly other vendors) XA implementations that don't like
using an XA connection with and without a JTA transaction.

The unique xa-datasource child elements are:

• track-connection-by-tx: Specifying a true value for this element makes the connection manager keep an xid to
connection map and only put the connection back in the pool when the transaction completes and all the con-
nection handles are closed or disassociated (by the method calls returning). As a side effect, we never suspend
and resume the xid on the connection's XAResource. This is the same connection tracking behavior used for loc-
al transactions.

The XA spec implies that any connection may be enrolled in any transaction using any xid for that transaction
at any time from any thread (suspending other transactions if necessary). The original JCA implementation as-
sumed this and aggressively delisted connections and put them back in the pool as soon as control left the EJB
they were used in or handles were closed. Since some other transaction could be using the connection the next
time work needed to be done on the original transaction, there is no way to get the original connection back. It
turns out that most XADataSource driver vendors do not support this, and require that all work done under a
particular xid go through the same connection.

• xa-datasource-class: The fully qualified name of the javax.sql.XADataSource implementation class, for ex-
ample, com.informix.jdbcx.IfxXADataSource.

• xa-datasource-property: The xa-datasource-property element allows for specification of the properties to
assign to the XADataSource implementation class. Each property is identified by the name attribute and the
property value is given by the xa-datasource-property element content. The property is mapped onto the
XADataSource implementation by looking for a JavaBeans style getter method for the property name. If found,
the value of the property is set using the JavaBeans setter with the element text translated to the true property
type using the java.beans.PropertyEditor for the type.

• isSameRM-override-value: A boolean flag that allows one to override the behavior of the
javax.transaction.xa.XAResource.isSameRM(XAResource xaRes) method behavior on the XA managed
connection. If specified, this value is used unconditionally as the isSameRM(xaRes) return value regardless of
the xaRes parameter.

The failover options common to ha-xa-datasource and ha-local-tx-datasource are:

• url-delimeter: This element specifies a character used to separate multiple JDBC URLs.

• url-property: In the case of XA datasources, this property specifies the name of the xa-datasource-property

that contains the list of JDBC URLs to use.

Example configurations for many third-party JDBC drivers are included in the JBOSS_DIST/docs/examples/jca

directory. Current example configurations include:

• asapxcess-jb3.2-ds.xml
• cicsr9s-service.xml
• db2-ds.xml
• db2-xa-ds.xml
• facets-ds.xml

Connectors on JBoss

JBoss Release 2 231

• fast-objects-jboss32-ds.xml
• firebird-ds.xml
• firstsql-ds.xml
• firstsql-xa-ds.xml
• generic-ds.xml
• hsqldb-ds.xml
• informix-ds.xml
• informix-xa-ds.xml
• jdatastore-ds.xml
• jms-ds.xml
• jsql-ds.xml
• lido-versant-service.xml
• mimer-ds.xml
• mimer-xa-ds.xml
• msaccess-ds.xml
• mssql-ds.xml
• mssql-xa-ds.xml
• mysql-ds.xml
• oracle-ds.xml
• oracle-xa-ds.xml
• postgres-ds.xml
• sapdb-ds.xml
• sapr3-ds.xml
• solid-ds.xml
• sybase-ds.xml

6.4. Configuring Generic JCA Adaptors

The XSLSubDeployer also supports the deployment of arbitrary non-JDBC JCA resource adaptors. The schema for
the top-level connection factory elements of the *-ds.xml configuration deployment file is shown in Figure 6.11.

Figure 6.11. The simplified JCA adaptor connection factory configuration descriptor top-level schema
elements

Multiple connection factory configurations may be specified in a configuration deployment file. The child elements
of the connection-factories root are:

• mbean: Any number mbean elements may be specified to define MBean services that should be included in the

Connectors on JBoss

JBoss Release 2 232

jboss-service.xml descriptor that results from the transformation. This may be used to configure additional
services used by the adaptor.

• no-tx-connection-factory: this element is used to specify the (org.jboss.resource.connectionmanager)
NoTxConnectionManager service configuration. NoTxConnectionManager is a JCA connection manager with no
transaction support. The no-tx-connection-factory child element schema is given in Figure 6.12.

• tx-connection-factory: this element is used to specify the (org.jboss.resource.connectionmanager) TxCon-
nectionManager service configuration. The tx-connection-factory child element schema is given in Fig-
ure 6.13.

Figure 6.12. The no-tx-connection-factory element schema

Connectors on JBoss

JBoss Release 2 233

Figure 6.13. The tx-connection-factory element schema

The majority of the elements are the same as those of the datasources configuration. The element unique to the con-

Connectors on JBoss

JBoss Release 2 234

nection factory configuration include:

• adaptor-display-name: A human readable display name to assign to the connection manager MBean.

• local-transaction: This element specifies that the tx-connection-factory supports local transactions.

• xa-transaction: This element specifies that the tx-connection-factory supports XA transactions.

• track-connection-by-tx: This element specifies that a connection should be used only on a single transaction
and that a transaction should only be associated with one connection.

• rar-name: This is the name of the RAR file that contains the definition for the resource we want to provide.
For nested RAR files, the name would look like myapplication.ear#my.rar.

• connection-definition: This is the connection factory interface class. It should match the connectionfactory-inter-

face in the ra.xml file.

• config-property: Any number of properties to supply to the ManagedConnectionFactory (MCF) MBean ser-
vice configuration. Each config-property element specifies the value of a MCF property. The config-

property element has two required attributes:

• name: The name of the property

• type: The fully qualified type of the property

The content of the config-property element provides the string representation of the property value. This will
be converted to the true property type using the associated type PropertyEditor.

Connectors on JBoss

JBoss Release 2 235

7
Security on JBoss

J2EE Security Configuration and Architecture

Security is a fundamental part of any enterprise application. You need to be able to restrict who is allowed to access
your applications and control what operations application users may perform. The J2EE specifications define a
simple role-based security model for EJBs and web components. The JBoss component framework that handles se-
curity is the JBossSX extension framework. The JBossSX security extension provides support for both the role-
based declarative J2EE security model and integration of custom security via a security proxy layer. The default
implementation of the declarative security model is based on Java Authentication and Authorization Service
(JAAS) login modules and subjects. The security proxy layer allows custom security that cannot be described using
the declarative model to be added to an EJB in a way that is independent of the EJB business object. Before getting
into the JBoss security implementation details, we will review EJB and servlet specification security models, as
well as JAAS to establish the foundation for these details.

7.1. J2EE Declarative Security Overview

The J2EE security model declarative in that you describe the security roles and permissions in a standard XML
descriptor rather than embedding security into your business component. This isolates security from business-level
code because security tends to be more a function of where the component is deployed than an inherent aspect of
the component's business logic. For example, consider an ATM component that is to be used to access a bank ac-
count. The security requirements, roles and permissions will vary independently of how you access the bank ac-
count, based on what bank is managing the account, where the ATM is located, and so on.

Securing a J2EE application is based on the specification of the application security requirements via the standard
J2EE deployment descriptors. You secure access to EJBs and web components in an enterprise application by using
the ejb-jar.xml and web.xml deployment descriptors. The following sections look at the purpose and usage of the
various security elements.

7.1.1. Security References

Both EJBs and servlets can declare one or more security-role-ref elements as shown in Figure 7.1. This element
declares that a component is using the role-name value as an argument to the isCallerInRole(String) method.
By using the isCallerInRole method, a component can verify whether the caller is in a role that has been declared
with a security-role-ref/role-name element. The role-name element value must link to a security-role ele-
ment through the role-link element. The typical use of isCallerInRole is to perform a security check that cannot
be defined by using the role-based method-permissions elements.

JBoss Release 2 236

Figure 7.1. The security-role-ref element

Example 7.1 shows the use of security-role-ref in an ejb-jar.xml.

Example 7.1. An ejb-jar.xml descriptor fragment that illustrates the security-role-ref element usage.

<!-- A sample ejb-jar.xml fragment -->
<ejb-jar>

<enterprise-beans>
<session>
<ejb-name>ASessionBean</ejb-name>
...
<security-role-ref>

<role-name>TheRoleICheck</role-name>
<role-link>TheApplicationRole</role-link>

</security-role-ref>
</session>

</enterprise-beans>
...

</ejb-jar>

Example 7.2 shows the use of security-role-ref in a web.xml.

Example 7.2. An example web.xml descriptor fragment that illustrates the security-role-ref element usage.

<web-app>
<servlet>

<servlet-name>AServlet</servlet-name>
...
<security-role-ref>

<role-name>TheServletRole</role-name>
<role-link>TheApplicationRole</role-link>

</security-role-ref>
</servlet>
...

</web-app>

Security on JBoss

JBoss Release 2 237

7.1.2. Security Identity

An EJB has the capability to specify what identity an EJB should use when it invokes methods on other compon-
ents using the security-identity element, shown in Figure 7.2

Figure 7.2. The security-identity element

The invocation identity can be that of the current caller, or it can be a specific role. The application assembler uses
the security-identity element with a use-caller-identity child element to indicate that the current caller's
identity should be propagated as the security identity for method invocations made by the EJB. Propagation of the
caller's identity is the default used in the absence of an explicit security-identity element declaration.

Alternatively, the application assembler can use the run-as/role-name child element to specify that a specific se-
curity role given by the role-name value should be used as the security identity for method invocations made by
the EJB. Note that this does not change the caller's identity as seen by the EJBContext.getCallerPrincipal()

method. Rather, the caller's security roles are set to the single role specified by the run-as/role-name element
value. One use case for the run-as element is to prevent external clients from accessing internal EJBs. You accom-
plish this by assigning the internal EJB method-permission elements that restrict access to a role never assigned to
an external client. EJBs that need to use internal EJB are then configured with a run-as/role-name equal to the re-
stricted role. The following descriptor fragment that illustrates security-identity element usage.

<!-- A sample ejb-jar.xml fragment -->
<ejb-jar>

<enterprise-beans>
<session>

<ejb-name>ASessionBean</ejb-name>
<!-- ... -->
<security-identity>

<use-caller-identity/>
</security-identity>

</session>
<session>

<ejb-name>RunAsBean</ejb-name>
<!-- ... -->
<security-identity>

<run-as>
<description>A private internal role</description>
<role-name>InternalRole</role-name>

</run-as>
</security-identity>

</session>

Security on JBoss

JBoss Release 2 238

</enterprise-beans>
<!-- ... -->

</ejb-jar>

When you use run-as to assign a specific role to outgoing calls, JBoss associates a principal named anonymous. If
you want another prinicipal to be associated with the call, you need to associate a run-as-principal with the bean
in the jboss.xml file. The following fragment associates a principal named internal with RunAsBean from the pri-
or example.

<session>
<ejb-name>RunAsBean</ejb-name>
<security-identity>

<run-as-principal>internal</run-as-principal>
</security-identity>

</session>

The run-as element is also available in servlet definitions in a web.xml file. The following example shows how to
assign the role InternalRole to a servlet:

<servlet>
<servlet-name>AServlet</servlet-name>
<!-- ... -->
<run-as>

<role-name>InternalRole</role-name>
</run-as>

</servlet>

Calls from this servlet will be associated with the anonymous principal. The run-as-principal element is avail-
able in the jboss-web.xml file to assign a specific principal to go along with the run-as role. The following frag-
ment shows how to associate a principal named internal to the servlet in the prior example.

<servlet>
<servlet-name>AServlet</servlet-name>
<run-as-principal>internal</run-as-principal>

</servlet>

7.1.3. Security roles

The security role name referenced by either the security-role-ref or security-identity element needs to map
to one of the application's declared roles. An application assembler defines logical security roles by declaring se-

curity-role elements. The role-name value is a logical application role name like Administrator, Architect,
SalesManager, etc.

The J2EE specifications note that it is important to keep in mind that the security roles in the deployment descriptor
are used to define the logical security view of an application. Roles defined in the J2EE deployment descriptors
should not be confused with the user groups, users, principals, and other concepts that exist in the target enterprise's
operational environment. The deployment descriptor roles are application constructs with application domain-spe-
cific names. For example, a banking application might use role names such as BankManager, Teller, or Customer.

Security on JBoss

JBoss Release 2 239

Figure 7.3. The security-role element

In JBoss, a security-role element is only used to map security-role-ref/role-name values to the logical role
that the component role references. The user's assigned roles are a dynamic function of the application's security
manager, as you will see when we discuss the JBossSX implementation details. JBoss does not require the defini-
tion of security-role elements in order to declare method permissions. However, the specification of security-
role elements is still a recommended practice to ensure portability across application servers and for deployment
descriptor maintenance. Example 7.3 shows the usage of the security-role in an ejb-jar.xml file.

Example 7.3. An ejb-jar.xml descriptor fragment that illustrates the security-role element usage.

<!-- A sample ejb-jar.xml fragment -->
<ejb-jar>

<!-- ... -->
<assembly-descriptor>

<security-role>
<description>The single application role</description>
<role-name>TheApplicationRole</role-name>

</security-role>
</assembly-descriptor>

</ejb-jar>

Example 7.4 shows the usage of the security-role in an web.xml file.

Example 7.4. An example web.xml descriptor fragment that illustrates the security-role element usage.

<!-- A sample web.xml fragment -->
<web-app>

<!-- ... -->
<security-role>

<description>The single application role</description>
<role-name>TheApplicationRole</role-name>

</security-role>
</web-app>

7.1.4. EJB method permissions

Security on JBoss

JBoss Release 2 240

An application assembler can set the roles that are allowed to invoke an EJB's home and remote interface methods
through method-permission element declarations.

Figure 7.4. The method-permissions element

Each method-permission element contains one or more role-name child elements that define the logical roles that
are allowed to access the EJB methods as identified by method child elements. You can also specify an unchecked

element instead of the role-name element to declare that any authenticated user can access the methods identified
by method child elements. In addition, you can declare that no one should have access to a method that has the ex-

clude-list element. If an EJB has methods that have not been declared as accessible by a role using a method-

permission element, the EJB methods default to being excluded from use. This is equivalent to defaulting the
methods into the exclude-list.

Security on JBoss

JBoss Release 2 241

Figure 7.5. The method element

There are three supported styles of method element declarations.

The first is used for referring to all the home and component interface methods of the named enterprise bean:

<method>
<ejb-name>EJBNAME</ejb-name>
<method-name>*</method-name>

</method>

The second style is used for referring to a specified method of the home or component interface of the named enter-
prise bean:

<method>
<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>

</method>

If there are multiple methods with the same overloaded name, this style refers to all of the overloaded methods.

The third style is used to refer to a specified method within a set of methods with an overloaded name:

<method>
<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>
<method-params>

<method-param>PARAMETER_1</method-param>
<!-- ... -->
<method-param>PARAMETER_N</method-param>

</method-params>
</method>

The method must be defined in the specified enterprise bean's home or remote interface. The method-param ele-
ment values are the fully qualified name of the corresponding method parameter type. If there are multiple methods
with the same overloaded signature, the permission applies to all of the matching overloaded methods.

The optional method-intf element can be used to differentiate methods with the same name and signature that are
defined in both the home and remote interfaces of an enterprise bean.

Example 7.5 provides complete examples of the method-permission element usage.

Example 7.5. An ejb-jar.xml descriptor fragment that illustrates the method-permission element usage.

<ejb-jar>
<assembly-descriptor>

<method-permission>
<description>The employee and temp-employee roles may access any

method of the EmployeeService bean </description>
<role-name>employee</role-name>
<role-name>temp-employee</role-name>
<method>

<ejb-name>EmployeeService</ejb-name>
<method-name>*</method-name>

</method>

Security on JBoss

JBoss Release 2 242

</method-permission>
<method-permission>

<description>The employee role may access the findByPrimaryKey,
getEmployeeInfo, and the updateEmployeeInfo(String) method of
the AardvarkPayroll bean </description>

<role-name>employee</role-name>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeeInfo</method-name>

</method>
<method>

<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeeInfo</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

</method>
</method-permission>
<method-permission>

<description>The admin role may access any method of the
EmployeeServiceAdmin bean </description>

<role-name>admin</role-name>
<method>

<ejb-name>EmployeeServiceAdmin</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>
<method-permission>

<description>Any authenticated user may access any method of the
EmployeeServiceHelp bean</description>

<unchecked/>
<method>

<ejb-name>EmployeeServiceHelp</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>
<exclude-list>

<description>No fireTheCTO methods of the EmployeeFiring bean may be
used in this deployment</description>

<method>
<ejb-name>EmployeeFiring</ejb-name>
<method-name>fireTheCTO</method-name>

</method>
</exclude-list>

</assembly-descriptor>
</ejb-jar>

7.1.5. Web Content Security Constraints

In a web application, security is defined by the roles that are allowed access to content by a URL pattern that iden-
tifies the protected content. This set of information is declared by using the web.xml security-constraint ele-
ment.

Security on JBoss

JBoss Release 2 243

Figure 7.6. The security-constraint element

The content to be secured is declared using one or more web-resource-collection elements. Each web-re-

source-collection element contains an optional series of url-pattern elements followed by an optional series of
http-method elements. The url-pattern element value specifies a URL pattern against which a request URL must
match for the request to correspond to an attempt to access secured content. The http-method element value spe-
cifies a type of HTTP request to allow.

The optional user-data-constraint element specifies the requirements for the transport layer of the client to serv-
er connection. The requirement may be for content integrity (preventing data tampering in the communication pro-
cess) or for confidentiality (preventing reading while in transit). The transport-guarantee element value specifies
the degree to which communication between the client and server should be protected. Its values are NONE, INTEG-
RAL, and CONFIDENTIAL. A value of NONE means that the application does not require any transport guarantees. A
value of INTEGRAL means that the application requires the data sent between the client and server to be sent in such
a way that it can't be changed in transit. A value of CONFIDENTIAL means that the application requires the data to be

Security on JBoss

JBoss Release 2 244

transmitted in a fashion that prevents other entities from observing the contents of the transmission. In most cases,
the presence of the INTEGRAL or CONFIDENTIAL flag indicates that the use of SSL is required.

The optional login-config element is used to configure the authentication method that should be used, the realm
name that should be used for rhw application, and the attributes that are needed by the form login mechanism.

Figure 7.7. The login-config element

The auth-method child element specifies the authentication mechanism for the web application. As a prerequisite
to gaining access to any web resources that are protected by an authorization constraint, a user must have authentic-
ated using the configured mechanism. Legal auth-method values are BASIC, DIGEST, FORM, and CLIENT-CERT. The
realm-name child element specifies the realm name to use in HTTP basic and digest authorization. The form-lo-

gin-config child element specifies the log in as well as error pages that should be used in form-based login. If the
auth-method value is not FORM, then form-login-config and its child elements are ignored.

As an example, the web.xml descriptor fragment given in Example 7.6 indicates that any URL lying under the web
application's /restricted path requires an AuthorizedUser role. There is no required transport guarantee and the
authentication method used for obtaining the user identity is BASIC HTTP authentication.

Example 7.6. A web.xml descriptor fragment which illustrates the use of the security-constraint and related
elements.

<web-app>
<!-- ... -->
<security-constraint>

<web-resource-collection>
<web-resource-name>Secure Content</web-resource-name>
<url-pattern>/restricted/*</url-pattern>

</web-resource-collection>
<auth-constraint>

<role-name>AuthorizedUser</role-name>
</auth-constraint>

Security on JBoss

JBoss Release 2 245

<user-data-constraint>
<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>
</security-constraint>
<!-- ... -->
<login-config>

<auth-method>BASIC</auth-method>
<realm-name>The Restricted Zone</realm-name>

</login-config>
<!-- ... -->
<security-role>

<description>The role required to access restricted content </description>
<role-name>AuthorizedUser</role-name>

</security-role>
</web-app>

7.1.6. Enabling Declarative Security in JBoss

The J2EE security elements that have been covered so far describe the security requirements only from the applica-
tion's perspective. Because J2EE security elements declare logical roles, the application deployer maps the roles
from the application domain onto the deployment environment. The J2EE specifications omit these application
server-specific details. In JBoss, mapping the application roles onto the deployment environment entails specifying
a security manager that implements the J2EE security model using JBoss server specific deployment descriptors.
The details behind the security configuration are discussed in Section 7.3.

7.2. An Introduction to JAAS

The JBossSX framework is based on the JAAS API. It is important that you understand the basic elements of the
JAAS API to understand the implementation details of JBossSX. The following sections provide an introduction to
JAAS to prepare you for the JBossSX architecture discussion later in this chapter.

7.2.1. What is JAAS?

The JAAS 1.0 API consists of a set of Java packages designed for user authentication and authorization. It imple-
ments a Java version of the standard Pluggable Authentication Module (PAM) framework and compatibly extends
the Java 2 Platform's access control architecture to support user-based authorization. JAAS was first released as an
extension package for JDK 1.3 and is bundled with JDK 1.4+. Because the JBossSX framework uses only the au-
thentication capabilities of JAAS to implement the declarative role-based J2EE security model, this introduction fo-
cuses on only that topic.

JAAS authentication is performed in a pluggable fashion. This permits Java applications to remain independent
from underlying authentication technologies and allows the JBossSX security manager to work in different security
infrastructures. Integration with a security infrastructure can be achieved without changing the JBossSX security
manager implementation. All that needs to change is the configuration of the authentication stack that JAAS uses.

7.2.1.1. The JAAS Core Classes

The JAAS core classes can be broken down into three categories: common, authentication, and authorization. The
following list presents only the common and authentication classes because these are the specific classes used to

Security on JBoss

JBoss Release 2 246

implement the functionality of JBossSX covered in this chapter.

The are the common classes:

• Subject (javax.security.auth.Subject)
• Principal (java.security.Principal)

These are the authentication classes:

• Callback (javax.security.auth.callback.Callback)
• CallbackHandler (javax.security.auth.callback.CallbackHandler)
• Configuration (javax.security.auth.login.Configuration)
• LoginContext (javax.security.auth.login.LoginContext)
• LoginModule (javax.security.auth.spi.LoginModule)

7.2.1.1.1. The Subject and Principal Classes

To authorize access to resources, applications first need to authenticate the request's source. The JAAS framework
defines the term subject to represent a request's source. The Subject class is the central class in JAAS. A Subject

represents information for a single entity, such as a person or service. It encompasses the entity's principals, public
credentials, and private credentials. The JAAS APIs use the existing Java 2 java.security.Principal interface to
represent a principal, which is essentially just a typed name.

During the authentication process, a subject is populated with associated identities, or principals. A subject may
have many principals. For example, a person may have a name principal (John Doe), a social security number prin-
cipal (123-45-6789), and a username principal (johnd), all of which help distinguish the subject from other sub-
jects. To retrieve the principals associated with a subject, two methods are available:

public Set getPrincipals() {...}
public Set getPrincipals(Class c) {...}

The first method returns all principals contained in the subject. The second method returns only those principals
that are instances of class c or one of its subclasses. An empty set is returned if the subject has no matching prin-
cipals. Note that the java.security.acl.Group interface is a subinterface of java.security.Principal, so an in-
stance in the principals set may represent a logical grouping of other principals or groups of principals.

7.2.1.1.2. Authentication of a Subject

Authentication of a subject requires a JAAS login. The login procedure consists of the following steps:

1. An application instantiates a LoginContext and passes in the name of the login configuration and a Callback-

Handler to populate the Callback objects, as required by the configuration LoginModules.

2. The LoginContext consults a Configuration to load all the LoginModules included in the named login con-
figuration. If no such named configuration exists the other configuration is used as a default.

3. The application invokes the LoginContext.login method.

4. The login method invokes all the loaded LoginModules. As each LoginModule attempts to authenticate the
subject, it invokes the handle method on the associated CallbackHandler to obtain the information required
for the authentication process. The required information is passed to the handle method in the form of an array

Security on JBoss

JBoss Release 2 247

of Callback objects. Upon success, the LoginModules associate relevant principals and credentials with the
subject.

5. The LoginContext returns the authentication status to the application. Success is represented by a return from
the login method. Failure is represented through a LoginException being thrown by the login method.

6. If authentication succeeds, the application retrieves the authenticated subject using the LoginCon-

text.getSubject method.

7. After the scope of the subject authentication is complete, all principals and related information associated with
the subject by the login method can be removed by invoking the LoginContext.logout method.

The LoginContext class provides the basic methods for authenticating subjects and offers a way to develop an ap-
plication that is independent of the underlying authentication technology. The LoginContext consults a Configur-

ation to determine the authentication services configured for a particular application. LoginModule classes repres-
ent the authentication services. Therefore, you can plug different login modules into an application without chan-
ging the application itself. The following code shows the steps required by an application to authenticate a subject.

CallbackHandler handler = new MyHandler();
LoginContext lc = new LoginContext("some-config", handler);

try {
lc.login();
Subject subject = lc.getSubject();

} catch(LoginException e) {
System.out.println("authentication failed");
e.printStackTrace();

}

// Perform work as authenticated Subject
// ...

// Scope of work complete, logout to remove authentication info
try {

lc.logout();
} catch(LoginException e) {

System.out.println("logout failed");
e.printStackTrace();

}

// A sample MyHandler class
class MyHandler

implements CallbackHandler
{

public void handle(Callback[] callbacks) throws
IOException, UnsupportedCallbackException

{
for (int i = 0; i < callbacks.length; i++) {

if (callbacks[i] instanceof NameCallback) {
NameCallback nc = (NameCallback)callbacks[i];
nc.setName(username);

} else if (callbacks[i] instanceof PasswordCallback) {
PasswordCallback pc = (PasswordCallback)callbacks[i];
pc.setPassword(password);

} else {
throw new UnsupportedCallbackException(callbacks[i],

"Unrecognized Callback");
}

}
}

}

Security on JBoss

JBoss Release 2 248

Developers integrate with an authentication technology by creating an implementation of the LoginModule inter-
face. This allows an administrator to plug different authentication technologies into an application. You can chain
together multiple LoginModules to allow for more than one authentication technology to participate in the authen-
tication process. For example, one LoginModule may perform username/password-based authentication, while an-
other may interface to hardware devices such as smart card readers or biometric authenticators.

The life cycle of a LoginModule is driven by the LoginContext object against which the client creates and issues
the login method. The process consists of two phases. The steps of the process are as follows:

• The LoginContext creates each configured LoginModule using its public no-arg constructor.

• Each LoginModule is initialized with a call to its initialize method. The Subject argument is guaranteed to be
non-null. The signature of the initialize method is: public void initialize(Subject subject, Callback-

Handler callbackHandler, Map sharedState, Map options).

• The login method is called to start the authentication process. For example, a method implementation might
prompt the user for a username and password and then verify the information against data stored in a naming
service such as NIS or LDAP. Alternative implementations might interface to smart cards and biometric
devices, or simply extract user information from the underlying operating system. The validation of user iden-
tity by each LoginModule is considered phase 1 of JAAS authentication. The signature of the login method is
boolean login() throws LoginException. A LoginException indicates failure. A return value of true indic-
ates that the method succeeded, whereas a return valueof false indicates that the login module should be ig-
nored.

• If the LoginContext's overall authentication succeeds, commit is invoked on each LoginModule. If phase 1 suc-
ceeds for a LoginModule, then the commit method continues with phase 2 and associates the relevant principals,
public credentials, and/or private credentials with the subject. If phase 1 fails for a LoginModule, then commit

removes any previously stored authentication state, such as usernames or passwords. The signature of the com-

mit method is: boolean commit() throws LoginException. Failure to complete the commit phase is indicated
by throwing a LoginException. A return of true indicates that the method succeeded, whereas a return of false
indicates that the login module should be ignored.

• If the LoginContext's overall authentication fails, then the abort method is invoked on each LoginModule. The
abort method removes or destroys any authentication state created by the login or initialize methods. The sig-
nature of the abort method is boolean abort() throws LoginException. Failure to complete the abort phase
is indicated by throwing a LoginException. A return of true indicates that the method succeeded, whereas a re-
turn of false indicates that the login module should be ignored.

• To remove the authentication state after a successful login, the application invokes logout on the LoginCon-

text. This in turn results in a logout method invocation on each LoginModule. The logout method removes
the principals and credentials originally associated with the subject during the commit operation. Credentials
should be destroyed upon removal. The signature of the logout method is: boolean logout() throws Lo-

ginException. Failure to complete the logout process is indicated by throwing a LoginException. A return of
true indicates that the method succeeded, whereas a return of false indicates that the login module should be ig-
nored.

When a LoginModule must communicate with the user to obtain authentication information, it uses a Callback-

Handler object. Applications implement the CallbackHandler interface and pass it to the LoginContext, which for-
wards it directly to the underlying login modules. Login modules use the CallbackHandler both to gather input

Security on JBoss

JBoss Release 2 249

from users, such as a password or smart card PIN, and to supply information to users, such as status information.
By allowing the application to specify the CallbackHandler, underlying LoginModules remain independent from
the different ways applications interact with users. For example, a CallbackHandler's implementation for a GUI
application might display a window to solicit user input. On the other hand, a callbackhandler's implementation
for a non-GUI environment, such as an application server, might simply obtain credential information by using an
application server API. The callbackhandler interface has one method to implement:

void handle(Callback[] callbacks)
throws java.io.IOException,

UnsupportedCallbackException;

The Callback interface is the last authentication class we will look at. This is a tagging interface for which several
default implementations are provided, including the NameCallback and PasswordCallback used in an earlier ex-
ample. A LoginModule uses a Callback to request information required by the authentication mechanism. Login-
Modules pass an array of Callbacks directly to the CallbackHandler.handle method during the authentication's lo-
gin phase. If a callbackhandler does not understand how to use a Callback object passed into the handle method,
it throws an UnsupportedCallbackException to abort the login call.

7.3. The JBoss Security Model

Similar to the rest of the JBoss architecture, security at the lowest level is defined as a set of interfaces for which al-
ternate implementations may be provided. Three basic interfaces define the JBoss server security layer:
org.jboss.security.AuthenticationManager, org.jboss.security.RealmMapping, and
org.jboss.security.SecurityProxy. Figure 7.8 shows a class diagram of the security interfaces and their rela-
tionship to the EJB container architecture.

Security on JBoss

JBoss Release 2 250

Figure 7.8. The key security model interfaces and their relationship to the JBoss server EJB container
elements.

The light blue classes represent the security interfaces while the yellow classes represent the EJB container layer.
The two interfaces required for the implementation of the J2EE security model are
org.jboss.security.AuthenticationManager and org.jboss.security.RealmMapping. The roles of the security
interfaces presented in Figure 7.8 are summarized in the following list.

• AuthenticationManager: This interface is responsible for validating credentials associated with principals.
Principals are identities, such as usernames, employee numbers, and social security numbers. Credentials are
proof of the identity, such as passwords, session keys, and digital signatures. The isValid method is invoked to
determine whether a user identity and associated credentials as known in the operational environment are valid
proof of the user's identity.

• RealmMapping: This interface is responsible for principal mapping and role mapping. The getPrincipal

method takes a user identity as known in the operational environment and returns the application domain iden-
tity. The doesUserHaveRole method validates that the user identity in the operation environment has been as-
signed the indicated role from the application domain.

• SecurityProxy: This interface describes the requirements for a custom SecurityProxyInterceptor plugin. A
SecurityProxy allows for the externalization of custom security checks on a per-method basis for both the EJB
home and remote interface methods.

• SubjectSecurityManager: This is a subinterface of AuthenticationManager that adds accessor methods for
obtaining the security domain name of the security manager and the current thread's authenticated Subject.

• SecurityDomain: This is an extension of the AuthenticationManager, RealmMapping, and SubjectSecurity-

Manager interfaces. It is a move to a comprehensive security interface based on the JAAS Subject, a
java.security.KeyStore, and the JSSE com.sun.net.ssl.KeyManagerFactory and
com.sun.net.ssl.TrustManagerFactory interfaces. This interface is a work in progress that will be the basis
of a multi-domain security architecture that will better support ASP style deployments of applications and re-
sources.

Note that the AuthenticationManager, RealmMapping and SecurityProxy interfaces have no association to JAAS
related classes. Although the JBossSX framework is heavily dependent on JAAS, the basic security interfaces re-
quired for implementation of the J2EE security model are not. The JBossSX framework is simply an implementa-
tion of the basic security plug-in interfaces that are based on JAAS. The component diagram presented in Fig-
ure 7.9 illustrates this fact. The implication of this plug-in architecture is that you are free to replace the JAAS-
based JBossSX implementation classes with your own custom security manager implementation that does not make
use of JAAS, if you so desire. You'll see how to do this when you look at the JBossSX MBeans available for the
configuration of JBossSX in Figure 7.9.

Security on JBoss

JBoss Release 2 251

Figure 7.9. The relationship between the JBossSX framework implementation classes and the JBoss server
EJB container layer.

7.3.1. Enabling Declarative Security in JBoss Revisited

Earlier in this chapter, the discussion of the J2EE standard security model ended with a requirement for the use of
JBoss server-specific deployment descriptor to enable security. The details of this configuration are presented here.
Figure 7.10 shows the JBoss-specific EJB and web application deployment descriptor's security-related elements.

Security on JBoss

JBoss Release 2 252

Figure 7.10. The security element subsets of the JBoss server jboss.xml and jboss-web.xml deployment
descriptors.

The value of a security-domain element specifies the JNDI name of the security manager interface implementa-
tion that JBoss uses for the EJB and web containers. This is an object that implements both of the Authentica-

tionManager and RealmMapping interfaces. When specified as a top-level element it defines what security domain
in effect for all EJBs in the deployment unit. This is the typical usage because mixing security managers within a
deployment unit complicates inter-component operation and administration.

To specify the security domain for an individual EJB, you specify the security-domain at the container configura-
tion level. This will override any top-level security-domain element.

The unauthenticated-principal element specifies the name to use for the Principal object returned by the EJB-

Context.getUserPrincipal method when an unauthenticated user invokes an EJB. Note that this conveys no spe-
cial permissions to an unauthenticated caller. Its primary purpose is to allow unsecured servlets and JSP pages to
invoke unsecured EJBs and allow the target EJB to obtain a non-null Principal for the caller using the getUser-

Principal method. This is a J2EE specification requirement.

Security on JBoss

JBoss Release 2 253

The security-proxy element identifies a custom security proxy implementation that allows per-request security
checks outside the scope of the EJB declarative security model without embedding security logic into the EJB im-
plementation. This may be an implementation of the org.jboss.security.SecurityProxy interface, or just an ob-
ject that implements methods in the home, remote, local home or local interfaces of the EJB to secure without im-
plementing any common interface. If the given class does not implement the SecurityProxy interface, the instance
must be wrapped in a SecurityProxy implementation that delegates the method invocations to the object. The
org.jboss.security.SubjectSecurityProxy is an example SecurityProxy implementation used by the default
JBossSX installation.

Take a look at a simple example of a custom SecurityProxy in the context of a trivial stateless session bean. The
custom SecurityProxy validates that no one invokes the bean's echo method with a four-letter word as its argu-
ment. This is a check that is not possible with role-based security; you cannot define a FourLetterEchoInvoker

role because the security context is the method argument, not a property of the caller. The code for the custom Se-

curityProxy is given in Example 7.7, and the full source code is available in the src/

main/org/jboss/book/security/ex1 directory of the book examples.

Example 7.7. The example 1 custom EchoSecurityProxy implementation that enforces the echo
argument-based security constraint.

package org.jboss.book.security.ex1;

import java.lang.reflect.Method;
import javax.ejb.EJBContext;

import org.apache.log4j.Category;

import org.jboss.security.SecurityProxy;

/** A simple example of a custom SecurityProxy implementation
* that demonstrates method argument based security checks.
* @author Scott.Stark@jboss.org
* @version $Revision: 1.2 $
*/

public class EchoSecurityProxy implements SecurityProxy
{

Category log = Category.getInstance(EchoSecurityProxy.class);
Method echo;

public void init(Class beanHome, Class beanRemote,
Object securityMgr)

throws InstantiationException
{

log.debug("init, beanHome="+beanHome
+ ", beanRemote="+beanRemote
+ ", securityMgr="+securityMgr);

// Get the echo method for equality testing in invoke
try {

Class[] params = {String.class};
echo = beanRemote.getDeclaredMethod("echo", params);

} catch(Exception e) {
String msg = "Failed to finde an echo(String) method";
log.error(msg, e);
throw new InstantiationException(msg);

}
}

public void setEJBContext(EJBContext ctx)
{

Security on JBoss

JBoss Release 2 254

log.debug("setEJBContext, ctx="+ctx);
}

public void invokeHome(Method m, Object[] args)
throws SecurityException

{
// We don't validate access to home methods

}

public void invoke(Method m, Object[] args, Object bean)
throws SecurityException

{
log.debug("invoke, m="+m);
// Check for the echo method
if (m.equals(echo)) {

// Validate that the msg arg is not 4 letter word
String arg = (String) args[0];
if (arg == null || arg.length() == 4)

throw new SecurityException("No 4 letter words");
}
// We are not responsible for doing the invoke

}
}

The EchoSecurityProxy checks that the method to be invoked on the bean instance corresponds to the
echo(String) method loaded the init method. If there is a match, the method argument is obtained and its length
compared against 4 or null. Either case results in a SecurityException being thrown. Certainly this is a contrived
example, but only in its application. It is a common requirement that applications must perform security checks
based on the value of method arguments. The point of the example is to demonstrate how custom security beyond
the scope of the standard declarative security model can be introduced independent of the bean implementation.
This allows the specification and coding of the security requirements to be delegated to security experts. Since the
security proxy layer can be done independent of the bean implementation, security can be changed to match the de-
ployment environment requirements.

The associated jboss.xml descriptor that installs the EchoSecurityProxy as the custom proxy for the EchoBean is
given in Example 7.8.

Example 7.8. The jboss.xml descriptor, which configures the EchoSecurityProxy as the custom security
proxy for the EchoBean.

<jboss>
<security-domain>java:/jaas/other</security-domain>

<enterprise-beans>
<session>

<ejb-name>EchoBean</ejb-name>
<security-proxy>org.jboss.book.security.ex1.EchoSecurityProxy</security-proxy>

</session>
</enterprise-beans>

</jboss>

Now test the custom proxy by running a client that attempts to invoke the EchoBean.echo method with the argu-
ments Hello and Four as illustrated in this fragment:

Security on JBoss

JBoss Release 2 255

public class ExClient
{

public static void main(String args[])
throws Exception

{
Logger log = Logger.getLogger("ExClient");
log.info("Looking up EchoBean");

InitialContext iniCtx = new InitialContext();
Object ref = iniCtx.lookup("EchoBean");
EchoHome home = (EchoHome) ref;
Echo echo = home.create();

log.info("Created Echo");
log.info("Echo.echo('Hello') = "+echo.echo("Hello"));
log.info("Echo.echo('Four') = "+echo.echo("Four"));

}
}

The first call should succeed, while the second should fail due to the fact that Four is a four-letter word. Run the
client as follows using Ant from the examples directory:

[examples]$ ant -Dchap=security -Dex=1 run-example
run-example1:
...

[echo] Waiting for 5 seconds for deploy...
[java] [INFO,ExClient] Looking up EchoBean
[java] [INFO,ExClient] Created Echo
[java] [INFO,ExClient] Echo.echo('Hello') = Hello
[java] Exception in thread "main" java.rmi.AccessException: SecurityException; nested exception is:
[java] java.lang.SecurityException: No 4 letter words

...
[java] Caused by: java.lang.SecurityException: No 4 letter words

...

The result is that the echo('Hello') method call succeeds as expected and the echo('Four') method call results in
a rather messy looking exception, which is also expected. The above output has been truncated to fit in the book.
The key part to the exception is that the SecurityException("No 4 letter words") generated by the EchoSecur-

ityProxy was thrown to abort the attempted method invocation as desired.

7.4. The JBoss Security Extension Architecture

The preceding discussion of the general JBoss security layer has stated that the JBossSX security extension frame-
work is an implementation of the security layer interfaces. This is the primary purpose of the JBossSX framework.
The details of the implementation are interesting in that it offers a great deal of customization for integration into
existing security infrastructures. A security infrastructure can be anything from a database or LDAP server to a
sophisticated security software suite. The integration flexibility is achieved using the pluggable authentication
model available in the JAAS framework.

The heart of the JBossSX framework is org.jboss.security.plugins.JaasSecurityManager. This is the default
implementation of the AuthenticationManager and RealmMapping interfaces. Figure 7.11 shows how the JaasSe-

curityManager integrates into the EJB and web container layers based on the security-domain element of the cor-
responding component deployment descriptor.

Security on JBoss

JBoss Release 2 256

Figure 7.11. The relationship between the security-domain component deployment descriptor value, the
component container and the JaasSecurityManager.

Figure 7.11 depicts an enterprise application that contains both EJBs and web content secured under the security
domain jwdomain. The EJB and web containers have a request interceptor architecture that includes a security in-
terceptor, which enforces the container security model. At deployment time, the security-domain element value in
the jboss.xml and jboss-web.xml descriptors is used to obtain the security manager instance associated with the

Security on JBoss

JBoss Release 2 257

container. The security interceptor then uses the security manager to perform its role. When a secured component is
requested, the security interceptor delegates security checks to the security manager instance associated with the
container.

The JBossSX JaasSecurityManager implementation performs security checks based on the information associated
with the Subject instance that results from executing the JAAS login modules configured under the name matching
the security-domain element value. We will drill into the JaasSecurityManager implementation and its use of
JAAS in the following section.

7.4.1. How the JaasSecurityManager Uses JAAS

The JaasSecurityManager uses the JAAS packages to implement the AuthenticationManager and RealmMapping

interface behavior. In particular, its behavior derives from the execution of the login module instances that are con-
figured under the name that matches the security domain to which the JaasSecurityManager has been assigned.
The login modules implement the security domain's principal authentication and role-mapping behavior. Thus, you
can use the JaasSecurityManager across different security domains simply by plugging in different login module
configurations for the domains.

To illustrate the details of the JaasSecurityManager's usage of the JAAS authentication process, you will walk
through a client invocation of an EJB home method invocation. The prerequisite setting is that the EJB has been
deployed in the JBoss server and its home interface methods have been secured using method-permission ele-
ments in the ejb-jar.xml descriptor, and it has been assigned a security domain named jwdomain using the
jboss.xml descriptor security-domain element.

Security on JBoss

JBoss Release 2 258

Figure 7.12. An illustration of the steps involved in the authentication and authorization of a secured EJB
home method invocation.

Figure 7.12 provides a view of the client to server communication we will discuss. The numbered steps shown are:

1. The client first has to perform a JAAS login to establish the principal and credentials for authentication, and
this is labeled Client Side Login in the figure. This is how clients establish their login identities in JBoss. Sup-

Security on JBoss

JBoss Release 2 259

port for presenting the login information via JNDI InitialContext properties is provided via an alternate
configuration. A JAAS login entails creating a LoginContext instance and passing the name of the configura-
tion to use. The configuration name is other. This one-time login associates the login principal and credentials
with all subsequent EJB method invocations. Note that the process might not authenticate the user. The nature
of the client-side login depends on the login module configuration that the client uses. In this example, the
other client-side login configuration entry is set up to use the ClientLoginModule module (an
org.jboss.security.ClientLoginModule). This is the default client side module that simply binds the user-
name and password to the JBoss EJB invocation layer for later authentication on the server. The identity of the
client is not authenticated on the client.

2. Later, the client obtains the EJB home interface and attempts to create a bean. This event is labeled as Home
Method Invocation. This results in a home interface method invocation being sent to the JBoss server. The in-
vocation includes the method arguments passed by the client along with the user identity and credentials from
the client-side JAAS login performed in step 1.

3. On the server side, the security interceptor first requires authentication of the user invoking the call, which, as
on the client side, involves a JAAS login.

4. The security domain under which the EJB is secured determines the choice of login modules. The security do-
main name is used as the login configuration entry name passed to the LoginContext constructor. The EJB se-
curity domain is jwdomain. If the JAAS login authenticates the user, a JAAS Subject is created that contains
the following in its PrincipalsSet:

• A java.security.Principal that corresponds to the client identity as known in the deployment security
environment.

• A java.security.acl.Group named Roles that contains the role names from the application domain to
which the user has been assigned. org.jboss.security.SimplePrincipal objects are used to represent
the role names; SimplePrincipal is a simple string-based implementation of Principal. These roles are
used to validate the roles assigned to methods in ejb-jar.xml and the EJBCon-

text.isCallerInRole(String) method implementation.

• An optional java.security.acl.Group named CallerPrincipal, which contains a single
org.jboss.security.SimplePrincipal that corresponds to the identity of the application domain's caller.
The CallerPrincipal sole group member will be the value returned by the EJBCon-

text.getCallerPrincipal() method. The purpose of this mapping is to allow a Principal as known in
the operational security environment to map to a Principal with a name known to the application. In the
absence of a CallerPrincipal mapping the deployment security environment principal is used as the get-

CallerPrincipal method value. That is, the operational principal is the same as the application domain
principal.

5. The final step of the security interceptor check is to verify that the authenticated user has permission to invoke
the requested method This is labeled as Server Side Authorization in Figure 7.12. Performing the authorization
this entails the following steps:

• Obtain the names of the roles allowed to access the EJB method from the EJB container. The role names
are determined by ejb-jar.xml descriptor role-name elements of all method-permission elements con-
taining the invoked method.

Security on JBoss

JBoss Release 2 260

• If no roles have been assigned, or the method is specified in an exclude-list element, then access to the
method is denied. Otherwise, the doesUserHaveRole method is invoked on the security manager by the se-
curity interceptor to see if the caller has one of the assigned role names. This method iterates through the
role names and checks if the authenticated user's Subject Roles group contains a SimplePrincipal with
the assigned role name. Access is allowed if any role name is a member of the Roles group. Access is
denied if none of the role names are members.

• If the EJB was configured with a custom security proxy, the method invocation is delegated to it. If the se-
curity proxy wants to deny access to the caller, it will throw a java.lang.SecurityException. If no Se-

curityException is thrown, access to the EJB method is allowed and the method invocation passes to the
next container interceptor. Note that the SecurityProxyInterceptor handles this check and this intercept-
or is not shown.

Every secured EJB method invocation, or secured web content access, requires the authentication and authorization
of the caller because security information is handled as a stateless attribute of the request that must be presented
and validated on each request. This can be an expensive operation if the JAAS login involves client-to-server com-
munication. Because of this, the JaasSecurityManager supports the notion of an authentication cache that is used
to store principal and credential information from previous successful logins. You can specify the authentication
cache instance to use as part of the JaasSecurityManager configuration as you will see when the associated
MBean service is discussed in following section. In the absence of any user-defined cache, a default cache that
maintains credential information for a configurable period of time is used.

7.4.2. The JaasSecurityManagerService MBean

The JaasSecurityManagerService MBean service manages security managers. Although its name begins with
Jaas, the security managers it handles need not use JAAS in their implementation. The name arose from the fact
that the default security manager implementation is the JaasSecurityManager. The primary role of the JaasSecur-

ityManagerService is to externalize the security manager implementation. You can change the security manager
implementation by providing an alternate implementation of the AuthenticationManager and RealmMapping inter-
faces.

The second fundamental role of the JaasSecurityManagerService is to provide a JNDI
javax.naming.spi.ObjectFactory implementation to allow for simple code-free management of the JNDI name
to security manager implementation mapping. It has been mentioned that security is enabled by specifying the
JNDI name of the security manager implementation via the security-domain deployment descriptor element.
When you specify a JNDI name, there has to be an object-binding there to use. To simplify the setup of the JNDI
name to security manager bindings, the JaasSecurityManagerService manages the association of security man-
ager instances to names by binding a next naming system reference with itself as the JNDI ObjectFactory under the
name java:/jaas. This allows one to use a naming convention of the form java:/jaas/XYZ as the value for the
security-domain element, and the security manager instance for the XYZ security domain will be created as needed
for you. The security manager for the domain XYZ is created on the first lookup against the java:/jaas/XYZ bind-
ing by creating an instance of the class specified by the SecurityManagerClassName attribute using a constructor
that takes the name of the security domain. For example, consider the following container security configuration
snippet:

<jboss>
<!-- Configure all containers to be secured under the "hades" security domain -->
<security-domain>java:/jaas/hades</security-domain>
<!-- ... -->

Security on JBoss

JBoss Release 2 261

</jboss>

Any lookup of the name java:/jaas/hades will return a security manager instance that has been associated with
the security domain named hades. This security manager will implement the AuthenticationManager and
RealmMapping security interfaces and will be of the type specified by the JaasSecurityManagerService Secur-

ityManagerClassName attribute.

The JaasSecurityManagerService MBean is configured by default for use in the standard JBoss distribution, and
you can often use the default configuration as is. The configurable attributes of the JaasSecurityManagerService

include:

• SecurityManagerClassName: The name of the class that provides the security manager implementation. The
implementation must support both the org.jboss.security.AuthenticationManager and
org.jboss.security.RealmMapping interfaces. If not specified this defaults to the JAAS-based
org.jboss.security.plugins.JaasSecurityManager.

• CallbackHandlerClassName: The name of the class that provides the
javax.security.auth.callback.CallbackHandler implementation used by the JaasSecurityManager. You
can override the handler used by the JaasSecurityManager if the default implementation
(org.jboss.security.auth.callback.SecurityAssociationHandler) does not meet your needs. This is a
rather deep configuration that generally should not be set unless you know what you are doing.

• SecurityProxyFactoryClassName: The name of the class that provides the
org.jboss.security.SecurityProxyFactory implementation. If not specified this defaults to
org.jboss.security.SubjectSecurityProxyFactory.

• AuthenticationCacheJndiName: Specifies the location of the security credential cache policy. This is first
treated as an ObjectFactory location capable of returning CachePolicy instances on a per-security-domain
basis. This is done by appending the name of the security domain to this name when looking up the CachePol-

icy for a domain. If this fails, the location is treated as a single CachePolicy for all security domains. As a de-
fault, a timed cache policy is used.

• DefaultCacheTimeout: Specifies the default timed cache policy timeout in seconds. The default value is 1800
seconds (30 minutes). The value you use for the timeout is a tradeoff between frequent authentication opera-
tions and how long credential information may be out of synch with respect to the security information store. If
you want to disable caching of security credentials, set this to 0 to force authentication to occur every time. This
has no affect if the AuthenticationCacheJndiName has been changed from the default value.

• DefaultCacheResolution: Specifies the default timed cache policy resolution in seconds. This controls the in-
terval at which the cache current timestamp is updated and should be less than the DefaultCacheTimeout in or-
der for the timeout to be meaningful. The default resolution is 60 seconds(1 minute). This has no affect if the
AuthenticationCacheJndiName has been changed from the default value.

• DefaultUnauthenticatedPrincipal: Specifies the principal to use for unauthenticated users. This setting makes
it possible to set default permissions for users who have not been authenticated.

The JaasSecurityManagerService also supports a number of useful operations. These include flushing any secur-
ity domain authentication cache at runtime, getting the list of active users in a security domain authentication
cache, and any of the security manager interface methods.

Security on JBoss

JBoss Release 2 262

Flushing a security domain authentication cache can be used to drop all cached credentials when the underlying
store has been updated and you want the store state to be used immediately. The MBean operation signature is:
public void flushAuthenticationCache(String securityDomain).

This can be invoked programmatically using the following code snippet:

MBeanServer server = ...;
String jaasMgrName = "jboss.security:service=JaasSecurityManager";
ObjectName jaasMgr = new ObjectName(jaasMgrName);
Object[] params = {domainName};
String[] signature = {"java.lang.String"};
server.invoke(jaasMgr, "flushAuthenticationCache", params, signature);

Getting the list of active users provides a snapshot of the Principals keys in a security domain authentication
cache that are not expired. The MBean operation signature is: public List getAuthenticationCachePrin-

cipals(String securityDomain).

This can be invoked programmatically using the following code snippet:

MBeanServer server = ...;
String jaasMgrName = "jboss.security:service=JaasSecurityManager";
ObjectName jaasMgr = new ObjectName(jaasMgrName);
Object[] params = {domainName};
String[] signature = {"java.lang.String"};
List users = (List) server.invoke(jaasMgr, "getAuthenticationCachePrincipals",

params, signature);

The security manager has a few additional access methods.

public boolean isValid(String securityDomain, Principal principal, Object credential);
public Principal getPrincipal(String securityDomain, Principal principal);
public boolean doesUserHaveRole(String securityDomain, Principal principal,

Object credential, Set roles);
public Set getUserRoles(String securityDomain, Principal principal, Object credential);

They provide access to the corresponding AuthenticationManager and RealmMapping interface method of the as-
sociated security domain named by the securityDomain argument.

7.4.3. The JaasSecurityDomain MBean

The org.jboss.security.plugins.JaasSecurityDomain is an extension of JaasSecurityManager that adds the
notion of a KeyStore, a JSSE KeyManagerFactory and a TrustManagerFactory for supporting SSL and other cryp-
tographic use cases. The additional configurable attributes of the JaasSecurityDomain include:

• KeyStoreType: The type of the KeyStore implementation. This is the type argument passed to the
java.security.KeyStore.getInstance(String type) factory method. The default is JKS.

• KeyStoreURL: A URL to the location of the KeyStore database. This is used to obtain an InputStream to ini-
tialize the KeyStore. If the string is not a value URL, it is treated as a file.

• KeyStorePass: The password associated with the KeyStore database contents. The KeyStorePass is also used
in combination with the Salt and IterationCount attributes to create a PBE secret key used with the encode/
decode operations. The KeyStorePass attribute value format is one of the following:

Security on JBoss

JBoss Release 2 263

• The plaintext password for the KeyStore The toCharArray() value of the string is used without any manip-
ulation.

• A command to execute to obtain the plaintext password. The format is {EXT}... where the ... is the exact
command line that will be passed to the Runtime.exec(String) method to execute a platform-specific
command. The first line of the command output is used as the password.

• A class to create to obtain the plaintext password. The format is {CLASS}classname[:ctorarg] where the
[:ctorarg] is an optional string that will be passed to the constructor when instantiating the classname.
The password is obtained from classname by invoking a toCharArray() method if found, otherwise, the
toString() method is used.

• Salt: The PBEParameterSpec salt value.

• IterationCount: The PBEParameterSpec iteration count value.

• TrustStoreType: The type of the TrustStore implementation. This is the type argument passed to the
java.security.KeyStore.getInstance(String type) factory method. The default is JKS.

• TrustStoreURL: A URL to the location of the TrustStore database. This is used to obtain an InputStream to
initialize the KeyStore. If the string is not a value URL, it is treated as a file.

• TrustStorePass: The password associated with the trust store database contents. The TrustStorePass is a
simple password and doesn't have the same configuration options as the KeyStorePass.

• ManagerServiceName: Sets the JMX object name string of the security manager service MBean. This is used
to register the defaults to register the JaasSecurityDomain as a the security manager under
java:/jaas/<domain> where <domain> is the name passed to the MBean constructor. The name defaults to
jboss.security:service=JaasSecurityManager.

7.5. Defining Security Domains

The standard way of configuring security domains for authentication and authorization in JBoss is to use the XML
login configuration file. The login configuration policy defines a set of named security domains that each define a
stack of login modules that will be called upon to authenticate and authorize users.

The XML configuration file conforms to the DTD given by Figure 7.13. This DTD can be found in docs/

dtd/security_config.dtd.

Security on JBoss

JBoss Release 2 264

Figure 7.13. The XMLLoginConfig DTD

The following example shows a simple configuration named jmx-console that is backed by a single login module.
The login module is configured by a simple set of name/value configuration pairs that have meaning to the login
module in question. We'll see what these options mean later, for now we'll just be concerned with the structure of
the configuration file.

<application-policy name="jmx-console">
<authentication>

<login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule" flag="required">
<module-option name="usersProperties">props/jmx-console-users.properties</module-option>
<module-option name="rolesProperties">props/jmx-console-roles.properties</module-option>

</login-module>
</authentication>

</application-policy>

The name attribute of the application-policy is the login configuration name. Applications policy elements will
be bound by that name in JNDI under the the java:/jaas context. Applications will link to security domains
through this JNDI name in their deployment descriptors. (See the security-domain elements in jboss.xml, jboss-
web.xml and jboss-service.xml files for examples)

The code attribute of the login-module element specifies the class name of the login module implementation. The
required flag attribute controls the overall behavior of the authentication stack. The allowed values and meanings
are:

• required: The login module is required to succeed for the authentication to be successful. If any required mod-
ule fails, the authentication will fail. The remaining login modules in the stack will be called regardless of the
outcome of the authentication.

• requisite: The login module is required to succeed. If it succeeds, authentication continues down the login
stack. If it fails, control immediately returns to the application.

• sufficient: The login module is not required to succeed. If it does succeed, control immediately returns to the
application. If it fails, authentication continues down the login stack.

• optional: The login module is not required to succeed. Authentication still continues to proceed down the login
stack regardless of whether the login module succeeds or fails.

The following example shows the definition of a security domain that uses multiple login modules. Since both
modules are marked as sufficient, only one of them need to succeed for login to proceed.

<application-policy name="todo">
<authentication>

<login-module code="org.jboss.security.auth.spi.LdapLoginModule"

Security on JBoss

JBoss Release 2 265

flag="sufficient">
<!-- LDAP configuration -->

</login-module>
<login-module code="org.jboss.security.auth.spi.DatabaseServerLoginModule"

flag="sufficient">
<!-- database configuration -->

</login-module>
</authentication>

</application-policy>

Each login module has its own set of configuration options. These are set as name/value pairs using the module-

option elements. We'll cover module options in more depth when we look at the individual login modules avail-
able in JBoss AS.

7.5.1. Loading Security Domains

Authentication security domains are configured statically in the conf/login-config.xml file. The XMLLoginConfig

MBean is resp onsible for loading security configurations from this configurations from a local configuration file.
The MBean is defined as shown below.

<mbean code="org.jboss.security.auth.login.XMLLoginConfig"
name="jboss.security:service=XMLLoginConfig">

<attribute name="ConfigResource">login-config.xml</attribute>
</mbean>

The MBean supports the following attributes:

• ConfigURL: specifies the URL of the XML login configuration file that should be loaded by this MBean on
startup. This must be a valid URL string representation.

• ConfigResource: specifies the resource name of the XML login configuration file that should be loaded by this
MBean on startup. The name is treated as a classpath resource for which a URL is located using the thread con-
text class loader.

• ValidateDTD: a flag indicating if the XML configuration should be validated against its DTD. This defaults to
true.

The MBean also supports the following operations that allow one to dynamically extend the login configurations at
runtime. Note that any operation that attempts to alter login configuration requires a
javax.security.auth.AuthPermission("refreshLoginConfiguration") when running with a security manager.
The org.jboss.book.security.service.SecurityConfig service demonstrates how this can be used to add/
remove a deployment specific security configuration dynamically.

• void addAppConfig(String appName, AppConfigurationEntry[] entries): this adds the given login mod-
ule configuration stack to the current configuration under the given appName. This replaces any existing entry
under that name.

• void removeAppConfig(String appName): this removes the login module configuration registered under the
given appName.

• String[] loadConfig(URL configURL) throws Exception: this loads one or more login configurations from

Security on JBoss

JBoss Release 2 266

a URL representing either an XML or legacy Sun login configuration file. Note that all login configurations
must be added or none will be added. It returns the names of the login configurations that were added.

• void removeConfigs(String[] appNames): this removes the login configurations specified appNames array.

• String displayAppConfig(String appName): this operation displays a simple string format of the named con-
figuration if it exists.

The SecurityConfig MBean is responsible for selecting the javax.security.auth.login.Configuration to be
used. The default configuration simply references the XMLLoginConfig MBean.

<mbean code="org.jboss.security.plugins.SecurityConfig"
name="jboss.security:service=SecurityConfig">

<attribute name="LoginConfig">jboss.security:service=XMLLoginConfig</attribute>
</mbean>

There is one configurable attribute:

• LoginConfig: Specifies the JMX ObjectName string of the MBean that provides the default JAAS login config-
uration. When the SecurityConfig is started, this MBean is queried for its
javax.security.auth.login.Configuration by calling its getConfiguration(Configuration currentCon-

fig) operation. If the LoginConfig attribute is not specified then the default Sun Configuration implementa-
tion described in the Configuration class JavaDocs is used.

In addition to allowing for a custom JAAS login configuration implementation, this service allows configurations
to be chained together in a stack at runtime. This allows one to push a login configuration onto the stack and latter
pop it. This is a feature used by the security unit tests to install custom login configurations into a default JBoss in-
stallation. Pushing a new configuration is done using:

public void pushLoginConfig(String objectName) throws
JMException, MalformedObjectNameException;

The objectName parameters specifies an MBean similar to the LoginConfig attribute. The current login configura-
tion may be removed using:

public void popLoginConfig() throws JMException;

7.5.2. The DynamicLoginConfig service

Security domains defined in the login-config.xml file are essentially static. They are read when JBoss starts up,
but there is no easy way to add a new security domain or change the definition for an existing one. The DynamicLo-

ginConfig service allows you to dynamically deploy security domains. This allows you to specify JAAS login con-
figuration as part of a deployment (or just as a standalone service) rather than having to edit the static login-con-

fig.xml file.

The service supports the following attributes:

• AuthConfig: The resource path to the JAAS login configuration file to use. This defaults to login-config.xml

• LoginConfigService: the XMLLoginConfig service name to use for loading. This service must support a String

Security on JBoss

JBoss Release 2 267

loadConfig(URL) operation to load the configurations.

• SecurityManagerService: The SecurityManagerService name used to flush the registered security domains.
This service must support a flushAuthenticationCache(String) operation to flush the case for the argument
security domain. Setting this triggers the flush of the authentication caches when the service is stopped.

Here is an example MBean definition using the DynamicLoginConfig service.

<server>
<mbean code="org.jboss.security.auth.login.DynamicLoginConfig" name="...">

<attribute name="AuthConfig">login-config.xml</attribute>

<!-- The service which supports dynamic processing of login-config.xml
configurations.
-->
<depends optional-attribute-name="LoginConfigService">

jboss.security:service=XMLLoginConfig </depends>

<!-- Optionally specify the security mgr service to use when
this service is stopped to flush the auth caches of the domains
registered by this service.
-->
<depends optional-attribute-name="SecurityManagerService">

jboss.security:service=JaasSecurityManager </depends>
</mbean>

</server>

This will load the specified AuthConfig resource using the specified LoginConfigService MBean by invoking
loadConfig with the appropriate resource URL. When the service is stopped the configurations are removed. The
resource specified may be either an XML file, or a Sun JAAS login configuration.

7.5.3. Using JBoss Login Modules

JBoss includes several bundled login modules suitable for most user management needs. JBoss can read user in-
formation from a relational database, an LDAP server or flat files. In addition to these core login modules, JBoss
provides several other login modules that provide user information for very customized needs in JBoss. Before we
explore the individual login modules, let's take a look at a few login module configuration options that are common
to multiple modules.

7.5.3.1. Password Stacking

Multiple login modules can be chained together in a stack, with each login module providing both the authentica-
tion and authorization components. This works for many use cases, but sometimes authentication and authorization
are split across multiple user management stores. A previous example showed how to combine LDAP and a rela-
tional database, allowing a user to be authenticated by either system. However, consider the case where users are
managed in a central LDAP server but application-specific roles are stored in the application's relational database.
The password-stacking module option captures this relationship.

• password-stacking: When password-stacking option is set to useFirstPass, this module first looks for a
shared username and password under the property names javax.security.auth.login.name and
javax.security.auth.login.password respectively in the login module shared state map. If found these are
used as the principal name and password. If not found the principal name and password are set by this login

Security on JBoss

JBoss Release 2 268

module and stored under the property names javax.security.auth.login.name and
javax.security.auth.login.password respectively.

To use password stacking, each login module should set password-stacking to useFirstPass. If a previous mod-
ule configured for password stacking has authenticated the user, all the other stacking modules will consider the
user authenticated and only attempt to provide a set of roles for the authorization step.

The following listing shows how password stacking could be used:

<application-policy name="todo">
<authentication>

<login-module code="org.jboss.security.auth.spi.LdapLoginModule"
flag="required">

<!-- LDAP configuration -->
<module-option name="password-stacking">useFirstPass</module-option>

</login-module>
<login-module code="org.jboss.security.auth.spi.DatabaseServerLoginModule"

flag="required">
<!-- database configuration -->
<module-option name="password-stacking">useFirstPass</module-option>

</login-module>
</authentication>

</application-policy>

When using password stacking, it is usually appropriate to set all modules to be required to make sure that all mod-
ules are considered and have chance to contribute roles to the authorization process.

7.5.3.2. Password Hashing

Most of the login modules need to compare a client-supplied password to a password stored in a user management
system. These modules generally work with plain text passwords, but can also be configured to support hashed
passwords to prevent plain text passwords from being stored on the server side.

• hashAlgorithm: The name of the java.security.MessageDigest algorithm to use to hash the password.
There is no default so this option must be specified to enable hashing. Typical values are MD5 and SHA.

• hashEncoding: The string format for the hashed pass and must be either base64, hex or rfc2617. The default is
base64.

• hashCharset: The encoding used to convert the clear text password to a byte array. The platform default en-
coding is the default.

• hashUserPassword: This indicates that the hashing algorithm should be applied to the password the user sub-
mits. The hashed user password will be compared against the value in the login module, which is expected to be
a hash of the password. The default is true.

• hashStorePassword: This indicates that the hashing algorithm should be applied to the password stored on the
server side. This is used for digest authentication where the user submits a hash of the user password along with
a request-specific tokens from the server to be comare. JBoss uses the hash algorithm (for digest, this would be
rfc2617) to compute a server-side hash that should match the hashed value sent from the client.

The following is an login module configuration that assigns unauthenticated users the principal name nobody and
contains based64-encoded, MD5 hashes of the passwords in a usersb64.properties file.

Security on JBoss

JBoss Release 2 269

<policy>
<application-policy name="testUsersRoles">

<authentication>
<login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule"

flag="required">
<module-option name="hashAlgorithm">MD5</module-option>
<module-option name="hashEncoding">base64</module-option>

</login-module>
</authentication>

</application-policy>
</policy>

If you need to generate passwords in code, the org.jboss.security.Util class provides a static helper method
that will hash a password using a given encoding.

String hashedPassword = Util.createPasswordHash("MD5",
Util.BASE64_ENCODING,
null,
null,
"password");

OpenSSL provides an alternative way to quickly generate hashed passwords.

echo -n password | openssl dgst -md5 -binary | openssl base64

In both cases, the text password should hash to "X03MO1qnZdYdgyfeuILPmQ==". This is the value that would
need to be stored in the user store.

7.5.3.3. Unauthenticated Identity

Not all requests come in authenticated. The unauthenticated identity is a login module configuration option that as-
signs a specific identity (guest, for example) to requests that are made with no associated authentication informa-
tion. This can be used to allow unprotected servlets to invoke methods on EJBs that do not require a specific role.
Such a principal has no associated roles and so can only access either unsecured EJBs or EJB methods that are as-
sociated with the unchecked permission constraint.

• unauthenticatedIdentity: This defines the principal name that should be assigned to requests that contain no
authentication information.

7.5.3.4. UsersRolesLoginModule

The UsersRolesLoginModule is a simple login module that supports multiple users and user roles loaded from Java
properties files. The username-to-password mapping file is called users.properties and the username-to-roles
mapping file is called roles.properties. The properties files are loaded during initialization using the initialize
method thread context class loader. This means that these files can be placed into the J2EE deployment JAR, the
JBoss configuration directory, or any directory on the JBoss server or system classpath. The primary purpose of
this login module is to easily test the security settings of multiple users and roles using properties files deployed
with the application.

The users.properties file uses a username=password format with each user entry on a separate line as show here:

username1=password1
username2=password2

Security on JBoss

JBoss Release 2 270

...

The roles.properties file uses as username=role1,role2,... format with an optional group name value. For
example:

username1=role1,role2,...
username1.RoleGroup1=role3,role4,...
username2=role1,role3,...

The username.XXX form of property name is used to assign the username roles to a particular named group of roles
where the XXX portion of the property name is the group name. The username=... form is an abbreviation for
username.Roles=..., where the Roles group name is the standard name the JaasSecurityManager expects to con-
tain the roles which define the users permissions.

The following would be equivalent definitions for the jduke username:

jduke=TheDuke,AnimatedCharacter
jduke.Roles=TheDuke,AnimatedCharacter

The supported login module configuration options include the following:

• usersProperties: The name of the properties resource containing the username to password mappings. This de-
faults to users.properties.

• rolesProperties: The name of the properties resource containing the username to roles mappings. This defaults
to roles.properties.

This login module supports password stacking, password hashing and unauthenticated identity.

7.5.3.5. LdapLoginModule

The LdapLoginModule is a LoginModule implementation that authenticates against an LDAP server. You would use
the LdapLoginModule if your username and credentials are stored in an LDAP server that is accessible using a
JNDI LDAP provider.

The LDAP connectivity information is provided as configuration options that are passed through to the environ-
ment object used to create JNDI initial context. The standard LDAP JNDI properties used include the following:

• java.naming.factory.initial: The classname of the InitialContextFactory implementation. This defaults to
the Sun LDAP provider implementation com.sun.jndi.ldap.LdapCtxFactory.

• java.naming.provider.url: The LDAP URL for the LDAP server

• java.naming.security.authentication: The security level to use. This defaults to simple.

• java.naming.security.protocol: The transport protocol to use for secure access, such as, SSL.

• java.naming.security.principal: The principal for authenticating the caller to the service. This is built from
other properties as described below.

• java.naming.security.credentials: The value of the property depends on the authentication scheme. For ex-

Security on JBoss

JBoss Release 2 271

ample, it could be a hashed password, clear-text password, key, certificate, and so on.

The supported login module configuration options include the following:

• principalDNPrefix: A prefix to add to the username to form the user distinguished name. See principalDN-

Suffix for more info.

• principalDNSuffix: A suffix to add to the username when forming the user distinguished name. This is useful
if you prompt a user for a username and you don't want the user to have to enter the fully distinguished name.
Using this property and principalDNSuffix the userDN will be formed as principalDNPrefix + username +

principalDNSuffix

• useObjectCredential: A true/false value that indicates that the credential should be obtained as an opaque Ob-

ject using the org.jboss.security.auth.callback.ObjectCallback type of Callback rather than as a
char[] password using a JAAS PasswordCallback. This allows for passing non-char[] credential information
to the LDAP server.

• rolesCtxDN: The fixed distinguished name to the context to search for user roles.

• userRolesCtxDNAttributeName: The name of an attribute in the user object that contains the distinguished
name to the context to search for user roles. This differs from rolesCtxDN in that the context to search for a
user's roles can be unique for each user.

• roleAttributeID: The name of the attribute that contains the user roles. If not specified this defaults to roles.

• roleAttributeIsDN: A flag indicating whether the roleAttributeID contains the fully distinguished name of a
role object, or the role name. If false, the role name is taken from the value of roleAttributeID. If true, the
role attribute represents the distinguished name of a role object. The role name is taken from the value of the
roleNameAttributeId attribute of the context name by the distinguished name. In certain directory schemas
(e.g., MS ActiveDirectory), role attributes in the user object are stored as DNs to role objects instead of as
simple names, in which case, this property should be set to true. The default is false.

• roleNameAttributeID: The name of the attribute of the context pointed to by the roleCtxDN distinguished
name value which contains the role name. If the roleAttributeIsDN property is set to true, this property is
used to find the role object's name attribute. The default is group.

• uidAttributeID: The name of the attribute in the object containing the user roles that corresponds to the userid.
This is used to locate the user roles. If not specified this defaults to uid.

• matchOnUserDN: A true/false flag indicating if the search for user roles should match on the user's fully dis-
tinguished name. If false, just the username is used as the match value against the uidAttributeName attribute.
If true, the full userDN is used as the match value.

• unauthenticatedIdentity: The principal name that should be assigned to requests that contain no authentication
information. This behavior is inherited from the UsernamePasswordLoginModule superclass.

• allowEmptyPasswords: A flag indicating if empty (length 0) passwords should be passed to the LDAP server.
An empty password is treated as an anonymous login by some LDAP servers and this may not be a desirable
feature. Set this to false to reject empty passwords or true to have the LDAP server validate the empty pass-
word. The default is true.

Security on JBoss

JBoss Release 2 272

The authentication of a user is performed by connecting to the LDAP server based on the login module configura-
tion options. Connecting to the LDAP server is done by creating an InitialLdapContext with an environment
composed of the LDAP JNDI properties described previously in this section. The Context.SECURITY_PRINCIPAL is
set to the distinguished name of the user as obtained by the callback handler in combination with the principalDN-

Prefix and principalDNSuffix option values, and the Context.SECURITY_CREDENTIALS property is either set to
the String password or the Object credential depending on the useObjectCredential option.

Once authentication has succeeded by virtue of being able to create an InitialLdapContext instance, the user's
roles are queried by performing a search on the rolesCtxDN location with search attributes set to the roleAttrib-

uteName and uidAttributeName option values. The roles names are obtaining by invoking the toString method on
the role attributes in the search result set.

The following is a sample login-config.xml entry.

<application-policy name="testLDAP">
<authentication>

<login-module code="org.jboss.security.auth.spi.LdapLoginModule"
flag="required">

<module-option name="java.naming.factory.initial">
com.sun.jndi.ldap.LdapCtxFactory
</module-option>

<module-option name="java.naming.provider.url">
ldap://ldaphost.jboss.org:1389/

</module-option>
<module-option name="java.naming.security.authentication">

simple
</module-option>
<module-option name="principalDNPrefix">uid=</module-option>
<module-option name="principalDNSuffix">

,ou=People,dc=jboss,dc=org
</module-option>

<module-option name="rolesCtxDN">
ou=Roles,dc=jboss,dc=org

</module-option>
<module-option name="uidAttributeID">member</module-option>
<module-option name="matchOnUserDN">true</module-option>

<module-option name="roleAttributeID">cn</module-option>
<module-option name="roleAttributeIsDN">false </module-option>

</login-module>
</authentication>

</application-policy>

An LDIF file representing the structure of the directory this data operates against is shown below.

dn: dc=jboss,dc=org
objectclass: top
objectclass: dcObject
objectclass: organization
dc: jboss
o: JBoss

dn: ou=People,dc=jboss,dc=org
objectclass: top
objectclass: organizationalUnit
ou: People

dn: uid=jduke,ou=People,dc=jboss,dc=org
objectclass: top

Security on JBoss

JBoss Release 2 273

objectclass: uidObject
objectclass: person
uid: jduke
cn: Java Duke
sn: Duke
userPassword: theduke

dn: ou=Roles,dc=jboss,dc=org
objectclass: top
objectclass: organizationalUnit
ou: Roles

dn: cn=JBossAdmin,ou=Roles,dc=jboss,dc=org
objectclass: top
objectclass: groupOfNames
cn: JBossAdmin
member: uid=jduke,ou=People,dc=jboss,dc=org
description: the JBossAdmin group

Looking back at the testLDAP login module configuration, the java.naming.factory.initial,
java.naming.factory.url and java.naming.security options indicate the Sun LDAP JNDI provider implement-
ation will be used, the LDAP server is located on host ldaphost.jboss.org on port 1389, and that the LDAP
simple authentication method will be use to connect to the LDAP server.

The login module attempts to connect to the LDAP server using a DN representing the user it is trying to authentic-
ate. This DN is constructed from the principalDNPrefix, passed in, the username of the user and the princip-

alDNSuffix as described above. In this example, the username jduke would map to
uid=jduke,ou=People,dc=jboss,dc=org. We've assumed the LDAP server authenticates users using the user-

Password attribute of the user's entry (theduke in this example). This is the way most LDAP servers work,
however, if your LDAP server handles authentication differently you will need to set the authentication credentials
in a way that makes sense for your server.

Once authentication succeeds, the roles on which authorization will be based are retrieved by performing a subtree
search of the rolesCtxDN for entries whose uidAttributeID match the user. If matchOnUserDN is true the search
will be based on the full DN of the user. Otherwise the search will be based on the actual user name entered. In this
example, the search is under ou=Roles,dc=jboss,dc=org for any entries that have a member attribute equal to
uid=jduke,ou=People,dc=jboss,dc=org. The search would locate cn=JBossAdmin under the roles entry.

The search returns the attribute specified in the roleAttributeID option. In this example, the attribute is cn. The
value returned would be JBossAdmin, so the jduke user is assigned to the JBossAdmin role.

It's often the case that a local LDAP server provides identity and authentication services but is unable to use the au-
thorization services. This is because application roles don't always map well onto LDAP groups, and LDAP admin-
istrators are often hesitant to allow external application-specific data in central LDAP servers. For this reason, the
LDAP authentication module is often paired with another login module, such as the database login module, that can
provide roles more suitable to the application being developed.

This login module also supports unauthenticated identity and password stacking.

7.5.3.6. DatabaseServerLoginModule

The DatabaseServerLoginModule is a JDBC based login module that supports authentication and role mapping.
You would use this login module if you have your username, password and role information relational database.
The DatabaseServerLoginModule is based on two logical tables:

Security on JBoss

JBoss Release 2 274

Table Principals(PrincipalID text, Password text)
Table Roles(PrincipalID text, Role text, RoleGroup text)

The Principals table associates the user PrincipalID with the valid password and the Roles table associates the
user PrincipalID with its role sets. The roles used for user permissions must be contained in rows with a
RoleGroup column value of Roles. The tables are logical in that you can specify the SQL query that the login mod-
ule uses. All that is required is that the java.sql.ResultSet has the same logical structure as the Principals and
Roles tables described previously. The actual names of the tables and columns are not relevant as the results are ac-
cessed based on the column index. To clarify this notion, consider a database with two tables, Principals and
Roles, as already declared. The following statements build the tables to contain a PrincipalID java with a Pass-

word of echoman in the Principals table, a PrincipalID java with a role named Echo in the Roles RoleGroup in
the Roles table, and a PrincipalID java with a role named caller_java in the CallerPrincipal RoleGroup in
the Roles table:

INSERT INTO Principals VALUES('java', 'echoman')
INSERT INTO Roles VALUES('java', 'Echo', 'Roles')
INSERT INTO Roles VALUES('java', 'caller_java', 'CallerPrincipal')

The supported login module configuration options include the following:

• dsJndiName: The JNDI name for the DataSource of the database containing the logical Principals and Roles

tables. If not specified this defaults to java:/DefaultDS.

• principalsQuery: The prepared statement query equivalent to: select Password from Principals where

PrincipalID=?. If not specified this is the exact prepared statement that will be used.

• rolesQuery: The prepared statement query equivalent to: select Role, RoleGroup from Roles where Prin-

cipalID=?. If not specified this is the exact prepared statement that will be used.

• ignorePasswordCase: A boolean flag indicating if the password comparison should ignore case. This can be
useful for hashed password encoding where the case of the hashed password is not significant.

• principalClass: An option that specifies a Principal implementation class. This must support a constructor
taking a string argument for the principal name.

As an example DatabaseServerLoginModule configuration, consider a custom table schema like the following:

CREATE TABLE Users(username VARCHAR(64) PRIMARY KEY, passwd VARCHAR(64))
CREATE TABLE UserRoles(username VARCHAR(64), userRoles VARCHAR(32))

A corresponding login-config.xml entry would be:

<policy>
<application-policy name="testDB">

<authentication>
<login-module code="org.jboss.security.auth.spi.DatabaseServerLoginModule"

flag="required">
<module-option name="dsJndiName">java:/MyDatabaseDS</module-option>
<module-option name="principalsQuery">

select passwd from Users username where username=?</module-option>
<module-option name="rolesQuery">

select userRoles, 'Roles' from UserRoles where username=?</module-option>
</login-module>

</authentication>

Security on JBoss

JBoss Release 2 275

</application-policy>
</policy>

This module supports password stacking, password hashing and unathenticated identity.

7.5.3.7. BaseCertLoginModule

This is a login module which authenticates users based on X509 certificates. A typical use case for this login mod-
ule is CLIENT-CERT authentication in the web tier. This login module only performs authentication. You need to
combine it with another login module capable of acquiring the authorization roles to completely define access to a
secured web or EJB component. Two subclasses of this login module, CertRolesLoginModule and Database-

CertLoginModule extend the behavior to obtain the authorization roles from either a properties file or database.

The BaseCertLoginModule needs a KeyStore to perform user validation. This is obtained through a
org.jboss.security.SecurityDomain implementation. Typically, the SecurityDomain implementation is con-
figured using the org.jboss.security.plugins.JaasSecurityDomain MBean as shown in this jboss-ser-

vice.xml configuration fragment:

<mbean code="org.jboss.security.plugins.JaasSecurityDomain"
name="jboss.ch8:service=SecurityDomain">

<constructor>
<arg type="java.lang.String" value="jmx-console"/>

</constructor>
<attribute name="KeyStoreURL">resource:localhost.keystore</attribute>
<attribute name="KeyStorePass">unit-tests-server</attribute>

</mbean>

This creates a security domain with the name jmx-console whose SecurityDomain implementation is available via
JNDI under the name java:/jaas/jmx-console following the JBossSX security domain naming pattern. To secure
a web application such as the jmx-console.war using client certs and role based authorization, one would first
modify the web.xml to declare the resources to be secured, along with the allowed roles and security domain to be
used for authentication and authorization.

<?xml version="1.0"?>
<!DOCTYPE web-app PUBLIC

"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
...
<security-constraint>

<web-resource-collection>
<web-resource-name>HtmlAdaptor</web-resource-name>
<description>An example security config that only allows users with

the role JBossAdmin to access the HTML JMX console web
application </description>

<url-pattern>/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>
<auth-constraint>

<role-name>JBossAdmin</role-name>
</auth-constraint>

</security-constraint>
<login-config>

<auth-method>CLIENT-CERT</auth-method>
<realm-name>JBoss JMX Console</realm-name>

</login-config>
<security-role>

Security on JBoss

JBoss Release 2 276

<role-name>JBossAdmin</role-name>
</security-role>

</web-app>

Next we, need to specify the JBoss security domain in jboss-web.xml:

<jboss-web>
<security-domain>java:/jaas/jmx-console</security-domain>

</jboss-web>

Finally, you need to define the login module configuration for the jmx-console security domain you just specified.
This is done in the conf/login-config.xml file.

<application-policy name="jmx-console">
<authentication>

<login-module code="org.jboss.security.auth.spi.BaseCertLoginModule"
flag="required">

<module-option name="password-stacking">useFirstPass</module-option>
<module-option name="securityDomain">java:/jaas/jmx-console</module-option>

</login-module>
<login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule"

flag="required">
<module-option name="password-stacking">useFirstPass</module-option>
<module-option name="usersProperties">jmx-console-users.properties</module-option>
<module-option name="rolesProperties">jmx-console-roles.properties</module-option>

</login-module>
</authentication>

</application-policy>

Here the BaseCertLoginModule is used for authentication of the client cert, and the UsersRolesLoginModule is
only used for authorization due to the password-stacking=useFirstPass option. Both the localhost.keystore

and the jmx-console-roles.properties need an entry that maps to the principal associated with the client cert.
By default, the principal is created using the client certificate distinguished name. Consider the following certific-
ate:

[starksm@banshee9100 conf]$ keytool -printcert -file unit-tests-client.export
Owner: CN=unit-tests-client, OU=JBoss Inc., O=JBoss Inc., ST=Washington, C=US
Issuer: CN=jboss.com, C=US, ST=Washington, L=Snoqualmie Pass, EMAILADDRESS=admin
@jboss.com, OU=QA, O=JBoss Inc.
Serial number: 100103
Valid from: Wed May 26 07:34:34 PDT 2004 until: Thu May 26 07:34:34 PDT 2005
Certificate fingerprints:

MD5: 4A:9C:2B:CD:1B:50:AA:85:DD:89:F6:1D:F5:AF:9E:AB
SHA1: DE:DE:86:59:05:6C:00:E8:CC:C0:16:D3:C2:68:BF:95:B8:83:E9:58

The localhost.keystore would need this cert stored with an alias of CN=unit-tests-client, OU=JBoss Inc.,

O=JBoss Inc., ST=Washington, C=US and the jmx-console-roles.properties would also need an entry for the
same entry. Since the DN contains many characters that are normally treated as delimiters, you will need to escape
the problem characters using a backslash ('\') as shown here:

A sample roles.properties file for use with the UsersRolesLoginModule
CN\=unit-tests-client,\ OU\=JBoss\ Inc.,\ O\=JBoss\ Inc.,\ ST\=Washington,\ C\=US=JBossAdmin
admin=JBossAdmin

7.5.3.8. IdentityLoginModule

Security on JBoss

JBoss Release 2 277

The IdentityLoginModule is a simple login module that associates a hard-coded user name a to any subject au-
thenticated against the module. It creates a SimplePrincipal instance using the name specified by the principal

option. This login module is useful when you need to provide a fixed identity to a service and in development en-
vironments when you want to test the security associated with a given principal and associated roles.

The supported login module configuration options include:

• principal: This is the name to use for the SimplePrincipal all users are authenticated as. The principal name
defaults to guest if no principal option is specified.

• roles: This is a comma-delimited list of roles that will be assigned to the user.

A sample XMLLoginConfig configuration entry that would authenticate all users as the principal named jduke and
assign role names of TheDuke, and AnimatedCharacter is:

<policy>
<application-policy name="testIdentity">

<authentication>
<login-module code="org.jboss.security.auth.spi.IdentityLoginModule"

flag="required">
<module-option name="principal">jduke</module-option>
<module-option name="roles">TheDuke,AnimatedCharater</module-option>

</login-module>
</authentication>

</application-policy>
</policy>

This module supports password stacking.

7.5.3.9. RunAsLoginModule

JBoss has a helper login module called RunAsLoginModule that pushes a run as role for the duration of the login
phase of authentication, and pops the run as role in either the commit or abort phase. The purpose of this login
module is to provide a role for other login modules that need to access secured resources in order to perform their
authentication. An example would be a login module that accesses an secured EJB. This login module must be con-
figured ahead of the login module(s) that need a run as role established.

The only login module configuration option is:

• roleName: the name of the role to use as the run as role during login phase. If not specified a default of nobody
is used.

7.5.3.10. ClientLoginModule

The ClientLoginModule is an implementation of LoginModule for use by JBoss clients for the establishment of the
caller identity and credentials. This simply sets the org.jboss.security.SecurityAssociation.principal to the
value of the NameCallback filled in by the callbackhandler, and the
org.jboss.security.SecurityAssociation.credential to the value of the PasswordCallback filled in by the
callbackhandler. This is the only supported mechanism for a client to establish the current thread's caller. Both
stand-alone client applications and server environments, acting as JBoss EJB clients where the security environ-
ment has not been configured to use JBossSX transparently, need to use the ClientLoginModule. Of course, you

Security on JBoss

JBoss Release 2 278

could always set the org.jboss.security.SecurityAssociation information directly, but this is considered an
internal API that is subject to change without notice.

Note that this login module does not perform any authentication. It merely copies the login information provided to
it into the JBoss server EJB invocation layer for subsequent authentication on the server. If you need to perform cli-
ent-side authentication of users you would need to configure another login module in addition to the ClientLogin-

Module.

The supported login module configuration options include the following:

• multi-threaded: When the multi-threaded option is set to true, each login thread has its own principal and cre-
dential storage. This is useful in client environments where multiple user identities are active in separate
threads. When true, each separate thread must perform its own login. When set to false the login identity and
credentials are global variables that apply to all threads in the VM. The default for this option is false.

• password-stacking: When password-stacking option is set to useFirstPass, this module first looks for a
shared username and password using javax.security.auth.login.name and
javax.security.auth.login.password respectively in the login module shared state map. This allows a mod-
ule configured prior to this one to establish a valid username and password that should be passed to JBoss. You
would use this option if you want to perform client-side authentication of clients using some other login module
such as the LdapLoginModule.

• restore-login-identity: When restore-login-identity is true, the SecurityAssociation principal and cre-
dential seen on entry to the login() method are saved and restored on either abort or logout. When false (the
default), the abort and logout simply clear the SecurityAssociation. A restore-login-identity of true is
needed if one need to change identities and then restore the original caller identity.

A sample login configuration for ClientLoginModule is the default configuration entry found in the JBoss distribu-
tion client/auth.conf file. The configuration is:

other {
// Put your login modules that work without jBoss here

// jBoss LoginModule
org.jboss.security.ClientLoginModule required;

// Put your login modules that need jBoss here
};

7.5.4. Writing Custom Login Modules

If the login modules bundled with the JBossSX framework do not work with your security environment, you can
write your own custom login module implementation that does. Recall from the section on the JaasSecurityMan-

ager architecture that the JaasSecurityManager expected a particular usage pattern of the Subject principals set.
You need to understand the JAAS Subject class's information storage features and the expected usage of these fea-
tures to be able to write a login module that works with the JaasSecurityManager. This section examines this re-
quirement and introduces two abstract base LoginModule implementations that can help you implement your own
custom login modules.

You can obtain security information associated with a Subject in six ways in JBoss using the following methods:

java.util.Set getPrincipals()

Security on JBoss

JBoss Release 2 279

java.util.Set getPrincipals(java.lang.Class c)
java.util.Set getPrivateCredentials()
java.util.Set getPrivateCredentials(java.lang.Class c)
java.util.Set getPublicCredentials()
java.util.Set getPublicCredentials(java.lang.Class c)

For Subject identities and roles, JBossSX has selected the most natural choice: the principals sets obtained via
getPrincipals() and getPrincipals(java.lang.Class). The usage pattern is as follows:

• User identities (username, social security number, employee ID, and so on) are stored as
java.security.Principal objects in the Subject Principals set. The Principal implementation that repres-
ents the user identity must base comparisons and equality on the name of the principal. A suitable implementa-
tion is available as the org.jboss.security.SimplePrincipal class. Other Principal instances may be added
to the Subject Principals set as needed.

• The assigned user roles are also stored in the Principals set, but they are grouped in named role sets using
java.security.acl.Group instances. The Group interface defines a collection of Principals and/or Groups,
and is a subinterface of java.security.Principal. Any number of role sets can be assigned to a Subject.
Currently, the JBossSX framework uses two well-known role sets with the names Roles and CallerPrincipal.
The Roles Group is the collection of Principals for the named roles as known in the application domain under
which the Subject has been authenticated. This role set is used by methods like the EJBCon-

text.isCallerInRole(String), which EJBs can use to see if the current caller belongs to the named applica-
tion domain role. The security interceptor logic that performs method permission checks also uses this role set.
The CallerPrincipal Group consists of the single Principal identity assigned to the user in the application
domain. The EJBContext.getCallerPrincipal() method uses the CallerPrincipal to allow the application
domain to map from the operation environment identity to a user identity suitable for the application. If a Sub-

ject does not have a CallerPrincipal Group, the application identity is the same as operational environment
identity.

7.5.4.1. Support for the Subject Usage Pattern

To simplify correct implementation of the Subject usage patterns described in the preceding section, JBossSX in-
cludes two abstract login modules that handle the population of the authenticated Subject with a template pattern
that enforces correct Subject usage. The most generic of the two is the
org.jboss.security.auth.spi.AbstractServerLoginModule class. It provides a concrete implementation of the
javax.security.auth.spi.LoginModule interface and offers abstract methods for the key tasks specific to an op-
eration environment security infrastructure. The key details of the class are highlighted in the following class frag-
ment. The JavaDoc comments detail the responsibilities of subclasses.

package org.jboss.security.auth.spi;
/**
* This class implements the common functionality required for a JAAS
* server-side LoginModule and implements the JBossSX standard
* Subject usage pattern of storing identities and roles. Subclass
* this module to create your own custom LoginModule and override the
* login(), getRoleSets(), and getIdentity() methods.
*/

public abstract class AbstractServerLoginModule
implements javax.security.auth.spi.LoginModule

{
protected Subject subject;
protected CallbackHandler callbackHandler;
protected Map sharedState;

Security on JBoss

JBoss Release 2 280

protected Map options;
protected Logger log;

/** Flag indicating if the shared credential should be used */
protected boolean useFirstPass;
/**
* Flag indicating if the login phase succeeded. Subclasses that
* override the login method must set this to true on successful
* completion of login
*/
protected boolean loginOk;

// ...
/**
* Initialize the login module. This stores the subject,
* callbackHandler and sharedState and options for the login
* session. Subclasses should override if they need to process
* their own options. A call to super.initialize(...) must be
* made in the case of an override.
*
* <p>
* The options are checked for the password-stacking parameter.
* If this is set to "useFirstPass", the login identity will be taken from the
* <code>javax.security.auth.login.name</code> value of the sharedState map,
* and the proof of identity from the
* <code>javax.security.auth.login.password</code> value of the sharedState map.
*
* @param subject the Subject to update after a successful login.
* @param callbackHandler the CallbackHandler that will be used to obtain the
* the user identity and credentials.
* @param sharedState a Map shared between all configured login module instances
* @param options the parameters passed to the login module.
*/
public void initialize(Subject subject,

CallbackHandler callbackHandler,
Map sharedState,
Map options)

{
// ...

}

/**
* Looks for javax.security.auth.login.name and
* javax.security.auth.login.password values in the sharedState
* map if the useFirstPass option was true and returns true if
* they exist. If they do not or are null this method returns
* false.
* Note that subclasses that override the login method
* must set the loginOk var to true if the login succeeds in
* order for the commit phase to populate the Subject. This
* implementation sets loginOk to true if the login() method
* returns true, otherwise, it sets loginOk to false.
*/
public boolean login()

throws LoginException
{

// ...
}

/**
* Overridden by subclasses to return the Principal that
* corresponds to the user primary identity.
*/
abstract protected Principal getIdentity();

Security on JBoss

JBoss Release 2 281

/**
* Overridden by subclasses to return the Groups that correspond
* to the role sets assigned to the user. Subclasses should
* create at least a Group named "Roles" that contains the roles
* assigned to the user. A second common group is
* "CallerPrincipal," which provides the application identity of
* the user rather than the security domain identity.
*
* @return Group[] containing the sets of roles
*/
abstract protected Group[] getRoleSets() throws LoginException;

}

You'll need to pay attention to the loginOk instance variable. This must be set to true if the login succeeds, false
otherwise by any subclasses that override the login method. Failure to set this variable correctly will result in the
commit method either not updating the subject when it should, or updating the subject when it should not. Tracking
the outcome of the login phase was added to allow login modules to be chained together with control flags that do
not require that the login module succeed in order for the overall login to succeed.

The second abstract base login module suitable for custom login modules is the
org.jboss.security.auth.spi.UsernamePasswordLoginModule. This login module further simplifies custom lo-
gin module implementation by enforcing a string-based username as the user identity and a char[] password as the
authentication credentials. It also supports the mapping of anonymous users (indicated by a null username and
password) to a principal with no roles. The key details of the class are highlighted in the following class fragment.
The JavaDoc comments detail the responsibilities of subclasses.

package org.jboss.security.auth.spi;

/**
* An abstract subclass of AbstractServerLoginModule that imposes a
* an identity == String username, credentials == String password
* view on the login process. Subclasses override the
* getUsersPassword() and getUsersRoles() methods to return the
* expected password and roles for the user.
*/

public abstract class UsernamePasswordLoginModule
extends AbstractServerLoginModule

{
/** The login identity */
private Principal identity;
/** The proof of login identity */
private char[] credential;
/** The principal to use when a null username and password are seen */
private Principal unauthenticatedIdentity;

/**
* The message digest algorithm used to hash passwords. If null then
* plain passwords will be used. */
private String hashAlgorithm = null;

/**
* The name of the charset/encoding to use when converting the
* password String to a byte array. Default is the platform's
* default encoding.
*/
private String hashCharset = null;

/** The string encoding format to use. Defaults to base64. */
private String hashEncoding = null;

// ...

Security on JBoss

JBoss Release 2 282

/**
* Override the superclass method to look for an
* unauthenticatedIdentity property. This method first invokes
* the super version.
*
* @param options,
* @option unauthenticatedIdentity: the name of the principal to
* assign and authenticate when a null username and password are
* seen.
*/
public void initialize(Subject subject,

CallbackHandler callbackHandler,
Map sharedState,
Map options)

{
super.initialize(subject, callbackHandler, sharedState,

options);
// Check for unauthenticatedIdentity option.
Object option = options.get("unauthenticatedIdentity");
String name = (String) option;
if (name != null) {

unauthenticatedIdentity = new SimplePrincipal(name);
}

}

// ...

/**
* A hook that allows subclasses to change the validation of the
* input password against the expected password. This version
* checks that neither inputPassword or expectedPassword are null
* and that inputPassword.equals(expectedPassword) is true;
*
* @return true if the inputPassword is valid, false otherwise.
*/
protected boolean validatePassword(String inputPassword,

String expectedPassword)
{

if (inputPassword == null || expectedPassword == null) {
return false;

}
return inputPassword.equals(expectedPassword);

}

/**
* Get the expected password for the current username available
* via the getUsername() method. This is called from within the
* login() method after the CallbackHandler has returned the
* username and candidate password.
*
* @return the valid password String
*/
abstract protected String getUsersPassword()

throws LoginException;
}

The choice of subclassing the AbstractServerLoginModule versus UsernamePasswordLoginModule is simply
based on whether a string-based username and credentials are usable for the authentication technology you are
writing the login module for. If the string-based semantic is valid, then subclass UsernamePasswordLoginModule,
otherwise subclass AbstractServerLoginModule.

The steps you are required to perform when writing a custom login module are summarized in the following de-

Security on JBoss

JBoss Release 2 283

pending on which base login module class you choose. When writing a custom login module that integrates with
your security infrastructure, you should start by subclassing AbstractServerLoginModule or UsernamePassword-
LoginModule to ensure that your login module provides the authenticated Principal information in the form ex-
pected by the JBossSX security manager.

When subclassing the AbstractServerLoginModule, you need to override the following:

• void initialize(Subject, CallbackHandler, Map, Map): if you have custom options to parse.

• boolean login(): to perform the authentication activity. Be sure to set the loginOk instance variable to true if
login succeeds, false if it fails.

• Principal getIdentity(): to return the Principal object for the user authenticated by the log() step.

• Group[] getRoleSets(): to return at least one Group named Roles that contains the roles assigned to the Prin-

cipal authenticated during login(). A second common Group is named CallerPrincipal and provides the
user's application identity rather than the security domain identity.

When subclassing the UsernamePasswordLoginModule, you need to override the following:

• void initialize(Subject, CallbackHandler, Map, Map): if you have custom options to parse.

• Group[] getRoleSets(): to return at least one Group named Roles that contains the roles assigned to the Prin-

cipal authenticated during login(). A second common Group is named CallerPrincipal and provides the
user's application identity rather than the security domain identity.

• String getUsersPassword(): to return the expected password for the current username available via the
getUsername() method. The getUsersPassword() method is called from within login() after the callback-

handler returns the username and candidate password.

7.5.4.2. A Custom LoginModule Example

In this section we will develop a custom login module example. It will extend the UsernamePasswordLoginModule

and obtains a user's password and role names from a JNDI lookup. The idea is that there is a JNDI context that will
return a user's password if you perform a lookup on the context using a name of the form password/<username>

where <username> is the current user being authenticated. Similarly, a lookup of the form roles/<username> re-
turns the requested user's roles.

The source code for the example is located in the src/main/org/jboss/book/security/ex2 directory of the book
examples. Example 7.9 shows the source code for the JndiUserAndPass custom login module. Note that because
this extends the JBoss UsernamePasswordLoginModule, all the JndiUserAndPass does is obtain the user's password
and roles from the JNDI store. The JndiUserAndPass does not concern itself with the JAAS LoginModule opera-
tions.

Example 7.9. A JndiUserAndPass custom login module

package org.jboss.book.security.ex2;

import java.security.acl.Group;
import java.util.Map;

Security on JBoss

JBoss Release 2 284

import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.security.auth.Subject;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.login.LoginException;

import org.jboss.security.SimpleGroup;
import org.jboss.security.SimplePrincipal;
import org.jboss.security.auth.spi.UsernamePasswordLoginModule;

/**
* An example custom login module that obtains passwords and roles
* for a user from a JNDI lookup.
*
* @author Scott.Stark@jboss.org
* @version $Revision: 1.2 $

*/
public class JndiUserAndPass

extends UsernamePasswordLoginModule
{

/** The JNDI name to the context that handles the password/username lookup */
private String userPathPrefix;
/** The JNDI name to the context that handles the roles/ username lookup */
private String rolesPathPrefix;

/**
* Override to obtain the userPathPrefix and rolesPathPrefix options.
*/
public void initialize(Subject subject, CallbackHandler callbackHandler,

Map sharedState, Map options)
{

super.initialize(subject, callbackHandler, sharedState, options);
userPathPrefix = (String) options.get("userPathPrefix");
rolesPathPrefix = (String) options.get("rolesPathPrefix");

}

/**
* Get the roles the current user belongs to by querying the
* rolesPathPrefix + '/' + super.getUsername() JNDI location.
*/
protected Group[] getRoleSets() throws LoginException
{

try {
InitialContext ctx = new InitialContext();
String rolesPath = rolesPathPrefix + '/' + super.getUsername();

String[] roles = (String[]) ctx.lookup(rolesPath);
Group[] groups = {new SimpleGroup("Roles")};
log.info("Getting roles for user="+super.getUsername());
for(int r = 0; r < roles.length; r ++) {

SimplePrincipal role = new SimplePrincipal(roles[r]);
log.info("Found role="+roles[r]);
groups[0].addMember(role);

}
return groups;

} catch(NamingException e) {
log.error("Failed to obtain groups for

user="+super.getUsername(), e);
throw new LoginException(e.toString(true));

}
}

/**
* Get the password of the current user by querying the
* userPathPrefix + '/' + super.getUsername() JNDI location.
*/

Security on JBoss

JBoss Release 2 285

protected String getUsersPassword()
throws LoginException

{
try {

InitialContext ctx = new InitialContext();
String userPath = userPathPrefix + '/' + super.getUsername();
log.info("Getting password for user="+super.getUsername());
String passwd = (String) ctx.lookup(userPath);
log.info("Found password="+passwd);
return passwd;

} catch(NamingException e) {
log.error("Failed to obtain password for

user="+super.getUsername(), e);
throw new LoginException(e.toString(true));

}
}

}

The details of the JNDI store are found in the org.jboss.book.security.ex2.service.JndiStore MBean. This
service binds an ObjectFactory that returns a javax.naming.Context proxy into JNDI. The proxy handles lookup
operations done against it by checking the prefix of the lookup name against password and roles. When the name
begins with password, a user's password is being requested. When the name begins with roles the user's roles are
being requested. The example implementation always returns a password of theduke and an array of roles names
equal to {"TheDuke", "Echo"} regardless of what the username is. You can experiment with other implementa-
tions as you wish.

The example code includes a simple session bean for testing the custom login module. To build, deploy and run the
example, execute the following command in the examples directory.

[examples]$ ant -Dchap=security -Dex=2 run-example
...
run-example2:

[echo] Waiting for 5 seconds for deploy...
[java] [INFO,ExClient] Login with username=jduke, password=theduke
[java] [INFO,ExClient] Looking up EchoBean2
[java] [INFO,ExClient] Created Echo
[java] [INFO,ExClient] Echo.echo('Hello') = Hello

The choice of using the JndiUserAndPass custom login module for the server side authentication of the user is de-
termined by the login configuration for the example security domain. The EJB JAR META-INF/jboss.xml

descriptor sets the security domain

<?xml version="1.0"?>
<jboss>

<security-domain>java:/jaas/security-ex2</security-domain>
</jboss>

The SAR META-INF/login-config.xml descriptor defines the login module configuration.

<application-policy name = "security-ex2">
<authentication>

<login-module code="org.jboss.book.security.ex2.JndiUserAndPass"
flag="required">

<module-option name = "userPathPrefix">/security/store/password</module-option>
<module-option name = "rolesPathPrefix">/security/store/roles</module-option>

</login-module>
</authentication>

</application-policy>

Security on JBoss

JBoss Release 2 286

7.6. The Secure Remote Password (SRP) Protocol

The SRP protocol is an implementation of a public key exchange handshake described in the Internet standards
working group request for comments 2945(RFC2945). The RFC2945 abstract states:

This document describes a cryptographically strong network authentication mechanism known as the Secure Re-
mote Password (SRP) protocol. This mechanism is suitable for negotiating secure connections using a user-
supplied password, while eliminating the security problems traditionally associated with reusable passwords. This
system also performs a secure key exchange in the process of authentication, allowing security layers (privacy and/
or integrity protection) to be enabled during the session. Trusted key servers and certificate infrastructures are not
required, and clients are not required to store or manage any long-term keys. SRP offers both security and deploy-
ment advantages over existing challenge-response techniques, making it an ideal drop-in replacement where secure
password authentication is needed.

Note: The complete RFC2945 specification can be obtained from http://www.rfc-editor.org/rfc.html. Additional in-
formation on the SRP algorithm and its history can be found at http://www-cs-students.stanford.edu/~tjw/srp/.

SRP is similar in concept and security to other public key exchange algorithms, such as Diffie-Hellman and RSA.
SRP is based on simple string passwords in a way that does not require a clear text password to exist on the server.
This is in contrast to other public key-based algorithms that require client certificates and the corresponding certi-
ficate management infrastructure.

Algorithms like Diffie-Hellman and RSA are known as public key exchange algorithms. The concept of public key
algorithms is that you have two keys, one public that is available to everyone, and one that is private and known
only to you. When someone wants to send encrypted information to you, then encrpyt the information using your
public key. Only you are able to decrypt the information using your private key. Contrast this with the more tradi-
tional shared password based encryption schemes that require the sender and receiver to know the shared password.
Public key algorithms eliminate the need to share passwords.

The JBossSX framework includes an implementation of SRP that consists of the following elements:

• An implementation of the SRP handshake protocol that is independent of any particular client/server protocol

• An RMI implementation of the handshake protocol as the default client/server SRP implementation

• A client side JAAS LoginModule implementation that uses the RMI implementation for use in authenticating
clients in a secure fashion

• A JMX MBean for managing the RMI server implementation. The MBean allows the RMI server implementa-
tion to be plugged into a JMX framework and externalizes the configuration of the verification information
store. It also establishes an authentication cache that is bound into the JBoss server JNDI namespace.

• A server side JAAS LoginModule implementation that uses the authentication cache managed by the SRP JMX
MBean.

Figure 7.14 gives a diagram of the key components involved in the JBossSX implementation of the SRP client/
server framework.

Security on JBoss

JBoss Release 2 287

http://www.rfc-editor.org/rfc.html
http://www-cs-students.stanford.edu/~tjw/srp/

Figure 7.14. The JBossSX components of the SRP client-server framework.

On the client side, SRP shows up as a custom JAAS LoginModule implementation that communicates to the au-
thentication server through an org.jboss.security.srp.SRPServerInterface proxy. A client enables authentica-
tion using SRP by creating a login configuration entry that includes the
org.jboss.security.srp.jaas.SRPLoginModule. This module supports the following configuration options:

• principalClassName: This option is no longer supported. The principal class is now always
org.jboss.security.srp.jaas.SRPPrincipal.

• srpServerJndiName: The JNDI name of the SRPServerInterface object to use for communicating with the
SRP authentication server. If both srpServerJndiName and srpServerRmiUrl options are specified, the
srpServerJndiName is tried before srpServerRmiUrl.

• srpServerRmiUrl: The RMI protocol URL string for the location of the SRPServerInterface proxy to use for
communicating with the SRP authentication server.

Security on JBoss

JBoss Release 2 288

• externalRandomA: A true/false flag indicating if the random component of the client public key A should
come from the user callback. This can be used to input a strong cryptographic random number coming from a
hardware token for example.

• hasAuxChallenge: A true/false flag indicating that a string will be sent to the server as an additional challenge
for the server to validate. If the client session supports an encryption cipher then a temporary cipher will be cre-
ated using the session private key and the challenge object sent as a javax.crypto.SealedObject.

• multipleSessions: a true/false flag indicating if a given client may have multiple SRP login sessions active sim-
ultaneously.

Any other options passed in that do not match one of the previous named options is treated as a JNDI property to
use for the environment passed to the InitialContext constructor. This is useful if the SRP server interface is not
available from the default InitialContext.

The SRPLoginModule needs to be configured along with the standard ClientLoginModule to allow the SRP authen-
tication credentials to be used for validation of access to security J2EE components. An example login configura-
tion entry that demonstrates such a setup is:

srp {
org.jboss.security.srp.jaas.SRPLoginModule required
srpServerJndiName="SRPServerInterface"
;

org.jboss.security.ClientLoginModule required
password-stacking="useFirstPass"
;

};

On the JBoss server side, there are two MBeans that manage the objects that collectively make up the SRP server.
The primary service is the org.jboss.security.srp.SRPService MBean, and it is responsible for exposing an
RMI accessible version of the SRPServerInterface as well as updating the SRP authentication session cache. The
configurable SRPService MBean attributes include the following:

• JndiName: The JNDI name from which the SRPServerInterface proxy should be available. This is the location
where the SRPService binds the serializable dynamic proxy to the SRPServerInterface. If not specified it de-
faults to srp/SRPServerInterface.

• VerifierSourceJndiName: The JNDI name of the SRPVerifierSource implementation that should be used by
the SRPService. If not set it defaults to srp/DefaultVerifierSource.

• AuthenticationCacheJndiName: The JNDI name under which the authentication
org.jboss.util.CachePolicy implementation to be used for caching authentication information is bound. The
SRP session cache is made available for use through this binding. If not specified it defaults to srp/

AuthenticationCache.

• ServerPort: RMI port for the SRPRemoteServerInterface. If not specified it defaults to 10099.

• ClientSocketFactory: An optional custom java.rmi.server.RMIClientSocketFactory implementation class
name used during the export of the SRPServerInterface. If not specified the default RMIClientSocketFactory
is used.

Security on JBoss

JBoss Release 2 289

• ServerSocketFactory: An optional custom java.rmi.server.RMIServerSocketFactory implementation class
name used during the export of the SRPServerInterface. If not specified the default RMIServerSocketFactory
is used.

• AuthenticationCacheTimeout: Specifies the timed cache policy timeout in seconds. If not specified this de-
faults to 1800 seconds(30 minutes).

• AuthenticationCacheResolution: Specifies the timed cache policy resolution in seconds. This controls the in-
terval between checks for timeouts. If not specified this defaults to 60 seconds(1 minute).

• RequireAuxChallenge: Set if the client must supply an auxiliary challenge as part of the verify phase. This
gives control over whether the SRPLoginModule configuration used by the client must have the useAuxChal-

lenge option enabled.

• OverwriteSessions: A flag indicating if a successful user auth for an existing session should overwrite the cur-
rent session. This controls the behavior of the server SRP session cache when clients have not enabled the mul-
tiple session per user mode. The default is false meaning that the second attempt by a user to authentication will
succeed, but the resulting SRP session will not overwrite the previous SRP session state.

The one input setting is the VerifierSourceJndiName attribute. This is the location of the SRP password informa-
tion store implementation that must be provided and made available through JNDI. The org.jboss.security.srp

SRPVerifierStoreService is an example MBean service that binds an implementation of the SRPVerifierStore

interface that uses a file of serialized objects as the persistent store. Although not realistic for a production environ-
ment, it does allow for testing of the SRP protocol and provides an example of the requirements for an SRPVerifi-

erStore service. The configurable SRPVerifierStoreService MBean attributes include the following:

• JndiName: The JNDI name from which the SRPVerifierStore implementation should be available. If not spe-
cified it defaults to srp/DefaultVerifierSource.

• StoreFile: The location of the user password verifier serialized object store file. This can be either a URL or a
resource name to be found in the classpath. If not specified it defaults to SRPVerifierStore.ser.

The SRPVerifierStoreService MBean also supports addUser and delUser operations for addition and deletion of
users. The signatures are:

public void addUser(String username, String password) throws IOException;
public void delUser(String username) throws IOException;

An example configuration of these services is presented in Section 7.6.

7.6.1. Providing Password Information for SRP

The default implementation of the SRPVerifierStore interface is not likely to be suitable for you production secur-
ity environment as it requires all password hash information to be available as a file of serialized objects. You need
to provide an MBean service that provides an implementation of the SRPVerifierStore interface that integrates
with your existing security information stores. The SRPVerifierStore interface is shown in.

Example 7.10. The SRPVerifierStore interface

Security on JBoss

JBoss Release 2 290

package org.jboss.security.srp;

import java.io.IOException;
import java.io.Serializable;
import java.security.KeyException;

public interface SRPVerifierStore
{

public static class VerifierInfo implements Serializable
{

/**
* The username the information applies to. Perhaps redundant
* but it makes the object self contained.
*/
public String username;

/** The SRP password verifier hash */
public byte[] verifier;
/** The random password salt originally used to verify the password */
public byte[] salt;
/** The SRP algorithm primitive generator */
public byte[] g;
/** The algorithm safe-prime modulus */
public byte[] N;

}

/**
* Get the indicated user's password verifier information.
*/
public VerifierInfo getUserVerifier(String username)

throws KeyException, IOException;
/**
* Set the indicated users' password verifier information. This
* is equivalent to changing a user's password and should
* generally invalidate any existing SRP sessions and caches.
*/
public void setUserVerifier(String username, VerifierInfo info)

throws IOException;

/**
* Verify an optional auxiliary challenge sent from the client to
* the server. The auxChallenge object will have been decrypted
* if it was sent encrypted from the client. An example of a
* auxiliary challenge would be the validation of a hardware token
* (SafeWord, SecureID, iButton) that the server validates to
* further strengthen the SRP password exchange.
*/
public void verifyUserChallenge(String username, Object auxChallenge)

throws SecurityException;
}

The primary function of a SRPVerifierStore implementation is to provide access to the SRPVerifier-

Store.VerifierInfo object for a given username. The getUserVerifier(String) method is called by the
SRPService at that start of a user SRP session to obtain the parameters needed by the SRP algorithm. The elements
of the VerifierInfo objects are:

• username: The user's name or id used to login.

• verifier: This is the one-way hash of the password or PIN the user enters as proof of their identity. The
org.jboss.security.Util class has a calculateVerifier method that performs that password hashing al-
gorithm. The output password H(salt | H(username | ':' | password)) as defined by RFC2945. Here H is

Security on JBoss

JBoss Release 2 291

the SHA secure hash function. The username is converted from a string to a byte[] using the UTF-8 encoding.

• salt: This is a random number used to increase the difficulty of a brute force dictionary attack on the verifier
password database in the event that the database is compromised. It is a value that should be generated from a
cryptographically strong random number algorithm when the user's existing clear-text password is hashed.

• g: The SRP algorithm primitive generator. In general this can be a well known fixed parameter rather than a
per-user setting. The org.jboss.security.srp.SRPConf utility class provides several settings for g including a
good default which can obtained via SRPConf.getDefaultParams().g().

• N: The SRP algorithm safe-prime modulus. In general this can be a well known fixed parameter rather than a
per-user setting. The org.jboss.security.srp.SRPConf utility class provides several settings for N including a
good default which can obtained via SRPConf.getDefaultParams().N().

So, step 1 of integrating your existing password store is the creation of a hashed version of the password informa-
tion. If your passwords are already store in an irreversible hashed form, then this can only be done on a per-user
basis as part of an upgrade procedure for example. Note that the setUserVerifier(String, VerifierInfo) meth-
od is not used by the current SRPSerivce and may be implemented as no-op method, or even one that throws an ex-
ception stating that the store is read-only.

Step 2 is the creation of the custom SRPVerifierStore interface implementation that knows how to obtain the
VerifierInfo from the store you created in step 1. The verifyUserChallenge(String, Object) method of the
interface is only called if the client SRPLoginModule configuration specifies the hasAuxChallenge option. This can
be used to integrate existing hardware token based schemes like SafeWord or Radius into the SRP algorithm.

Step 3 is the creation of an MBean that makes the step 2 implementation of the SRPVerifierStore interface avail-
able via JNDI, and exposes any configurable parameters you need. In addition to the default
org.jboss.security.srp.SRPVerifierStoreService example, the SRP example presented later in this chapter
provides a Java properties file based SRPVerifierStore implementation. Between the two examples you should
have enough to integrate your security store.

7.6.2. Inside of the SRP algorithm

The appeal of the SRP algorithm is that is allows for mutual authentication of client and server using simple text
passwords without a secure communication channel. You might be wondering how this is done. If you want the
complete details and theory behind the algorithm, refer to the SRP references mentioned in a note earlier. There are
six steps that are performed to complete authentication:

1. The client side SRPLoginModule retrieves the SRPServerInterface instance for the remote authentication server
from the naming service.

2. The client side SRPLoginModule next requests the SRP parameters associated with the username attempting
the login. There are a number of parameters involved in the SRP algorithm that must be chosen when the user
password is first transformed into the verifier form used by the SRP algorithm. Rather than hard-coding the
parameters (which could be done with minimal security risk), the JBossSX implementation allows a user to re-
trieve this information as part of the exchange protocol. The getSRPParameters(username) call retrieves the
SRP parameters for the given username.

Security on JBoss

JBoss Release 2 292

3. The client side SRPLoginModule begins an SRP session by creating an SRPClientSession object using the lo-
gin username, clear-text password, and SRP parameters obtained from step 2. The client then creates a random
number A that will be used to build the private SRP session key. The client then initializes the server side of
the SRP session by invoking the SRPServerInterface.init method and passes in the username and client
generated random number A. The server returns its own random number B. This step corresponds to the ex-
change of public keys.

4. The client side SRPLoginModule obtains the private SRP session key that has been generated as a result of the
previous messages exchanges. This is saved as a private credential in the login Subject. The server challenge
response M2 from step 4 is verified by invoking the SRPClientSession.verify method. If this succeeds, mu-
tual authentication of the client to server, and server to client have been completed. The client side SRPLogin-

Module next creates a challenge M1 to the server by invoking SRPClientSession.response method passing the
server random number B as an argument. This challenge is sent to the server via the SRPServerInter-

face.verify method and server's response is saved as M2. This step corresponds to an exchange of challenges.
At this point the server has verified that the user is who they say they are.

5. The client side SRPLoginModule saves the login username and M1 challenge into the LoginModule sharedState
map. This is used as the Principal name and credentials by the standard JBoss ClientLoginModule. The M1

challenge is used in place of the password as proof of identity on any method invocations on J2EE compon-
ents. The M1 challenge is a cryptographically strong hash associated with the SRP session. Its interception via
a third partly cannot be used to obtain the user's password.

6. At the end of this authentication protocol, the SRPServerSession has been placed into the SRPService authen-
tication cache for subsequent use by the SRPCacheLoginModule.

Although SRP has many interesting properties, it is still an evolving component in the JBossSX framework and has
some limitations of which you should be aware. Issues of note include the following:

• Because of how JBoss detaches the method transport protocol from the component container where authentica-
tion is performed, an unauthorized user could snoop the SRP M1 challenge and effectively use the challenge to
make requests as the associated username. Custom interceptors that encrypt the challenge using the SRP ses-
sion key can be used to prevent this issue.

• The SRPService maintains a cache of SRP sessions that time out after a configurable period. Once they time
out, any subsequent J2EE component access will fail because there is currently no mechanism for transparently
renegotiating the SRP authentication credentials. You must either set the authentication cache timeout very long
(up to 2,147,483,647 seconds, or approximately 68 years), or handle re-authentication in your code on failure.

• By default there can only be one SRP session for a given username. Because the negotiated SRP session pro-
duces a private session key that can be used for encryption/decryption between the client and server, the session
is effectively a stateful one. JBoss supports for multiple SRP sessions per user, but you cannot encrypt data
with one session key and then decrypt it with another.

To use end-to-end SRP authentication for J2EE component calls, you need to configure the security domain under
which the components are secured to use the org.jboss.security.srp.jaas.SRPCacheLoginModule. The SRP-

CacheLoginModule has a single configuration option named cacheJndiName that sets the JNDI location of the SRP
authentication CachePolicy instance. This must correspond to the AuthenticationCacheJndiName attribute value
of the SRPService MBean. The SRPCacheLoginModule authenticates user credentials by obtaining the client chal-
lenge from the SRPServerSession object in the authentication cache and comparing this to the challenge passed as

Security on JBoss

JBoss Release 2 293

the user credentials. Figure 7.15 illustrates the operation of the SRPCacheLoginModule.login method implementa-
tion.

Figure 7.15. A sequence diagram illustrating the interaction of the SRPCacheLoginModule with the SRP
session cache.

7.6.2.1. An SRP example

We have covered quite a bit of material on SRP and now its time to demonstrate SRP in practice with an example.
The example demonstrates client side authentication of the user via SRP as well as subsequent secured access to a
simple EJB using the SRP session challenge as the user credential. The test code deploys an EJB JAR that includes
a SAR for the configuration of the server side login module configuration and SRP services. As in the previous ex-
amples we will dynamically install the server side login module configuration using the SecurityConfig MBean.
In this example we also use a custom implementation of the SRPVerifierStore interface that uses an in memory
store that is seeded from a Java properties file rather than a serialized object store as used by the SRPVerifier-

StoreService. This custom service is org.jboss.book.security.ex3.service.PropertiesVerifierStore. The
following shows the contents of the JAR that contains the example EJB and SRP services.

[examples]$ jar tf output/security/security-ex3.jar
META-INF/MANIFEST.MF
META-INF/ejb-jar.xml
META-INF/jboss.xml
org/jboss/book/security/ex3/Echo.class
org/jboss/book/security/ex3/EchoBean.class
org/jboss/book/security/ex3/EchoHome.class
roles.properties
users.properties

Security on JBoss

JBoss Release 2 294

security-ex3.sar

The key SRP related items in this example are the SRP MBean services configuration, and the SRP login module
configurations. The jboss-service.xml descriptor of the security-ex3.sar is given in Example 7.11, while Ex-
ample 7.12 and Example 7.13 give the example client side and server side login module configurations.

Example 7.11. The security-ex3.sar jboss-service.xml descriptor for the SRP services

<server>
<!-- The custom JAAS login configuration that installs

a Configuration capable of dynamically updating the
config settings -->

<mbean code="org.jboss.book.security.service.SecurityConfig"
name="jboss.docs.security:service=LoginConfig-EX3">

<attribute name="AuthConfig">META-INF/login-config.xml</attribute>
<attribute name="SecurityConfigName">jboss.security:name=SecurityConfig</attribute>

</mbean>

<!-- The SRP service that provides the SRP RMI server and server side
authentication cache -->

<mbean code="org.jboss.security.srp.SRPService"
name="jboss.docs.security:service=SRPService">

<attribute name="VerifierSourceJndiName">srp-test/security-ex3</attribute>
<attribute name="JndiName">srp-test/SRPServerInterface</attribute>
<attribute name="AuthenticationCacheJndiName">srp-test/AuthenticationCache</attribute>
<attribute name="ServerPort">0</attribute>
<depends>jboss.docs.security:service=PropertiesVerifierStore</depends>

</mbean>

<!-- The SRP store handler service that provides the user password verifier
information -->

<mbean code="org.jboss.security.ex3.service.PropertiesVerifierStore"
name="jboss.docs.security:service=PropertiesVerifierStore">

<attribute name="JndiName">srp-test/security-ex3</attribute>
</mbean>

</server>

Example 7.12. The client side standard JAAS configuration

srp {
org.jboss.security.srp.jaas.SRPLoginModule required
srpServerJndiName="srp-test/SRPServerInterface"
;

org.jboss.security.ClientLoginModule required
password-stacking="useFirstPass"
;

};

Example 7.13. The server side XMLLoginConfig configuration

<application-policy name="security-ex3">
<authentication>

Security on JBoss

JBoss Release 2 295

<login-module code="org.jboss.security.srp.jaas.SRPCacheLoginModule"
flag = "required">

<module-option name="cacheJndiName">srp-test/AuthenticationCache</module-option>
</login-module>
<login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule"

flag = "required">
<module-option name="password-stacking">useFirstPass</module-option>

</login-module>
</authentication>

</application-policy>

The example services are the ServiceConfig and the PropertiesVerifierStore and SRPService MBeans. Note
that the JndiName attribute of the PropertiesVerifierStore is equal to the VerifierSourceJndiName attribute of
the SRPService, and that the SRPService depends on the PropertiesVerifierStore. This is required because the
SRPService needs an implementation of the SRPVerifierStore interface for accessing user password verification
information.

The client side login module configuration makes use of the SRPLoginModule with a srpServerJndiName option
value that corresponds to the JBoss server component SRPService JndiName attribute value(srp-
test/SRPServerInterface). Also needed is the ClientLoginModule configured with the password-stack-

ing="useFirstPass" value to propagate the user authentication credentials generated by the SRPLoginModule to
the EJB invocation layer.

There are two issues to note about the server side login module configuration. First, note the cacheJndiN-

ame=srp-test/AuthenticationCache configuration option tells the SRPCacheLoginModule the location of the
CachePolicy that contains the SRPServerSession for users who have authenticated against the SRPService. This
value corresponds to the SRPService AuthenticationCacheJndiName attribute value. Second, the configuration in-
cludes a UsersRolesLoginModule with the password-stacking=useFirstPass configuration option. It is required
to use a second login module with the SRPCacheLoginModule because SRP is only an authentication technology. A
second login module needs to be configured that accepts the authentication credentials validated by the SRPCacheL-

oginModule to set the principal's roles that determines the principal's permissions. The UsersRolesLoginModule is
augmenting the SRP authentication with properties file based authorization. The user's roles are coming the
roles.properties file included in the EJB JAR.

Now, run the example 3 client by executing the following command from the book examples directory:

[examples]$ ant -Dchap=security -Dex=3 run-example
...
run-example3:

[echo] Waiting for 5 seconds for deploy...
[java] Logging in using the 'srp' configuration
[java] Created Echo
[java] Echo.echo()#1 = This is call 1
[java] Echo.echo()#2 = This is call 2

In the examples/logs directory you will find a file called ex3-trace.log. This is a detailed trace of the client side
of the SRP algorithm. The traces show step-by-step the construction of the public keys, challenges, session key and
verification.

Note that the client has taken a long time to run relative to the other simple examples. The reason for this is the
construction of the client's public key. This involves the creation of a cryptographically strong random number, and
this process takes quite a bit of time the first time it occurs. If you were to log out and log in again within the same
VM, the process would be much faster. Also note that Echo.echo()#2 fails with an authentication exception. The

Security on JBoss

JBoss Release 2 296

client code sleeps for 15 seconds after making the first call to demonstrate the behavior of the SRPService cache
expiration. The SRPService cache policy timeout has been set to a mere 10 seconds to force this issue. As stated
earlier, you need to make the cache timeout very long, or handle re-authentication on failure.

7.7. Running JBoss with a Java 2 security manager

By default the JBoss server does not start with a Java 2 security manager. If you want to restrict privileges of code
using Java 2 permissions you need to configure the JBoss server to run under a security manager. This is done by
configuring the Java VM options in the run.bat or run.sh scripts in the JBoss server distribution bin directory.
The two required VM options are as follows:

• java.security.manager: This is used without any value to specify that the default security manager should be
used. This is the preferred security manager. You can also pass a value to the java.security.manager option
to specify a custom security manager implementation. The value must be the fully qualified class name of a
subclass of java.lang.SecurityManager. This form specifies that the policy file should augment the default
security policy as configured by the VM installation.

• java.security.policy: This is used to specify the policy file that will augment the default security policy inform-
ation for the VM. This option takes two forms: java.security.policy=policyFileURL and
java.security.policy==policyFileURL. The first form specifies that the policy file should augment the de-
fault security policy as configured by the VM installation. The second form specifies that only the indicated
policy file should be used. The policyFileURL value can be any URL for which a protocol handler exists, or a
file path specification.

Both the run.bat and run.sh start scripts reference an JAVA_OPTS variable which you can use to set the security
manager properties.

Enabling Java 2 security is the easy part. The difficult part of Java 2 security is establishing the allowed permis-
sions. If you look at the server.policy file that is contained in the default configuration file set, you'll see that it
contains the following permission grant statement:

grant {
// Allow everything for now
permission java.security.AllPermission;

};

This effectively disables security permission checking for all code as it says any code can do anything, which is not
a reasonable default. What is a reasonable set of permissions is entirely up to you.

The current set of JBoss specific java.lang.RuntimePermissions that are required include:

TargetName What the permission allows Risks

org.jboss.security.SecurityAssociat
ion.getPrincipalInfo

Access to the
org.jboss.security.SecurityAssociat
ion getPrincipal() and getCreden-
tials() methods.

The ability to see the current thread
caller and credentials.

org.jboss.security.SecurityAssociat
ion.setPrincipalInfo

Access to the
org.jboss.security.SecurityAssociat

The ability to set the current thread
caller and credentials.

Security on JBoss

JBoss Release 2 297

TargetName What the permission allows Risks

ion setPrincipal() and setCreden-
tials() methods.

org.jboss.security.SecurityAssociat
ion.setServer

Access to the
org.jboss.security.SecurityAssociat
ion setServer method.

The ability to enable or disable
multithread storage of the caller
principal and credential.

org.jboss.security.SecurityAssociat
ion.setRunAsRole

Access to the
org.jboss.security.SecurityAssociat
ion pushRunAsRole and popRun-
AsRole methods.

The ability to change the current
caller run-as role principal.

To conclude this discussion, here is a little-known tidbit on debugging security policy settings. There are various
debugging flag that you can set to determine how the security manager is using your security policy file as well as
what policy files are contributing permissions. Running the VM as follows shows the possible debugging flag set-
tings:

[bin]$ java -Djava.security.debug=help

all turn on all debugging
access print all checkPermission results
combiner SubjectDomainCombiner debugging
jar jar verification
logincontext login context results
policy loading and granting
provider security provider debugging
scl permissions SecureClassLoader assigns

The following can be used with access:

stack include stack trace
domain dumps all domains in context
failure before throwing exception, dump stack

and domain that didn't have permission

Note: Separate multiple options with a comma

Running with -Djava.security.debug=all provides the most output, but the output volume is torrential. This
might be a good place to start if you don't understand a given security failure at all. A less verbose setting that helps
debug permission failures is to use -Djava.security.debug=access,failure. This is still relatively verbose, but
not nearly as bad as the all mode as the security domain information is only displayed on access failures.

7.8. Using SSL with JBoss using JSSE

JBoss uses JSEE, the Java Secure Socket Extension (JSSE), for SSL. JSSE is bundled with JDK 1.4. To get started
with JSSE you need a public key/private key pair in the form of an X509 certificate for use by the SSL server sock-
ets. For the purpose of this example we have created a self-signed certificate using the JDK keytool and included
the resulting keystore file, example.keystore. It was created using the following command and input:

keytool -genkey -keystore example.keystore -storepass rmi+ssl -keypass rmi+ssl -keyalg RSA -alias example -validity 3650 -dname "cn=example,ou=admin book,dc=jboss,dc=org"

Security on JBoss

JBoss Release 2 298

This produces a keystore file called example.keystore. A keystore is a database of security keys. There are two
different types of entries in a keystore:

• key entries: each entry holds very sensitive cryptographic key information, which is stored in a protected
format to prevent unauthorized access. Typically, a key stored in this type of entry is a secret key, or a private
key accompanied by the certificate chain for the corresponding public key. The keytool and jarsigner tools
only handle the later type of entry, that is private keys and their associated certificate chains.

• trusted certificate entries: each entry contains a single public key certificate belonging to another party. It is
called a trusted certificate because the keystore owner trusts that the public key in the certificate indeed belongs
to the identity identified by the subject (owner) of the certificate. The issuer of the certificate vouches for this,
by signing the certificate.

Listing the src/main/org/jboss/book/security/example.keystore examples file contents using the keytool
shows one self-signed certificate:

[examples]$ keytool -list -v -keystore src/main/org/jboss/book/security/example.keystore
Enter keystore password: rmi+ssl

Keystore type: jks
Keystore provider: SUN

Your keystore contains 1 entry

Alias name: example
Creation date: Oct 31, 2006
Entry type: keyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=example, OU=admin book, DC=jboss, DC=org
Issuer: CN=example, OU=admin book, DC=jboss, DC=org
Serial number: 45481c1b
Valid from: Tue Oct 31 22:01:31 CST 2006 until: Fri Oct 28 23:01:31 CDT 2016
Certificate fingerprints:

MD5: C2:CA:CA:D3:00:71:3E:32:CB:B3:C8:A8:4E:68:9A:BB
SHA1: A6:44:EF:66:2A:49:14:B0:A4:14:74:8B:64:61:E4:E6:AF:E3:70:41

With JSSE working and a keystore with the certificate you will use for the JBoss server, your are ready to config-
ure JBoss to use SSL for EJB access. This is done by configuring the EJB invoker RMI socket factories. The
JBossSX framework includes implementations of the java.rmi.server.RMIServerSocketFactory and
java.rmi.server.RMIClientSocketFactory interfaces that enable the use of RMI over SSL encrypted sockets.
The implementation classes are org.jboss.security.ssl.RMISSLServerSocketFactory and
org.jboss.security.ssl.RMISSLClientSocketFactory respectively. There are two steps to enable the use of
SSL for RMI access to EJBs. The first is to enable the use of a keystore as the database for the SSL server certific-
ate, which is done by configuring an org.jboss.security.plugins.JaasSecurityDomain MBean. The jboss-

service.xml descriptor in the book/security/ex4 directory includes the JaasSecurityDomain definition shown in
Example 7.14.

Example 7.14. A sample JaasSecurityDomain config for RMI/SSL

Security on JBoss

JBoss Release 2 299

<!-- The SSL domain setup -->
<mbean code="org.jboss.security.plugins.JaasSecurityDomain"

name="jboss.security:service=JaasSecurityDomain,domain=RMI+SSL">
<constructor>

<arg type="java.lang.String" value="RMI+SSL"/>
</constructor>
<attribute name="KeyStoreURL">example.keystore</attribute>
<attribute name="KeyStorePass">rmi+ssl</attribute>

</mbean>

The JaasSecurityDomain is a subclass of the standard JaasSecurityManager class that adds the notions of a key-
store as well JSSE KeyManagerFactory and TrustManagerFactory access. It extends the basic security manager to
allow support for SSL and other cryptographic operations that require security keys. This configuration simply
loads the example.keystore from the example 4 MBean SAR using the indicated password.

The second step is to define an EJB invoker configuration that uses the JBossSX RMI socket factories that support
SSL. To do this you need to define a custom configuration for the JRMPInvoker we saw in Chapter 4 as well as an
EJB setup that makes use of this invoker. The top of the listing shows the jboss-service.xml descriptor that
defines the custom JRMPInovker

<mbean code="org.jboss.invocation.jrmp.server.JRMPInvoker"
name="jboss:service=invoker,type=jrmp,socketType=SSL">

<attribute name="RMIObjectPort">14445</attribute>
<attribute name="RMIClientSocketFactory">

org.jboss.security.ssl.RMISSLClientSocketFactory
</attribute>
<attribute name="RMIServerSocketFactory">

org.jboss.security.ssl.RMISSLServerSocketFactory
</attribute>
<attribute name="SecurityDomain">java:/jaas/RMI+SSL</attribute>
<depends>jboss.security:service=JaasSecurityDomain,domain=RMI+SSL</depends>

</mbean>

To set up an SSL invoker, we will create an invoker binding named stateless-ssl-invoker that uses our custom
JRMPInvoker. We can declare the invoker binding and connect it to EchoBean4 as shown in the following
jboss.xml file.

<?xml version="1.0"?>
<jboss>

<enterprise-beans>
<session>

<ejb-name>EchoBean4</ejb-name>
<configuration-name>Standard Stateless SessionBean</configuration-name>
<invoker-bindings>

<invoker>
<invoker-proxy-binding-name>

stateless-ssl-invoker
</invoker-proxy-binding-name>

</invoker>
</invoker-bindings>

</session>
</enterprise-beans>

<invoker-proxy-bindings>
<invoker-proxy-binding>

<name>stateless-ssl-invoker</name>
<invoker-mbean>jboss:service=invoker,type=jrmp,socketType=SSL</invoker-mbean>
<proxy-factory>org.jboss.proxy.ejb.ProxyFactory</proxy-factory>
<proxy-factory-config>

Security on JBoss

JBoss Release 2 300

<client-interceptors>
<home>

<interceptor>org.jboss.proxy.ejb.HomeInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</home>
<bean>

<interceptor>org.jboss.proxy.ejb.StatelessSessionInterceptor</interceptor>
<interceptor>org.jboss.proxy.SecurityInterceptor</interceptor>
<interceptor>org.jboss.proxy.TransactionInterceptor</interceptor>
<interceptor>org.jboss.invocation.InvokerInterceptor</interceptor>

</bean>
</client-interceptors>
</proxy-factory-config>

</invoker-proxy-binding>
</invoker-proxy-bindings>

</jboss>

The example 4 code is located under the src/main/org/jboss/book/security/ex4 directory of the book ex-
amples. This is another simple stateless session bean with an echo method that returns its input argument. It is hard
to tell when SSL is in use unless it fails, so we'll run the example 4 client in two different ways to demonstrate that
the EJB deployment is in fact using SSL. Start the JBoss server using the default configuration and then run ex-
ample 4b as follows:

[examples]$ ant -Dchap=security -Dex=4b run-example
...
run-example4b:
...

[java] Exception in thread "main" java.rmi.ConnectIOException: error during JRMP connect
ion establishment; nested exception is:

[java] javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorExceptio
n: No trusted certificate found
...

The resulting exception is expected, and is the purpose of the 4b version of the example. Note that the exception
stack trace has been edited to fit into the book format, so expect some difference. The key item to notice about the
exception is it clearly shows you are using the Sun JSSE classes to communicate with the JBoss EJB container. The
exception is saying that the self-signed certificate you are using as the JBoss server certificate cannot be validated
as signed by any of the default certificate authorities. This is expected because the default certificate authority key-
store that ships with the JSSE package only includes well known certificate authorities such as VeriSign, Thawte,
and RSA Data Security. To get the EJB client to accept your self-signed certificate as valid, you need to tell the
JSSE classes to use your example.keystore as its truststore. A truststore is just a keystore that contains public key
certificates used to sign other certificates. To do this, run example 4 using -Dex=4 rather than -Dex=4b to pass the
location of the correct truststore using the javax.net.ssl.trustStore system property:

[examples]$ ant -Dchap=security -Dex=4 run-example
...
run-example4:

[copy] Copying 1 file to /tmp/jboss-4.0.1/server/default/deploy
[echo] Waiting for 5 seconds for deploy...

...
[java] Created Echo
[java] Echo.echo()#1 = This is call 1

This time the only indication that an SSL socket is involved is because of the SSL handshakeCompleted message.
This is coming from the RMISSLClientSocketFactory class as a debug level log message. If you did not have the

Security on JBoss

JBoss Release 2 301

client configured to print out log4j debug level messages, there would be no direct indication that SSL was in-
volved. If you note the run times and the load on your system CPU, there definitely is a difference. SSL, like SRP,
involves the use of cryptographically strong random numbers that take time to seed the first time they are used.
This shows up as high CPU utilization and start up times.

One consequence of this is that if you are running on a system that is slower than the one used to run the examples
for the book, such as when running example 4b, you may seen an exception similar to the following:

javax.naming.NameNotFoundException: EchoBean4 not bound
at sun.rmi.transport.StreamRemoteCall.exceptionReceivedFromServer

...

The problem is that the JBoss server has not finished deploying the example EJB in the time the client allowed.
This is due to the initial setup time of the secure random number generator used by the SSL server socket. If you
see this issue, simply rerun the example again or increase the deployment wait time in the build-security.xml

Ant script.

7.9. Configuring JBoss for use Behind a Firewall

JBoss comes with many socket based services that open listening ports. In this section we list the services that open
ports that might need to be configured to work when accessing JBoss behind a firewall. The following table shows
the ports, socket type, associated service for the services in the default configuration file set. Table 7.2 shows the
same information for the additional ports that exist in the all configuration file set.

Table 7.1. The ports found in the default configuration

Port Type Service

1098 TCP org.jboss.naming.NamingService

1099 TCP org.jboss.naming.NamingService

4444 TCP org.jboss.invocation.jrmp.server.JRMPInvoker

4445 TCP org.jboss.invocation.pooled.server.PooledInvoker

8009 TCP org.jboss.web.tomcat.tc4.EmbeddedTomcatService

8080 TCP org.jboss.web.tomcat.tc4.EmbeddedTomcatService

8083 TCP org.jboss.web.WebService

8093 TCP org.jboss.mq.il.uil2.UILServerILService

Table 7.2. Additional ports in the all configuration

Port Type Service

1100 TCP org.jboss.ha.jndi.HANamingService

1101 TCP org.jboss.ha.jndi.HANamingService

Security on JBoss

JBoss Release 2 302

Port Type Service

1102 UDP org.jboss.ha.jndi.HANamingService

1161 UDP org.jboss.jmx.adaptor.snmp.agent.SnmpAgentService

1162 UDP org.jboss.jmx.adaptor.snmp.trapd.TrapdService

3528 TCP org.jboss.invocation.iiop.IIOPInvoker

4447 TCP org.jboss.invocation.jrmp.server.JRMPInvokerHA

45566a UDP org.jboss.ha.framework.server.ClusterPartition

aPlus two additional anonymous UDP ports, one can be set using the rcv_port, and the other cannot be set.

7.10. How to Secure the JBoss Server

JBoss comes with several admin access points that need to be secured or removed to prevent unauthorized access to
administrative functions in a deployment. This section describes the various admin services and how to secure
them.

7.10.1. The JMX Console

The jmx-console.war found in the deploy directory provides an html view into the JMX microkernel. As such, it
provides access to arbitrary admin type access like shutting down the server, stopping services, deploying new ser-
vices, etc. It should either be secured like any other web application, or removed.

7.10.2. The Web Console

The web-console.war found in the deploy/management directory is another web application view into the JMX
microkernel. This uses a combination of an applet and a HTML view and provides the same level of access to ad-
min functionality as the jmx-console.war. As such, it should either be secured or removed. The web-console.war

contains commented out templates for basic security in its WEB-INF/web.xml as well as commented out setup for a
security domain in WEB-INF/jboss-web.xml.

7.10.3. The HTTP Invokers

The http-invoker.sar found in the deploy directory is a service that provides RMI/HTTP access for EJBs and the
JNDI Naming service. This includes a servlet that processes posts of marshalled
org.jboss.invocation.Invocation objects that represent invocations that should be dispatched onto the
MBeanServer. Effectively this allows access to MBeans that support the detached invoker operation via HTTP since
one could figure out how to format an appropriate HTTP post. To security this access point you would need to se-
cure the JMXInvokerServlet servlet found in the http-invoker.sar/invoker.war/WEB-INF/web.xml descriptor.
There is a secure mapping defined for the /restricted/JMXInvokerServlet path by default, one would simply
have to remove the other paths and configure the http-invoker security domain setup in the http-in-

voker.sar/invoker.war/WEB-INF/jboss-web.xml descriptor.

Security on JBoss

JBoss Release 2 303

7.10.4. The JMX Invoker

The jmx-invoker-adaptor-server.sar is a service that exposes the JMX MBeanServer interface via an RMI
compatible interface using the RMI/JRMP detached invoker service. The only way for this service to be secured
currently would be to switch the protocol to RMI/HTTP and secure the http-invoker.sar as described in the pre-
vious section. In the future this service will be deployed as an XMBean with a security interceptor that supports
role based access checks.

Security on JBoss

JBoss Release 2 304

8
Additional Services

This chapter discusses useful MBean services that are not discussed elsewhere either because they are utility ser-
vices not necessary for running JBoss, or they don't fit into a current section of the book.

8.1. Memory and Thread Monitoring

The jboss.system:type=ServerInfo MBean provides several attributes that can be used to monitor the thread and
memory usage in a JBoss instance. These attributes can be monitored in many ways: through the JMX Console,
from a third-party JMX management tool, from shell scripts using the twiddle command, etc... The most interesting
attributes are shown below.

FreeMemory
This is the current free memory available in the JVM.

ActiveThreadCount
This is the number of active threads in the JVM.

ActiveThreadGroupCount
This is the number of active thread groups in the JVM.

These are useful metrics for monitoring and alerting, but developers and administrators need a little more insite
than this. The Java 5 JVMs from Sun provide more detailed information about the current state of the JVM. Some
of these details are exposed by JBoss through operations on the SystemInfo MBean.

listMemoryPools
This operations shows the size and current usage of all JVM memory pools. This operation is only available
when using Java 5.

listThreadDump
This operations shows all threads currently running in the JVM. When using Java 5, JBoss will display a com-
plete stack trace for each thread, showing you exactly what code each thread is executing.

listThreadCpuUtilization
This operations shows all threads currently running in the JVM along with the total CPU time each thread has
used. The operation is only available in Java 5.

8.2. The Log4j Service

The Log4jService MBean configures the Apache log4j system. JBoss uses the log4j framework as its internal log-

JBoss Release 2 305

ging API.

• ConfigurationURL: The URL for the log4j configuration file. This can refer to either a XML document parsed
by the org.apache.log4j.xml.DOMConfigurator or a Java properties file parsed by the
org.apache.log4j.PropertyConfigurator. The type of the file is determined by the URL content type, or if
this is null, the file extension. The default setting of resource:log4j.xml refers to the conf/log4j.xml file of
the active server configuration file set.

• RefreshPeriod: The time in seconds between checks for changes in the log4 configuration specified by the
ConfigurationURL attribute. The default value is 60 seconds.

• CatchSystemErr: This boolean flag if true, indicates if the System.err stream should be redirected onto a
log4j category called STDERR. The default is true.

• CatchSystemOut: This boolean flag if true, indicates if the System.out stream should be redirected onto a
log4j category called STDOUT. The default is true.

• Log4jQuietMode: This boolean flag if true, sets the org.apache.log4j.helpers.LogLog.setQuiteMode. As
of log4j1.2.8 this needs to be set to avoid a possible deadlock on exception at the appender level. See
bug#696819.

8.3. System Properties Management

The management of system properties can be done using the system properties service. It supports setting of the
VM global property values just as java.lang.System.setProperty method and the VM command line arguments
do.

Its configurable attributes include:

• Properties: a specification of multiple property name=value pairs using the
java.util.Properites.load(java.io.InputStream) method format. Each property=value statement is giv-
en on a separate line within the body of the Properties attribute element.

• URLList: a comma separated list of URL strings from which to load properties file formatted content. If a
component in the list is a relative path rather than a URL it will be treated as a file path relative to the
<jboss-dist>/server/<config> directory. For example, a component of conf/local.properties would be
treated as a file URL that points to the <jboss-dist>/server/default/conf/local.properties file when
running with the default configuration file set.

The following illustrates the usage of the system properties service with an external properties file.

<mbean code="org.jboss.varia.property.SystemPropertiesService"
name="jboss.util:type=Service,name=SystemProperties">

<!-- Load properties from each of the given comma separated URLs -->
<attribute name="URLList">

http://somehost/some-location.properties,
./conf/somelocal.properties

</attribute>
</mbean>

Additional Services

JBoss Release 2 306

The following illustrates the usage of the system properties service with an embedded properties list.

<mbean code="org.jboss.varia.property.SystemPropertiesService"
name="jboss.util:type=Service,name=SystemProperties">

<!-- Set properties using the properties file style. -->
<attribute name="Properties">

property1=This is the value of my property
property2=This is the value of my other property

</attribute>

</mbean>

8.4. Property Editor Management

In JBoss, JavaBean property editors are used for reading data types from service files and for editing values in the
JMX console. The java.bean.PropertyEditorManager class controls the java.bean.PropertyEditor instances in
the system. The property editor manager can be managed in JBoss using the
org.jboss.varia.property.PropertyEditorManagerService MBean. The property editor manager service is
configured in deploy/properties-service.xml and supports the following attributes:

• BootstrapEditors: This is a listing of property_editor_class=editor_value_type_class pairs defining the
property editor to type mappings that should be preloaded into the property editor manager. The value type of
this attribute is a string so that it may be set from a string without requiring a custom property editor.

• Editors: This serves the same function as the BootstrapEditors attribute, but its type is
java.util.Properties. Setting it from a string value in a service file requires a custom property editor for
properties objects already be loaded. JBoss provides a suitable property editor.

• EditorSearchPath: This attribute allows one to set the editor packages search path on the PropertyEditor-

Manager editor packages search path. Since there can be only one search path, setting this value overrides the
default search path established by JBoss. If you set this, make sure to add the JBoss search path,
org.jboss.util.propertyeditor and org.jboss.mx.util.propertyeditor, to the front of the new search
path.

8.5. Services Binding Management

With all of the independently deployed services available in JBoss, running multiple instances on a given machine
can be a tedious exercise in configuration file editing to resolve port conflicts. The binding service allows you cent-
rally configure the ports for multiple JBoss instances. After the service is normally loaded by JBoss, the Service-

Configurator queries the service binding manager to apply any overrides that may exist for the service. The ser-
vice binding manager is configured in conf/jboss-service.xml. The set of configurable attributes it supports in-
clude:

• ServerName: This is the name of the server configuration this JBoss instance is associated with. The binding
manager will apply the overrides defined for the named configuration.

• StoreFactoryClassName: This is the name of the class that implements the ServicesStoreFactory interface.
You may provide your own implementation, or use the default XML based store

Additional Services

JBoss Release 2 307

org.jboss.services.binding.XMLServicesStoreFactory. The factory provides a ServicesStore instance
responsible for providing the names configuration sets.

• StoreURL: This is the URL of the configuration store contents, which is passed to the ServicesStore instance
to load the server configuration sets from. For the XML store, this is a simple service binding file.

The following is a sample service binding manager configuration that uses the ports-01 configuration from the
sample-bindings.xml file provided in the JBoss examples directory.

<mbean code="org.jboss.services.binding.ServiceBindingManager"
name="jboss.system:service=ServiceBindingManager">

<attribute name="ServerName">ports-01</attribute>
<attribute name="StoreURL">

../docs/examples/binding-manager/sample-bindings.xml
</attribute>
<attribute name="StoreFactoryClassName">

org.jboss.services.binding.XMLServicesStoreFactory
</attribute>

</mbean>

The structure of the binding file is shown in Figure 8.1.

Figure 8.1. The binding service file structure

The elements are:

• service-bindings: The root element of the configuration file. It contains one or more server elements.

• server: This is the base of a JBoss server instance configuration. It has a required name attribute that defines the
JBoss instance name to which it applies. This is the name that correlates with the ServiceBindingManager

ServerName attribute value. The server element content consists of one or more service-config elements.

• service-config: This element represents a configuration override for an MBean service. It has a required name
attribute that is the JMX ObjectName string of the MBean service the configuration applies to. It also has a re-
quired delegateClass name attribute that specifies the class name of the ServicesConfigDelegate implement-
ation that knows how to handle bindings for the target service. Its contents consists of an optional delegate-con-
fig element and one or more binding elements.

Additional Services

JBoss Release 2 308

• binding: A binding element specifies a named port and address pair. It has an optional name that can be used to
provide multiple binding for a service. An example would be multiple virtual hosts for a web container. The
port and address are specified via the optional port and host attributes respectively. If the port is not specified
it defaults to 0 meaning choose an anonymous port. If the host is not specified it defaults to null meaning any
address.

• delegate-config: The delegate-config element is an arbitrary XML fragment for use by the ServicesConfig-

Delegate implementation. The hostName and portName attributes only apply to the AttributeMappingDeleg-

ate of the example and are there to prevent DTD aware editors from complaining about their existence in the
AttributeMappingDelegate configurations. Generally both the attributes and content of the delegate-config

are arbitrary, but there is no way to specify and a element can have any number of attributes with a DTD.

The three ServicesConfigDelegate implementations are AttributeMappingDelegate, XSLTConfigDelegate, and
XSLTFileDelegate.

8.5.1. AttributeMappingDelegate

The AttributeMappingDelegate class is an implementation of the ServicesConfigDelegate that expects a deleg-

ate-config element of the form:

<delegate-config portName="portAttrName" hostName="hostAttrName">
<attribute name="someAttrName">someHostPortExpr</attribute>
<!-- ... -->

</delegate-config>

The portAttrName is the attribute name of the MBean service to which the binding port value should be applied,
and the hostAttrName is the attribute name of the MBean service to which the binding host value should be ap-
plied. If the portName attribute is not specified then the binding port is not applied. Likewise, if the hostName at-
tribute is not specified then the binding host is not applied. The optional attribute element(s) specify arbitrary
MBean attribute names whose values are a function of the host and/or port settings. Any reference to ${host} in
the attribute content is replaced with the host binding and any ${port} reference is replaced with the port binding.
The portName, hostName attribute values and attribute element content may reference system properties using the
${x} syntax that is supported by the JBoss services descriptor.

The sample listing illustrates the usage of AttributeMappingDelegate.

<service-config name="jboss:service=Naming"
delegateClass="org.jboss.services.binding.AttributeMappingDelegate">

<delegate-config portName="Port"/>
<binding port="1099" />

</service-config>

Here the jboss:service=Naming MBean service has its Port attribute value overridden to 1099. The correspond-
ing setting from the jboss1 server configuration overrides the port to 1199.

8.5.2. XSLTConfigDelegate

The XSLTConfigDelegate class is an implementation of the ServicesConfigDelegate that expects a delegate-con-

fig element of the form:

<delegate-config>

Additional Services

JBoss Release 2 309

<xslt-config configName="ConfigurationElement"><![CDATA[
Any XSL document contents...
]]>

</xslt-config>
<xslt-param name="param-name">param-value</xslt-param>
<!-- ... -->

</delegate-config>

The xslt-config child element content specifies an arbitrary XSL script fragment that is to be applied to the
MBean service attribute named by the configName attribute. The named attribute must be of type
org.w3c.dom.Element. The optional xslt-param elements specify XSL script parameter values for parameters
used in the script. There are two XSL parameters defined by default called host and port, and their values are set
to the configuration host and port bindings.

The XSLTConfigDelegate is used to transform services whose port/interface configuration is specified using a
nested XML fragment. The following example maps the port number on hypersonic datasource:

<service-config name="jboss.jca:service=ManagedConnectionFactory,name=DefaultDS"
delegateClass="org.jboss.services.binding.XSLTConfigDelegate">

<delegate-config>
<xslt-config configName="ManagedConnectionFactoryProperties"><![CDATA[

<xsl:stylesheet
xmlns:xsl='http://www.w3.org/1999/XSL/Transform' version='1.0'>

<xsl:output method="xml" />
<xsl:param name="host"/>
<xsl:param name="port"/>

<xsl:template match="/">
<xsl:apply-templates/>

</xsl:template>

<xsl:template match="config-property[@name='ConnectionURL']">
<config-property type="java.lang.String" name="ConnectionURL">

jdbc:hsqldb:hsql://<xsl:value-of select='$host'/>:<xsl:value-of select='$port'/>
</config-property>

</xsl:template>

<xsl:template match="*|@*">
<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:template>

</xsl:stylesheet>
]]>

</xslt-config>
</delegate-config>
<binding host="localhost" port="1901"/>

</service-config>

8.5.3. XSLTFileDelegate

The XSLTFileDelegate class works similarly to the XSLTConfigDelegate except that instead of transforming an
embedded XML fragment, the XSLT script transforms a file read in from the file system. The delegate-config

takes exactly the same form:

<delegate-config>
<xslt-config configName="ConfigurationElement"><![CDATA[

Additional Services

JBoss Release 2 310

Any XSL document contents...
]]>

</xslt-config>
<xslt-param name="param-name">param-value</xslt-param>
<!-- ... -->

</delegate-config>

The xslt-config child element content specifies an arbitrary XSL script fragment that is to be applied to the
MBean service attribute named by the configName attribute. The named attribute must be a String value corres-
ponding to an XML file that will be transformed. The optional xslt-param elements specify XSL script parameter
values for parameters used in the script. There are two XSL parameters defined by default called host and port,
and their values are set to the configuration host and port bindings.

The following example maps the host and port values for the Tomcat connectors:

<service-config name="jboss.web:service=WebServer"
delegateClass="org.jboss.services.binding.XSLTFileDelegate">

<delegate-config>
<xslt-config configName="ConfigFile"><![CDATA[

<xsl:stylesheet
xmlns:xsl='http://www.w3.org/1999/XSL/Transform' version='1.0'>

<xsl:output method="xml" />
<xsl:param name="port"/>

<xsl:variable name="portAJP" select="$port - 71"/>
<xsl:variable name="portHttps" select="$port + 363"/>

<xsl:template match="/">
<xsl:apply-templates/>

</xsl:template>

<xsl:template match = "Connector">
<Connector>

<xsl:for-each select="@*">
<xsl:choose>

<xsl:when test="(name() = 'port' and . = '8080')">
<xsl:attribute name="port">

<xsl:value-of select="$port" />
</xsl:attribute>

</xsl:when>
<xsl:when test="(name() = 'port' and . = '8009')">

<xsl:attribute name="port">
<xsl:value-of select="$portAJP" />

</xsl:attribute>
</xsl:when>
<xsl:when test="(name() = 'redirectPort')">

<xsl:attribute name="redirectPort">
<xsl:value-of select="$portHttps" />

</xsl:attribute>
</xsl:when>
<xsl:when test="(name() = 'port' and . = '8443')">

<xsl:attribute name="port">
<xsl:value-of select="$portHttps" />

</xsl:attribute>
</xsl:when>
<xsl:otherwise>

<xsl:attribute name="{name()}"><xsl:value-of select="." /></xsl:attribute>
</xsl:otherwise>

</xsl:choose>
</xsl:for-each>
<xsl:apply-templates/>

Additional Services

JBoss Release 2 311

</Connector>
</xsl:template>

<xsl:template match="*|@*">
<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:template>

</xsl:stylesheet>
]]>

</xslt-config>
</delegate-config>
<binding port="8280"/>

</service-config>

8.5.4. The Sample Bindings File

JBoss ships with service binding configuration file for starting up to three separate JBoss instances on one host.
Here we will walk through the steps to bring up the two instances and look at the sample configuration. Start by
making two server configuration file sets called jboss0 and jboss1 by running the following command from the
book examples directory:

[examples]$ ant -Dchap=misc -Dex=1 run-example

This creates duplicates of the server/default configuration file sets as server/jboss0 and server/jboss1, and
then replaces the conf/jboss-service.xml descriptor with one that has the ServiceBindingManager configuration
enabled as follows:

<mbean code="org.jboss.services.binding.ServiceBindingManager"
name="jboss.system:service=ServiceBindingManager">

<attribute name="ServerName">${jboss.server.name}</attribute>
<attribute name="StoreURL">${jboss.server.base.dir}/misc-ex1-bindings.xml</attribute>
<attribute name="StoreFactoryClassName">

org.jboss.services.binding.XMLServicesStoreFactory
</attribute>

</mbean>

Here the configuration name is ${jboss.server.name}. JBoss will replace that with name of the actual JBoss serv-
er configuration that we pass to the run script with the -c option. That will be either jboss0 or jboss1, depending
on which configuration is being run. The binding manager will find the corresponding server configuration section
from the misc-ex1-bindings.xml and apply the configured overrides. The jboss0 configuration uses the default
settings for the ports, while the jboss1 configuration adds 100 to each port number.

To test the sample configuration, start two JBoss instances using the jboss0 and jboss1 configuration file sets cre-
ated previously. You can observe that the port numbers in the console log are different for the jboss1 server. To
test out that both instances work correctly, try accessing the web server of the first JBoss on port 8080 and then try
the second JBoss instance on port 8180.

8.6. RMI Dynamic Class Loading

The WebService MBean provides dynamic class loading for RMI access to the server EJBs. The configurable at-
tributes for the service are as follows:

Additional Services

JBoss Release 2 312

• Port: the WebService listening port number. A port of 0 will use any available port.

• Host: Set the name of the public interface to use for the host portion of the RMI codebase URL.

• BindAddress: the specific address the WebService listens on. This can be used on a multi-homed host for a
java.net.ServerSocket that will only accept connect requests to one of its addresses.

• Backlog: The maximum queue length for incoming connection indications (a request to connect) is set to the
backlog parameter. If a connection indication arrives when the queue is full, the connection is refused.

• DownloadServerClasses: A flag indicating if the server should attempt to download classes from thread con-
text class loader when a request arrives that does not have a class loader key prefix.

• DownloadResources: A flag indicating whether the server should attempt to download non-class file resources
using the thread context class loader. Note that allowing this is generally a security risk as it allows access to
server configuration files which may contain security settings.

• ThreadPool: The org.jboss.util.threadpool.BasicThreadPoolMBean instance thread pool used for the
class loading.

8.7. Scheduling Tasks

Java includes a simple timer based capability through the java.util.Timer and java.util.TimerTask utility
classes. JMX also includes a mechanism for scheduling JMX notifications at a given time with an optional repeat
interval as the javax.management.timer.TimerMBean agent service.

JBoss includes two variations of the JMX timer service in the org.jboss.varia.scheduler.Scheduler and
org.jboss.varia.scheduler.ScheduleManager MBeans. Both MBeans rely on the JMX timer service for the ba-
sic scheduling. They extend the behavior of the timer service as described in the following sections.

8.7.1. org.jboss.varia.scheduler.Scheduler

The Scheduler differs from the TimerMBean in that the Scheduler directly invokes a callback on an instance of a
user defined class, or an operation of a user specified MBean.

• InitialStartDate: Date when the initial call is scheduled. It can be either:

• NOW: date will be the current time plus 1 seconds

• A number representing the milliseconds since 1/1/1970

• Date as String able to be parsed by SimpleDateFormat with default format pattern "M/d/yy h:mm a". If the
date is in the past the Scheduler will search a start date in the future with respect to the initial repetitions
and the period between calls. This means that when you restart the MBean (restarting JBoss etc.) it will start
at the next scheduled time. When no start date is available in the future the Scheduler will not start.

For example, if you start your Schedulable everyday at Noon and you restart your JBoss server then it will
start at the next Noon (the same if started before Noon or the next day if start after Noon).

Additional Services

JBoss Release 2 313

• InitialRepetitions: The number of times the scheduler will invoke the target's callback. If -1 then the callback
will be repeated until the server is stopped.

• StartAtStartup: A flag that determines if the Scheduler will start when it receives its startService life cycle
notification. If true the Scheduler starts on its startup. If false, an explicit startSchedule operation must be in-
voked on the Scheduler to begin.

• SchedulePeriod: The interval between scheduled calls in milliseconds. This value must be bigger than 0.

• SchedulableClass: The fully qualified class name of the org.jboss.varia.scheduler.Schedulable interface
implementation that is to be used by the Scheduler . The SchedulableArguments and SchedulableArgument-

Types must be populated to correspond to the constructor of the Schedulable implementation.

• SchedulableArguments: A comma separated list of arguments for the Schedulable implementation class con-
structor. Only primitive data types, String and classes with a constructor that accepts a String as its sole argu-
ment are supported.

• SchedulableArgumentTypes: A comma separated list of argument types for the Schedulable implementation
class constructor. This will be used to find the correct constructor via reflection. Only primitive data types,
String and classes with a constructor that accepts a String as its sole argument are supported.

• SchedulableMBean: Specifies the fully qualified JMX ObjectName name of the schedulable MBean to be
called. If the MBean is not available it will not be called but the remaining repetitions will be decremented.
When using SchedulableMBean the SchedulableMBeanMethod must also be specified.

• SchedulableMBeanMethod: Specifies the operation name to be called on the schedulable MBean. It can op-
tionally be followed by an opening bracket, a comma separated list of parameter keywords, and a closing brack-
et. The supported parameter keywords include:

• NOTIFICATION which will be replaced by the timers notification instance (javax.management.Notification)

• DATE which will be replaced by the date of the notification call (java.util.Date)

• REPETITIONS which will be replaced by the number of remaining repetitions (long)

• SCHEDULER_NAME which will be replaced by the ObjectName of the Scheduler

• Any fully qualified class name which the Scheduler will set to null.

A given Scheduler instance only support a single schedulable instance. If you need to configure multiple scheduled
events you would use multiple Scheduler instances, each with a unique ObjectName. The following is an example
of configuring a Scheduler to call a Schedulable implementation as well as a configuration for calling a MBean.

<server>

<mbean code="org.jboss.varia.scheduler.Scheduler"
name="jboss.docs:service=Scheduler">

<attribute name="StartAtStartup">true</attribute>
<attribute name="SchedulableClass">org.jboss.book.misc.ex2.ExSchedulable</attribute>
<attribute name="SchedulableArguments">TheName,123456789</attribute>
<attribute name="SchedulableArgumentTypes">java.lang.String,long</attribute>

<attribute name="InitialStartDate">NOW</attribute>
<attribute name="SchedulePeriod">60000</attribute>

Additional Services

JBoss Release 2 314

<attribute name="InitialRepetitions">-1</attribute>
</mbean>

</server>

The SchedulableClass org.jboss.book.misc.ex2.ExSchedulable example class is given below.

package org.jboss.book.misc.ex2;

import java.util.Date;
import org.jboss.varia.scheduler.Schedulable;

import org.apache.log4j.Logger;

/**
* A simple Schedulable example.
* @author Scott.Stark@jboss.org
* @version $Revision: 1.2 $
*/

public class ExSchedulable implements Schedulable
{

private static final Logger log = Logger.getLogger(ExSchedulable.class);

private String name;
private long value;

public ExSchedulable(String name, long value)
{

this.name = name;
this.value = value;
log.info("ctor, name: " + name + ", value: " + value);

}

public void perform(Date now, long remainingRepetitions)
{

log.info("perform, now: " + now +
", remainingRepetitions: " + remainingRepetitions +
", name: " + name + ", value: " + value);

}
}

Deploy the timer SAR by running:

[examples]$ ant -Dchap=misc -Dex=2 run-example

The server console shows the following which includes the first two timer invocations, separated by 60 seconds:

21:09:27,716 INFO [ExSchedulable] ctor, name: TheName, value: 123456789
21:09:28,925 INFO [ExSchedulable] perform, now: Mon Dec 20 21:09:28 CST 2004,

remainingRepetitions: -1, name: TheName, value: 123456789
21:10:28,899 INFO [ExSchedulable] perform, now: Mon Dec 20 21:10:28 CST 2004,

remainingRepetitions: -1, name: TheName, value: 123456789
21:11:28,897 INFO [ExSchedulable] perform, now: Mon Dec 20 21:11:28 CST 2004,

remainingRepetitions: -1, name: TheName, value: 123456789

8.8. The Timer Service

The JMX standard defines a timer MBean (javax.management.timer.Timer) which can send notifications at pre-

Additional Services

JBoss Release 2 315

determined times. The a timer MBean can be instantiated within JBoss as any other MBean.

<mbean code="javax.management.timer.Timer" name="jboss.monitor:name=Heartbeat,type=Timer"/>

A standard JMX timer doesn't produce any timer events unless it is asked to. To aid in the configuration of the
timer MBean, JBoss provides a complementary TimerService MBean. It interacts with the timer MBean to config-
ure timer events at regular intervals and to transform them into JMX notifications more suitable for other services.
The TimerService MBean takes the following attributes:

• NotificationType: This is the type of the notification to be generated.

• NotificationMessage: This is the message that should be associated with the generated notification.

• TimerPeriod: This is the time period between notification. The time period is in milliseconds, unless otherwise
specified with a unit like "30min" or "4h". Valid time suffixes are msec, sec, min and h.

• Repeatitions: This is the number of times the alert should be generated. A value of 0 indicates the alert should
repeat indefinitely.

• TimerMbean: This is the ObjectName of the time MBean that this TimerService instance should configure no-
tifications for.

The following sample illustrates the the use of the TimerService MBean.

<mbean code="org.jboss.monitor.services.TimerService"
name="jboss.monitor:name=Heartbeat,type=TimerService">

<attribute name="NotificationType">jboss.monitor.heartbeat</attribute>
<attribute name="NotificationMessage">JBoss is alive!</attribute>
<attribute name="TimerPeriod">60sec</attribute>
<depends optional-attribute-name="TimerMBean">

jboss.monitor:name=Heartbeat,type=Timer
</depends>

</mbean>

This MBean configuration configures the jboss.monitor:name=Heartbeat,type=Timer timer to generate a
jboss.monitor.heartbeat notification every 60 seconds. Any service that that wants to receive this periodic noti-
fications can subscribe to the notification.

As an example, JBoss provides a simple NotificationListener MBean that can listen for a particular notifcation
and log a log message when an event is generated. This MBean is very useful for debugging or manually observing
notifications. The following MBean definition listens for any events generated by the heartbeat timer used in the
previous examples.

<mbean code="org.jboss.monitor.services.NotificationListener"
name="jboss.monitor:service=NotificationListener">

<attribute name="SubscriptionList">
<subscription-list>

<mbean name="jboss.monitor:name=Heartbeat,type=Timer" />
</subscription-list>

</attribute>
</mbean>

The subscription-list element lists which MBeans the listener should listen to. Notice that the MBean we are
listening to is the name of the actual timer MBean and not the TimerService MBean. Because the timer might gen-

Additional Services

JBoss Release 2 316

erate multiple events, configured by multiple TimerService instances, you may need to filter by notification type.
The filter element can be used to create notification filters that select only the notification types desired. The fol-
lowing listing shows how we can limit notifications to only the jboss.monitor.heartbeat type the timer service
configured.

<mbean code="org.jboss.monitor.services.NotificationListener"
name="jboss.monitor:service=NotificationListener">

<attribute name="SubscriptionList">
<subscription-list>

<mbean name="jboss.monitor:name=Heartbeat,type=Timer">
<filter factory="NotificationFilterSupportFactory">

<enable type="jboss.monitor.heartbeat"/>
</filter>

</mbean>
</subscription-list>

</attribute>
</mbean>

As an example of a slightly more interesting listener, we'll look at the ScriptingListener. This listener listens for
particular events and then executes a specified script when events are received. The script can be writen in any
bean shell scripting language. The ScriptingListener accepts has the following parameters.

• ScriptLanguage: This is the language the script is written in. This should be beanshell, unless you have
loaded libraries for another beanshell compatible language.

• Script: This is the text of the script to evaluate. It is good practice to enclose the script in a CDATA section to
minimize conflicts between scripting language syntax and XML syntax.

• SubscriptionList: This is the list of MBeans that this MBean will listen to for events that will trigger the script.

The following example illustrates the use of the ScriptingListener. When the previously configured timer gener-
ates a heartbeat notification, the beanshell script will execute, printing the current memory values to STDOUT.
(This output will be redirected to the log files) Notice that the beanshell script has a reference to the MBean server
and can execute operations against other MBeans.

<mbean code="org.jboss.monitor.services.ScriptingListener"
name="jboss.monitor:service=ScriptingListener">

<attribute name="SubscriptionList">
<subscription-list>

<mbean name="jboss.monitor:name=Heartbeat,type=Timer"/>
</subscription-list>

</attribute>
<attribute name="ScriptLanguage">beanshell</attribute>
<attribute name="Script">

<![CDATA[
import javax.management.ObjectName;

/* poll free memory and thread count */
ObjectName target = new ObjectName("jboss.system:type=ServerInfo");

long freeMemory = server.getAttribute(target, "FreeMemory");
long threadCount = server.getAttribute(target, "ActiveThreadCount");

log.info("freeMemory" + freeMemory + ", threadCount" + threadCount);
]]>

</attribute>
</mbean>

Additional Services

JBoss Release 2 317

Of course, you are not limited to these JBoss-provided notification listeners. Other services such as the barrier ser-
vice (see Section 8.9) receive and act on notifications that could be generated from a timer. Additionally, any
MBean can be coded to listen for timer-generated notifications.

8.9. The BarrierController Service

Expressing dependencies between services using the <depends> tag is a convenient way to make the lifecycle of
one service depend on the lifecycle of another. For example, when serviceA depends on serviceB JBoss will en-
sure the serviceB.create() is called before serviceA.create() and serviceB.start() is called before ser-

viceA.start().

However, there are cases where services do not conform to the JBoss lifecycle model, i.e. they don't expose create/
start/stop/destroy lifesycle methods). This is the case for jboss.system:type=Server MBean, which represents the
JBoss server itself. No lifecycle operations are exposed so you cannot simply express a dependcy like: if JBoss is
fully started then start my own service.

Or, even if they do conform to the JBoss lifecycle model, the completion of a lifecycle method (e.g. the start

method) may not be sufficient to describe a dependency. For example the jboss.web:service=WebServer MBean
that wraps the embedded Tomcat server in JBoss does not start the Tomcat connectors until after the server is fully
started. So putting a dependency on this MBean, if we want to hit a webpage through Tomcat, will do no good.

Resolving such non-trivial dependencies is currently performed using JMX notifications. For example the
jboss.system:type=Server MBean emits a notification of type org.jboss.system.server.started when it has
completed startup, and a notification of type org.jboss.system.server.stopped when it shuts down. Similarly,
jboss.web:service=WebServer emits a notification of type jboss.tomcat.connectors.started when it starts up.
Services can subscribe to those notifications in order to implement more complex dependencies. This technique has
been generalized with the barrier controller service.

The barrier controller is a relatively simple MBean service that extends ListenerServiceMBeanSupport and thus
can subscribe to any notification in the system. It uses the received notifications to control the lifecycle of a dynam-
ically created MBean called the barrier.

The barrier is instantiated, registered and brought to the create state when the barrier controller is deployed. After
that, the barrier is started and stopped when matching notifications are received. Thus, other services need only de-
pend on the barrier MBean using the usual <depends> tag, without having to worry about complex lifecycle issues.
They will be started and stopped in tandem with the Barrier. When the barrier controller is undeployed the barrier
is destroyed.

The notifications of interest are configured in the barrier controller using the SubscriptionList attribute. In order
to identify the starting and stopping notifications we associate with each subscription a handback string object.
Handback objects, if specified, are passed back along with the delivered notifications at reception time (i.e. when
handleNotification() is called) to qualify the received notifications, so that you can identify quickly from which
subscription a notification is originating (because your listener can have many active subscriptions).

So we tag the subscriptions that produce the starting/stopping notifications of interest using any handback strings,
and we configure this same string to the StartBarrierHandback (and StopBarrierHandback correspondingly) at-
tribute of the barrier controller. Thus we can have more than one notifications triggering the starting or stopping of
the barrier.

Additional Services

JBoss Release 2 318

The following example shows a service that depends on the Tomcat connectors. In fact, this is a very common pat-
tern for services that want to hit a servlet inside tomcat. The service that depends on the Barrier in the example, is a
simple memory monitor that creates a background thread and monitors the memory usage, emitting notifications
when thresholds get crossed, but it could be anything. We've used this because it prints out to the console starting
and stopping messages, so we know when the service gets activated/deactivated.

<?xml version="1.0" encoding="UTF-8"?>
<!-- $Id: master.xml,v 1.2 2006/11/01 18:14:13 nrichards Exp $ -->

<server>
<!--
In this example we have the BarrierController controlling a Barrier
that is started when we receive the "jboss.tomcat.connectors.started"
notification from the Tomcat mbean, and stopped when we receive the
"org.jboss.system.server.stopped" notification from the server mbean.

The dependent services need only define a dependency on the Barrier mbean!
-->
<mbean code="org.jboss.system.BarrierController"

name="jboss:service=BarrierController">

<!-- Whether to have the Barrier initially started or not -->
<attribute name="BarrierEnabledOnStartup">false</attribute>

<!-- Whether to subscribe for notifications after startup -->
<attribute name="DynamicSubscriptions">true</attribute>

<!-- Dependent services will depend on this mbean -->
<attribute name="BarrierObjectName">jboss:name=TomcatConnector,type=Barrier</attribute>

<!-- The notification subscription handback that starts the barrier -->
<attribute name="StartBarrierHandback">start</attribute>

<!-- The notification subscription handback that stops the barrier -->
<attribute name="StopBarrierHandback">stop</attribute>

<!-- The notifications to subscribe for, along with their handbacks -->
<attribute name="SubscriptionList">
<subscription-list>

<mbean name="jboss.web:service=WebServer" handback="start">
<filter factory="NotificationFilterSupportFactory">
<enable type="jboss.tomcat.connectors.started"/>

</filter>
</mbean>
<mbean name="jboss.system:type=Server" handback="stop">
<filter factory="NotificationFilterSupportFactory">
<enable type="org.jboss.system.server.stopped"/>

</filter>
</mbean>

</subscription-list>
</attribute>

</mbean>

<!--
An example service that depends on the Barrier we declared above.
This services creates a background thread and monitors the memory
usage. When it exceeds the defined thresholds it emits notifications

-->
<mbean code="org.jboss.monitor.services.MemoryMonitor"

name="jboss.monitor:service=MemoryMonitor">

<attribute name="FreeMemoryWarningThreshold">20m</attribute>
<attribute name="FreeMemoryCriticalThreshold">15m</attribute>

Additional Services

JBoss Release 2 319

<!-- The BarrierObjectName configured in the BarrierController -->
<depends>jboss:name=TomcatConnector,type=Barrier</depends>

</mbean>

</server>

If you hot-deploy this on a running server the Barrier will be stopped because by the time the barrier controller is
deployed the starting notification is already seen. (There are ways to overcome this.) However, if you re-start the
server, the barrier will be started just after the Tomcat connectors get activated. You can also manually start or stop
the barrier by using the startBarrier() and stopBarrier() operations on the barrier controller. The attribute
BarrierStateString indicates the status of the barrier.

8.10. Exposing MBean Events via SNMP

JBoss has an SNMP adaptor service that can be used to intercept JMX notifications emitted by MBeans, convert
them to traps and send them to SNMP managers. In this respect the snmp-adaptor acts as a SNMP agent. Future
versions may offer support for full agent get/set functionality that maps onto MBean attributes or operations.

This service can be used to integrate JBoss with higher order system/network management platforms (HP Open-
View, for example), making the MBeans visible to those systems. The MBean developer can instrument the
MBeans by producing notifications for any significant event (e.g. server coldstart), and adaptor can then be con-
figured to intercept the notification and map it onto an SNMP traps. The adaptor uses the JoeSNMP package from
OpenNMS as the SNMP engine.

The SNMP service is configured in snmp-adaptor.sar. This service is only available in the all configuration, so
you'll need to copy it to your configuration if you want to use it. Inside the snmp-adaptor.sar directory, there are
two configuration files that control the SNMP service.

• managers.xml: configures where to send traps. The content model for this file is shown in Figure 8.2.

• notifications.xml: specifies the exact mapping of each notification type to a corresponding SNMP trap. The
content model for this file is shown in Figure 8.3.

The SNMPAgentService MBean is configured in snmp-adaptor.sar/META-INF/jboss-service.xml. The configur-
able parameters are:

• HeartBeatPeriod: The period in seconds at which heartbeat notifications are generated.

• ManagersResName: Specifies the resource name of the managers.xml file.

• NotificationMapResName: Specifies the resource name of the notications.xml file.

• TrapFactoryClassName: The org.jboss.jmx.adaptor.snmp.agent.TrapFactory implementation class that
takes care of translation of JMX Notifications into SNMP V1 and V2 traps.

• TimerName: Specifies the JMX ObjectName of the JMX timer service to use for heartbeat notifications.

• SubscriptionList: Specifies which MBeans and notifications to listen for.

Additional Services

JBoss Release 2 320

Figure 8.2. The schema for the SNMP managers file

Figure 8.3. The schema for the notification to trap mapping file

TrapdService is a simple MBean that acts as an SNMP Manager. It listens to a configurable port for incoming
traps and logs them as DEBUG messages using the system logger. You can modify the log4j configuration to redir-
ect the log output to a file. SnmpAgentService and TrapdService are not dependent on each other.

Additional Services

JBoss Release 2 321

A
Book Example Installation

The book comes with the source code for the examples discussed in the book. The examples are included with the
book archive. Unzipping the example code archive creates a JBoss jboss4guide directory that contains an ex-

amples subdirectory. This is the examples directory referred to by the book.

The only customization needed before the examples may be used is to set the location of the JBoss server distribu-
tion. This may be done by editing the examples/build.xml file and changing the jboss.dist property value. This
is shown in bold below:

<project name="JBoss book examples" default="build-all" basedir=".">
<!-- Allow override from local properties file -->
<property file="ant.properties"/>

<!-- Override with your JBoss server bundle dist location -->
<property name="jboss.dist" value="/tmp/jboss-4.0.3"/>
<property name="jboss.deploy.conf" value="default"/>
...

or by creating an .ant.properties file in the examples directory that contains a definition for the jboss.dist

property. For example:

jboss.dist=/usr/local/jboss/jboss-4.0.1

Part of the verification process validates that the version you are running the examples against matches what the
book examples were tested against. If you have a problem running the examples first look for the output of the val-
idate target such as the following:

validate:
[java] ImplementationTitle: JBoss [Zion]
[java] ImplementationVendor: JBoss Inc.
[java] ImplementationVersion: 4.0.1 (build: CVSTag=JBoss_4_0_1 date=200412230944)
[java] SpecificationTitle: JBoss
[java] SpecificationVendor: JBoss (http://www.jboss.org/)
[java] SpecificationVersion: 4.0.1
[java] JBoss version is: 4.0.1

JBoss Release 2 322

	The JBoss 4 Application Server J2EE Reference
	Table of Contents
	Chapter 1. The JBoss JMX Microkernel
	1.1. An Introduction to JMX
	1.1.1. Instrumentation Level
	1.1.2. Agent Level
	1.1.3. Distributed Services Level
	1.1.4. JMX Component Overview
	1.1.4.1. Managed Beans or MBeans
	1.1.4.2. Notification Model
	1.1.4.3. MBean Metadata Classes
	1.1.4.4. MBean Server
	1.1.4.5. Agent Services

	1.2. JBoss JMX Implementation Architecture
	1.2.1. The JBoss ClassLoader Architecture
	1.2.2. Class Loading and Types in Java
	1.2.2.1. ClassCastExceptions - I'm Not Your Type
	1.2.2.2. IllegalAccessException - Doing what you should not
	1.2.2.3. LinkageErrors - Making Sure You Are Who You Say You Are
	1.2.2.3.1. Debugging Class Loading Issues

	1.2.2.4. Inside the JBoss Class Loading Architecture
	1.2.2.4.1. Viewing Classes in the Loader Repository
	1.2.2.4.2. Scoping Classes
	1.2.2.4.3. The Complete Class Loading Model

	1.2.3. JBoss XMBeans
	1.2.3.1. Descriptors
	1.2.3.2. The Management Class
	1.2.3.3. The Constructors
	1.2.3.4. The Attributes
	1.2.3.5. The Operations
	1.2.3.6. Notifications

	1.3. Connecting to the JMX Server
	1.3.1. Inspecting the Server - the JMX Console Web Application
	1.3.1.1. Securing the JMX Console

	1.3.2. Connecting to JMX Using RMI
	1.3.3. Command Line Access to JMX
	1.3.3.1. Connecting twiddle to a Remote Server
	1.3.3.2. Sample twiddle Command Usage

	1.3.4. Connecting to JMX Using Any Protocol

	1.4. Using JMX as a Microkernel
	1.4.1. The Startup Process
	1.4.2. JBoss MBean Services
	1.4.2.1. The SARDeployer MBean
	1.4.2.2. The Service Life Cycle Interface
	1.4.2.3. The ServiceController MBean
	1.4.2.3.1. The create(ObjectName) method
	1.4.2.3.2. The start(ObjectName) method
	1.4.2.3.3. The stop(ObjectName) method
	1.4.2.3.4. The destroy(ObjectName) method

	1.4.2.4. Specifying Service Dependencies
	1.4.2.5. Identifying Unsatisfied Dependencies
	1.4.2.6. Hot Deployment of Components, the URLDeploymentScanner

	1.4.3. Writing JBoss MBean Services
	1.4.3.1. A Standard MBean Example
	1.4.3.2. XMBean Examples
	1.4.3.2.1. Version 1, The Annotated JNDIMap XMBean
	1.4.3.2.2. Version 2, Adding Persistence to the JNDIMap XMBean

	1.4.4. Deployment Ordering and Dependencies

	1.5. JBoss Deployer Architecture
	1.5.1. Deployers and ClassLoaders

	1.6. Remote Access to Services, Detached Invokers
	1.6.1. A Detached Invoker Example, the MBeanServer Invoker Adaptor Service
	1.6.2. Detached Invoker Reference
	1.6.2.1. The JRMPInvoker - RMI/JRMP Transport
	1.6.2.2. The PooledInvoker - RMI/Socket Transport
	1.6.2.3. The IIOPInvoker - RMI/IIOP Transport
	1.6.2.4. The JRMPProxyFactory Service - Building Dynamic JRMP Proxies
	1.6.2.5. The HttpInvoker - RMI/HTTP Transport
	1.6.2.6. The HA JRMPInvoker - Clustered RMI/JRMP Transport
	1.6.2.7. The HA HttpInvoker - Clustered RMI/HTTP Transport
	1.6.2.8. HttpProxyFactory - Building Dynamic HTTP Proxies
	1.6.2.9. Steps to Expose Any RMI Interface via HTTP

	Chapter 2. Naming on JBoss
	2.1. An Overview of JNDI
	2.1.1. Names
	2.1.2. Contexts
	2.1.2.1. Obtaining a Context using InitialContext

	2.2. The JBossNS Architecture
	2.3. The Naming InitialContext Factories
	2.3.1. The standard naming context factory
	2.3.2. The org.jboss.naming.NamingContextFactory
	2.3.3. Naming Discovery in Clustered Environments
	2.3.4. The HTTP InitialContext Factory Implementation
	2.3.5. The Login InitialContext Factory Implementation
	2.3.6. The ORBInitialContextFactory

	2.4. JNDI over HTTP
	2.4.1. Accessing JNDI over HTTP
	2.4.2. Accessing JNDI over HTTPS
	2.4.3. Securing Access to JNDI over HTTP
	2.4.4. Securing Access to JNDI with a Read-Only Unsecured Context

	2.5. Additional Naming MBeans
	2.5.1. JNDI Binding Manager
	2.5.2. The org.jboss.naming.NamingAlias MBean
	2.5.3. org.jboss.naming.ExternalContext MBean
	2.5.4. The org.jboss.naming.JNDIView MBean

	2.6. J2EE and JNDI - The Application Component Environment
	2.6.1. ENC Usage Conventions
	2.6.1.1. Environment Entries
	2.6.1.2. EJB References
	2.6.1.3. EJB References with jboss.xml and jboss-web.xml
	2.6.1.4. EJB Local References
	2.6.1.5. Resource Manager Connection Factory References
	2.6.1.6. Resource Manager Connection Factory References with jboss.xml and jboss-web.xml
	2.6.1.7. Resource Environment References
	2.6.1.8. Resource Environment References and jboss.xml, jboss-web.xml

	Chapter 3. Transactions on JBoss
	3.1. Transaction/JTA Overview
	3.1.1. Pessimistic and optimistic locking
	3.1.2. The components of a distributed transaction
	3.1.3. The two-phase XA protocol
	3.1.4. Heuristic exceptions
	3.1.5. Transaction IDs and branches

	3.2. JBoss Transaction Internals
	3.2.1. Adapting a Transaction Manager to JBoss
	3.2.2. The Default Transaction Manager
	3.2.2.1. org.jboss.tm.XidFactory

	3.2.3. UserTransaction Support

	Chapter 4. EJBs on JBoss
	4.1. The EJB Client Side View
	4.1.1. Specifying the EJB Proxy Configuration

	4.2. The EJB Server Side View
	4.2.1. Detached Invokers - The Transport Middlemen
	4.2.2. The HA JRMPInvoker - Clustered RMI/JRMP Transport
	4.2.3. The HA HttpInvoker - Clustered RMI/HTTP Transport

	4.3. The EJB Container
	4.3.1. EJBDeployer MBean
	4.3.1.1. Verifying EJB deployments
	4.3.1.2. Deploying EJBs Into Containers
	4.3.1.3. Container configuration information
	4.3.1.3.1. The container-name element
	4.3.1.3.2. The call-logging element
	4.3.1.3.3. The invoker-proxy-binding-name element
	4.3.1.3.4. The sync-on-commit-only element
	4.3.1.3.5. insert-after-ejb-post-create
	4.3.1.3.6. call-ejb-store-on-clean
	4.3.1.3.7. The container-interceptors Element
	4.3.1.3.8. The instance-pool element
	4.3.1.3.9. The container-pool-conf element
	4.3.1.3.10. The instance-cache element
	4.3.1.3.11. The container-cache-conf element
	4.3.1.3.12. The persistence-manager element
	4.3.1.3.13. The web-class-loader Element
	4.3.1.3.14. The locking-policy element
	4.3.1.3.15. The commit-option and optiond-refresh-rate elements
	4.3.1.3.16. The security-domain element
	4.3.1.3.17. cluster-config
	4.3.1.3.18. The depends element

	4.3.2. Container Plug-in Framework
	4.3.2.1. org.jboss.ejb.ContainerPlugin
	4.3.2.2. org.jboss.ejb.Interceptor
	4.3.2.3. org.jboss.ejb.InstancePool
	4.3.2.4. org.jboss.ebj.InstanceCache
	4.3.2.5. org.jboss.ejb.EntityPersistenceManager
	4.3.2.6. The org.jboss.ejb.EntityPersistenceStore interface
	4.3.2.7. org.jboss.ejb.StatefulSessionPersistenceManager

	4.4. Entity Bean Locking and Deadlock Detection
	4.4.1. Why JBoss Needs Locking
	4.4.2. Entity Bean Lifecycle
	4.4.3. Default Locking Behavior
	4.4.4. Pluggable Interceptors and Locking Policy
	4.4.5. Deadlock
	4.4.5.1. Deadlock Detection
	4.4.5.2. Catching ApplicationDeadlockException
	4.4.5.3. Viewing Lock Information

	4.4.6. Advanced Configurations and Optimizations
	4.4.6.1. Short-lived Transactions
	4.4.6.2. Ordered Access
	4.4.6.3. Read-Only Beans
	4.4.6.4. Explicitly Defining Read-Only Methods
	4.4.6.5. Instance Per Transaction Policy

	4.4.7. Running Within a Cluster
	4.4.8. Troubleshooting
	4.4.8.1. Locking Behavior Not Working
	4.4.8.2. IllegalStateException
	4.4.8.3. Hangs and Transaction Timeouts

	4.5. EJB Timer Configuration

	Chapter 5. Messaging on JBoss
	5.1. JMS Examples
	5.1.1. A Point-To-Point Example
	5.1.2. A Pub-Sub Example
	5.1.3. A Pub-Sub With Durable Topic Example
	5.1.4. A Point-To-Point With MDB Example

	5.2. JBoss Messaging Overview
	5.2.1. Invocation Layer
	5.2.2. Security Manager
	5.2.3. Destination Manager
	5.2.4. Message Cache
	5.2.5. State Manager
	5.2.6. Persistence Manager
	5.2.7. Destinations
	5.2.7.1. Queues
	5.2.7.2. Topics

	5.3. JBoss Messaging Configuration and MBeans
	5.3.1. org.jboss.mq.il.jvm.JVMServerILService
	5.3.2. org.jboss.mq.il.uil2.UILServerILService
	5.3.2.1. Configuring UIL2 for SSL
	5.3.2.2. JMS client properties for the UIL2 transport

	5.3.3. org.jboss.mq.il.http.HTTPServerILService
	5.3.4. org.jboss.mq.server.jmx.Invoker
	5.3.5. org.jboss.mq.server.jmx.InterceptorLoader
	5.3.6. org.jboss.mq.sm.jdbc.JDBCStateManager
	5.3.7. org.jboss.mq.security.SecurityManager
	5.3.8. org.jboss.mq.server.jmx.DestinationManager
	5.3.9. org.jboss.mq.server.MessageCache
	5.3.10. org.jboss.mq.pm.jdbc2.PersistenceManager
	5.3.11. Destination MBeans
	5.3.11.1. org.jboss.mq.server.jmx.Queue
	5.3.11.2. org.jboss.mq.server.jmx.Topic

	5.4. Specifying the MDB JMS Provider
	5.4.1. org.jboss.jms.jndi.JMSProviderLoader MBean
	5.4.2. org.jboss.jms.asf.ServerSessionPoolLoader MBean
	5.4.3. Integrating non-JBoss JMS Providers

	Chapter 6. Connectors on JBoss
	6.1. JCA Overview
	6.2. An Overview of the JBossCX Architecture
	6.2.1. BaseConnectionManager2 MBean
	6.2.2. RARDeployment MBean
	6.2.3. JBossManagedConnectionPool MBean
	6.2.4. CachedConnectionManager MBean
	6.2.5. A Sample Skeleton JCA Resource Adaptor

	6.3. Configuring JDBC DataSources
	6.4. Configuring Generic JCA Adaptors

	Chapter 7. Security on JBoss
	7.1. J2EE Declarative Security Overview
	7.1.1. Security References
	7.1.2. Security Identity
	7.1.3. Security roles
	7.1.4. EJB method permissions
	7.1.5. Web Content Security Constraints
	7.1.6. Enabling Declarative Security in JBoss

	7.2. An Introduction to JAAS
	7.2.1. What is JAAS?
	7.2.1.1. The JAAS Core Classes
	7.2.1.1.1. The Subject and Principal Classes
	7.2.1.1.2. Authentication of a Subject

	7.3. The JBoss Security Model
	7.3.1. Enabling Declarative Security in JBoss Revisited

	7.4. The JBoss Security Extension Architecture
	7.4.1. How the JaasSecurityManager Uses JAAS
	7.4.2. The JaasSecurityManagerService MBean
	7.4.3. The JaasSecurityDomain MBean

	7.5. Defining Security Domains
	7.5.1. Loading Security Domains
	7.5.2. The DynamicLoginConfig service
	7.5.3. Using JBoss Login Modules
	7.5.3.1. Password Stacking
	7.5.3.2. Password Hashing
	7.5.3.3. Unauthenticated Identity
	7.5.3.4. UsersRolesLoginModule
	7.5.3.5. LdapLoginModule
	7.5.3.6. DatabaseServerLoginModule
	7.5.3.7. BaseCertLoginModule
	7.5.3.8. IdentityLoginModule
	7.5.3.9. RunAsLoginModule
	7.5.3.10. ClientLoginModule

	7.5.4. Writing Custom Login Modules
	7.5.4.1. Support for the Subject Usage Pattern
	7.5.4.2. A Custom LoginModule Example

	7.6. The Secure Remote Password (SRP) Protocol
	7.6.1. Providing Password Information for SRP
	7.6.2. Inside of the SRP algorithm
	7.6.2.1. An SRP example

	7.7. Running JBoss with a Java 2 security manager
	7.8. Using SSL with JBoss using JSSE
	7.9. Configuring JBoss for use Behind a Firewall
	7.10. How to Secure the JBoss Server
	7.10.1. The JMX Console
	7.10.2. The Web Console
	7.10.3. The HTTP Invokers
	7.10.4. The JMX Invoker

	Chapter 8. Additional Services
	8.1. Memory and Thread Monitoring
	8.2. The Log4j Service
	8.3. System Properties Management
	8.4. Property Editor Management
	8.5. Services Binding Management
	8.5.1. AttributeMappingDelegate
	8.5.2. XSLTConfigDelegate
	8.5.3. XSLTFileDelegate
	8.5.4. The Sample Bindings File

	8.6. RMI Dynamic Class Loading
	8.7. Scheduling Tasks
	8.7.1. org.jboss.varia.scheduler.Scheduler

	8.8. The Timer Service
	8.9. The BarrierController Service
	8.10. Exposing MBean Events via SNMP

	Appendix A. Book Example Installation

