JBoss Remoting Guide

JBoss Remoting version 1.4.1 final

March 27, 2006

Copyright©2006JBoss, Inc.

Table of Contents

IO Y = SR 1
1.1 What 1S IBOSS REMOLINGceeeiuettiieeiiieiee ettt ettt e ettt e e e et e e e e st b e e e e e bbbt e e e easbe e e e e anbb e e e e anbb e e e e enbneeenn 1

L2 FEBIUIES. ... 1

RGN o T TV (o Jo =t N 2 10 TS SY (= 11010 1] T SRR 2

2 N o 0= (1 SRR 3
3. JB0SS REMOLING COMPONENESueiiiiieeiiiiiitiiee e e e e e e eeet e e e e e e e e s s aittbaaeeeeaaeesaaaatasaeeeeaaeessaasstsseeeeeassssaasssseseseaeeessannreens 7
/@0 1 T0 U= i [o] o IO P PP OT PP PPPPPP 9
4.1. General Connector and INVOKEr CONFIGUIAIONc.evviiiiiiiiieieieeeeeeee eeeeeeeeeeeees 9

A o =06 = £ T PP RPSTPPRPO 11

4.3. DISCOVENY (DEIECLOIS). ...cceiuttiee ettt e e ettt e ettt et e e ekttt e e e st e e e e s e et e e ek b e e e e e s e e e e e nnb e e e e e nbn e e e e e nnneeeeennnes 14

4.4, TranSPOItS (INVOKETS)uuiiiiiiie e i eiccitt e e e e e e ettt e e e e e e e e et a et e e e e e s s s n et eeeesaaeesssassssaeeeeaeessanntarneeeeaeeesanns 16
= V= 1 01Y 0= = PP 16

4.4.2. Configurations affecting the inVOKEr ClIENL............coooiiiiiiiiiie e 17

4.4.3. How the server bind address and port is ultimately determined.............ooccveveiiiiiieiiiiee e 17
o T (= B 1Y/ 0] (< PP 17

A.4.5. SSL SOCKEL INVOKEScueeeieeiiieiee ettt ettt e sttt e e e bt e e e ettt e e e e bttt e e e bbb et e e sabb e e e e e nntneeeeanbeeeas 18

N Y 1 1Yo S 19

N O o e 1 1Yo (= PSPPSR 19

T I I =S 1 1Yo P 20

4.4.9. HTTP(S) Client Invoker - proxy and basic authentiCation...............ccevvvvveieieieieeeeeeeeeeeeeeeeeeeeeeeeee e 20

(S V] = 1 01V SR 21

g I Y o= 1 (Yo = PP 23

44011, SEttiNG UP thE SEIVENeeiiiie ettt e e e e e e e e e e et e e e e e e e s s e sntbreeeeaaeeeaaas 24

4.4.11.2. SEtting UP ThE ClIENTeeeeieeie e e e e e e as 25

4.4.11.3. Shutting dOWN iNVOKEr GIOUPDS.vvveieieeeiiiiiiiieiee e e e e e s sttt e e e e e e e e st ee e e e e e e s s esnenreeeeaaeeeeaans 28

44104, EXAMPIES ...ttt ettt e e e et e e e e e s 28

o I ST @ T [W = 1 o g I o e 0= £ == 31

A5, IMAISNAITING etttk e oottt e e e Rt e e R et e e e Rt et e e et n e e e e e b a e e e e nres 31

T =1 o 7= o TS OSPPERR 33
4.6.1. CaAlIDACK OVEIVIBWceiiiiiiiie ittt e et e e bbbt e e e e bt e e e e ab et e e eabb e e e e s nnbae e e e anneeeas 33

4.6.2. CaAlbaCK CONFIQUIBLION.ceiiiiiieeiiiii ettt e e et e e et e e e esb e e e e annne e e e annneees 35

4.6.3. Callback EXCeption HaNliNgGoviiiiiiie e e e e e e e e e aeeeeas 37

4.7. ProgrammatiC CONTIQUIBEION.ueietiiieiee ettt e e ettt e ettt e sttt e e e st e e e st e e e e e e et e e e snnb et e e e anbne e e e annneeeennnees 37

ARSI IS W o] oo =g To I oo i o 8= 1o o I 37

SIS = 010 1o S 1= o TSP PP S PUPPPPPPPRP 46
L300 IR e 11T 10 (o) PRSP 46

5.2 ISSUBS ... 47

IS =14 1 o] PSS 48
7. CONNECLION EXCEPLION LISIENEIS. ...ciiiieiiiiciiieiee e e e e e ettt e e e e e e e et e e e e e e e s s stb e e e e eeeessaasatbreeeeaaeeesasasntsreeeaeeessansnrenns 49
8. TranspOrters - DEAMING POJOS. ..ottt e e et e e e st e e e e e s bb e e e e e s be e e e e aabbeeeeaansbeeeeeanbeeeeaan 51
o o [0 T oW = A g o] = oo S 52
0.1, SIMPIE INVOCALION ...ttt e ettt e e e s bt e e ettt e e e skttt e e e a bt e e e e bbbt e e e ansb e e e e e nnbe e e e e annnneeas 52

LS 2 I T 1Yo 1 o o PSR 53

LS I @ 0 1= VIV VT 01770 1 o o SRR 56

JBossMarch 27, 2006

JBoss Remoting Guide

9.4. DiSCOVEY aN0 INVOCELIONccoiiuiiiiieeee e e e e ettt e e e e e s e e e e e e e e e s e et e e e eaeeessaaastbbeeeeaaesesasssbeeeeeeaeeesaansnernes 56

0.5, CAllDACKS. ...ttt b e h e b b e e b e e b e b e e et e e e b e e nnreas 58

0.6, SITEAIMING ... e 59

0.7, JBOSS SENTAlIZALIONevveieiiee e ettt e ettt e e e s e et e e e e e e e s et a e e e aee e s e et b ——aeeaaeeea et rrraeraaaeesaannrrnes 61

0.8, THANSPOITENS. ... 61
9.8.1. Transporter SAMPIE - DBSIC ... e e s e a e e e s s e eaaaas 62

9.8.2. Transporter sample - JIBOSS SETAliZAIIONccoiivriieeiiiiie e e e 67

9.8.3. Transporter SAMPIE - CIUSLENEU.uveiiie e et e e e e s e e e e e e e e e s s asnerreaeeaeas 72

9.8.4. Transporter SAMPIE -COMPIEXceiiiiiiie ittt e e e e e e e e e anneeees 77

9.9, MUHIPIEX INVOKENS ..., 78

10. Client programming MOGEoouuiiiiiiiiiee et e e e e e e e st e e e e e e s bb e e e e e sbe e e e e atbeeeeaanbbeeeenanbneeeans 80
11. Getting the JBossRemoting source and bUildiNg............cooiioiiiiii e a e e e e 81
12, KKNMOWIN ISSUES. ...ttt ettt ettt ekttt e e e a bttt e+ ekttt e e e skttt e o4 s ket e+ 4R bt 44442 R b e e e e 4 s bt et e e 4R b b e e e e e skttt e e e anbb e e e e e anbbeeeennbneeeens 83
L3, FULUIE PIBINS. ...ttt e ookt e e sttt e+ 4Rt ee 44k E et o4 e oa ke et e e e s R et e e e e s b et e e e amnn et e e e annrn e e e enbeeeeen 84
O (S L= S Sl N [0 = PP TUPRRPRPPRR 85

JBossMarch 27, 2006

Overview

1.1. What is JBoss Remoting

The purpose of JBoss Remoting is to provide a single APl for most network based invocations and related service that uses
pluggable transports and data marshallers. The JBossRemoting API provides the ability for making synchronous and asyn-
chronous remote calls, push and pull callbacks, and automatic discovery of remoting servers. The intention is to allow for the
use of different transports to fit different needs, yet still maintain the same API for making the remote invocations and only re-
quiring configuration changes, not code changes.

JBossRemoting is a standalone project, separate from the JBoss Application Server project, but will be the framework used for
many of the JBoss projects and components when making remote calls. JBossRemoting is included in the recent releases of the
JBoss Application Server and can be run as a service within the container as well. Service configurations are included in the
configuration section below.

1.2. Features

The features available with JBoss Remoting are:

« Server identification —asimple url based identifier which alows for remoting servers to be identified and called upon.
« Pluggabletransports— can use different protocol transports the same remoting API.

Provided transports:

» Socket (SSL Socket)

* RMI

e HTTR(S)
e Multiplex
+ Sevlet

» Pluggable data marshallers— can use different data marshallers and unmarshallers to convert the invocation payloads into
desired data format for wire transfer.

« Pluggable serialization - can use different serialization implementations for data streams.

Provided serialization implementations:

JBossMarch 27, 2006 1

Overview

o Javaseridization
* JBoss seridization
« Automatic discovery — can detect remoting servers as they come on and off line.

Provided detection implementations:

* Multicast
* JNDI

« Server grouping — ability to group servers by logical domains, so only communicate with servers within specified do-
mains.

« Callbacks — can receive server calbacks via push and pull models. Pull model allows for persistent stores and memory
management.

« Asynchronous calls— can make asynchronous, or one way, callsto server.

« Local invocation —if making an invocation on aremoting server that is within the same process space, remoting will auto-
matically make this call by reference, to improve performance.

« Remote classloading — allows for classes, such as custom marshallers, that do not exist within client to be loaded from
server.

« Sending of streams—allowsfor clientsto send input streamsto server, which can be read on demand on the server.
« Clustering - seamless client failover for remote invocations.

« Connection failure notification - notification if client or server hasfailed

« Data Compression - can use compression marshaller and unmarshaller for compresssion of large payloads.

All the features within JBoss Remoting were created with ease of use and extensibility in mind. If you have a suggestion for a
new feature or an improvement to a current feature, please log in our issue tracking system at http://jira,jboss.com

1.3. How to get JBoss Remoting

The JBossRemoating distribution can be downloaded from http://www.jboss.org/products/remoting
[http:/mwww.jboss.org/products/remoting] . This distribution contains everything needed to run JBossRemoting stand alone.
The distribution includes binaries, source, documentation, javadoc, and sample code.

JBossMarch 27, 2006 2

http://jira.jboss.com
http://www.jboss.org/products/remoting

Architecture

The most critical component of the JBoss Remoting architecture is how servers are identified. Thisis done via an InvokerLoc-
ator, which can be represented by a simple String with a URL based format (e.g., socket://myhost:5400). Thisis all that is re-
quired to either create a remoting server or to make a call on aremoting server. The remoting framework will then take the in-
formation embedded within the InvokerL ocator and construct the underlying remoting components needed and build the full
stack required for either making or receiving remote invocations.

There are several layers to this framework that mirror each other on the client and server side. The outermost layer is the one
which the user interacts with. On the client side, thisis the Client class upon which the user will make its calls. On the server
side, thisis the InvocationHandler, which is implemented by the user and is the ultimate receiver of invocation requests. Next
is the transport, which is controlled by the invoker layer. Finaly, at the lowest layer is the marshalling, which converts data
type to wire format.

Remoting Client Remoting Server
| Marshaller |—— ——#| UnMarshaller |—|
Cutput Inpet :
Stream Stream
Client R | ! E Server
] : . Invacation
~~p=| Client Invoker (e oas e e e esssockelEEs eas ese ese ese e Invoker — s an
: {transport) / k ; (transport)
Input Output
: Stream Sltream .
— UnMarshaller |-=t——/ i Marshaller |—

When a user calls on the Client to make an invocation, it will pass this invocation request to the appropriate client invoker,
based on the transport specified by the locator url. The client invoker will then use the marshaller to convert the invocation re-
quest object to the proper data format to send over the network. On the server side, an unmarshaller will receive this data from
the network and convert it back into a standard invocation request object and send it on to the server invoker. The server in-
voker will then pass this invocation request on to the user’s implementation of the invocation handler. The response from the
invocation handler will pass back through the server invoker and on to the marshaller, which will then convert the invocation
response object to the proper data format and send back to the client. The unmarshaller on the client will convert the invocation
response from wire data format into standard invocation response object, which will be passed back up through the client in-
voker and Client to the original caller.

Client

On the client side, there are a few utility class that help in figuring out which client invoker and marshal instances should be
used.

JBossMarch 27, 2006 3

Architecture

Remoting Client

Invoker Marshal
:_+ Registry i Factory
- |
I rP——-
1 1
Marshaller .
© Dutput
: Stresam
: Client -y
——-| Client INVOKEr ee o= o= o= S s 0Cckei—
' (transport) :
Input
Stream
UnMarshaller -l—'—"

For determining which client invoker to use, the Client will pass the InvokerRegistry the locator for the target server it wishes
to make invocations on. The InvokerRegistry will return the appropriate client invoker instance based on information con-
tained within the locator, such as transport type. The client invoker will then call upon the Marshal Factory to get the appropri-
ate Marshaller and UnMarshaller for converting the invocation objects to the proper data format for wire transfer. All invokers
have a default data type that can be used to get the proper marshal instances, but can be overridden within the locator specified.

Server

On the server side, there are al'so afew utility classes for determining the appropriate server invoker and marshal instances that
should be used. Thereis aso a server specific class for tying the invocation handler to the server invoker.

JBossMarch 27, 2006 4

Architecture

Remoting Server

Marshal Invoker
Factory Registry
A A
I I
| dmare
I
! Connector
I
e G

| UnMarshaller

Input

Stream :

/ : Server Invocation

ammcockeinn o O O O G Invoker

; Handler
3 {tl'ﬂﬂﬁp'ﬂl"l'}

Oulput -

Slream -

“—— Marshaller

On the server side, it is the Connector class that is used as the external point for configuration and control of the remoting serv-
er. The Connector class will call on the InvokerRegistry with its locator to create a server invoker. Once the server invoker is
returned, the Connector will then register the invocation handlers on it. The server invoker will use the Marshal Factory to ob-
tain the proper marshal instances as is done on the client side.

Detection

To add automatic detection, a remoting Detector will need to be added on both the client and the server side as well as a Net-
workRegistry to the client side.

JBossMarch 27, 2006 5

Architecture

Remoting Server
Remoding Chent Invoker
Detector Registry
Network
Reglstry [DRl 1 M | e e e e ey
e P S b A Pl LN L S S oS U e Zadl) | Connector
o Marshaller \ / # UnMarshallar —
I?lul:'_ul Il
Ekrpan Birpam
Client g X / S Invecation
= Client Invoker S S S . . Ok . S S S Invoker = Handler
(transport) / » (transport)
Fiput I.'II‘..I_l-:I
Straam Straam
—— UnMarshallar |- f . Marshallar | —

When a Detector on the server side is created and started, it will periodically pull from the InvokerRegistry al the server in-
vokers that it has created. The detector will then use the information to publish a detection message containing the locator and
subsystems supported by each server invoker. The publishing of this detection message will be either via a multicast broadcast
or a binding into a INDI server. On the client side, the Detector will either receive the multicast broadcast message or poll the
IJNDI server for detection messages. If the Detector determines a detection message is for a remoting server that just came on-
line it will register it in the NetworkRegistry. The NetworkRegistry houses the detection information for all the discovered re-
moting servers. The NetworkRegistry will also emit a IMX notification upon any change to this registry of remaoting servers.
The change to the NetworkRegistry can also be for when a Detector has discovered that a remoting server is no longer avail-
able and removes it from the registry.

JBossMarch 27, 2006 6

JBoss Remoting Components

This section covers afew of the main components exposed within the Remoting API with a brief overview.

org.jboss.remoting.Client — is the class the user will create and call on from the client side. This is the main entry point for
making all invocations and adding a callback listener. The Client class requires only the InvokerLocator for the server you
wish to call upon and that you call connect before use and disconnect after use (which is technically only required for stateful
transports and when client leasing is turned on, but good to call in either case).

org.jboss.remoting.Invoker Locator — is a class, which can be described as a string URI, for identifying a particular JBoss-
Remoting server VM and transport protocol. For example, the InvokerLocator string socket://192.168.10.1:8080 describes a
TCP/IP Socket-based transport, which is listening on port 8080 of the IP address, 192.168.10.1. Using the string URI, or the
InvokerLocator object, JBossRemoting can make a client connection to the remote JBoss server. The format of the locator
string is the same as the URI type: [transport]://[host]: <port >/ pat h/ ?<par amet er =val ue>&<par anet er =val ue> A few
important points to note about the InvokerL ocator. The string representation used to construct the InvokerL ocator may be mod-
ified after creation. This can occur if the host supplied is 0.0.0.0, in which case the InvokerLocator will attempt to replace it
with the value of the local host name. This can also occur if the port specified is less than zero or not specified at al (in which
case remoting will select arandom port to use).

org.jboss.remoting.transport.Connector - is an MBean that loads a particular Serverlnvoker implementation for a given
transport subsystem and one or more ServerlnvocationHandler implementations that handle Subsystem invocations on the re-
mote server VM. The Connector is the main user touch point for configuring and managing a remoting server.

org.jboss.remoting.ServerlnvocationHandler — is the interface that the remote server will call on with an invocation re-
ceived from the client. This interface must be implemented by the user. This implementation will also be required to keep track
of callback listeners that have been registered by the client as well.

org.jboss.remoting.I nvocationRequest —is the actual remoting payload of an invocation. This class wraps the caller’ s request
and provides extra information about the invocation, such as the caller’s session id and its callback locator (if one exists). This
will be object passed to the ServerlnvocationHandler.

org.jboss.remoting.stream.Streaml nvocationHandler — extends the ServerlnvocationHandler interface and should be imple-
mented if expecting to receive invocations containing an input stream.

org.jboss.remoting.callback.I nvoker CallbackHandler — the interface for any callback listener to implement. Upon receiving
callbacks, the remoting client will call on thisinterface if registered as alistener.

org.jboss.remoting.callback.Callback — the callback object passed to the InvokerCallbackHandler. It contains the callback
payload supplied by the invocation handler, any handle object specified when callback listener was registered, and the locator
from which the callback came.

or g.jboss.remoting.networ k.Networ kRegistry — this is a singleton class that will keep track of remoting servers as new ones
are detected and dead ones are detected. Upon a change in the registry, the NetworkRegistry fires a NetworkNotification.

JBossMarch 27, 2006 7

JBoss Remoting Components

org.jboss.remoting.networ k.Networ kNotification — a IMX Notification containing information about a remoting server
change on the network. The notification contains information in regards to the server’sidentity and all its locators.

org.jboss.remoting.detection.Detection — is the detection message fired by the Detectors. Contains the locator and subsys-
tems for the server invokers of aremoting server aswell as the remoting server’ sidentity.

org.jboss.remoting.ident.l dentity — the identity is what uniquely identifies aremoting server instance. Typically, thereis only
one identity per VM in which aremoting server is running.

or g.jboss.remoting.detection.multicast.MulticastDetector — is the detector implementation that broadcasts its Detection
message to other detectors using multicast.

org.jboss.remoting.detection.jndi.JNDI Detector — is the detector implementation that registers its Detection message to oth-
er detectorsin a specified INDI server.

There are afew other components that are not represented as a class, but important to understand.

Subsystem — a sub-system is an identifier for what higher level system an invocation handler is associated with. The sub-
system is declared as any String value. The reason for identifying sub-systems is that a remoting Connector’s server invoker
may handle invocations for multiple invocation handlers, which need to be routed based on sub-system. For example, a partic-
ular socket based server invoker may handle invocations for both customer processing and order processing. The client making
the invocation would then need to identify the intended sub-system to handle the invocation based on this identifier. If only
one handler is added to a Connector, the client does not need to specify a sub-system when making an invocation.

Domain —alogical name for a group to which aremoting server can belong. The detectors can discriminate as to which detec-
tion messages they are interested based on their specified domain. The domain to which a remoting server belongs is stored
within the Identity of that remoting server, which isincluded within the detection messages. Detectors can be configured to ac-
cept detection messages from one, many or all domains.

JBossMarch 27, 2006 8

Configuration

This covers the configuration for JBoss Remoting discovery, connectors, marshallers, and transports. All the configuration
properties specified can be set either via calls to the object itself, including via IMX (so can be done viathe IMX or Web con-
sole), or viaa JBoss AS service xml file. Examples of service xml configurations can be seen with each of the sections below.
There is also an example-servicexml file included in the remoting distribution that shows full examples of all the remoting
configurations.

4.1. General Connector and Invoker configuration

The server invoker and invocation handlers are configured via the Connector. Only one invoker can be declared per connector
(multiple InvokerLocator attributes or invoker elements within the Configuration attribute is not permitted). Although declar-
ing an invocation handler is not required, it should only be omitted in the case of declaring a callback server that will not re-
ceive direct invacations, but only callback messages. Otherwise client invocations can not be processed. The invocation hand-
ler is the only interface that is required by the remoting framework for a user to implement and will be what the remoting
framework calls upon when receiving invocations.

There are two ways in which to specify the server invoker configuration via a service xml file. The first is to specify just the
InvokerLocator attribute as a sub-element of the Connector MBean. For example, a possible configuration for a Connector us-
ing a socket invoker that is listening on port 8084 on the test.somedomain.com address would be:

<nmbean code="org.jboss.renoting.transport. Connector"
xmbean- dd="or g/ j boss/ renoti ng/ transport/ Connect or. xm "
name="j boss. renot i ng: servi ce=Connect or, transport =Socket "
di spl ay- name="Socket transport Connector">
<attribute nane="InvokerLocator">
<! [CDATA[socket://test. somedomai n. com 8084]] >
</attribute>
<attribute name="Configuration">
<confi g>
<handl er s>
<handl er subsystem="nock" >
org.j boss.renoting.transport. nock. MbckServer| nvocati onHandl er
</ handl er >
</ handl er s>
</ confi g>
</attribute>
</ mbean>

Note that all the server side socket invoker configurations will be set to their default valuesin this case. Also, it isimportant to
add CDATA to any locator uri that contains more than one parameter.

The other way to configure the Connector and its server invoker in greater detail isto provide ani nvoker sub-element within
the config element of the Configuration attribute. The only attribute of invoker element is transport, which will specify which

JBossMarch 27, 2006 9

Configuration

transport type to use (e.g.. socket, rmi, http, or multiplex). All the sub-elements of the invoker element will be attribute ele-
ments with a name attribute specifying the configuration property nhame and then the value. An i sPar am attribute can also be
added to indicate that the attribute should be added to the locator uri, in the case the attribute needs to be used by the client. An
example using this form of configuration is asfollows:

<mbean code="org. | boss.renoting.transport. Connector"
xnmbean- dd="or g/ j boss/renoti ng/transport/ Connect or. xm "
name="j boss. renoti ng: servi ce=Connect or, transport =Socket "
di spl ay- name="Socket transport Connector">

<attribute name="Configuration">
<confi g>

<i nvoker transport="socket">
<attribute nane="numAccept Threads" >1</attri but e>
<attribute name="nmaxPool Si ze" >303</attri but e>
<attribute nanme="client MaxPool Si ze" i sParan="true">304</attri bute>
<attribute nanme="socket Ti neout " >60000</ attri bute>
<attribute name="server Bi ndAddr ess">192. 168. 0. 82</ attri but e>
<attribute name="serverBi ndPort" >6666</attri bute>
<attribute nanme="client Connect Addr ess">216. 23. 33. 2</ attri but e>
<attribute name="client Connect Port">7777</attribute>
<attribute nane="enabl eTcpNoDel ay" isParan¥"true">fal se</attribute>
<attribute name="backl og">200</attri bute>

</i nvoker >

<handl er s>
<handl er subsystem="nock" >
org.j boss.renoting.transport. nock. MbckServer| nvocati onHandl er
</ handl er >
</ handl er s>
</ confi g>
</attribute>

</ nbean>

Also note that ${j boss. bi nd. addr ess} can be used for any of the bind address properties, which will be replaced with the
bind address specified to JBoss when starting (i.e. viathe -b option).

All the attributes set in this configuration could be set directly in the locator uri of the InvokerLocator attribute value, but
would be much more difficult to decipher visually and is more prone to editing mistakes.

One of the components of alocator uri that can be expressed within the InvokerLocator attribute is the path. For example, can
express alocator uri path of ‘foo/bar' viathe InvokerL ocator attribute as:

<attribute name="Invoker Locat or" ><![CDATA[socket ://test.sonedonmai n. com 8084/ foo/ bar]]></attribute>

To include the path using the Configuration attribute, can include a specific 'path’ attribute. So the same InvokerL ocator can be
expressed as follows with the Configuration attribute:

<attribute name="Confi guration">
<confi g>
<i nvoker transport="socket">
<attribute name="server Bi ndAddr ess" >t est . sonedonmai n. conk/ attri but e>
<attribute name="serverBi ndPort" >8084</attri bute>
<attribute nane="pat h">f oo/ bar</attribute>
</i nvoker >

JBossMarch 27, 2006 10

Configuration

Note: The value for the 'path’ attribute should NOT start or end with a/ (slash).

4.2. Handlers

Handlers are classes that the invocation is given to on the server side (the final target for remoting invocations). To implement
a handler, al that is needed is to implement the or g. j boss. renot i ng. Server I nvocat i onHandl er interface. There are a two
ways in which to register a handler with a Connector. Thefirst isto do it programmatically. The second is via service configur-
ation. For registering programmeatically, can either pass the ServerlnvocationHandler reference itself or an ObjectName for the
ServerlnvocationHandler (in the case that it is an MBean). To pass the handler reference directly, cal Connect -
or:: addl nvocati onHandl er (Stri ng subsyst em Server | nvocat i onHandl er handl er). For example (from
org. j boss. remoti ng. sanpl es. si npl e. Si npl eServer):

I nvoker Locator | ocator = new | nvokerLocator (|l ocatorURI);
Connect or connector = new Connector();

connect or. set | nvoker Locat or (| ocat or. get Locat or URI ()) ;
connector.create();

Sanpl el nvocat i onHandl er i nvocati onHandl er = new Sanpl el nvocat i onHandl er () ;
/] first parameter is sub-system nane. can be any String val ue.
connect or . addl nvocat i onHandl er (" sanpl e", invocati onHandl er);

connector.start();

To pass the handler by ObjectName, call Connect or: : addl nvocat i onHandl er (String subsystem bject Nane handl er Cb-
j ect Name) . For example (fromor g. j boss. t est. renot i ng. handl er. mbean. Ser ver Test):

MBeanServer server = MBeanServer Factory. creat eMBeanServer ();
I nvoker Locator | ocator = new | nvokerLocator (| ocatorURI);
Connect or connector = new Connector();

connect or. set | nvoker Locat or (| ocat or. get Locat or URI ()) ;
connector.start();

server.regi st er MBean(connector, new Obj ect Name("test:type=connector,transport=socket"));

/'l now create Mdean handl er and register with nbean server
MBeanHandl er handl er = new MBeanHandl er () ;

bj ect Name obj Nane = new Obj ect Nane("test:type=handl er");
server.regi st er MBean(handl er, obj Nane) ;

connect or. addl nvocat i onHandl er ("test", obj Nane);

Is important to note that if not starting the Connector via the service configuration, will need to explicitly register it with the
MBeanServer (will throw exception otherwise).

If using a service configuration for starting the Connector and registering handlers, can either specify the fully qualified class
name for the handler, which will instantiate the handler instance upon startup (which requires there be a void parameter con-
structor), such as:

<handl er s>
<handl er subsyst em=" npock" >

JBossMarch 27, 2006 11

Configuration

org.j boss.renoting.transport. nock. MbckServer| nvocati onHandl er
</ handl er >
</ handl er s>

where MockServerlnvocationHandler will be constructed upon startup and registered with the Connector as a handler.

Can aso use an ObjectName to specify the handler. The configuration is the same, but instead of specifying a fully qualified
class name, you specify the ObjectName for the handler, such as (can see nbeanhandl er - servi ce. xni under remoting tests for
full example):

<handl| er s>
<handl er subsystem="nock" >t est:type=handl er </ handl er >
</ handl er s>

The only requirement for this configuration is that the handler MBean must already be created and registered with the
MBeanServer at the point the Connector is started.

Handler implementations

The Connectors will maintain a reference to the handler instances provided (either indirectly via the MBean proxy or directly
via the instance object reference). For each request to the server invoker, the handler will be called upon. Since the server in-
vokers can be multi-threaded (and in most cases would be), this means that the handler may receive concurrent calls to handle
invocations. Therefore, handler implementations should take care to be thread safe in their implementations.

Stream handler

Thereis aso an invocation handler interface that extends the ServerInvocationHandler interface specifically for handling of in-
put streams as well as normal invocations. See the section on sending streams for further details. As for Connector configura-
tion, it isthe same.

HTTP handlers

Since there is extra information needed when dealing with the http transport, such as headers and response codes, specia con-
sideration is needed by handlers. The handlers receiving http invocations can get and set this extrainformation via the Invoca-
tionRequest that is passed to the handler.

Server invoker for the http transport will add the following to the InvocationRequest's request payload map:

MethodType - the http request type (i.e.,, GET, POST, PUT, HEADER, OPTIONS). Can use the contant value HTTP-
MetadataConstantsMETHODTY PE, if don't want to use the actua string ‘MethodType' as the key to the request payload map.

Path - the url path. Can use the contant value HTTPM etadataConstants.PATH, if don't want to use the actual string 'Path’ as
the key to the request payload map.

HttpVersion - the client's http version. Can use the contant value HTTPM etadataConstants.HTTPVERSION, if don't want to
use the actual string 'HttpVersion' as the key to the request payload map.

JBossMarch 27, 2006 12

Configuration

Other properties from the original http request will also be included in the request payload map, such as request headers. Can
reference org.jboss.test.remoting.transport.http.method.M ethodi nvocationHandler as an example for pulling request properties
from the InvocationReguest.

The only time this will not be added is a POST request where an InvocationRequest is passed and is not binary content type
(application/octet-stream).

The handlers receiving http invocations can also set the response code, response message, and response headers. To do this,
will need to get the return payload map from the InvocationRequest passed (via its getReturnPayload() method). Then populate
this map with whatever properties needed. For response code and message, will need to use the following keys for the map:

ResponseCode - Can use the constant value HTTPM etaDataConstants. RESPONSE _CODE, if don't want to use the actual
string 'ResponseCode’ as they key. IMPORTANT - The value put into map for this key MUST be of type javalang.Integer.

ResponseCodeM essage - Can use the constant value HTTPM etadataConstants. RESPONSE _CODE_MESSAGE, if don't want
to use the actual string 'ResponseCodeMessage’ as the key. The value put into map for this key should be of type
java.lang.String.

Is also important to note that ALL http requests will be passed to the handler. So even OPTIONS, HEAD, and PUT method re-
quests will need to be handled. So, for example, if want to accept OPTIONS method requests, would need to populate response
map with key of 'Allow" and value of 'OPTIONS, POST, GET, HEAD, PUT', in order to tell calling client that all these method
types are alowed. Can see an example of how to do this within
org.jboss.test.remoting.transport.http.method.Methodl nvocationHandl er.

The PUT request will be handled the same as a POST method request and the PUT request payload will be included within the
InvocationRequest passed to the server handler. It is up to the server handler to set the proper resonse code (or throw proper
exception) for the processing of the PUT request. See http://www.ietf.org/rfc/rfc2616.txtnumber=2616
[http:/mwww.ietf.org/rfc/rfc2616.txtnumber=2616], section 9.6 for details on response codes and error responses).

HTTP Client

The HttpClientlnvoker will now put the return from HTTPURL Connection's getHeaderFields() method into the metadata map
passed to the Client's invoke() method (if not null). This means that if the caller passes a non-null Map, it can then get the re-
sponse headers. It isimportant to note that each response header field key in the metadata map is associated with a list of re-
sponse header values, so to get a value, would need code similar to:

bj ect response = renotingdient.invoke((Object) null, netadata);
String all owalue = (String) ((List) netadata.get("Alow').get(0);

Can reference org.jboss.test.remating.transport.http.method.HTTPInvokerTestClient for an example of this.

Note that when making a http request using the OPTIONS method type, the return from the Client's invoke() method will AL-
WAY S be null.

Also, if the response code is 400, the response returned will be that of the error stream and not the standard input stream. So is
important to check for the response code.

Two values that will always be set within the metadata map passed to the Client's invoke() method (when not null), is the re-
sponse code and response message from the server. These can be found using the keys:

JBossMarch 27, 2006 13

http://www.ietf.org/rfc/rfc2616.txt?number=2616

Configuration

ResponseCode - Can use the constant value HTTPMetaDataConstants. RESPONSE _CODE, if don't want to use the actua
string 'ResponseCode’ as the key. IMPORTANT - The value returned for this key will be of type java.lang.Integer.

ResponseCodeM essage - Can use the constant value from HT TPM etadataConstants. RESPONSE_CODE_MESSAGE, if don't
want to use the actual string 'ResponseCodeMessage’ as the key. The value returned for this key will be of type
java.lang.String.

An example of getting the response code can be found within
org.jboss.test.remoting.transport.http.method. HTTPInvoker TestClient.

4.3. Discovery (Detectors)

Domains

Detectors have the ability to accept multiple domains. What domains that the detector will accept as viewable can either be set
programmeatically viathe method:

public voi d setConfiguration(org.w3c.dom El emrent xm)

or by adding to jboss-service.xml configuration for the detector. The domains that the detector is currently accepting can be re-
trieved from the method:

public org.w3c.dom El enent get Confi guration()
The configuration xml is a MBean attribute of the detector, so can be set or retrieved via M X.

There are three possible options for setting up the domains that a detector will accept. The first isto not call the set Confi gur -
ati on() method (or just not add the configuration attribute to the service xml). This will cause the detector to use only its do-
main and is the default behavior. This enables it to be backwards compatible with earlier versions of JBoss Remoting (JBoss 4,
DR2 and before).

The second isto call the set Conf i gurati on() method (or add the configuration attribute to the service xml) with the following
xml element:

<domai ns>
<domai n>domai n1</ donai n>
<domai n>domai n2</ domai n>
</ domai ns>

where domai n1 and domai n2 are the two domains you would like the detector to accept. This will cause the detector to accept
detections only from the domains specified, and no others.

The third and final option is to call the setConfiguration() method (or add the configuration attribute to the service xml) with

the following xml element:

<domai ns>
</ domai ns>

JBossMarch 27, 2006 14

Configuration

Thiswill cause the detector to accept all detections from any domain.

By default, remoting detection will ignore any detection message the it receives from a server invoker running within its own
jvm. To disable this, add an element called 'local’ to the detector configuration (alongside the domain element) to indicate
should accept detection messages from local server invokers. This will be false by default, so maintains the same behavior as
previous releases. For example:

<domai ns>
<domai n>domai nl1</ domai n>
<domai n>domai n2</ domai n>
</ domi ns>
<l ocal / >

An example entry of a Multicast detector in the jboss-service.xml that accepts detections only from the roxanne and sparky do-
mains using port 5555, including serversin the same jvm, is as follows:

<mbean code="org.jboss.renoting. detection.multicast.MilticastDetector"
name="j boss. renoti ng: servi ce=Det ect or, transport=nul ti cast">
<attribute name="Port">5555</attribute>
<attribute name="Configuration">
<domai ns>
<domai n>r oxanne</ donai n>
<domai n>spar ky</ donai n>
</ domai ns>

<l ocal / >
</attribute>
</ nbean>

Global Detector Configuration

The following are configuration attributes for all the remoting detectors.

DefaultTimeDelay - amount of time, in milliseconds, which can elapse without receiving a detection event before suspecting
that a server is dead and performing an explicit invocation on it to verify it is alive. If thisinvocation, or ping, fails, the server
will be removed from the network registry. The default is 5000 milliseconds.

HeartbeatTimeDelay - amount of time to wait between sending (and sometimes receiving) detection messages. The default is
1000 milliseconds.

JNDIDetector

Port - port to which detector will connect for the INDI server.
Host - host to which the detector will connect for the INDI server.

ContextFactory - context factory string used when connecting to the JNDI server. The default is
org.jnp.interfaces. Nam ngCont ext Factory .

URLPackage - wurl package string to wuse when connecting to the JNDI server. The default is
org.j boss.nam ng:org.jnp.interfaces.

JBossMarch 27, 2006 15

Configuration

CleanDetectionNumber - Sets the number of detection iterations before manually pinging remote server to make sure till
alive. Thisis needed since remote server could crash and yet still have an entry in the INDI server, thus making it appear that it
is still there. The default valueisb.

Can either set these programmatically using setter method or as attribute within the remoting-service.xml (or anywhere el se the

service is defined). For example:

<nbean code="org.j boss.renpting. detection.jndi.JND Detector"
name="] boss. renot i ng: servi ce=Det ect or, transport =j ndi ">
<attribute nane="Host">| ocal host</attri bute>
<attribute name="Port">5555</attribute>
</ mbean>

If the INDIDetector is started without the Host attribute being set, it will try to start alocal JNP instance (the JBoss JNDI serv-
er implementation) on port 1088.

MulticastDetector

Defaultl P - The IP that is used to broadcast detection messages on via multicast. To be more specific, will be the ip of the
multicast group the detector will join. This attribute is ignored if the Address has aready been set when started. Default is
224.1.9.1.

Port - The port that is used to broadcast detection messages on via multicast. Default is 2410.
BindAddress - The address to bind to for the network interface.

Address - The IP of the multicast group that the detector will join. The default will be that of the DefaultIP if not explicitly set.

4.4. Transports (Invokers)

4.4.1. Server Invokers

The following configuration properties are common to all the current server invokers.

server BindAddress - The address on which the server binds to listen for requests. The default is an empty value which indic-
ates the server should be bound to the host provided by the locator url, or if thisvalue is null, the local host as provided by | n-
et Addr ess. get Local Host () .

server BindPort - The port to listen for requests on. A value of 0 or less indicates that a free anonymous port should be chosen.

maxNumThreadsOneway - specifies the maximum number of threads to be used within the thread pool for accepting one
way invocations on the server side. This property will only be used in the case that the default thread pool is used. If a custom
thread pool is set, this property will have no meaning. This property can aso be retrieved or set programmatically via the
MaxNumber Of Oneway Thr eads property.

onewayThreadPool - specifies either the fully qualified class name for a class that implements the
org.jboss. util.threadpool . ThreadPool interface or the JMX ObjectName for an MBean that implements the

JBossMarch 27, 2006 16

Configuration

org.jboss. util.threadpool . ThreadPool interface. This will replace the default
org.jboss. util.threadpool . Basi cThreadPool used by the server invoker.

Note that this value will NOT be retrieved until the first one-way (server side) invocation is made. So if the configurationisin-
valid, will not be detected until this first call is made. The thread pool can also be accessed or set via the Oneway Thr eadPool
property programmeatically.

Important to note that the default thread pool used for the one-way invocations on the server side will block the calling thread
if all the threadsin the pool are in use until oneisreleased.

4.4.2. Configurations affecting the invoker client

There are some configurations which will impact the invoker client. These will be communicated to the client invoker via para-
meters in the Locator URI. These configurations can not be changed during runtime, so can only be set up upon initia config-
uration of the server invoker on the server side. The following is alist of these and their effects.

clientConnectPort - the port the client will use to connect to the remoting server. This would be needed in the case that the
client will be going through arouter that forwards requests made externally to a different port internally.

clientConnectAddress - the ip or hosthame the client will use to connect to the remoting server. This would be needed in the
case that the client will be going through arouter that forwards requests made externally to a different ip or host internally.

If no client connect address or server bind address specified, will use the local host's address (via | net Ad-
dress. get Local Host () . get Host Addr ess()).

4.4.3. How the server bind address and port is ultimately determined

If the serverBindAddress property is set, it will be used for binding. If the serverBindAddress is not set, but the clientCon-
nectAddress property is set, the server invoker will bind to local host address. If neither the serverBindAddress nor the client-
ConnectAddress properties are set, then will try to bind to the host specified within the InvokerLocator. If the host value of the
InvokerLocator is also not set, will bind to local host.

If there is a system property called 'remoting.bind_by host' and if is false, will bind by IP address instead of host. Otherwise
will use host name. This only applies when configured address is 0.0.0.0. To facilitate setting this property, the following static
variable isdefined in | nvoker Locat or :

public static final String BIND BY HOST = "renoting. bi nd_by_host";

If the serverBindPort property is set, it will be used. If this value is 0 or a negative number, then the next available port will be
found and used. If the serverBindPort property is not set, but the clientConnectPort property is set, then the next available port
will be found and used. If neither the serverBindPort nor the clientConnectPort is set, then the port specified in the original In-
vokerLocator will be used. If thisis O or a negative number, then the next available port will be found and used. In the case that
the next available port is used because either the serverBindPort or the original InvokerLocator port value was either O or neg-
ative, the InvokerL ocator will be updated to reflect the new port value.

4.4.4. Socket Invoker

The following configuration properties can be set at any time, but will not take effect until the socket invoker, on the server

JBossMarch 27, 2006 17

Configuration

side, is stopped and restarted.

socketTimeout - The socket timeout value passed to the Socket.setSoTimeout() method. The default on the server side is
60000 (one minute). If the socketTimeout parameter is set, its value will also be passed to the client side (see below).

backlog - The preferred number of unaccepted incoming connections allowed at a given time. The actual number may be
greater than the specified backlog. When the queue is full, further connection requests are rejected. Must be a positive value
greater than 0. If the value passed if equal or less than O, then the default value will be assumed. The default value is 200.

numA ccept Threads - The number of threads that exist for accepting client connections. The default is 1.
maxPool Size - The number of server threads for processing client. The default is 300.

server SocketClass - specifies the fully qualified class name for the custom SocketWrapper implementation to use on the serv-
er.

Configurations affecting the Socket invoker client

There are some configurations which will impact the socket invoker client. These will be communicated to the client invoker
via parameters in the Locator URI. These configurations can not be changed during runtime, so can only be set up upon initia
configuration of the socket invoker on the server side. The following isalist of these and their effects.

enableTcpNoDelay - can be either true or false and will indicate if client socket should have TCP_NODELAY turned on or
off. TCP_NODELAY isfor a specific purpose; to disable the Nagle buffering algorithm. It should only be set for applications
that send frequent small bursts of information without getting an immediate response; where timely delivery of datais required
(the canonical example is mouse movements). The default isfalse.

socket Timeout - The socket timeout value passed to the Socket.setSoTimeout() method. The default on the client side is
1800000 (or 30 minutes).

clientM axPool Size - the client side maximum number of threads. The default is 10.

clientSocketClass - specifies the fully qualified class name for the custom SocketWrapper implementation to use on the client.
Note, will need to make sure thisis marked as a client parameter (using the 'isParam'’ attribute). Making this change will not af -
fect the marshaller/unmarshaller that is used, which may also be a requirement.

An example of locator uri for a socket invoker that has TCP_NODELAY set to false and the client’s max pool size of 30
would be:

socket://test.somedomai n. com 8084/ ?enabl eTcpNoDel ay=f al se&raxPool Si ze=30

To reiterate, these client configurations can only be set within the server side configuration and will not change during runtime.

4.4.5. SSL Socket Invoker

Supports al the configuration attributes as the Socket Invoker, plus the following:

server SocketFactory - Sets the server socket factory. If want ssl support use a server socket factory that supports ssl. The only
requirement is that the server socket factory value must be an ObjectName, meaning the server socket factory implementation
must be an MBean and also MUST implement the or g. j boss. renoti ng. securi ty. Server Socket Fact or yMBean interface.

JBossMarch 27, 2006 18

Configuration

4.4.6. RMI Invoker

registryPort - the port on which to create the RMI registry. The default is 3455. This also needs to have the isParam attribute
set to true.

4.4.7. HTTP Invoker

The HTTP server invoker implementation is based on the Apache Tomcat connector components which support GET, POST,
HEAD, OPTIONS, and HEAD method types and keep-alive. Therefore, most any configuration allowed for Tomcat can be
configured for the remoting HTTP server invoker. For more information on the configuration attributes available for the Tom-
cat connectors, please refer to http://tomcat.apache.org/tomcat-5.5-doc/config/http.htm. So for example, if wanted to set the
maximum number of threads to be used to accept incoming http requests, would use the 'maxThreads' attribute. The only ex-
ception when should use remoting configuration over the Tomcat configuration is for attribute ‘address’ (use serverBindAd-
dressinstead) and attribute 'port' (use serverBindPort instead).

Note: The http invoker no longer has the configuration attributes 'maxNumThreadsHTTP or 'HTTPThreadPool' as thread pool -
ing is now handled within the Tomcat connectors, which does not expose external API for setting these.

Since the remoting HTTP server invoker implementation is using Tomcat connectors, is possible to swap out the Tomcat pro-
tocol implementations being used. By default, the protocol being used is org. apache. coyote. htt p11. Ht t p11Pr ot ocol .
However, it is possible to switch to use the or g. apache. coyot e. ht t p11. H t p11Apr Prot ocol protocol, which is based on the
Apache Portable Runtime (see http://tomcat.apache.org/tomcat-5.5-doc/apr.html and http://apr.apache.org/ for more details). If
want to use the APR implementation, simply put the tcnative-1.dll (or tcnative-1.s0) on the system path so can be loaded. The
APR native binaries can be found at http://tomcat.heanet.ie.

Note: Thereisabug with release 1.1.1 of APR where get an error upon shutting down (see BREM-277 for more information).
This does not impact anything while running, but is still an issue when shutting down (as upon starting up again, can get major
problems). This should be fixed in a later release of APR and since can just replace the 1.1.1 version of tcnative-1.dll with the
new one.

Client request headers

The HTTP Invoker allows for some of the properties to be passed as request headers from client caller. The following are pos-
sible http headers and what they mean:

sessionld - is the remoting session id to identify the client caller. If thisis not passed, the HTTP server invoker will try to cre-
ate a session id based on information that is passed. Note, this means if the sessionld is not passed as part of the header, there is
no gurantee that the sessionld supplied to the invocation handler will always indicate the request from the same client.

subsystem - the subsystem to call upon (which invoker handler to call upon). If there is more than one handler per Connector,
thiswill need to be set (otherwise will just use the only one available€).

These request headers are set automatically when using a remoting client, but if using another client to send request to the HT-
TP server invoker, may want to add these headers.

Exception Handling

When using remoting on the client side to connect to a remoting server (or any web server for that matter) via the http trans-
port, if the server returns a response code greater than 400, the remoting client will read the error stream and return that as the

JBossMarch 27, 2006 19

http://tomcat.apache.org/tomcat-5.5-doc/config/http.htm
http://tomcat.apache.org/tomcat-5.5-doc/apr.html
http://apr.apache.org/
http://tomcat.heanet.ie

Configuration

response. Thus, the response returned will be of type javalang.Exception. NOTE: this does NOT mean that the call to the Cli-
ent's invoke() method will throw the exception, but instead will return the actual Exception object instance as a normally re-
turned response. Therefore, is important that if want to check if response is an error instead of normal response, will need to
look at the response code put in the metadata Map passed to the invoke() method on the Client instance. See the HTTP Handler
section above for more details.

4.4.8. HTTPS Invoker

Supports al the configuration attributes as the HTTP Invoker, plus the following:

server SocketFactory - Sets the server socket factory. If want sd support, use a server socket factory that supports sdl. The
only requirement is that the server socket factory value must be an ObjectName, meaning the server socket factory implement-
ation must be an MBean and also MUST implement the or g. j boss. renoti ng. securi ty. Server Socket Fact or yMBean inter-
face.

SSLImplementation - Sets the Tomcat SSLImplementation to use. This should aways be

org.j boss.remoting.transport. coyote. ssl. Renoti ngSSLI npl enent ati on.

4.4.9. HTTP(S) Client Invoker - proxy and basic authentication

This section covers configuration specific to the HTTP Client Invoker only and is NOT related to HTTP(S) invoker configura-
tion on the server side (via service xml).

proxy

There are a few ways in which to enable http proxy using the HTTP client invoker. The first is ssmply to add the following
properties to the metadata Map passed on the Client's invoke() method: ht t p. proxyHost and ht t p. pr oxyPor t

An example would be;

Map netadata = new HashMap();

/'l proxy info
nmet adat a. put ("http. proxyHost", "ginger");
nmet adat a. put ("http. proxyPort", "80");

response = client.invoke(payl oad, netadata);

The http.proxyPort property is not required and if not present, will use default of 80.

The other way to enable use of an http proxy server from the HTTP client invoker is to set the following system properties
(either viaSyst em set Property() method call or viaJVM arguments): ht t p. pr oxyHost , htt p. proxyPort, and pr oxy Set

An example would be setting the following JVM arguments:

-Dht t p. proxyHost =gi nger -Dhttp. proxyPort=80 - DproxySet=true

JBossMarch 27, 2006 20

Configuration

Note: when testing with Apache 2.0.48 (mod_proxy and mod_proxy_http), al of the properties above were required.

Setting the system properties will take precedence over setting the metadata Map.

Basic authentication - direct and via proxy

The HTTP client invoker also has support for BASIC authentication for both proxied and non-proxied invocations. For proxied
invocations, the following properties need to be set: ht t p. proxy. user name and ht t p. pr oxy. passwor d.

For non-proxied invocations, the following properties need to be set: ht t p. basi c. user nane and ht t p. basi c. passwor d.

For setting either proxied or non-proxied properties, can be done via the metadata map or system properties (see setting proxy
properties above for how to). However, for authentication properties, values set in the metadata Map will take precedence over
those set within the system properties.

Note: Only the proxy authentication has been tested using Apache 2.0.48; non-proxied authentication has not.

Since there are many different ways to do proxies and authentication in this great world of web, not al possible configurations
have been tested (or even supported). If you find a particular problem or see that a particular implementation is not supported,
please enter an issuein Jira (http://jirajboss.com) under the JBossRemoting project, as thisis where bugs and feature requests
belong. If after reading the documentation have unanswered questions about how to use these features, please post them to the
remoting forum (http://www .jboss.org/index.html 2modul e=bb& op=viewforum& f=176
[http://www.jboss.org/index.html?modul e=bb& op=viewforum& f=176]).

Host name verification

During the SSL handshake when making client calls using https transport, if the URL's hostname and the server's identification
hostname mismatch, a javax.net.ssl.HostnameV erifier implementation will be called to determine if this connection should be
alowed. The default implementation will not allow this. To override this behavior to allow this by changing the Host-
nameV erifier implementation, can use the 'org.jboss.security.ignoreHttpsHost' property’. This property can either be set using a
system property or within the metadata Map passed to the Client's invoke() method (which will override both the default value
and the setting from the system property).

4.4.10. Servlet Invoker

The servlet invoker is a server invoker implementation that uses a servlet running within aweb container to accept initial client
invocation requests. The servlet request is then passed on to the servlet invoker for processing.

The deployment for this particular server invoker is alittle different than the other server invokers since a web deployment is
also required. To start, the servlet invoker will need to be configured and deployed. This can be done by adding the Connector
MBean service to an existing service xml or creating a new one. The following is an example of how to declare a Connector
that uses the servlet invoker:

<nbean code="org.jboss. renoting.transport. Connector"
xnmbean- dd="or g/ j boss/renoti ng/transport/ Connect or. xm "
name="j boss. renoti ng: servi ce=Connect or, transport=Servl et"
di spl ay- name="Servl et transport Connector">

<attribute name="I|nvokerLocator">
servlet://| ocal host: 8080/ servlet-invoker/ Serverl nvoker Servl et
</attribute>

JBossMarch 27, 2006 21

http://jira.jboss.com
http://www.jboss.org/index.html?module=bb&op=viewforum&f=176

Configuration

<attribute name="Configuration">
<confi g>
<handl| er s>
<handl er subsystenm="test">
org.jboss.test.remoting.transport.web. Wbl nvocat i onHandl er
</ handl er >
</ handl er s>
</ confi g>
</attribute>
</ mbean>

An important point of configuration to note is that the value for the InvokerL ocator attribute is the exact url used to access the
servlet for the servlet invoker (more on how to define this below), with the exception of the protocol being servlet instead of
http. Thisisimportant because if using automatic discovery, thisisthe locator url that will be discovered and used by clients to
connect to this server invoker.

The next step isto configure and deploy the servlet that fronts the servlet invoker. The pre-built deployment file for this serviet
isthe servlet-invoker.war file (which can be found in the release distribution or under the output/lib/ directory if doing a source
build). By default, it is actually an exploded war, so the servlet-invoker.war is actually a directory so that can be more easily
configured (fedl free to zip up into an actual war file if prefer). In the WEB-INF directory is located the web.xml file. Thisisa
standard web configuration file and should look like:

<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE web- app PUBLI C
"-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN
“http://java.sun.com dt d/ web-app_2_3.dtd">

<I--The the JBossRenoting server invoker servlet web.xm descriptor-->
<web- app>
<servl| et >
<servl et - nane>Ser ver | nvoker Ser vl et </ servl et - nane>
<descri pti on>The Server|nvoker Servl et receives requests via HTTP protoco
fromwithin a web container and passes it onto the Servl et Serverlnvoker for processing
</ descri pti on>
<servl et-cl ass>
org.j boss.renoting.transport.servl et.web. Server| nvoker Ser vl et
</servl et-cl ass>
<i ni t - paran>
<par am nanme>i nvoker Nane</ par am nane>
<par am val ue>
j boss. renoting: servi ce=i nvoker, transport =servl et
</ par am val ue>
<descri pti on>The servl et server invoker</description>
</init-paranr
<l oad- on- st artup>1</| oad- on- st art up>
</ servl et >
<servl et - mappi ng>
<ser vl et - nane>Ser ver | nvoker Ser vl et </ ser vl et - nane>
<url - pattern>/ Serverlnvoker Servl et/ *</url -pattern>
</ servl et - mappi ng>
</ web- app>

Thisfile can be changed to meet any web requirements you might have, such as adding security or changing the actual url con-
text that the servliet mapsto. If the url that the servlet maps to is changed, will need to change the value for the InvokerL ocator
in the Connector configuration mentioned above. Also note that there is a parameter, invokerName, that has the value of the
object name of the servlet server invoker. This is what the ServerlnvokerServlet uses to look up the server invoker which it

JBossMarch 27, 2006 22

Configuration

will pass the requests on to.

Due to the way the servlet invoker is currently configured and deployed, it must run within the JBoss application server and is
not portable to other web servers.

Exception handling

If the ServletServerinvoker catches any exception thrown from the invocation handler invoke() call, it will send an error to the
client with a status of 500 and include the original exception message as its error message. From the client side, the client in-
voker will actually throw a CannotConnectException, which will have root exception as its cause. The cause should be an |O-
Exception with the server's message. For example, the stack trace from the exception thrown within the test case
org.jboss.remoting.transport.servlet.test. ServietinvokerTestClient is:

org. j boss. renoti ng. Cannot Connect Excepti on: Can not connect http client invoker.

at org.jboss.renmoting.transport.http. HTTPC i ent| nvoker. useHtt pURLConnecti on(HTTPCl i ent | nvoker. j ava: .

at org.jboss.renmoting.transport.http. HTTPC i ent| nvoker.transport (HTTPd i ent | nvoker. j ava: 68)
at org.jboss.renmoting. Renot e i entlnvoker.invoke(RenoteC ientlnvoker.java: 113)

at org.jboss.rempting.Client.invoke(Cient.java: 221)

at org.jboss.renmoting.dient.invoke(Cient.java: 184)

at

org.jboss.renoting.transport.servlet.test. ServletlnvokerTestC ient.testlnvocation(Servletlnvoker Tes!

at

org.j boss.renoting.transport.servlet.test. ServletlnvokerTestC ient. main(ServletlnvokerTestClient.ja

at sun.reflect. NativeMet hodAccessor | npl.invokeO(Native Method)

at sun.refl ect. NativeMet hodAccessor| nmpl.invoke(NativeMet hodAccessorl npl.java: 39)

at sun.reflect. Del egati ngMet hodAccessor | npl . i nvoke(Del egati nghMet hodAccessor | npl . j ava: 25)
at java.lang.reflect.Method.invoke(Mthod.java: 324)

at comintellij.rt.execution.application.AppMi n. nai n(AppMi n. java: 78)

Caused by: java.io.|Oexception: Server returned HTTP response code: 500 for URL:

http://1 ocal host: 8080/ servl et -i nvoker/ Server | nvoker Servl et

at sun. net.ww. protocol . http. H t pURLConnecti on. get | nput St rean(Ht t pURLConnect i on. j ava: 791)

at org.jboss.renmoting.transport. http. HTTPC i ent| nvoker. useHtt pURLConnecti on(HTTPCl i ent | nvoker. j ava: .

11 nore

Issues

One of the issues of using Servlet invoker is that the invocation handlers (those that implement ServerlnvocationHandler) can
not return very much detail in regards to aweb context. For example, the content type used for the response is the same as that
of the request.

4.4.11. Multiplex Invoker

The multiplex invoker is intended to replicate the functionality of the socket invoker with the added feature that it supports
multiple streams of communication over a single pair of sockets. Multiplexing may be motivated by, for example, a desire to
conserve socket resources or by firewall restrictions on port availability. This additional service is made possible by the Multi-
plex subproject, which provides "virtual" sockets and "virtual" server sockets. Please refer to the Multiplex documentation at

[http://1abs.jboss.com/portal/inde
x.html?ctrl:id=page.default.info&
http://l1abs.jboss.com/portal/index.html 2ctrl :id=page.default.info& project=j bossremoti ngproj ect=j bossremoting]

JBossMarch 27, 2006 23

http://labs.jboss.com/portal/index.html?ctrl:id=page.default.info&project=jbossremoting

Configuration

for further details.

In atypical multiplexed scenario ad i ent on a client host, through a Mil ti pl exd i ent | nvoker C, could make synchronous
method invocations to amul ti pl exSer ver | nvoker 0N a server host, and at the same time (and over the same TCP connection)
asynchronous push callbacks could be made to a mul ti pl exSer ver | nvoker Son the client host. In this, the Prime Scenario,
which mativated the creation of the multiplex invoker, C and S use two different virtual sockets but share the same port and
same actual socket. We say that C and Shbelong to the same invoker group.

One of the primary design goals of the Multiplex subsystem is for virtual sockets and virtual server sockets to demonstrate be-
havior as close as possible to their real counterparts, and, indeed, they implement complete socket and server socket APIs.
However, they are necessarily different in some respects, and it follows that the multiplex invoker is somewhat different than
the socket invoker. In particular, there are three areas specific to the multiplex invoker that must be understood in order to use
it effectively:

1. Establishing on the server an environment prerequisite for creating multiplex connections
2. Configuring the client for multiplexed method invocations and callbacks

3. Shutting down invoker groups.

4.4.11.1. Setting up the server

There are two kinds of mul ti pl exServer I nvoker S, master and virtual, corresponding to the two kinds of virtual server sock-
efs. Mast er Server Socket and Vi rt ual Ser ver Socket . Briefly, the difference between the two virtual server socket classes is
that a Mast er Ser ver Socket IS derived from j ava. net . Server Socket and itSaccept () method is implemented by way of the
inherited method super . accept () . A Mast er Ser ver Socket can accept connect reguests from multiple machines. A Virtu-
al Ser ver Socket , on the other hand, is based on an actual socket connected to another actual socket on some host H, and con-
sequently a Vi rt ual Ser ver Socket can accept connect requests only from H.

Each multiplex connection depends on a pair of connected real sockets, one on the client host and one on the server host, and
this connection is created when an actual socket contacts an actual server socket. It follows that a multiplex connection begins
with a connection request to a Mast er Ser ver Socket . Once the connection is established, it is possible to build up virtual sock-
et groups, consisting of virtual sockets (and at most one Vi rt ual Ser ver Socket) revolving around the actual socket at each
end of the connection. Each virtual socket in a socket group at one end is connected to a virtual socket in the socket group at
the other end.

Master and virtual Mul ti pl exServer | nvoker S assume the characteristics of their server sockets. Mast er Ser ver Socket and
Vi rt ual Server Socket , respectively. That is, a master mul ti pl exSer ver I nvoker can accept requests from any host, while a
virtual mul ti pl exServerl nvoker can accept requests only from the particular host to which it has a multiplex connection.
Since a multiplex connection begins with a connection request to a Mast er Ser ver Socket , it follows that the use of the multi-
plex invoker must begin with a connection request from the client (made by either a mul ti pl exCl i ent I nvoker or a virtual
Mul ti pl exServer | nvoker : see below) to a master Mul ti pl exSer ver I nvoker on the server. The master mul ti pl exServer | n-
voker responds by "cloning" itself (metaphorically, not necessarily through the use of cl one()) into a virtual Ml ti pl ex-
Server | nvoker with the same parameters and same set of invocation handlers but with avi rt ual Ser ver Socket belonging to a
new socket group. In so doing the master Mul ti pl exSer ver | nvoker builds up a server invoker farm of virtual mul ti pl ex-
Server | nvoker S, each in contact with a different mul ti pl exd i ent | nvoker over a distinct multiplex connection. The virtua
Mul ti pl exSer ver | nvoker S do the actual work of responding to method invocation requests, sent by their corresponding mul -
ti pl exd i ent | nvoker S through virtual sockets in a socket group at the client end of a multiplex connection to virtual sockets
created by the Vi rtual Server Socket in the socket group at the server end of the connection. Note that virtual mul ti pl ex-

JBossMarch 27, 2006 24

Configuration

Server | nvoker S share data structures with the master, so that registering invocation handlers with the master makes them
available to the members of the farm. The members of a master mul ti pl exSer ver I nvoker's invoker farm are accessible by
way of the methods

1. MultiplexServerlnvoker. get Serverlnvokers() and

2. MiltiplexServerlnvoker. get Serverl nvoker (| net Socket Addr ess)

the latter of which returns avirtual mul ti pl exSer ver I nvoker keyed on the address to which its Vi r t ual Ser ver Socket iS con-
nected. When the master Mul ti pl exSer ver | nvoker shuts down, its farm of virtual invokers shuts down as well

There are two ways of constructing avirtual Mil ti pl exSer ver I nvoker , one being the cloning method just discussed. It is also
possible to construct one directly. Once a multiplex connection is established, a virtual Ml ti pl exSer ver I nvoker can be cre-
ated with a Vi rt ual Server Socket belonging to a socket group at one end of the connection. The mul ti pl exSer ver | nvoker
constructor determines whether to create a virtual or master invoker according to the presence or absence of certain paramet-
ers, discussed below, that may be added to its I nvoker Locat or . Server rules 1 through 3 described below result in the con-
struction of avirtual mul ti pl exServer | nvoker, and server rule 4 (the absence of these parameters) results in the construction
of amaster mul ti pl exSer ver | nvoker.

Setting up the server, then, is simply a matter of starting a master mul ti pl exSer ver | nvoker with a simple I nvoker Locat or ,
unadorned with any parameters specific to the multiplex invoker. As aways, the server invoker is not created directly but by
way of aConnect or, asin the following:

Connect or connector = new Connector();

Connect or. set I nvoker Locat or ("mul ti pl ex://deno. j boss. com 8080") ;
Connector. create()

Connector.start()

4.4.11.2. Setting up the client

Before multiplex connections can be established, a master Ml ti pl exSer ver | nvoker must be created as described in the previ-
ous section. For example, the Prime Scenario would begin with starting a master mul ti pl exSer ver | nvoker on the server host,
followed by starting, on the client host, amul ti pl exd i ent | nvoker C and avirtual Mul ti pl exServer | nvoker S(in either or-
der). The first to start initiates a multiplex connection to the master mul ti pl exSer ver | nvoker and requests the creation of a
virtual mul ti pl exSer ver | nvoker . Note that it is crucial for C and Sto know that they are meant to share a multiplex connec-
tion, i.e., that they are meant to belong to the same invoker group. Consider the following attempt to set up a shared connection
between hosts bluemonkey.acme.com and demo.jboss.com. First, C is initialized on host bluemonkey.acme.com with the I n-

voker Locat or multiplex://demo.jboss.com:8080, and, assuming the absence of an existing multiplex connection to
demo.jboss.com:8080, a new virtual socket group based on areal socket bound to an arbitrary port, say 32000, is created. Then
Sisinitialized with | nvoker Locat or multiplex://bluemonkey.acme.com:4444, but since it needs to bind to port 4444, it is un-
able to share the existing connection. [Actually, the example is dightly deceptive, since multi-
plex://bluemonkey.acme.com:4040 would result in the creation of a master mul ti pl exSer ver | nvoker . But if it were suitably
extended with the parameters discussed below so that a virtual Ml ti pl exServer | nvoker were created, the virtual invoker
would be unable to share the existing connection.]

So C and S need to agree on the address and port of the real socket underlying the virtual socket group they are intended to

JBossMarch 27, 2006 25

Configuration

share on the client host and the address and port of the real socket underlying the peer virtual socket group on the server host.
Or, more succintly, they must know that they are meant to belong to the same invoker group. Note the relationship between an
invoker group and the virtual socket group which supportsit: amul ti pl exd i ent I nvoker uses virtual socketsin its underlying
virtual socket group, and a Mul ti pl exServer I nvoker in an invoker group has a Vi rt ual Server Socket that creates virtual
sockets in the underlying virtual socket group.

C and Seach get half of the information necessary to identify their invoker group directly from their respective | nvoker Locat -
or S. In particular, C gets the remote address and port, and S gets the binding address and port. The additional information may
be provided through the use of invoker group parameters, which may be communicated to C and Sin one of two ways:

1. they may be appended to the | nvoker Locat or passed to the d i ent which creates C and/or to the | nvoker Locat or passed
to the Connect or which creates S

2. they may be stored in a configuration Map which is passed to the d i ent and/or Connect or .

In either case, there are two ways in which the missing information can be suppliedto C and S

1. Theinformation can be provided explicitly by way of invoker group parameters:

a. multiplexBindHost and multiplexBindPort parameters can be passed to C, and
b. multiplexConnectHost and multiplexConnectPort parameters can be passed to S.

2. Cand Scan betied together by giving them the same multiplexi d, supplied by invoker group parameters:

a clientMultiplexid, for the mul ti pl exd i ent I nvoker , and
b. serverMultiplexid, for the mul ti pl exSer ver | nvoker .

Giving them matching multiplexIds tells them that they are meant to belong to the same invoker group and that they
should provide the missing information to each other.

The behavior of astarting Ml ti pl exd i ent | nvoker Cisgoverned by the following four client rules:

1. If ChasaclientMultiplexid parameter, it will use it to attempt to find a Mul ti pl exServer I nvoker Swith a serverMulti-
plexld parameter with the same value. If it succeeds, it will retrieve binding host and port values, create or reuse a suitable
multiplex connection to the server, and start. Moreover, if Swas unable to start because of insufficient information (server
rule 3), then C will supply the missing information and Swill start. Note that in this situation C will ignore any multiplex-
BindHost and multiplexBindPort parameters passed to it.

2. If C does not find a mul ti pl exServer I nvoker through a multiplexid (either because it did not get a clientMultiplexid
parameter or because there is no Mul ti pl exSer ver I nvoker with a matching multiplexid), but it does have multiplexBind-
Host and multiplexBindPort parameters, then it will create or reuse a suitable multiplex connection to the server, and start.
Also, if it has a multiplexId, it will advertise itself for the benefit of a mul ti pl exServer | nvoker that may come along
later (see server rule 1).

3. If C hasamultiplexld and neither finds a mul ti pl exSer ver | nvoker with a matching multiplexid nor has multiplexBind-
Host and multiplexBindPort parameters, then it will not start, but it will advertise itself so that it may be found later by a
Mul ti pl exServer | nvoker (seeserverrulel).

JBossMarch 27, 2006 26

Configuration

4. If C has neither clientMultiplexid nor multiplexBindHost and multiplexBindPort parameters, it will create or reuse a multi-
plex connection from an arbitrary local port to the host and port given initsi nvoker Locat or, and start.

Similarly, the behavior of a starting mul ti pl exSer ver I nvoker Sisgoverned by the following four server rules:

1. If ShasaserverMultiplexid parameter, it will use it to attempt to find amul ti pl exd i ent | nvoker C with a matching cli-
entMultiplexid. If it succeeds, it will retrieve server host and port values, create a Vi rt ual Ser ver Socket , Create or reuse a
suitable multiplex connection to the server, and start. Moreover, if C was unable to start due to insufficient information
(client rule 3), then Swill supply the missing information and C will start. Note that in this situation Swill ignore multi-
plexConnectHost and multiplexConnectPort parameters, if any, initsi nvoker Locat or .

2. If Sdoes not find a Ml tipl exd i entlnvoker through a multiplexid (either because it did not get a serverMultiplexid
parameter or because thereisno Mul ti pl exd i ent | nvoker with a matching multiplexId), but it does have multiplexCon-
nectHost and multiplexConnectPort parameters, then it will create a Vi rt ual Server Socket , create or reuse a suitable
multiplex connection to the server, and start. Also, if it has a multiplexld, it will advertise itself for the benefit of amul ti -
pl exCl i ent I nvoker that may come along later (see client rule 1).

3. If Shasamultiplexld and neither finds a mul ti pl exd i ent I nvoker with a matching multiplexid nor has multiplexCon-
nectHost and multiplexConnectPort parameters, then it will not start, but it will advertise itself so that it may be found
later by amul ti pl exd i ent I nvoker (seeclient rule 1).

4. If Shas neither serverMultiplexid nor multiplexConnectHost and multiplexConnectPort parameters, it will create a mas-
t er Ser ver Socket bound to the host and port inits1 nvoker Locat or and start.

4.4.11.2.1. Notes

1. Like server invokers, client invokers are not started directly but are started indirectly through cals to di-
ent (I nvoker Locat or | ocator), such as;

Client client = new dient("multiplex://denm.jboss.com 8080/ 2clientMiltiplexld=ido");
client.connect();

N.B. For the multiplex invoker, it is important to call d i ent. connect (). Otherwise, the last Mil ti pl exd i ent | nvoker
that leaves an invoker group will not get a chance to shut the group down.

2. It should not be inferred that mul ti pl exd i ent | nvokers and Ml ti pl exServer | nvoker S belong to the same invoker
group only if they are required to do so by invoker group parameters. In fact, if two d i ent S are created with the | nvoker -
Locat or multiplex://demo.jboss.com, the second one, lacking any constraints on its binding address and port, is certainly
not prevented from sharing a connection with the first. Rather, the function of the invoker group parameters is to force
Mul tipl exd i entlnvoker Sand Ml ti pl exSer ver I nvoker Sto share a connection.

3. There are situations in which the method of passing parameters by way of the configuration map is preferable to append-
ing them to an | nvoker Locat or . One of the functions of an I nvoker Locat or is to identify a server, and modifying the
content of its I nvoker Locat or may interfere with the ability to locate the server. For example, one of the features of
JBoss Remoting is the substitution of method calls for remote invocations when it discovers that a server runsin the same
JVM asthe client. However, appending multiplex parametersto the | nvoker Locat or by which the server isidentified will
prevent the Remoting runtime from recognizing the local presence of the server, and the optimization will not occur.

JBossMarch 27, 2006 27

Configuration

4. It is possible, and convenient, to set up a multiplexing scenario using no parameters other than clientMultiplexid and
serverMultiplexid. Note, however, that in this case neither the C i ents nor the Connect or will be fully initialized until
after both have been started. If the d i ent s and the Connect or are to be started independently, then the other parameters
must be used. N.B. If ad i ent depends on Connect or in the same invoker group to supply binding information, it is an
error to call methods such asd i ent . connect () and d i ent . i nvoke() until the Connect or has been started.

5. dients andthe optional Connect or may be created (and the Connect or started) in any order.

4.4.11.3. Shutting down invoker groups.

A virtual socket group will shut down, releasing areal socket and a number of threads, when (1) its last member has closed and
(2) the socket group at the remote end of the multiplex connection agrees to the proposed shut down. The second condition
prevents a situation in which a new virtual socket tries to join what it thinks is a viable socket group at the same time that the
peer socket group is shutting down. So for a virtual socket group to shut down, all members at both ends of the connection
must be closed.

The implication of this negotiated shutdown mechanism is that as long as the Vi r t ual Ser ver Socket used by avirtua Ml ti -
pl exSer ver | nvoker remains open, resources at the client end of the connection cannot be freed, and for this reason it is im-
portant to understand how to close virtual Mul ti pl exSer ver I nvoker S.

There are three waysin which avirtual Mil ti pl exSer ver | nvoker that belongsto amaster mul ti pl exSer ver | nvoker 'S invoker
farm can shut down.

 When amaster Mul ti pl exServer | nvoker isclosed, it closesall of the virtual mul ti pl exServer | nvoker Sit created.

e Avirtual Ml tipl exServerlnvoker can be retrieved by calling either Mul ti pl exSer ver I nvoker . get Ser ver | nvokers() oOf
Mul ti pl exServer | nvoker. get Server | nvoker (1 net Socket Address) 0N its master Ml tipl exServerlnvoker and then
closed directly.

« When the accept () method of its Vi rt ual Server Socket times out, and when it detects that all multiplex invokersin the
invoker group at the client end of the connection have shut down, avirtual Ml ti pl exSer ver | nvoker will shut itself down.
Note that when all members leave an invoker group, it is guaranteed not to be revived, i.e., no new members may join.

The third method insures that without any explicit intervention, closing all multiplex invokers on the client (by way of calling

dient. di sconnect () and Connector. stop()) is guaranteed to result in the eventual release of resources. The timeout period

may be adjusted by setting the socketTimeout parameter (see below). Alternatively, the second method, in conjunction with the

use of Mul ti pl exSer ver | nvoker . i sSaf eToShut down() , Which returnst rue on Mul ti pl exSer ver I nvoker Mif and only if (1) m

is not virtual, or (2) al of the multiplex invokers in the invoker group at the client end of Ms connection have shut down. For

example, a thread could be dedicated to looking for useless mul ti pl exSer ver | nvoker s and terminating them before their nat-
ural expiration through timing out.

4.4.11.4. Examples

The following are examples of setting up a client for multiplexed synchronous and asynchronous communication. They each
assume the existence of amaster Mil ti pl exSer ver I nvoker running on demo.jboss.com:8080.

For compl ete exampl es see the section Multiplex invokers.

1. AwMiltiplexdientlnvoker Cstartsfirst:

JBossMarch 27, 2006 28

Configuration

String paraneters = "nmnul tipl exBi ndHost =l ocal host &l ti pl exBi ndPort =7070&cl i ent Mul ti pl ex| d=denol d1";
String locatorURI = "multiplex://denp.jboss.com 8080/ ?" + paraneters;

I nvoker Locat or | ocator = new | nvokerLocator (| ocatorURI);

Client client = new dient(locator);

client.connect();

and then it isfound by amul ti pl exSer ver | nvoker with amatching multiplexid, which joins C's invoker group and starts:

Connect or connector = new Connector();

String paraneters = "server Ml tipl exl d=denol d1";

String locatorURI = "multiplex://Ilocal host: 7070/ ?" + paraneters;
I nvoker Locator | ocator = new | nvokerLocat or (| ocator URl);

connect or. set | nvoker Locat or (1 ocat or. get Locat or URI ());
connector.create();

connector.start();

2. AMiltiplexdientlnvoker Cstarts

String paranmeters = "mul tipl exBi ndHost =l ocal host &rul ti pl exBi ndPort =7070";
String locatorURI = "multiplex://denp.jboss.com 8080/ ?" + paraneters;

I nvoker Locator | ocator = new | nvokerLocator (| ocatorURI);

Client client = new Client(locator);

client.connect();

and amul ti pl exServer I nvoker Sstarts independently, joining C's invoker group by virtue of having matching local and
remote addresses and ports:

Connect or connector = new Connector();

String paraneters = "multipl exConnect Host =denv. j boss. com&mul ti pl exConnect Port =8080";
String locatorURI = "multiplex://local host: 7070/ ?" + paraneters;

I nvoker Locator | ocator = new | nvokerLocator (| ocatorURl);

connect or. set | nvoker Locat or (| ocat or. get Locat or URI ()) ;

connector.create();

connector.start();

3. AMiltiplexdientlnvoker Ciscreated but does not start:

String paranmeters = "clientMiltipl exl d=denol d2";

String locatorURI = "mul tiplex://denp.jboss.com 8080/ ?" + paraneters;
I nvoker Locator | ocator = new | nvokerLocator (| ocatorURI);

Client client = new dient(locator);

and then amul ti pl exServer | nvoker Siscreated with amatching multiplexid, allowing both C and Sto start:

Connect or connector = new Connector();

String paraneters = "server Ml tipl exl d=denol d2";

String locatorURI = "multiplex://local host: 7070/ ?" + paraneters;
I nvoker Locat or | ocator = new I nvokerLocator(locatorURl);

JBossMarch 27, 2006 29

Configuration

connect or. set | nvoker Locat or (| ocat or. get Locat or URI ()) ;
connector.create();

connector.start();

client.connect();

Notethecall tod i ent. connect () after the call to Connector.start().

4. A Miltiplexdientlnvoker Cstartsinaninvoker group based on areal socket bound to an arbitrary local port:

String locatorURI = "mul tiplex://deno.jboss.com 8080";

I nvoker Locator | ocator = new | nvokerLocator (| ocatorURI);
Client client = new Cient(locator);

client.connect();

and then amul ti pl exSer ver | nvoker Sstartsindependently:

Connect or connector = new Connector();

String locatorURI = "multiplex://Ilocal host:7070";

I nvoker Locator | ocator = new | nvokerLocat or (| ocatorURl);
connect or. set | nvoker Locat or (1 ocat or. get Locat or URI ());
connector.create();

connector.start();

Note that S creates a Mast er Ser ver Socket rather than a vi rt ual Ser ver Socket in this case and so does not share a multi-
plex connection and does not belong to an invoker group.

5. Thisisexample 1, rewritten so that the invoker group parameters are passed by way of a configuration Map instead of 1 n-
voker Locat or S. A Mul ti pl exd i ent | nvoker C startsfirst:

String locatorURI = "mnultiplex://deno.jboss.com 8080";

I nvoker Locator | ocator = new | nvokerLocator (| ocatorURI);

Map configuration = new HashMap();

configuration. put (Ml tipl exl nvoker Const ants. MULTI PLEX Bl ND_HOST_KEY, "I ocal host");
configuration. put (Mil tiplexl nvoker Constants. MULTI PLEX Bl ND_PORT_KEY, "7070");
configuration. put (Mil tipl exl nvoker Const ants. CLI ENT_MJLTI PLEX | D_KEY, "denoldl");
Client client = new dient(locator, configuration);

client.connect();

and then it isfound by amil ti pl exSer ver | nvoker with amatching multiplexld, which joins C'sinvoker group and starts:

String locatorURI = "nultiplex://Iocal host:7070";

I nvoker Locator | ocator = new | nvokerLocator (| ocatorURI);

Map configuration = new HashMap();

configuration. put (Mil tipl exl nvoker Const ants. SERVER_MJLTI PLEX | D_KEY, "denoldl");
Connect or connector = new Connector (| ocator.getLocatorURI (), configuration);
connector.create();

connector.start();

JBossMarch 27, 2006 30

Configuration

4.4.11.5. Configuration properties

There are four categories of configuration properties supported by the multiplex invoker.

1. Thefollowing properties can be used to configure both master and virtual Ml ti pl exor Ser ver | nvoker S. They can be set
at any time, but will not take effect until the invoker is stopped and restarted. A subset of the parameters applicable to the
socket invoker is currently implemented.

socketTimeout - The socket timeout value passed to the Socket. set SoTi meout () method and the Server Sock-
et . set SoTi neout () method. The default is 60000 (or 1 minute).

numAccept Threads - The number of threads that exist for accepting client connections. The default is 1.

2. The following properties are intended to be passed to a Mul ti pl exSer ver | nvoker and then communicated to a corres-
ponding Mul ti pl exd i ent | nvoker Via parameters in the Locator URI. These configurations cannot be changed during
runtime, so can only be set up upon initial configuration of the multiplex invoker on the server side. A subset of the para-
meters applicable to the socket invoker is currently implemented.

socketTimeout - The socket timeout value passed to the Socket . set SoTi neout () method. The default is 1800000 (or 30
minutes).

3. Thefollowing properties are intended to be passed to a virtual mul ti pl exSer ver I nvoker to configure its multiplex con-
nection. These properties are specific to the multiplex invoker.

multiplexConnectHost - the name or address of the host to which the multiplex connection should be made.
multiplexConnectPort - the port to which the multiplex connection should be made.

server Multiplexid - a string that associates a Mul ti pl exServer I nvoker with amil ti pl exd i ent I nvoker with which it
should share a multiplex connection.

4. The following properties are intended to be passed to a virtual Ml ti pl exd i ent I nvoker to configure its multiplex con-
nection. These properties are specific to the multiplex invoker.

multiplexBindHost - the host name or address to which the local end of the multiplex connection should be bound.
multiplexBindPort - the port to which the local end of the multiplex connection should be bound

clientMultiplexld - a string that associates a Mul ti pl exd i ent I nvoker with a Ml ti pl exServer | nvoker with which it
should share a multiplex connection.

4.5. Marshalling

Marshalling of data can range from extremely simple to somewhat complex, depending on how much customization is needed.
The following explains how marshallers'unmarshallers can be configured. Note that this applies for all the different transports,
but will use the socket transport for examples.

The easiest way to configure marshalling is to specify nothing at all. This will prompt the remoting invokers to use their de-
fault marshaller/unmarshallers. For example, the socket invoker will use the SerializableMarshaller/SerializableUnMarshaller

JBossMarch 27, 2006 31

Configuration

and the http invoker will use the HTTPMarshaller/HTTPUnMarshaller, on both the client and server side.

The next easiest way is to specify the data type of the marshaller/unmarshaller as a parameter to the locator url. This can be
done by simply adding the key word 'datatype’ to the url, such as:

socket : // myhost : 5400/ ?dat at ype=seri al i zabl e

This can be done for types that are statically bound within the mvar shal Fact ory , serializable and http, without requiring any
extra coding, since they will be available to any user of remoting. However, is more likely this will be used for custom mar-
shallers (since could just use the default data type from the invokers if using the statically defined types). If using custom mar-
shaller/unmarshaller, will need to make sure both are added programmatically to the Mar shal Fact ory during runtime (on both
the client and server side). This can be done by the following method call within the Marshal Factory:

public static void addMarshaller(String dataType, Mrshaller marshaller, UnMarshal |l er unMarshaller)

The dataType passed can be any String value desired. For example, could add custom InvocationMarshaller and InvocationUn-
Marshaller with the data type of 'invocation'. An example using this data type would then be:

socket : // myhost : 5400/ ?dat at ype=i nvocati on

One of the problems with using a data type for a custom Marshaller/UnMarshaller is having to explicitly code the addition of
these within the Marshal Factory on both the client and the server. So another approach that is alittle more flexible is to specify
the fully qualified class name for both the Marshaller and UnMarshaller on the locator url. For example:

socket : // nyhost : 5400/ ?dat at ype=i nvocat i on&
mar shal | er=or g. j boss. i nvocati on. uni fi ed. marshal | . I nvocati onMarshal | er &
unmar shal | er=or g. j boss. i nvocati on. uni fi ed. marshal | . I nvocat i onUnMar shal | er

Thiswill prompt remoting to try to load and instantiate the Marshaller and UnMarshaller classes. If both are found and |oaded,
they will automatically be added to the Marshal Factory by data type, so will remain in memory. Now the only requirement is
that the custom Marshaller and UnMarshaller classes be available on both the client and server's classpath.

Another requirement of the actual Marshaller and UnMarshaller classesis that they have a void constructor. Otherwise loading
of these will fail.

This configuration can also be applied using the service xml. If using declaration of invoker using the InvokerLocator attribute,
can simply add the datatype, marshaller, and unmarshaller parameters to the defined InvokerL ocator attribute value. For ex-
ample:

<attribute nane="InvokerLocat or">

<! [CDATA[socket : // ${j boss. bi nd. addr ess}: 8084/ ?dat at ype=i nvocat i on&

mar shal | er=org. j boss. i nvocation. unified. marshall .| nvocati onMarshal |l er&

unmar shal | er=or g. j boss. i nvocati on. uni fi ed. marshal | . | nvocati onUnMar shal l er]] >
</attribute>

If were using config element to declare the invoker, will need to add an attribute for each and include the isParam attribute set
to true. For example:

JBossMarch 27, 2006 32

Configuration

<i nvoker transport="socket">
<attribute nane="dat aType" isParan¥"true">i nvocation</attribute>
<attribute nanme="marshal |l er" isParam="true">
org.j boss.invocation.unified. marshall.|lnvocati onMarshall er
</attribute>
<attribute name="unnmarshal l er" isParan="true">
org.j boss.invocation.unified. marshall.|nvocati onUnMarshal | er
</attribute>
</i nvoker >

This configuration is fine if the classes are present within the client's classpath. If they are not, can provide configuration for
alowing clients to dynamically load the classes from the server. To do this, can use the parameter 'loaderport’ with the value of
the port you would like your marshal loader to run on. For example:

<i nvoker transport="socket">
<attribute nane="dat aType" isParan¥"true">i nvocation</attribute>
<attribute name="marshal |l er" isParam="true">
org.j boss.invocation.unified. marshall.lnvocati onMarshall er
</attribute>
<attribute name="unmarshal l er" isParam="true">
org.j boss.invocation.unified. marshall.|nvocati onUnMarshall er
</attribute>
<attribute nanme="I| oaderport" isParam="true">5401</attribute>
</i nvoker >

When this parameter is supplied, the Connector will recognize this at startup and create a marshal loader connector automatic-
aly, which will run on the port specified. The locator url will be exactly the same as the original invoker locator, except will be
using the socket transport protocol and will have al marshalling parameters removed (except the dataType). When the remot-
ing client can not load the marshaller/unmarshaller for the specified data type, it will try to load them from the marshal loader
service running on the loader port, including any classes they depend on. This will happen automatically and no coding is re-
quired (only the ability for the client to access the server on the specified loader port, so must provide access if running
through firewall).

Compression marshalling

A compression marshaller/unmarshaller is available as well which uses gzip to compress and uncompress large payloads for
wire transfer. The implementation classes are org.j boss. renoting. marshal . conpr ess. Conpr essi nghar shal | er and
org.j boss. renoting. mar shal . conpr ess. Conpr essi ngUnMar shal | er. They extend the
org.j boss.remoting. marshal . seri ali zabl e. Seri al i zabl eMar shal | er and
org.j boss.renoting. marshal . serial i zabl e. Seri al i zabl eUnMar shal | er interfaces and maintain the same behavior with
the addition of compression.

4.6. Callbacks

4.6.1. Callback overview

Although this section covers callback configuration, will need to first cover alittle general information about callbacks within
remoting. There are two models for callbacks, push and pull. In the push model, the client will register a callback server viaan

JBossMarch 27, 2006 33

Configuration

InvokerLocator with the target server. When the target server has a callback to deliver, it will call on the callback server dir-
ectly and send the callback message.

The other model, pull callbacks, allows the client to call on the target server to collect the callback messages waiting for it. The
target server then has to manage these callback messages on the server until the client calls to collect them. Since the server
has no control of when the client will call to get the callbacks, it has to be aware of memory constraints as it manages a grow-
ing number of callbacks. The way the callback server does this is through use of a persistence policy. This policy indicates at
what point the server has too little free memory available and therefore the callback message should be put into a persistent
store. This policy can be configured viathe menPer cent Cei | i ng attribute (see more on configuring this below).

By default, the persistent store used by the invokersisthe org. j boss. renot i ng. Nul | Cal | backSt ore . The NullCallbackStore
will simply throw away the callback to help avoid running out of memory. When the persistence policy is triggered and the
NullCallbackStore is called upon to store the callback, the invocation handler making the call will be thrown an |OException
with the message:

Cal | back has been | ost because not enough free nmenory to hol d object.

and there will be an error in the log stating which object was lost. In this same scenario, the client will get an instance of the
org.j boss.renoting. Nul | Cal | backStore . Fai | edCal | back class when they call to get their callbacks. This class will throw
a RuntimeException with the following message when get Cal | backbj ect () iscalled:

This is an invalid callback. The server ran out of nenory, so callbacks were | ost.

Also, the payload of the callback will be the same string. The client will also get any valid callbacks that were kept in memory
before the persistence policy was triggered.

An example case when using the Null CallbackStore might be when callback objects A, B, and C are stored in memory because
there is enough free memory. Then when callback D comes, the persistence policy is triggered and the NullCallbackStore is
asked to persist callback D. The NullCallbackStore will throw away calback D and create a FailedCallback object to take its
place. Then callback E comes, and there is still too little free memory, so that is thrown away by the NullCallbackStore.

Then the client calls to get its callbacks. It will receive a List containing callbacks A, B, C and the FailedCallback. When the
client asks the FailedCallback for its callback payload, it will throw the af orementioned exception.

Besides the default NullCallbackStore, there is atruly persistent CallbackStore, which will persist callback messages to disk so
they will not be lost. The description of the CallbackStore is as follows:

Acts as a persistent list which wites Serializable objects to disk and will retrieve themin same order
in which they were added (FIFO. Each file will be naned according to the current time (using Sys-
temcurrentTimreMIlis() with the file suffix specified (see below). Wen the object is read and returned
by calling the getNext() nethod, the file on disk for that object will be deleted. If for some reason the
store VM crashes, the objects will still be available upon next startup. The attributes to nake sure to
configure are:

file path - this determ nes which directory to wite the objects. The default value is the property val ue
of 'jboss.server.data.dir' and if this is not set, then wll be 'data'. For exanple, might be /
j boss/ server/ defaul t/data.

file suffix - the file suffix to use for the file witten for each object stored.

This is also a service nbean, so can be run as a service within JBoss AS or stand al one.

JBossMarch 27, 2006 34

Configuration

Custom callback stores can aso be implemented and defined within configuration. The only requirement is that it implements
the org.jboss.remoting.SerializableStore interface and has a void constructor (only in the case of using a fully qualified class-
name in configuration).

Once a callback client has been removed as alistener, al persisted callbacks will be removed from disk.

4.6.2. Callback Configuration

All callback configuration will need to be defined within the invoker configuration, since the invoker is the parent that creates
the callback servers as needed (when client registers for pull callbacks). Example service xml are included below.

callbackM emCeiling - the percentage of free memory available before callbacks will be persisted. If the memory heap alloc-
ated has reached its maximum value and the percent of free memory available is less than the callbackMemCeiling, this will
trigger persisting of the callback message. The default value is 20.

Note: The calculations for this is not always accurate. The reason is that total memory used is usually less than the max al-
lowed. Thus, the amount of free memory is relative to the total anount allocated at that point in time. It is not until the total
amount of memory allocated is equal to the max it will be allowed to allocate. At this point, the amount of free memory be-
comes relevant. Therefore, if the memory percentage ceiling is high, it might not trigger until after free memory percentage is
well below the ceiling.

callbackStore - specifies the callback store to be used. The value can be either an MBean ObjectName or a fully qualified
class name. If using class name, the callback store implementation must have a void constructor. The default is to use the
NullCallbackStore.

CallbackStore configuration
The CallbackStore can be configured via the invoker configuration aswell.

StoreFilePath - indicates to which directory to write the callback objects. The default value is the property value of
'Iboss.server.data.dir' and if thisis not set, then will be 'data. Will then append 'remoting’ and the callback client's session id.
An example would be 'data\remoting\5c4005I-9jijyx-e5b6xyph-1-e5b6xyph-2'.

Stor eFileSuffix - indicates the file suffix to use for the callback objects written to disk. The default value is ‘ser’.

Sample service configuration

Socket transport with callback store specified by class name and memory ceiling set to 30%:

<mbean code="org.jboss.renoting.transport. Connector"
xnmbean- dd="or g/ j boss/renoti ng/transport/ Connect or. xm "
name="j boss. renoti ng: servi ce=Connect or, transport =Socket "
di spl ay- name="Socket transport Connector">

<attribute name="Configuration">
<confi g>

<i nvoker transport="socket">
<attribute nanme="cal | backSt ore">org.jboss.rennting. Cal | backStore</attribute>
<attribute nanme="cal | backMentCei |l i ng">30</attri but e>

</i nvoker >

<handl er s>
<handl er subsystem="test">

JBossMarch 27, 2006 35

Configuration

org. j boss. renoting. cal | back. pul | . nenory. Cal | backl nvocat i onHandl er
</ handl er >
</ handl er s>
</ confi g>
</attribute>
</ nbean>

Socket transport with callback store specified by MBean ObjectName and declaration of CallbackStore as service:

<nbean code="org.j boss. renoting. Cal | backSt ore"
name="j boss. renoti ng: servi ce=Cal | backSt ore, t ype=Seri al i zabl e"
di spl ay- name="Persi sted Cal | back Store">

<!-- the directory to store the persisted callbacks into -->
<attribute name="StoreFil ePat h">cal | back_store</attri bute>
<l-- the file suffix to use for each call back persisted to disk -->
<attribute name="StoreFil eSuffix">cbk</attribute>

</ mbean>

<nmbean code="org.jboss. renoting.transport. Connector"
xnmbean- dd="or g/ j boss/renoti ng/ transport/ Connect or. xm "
name="j boss. renoti ng: servi ce=Connect or, t ransport =Socket "
di spl ay- name="Socket transport Connector">

<attribute name="Confi guration">
<confi g>
<i nvoker transport="socket">
<attribute nanme="cal | backSt ore">
j boss. remoti ng: servi ce=Cal | backSt ore, t ype=Seri al i zabl e
</attribute>
</i nvoker>
<handl er s>
<handl er subsystem="test">
org.j boss. renoting. cal | back. pul | . menory. Cal | backl nvocat i onHandl er
</ handl er >
</ handl er s>
</ confi g>
</attribute>
</ mbean>

Socket transport with callback store specified by class name and the callback store’ s file path and file suffix defined:

<nmbean code="org.jboss.renoting.transport. Connector"
xnmbean- dd="or g/ j boss/renoti ng/transport/ Connect or. xm "
name="j boss. renot i ng: servi ce=Connect or, transport =Socket "
di spl ay- name="Socket transport Connector">

<attribute name="Confi guration">
<confi g>
<i nvoker transport="socket">
<attribute nanme="cal | backSt ore">org.jboss.rennting. Cal | backStore</attribute>
<attribute name="StoreFil ePat h">cal | back</attri bute>
<attribute name="StoreFil eSuffix">cst</attribute>
</i nvoker >
<handl er s>
<handl er subsystem="test">
org.j boss. renoting. cal | back. pul | . menory. Cal | backl nvocat i onHandl er
</ handl er >
</ handl er s>
</config>

JBossMarch 27, 2006

36

Configuration

</attribute>
</ mbean>

4.6.3. Callback Exception Handling

Since performing callbacks can sometimes fail, due to network errors or errors produced by the client callback handler, there
needs to be a mechanism for managing exceptions when delivering callbacks. This is handled via use of the
org.j boss. remoting. cal | back. Cal | backErr or Handl er interface. Implementations of this interface can be registered with
the Connector to control the behavior when callback exceptions occur.

The implementation of the CallbackErrorHandler interface can be specified by setting the 'callbackErrorHandler' attribute to
either the ObjectName of an MBean instance of the CallbackErrorHandler which is already running and registered with the
MBeanServer, or can just specify the fully qualified class name of the CallbackErrorHandler implementation (which will be
constructed on the fly and must have a void parameter constructor). The full server invoker configuration will be passed along
to the CallbackErrorHandler, so if want to add extra configuration information in the invoker's configuration for the callback
eror handler, it will be avalable If no cadlback eror handler is specified via configuration,
org.j boss. remoting. cal | back. Def aul t Cal | backErr or Handl er Will be used by default. This implementation will allow up
to 5 exceptions to occur when trying to deliver a callback message from the server to the registered callback listener client
(regardless of what the cause of the exception is, so could be because could not connect or could be because the client actually
threw avalid exception). After the DefaultCallbackErrorHandler receives its fifth exception, it will remove the callback listen-
er from the server invoker handler and shut down the callback listener proxy on the server side. The number of exceptions the
DefaultCallbackErrorHandler will allow before removing the listener can by configured by the 'callbackErrorsAllowed' attrib-
ute.

4.7. Programmatic configuration

It is possible to configure all this programmatically, if running outside the JBoss Application server for example, but is alittle
more tedious. Since the remoting components are all bound together by the or g. j boss. renot i ng. transport . Connect or class,
will need to call itsset Confi gurati on(org. wdc. dom El ement xm) method with same xml as in the mbean service configura-
tion, before calling itsst art () method.

The xml passed to the Connector should have <conf i g> element as the root element and continue from there with <i nvoker >
sub-element and S0 on. An example of this can be found in
org.jboss.test.remoting.configuration.SocketClientConfigurationTestCase.

4.8. SSL Support and configuration

There are three transports that now support SSL: sslsocket, sssmultiplex, and https. This section will cover configuration, im-
plementation, some samples, and some troubleshooting tips.

Both the sslsocket and https transports are extensions of their non-ss counterparts, socket and http transports, so the same ba-
sic configurations will apply. Therefore, only the sdl specific configurations will be covered here. Moreover, ssimultiplex has
the same relationship to multiplex that ssisocket has to socket, so the discussion of sslsocket applies aswell to ssmultiplex.

An example of a service xml that covers al the different transport and service configurations can be found within the example-
servicexml file under the etc directory of the JBoss Remoting distribution.

JBossMarch 27, 2006 37

Configuration

sslsocket

The sslsocket transport can be defined in one of two ways if using a service xml to declare the remoting server. Thefirst isto
use the sslsocket protocol keyword in the locator url of the InvokerLocator attribute value of the Connector service mbean. For
example:

<nbean code="org.jboss. renoting.transport. Connector"
xnmbean- dd="or g/ j boss/renoti ng/transport/ Connect or. xm "
name="j boss. renoti ng: servi ce=Connect or, transport =SSLSocket "
di spl ay- name="SSL Socket transport Connector">

<attribute name="InvokerLocat or">ssl socket:// myhost:8084</attri bute>

The other way isto not use the InvokerL ocator attribute, but instead a more verbose Configuration attribute, which declares the
invoker transport type as a sub-element. For example:

<mbean code="org.jboss.renoting.transport. Connector"
xnmbean- dd="or g/ j boss/renoti ng/transport/ Connect or. xm "
name="j boss. renot i ng: servi ce=Connect or, t ransport =SSLSocket "
di spl ay- name="SSL Socket transport Connector">

<attribute name="Configuration">
<confi g>
<i nvoker transport="ssl socket">
<attribute name="numAccept Threads" >1</attri bute>
<attribute nane="maxPool Si ze">303</attri but e>

If defining the remoting server programmatically, not from a server xml file, all that is needed is to create the InvokerL ocator
with sslsocket as the protocol. Of course the other Connector operations will be needed as well. A simple example would be:

Connect or connector = new Connector();

I nvoker Locat or | ocator = new | nvokerLocator(“ssl socket://nyhost:8084");
connect or. set | nvoker Locat or (1 ocat or. get Locat or URI ()) ;

connector.create();

connect or. addl nvocat i onHandl er (get Subsystemn(), get Serverlnvocati onHandl er());
connector.start();

SSL Server Socket Selection

All of the forms of configuration mentioned previously will use the default configuration for selecting which SSL server socket
factory to use. Technically, thisis done by calling on thej avax. net . ssl . SSLSer ver Socket Fact ory 'S get Def aul t () method.
Thiswill require that both thej avax. net . ssl . keySt or e and thej avax. net . ssl . keySt or ePasswor d System properties are set.
This can be done by either calling the Syst em set Property() or viaJVM arguments. This also means that all the SSL config-
urations default to those of the VM vendor.

There are two ways in which to customize the SSL configuration to be used by the SSL SocketServerinvoker. The first isto ex-
plicitly set the server socket factory that the invoker should use to create its server sockets. This can be done programmatically
viathe following method (which is also exposed as a IM X operation):

public void set Server Socket Fact ory(Server Socket Fact ory server Socket Fact ory)

JBossMarch 27, 2006 38

Configuration

The server socket factory to be used by the invoker can also be set via configuration within the service xml. To do this, the
serverSocketFactory attribute will need to be set as a sub-element of the invoker element (this cannot be done if just specifying
the invoker configuration using the InvokerLocator attribute). The attribute value must be the IMX ObjectName of an MBean
that implements the or g. j boss. renot i ng. security. Server Socket Fact or yMBean interface. An example of this configuration
would be:

<mbean code="or(g.jboss.renoting.transport.Connector"
xnmbean- dd="or g/ j boss/renoti ng/transport/ Connect or. xm "
name="] boss. renoti ng: servi ce=Connect or, transport =Socket "
di spl ay- name="Socket transport Connector">

<attribute name="Configuration">
<confi g>
<i nvoker transport="ssl socket">
<attribute nane="server Socket Fact ory" >
j boss. renoting: servi ce=Server Socket Fact ory, t ype=SSL
</attribute>
<attribute name="numAccept Threads" >1</attri bute>

The JBossRemoting project provides an implementation of the ServerSocketFactoryMBean that can be used and should
provide most of the customization features that would be needed. More on this implementation later.

The order of selecting which server socket factory is:
1.If aj avax. net . Ser ver Socket Fact or y has been specified viathe set Ser ver Socket Fact ory() method, use this.

2.1f the server Socket Fact ory property has been set, then take the String value, create an ObjectName from it, look up that
MBean from the MBeanServer that the invoker has been registered with (by way of the Connector) and create a proxy to that
MBean of type org. j boss. renpting. security. Server Socket Fact or yMBean. Then use this proxy. Technically, a user could
set the ser ver Socket Fact ory property with the locator url, but the preferred method is to use the explicit configuration viathe
invoker element’ s attribute, as discussed above.

3.If the server socket factory has not been set explicitly via the serverSocket Factory property, then use the
j avax. net . ssl . SSLServer Socket Fact ory 'Sget Def aul t () method.

Note: If want to set the server socket factory via the invoker’s set Ser ver Socket Fact ory() method, it requires a bit of work,
so would opt for using a configuration setting when possible. The following snippet of code shows how it can be done pro-
grammatically:

Connect or connector = new Connector();

I nvoker Locator | ocator = new | nvokerLocat or (“ssl socket:// myhost:8084");

connect or. set | nvoker Locat or (| ocat or. get Locat or URI ()) ;

connector.create();

/| create your server socket factory

Server Socket Fact ory svrSocket Factory = createServer Socket Factory();

/1 notice that the invoker has to be explicitly cast to the

/| SSLSocket Server | nvoker type

SSLSocket Server | nvoker socket Svrlnvoker = (SSLSocket Serverlnvoker) connector. get Serverl nvoker();
socket Svrl nvoker . set Ser ver Socket Fact or y(svr Socket Fact ory) ;

connect or. addl nvocat i onHandl er (get Subsystem(), get Serverlnvocati onHandl er());
connector.start();

JBossMarch 27, 2006 39

Configuration

The ordering is al'so important in that the call to the Connector’s create() method will create the invoker so that it is available
via the getServerlnvoker() method. However, the server socket factory MUST be set before the Connector’s start() method is
called, because this will cause the invoker’s start() method to be called, which will create the server socket to listen on (and is
too late to swap out the server socket factory being used).

https

The https transport is a bit different from the sslsocket in configuration since the implementation is based off the Tomcat con-
nectors. The first major difference is the transport protocol keyword to identify it, which is 'https.

Next is defining the SSL implementation and server socket factory to be used. The SSL implementation to be used can be set
via the 'SSLImplementation' attribute and should always have a value of
org.j boss.renoting. transport. coyote. ssl . Renoti ngSSLI npl enent ati on. The server socket factory to be used should be
set via the 'serverSocketFactory' attribute and should always be the javax.management.ObjectName value for an implementa-
tion of the org.j boss. renoting. security. Server Socket Fact or yMBean interface, which should already be registered with
the MBeanServer and running (more details on thisin a minute).

An example of setting up https via service.xml configuration would be:

<mbean code="org.jboss.renoting.transport. Connector"
xmbean- dd="or g/ j boss/ renot i ng/ transport/ Connect or. xm "
name="j boss. renot i ng: servi ce=Connect or, transport =HTTPS"
di spl ay- nanme="HTTPS transport Connector">

<attribute nanme="Configuration">

<confi g>
<i nvoker transport="https">
<I-- The following is for setting the server socket factory. If want ssl support -->
<l-- use a server socket factory that supports ssl. The only requirenent is that -->
<I-- the server socket factory value nust be an Obj ect Nane, neaning the -->
<I-- server socket factory inplenentati on nust be a MBean and al so -->
<I-- MJST inplenment the org.jboss.renoting.security. Server Socket Fact oryMBean interface. -->

<attribute nane="server Socket Fact ory">j boss. renoti ng: servi ce=Ser ver Socket Factory, t ype=SSL</attri but
<attribute name="SSLI npl emrent ati on">org.j boss. renoting.transport.coyote. ssl.Renoti ngSSLI npl ement ati

<attribute nane="serverBi ndAddr ess" >${] boss. bi nd. addr ess} </ attri but e>
<attribute nane="serverBi ndPort">6669</attri bute>

</i nvoker >

<handl er s>

<handl er subsyst en="nock">org.j boss.test.remting.transport. nmock. MockServer| nvocati onHandl er </ handl

</ handl er s>
</ confi g>
</attribute>

<l-- This depends is included because need to make sure this nbean is running before configure invoker.

<depends>j boss. renoti ng: servi ce=Ser ver Socket Fact ory, t ype=SSL</ depends>
</ mbean>

Notice that the 'serverSocketFactory' attribute has a value of 'jboss.remoting:service=ServerSocketFactory,type=SSL', which is
not defined in the configuration snippet. More on how to define thisin the next section.

One of the magjor changes related to using the Tomcat connectors with regards to SSL is that everything within Tomcat is
defined via properties configuration and there is no external API for making changes during runtime. This means that there is
no way to set server socket factory implementation programatically, other than via configuration (so cannot call setServer-
SocketFactory() method on the server invoker as could with the ssl socket invoker). This also means that if not running within
the JBoss Application Server container, but running stand alone, will need to setup an MBeanServer and register the server

JBossMarch 27, 2006 40

-->

Configuration

socket factory with it programatically. For an example of how to do this programaticaly, can refer to
org.jboss.test.remoting.transport.http.ssl.basic. HTTPSInvokerTestServer.

The configuration for SSL support only works when using the java based http processor and not with the APR based transport.
See section 4.7 for more information on using the APR based transport.

SSLSocketBuilder

Although any server socket factory can be set on the SSL socket server invoker and the https server invoker, there is a custom-
izable server socket factory service provided within JBossRemoting that supports SSL. This is the
org.j boss.renpting. security. SSLSer ver Socket Fact oryServi ce class. The SSLServer Socket Fact oryServi ce class ex-
tends the j avax. net . Ser ver Socket Fact ory class and also implements the SSLSer ver Socket Fact or ySer vi ceMBean interface
(so that it can be set using the socket Server Fact ory attribute described previously). Other than providing the proper inter-
faces, this classis asimple wrapper around the or g. j boss. renot i ng. securi ty. SSLSocket Bui | der class.

The SSL SocketBuilder is where the sdl server socket (and ssl sockets for clients) originate and is where al the properties for
the s3l server socket are configured (more on this further below). The SSLSocketBuilder is also a service MBean, so can be
configured and started from within a service xml.

Thisis an example of both the configurations as might be found within a service xml:

<I-- This service is used to build the SSL Server socket factory -->

<l-- This will be where all the store/trust information will be set. -->

<I-- If do not need to nmake any custom configurations, no extra attributes -->
<l-- need to be set for the SSLSocketBuilder and just need to set the -->

<I-- javax.net.ssl.keyStore and javax. net.ssl.keyStorePassword system properties. -->
<l-- This can be done by just adding sonething like the following to the run -->
<I-- script for JBoss -->

<l-- (this one is for run.bat): -->

<I-- set JAVA OPTS=-D avax. net.ssl.keyStore=. keystore -->

<l-- -Djavax. net. ssl . keySt or ePasswor d=opensour ce %AVA OPTS% - - >

<I-- Oherwise, if want to custonize the attributes for SSLSocketBuil der, -->
<l-- will need to uncoment them bel ow. -->

<mbean code="org.jboss.renoting. security.SSLSocket Bui | der"
name="j boss. renot i ng: servi ce=Socket Bui | der, t ype=SSL"
di spl ay- name="SSL Server Socket Factory Buil der">

<I-- | MPORTANT - |f naking ANY custom zations, this MJST be set to false. -->

<I-- Oherwise, will used default settings and the following attributes will be ignored. -->
<attribute name="UseSSLServer Socket Fact ory">fal se</attri bute>

<I-- This is the url string to the key store to use -->

<attribute nane="KeySt oreURL">. keystore</attri bute>

<I-- The password for the key store -->

<attribute nane="KeySt or ePasswor d" >opensour ce</attri bute>

<!-- The password for the keys (will use KeystorePassword if this is not set explicitly. -->

<attribute nane="KeyPassword">opensource</attribute>

<l-- The protocol for the SSLContext. Default is TLS. -->

<attribute name="SecureSocket Protocol ">TLS</attri bute>

<l-- The algorithmfor the key manager factory. Default is SunX509. -->

<attribute nane="KeyManagenent Al gorit hni >SunX509</ attri but e>

<l-- The type to be used for the key store. -->

<I-- Defaults to JKS. Sonme acceptable values are JKS (Java Keystore - Sun's keystore format), -->
<l-- JCEKS (Java Cryptography Extension keystore - Mre secure version of JKS), and -->

<I-- PKCS12 (Public-Key Cryptography Standards #12 keystore - RSA's Personal |nformation Exchange S

<!-- These are not case sensitive. -->
<attribute name="KeySt oreType">JKS</attri bute>
</ mbean>
<I-- The server socket factory nmbean to be used as attribute to socket invoker -->

JBossMarch 27, 2006 41

Configuration

<l-- See serverSocket Factory attribute above for where it is used -->
<I-- This service provides the exact same APl as the Server Socket Factory, so -->
<l-- can be set as an attribute of that type on any MBean requiring an Server Socket Factory.

<nmbean code="or(g.jboss.renoting. security.SSLServer Socket Fact oryServi ce"
name="j boss. renoti ng: servi ce=Ser ver Socket Fact ory, t ype=SSL"
di spl ay- name="SSL Server Socket Factory">
<depends optional -attribute-nanme="SSLSocket Bui | der"
proxy-type="attribute">j boss. renmoting: servi ce=Socket Bui | der, t ype=SSL</ depends>
</ mbean>

There are two modes in which the SSL SocketBuilder can be run. The first is the default mode where all that is needed is to de-
clare the SSL SocketBuilder and set the system properties j avax. net . ssl . keySt ore and j avax. net . ssl . keySt or ePasswor d.
Thiswill use the VM vendor’s default configuration for creating the SSL server socket factory.

If want to be able to customize any of the SSL properties, the first requirement is that the default mode is turned off. Thisis
IMPORTANT because otherwise, if the default mode is not explicitly turned off, all other settings will be IGNORED, even if
they are explicitly set. To turn off the default mode via service xml configuration, set the UseSSLSer ver Socket Fact ory attrib-
ute to false. This can be done programmatically by calling the set UseSSLSer ver Socket Fact ory() and passing false as the
parameter value.

The configuration properties are as follows:

Secur eSocketProtocol - The protocol for the SSL Context. Some acceptable valuesare TLS, SSL, and SSLv3. Defaultsto TLS
(DEFAULT_SECURE_SOCKET_PROTOCOL)

KeyManagementAlgorithm - The agorithm for the key manager factory. Defaults to SunX509
(DEFAULT_KEY_MANAGEMENT_ALGORITHM)

KeyStoreType - The type to be used for the key store. Defaults to JKS (DEFAULT_KEY_STORE_TYPE). Some acceptable
values are K S (Java Keystore - Sun's keystore format), JCEKS (Java Cryptography Extension keystore - More secure version
of JKS), and PKCS12 (Public-Key Cryptography Standards #12 keystore - RSA's Personal Information Exchange Syntax
Standard). These are not case sensitive.

KeyStorePassword - The password to use for the key store. This only needs to be set if setUseSSL ServerSocketFactory() is
set to false (otherwise will be ignored). The value passed will aso be used for the key password if it is not explicitly set.

KeyPassword - Sets the password to use for the keys within the key store. This only needs to be set if setUseSSL ServerSock-
etFactory() is set to false (otherwise will be ignored). If this value is not set, but the key store password is, it will use that value
for the key password.

Some other points of note:

« A SecureRandom is NOT configurable. When calling SSL Context's init() method, it is actually null, so will use the default
implementation.

« Note that there are currently no ways to specify providers, so will use the default provider (which is determined by the
JVM vendor).

« If the key password is not set, will try to use the value of the key store password.

Configuring SSL sockets for the Client.

JBossMarch 27, 2006 42

-->

Configuration

Thereis asimple method for configuring SSL sockets on the client side that appliesto all transports. A Map of parameters may
be passed to Client with the usual SSL configuration parameters, and it will create an SSL SocketFactory that will be used to
generate all sockets for connecting from the client to the server. The keysin the Map may be given by constants in the Remot-
ingSSL SocketFactory class:

REMOTING_ALGORITHM - key store key management algorithm. Defaults to SunX509.
REMOTING_KEY_ALIAS - preferred identity in key store to be used by key managers
REMOTING_KEY_STORE_FILE_PATH - location of key store
REMOTING_KEY_STORE_PASSWORD - key store password
REMOTING_KEY_STORE_TYPE - type of key store. Defaults to JKS.
REMOTING_TRUST_ALGORITHM - trust store key management algorithm. Defaults to SunX509.
REMOTING_TRUST_STORE_FILE_PATH - location of trust store
REMOTING_TRUST_STORE_PASSWORD - trust store password
REMOTING_KEY_STORE_TYPE - type of trust store. Defaults to JKS.

If any of REMOTING_KEY_STORE_FILE_PATH, @ REMOTING_KEY_STORE_PASSWORD, REMOT-
ING_KEY_STORE_TYPE, REMOTING_TRUST_STORE FILE_PATH, REMOTING_TRUST_STORE_PASSWORD,
REMOTING_KEY_STORE_TYPE are omitted from the configuration Map, RemotingSSL SocketFactory will examine the
corresponding standard SSL system properties “"javax.net.ssl.keyStore”, "javax.net.ssl.keyStorePassword",

"javax.net.ssl.keyStoreType", "javax.net.sd.trustStore", "javax.net.ssl.trustStorePassword"”, "javax.net.ssl.trustStoreType" in-
stead.

Here is asimple example, drawn from org.jboss.test.remoting.transport.socket.ssl.custom.InvokerClientTest.java:

Map config = new HashMap();

confi g. put (Renot i ngSSLSocket Fact ory. REMOTI NG_TRUST_STORE_TYPE, "JKS");

String trustStoreFilePath = this.getC ass().getResource("../.truststore").getFile();
confi g. put (Renot i ngSSLSocket Fact ory. REMOTI NG_TRUST_STORE_FI LE_PATH, trust StoreFil ePath);
confi g. put (Renpti ngSSLSocket Fact ory. REMOTI NG TRUST_STORE_PASSWORD, "unit-tests-client");

I nvoker Locat or | ocator = new I nvokerLocator(getTransport() + "://local host:" + port);
client = new Cient(locator, config);
client.connect();

As aways in client-server systems, client and server roles are relative. In the case of push callbacks, the server acts as a client
when it establishes a connection over which to transmit the callbacks, and the client acts as a server when it accepts the con-
nection. Accordingly, there needs to be away to configure the SSL Socket used by the server-side Connector to send callbacks.
It works exactly like the configuration mechanism on the client side, but the Map is passed to the Connector() constructor in-
stead of the Client() constructor. Here is an example drawn from
org.jboss.test.remoting.transport.socket.ssl .custom.InvokerServerTest.java, which configures both the callback SSL Sockets
and the SSL ServerSocket:

Map config = new HashMap();

JBossMarch 27, 2006 43

Configuration

confi g. put (Renpti ngSSLSocket Fact ory. REMOTI NG TRUST_STORE_TYPE, "JKS");

String trustStoreFilePath = this.getC ass().getResource("../.truststore").getFile();
confi g. put (Renpti ngSSLSocket Fact ory. REMOTI NG TRUST_STORE_FI LE_PATH, trust StoreFil ePat h);
confi g. put (Renot i ngSSLSocket Fact ory. REMOTI NG_TRUST_STORE_PASSWORD, "unit-tests-client");

Connect or connector = new Connector (config);

I nvoker Locat or | ocator = new | nvokerLocat or (buil dLocat or URl (et at data)) ;
connect or. set | nvoker Locat or (| ocat or. get Locat or URI ()) ;
connector.create();

Server Socket Fact ory svrSocket Factory = createServer Socket Factory();
connect or. get Server | nvoker (). set Server Socket Fact ory(svr Socket Fact ory) ;

connect or . addl nvocat i onHandl er (get Subsysten(), get ServerlnvocationHandl er());
connector.start();

General Security How To

Since we are talking about keystores and truststores, this section will quickly go over how to quickly generate atest keystore
and truststore for testing. Thisis not intended to be a full security overview, just an example of how | originally created mine
for testing.

To get started, will need to create key store and trust store.

Generating key entry into keystore:

C:\tnp\ssl >keyt ool -genkey -alias renoting -keyal g RSA
Ent er keystore password: opensource

VWhat is your first and | ast name?

[Unknown] : Tom El r od

VWhat is the nane of your organizational unit?

[Unknown] : Devel opnent

What is the nane of your organization?

[Unknown] : JBoss Inc

What is the name of your City or Locality?

[Unknown] : Atl anta

What is the nane of your State or Province?

[Unknown] : GA

What is the two-letter country code for this unit?

[Unknown] : US

Is CN=Tom El rod, OU=Devel opnent, O=JBoss Inc, L=Atlanta, ST=GA, C=US correct?
[no]: yes

Enter key password for <renoting>
(RETURN i f sane as keystore password):

Since did not specify the -keystore filename parameter, created the keystore in 3HOME/ keystore (or C:\Documents and Set-
tings\Tom\.keystore).

Export the RSA certificate (without the private key)

C.\tnp\ssl >keyt ool -export -alias remoting -file renoting.cer
Enter keystore password: opensource
Certificate stored in file <renoting.cer>

JBossMarch 27, 2006 44

Configuration

Import the RSE certificate into a new truststore file.

C. \tnp\ssl >keytool -inport -alias remoting -keystore .truststore -file renoting.cer
Enter keystore password: opensource

Omner: CN=Tom El rod, OU=Devel opment, O=JBoss |Inc, L=Atlanta, ST=GA, C=US

I ssuer: CN=Tom El rod, OU=Devel opment, O=JBoss |Inc, L=Atlanta, ST=GA, C=US
Serial nunber: 426f lee3

Valid from Wed Apr 27 01:10:59 EDT 2005 until: Tue Jul 26 01:10:59 EDT 2005
Certificate fingerprints:

MD5: CF: DO: A8: 7D: 20: 49: 30: 67: 44: 03: 98: 5F: 8E: 01: 4A: 6A

SHA1: C6: 76: 3B: 6C: 79: 3B: 8D: FD: FB: 4F: 33: 3B: 25: C9: 01: 9D: 50: BF: 9F: 8A

Trust this certificate? [no]: yes

Certificate was added to keystore

Now have two files, .keystore for the server and .truststore for the client.

Troubleshooting Tips
Common errors when using server socket factory:

javax. net.ssl. SSLException: No available certificate corresponds to the SSL ci pher suites which are enabl ed.

The 'javax.net.ssl.keyStore' system property has not been set and are using the default SSL ServerSocketFactory.

j ava. net. Socket Exception: Default SSL context init failed: Cannot recover key

The 'javax.net.ssl.keyStorePassword' system property has not been set and are using the default SSL ServerSocketFactory.

java.io.| OException: Can not create SSL Server Socket Factory due to the url to the key store not being set.

The default SSL ServerSocketFactory is NOT being used (so custom configuration for the server socket factory) and the key
store url has not been set.

java. lang. ||| egal Argunent Excepti on: password can't be null

The default SSL ServerSocketFactory is NOT being used (so custom configuration for the server socket factory) and the key
store password has not been set.

JBossMarch 27, 2006 45

Sending streams

Remoting supports the sending of InputStreams. It is important to note that this feature DOES NOT copy the stream data dir-
ectly from the client to the server, but is a true on demand stream. Although this is obviously slower than reading from a
stream on the server that has been copied locally, it does alow for true streaming on the server. It aso alows for better
memory control by the user (versus the framework trying to copy a 3 Gig file into memory and getting out of memory errors).

Use of this new feature is simple. From the client side, there is amethod in org.jboss.remoting.Client with the signature:

public Qoject invoke(lnputStreaminputStream Object param) throws Throwabl e

So from the client side, would just call invoke as done in the past, and pass the InputStream and the payload as the parameters.
An example of the code from the client side would be (this is taken directly from
org.jboss.test.remoting.stream.StreamingTestClient):

String param = "foobar";
File testFile = new File(fileURL.getFile());

oject ret = remotingCient.invoke(filelnput, param;

From the server side, will need to implement org.jboss.renoting.stream Streanl nvocati onHandl er instead of
org.j boss. renpting. Server| nvocati onHandl er . StreamlnvocationHandler extends Serverl nvocationHandler, with the addi-
tion of one new method:

public Object handl eStrean(|nput Stream stream GCbject param

The stream passed to this method can be called on just as any regular local stream. Under the covers, the InputStream passed is
realy proxy to the real input stream that exists in the client's VM. Subsequent calls to the passed stream will actually be con-
verted to calls on the real stream on the client via this proxy. If the client makes an invocation on the server passing an Input-
Stream as the parameter and the server handler does not implement Streamlnvocationhandler, an exception will be thrown to
the client caller.

Itis VERY IMPORTANT that the StreamlnvocationHandler implementation close the InputStream when it finished reading,
aswill closethe real stream that lives within the client VM.

5.1. Configuration

By default, the stream server which runs within the client VM uses the following values for its locator uri:

transport - socket

JBossMarch 27, 2006 46

Sending streams

host - triesto first get local host name and if that fails, thelocal ip (if that fails, localhost).
port - 5405

Currently, the only way to override these settings is to set the following system properties (either via VM arguments or via
Syst em set Property() method):

remoting.stream.transport - sets the transport type (rmi, http, socket, etc.)
remoting.stream.host - host name or ip address to use
remoting.stream.port - the port to listen on

These properties are important because currently the only way for atarget server to get the stream data from the stream server
(running within the client VM) is to have the server invoker make the invocation on a new connection back to the client (see
issues below).

5.2.Issues

This is afirst pass at the implementation and needs some work in regards to optimizations and configuration. In particular,
there is aremoting server that is started to service requests from the stream proxy on the target server for data from the origina
stream. This raises an issue with the current transports, since the client will have to accept calls for the original stream on a dif-
ferent socket. This may be difficult when control over the client's environment (including firewalls) may not be available. A bi-
directional transport, called multiplex, is being introduced as of 1.4.0 release which will allow calls from the server to go over
the same socket connection established by the client to the server (JBREM-91). This will make communications back to client
much simpler from this standpoint.

JBossMarch 27, 2006 47

Serialization

JBoss Remoting alows for the plugging in of custom seridization implementations. This is available via the
org.j boss.renoting. serialization.SerializationStreanfFactory class, which will provide the implementation as a
org.jboss.renoting. serialization. SerializationManager . The SerializationManager can then be called on to get imple-
mentations for j ava. i 0. Obj ect | nput Streamand j ava. i 0. Obj ect Qut put St ream. This SerializationManager is used by most
of the standard remoting marshallers and unmarshallers. There are currently two implementations of the SerializationManager;
one for the standard java serialization, which is the default, and one for JBoss Serialization.

JBoss Serialization is a new project under development to provide a more performant implementation of object seriaization. It
complies with java serialization standard with three exceptions:

- Seria UID not needed
- java.io.Serializable is not required
- different protocol

JBoss Serialization requires JDK 1.5.

JBossMarch 27, 2006 48

Connection Exception Listeners

Client side

It ispossibleto register alistener with the remoting client to receive callbacks when a connection failure to aremoting server is
detected, even when the client isidle.

The only requirement isto implement theor g. j boss. renot i ng. Connect i onLi st ener interface, which has only one method:

publ i c voi d handl eConnecti onExcepti on(Throwabl e t hrowabl e, Cient client)

Then call the addConnect i onLi st ener (Connecti onLi stener |istener) method on the Client class and pass your listener in-
stance. Can also call addConnect i onLi st ener (Connecti onLi stener |istener, int pingPeriod) if wantto specify how fre-
quently wish to ping server.

Currently, the Client will usetheor g. j boss. renot i ng. Connect i onVal i dat or class to handle the detection of connection fail-
ures. Thisis done by pinging the server periodically (defaults to every 2 seconds). If there is a failure during this ping, the ex-
ception and the Client will be passed to the listener.

Server side

A remoting server also has the capability to detect when a client is no longer available. This is done by estabilishing a lease
with the remoting clients that connect to a server.

To turn on server side connection failure detection of remoting clients, will need to satisfy two criteria. The first is that the cli-
ent lease period is set and is a value greater than 0. The value is represented in milliseconds. The client lease period can be set
by either the 'clientL easePeriod' attribute within the Connector configuration or by calling the:

public void setlLeasePeriod(long | easePeri odVal ue)

method within Connector. The second criterion is that an implementation of the org. j boss. renoti ng. Connect i onLi st ener
interface is added as a connection listener to the Connector, via the method:

public void addConnecti onLi st ener (Connecti onLi stener |istener)

Note, there is no way to set the connection listener via xml based configuration for the Connector. Once both criteria are met,
the remoting server will turn on client leasing.

The ConnectionListener will be notified of both client failures and client disconnects via the handleConnectionException()
method. If the client failed, meaning its lease was not renewed within configured time period, the first parameter to the handle-
ConnectionException() method will be null. If the client disconnected in a regular manner, the first parameter to the handle-
ConnectionException() method will be of type ClientDisconnectedException (which indicates a normal termination). Note, the
client's lease will be renewed on the server with any and every invocation made on the server from the client, whether it be a

JBossMarch 27, 2006 49

Connection Exception Listeners

normal invocation or a ping from the client internally.

One the client side, there is no APl or configuration changes needed. When the client initially connects to the server, it will
check to seeif client leasing is turned on by the server. If it is, it will internally start pinging periodicaly to the server to main-
tain the lease. When the client disconnects, it will internally send message to the server to stop monitoring lease for this client.
Therefore, it isIMPORTANT that disconnect is called on the client when done using it. Otherwise, the client will continue to
make its ping call on the server to keep its lease current.

The client can also provide extra metadata the will be communicated to the connection listener in case of failure by supplying a
metadata Map to the Client constructor. This map will be included in the Client instance passed to the connection listener (via
the handleConnectionException() method) via the Client's getConfiguration() method.

For examples of how to use server side connection listeners, reference org.jboss.test.remoting.lease.L easeTestServer and
org.jboss.test.remoting.lease.L easeTestClient.

JBossMarch 27, 2006 50

Transporters - beaming POJOs

There are many ways in which to expose aremote interface to a java object. Some require a complex framework API based on
a standard specification and some require new technologies like annotations and AOP. Each of these have their own benefits.
JBoss Remating transporters provide the same behavior viaa simple API without the need for any of the newer technol ogies.

When boiled down, transporters take a plain old java object (POJO) and expose a remote proxy to it via JBoss Remoting. Dy-
namic proxies and reflection are used to make the typed method calls on that target POJO. Since JBoss Remoting is used, can
select from a number of different network transports (i.e. rmi, http, socket, multiplex, etc.), including support for SSL. Even

clustering features can be included. See the transporter samples in the next chapter for detailed examples of how to set up use
of atransporter.

JBossMarch 27, 2006 51

How to use it - sample code

Sample code demonstrating different remoting features can be found in the examples directory. They can be compiled and run
manually viayour IDE or viaan ant build file found in the examples directory. There are many sets of sample code, each with
their own package. Within most of these packages, there will be a server and a client class that will need to be executed

9.1. Simple invocation

The simple invocation sample (found in the org.jboss.remoting.samples.simple package), has two classes; SimpleClient and
SimpleServer. It demonstrates making a simple invocation from aremoting client to aremoting server. The SimpleClient class
will create an InvokerLocator object from a simple url-like string that identifies the remoting server to call upon (which will be
socket://localhost:5400 by default). Then the SimpleClient will create a remoting Client class, passing the newly created In-
vokerLocator. Next the Client will be called to make an invocation on the remoting server, passing the request payload object
(which is a String with the value of "Do something"). The server will return aresponse from this call which is printed to stand-
ard output.

Within the SimpleServer, a remoting server is created and started. This is done by first creating an InvokerLocator, just like
was done in the SimpleClient. Then constructing a Connector, passing the InvokerLocator. Next, need to call create() on the
Connector to initialize al the resources, such as the remoting server invoker. Once created, need to create the invocation hand-
ler. The invocation handler is the class that the remoting server will pass client requests on to. The invocation handler in this
sample simply returns the ssmple String "This is the return to SamplelnvocationHandler invocation™. Once created, the handler
is added to the Connector. Finally, the Connector is started and will start listening for incoming client requests.

To run this example, can compile both the SimpleClient and SimpleServer class, then first run the SimpleServer and then the
SimpleClient. Or can go to the examples directory and run the ant target 'run-simple-server' and then in another console win-
dow run the ant target 'run-simple-client’. For example:

ant run-si npl e-server

ant then:

ant run-sinple-client

The output when running the SimpleClient should look like:

Calling remoting server with locator uri of: socket://|ocal host: 5400
I nvoki ng server with request of 'Do sonething'
Invocation response: This is the return to Sanpl el nvocati onHandl er invocation

The output when running the SimpleServer should look like:

Starting renoting server with locator uri of: socket://I|ocal host: 5400
I nvocation request is: Do sonething

JBossMarch 27, 2006 52

How to useit - sample code

Ret urning response of: This is the return to Sanpl el nvocati onHandl er invocation

Note: will have to manually shut down the SimpleServer once started.

9.2. HTTP invocation

This http invocation sample (found in the org.jboss.remoting.samples.http package), demonstrates how the http invoker can be
used for a variety of http based invocations. This time, will start with the server side. The SimpleServer class is much like the
one from the previous ssimple invocation example, except that instead of using the 'socket' transport, will be using the 'http'
transport. Also, instead of using the SamplelnvocationHandler class as the handler, will be using the WeblnvocationHandler
(code shown below).

public class Wbl nvocati onHandl er inplenments Serverlnvocati onHandl er
{
/1 Pre-defined returns to be sent back to client based on type of request.
public static final String RESPONSE VALUE = "This is the return to sinple text based http invocation.";
public static final Conpl exObject OBJECT_RESPONSE VALUE = new Conpl exObj ect (5, "dub", false);
public static final String HTM._PAGE RESPONSE = "<htm ><head><titl| e>Test HTM. page</titl e></head><body>" +

"<h1l>HTTP/ Servl et Test HTM. page</hl><p>This is a sinple page s
"<p>Shoul d show up in browser or via invoker client</body></htn

// Different request types that client may nake

public static final String NULL_RETURN PARAM = "return_nul|";
public static final String OBJECT_RETURN PARAM = "return_object";
public static final String STRING RETURN PARAM = "return_string";

/**

* called to handl e a specific invocation
*

* @aram i nvocation

* @eturn

* @ hrows Throwabl e

*/
public Object invoke(lnvocationRequest invocation) throws Throwabl e
{

/1 Print out the invocation request
Systemout. println("lnvocation request fromclient is:
i f (NULL_RETURN_PARAM equal s(i nvocati on. get Paraneter()))

{

+ invocation. get Paraneter());

return null;
el se if(invocation. getParaneter() instanceof Conpl exOhject)
{
return OBJECT_RESPONSE_VALUE;

}
el se i f (STRI NG_RETURN_PARAM equal s(i nvocati on. get Paraneter()))

{
Map responseMet adata = i nvocati on. get Ret ur nPayl oad() ;
responseMet adat a. put (HTTPMet adat aConst ant s. RESPONSE_CODE, new | nt eger (207));
responseMet adat a. put (HTTPMet adat aConst ant s. RESPONSE_CODE_MESSAGE, " Custom response code and nessage from
/1 Just going to return static string as this is just sinmple exanple code.
ret urn RESPONSE_VALUE;

}

el se

{
return HTM._PAGE_RESPONSE;

}

JBossMarch 27, 2006 53

How to useit - sample code

The most interesting part of the WeblnvocationHandler is its invoke() method implementation. First it will check to see what
the request parameter was from the InvocationRequest and based on what the value is, will return different responses. The first
check isto seeif the client passed a request to return a null value. The second will check to see if the request parameter from
the client was of type ComplexObject. If so, return the pre-built ComplexObject that was created as a static variable.

After that, will check to seeif the request parameter was for returning a simple String. Notice in this block, will set the desired
response code and message to be returned to the client. In this case, are setting the response code to be returned to 207 and the
response message to "Custom response code and message from remoting server”. These are non-standard code and message,
but can be anything desired.

Last, if have not found a matching invocation request parameter, will just return some simple html.
Now onto the client side for making the calls to this handler, which can be found in SimpleClient (code shown below).

public class Sinpledient

{
/1 Default |ocator val ues
private static String transport = "http";
private static String host = "l ocal host";

private static int port = 5400;

public void nmakel nvocation(String |ocatorURI) throws Throwabl e

{
/1 create |InvokerLocator with the url type string
/1 indicating the target renoting server to call upon.
I nvoker Locator | ocator = new | nvokerLocat or (| ocatorURI);
Systemout.println("Calling remoting server with locator uri of: " + |ocatorURl);
Client renptingCient = new Client(locator);
/1 make invocation on renoting server and send conpl ex data object
/1 by default, the renoting http client invoker will use method type of POST,
/1 which is needed when ever sending objects to the server. So no netadata map needs
/1 to be passed to the invoke() nethod.
Obj ect response = renotingdient.invoke(new Conpl exObj ect(2, "foo", true), null);
Systemout. println("\nResponse fromrenpting http server when naking http POST request and sending a conpl ex
Map netadata = new HashMap();
/] set the netadata so renoting client knows to use http GET nethod type
met adat a. put (" TYPE", "GET");
/1 not actually sending any data to the renbpting server, just want to get its response
response = renptingdient.invoke((Object) null, netadata);
System out. println("\nResponse fromrenoting http server when nmaki ng GET request:\n" + response);
/1 now set type back to POST and send a plain text based request
nmet adat a. put (" TYPE", "POST");
response = renotingd ient.invoke(Wbl nvocati onHandl er. STRI NG RETURN_PARAM net adat a) ;
System out. println("\nResponse fromrenoting http server when nmaki ng http POST request and sending a text ba:
/1 notice are getting customresponse code and nessage set by web invocation handl er
I nteger responseCode = (Integer) netadata.get(HTTPMet adat aConst ant s. RESPONSE_CCODE) ;
String responseMessage = (String) netadata.get(HTTPMet adat aConst ant s. RESPONSE_CODE_MESSAGE) ;
System out . println("Response code fromserver: " + responseCode);
System out. printl n("Response nessage from server: " + responseMessage);
}

JBossMarch 27, 2006 54

How to useit - sample code

This SimpleClient, like the one before in the simple invocation example, starts off by creating an InvokerL ocator and remoting
Client instance, except is using http transport instead of socket. The first invocation made is to send a newly constructed Com-
plexObject. If remember from the WeblnvocationHandler above, will expect this invocation to return a different ComplexOb-
ject, which can be seen in the following system output line.

The next invocation to be made is a simple http GET request. To do this, must first let the remoting client know that the meth-
od type needs to be changed from the default, which is POST, to be GET. Then make the invocation with a null payload (since
not wanting to send any data, just get data in response) and the metadata map just populated with the GET type. This invoca
tion request will return a response of html.

Then, will change back to being a POST type request and will pass a simple String as the payload to the invocation request.
This will return a simple String as the response from the WeblnvocationHandler. Afterward, will see the specific response
code and message printed to standard output, as well as the exception itself.

To run this example, can compile all the classes in the package, then first run the SimpleServer and then the SimpleClient. Or
can go to the examples directory and run the ant target ‘run-http-server' and then in another console window run the ant target
'run-http-client'. For example:

ant run-http-server

and then:

ant run-http-client

The output when running the SimpleClient should look like:

Response fromrenmoting http server when nmaking http POST request and sending a conpl ex data object:
Conpl exoject (i =5, s = dub, b = false, bytes.length = 0)

Response fromrenmoting http server when maki ng CGET request:
<ht M ><head><titl e>Test HTM. page</titl| e></head><body><h1>HTTP/ Servl et Test HTM. page</ hl><p>This is a sinple page

Response fromrenmoting http server when nmaking http POST request and sending a text based request:
This is the return to sinple text based http invocation.

Response code from server: 207

Response nmessage from server: Custom response code and nessage fromrenoting server

Notice that the first response is the ComplexObject from the static variable returned within WeblnvocationHandler. The next
response is html and then simple text from the WeblnvocationHandler. Can see the specific response code and message set in
the WeblnvocationHandler.

The output from the SimpleServer should look like:

Starting renoting server with locator uri of: http://Iocal host: 5400

Jan 26, 2006 11:39:53 PM org. apache. coyote. httpll. HtpllBaseProtocol init

INFO Initializing Coyote HTTP/1.1 on http-127.0.0. 1-5400

Jan 26, 2006 11:39:53 PM org. apache. coyote. httpll. Ht pllBaseProtocol start

INFO Starting Coyote HTTP/ 1.1 on http-127.0.0.1-5400

I nvocation request fromclient is: ConplexChject (i =2, s =foo, b =true, bytes.length = 0)
I nvocation request fromclient is: null

I nvocation request fromclient is: return_string

First the information for the http server invoker is written, which includes the locator uri used to start the server and the output
from starting the Tomcat connector. Then will see the invocation parameter passed for each client request.

JBossMarch 27, 2006 55

How to useit - sample code

Since the SimpleServer should still be running, can open a web browser and enter the locator uri, http://localhost:5400. This
should cause the browser to render the html returned from the Webl nvocationHandler.

9.3. Oneway invocation

The oneway invocation sample (found in the org.jboss.remoting.samples.oneway package) is very similar to the smple invoca-
tion example, except in this sample, the client will make asynchronous invocations on the server.

The OnewayClient class sets up the remoting client as in the simple invocation sample, but instead of using the invoke() meth-
od, it uses the invokeOneway() method on the Client class. There are two basic modes when making a oneway invocation in
remoting. The first is to have the calling thread to be the one that makes the actual call to the server. This allows the caller to
ensure that the invocation request at least made it to the server. Once the server receives the invocation request, the call will re-
turn (and the request will be processed by a separate worker thread on the server). The other mode, which is demonstrated in
the second call to invokeOneway, allows for the calling thread to return immediately and a worker thread on the client side will
make the actual invocation on the server. Thisis faster of the two modes, but if there is a problem making the request on the
server, the original caller will be unaware.

The OnewayServer is exactly the same as the SimpleServer from the previous example, with the exception that invocation
handler returns null (since even if did return aresponse, would not be delivered to the original caller).

To run this example, can compile both the OnewayClient and OnewayServer class, then run the OnewayServer and then the
OnewayClient. Or can go to the examples directory and run the ant target 'run-oneway-server' and then in another console win-
dow run the ant target 'run-oneway-client'. For example:

ant run-oneway-server

and then:

ant run-oneway-cl i ent

The output when running the OnewayClient should look like:

Calling remoting server with locator uri of: socket://|ocal host: 5400
Maki ng oneway invocation with payl oad of 'Oneway call 1.'
Maki ng oneway invocation w th payl oad of 'Oneway call 2.°

The output when running the OnewayServer should look like:

Starting renoting server with locator uri of: socket://I|ocal host: 5400
I nvocation request is: Oneway call 1.
I nvocation request is: Oneway call 2.

Note: will have to manually shut down the OnewayServer once started.

Although this example only demonstrates making one way invocations, could include this with callbacks (see further down) to
have asynchronous invocations with callbacks to verify was processed.

9.4. Discovery and invocation

JBossMarch 27, 2006 56

How to useit - sample code

The discovery sample (found in the org.jboss.remoting.samples.detection package) is similar to the simple invocation example
in that it makes a simple invocation from the client to the server. However, in this example, instead of explicitly specifying the
invoker locator to use for the target remating server, it is discovered dynamically during runtime. This example is composed of
two classes; SimpleDetectorClient and SimpleDetectorServer.

The SimpleDetectorClient starts off by setting up the remoting detector. Detection on the client side requires a few compon-
ents; a IMX MBeanServer, one or more Detectors, and a NetworkRegistry. The Detectors will listen for detection messages
from remoting servers and then add the information for the detected servers to the NetworkRegistry. They use IMX to lookup
and call on the NetworkRegistry. The NetworkRegistry uses IMX Notifications to emit changes in network topology (remoting
servers being added or removed).

In this particular example, the SimpleDetectorClient is registered with the NetworkRegistry as a notification listener. When it
receives notifications from the NetworkRegistry (via the handleNotification() method), it will check to seeif the notification is
for adding or removing a remoting server. If it is for adding a remoting server, the SimpleDetectorClient will get the array of
InvokerL ocators from the NetworkNotification and make a remote call for each. If the notification is for removing a remoting
server, the SimpleDetectorClient will simply print out a message saying which server has been removed.

The biggest change between the SimpleDetectorServer and the SimpleServer from the first sample is that have added a meth-
od, setupDetector(), to create and start a remoting Detector. On the server side, only two components are needed for detection;
the Detector and a IMX MBeanServer. As for the setup of the Connector, it is exactly the same as before. Notice that even
though we have added a Detector on the server side, the Connector is not directly aware of either Detector or the MBeanServ-
er, so no code changes for the Connector setup is required.

To run this example, can compile both the SimpleDetectorClient and SimpleDetectorServer class, then run the SimpleDetect-
orServer and then the SimpleDetectorClient. Or can go to the examples directory and run the ant target 'run-detector-server'
and then in another window run the ant target ‘run-detector-client’. For example:

ant run-detector-server

and then:;

ant run-detector-client

The initial output when running the SimpleDetectorClient should look like:

ri Jan 13 09:36:50 EST 2006: [CLIENT]: Starting JBoss/Renoting client... to stop this client, kill it manually via

Fri Jan 13 09: 36: 50 EST 2006: [CLIENT]: NetworkRegi stry has been created
Fri Jan 13 09: 36: 50 EST 2006: [CLIENT]: NetworkRegistry has added the client as a |istener

Fri Jan 13 09: 36: 50 EST 2006: [CLIENT]: MilticastDetector has been created and is listening for new Networ kRegi stri

Fri Jan 13 09:36:50 EST 2006: [CLIENT]: GOT A NETWORK- REA STRY NOTI FI CATI ON: j boss. net wor k. ser ver . added

Fri Jan 13 09: 36: 50 EST 2006: [CLIENT]: New server(s) have been detected - getting |ocators and sendi ng wel cone ne:
Fri Jan 13 09: 36: 50 EST 2006: [CLIENT]: Sending wel come nessage to renoting server with locator uri of: socket://1.
Fri Jan 13 09: 36: 50 EST 2006: [CLIENT]: The newly di scovered server sent this response to our wel cone nessage:

The output when running the SimpleDetectorServer should look like:

Fri Jan 13 09: 36: 46 EST 2006: [SERVER]: Starting JBoss/Renoting server... to stop this server, kill it manually vi:

Fri Jan 13 09: 36: 46 EST 2006: [SERVER]: This server's endpoint wll be: socket://I|ocal host: 5400

Fri Jan 13 09: 36: 46 EST 2006: [SERVER]: MuilticastDetector has been created and is listening for new Networ kRegi stri
Fri Jan 13 09: 36: 46 EST 2006: [SERVER]: Starting renmoting server with locator uri of: socket://I|ocal host: 5400
Fri Jan 13 09: 36: 46 EST 2006: [SERVER]: Added our invocation handler; we are now ready to begin accepting nessages

Fri Jan 13 09:36:50 EST 2006: [SERVER]: RECEI VED A CLI ENT MESSAGE: Wl cone Aboard!

Fri Jan 13 09: 36: 50 EST 2006: [SERVER]: Returning the follow ng nmessage back to the client: Received your wel cone |

JBossMarch 27, 2006 57

How to useit - sample code

At this point, try stopping the SimpleDetectorServer (notice that the SimpleDetectorClient should still be running). After afew
seconds, the client detector should detect that the server is no longer available and will see something like the following appen-
ded in the SimpleDetectorClient console window:

Fri Jan 13 09: 37: 04 EST 2006: [CLIENT]: GOT A NETWORK- REG STRY NOTI FI CATI ON: j boss. net wor k. server. renoved
Fri Jan 13 09:37: 04 EST 2006: [CLIENT]: It has been detected that a server has gone down with a | ocator of: I|nvoke

9.5. Callbacks

The callback sample (found in the org.jboss.remoting.samples.callback package) illustrates how to perform callbacks from a
remoting server to aremoting client. This example is composed of two classes; CallbackClient and CallbackServer.

Within remoting, there are two approaches in which a callback can be received. The first is to actively ask for callback mes-
sages from the remoting server, which is called a pull callback (since are pulling the callbacks from the server). The second is
to have the server send the callbacks to the client as they are generated, which is called a push callback. This sample demon-
strates how to do both pull and push callbacks.

Looking at the CallbackClient class, will see that the first thing done is to create a remoting Client, which is done in the same
manner as previous examples. Next, we'll perform a pull callback, which requires the creation of a CallbackHandler. The Call-
backHandler, which implements the InvokerCallbackHandler interface, is what is called upon with a Callback object when a
callback is received. The Callback object contains information such as the callback message (in Object form), the server locat-
or from where the callback originally came from, and a handle object which can help to identify callback context (similar to
the handle object within a IMX Notification). Once created, the CallbackHandler is then registered as a listener within the Cli-
ent. This will cause the client to make a call to the server to notify the server it has a callback listener (more on this below in
the server section). Although the CallbackHandler is not called upon directly when doing pull callbacks, it is needed as an
identifier for the callbacks.

Then the client will wait a few seconds, make a simple invocation on the server, and then call on the remoting Client instance
to get any callbacks that may be available for our CallbackHandler. Thiswill return alist of callbacks, if any exist. The list will
be iterated and each callback will be printed to standard output. Finaly, the callback handler will be removed as a listener from
the remoting Client (which in turns removes it from the remoting server).

After performing a pull callback, will perform a push callback. This is a little more involved as requires creating a callback
server to which the remoting target server can callback on when it generates a callback message. To do this, will need to create
a remoting Connector, just as have seen in previous examples. For this particular example, we use the same locator url as our
target remoting server, but increment the port to listen on by one. Will also notice that use the SamplelnvocationHandler
hander from the CallbackServer (more in thisin a minute). After creating our callback server, a CallbackHandler and callback
handle object is created. Next, remoting Client is called to add our callback listener. Here we pass not only the CallbackHand-
ler, but the InvokerL ocator for the callback server (so the target server will know where to deliver callback messages to), and
the callback handle object (which will be included in all the callback messages delivered for this particular callback listener).

Then the client will wait a few seconds, to alow the target server time to generate and deliver callback messages. After that,
we remove the callback listener and clean up our callback server.

The CallbackServer is pretty much the same as the previous samples in setting up the remoting server, via the Connector. The
biggest change resides in the ServerlnvocationHandler implementation, SamplelnvocationHandler (which is an inner class to
CallbackServer). The first thing to notice is now have a variable called listeners, which is a List to hold any callback listeners
that get registered. Also, in the constructor of the SamplelnvocationHandler, we set up a new thread to run in the background.
This thread, executing the run() method in SamplelnvocationHandler, will continually loop looking to see if the shouldGener-

JBossMarch 27, 2006 58

How to useit - sample code

ateCallbacks has been set. If it has been, will create a Callback object and loop through its list of listeners and tell each listener
to handle the newly created callback. Have also added implementation to the addListener() and removelistener() methods
where will either add or remove specified callback listener from the internal callback listener list and set the shouldGener-
ateCallbacks flag accordingly. The invoke() method remains the same as in previous samples.

To run this example, can compile both the CallbackClient and CallbackServer class, then run the CallbackServer and then the
CallbackClient. Or can go to the examples directory and run the ant target 'run-callback-server' and then in another window run
the ant target 'run-callback-client. For example:

ant run-cal |l back-server

and then:;

ant run-call back-client

The output in the CallbackClient console window should look like:

Calling renmpting server with |locator uri of: socket://|ocal host: 5400

I nvocation response: This is the return to Sanpl el nvocati onHandl er invocation

Pul | Call back value = Callback 1: This is the payload of callback invocation.

Pul | Call back value = Callback 2: This is the payload of callback invocation.
Starting renoting server with locator uri of: InvokerLocator [socket://127.0.0.1:5401/]
Recei ved push cal | back.

Recei ved cal | back value of: Callback 3: This is the payl oad of callback invocation.
Recei ved cal | back handl e obj ect of: mnyCal | backHandl eObj ect

Recei ved cal | back server invoker of: I|nvokerlLocator [socket://127.0.0.1:5400/]
Recei ved push cal | back.

Recei ved cal | back value of: Callback 4: This is the payl oad of callback invocation.
Recei ved cal | back handl e obj ect of: nyCal | backHandl eObj ect

Recei ved cal | back server invoker of: I|nvokerlLocator [socket://127.0.0.1:5400/]

This output shows that client first pulled two callbacks generated from the server. Then, after creating and registering our
second callback handler and a callback server, two callbacks were received from the target server.

The output in the CallbackServer console window should look like:

Starting renoting server with locator uri of: socket://I|ocal host: 5400
Addi ng cal | back |istener.

I nvocation request is: Do sonething

Renmovi ng cal | back |i stener.

Addi ng cal | back |i stener.

Renmovi ng cal | back |istener.

This output shows two distinct callback handlers being added and removed (with an invocation request being received after the
first was added).

There are afew important points to mention about this example. First, notice that in the client, the same callback handle object
in the push callbacks was received as was registered with the callback listener. However, there was no special code required to
facilitate this within the SamplelnvocationHandler. This is handled within remoting automatically. Also notice when the call-
back server was created within the client, no specia coding was required to register the callback handler with it, both were
simply passed to the remoting Client instance when registering the callback listener and was handled internally.

9.6. Streaming

JBossMarch 27, 2006 59

How to useit - sample code

The streaning sample (found in the org.jboss.remoting.samples.stream package) illustrates how a java.io.lnputStream can be
sent from a client and read on demand from a server. This example is composed of two classes: StreamingClient and Stream-
ingServer.

Unlike the previous examples that sent plain old java objects as the payload, this example will be sending a
java.io.FilelnputStream as the payload to the server. Thisis a special case because streams can not be serialized. One approach
to this might be to write out the contents of a stream to a byte buffer and send the whole data content to the server. However,
this approach can be dangerous because if the data content of the stream is large, such as an 800MB file, would run the risk of
causing an out of memory error (since are loading all 800MB into memory). Another approach, which is used by JBossRemot-
ing, is to create a proxy to the original stream. This proxy can then be called upon for reading, same as the original stream.
When this happens, the proxy will call back the original stream for the requested data.

Looking a the StreamingClient, the remoting Client is created as in previous samples. Next, will create a
java.io.FilelnputStream to the sample.txt file on disk (which is in the same directory as the test classes). Finadly, will call the
remoting Client to do its invocation, passing the new FilelnputStream and the name of the file. The second parameter could be
of any Object type and is meant to supply some meaningful context to the server in regards to the stream being passed, such as
the file name to use when writing to disk on the server side. The response from the server, in this example, is the size of thefile
it wrote to disk.

The StreamingServer sets up the remoting server as was done in previous examples. However, instead of using an implementa-
tion of the ServerlnvocationHandler class as the server handler, an implementation of the StreamlnvocationHandler (which ex-
tends the ServerlnvocationHandler) is used. The StreamlnvocationHandler includes an extra method called handleStream() es-
pecially for processing requests with a stream as the payload. In this example, the class implementing the Streamlnvocation-
Handler is the TestStreaml nvocationHandler class, which is an inner class to the StreamingServer. The handleStream() method
within the TestStreaminvocationHandler will use the stream passed to it to write out its contents to a file on disk, as specified
by the second parameter passed to the handleStream() method. Upon writing out the file to disk, the handleStream() method
will return to the client caller the size of thefile.

To run this example, can compile both the StreamingClient and StreamingServer class, then run the StreamingServer and then
the StreamingClient. Or can go to the examples directory and run the ant target 'run-stream-server' and then in another window
run the ant target 'run-stream-client’. For example:

ant run-streamserver

and then:

ant run-streamclient

The output in the StreamingClient console window should look like:

Calling on renpting server with |locator uri of: socket://l|ocal host: 5400
Sendi ng i nput streamfor file sanple.txt to server.

Size of file sanple.txt is 987

Server returned 987 as the size of the file read.

The output in the StreamingServer console window should look like:

Starting renoting server with locator uri of: socket://I|ocal host: 5400

Recei ved input streamfromclient to wite out to file server_sanple.txt

Read stream of size 987. Now writing to server_sanple.txt

New file server_sanple.txt has been witten out to C\tnp\JBossRemoting 1 4 0 final\exanpl es\server_sanpl e. t xt

JBossMarch 27, 2006 60

How to useit - sample code

After running this example, there should be a newly created server_sample.txt file in the root examples directory. The contents
of the file should look exactly like the contents of the sampletxt file located in the ex-
amples\org\jboss\remoting\sampl es\stream directory.

9.7. JBoss Serialization

The serialization sample (found in the org.jboss.remoting.samples.serialization package) illustrates how JBoss Serialization
can be used in place of the standard java serialization to allow for sending of invocation payload objects that do not implement
the java.io.Serializable interface. This example is composed of three classes: SerializationClient, SerializationServer, and Non-
SerializablePayload.

This example is exactly like the one from the simple example with two differences. The first difference is the use of JBoss
Serialization to convert object instances to binary data format for wire transfer. This is accomplished by adding an extra para-
meter (serializationtype) to the locator url with a value of 'jboss. s important to note that use of JBoss Serialization requires
JDK 1.5, so this example will need to be run using JDK 1.5. The second difference isinstead of sending and receiving asimple
String type for the remote invocation payload, will be sending and receiving an instance of the NonSerializablePayload class.

There are a few important points to notice with the NonSerializablePayload class. The first is that it does NOT implement the
javaio.Seriadlizable interface. The second is that it has a void parameter constructor. Thisis a requirement of JBoss Serializa
tion for object instances that do not implement the Serializable interface. However, this void parameter constructor can be
private, asin the case of NonSerializablePayload, asto not change the external API of the class.

To run this example, can compile both the SerializationClient and SerializationServer class, then run the SerializationServer
and then the SerializationClient. Or can go to the examples directory and run the ant target 'run-serialization-server' and then in
another window run the ant target 'run-serialization-client’. For example:

ant run-serialization-server

and then:

ant run-serialization-client

The output in the SerializationClient console window should look like:

Calling remoting server with locator uri of: socket://l|ocal host: 5400/ ?seri ali zati ontype=j boss
I nvoki ng server with request of 'NonSeri alizabl ePayl oad - name: foo, id: 1'
I nvocation response: NonSerializabl ePayl oad - nane: bar, id: 2

The output in the SerializationServer console window should ook like:

Starting renoting server with locator uri of: socket://local host: 5400/ ?seri al i zati ont ype=j boss
I nvocation request is: NonSerializabl ePayl oad - nanme: foo, id: 1
Ret urni ng response of: NonSeri al i zabl ePayl oad - nane: bar, id: 2

Note: will have to manually shut down the SerializationServer once started.

9.8. Transporters

JBossMarch 27, 2006 61

How to useit - sample code

The transporter sample spans several examples showing different ways to use the transporter. Each specific example is within
its own package under the org.jboss.remoting.samples.transporter package. Since each of the transporter examples includes
common objects, as well as client and server classes, the common objects will be found under the main transporter sub-
package and the client and server classes in their respective sub-packages (named client and server).

9.8.1. Transporter sample - basic

The basic transporter example (found in org.jboss.remoting.samples.transporter.basic package) illustrates how to build a
simple transporter for making remote invocations on plain old java objects.

Inthisfirst, basic transporter example, will be using afew domain objects; cust omer and Address, which are just data objects.

public class Custoner inplenents Serializable
{

private String firstName = null;

private String | astNane = nul | ;

private Address addr = null;

private int custonmerld = -1;

public String getFirstName()

{
return firstNane;
}
public void setFirstName(String firstNane)
{
this.firstName = firstNane;
}
public String getlLast Nane()
{
return | ast Nane;
}
public void setlLast Name(String | ast Nanme)
{
t his.l ast Nanme = | ast Nane;
}
public Address get Addr ()
{
return addr;
}
public void set Addr (Address addr)
{
t his. addr = addr;
}
public int getCustonerld()
{
return custonerld;
}
public void setCustonerld(int custonerld)
{
this.custonmerld = custonerld;
}
public String toString()
{

StringBuffer buffer = new StringBuffer();

JBossMarch 27, 2006 62

How to useit - sample code

buf f er. append("\ nCust omer:\n");

buf f er. append(" cust oner id:
buf f er. append("first nane:

" + custonmerld + "\n");
"+ firstName + "\n");

buf f er. append("l ast nanme: " + lastNane + "\n");
buf f er. append(“street: " + addr.getStreet() + "\n");
buffer.append("city: " + addr.getCity() + "\n");
buf f er. append(“state: " + addr.getState() + "\n");
buffer.append("zip: " + addr.getZip() + "\n");

return buffer.toString();

}
}
public class Address inplenents Serializable
{
private String street = null;
private String city = null;
private String state = null;
private int zip = -1;
public String getStreet()
{
return street;
}
public void setStreet(String street)
{
this.street = street;
}
public String getGity()
{
return city;
}
public void setCity(String city)
{
this.city = city;
}
public String getState()
{
return state;
}
public void setState(String state)
{
this.state = state;
}
public int getZp()
{
return zip;
}
public void setZp(int zip)
{
this.zip = zip;
}
}

Next comes the POJO that we want to expose a remote proxy for, which is Cust omer Processor | npl class. This implementa-

tion has one method to process acust oner object. It also implements the Cust orrer Processor interface.

public class CustomnerProcessor| npl

i mpl enents Cust oner Processor

JBossMarch 27, 2006

63

How to useit - sample code

/**

* Takes the customer passed, and if not null and custoner id
* is less than 0, will create a new randomid and set it.

* The custoner object returned will be the nodified customer
* obj ect passed.

*

* @ar am cust onmer

* @eturn

*/

public Custoner processCustomner(Custoner customner)

{

if(custonmer !'= null && custoner.getCustonerld() < 0)

{
}

cust oner. set Cust ormer | d(new Randon{() . next | nt (1000));

Systemout. println("processed customer with newid of " + customer.getCustonerld());

return custoner;

public interface CustonerProcessor

{

/**

* Process a customer object. |nplenentors

* shoul d ensure that the custonmer object

* passed as paraneter should have its internal
* state changed sonehow and ret urned.

*

* @ar am cust omer

* @eturn

*/

publ i c Custoner processCustoner(Custoner custoner);

So far, nothing special, just plain old java objects. Next need to create the server component that will listen for remote request
to invoke on the target POJO. Thisiswhere the transporter comesin.

public class Server

{

private String |l ocatorURI = "socket://| ocal host: 5400";
private TransporterServer server = null;

public void start() throws Exception

{

server = TransporterServer.createTransporterServer (|l ocatorURl,
}
public void stop()
{

if(server !'= null)

{

server.stop();

}
}
public static void main(String[] args)
{

Server server = new Server();

try

{

server.start();

Thr ead. current Thread() . sl eep(60000) ;

new Cust omer Processorlnpl ());

JBossMarch 27, 2006

64

How to useit - sample code

cat ch(Exception e)

{
e.printStackTrace();
}
finally
{
server.stop();
}

The server classis a pretty simple one. It calsthe Transport er Server factory method to create the server component for the
Cust oner Processor | npl instance using the specified remoting locator information.

The Transport er Server returned from the creat eTransport er Server () cal will be a running instance of a remoting server
using the socket transport that is bound to | ocal host and listening for remote requests on port 5400. The requests that come
in will be forwarded to the remoting handler which will convert them into direct method calls on the target POJO, Cust oner -
Processor | npl inthis case, using reflection.

The Transporter Server hasastart () andstop() method exposed to control when to start and stop the running of the remot-
ing server. Thestart () method is called automatically within the cr eat eTr ansport er Server () method, so is ready to receive
requests upon the return of this method. The st op() method, however, needs to be called explicitly when no longer wish to re-
ceive remote calls on the target POJO.

Next up isthe client side. Thisisrepresented by thed i ent class.

public class dient

{
private String |locatorUR = "socket://|ocal host:5400";

public void nakeCientCall () throws Exception
{

Cust oner customer = createCustomer();
Cust oner Processor custoner Processor = (CustonerProcessor) Transporterdient.createTransporterCient(locatorU

Systemout. println("Custoner to be processed: " + custoner);
Cust oner processedCustoner = custoner Processor. processCust oner (cust oner) ;
Systemout. println("Customer is now. " + processedCustoner);

TransporterC ient.destroyTransporterC ient(customerProcessor);

private Custoner createCustomner()

Cust oner cust = new Customer();
cust . set Fi r st Name(" Bob") ;
cust.setLast Name("Snith");

Addr ess addr = new Address();
addr.setStreet ("101 OCak Street");
addr.setCity("Atlanata");
addr.setState("GA");

addr. set Zi p(30249);

cust. set Addr (addr);

return cust,;

}

public static void main(String[] args)

{

Client client = new dient();

JBossMarch 27, 2006 65

How to useit - sample code

try
{
client. mkedientCall();
}
cat ch(Exception e)
{
e.printStackTrace();
}

}
}

The dient classis aso pretty ssimple. It creates a new Cust oner object instance, creates the remote proxy to the Cust oner -
Processor , and then calls on the Cust omer Processor t0 process its new Cust omer instance.

To get the remote proxy for the Cust orer Processor, al that is required is to call the Transporterdi ent's method creat -
eTransporterdient () method and pass the locator uri and the type of the remote proxy (and explicitly cast the return to that
type). Thiswill create a dynamic proxy for the specified type, Cust omer Processor in this case, which is backed by aremoting
client which in turn makes the calls to the remote POJO's remoting server. Once the call to creat eTransport d i ent () hasre-
turned, the remoting client has already made its connection to the remoting server and is ready to make calls (will throw an ex-
ception if it could not connect to the specified remoting server).

When finished making calls on the remote POJO proxy, will need to explicitly destroy the client by calling dest r oy Tr ans-
porterdient() and pass the remote proxy instance. This allows the remoting client to disconnect from the POJO's remoting
server and clean up any network resources previously used.

To run this example, can run the Server and then the Client. Or can go to the examples directory and run the ant target 'run-
transporter-basic-server' and then in another window run the ant target ‘'run-transporter-basic-client'. For example:

ant run-transporter-basic-server

and then:;

ant run-transporter-basic-client

The output from the Client console should be similar to:

Custoner to be processed:
Cust omer :

custormer id: -1

first name: Bob

| ast name: Smith

street: 101 QGak Street
city: Atlanata

state: GA

zi p: 30249

Customer i s now

Cust orrer :

custoner id: 204

first name: Bob

| ast nanme: Smith
street: 101 QGak Street
city: Atlanata

state: GA

zi p: 30249

and the output from the Server class should be similar to:

JBossMarch 27, 2006 66

How to useit - sample code

processed custonmer with new id of 204

The output shows that the cust oner instance created on the client was sent to the server where it was processed (by setting the
customer id to 204) and returned to the client (and printed out showing that the customer id was set to 204).

0.8.2. Transporter sample - JBoss serialization

The transporter serialization example (found in org.jboss.remoting.samples.transporter.serialization package) is very similar to
the previous basic example, except in this one, the domain objects being sent over the wire will NOT be Seridizable. Thisis
accomplished via the use of JBoss Serialization. This can be useful when don't know which domain objects you may be using
in remote calls or if adding ability for remote calls on legacy code.

To start, there are a few more domain objects: O der, Or der Processor, and O der Processor | npl . These will use some of the
domain objects from the previous example as well, such as cust orrer .

public class Order

{
private int orderld = -1;
private bool ean i sProcessed = fal se;
private Custonmer custoner = null;
private List itens = null;

public int getOrderld()

{
return orderld;
}
public void setOrderld(int orderld)
{
this.orderld = orderld;
}
publ i c bool ean i sProcessed()
{
return i sProcessed;
}
public void setProcessed(bool ean processed)
{
i sProcessed = processed;
}

publ i c Custoner get Custoner ()
{

}

public void set Custoner(Customer customner)

return custoner;

{
thi s. customer = custoner;
}
public List getltens()
{
return itemns;
}
public void setltens(List itens)
{

this.items = itens;

JBossMarch 27, 2006 67

How to useit - sample code

}

public String toString()

{
StringBuffer buffer = new StringBuffer();

buf f er. append("\ nOrder:\n");

buf fer.append("\nls processed: " + isProcessed);
buf f er. append("\nOrder id: " + orderld);

buf f er. append(custoner.toString());

buf f er. append("\nltens ordered:");
Iterator itr = items.iterator();
whi | e(itr. hasNext())

buf fer. append("\n" + itr.next().toString());
}

return buffer.toString();

public class OrderProcessorlnpl inplenents O derProcessor

{

private CustonerProcessor custonerProcessor = null;

public OrderProcessorlnpl ()
{

}

public O der processO der(Order order)
{

cust oner Processor = new Cust ormer Processor | mpl () ;

Systemout.println("lncomng order to process from custoner.\n" + order.getCustoner());

/'l has this custonmer been processed?
i f(order.getCustoner().getCustonerld() < 0)

{

order. set Cust onmer (cust oner Processor. processCust oner (or der. get Custoner()));

}

List itens = order.getltens();
Systemout.printin("ltens ordered:");
Iterator itr = itens.iterator();
whil e(itr.hasNext())

{
Systemout.printin(itr.next());

}

order. set Order | d(new Randon{). nextlnt (1000));
order. set Processed(true);

Systemout.println("Order processed. Oder id now " + order.getOrderld());
return order;

public interface OrderProcessor

{
}

public Order processOrder(Order order);

The o der Processor I npl will take orders, via the processorder () method, check that the customer for the order has been
processed, and if not have the customer processor process the new customer. Then will place the order, which means will just

JBossMarch 27, 2006 68

How to useit - sample code

set the order id and processed attribute to true.

The most important point to this example is that the o der class does NOT implement j ava. i o. Seri al i zabl e.

Now onto the server class. Thisisjust like the previous Ser ver classin the basic example with one main difference: the ! oc-
at or URI value.

public class Server

{

private String |l ocatorURI = "socket://| ocal host: 5400/ ?seri al i zati ont ype=j boss";

private TransporterServer server = null;

public void start() throws Exception

{
server = TransporterServer.createTransporterServer (|l ocatorURl,
}
public void stop()
{
if(server !'= null)
{
server.stop();
}
}
public static void main(String[] args)
{
Server server = new Server();
try
{
server.start();
Thr ead. current Thread() . sl eep(60000) ;
}
cat ch(Exception e)
{
e.printStackTrace();
}
finally
{
server.stop();
}
}

new Order Processor|lnpl ());

The addition of seri al i zati ont ype=j boss tells the remoting framework to use JBoss Serialization in place of the standard
java serialization.

On the client side, thereisthed i ent class, just asin the previous basic example.

public class dient

{

private String |l ocatorURl = "socket://| ocal host: 5400/ ?seri al i zati ont ype=j boss";

public void nmakeC ientCall () throws Exception
{

Order order = createOrder();

O der Processor order Processor = (OrderProcessor) TransporterCient.createTransporterCient (Il ocatorURI,

Systemout.printIn("Order to be processed: " + order);
Order changedOrder = orderProcessor. processO der (order);
Systemout. println("O der now processed " + changedOrder);

JBossMarch 27, 2006

69

Or der |

How to useit - sample code

pri

pri

}

pub
{

Again, the biggest difference to note isthat have added seri al i zat i ont ype=j boss to the locator uri.

Note: Ru

Transporterdient. destroyTransporterd ient(orderProcessor);

vate Order createOder()

Order order = new Order();
Cust oner customer = createCustoner();
order. set Cust oner (cust oner) ;

List items = new ArraylList();
itens. add(" Xbox 360");

itenms. add("Wreless controller");
i tens. add(" Ghost Recon 3");

order.setltens(itens);

return order;

vat e Custoner createCustoner()

Cust oner cust = new Customer();
cust . set Fi rst Name(" Bob");

cust. set Last Name("Sm th");

Addr ess addr = new Address();
addr.setStreet ("101 OCak Street");
addr.setCity("Atlanata");
addr.setState("GA");

addr. set Zi p(30249);

cust . set Addr (addr);

return cust;

lic static void main(String[] args)

Client client = new dient();

try
{
client. mked ientCall ();
}
cat ch(Exception e)
{
e.printStackTrace();
}

nning this example requires JDK 1.5.

To run this example, can run the Server and then the Client. Or can go to the examples directory and run the ant target ‘ant run-
transporter-serialization-server' and then in another window run the ant target 'ant run-transporter-serialization-client'. For ex-

ample:
ant ru

and then:

ant ru

n-transporter-serialization-server

n-transporter-serialization-client

JBossMarch 27, 2006

70

How to useit - sample code

When the server and client are run the output for the d i ent classis:

Order to be processed:

O der:

I's processed: false
Oder id: -1

Cust oner:

custoner id: -1

first name: Bob

| ast name: Smith
street: 101 QGak Street
city: Atlanata

state: GA

zi p: 30249

Itenms ordered:

Xbox 360

Wreless controller
CGhost Recon 3
Order now processed
O der:

I's processed: true
Order id: 221

Cust omrer :

custonmer id: 861
first name: Bob

| ast nanme: Smith
street: 101 QGak Street
city: Atlanata

state: GA

zi p: 30249

Itenms ordered:

Xbox 360

Wrel ess controller
CGhost Recon 3

The client output shows the printout of the newly created order before calling the or der Processor and then the processed or-
der afterwards. Noticed that the processed order has its customer's id set, its order id set and the processed attribute is set to
true.

And the output from the Ser ver is:

Incom ng order to process from custoner.

Cust orrer :

customer id: -1

first name: Bob

| ast nanme: Smith
street: 101 QGak Street
city: Atlanata

state: GA

zi p: 30249

processed custonmer with new id of 861
Itens ordered:

Xbox 360

Wreless controller

Ghost Recon 3

Order processed. Order id now 221

JBossMarch 27, 2006 71

How to useit - sample code

The server output shows the printout of the customer before being processed and then the order while being processed.

9.8.3. Transporter sample - clustered

In the previous examples, there has been one and only one target POJO to make calls upon. If that target POJO was not avail-
able, the client call would fail. In the transporter clustered example (found in org.jboss.remoting.sampl es.transporter.clustered
package), will show how to use the transporter in clustered mode so that if one target POJO becomes unavailable, the client
call can be seamlessly failed over to another available target POJO on the network, regardless of network transport type.

This example uses the domain objects from the first, basic example, so only need to cover the client and server code. For this
example, there are three different server classes. The first classisthe Socket Server class, which isthe exact same asthe Ser v-
er classin the basic example, except for the call to the Transport Server 'Screat eTr ansport Server () method.

public class Socket Server

{
public static String locatorURl = "socket://| ocal host: 5400";

private TransporterServer server = null;

public void start() throws Exception

{
server = TransporterServer.createTransporterServer(getLocatorURI (), new CustomerProcessorlnpl (),
Cust oner Processor. cl ass. get Name(), true);
}
protected String getLocatorURI ()
{
return | ocatorURl;
}
public void stop()
{
if(server !'= null)
{
server.stop();
}
}
public static void main(String[] args)
{
Socket Server server = new Socket Server();
try
{
server.start();
Thread. current Thread() . sl eep(60000) ;
cat ch(Exception e)
{
e.printStackTrace();
}
finally
{
server.stop();
}
}

}

Notice that are now calling on the Transport Server to create a server with the locator uri and target POJO (Cust oner Pr o-
cessor | npl) as before, but have also added the interface type of the target POJO (Cust oner Processor) and that want cluster-

JBossMarch 27, 2006 72

How to useit - sample code

ing turned on (viathe last t r ue parameter).

The interface type of the target POJO is needed because this will be used as the subsystem within the remoting server for the
target POJO. The subsystem value will be what the client uses to determine if discovered remoting server is for the target
POJO they are looking for.

The transporter uses the MulticastDetector from JBoss Remoting for automatic discovery when in clustered mode. The actual
detection of remote servers that come online can take up to a few seconds once started. There is a INDI based detector

provided within JBoss Remoting, but has not been integrated within the transporters yet.

The second server classis the RM Server class. The RM Ser ver class extends the Socket Ser ver class and uses a different loc-

ator uri specify rni as the transport protocol and a different port (5500).

public class RM Server extends Socket Server

{

private String local LocatorURI = "rm://|ocal host: 5500";

protected String getLocatorURI ()

{
}

return | ocal Locat or URI ;

public static void main(String[] args)

{

}

Socket Server server = new RM Server();
try
{

server.start();

Thr ead. current Thread() . sl eep(60000) ;

}
cat ch(Exception e)
{
e.printStackTrace();
}
finally
{
server.stop();
}

The last server classisthe HTTPSer ver class. The HTTPSer ver class also extends the Socket Server class and specifieshtt p as

the transport protocol and 5600 as the port to listen for requests on.

public class HITPServer extends Socket Server

{

private String |l ocal LocatorURI = "http://I|ocal host:5600";

protected String getLocatorURI ()

{
}

return | ocal Locat or URl ;

public static void main(String[] args)

{

Socket Server server = new HTTPServer();
try

JBossMarch 27, 2006

73

How to useit - sample code

{
server.start();
Thr ead. current Thread() . sl eep(60000) ;
}
cat ch(Exception e)
{
e.printStackTrace();
}
finally
{
server. stop();
}

On the client side, thereisonly thed i ent class. Thisclassis very similar to the one from the basic example. The main excep-
tions are (1) the addition of a Transportercient call to create a transporter client and (2) the fact that it continually loops,
making calls on its cust oner Processor Vvariable to process customers. This is done so that when we run the client, we can kill
the different servers and see that the client continues to loop making its calls without any exceptions or errors.

public class dient

{
private String |l ocator URI = Socket Server. | ocator URl;
private CustonerProcessor customerProcessor = null;

public void nakeCientCall () throws Exception

{
Cust oner customer = createCustomer();
System out. println("Custoner to be processed: " + custoner);
Cust oner processedCustoner = custoner Processor. processCust onmer (cust oner) ;
Systemout.println("Custoner is now. " + processedCustoner);
/] Transporterdient. destroyTransporterd ient(custonerProcessor);
}
public void get CustonerProcessor() throws Exception
{
cust oner Processor = (CustonerProcessor) TransporterClient.createTransporterCient(locatorURl, CustonerProces:
}
private Custoner createCustoner()
{
Cust oner cust = new Customer();
cust . set Fi rst Name(" Bob");
cust. set Last Name("Smth");
Addr ess addr = new Address();
addr.setStreet ("101 Cak Street");
addr.setCity("Atlanata");
addr.setState("GA");
addr . set Zi p(30249) ;
cust. set Addr (addr);
return cust;
}
public static void main(String[] args)
{
Client client = new Cient();
try
{

client. get Cust omer Processor();

JBossMarch 27, 2006 74

How to useit - sample code

whi l e(true)
{
try

{
client.makeCdientCall ();

Thr ead. current Thread() . sl eep(5000) ;

cat ch(Exception e)
{

}
}

cat ch(Exception e)
{

}

e.printStackTrace();

e.printStackTrace();

}
}

Thefirst item of note is that the locator uri from the Socket Server classis being used. Technically, thisis not required as once
the clustered Transporterdient is started, it will start to discover the remoting servers that exist on the network. However,
this process can take several seconds to occur, so unlessit is known that no calls will be made on the remote proxy right away,
it is best to bootstrap with a known target server.

Can also see that in the mai n() method, the first call on the Client instance is to get Cust oner Processor () . This method will
cal the Transporterdient'ScreateTransporterdient () method and passes the locator uri for the target POJO server, the
type of POJO's remote proxy, and that clustering should be enabled.

After getting the customer processor remote proxy, will continually loop making calls using the remote proxy (via the pro-
cessCust omer () method on the cust omer Processor variable).

To run this example, all the servers need to be started (by running the Socket Server, RM Server, and HTTPSer ver Classes).
Then run the Client class. This can be done via ant targets as well. So for example, could open four console windows and enter
the ant targets as follows:

ant run-transporter-clustered-socket-server
ant run-transporter-clustered-http-server
ant run-transporter-clustered-rm -server
ant run-transporter-clustered-client

Once the client starts running, should start to see output logged to the Socket Ser ver, since this is the one used to bootstrap.
This output would look like:

processed customer with new id of 378
processed custonmer with new id of 487
processed customer with new id of 980

Once the Socket Ser ver instance has received afew cals, kill this instance. The next time the client makes a call on its remote
proxy, which happens every five seconds, it should fail over to another one of the servers (and will see similar output on that
server instance). After that server has received a few calls, kill it and should see it fail over once again to the last server in-
stance that is still running. Then, if kill that server instance, will see a CannotConnectException and stack trace similar to the

JBossMarch 27, 2006 75

How to useit - sample code

following:

org. j boss. renoti ng. Cannot Connect Excepti on: Can not connect http client

at org.jboss.renmoting.transport. http. HTTPC i ent| nvoker. useHtt pURLConnecti on(HTTPCl i ent | nvoker. j ava: 147)

at org.jboss.renmoting.transport.http. HTTPC i ent| nvoker.transport (HTTPd i ent | nvoker. j ava: 56)
at org.jboss.renmoting. Renoted i entlnvoker.invoke(RenoteC ientlnvoker.java: 112)

at org.jboss.remoting. Client.invoke(Client.java: 226)
at org.jboss.remoting.dient.invoke(Cdient.java: 189)
at org.jboss.rempting. Client.invoke(Client.java: 174)

at org.jboss.renmoting.transporter. TransporterCient.invoke(TransporterCient.java:219)

at $Proxy0. processCust oner (Unknown Sour ce)

at org.jboss.renmoting.sanples.transporter3.client.Cient.makeCientCall (dient.java:29)
at org.jboss.renoting.sanmples.transporter3.client.Client.main(dient.java: 64)

at sun.reflect. NativeMet hodAccessorl npl.invokeO(Native Mt hod)

at sun.refl ect. NativeMet hodAccessor | npl.invoke(NativeMet hodAccessor| npl . java: 39)
at sun.refl ect. Del egati ngMet hodAccessor | npl . i nvoke(Del egat i ngMet hodAccessor | npl . j ava: 25)

at java.lang.reflect. Method. i nvoke(Met hod. j ava: 585)

at comintellij.rt.execution.application.AppMai n. mai n(AppMai n. j ava: 86)
Caused by: java.net.Connect Excepti on:

Connection refused: connect

at java.net. Pl ai nSocket | npl . socket Connect (Nati ve Met hod)

at java. net. Pl ai nSocket | npl . doConnect (Pl ai nSocket | npl . j ava: 333)
at java. net. Pl ai nSocket | npl . connect ToAddr ess(Pl ai nSocket | npl . j ava: 195)

at java. net. Pl ai nSocket | npl . connect (Pl ai nSocket | npl . j ava: 182)
at java. net. Socket. connect (Socket . j ava: 507)

at java. net. Socket. connect (Socket . java: 457)

at sun. net. Networ kC i ent. doConnect (Net wor kCl i ent . j ava: 157)

at sun.net.ww. http. HtpCient.
at sun.net.ww. http. HtpCient.
at sun.net.ww. http. HtpCient.
at sun.net.ww. http. Htpdient.
at sun.net.ww. http. HtpCient.
at sun. net.ww. protocol . http. H t pURLConnecti on. get NewHt t pCl i ent (Ht t pURLConnecti on. j ava: 792)
at sun. net.ww. protocol . http. Ht t pURLConnecti on. pl ai nConnect (Ht t pURLConnecti on. j ava: 744)

at sun. net.ww. protocol . http. H t pURLConnecti on. connect (Ht t pURLConnect i on. j ava: 669)

at sun. net.ww. protocol . http. Ht t pURLConnecti on. get Qut put St rean{ Ht t pURLConnect i on. j ava: 836)

openServer (H t pdient.java: 365)
openServer (HtpCient.java: 477)
<init>(Htpdient.java: 214)
New(Ht t pll i ent . j ava: 287)

New(Ht t pll i ent.java: 299)

at org.jboss.renmoting.transport.http. HTTPO i ent | nvoker. useH t pURLConnecti on(HTTPCl i ent | nvoker . j ava: 117)

14 nore

since there are no target serversleft to make calls on. Notice that earlier in the client output there were no errors while was fail -
ing over to the different servers as they were being killed.

Because the CannotConnectException is being caught within the while loop, the client will continue to try calling the remote
proxy and getting this exception. Now re-run any of the previously killed servers and will see that the client will discover that

server instance and begin to successfully call on that server. The output should look something like:

at sun. net.ww. protocol . http. Ht t pURLConnecti on. connect (Ht t pURLConnecti on. j ava: 669)
at sun. net.ww. protocol . http. Ht t pURLConnecti on. get Qut put St rean{ Ht t pURLConnect i on. j ava: 836)

at org.jboss.renmoting.transport.http. HTTPC i ent| nvoker. useHtt pURLConnecti on(HTTPCl i ent | nvoker. java: 117)

14 nore

Custoner to be processed:

Cust omer :

custoner id: -1

first name: Bob

| ast name: Smith
street: 101 CGak Stree
city: Atlanata

state: null

zi p: 30249

Cust omer i s now.
Cust omrer :

JBossMarch 27, 2006

76

How to useit - sample code

custonmer id: 633
first name: Bob

| ast nanme: Smith
street: 101 Gak Stree
city: Atlanata

state: null

zi p: 30249

As demonstrated in this example, fail over can occur across any of the JBoss Remoting transports. Clustered transporters is
also supported using JBoss Serialization, which was introduced in the previous example.

It is important to understand that in the context of transporters, clustering means invocation fail over. The JBoss Remoting
transporters themselves do not handle any form of state replication. If this feature were needed, could use JBoss Cache to store
the target POJO instances so that when their state changed, that change would be replicated to the other target POJO instances
running in other processes.

0.8.4. Transporter sample -complex

The complex transporter example (found in org.jboss.remoting.samples.transporter.complex package) is based off atest case a
user, Milt Grinberg, provided (thanks Milt). The example is similar to the previous examples, except in this case involves
matching Doctors and Patients using the Providerlnterface and provides a more complex sample in which to demonstrate how
to use transporters.

This example requires JDK 1.5 to run, since is using JBoss Serialization (and non-serialized data objects). To run this example,
run the Server class and then the Client class. This can be done via ant targets 'run-transporter-complex-server' and then 'run-
transporter-complex-server' as well. For example:

ant run-transporter-conpl ex-server

and then:

ant run-transporter-conpl ex-client

The output for the client should look similar to:

*** Have a new patient that needs a doctor. The patient is:

Pati ent:
Narme: Bill Gates
Ai l ment - Type: financial, Description: Mney com ng out the wazoo.

*** | ooking for doctor that can help our patient...

*** Found doctor for our patient. Doctor found is:
Doct or:

Nane: Andy Jones

Speci alty: financial

Patients:

Pati ent:
Narme: Larry Ellison

JBossMarch 27, 2006 77

How to useit - sample code

Ail ment - Type: null, Description: null
Doctor - Nanme: Andy Jones

Pati ent:
Nane: Steve Jobs
Ail ment - Type: null, Description: null

Doctor - Nanme: Andy Jones

Pati ent:
Narme: Bill Gates
Ai l ment - Type: financial, Description: Mney com ng out the wazoo.

*** Set doctor as patient's doctor. Patient info is now

Pati ent:
Name: Bill Cates
Ai l ment - Type: financial, Description: Mney com ng out the wazoo.
Doctor - Name: Andy Jones

*** Have a new patient that we need to find a doctor for (renenber, the previous one retired and there are
*** Could not find doctor for patient. This is an expected exception when there are not doctors avail abl e.
org.j boss. renoting. sanpl es. transporter. conpl ex. NoDoct or Avai | abl eException: No doctor available for ail nent

at org.jboss.renmoting. Renot e i entlnvoker.invoke(RenoteC ientlnvoker.java: 183)

at org.jboss.rempting.dient.invoke(Cient.java: 325)

at org.jboss.renmoting.dient.invoke(dient.java: 288)

at org.jboss.rempting. Client.invoke(Cient.java: 273)

at org.jboss.renmoting.transporter. TransporterCient.invoke(Transporterdient.java:237)

at $ProxyO0. fi ndDoct or (Unknown Sour ce)

at org.jboss.renoting.sanpl es.transporter.conplex.client.Cient.makeCientCall(dient.java:72)

at org.jboss.renoting. sanpl es.transporter.conplex.client.Client.min(dient.java: 90)

at sun.reflect. NativeMet hodAccessor| npl.invokeO(Native Mt hod)

at sun.reflect. Nati veMet hodAccessor | npl . i nvoke(NativeMet hodAccessor | mpl . java: 39)

at sun.refl ect. Del egati ngMet hodAccessor | npl . i nvoke(Del egat i ngMet hodAccessor | npl . j ava: 25)

at java.lang.reflect.Method.invoke(Mthod. java: 585)

at comintellij.rt.execution.application.AppMi n. mai n(AppMi n. j ava: 86)

From the output see the creation of a new patient, Bill Gates, and the attempt to find a doctor that specializes in his ailment.
For Mr. Gates, we were able to find a doctor, Andy Jones, and can see that he has been added to the list of Dr. Jones' patients.
Then we have Dr. Jones retire. Then we create a new patient and try to find an available doctor for the same ailment. Since Dr.
Jones has retired, and there are no other doctors that specialize in that particular ailment, an exception is thrown. Thisis as ex-
pected.

9.9. Multiplex invokers

This section illustrates the construction of multiplex invoker groups described in the section Multiplex Invoker. The directory

exanpl es/ org/jboss/renoting/ sanpl es/ mul ti pl ex/i nvoker

contains a server class, mul ti pl exl nvoker Server, which is suitable for use with any of the client classes described below. It
may be run in an IDE or from the command line using ant target r un- mul ti pl ex- server from the bui I d. xm file found in the
exanpl es directory. The server will stay alive, processing invocation requests as they are presented, until it has sent two push
callbacks to however many listeners are registered, at which timeit will shut itself down.

The sample clients are as follows. Each sample client <client> may be run in an IDE or by using the ant target r un- <client>
(e.g.,run-dient2Server1).

JBossMarch 27, 2006 78

no ot he

' fi nanci

How to useit - sample code

dient2Server1: A Miltiplexdientlnvoker starts according to client rule 2, after which amul ti pl exServer I nvoker is
started according to server rule 1. Note that the a i ent and Connect or are passed matching clientMultiplexid and server-
Multiplexld parameters, respectively.

dient2Server2: A Miltiplexdientlnvoker starts according to client rule 2, after which a mul ti pl exServer I nvoker is
started according to server rule 2. Note that no clientMultiplexld is passed to the d i ent and no serverMultiplexld paramet-
er is passed to the Connect or in thisexample.

dient3Server1: A Miltiplexdientlnvoker iscreated, and, lacking binding information, finds itself governed by client
rule 3. Subsequently, a Mul ti pl exSer ver I nvoker is started according to server rule 1, providing the binding information
which allows the Ml ti pl exd i ent | nvoker to start. Note that the d i ent and Connect or are passed matching clientMulti-
plexid and server Multiplexld parameters, respectively.

Server2Cient 1: A Mil ti pl exServer | nvoker starts according to server rule 2, after which amul ti pl exd i ent I nvoker iS
started according to client rule 1. Note that the Connect or and d i ent are passed matching serverMultiplexid and client-
Multiplexld parameters, respectively.

Server2Cient 2: A Mil ti pl exServer | nvoker starts according to server rule 2, after which amul ti pl exd i ent | nvoker iS
started according to client rule 2. Note that no serverMultiplexid is passed to the Connect or and no clientMultiplexld para-
meter is passed to the d i ent in this example.

Server3Cient1: A Ml tiplexServerlnvoker is created, and, lacking connect information, finds itself governed by server
rule 3. Subsequently, a mul ti pl exC i ent | nvoker is started according to client rule 1, providing the connect information
which alowsthe mul ti pl exServer | nvoker to start. Note that the Connect or and d i ent are passed matching serverMulti-
plexid and clientMultiplexld parameters, respectively.

For variety, the examples in which the client invoker starts first use the configuration Map to pass invoker group parameters,
and the examplesin which the server invoker starts first pass parametersin the | nvoker Locat or .

JBossMarch 27, 2006 79

10

Client programming model

The approach taken for the programming model on the client side is one based on a session based model. This means that it is
expected that once a Client is created for a particular target server, it will be used exclusively to make calls on that server. This
expectation dictates some of the behavior of the remoting client.

For example, if create a Client on the client side to make server invocations, including adding callback listeners, will have to
use that same instance of Client to remove the callback listeners. This is because the Client creates a unique session id that it
passes within the calls to the server. Thisid is used as part of the key for registering callback listeners on the server. If create a
new Client instance and attempt to remove the callback listeners, a new session id will be passed to the server invoker, who
will not recognize the callback listener to be removed.

Seetest caseorg. j boss. test.renoting. cal | back. push. Mul ti pl eCal | backSer ver sTest Case .

JBossMarch 27, 2006 80

11

Getting the JBossRemoting source and building

The JBossRemoting source code resides in the JBoss CV S repository under the CV S module JBossRemoting. To check out the
source using the anonymous account, use the following command:

cvs -d: pserver: anonynpbus@noncvs. f orge. j boss. com/cvsroot/jboss checkout JBossRenoting

To check out the source using a committer user id, use the following:

cvs -d:ext:username@vs. forge.jboss.com/cvsroot/jboss checkout JBossRenoting

This should checkout the entire remoting project, including doc, tests, libs, etc.

See http://www.jboss.org/wiki/Wiki.jsp?page=CV SRepository [http://www.jboss.org/wiki/Wiki.jsp?page=CV SRepository] for
more information on how to access the JBoss CV S repository.

The build process for JBossRemoting is based on a standard ant build file (build.xml). The version of ant that is supported is
ant 1.6.2, but should work with earlier versions as there are no specia ant features being used.

The main ant build targets are as follows:

compile - compiles all the core JBossRemoting classes.

jars - creates the jboss-remoting.jar file from the compiled classes

javadoc - creates the javadoc html files for JBossRemoting

tests.compile - compiles the JBossRemoting test files

testsjars - creates the jboss-remoting-tests.jar and jboss-remoting-loading-tests.jar files.
tests.quick - runs the functional unit tests for JBossRemoting.

tests - runs al the tests for JBossRemoting, including functional and performance tests for al the different transports.
clean - removes all the build artifacts and directories.

most - calls clean then jars targets.

dist - builds the full JBossRemoting distribution including running the full test suite.
dist.quick - builds the full JBossRemoting distribution, but does not run the test suite.
The root directory for all build output is the output directory. Under this directory will be:

cl asses - compiled core classes

JBossMarch 27, 2006 81

http://www.jboss.org/wiki/Wiki.jsp?page=CVSRepository

Getting the JBossRemoting source and building

et ¢ - deployment and IMX XMBean xml files
li b - al thejars and war file produced by the build
t est s - contains the compiled test classes and test results

For most development, the most target can be used. Please run the tests.quick target before checking anything in to ensure that
code changes did not break any previously functioning test.

JBossMarch 27, 2006 82

12

Known issues

All of the known issues and road map can be found on our bug tracking system, Jira, a ht-
tp://jira.jboss.com/jira/secure/BrowseProject.jspa?id=10031 [http://jirajboss.com/jira/secure/BrowseProject.jspa?d=10031]
(require member plus registration, which is free). If you find more, please post them to Jira. If you have questions post them to

the JBoss Remoting users forum (http://www.jboss.com/index.html ?modul e=bb& op=viewforum& f=222
[http://mwww.jboss.com/index.html ?modul e=bb& op=viewforum& f=222]).

JBossMarch 27, 2006 83

http://jira.jboss.com/jira/secure/BrowseProject.jspa?id=10031
http://jira.jboss.com/jira/secure/BrowseProject.jspa?id=10031
http://www.jboss.com/index.html?module=bb&op=viewforum&f=222

13

Future plans

Full road map for JBossRemoting can be found at ht-
tp://jira.jboss.com/jira/browse/IBREM ?report=com.atl assian.jira.plugin.system.project:roadmap-panel
[http://jirajboss.com/jiralbrowse/ IBREM ?report=com.atlassian.jira.plugin.system.project:roadmap-panel].

If you have gquestions, comments, bugs, fixes, contributions, or flames, please post them to the JBoss Remoting users forum (
http://www.jboss.com/index.html 2modul e=bb& op=viewforum& f=222

[http://www.jboss.com/index.html ?modul e=bb& op=viewforum& f=222]). Y ou can also find more information about JBoss Re-
moting on our wiki (http://www.jboss.org/wiki/Wiki.jsp?page=Remoting
[http://www.jboss.org/wiki/Wiki.jsp?page=Remoting]). The wiki will usually contain the latest updates to doc and features
that did not make into previous release.

JBossMarch 27, 2006 84

http://jira.jboss.com/jira/browse/JBREM?report=com.atlassian.jira.plugin.system.project:roadmap-panel
http://jira.jboss.com/jira/browse/JBREM?report=com.atlassian.jira.plugin.system.project:roadmap-panel
http://www.jboss.com/index.html?module=bb&op=viewforum&f=222
http://www.jboss.com/index.html?module=bb&op=viewforum&f=222
http://www.jboss.org/wiki/Wiki.jsp?page=Remoting

14

Release Notes

APl incompatabilities between JBossRemoting 1.0.2 and 1.2.X

The following public API for JBossRemoting was changed in release 1.2.0 which will make it incompatible with previous ver-
sions:

- Removed ClientlnvokerAdapter and dependent classes
- Callback related classes moved to new remoting callback package

- InvokerCallbackHandler accepts Callback type as parameter instead of InvocationRequest

Release Notes - JBoss Remoting - Version 1.4.1 final

** Feature Request

* [JBREM-310] - Ability to turn connection checking off

* [JBREM-325] - move IMarshalledV alue from jboss-commons to jboss-remoting.jar

** Bug

* [JBREM-313] - client lease does not work if client and server in same VM (using local invoker)
* [JBREM-317] - HTTPClientlnvoker conect sends gratuitous POST

* [JBREM-341] - Client ping interval must be |ease than lease period

* [JBREM-343] - Exceptions on connection closing

* [IBREM-345] - problem using client address and port

* [JBREM-346] - fix ConcurrentM odificationException in cleanup of MultiplexServerinvoker
* [JBREM-350] - ConcurrentM odificationException in InvokerRegistry

* [JBREM-361] - Race condition in invoking on Client

** Task

* [IBREM-2] - sample-bindings.xml does not have entry for remoting

* [JBREM-220] - clean up remoting wiki

JBossMarch 27, 2006 85

Release Notes

* [JBREM-316] - Maintain tomcat originated code under the ASF license.

* [JIBREM-319] - ability to inject socket factory by classname or instance in all remoting transports

* [JBREM-323] - client lease config changes

* [JBREM-329] - create global transport config for timeout

* [JBREM-330] - create socket server factory based off of configuration properties

* [JBREM-335] - Client.invoke() should pass configuration map to InvokerRegistry.createClientInvoker().
* [JIBREM-336] - InvokerRegistry doesn't purge InvokerL ocators from static Set registeredL ocators.

* [JBREM-337] - PortUtil.findFreePort() should return ports only between 1024 and 65535.

* [JBREM-342] - Thread usage for timers and lease functionality

* [JBREM-354] - ServerlnvokerCallbackHandler should make its subsystem accessible.

* [JBREM-356] - Serverlnvoker should destroy its callback handlers.

* [JBREM-359] - MultiplexlnvokerConfigTestCase should execute MultiplexInvokerConfigTestServer instead of Multiplexin-
vokerTestServer.

Release Notes - JBoss Remoting - Version 1.4.0 final

** Feature Request

* [JBREM-91] - UIL2 type transport (duplex calling of same socket)

* [JBREM-117] - clean up callback client after several failures delivering callbacks

* [JBREM-138] - HTTP/Servlet invokers require content length to be set

* [JIBREM-229] - Remove dependency on ThreadL ocal for SerializationManagers and pluggable serialization
* [JBREM-233] - Server side exception listeners for client connections

* [JBREM-257] - Append client stack trace to thrown remote exception

* [JBREM-261] - Integration with IMarshalledV alue from JBossCommons

* [JBREM-278] - remoting detection needs ability to accept detection of server invoker running locally

* [JBREM-280] - no way to add path to invoker uri when using complex configuration

** Bug

* [JBREM-41] - problem using localhost/127.0.0.1

* [JBREM-115] - http server invoker does not wait to finish processing on stop

JBossMarch 27, 2006 86

Release Notes

* [JBREM-223] - Broken Pipeif client don't do any calls before the timeout value

* [JIBREM-224] - java.net.SocketTimeoutException when socket timeout on the keep alive
* [JBREM-231] - bug in invoker locator when there are no params (NPE)

* [JBREM-234] - StreamCorruptedException in DTM testcase

* [JBREM-240] - TestUtil does not always give free port for server

* [JBREM-243] - socket client invoker sharing pooled connections

* [IBREM-250] - InvokerLocator doesn't support URL in IPv6 format (ex: socket://3000::117:5400/)
* [JBREM-251] - transporter passes method signature based on concrete object and not the parameter type
* [JBREM-256] - NullPointer in MarshallerLoaderHandler.java:69

* [IBREM-259] - Unmarshalling of server responseis not using caller's classloader

* [JBREM-271] - http client invoker needs to explicitly set the content type if not provided
* [JBREM-277] - error shutting down coyote invoker when using APR protocol

* [JBREM-281] - getting random port for connectorsis not reliable

* [JBREM-282] - ServletServerlnvoker not working with depployed for use as gjb invoker
* [JBREM-286] - Socket server does not clean up server threads on shutdown

* [JBREM-289] - PortUtil only checking for free ports on localhost

** Task

* [JBREM-7] - Add more tests for local invoker

* [IBREM-121] - improve connection failure callback

* [JBREM-126] - add testsfor client vs. server address bindings

* [JBREM-195] - Performance optimization

* [JBREM-199] - remoting clients required to include servlet-api.jar

* [JBREM-207] - clean up build file

* [JIBREM-214] - multiplex performance tests getting out of memory error

* [JBREM-215] - re-write http transport/handler documentation

* [JBREM-216] - Need to add new samples to example build in distro

* [JBREM-217] - create samples documentation

JBossMarch 27, 2006

87

Release Notes

* [JBREM-219] - move remoting site to jboss labs

* [JBREM-226] - Release JBoss Remoting 1.4.0 final

* [JBREM-230] - create interface for marshallers to implement for swapping out serialization impl
* [JBREM-235] - add new header to source files

* [JBREM-239] - Update the LGPL headers

* [JBREM-242] - Subclass multiplex invoker from socket invoker.

* [JIBREM-249] - http invoker (tomcat connector) documentation

* [JBREM-253] - Convert http server invoker implementation to use tomcat connector and protocols
* [JBREM-255] - HTTPClientInvoker not setting response code or message

* [IBREM-275] - fix package error in examle-service.xml

* [JBREM-276] - transporter does not throw original exception from server implementation

* [JBREM-279] - socket server invoker spits out error messages on shutdown when is not needed
* [JBREM-287] - need to complete javadoc for all user classes/interfaces

* [JBREM-288] - update example-service.xml with new configurations

** Reactor Event

* [JBREM-241] - Refactor SocketServerlnvoker so that can be subclassed by MultiplexServerlnvoker

Release Notes - JBoss Remoting - Version 1.4.0 beta

** Feature Request

* [JBREM-28] - Marshaller for non serializable objects

* [JIBREM-40] - Compression marshaller/unmarshaller

* [IBREM-120] - config for using hostname in locator url instead of ip

* [JBREM-140] - can not set response headers from invacation handlers

* [JBREM-148] - support pluggable object serialization packages

* [JBREM-175] - Remove Dependencies to Server Classes from Unifiedlnvoker
* [JBREM-180] - add plugable serialization

* [JBREM-187] - Better HTTP 1.1 stack support for HTTP invoker

* [JBREM-201] - Remove dependency from JBossSerialization

JBossMarch 27, 2006

88

Release Notes

* % Bug
* [IBREM-127] - RMI Invoker will not bind to specified address
* [JBREM-192] - distro contains samplesin src and examples directory

* [JBREM-193] - HTTPClientinvoker doesn't call getErrorStream() on HttpURL Connection when an error response code is
returned

* [JBREM-194] - multiplex performance tests hang

* [IBREM-202] - getUnmarshaller always calls Class.forName operation for creating Unmarshallers
* [JBREM-203] - rmi server invoker hangsif custom unmarshaller

* [JIBREM-205] - Spurious java.net.SocketException: Connection reset error logging

* [JBREM-210] - InvokerL ocator should be insensitive to parameter order

*% Task
* [JBREM-9] - Fix performance tests

* [JBREM-33] - Add GET support within HTTP server invoker

* [JBREM-145] - convert user guide from MS word doc to docbook

* [JBREM-182] - Socket timeout too short (and better error message)

* [JBREM-183] - keep alive support for http invoker

* [JBREM-196] - reducde the number of retries for socket client invoker

* [JBREM-204] - create complex remoting example using dynamic proxy to endpoint
* [IBREM-212] - create transporter implementation

* [JBREM-213] - alow config of ignoring https host validation (ssl) via metadata

** Patch
* [JBREM-152] - NullPointerException in SocketServerlnvoker.stop() at line 185.

* [JBREM-153] - Local Clientlnvoker's outlive their useful lifetime, causing anomal ous behavior

Release Notes - JBoss Remoting - Version 1.2.1 final
** Feature Request

* [JBREM-161] - Upgrade JRunit to Beta 2

JBossMarch 27, 2006 89

Release Notes

** Bug
* [IBREM-147] - Invalid reuse of target location

* [JBREM-163] - NPE in Mutlicast Detector

* [JIBREM-164] - HTTP Invoker unable to send large amounts of data

* [JBREM-176] - Correct inheritance structure for detectors

* [JBREM-177] - configuration attribute spelled incorrectly in ServerlnvokerMBean
* [IBREM-178] - SocketServerlnvoker hanging on Linux

* [JBREM-179] - socket timeout not being set properly

** Task

* [JBREM-156] - Better exception handling within socket server invoker

* [JBREM-158] - Clean up test cases

* [JBREM-162] - add version to the remoting jar

Release Notes - JBoss Remoting - Version 1.2.0 final

** Feature Request

* [JBREM-§] - Ability to stream files viaremoting

* [JBREM-22] - Manipulation of the client proxy interceptor stack

* [JBREM-24] - Allow for specific network interface bindings

* [JBREM-27] - Support for HTTP/HTTPS proxy

* [JIBREM-35] - Servlet Invoker - counterpart to HTTP Invoker (runs within web container)
* [JBREM-43] - custom socket factories

* [JBREM-46] - Connection failure callback

* [JBREM-87] - Add handler metadata to detection messages

* [JBREM-93] - Callback handler returning a generic Object

* [IBREM-94] - callback server specific implementation

* [JBREM-109] - Add support for JaasSecurityDomain within SSL support

* [JBREM-122] - need logdj.xml in examples

** Bug

JBossMarch 27, 2006

90

Release Notes

* [JBREM-58] - Bug with multiple callback handler registered with same server

* [JBREM-64] - Need Marshal Factory to produce new instance per get request

* [JBREM-84] - Duplicate Connector shutdown using same server invoker

* [IBREM-92] - in-VM push callbacks don't work

* [IBREM-97] - Won't compile under JDK 1.5

* [JBREM-108] - can not set bind address and port for rmi and http(s)

* [IBREM-114] - getting callbacks for a callback handler always returns null

* [JBREM-125] - can not configure transport, port, or host for the stream server

* [JBREM-131] - invoker registry not update if server invoker changes |ocator

* [JBREM-134] - can not remove callback listeners from multiple callback servers

* [IBREM-137] - Invalid RemoteClientlnvoker reference maintained by InvokerRegistry after invoker disconnect()
* [JBREM-141] - bug connecting client invoker when client detects that previously used one is disconnected
* [JBREM-143] - NetworkRegistry should not be required for detector to run on server side
** Task

* [JBREM-11] - Create seperate JBoss Remoting modulein CVS

* [JBREM-20] - break out remoting into two seperate projects

* [JBREM-34] - Need to add configuration properties for HTTP server invoker

* [JBREM-39] - start connector on new thread

* [IBREM-55] - Clean up Callback implementation

* [JBREM-57] - Remove use of InvokerRequest in favor of Callback object

* [JBREM-62] - update Unifiedlnvoker to use remote marshall loading

* [JBREM-67] - Add ability to set ThreadPool via configuration

* [JBREM-98] - remove isDebugEnabled() within code as is now depricated

* [IBREM-101] - Fix serialization versioning between releases of remoting

* [JBREM-104] - Release JBossRemoting 1.1.0

* [JBREM-110] - create jboss-remoting-client.jar

* [JBREM-113] - Convert remote tests to use JRunit instead of distributed test framework

JBossMarch 27, 2006

91

Release Notes

* [JBREM-123] - update detection samples

* [JIBREM-128] - standardize address and port binding configuration for all transports
* [JBREM-130] - updated wiki for checkout and build

* [JBREM-132] - write test case for BREM-131

* [JBREM-133] - Document use of Client (as a session object)

* [JBREM-135] - Remove ClientInvokerAdapter

** Reactor Event

* [JBREM-65] - move callback specific classes into new callback package

* [JBREM-111] - pass socket's output/inputstream directly to marshaller/unmarshaller
Release Notes - JBoss Remoting - Version 1.0.2 final

** Bug

* [JBREM-36] - performance tests fail for http transports

* [JBREM-66] - Race condition on startup

* [JBREM-82] - Bad warning in Connector.

* [JBREM-88] - HTTP invoker only binds to localhost

* [JBREM-89] - HTTPUnMarshaller finishing read early

* [JBREM-90] - HTTP header values not being picked up on the http invoker server
** Task

* [IBREM-70] - Clean up build.xml. Fix .classpath and .project for eclipse

* [JBREM-83] - Updated Invocation marshalling to support standard payloads
Release Notes - JBoss Remoting - Version 1.0.1 final

** Feature Request

* [JBREM-54] - Need accessto HTTP response headers

** Bug

* [JBREM-1] - Thread.currentThread().getContextClassL oader() is wrong

* [JBREM-31] - Exception handling in http server invoker

* [JIBREM-32] - HTTP Invoker - check for threading issues

JBossMarch 27, 2006

92

Release Notes

* [JBREM-50] - Need ability to set socket timeout on socket client invoker

* [IBREM-59] - Pull callback collection is unbounded - possible Out of Memory
* [JBREM-60] - Incorrect usage of debug level logging

* [JBREM-61] - Possible RMI exception semantic regression

** Task

* [JBREM-15] - merge Unifiedinvoker from remoting branch

* [JIBREM-30] - Better integration for registering invokers with MBeanServe

* [JBREM-37] - backport to 4.0 branch before 1.0.1 final release

* [JBREM-56] - Add Callback object instead of using InvokerRequest

** Reactor Event

* [JBREM-51] - defining marshaller on remoting client

Release Notes - JBoss Remoting - Version 1.0.1 beta

* % Bug
* [JBREM-19] - Try to reconnect on connection failure within socket invoker

* [JIBREM-25] - Deadlock in InvokerRegistry

** Feature Request
* [JBREM-12] - Support for call by value

* [JBREM-26] - Ability to use MBeans as handlers

*% Task
* [IBREM-3] - Fix Asyn invokers - currently not operable

* [JBREM-4] - Added test for throwing exception on server side
* [JBREM-5] - Socket invokers needs to be fixed

* [JBREM-16] - Finish HTTP Invoker

* [JBREM-17] - Add CannotConnectException to all transports

* [JBREM-18] - Backport remoting from HEAD to 4.0 branch

JBossMarch 27, 2006

93

Release Notes

** Reactor Event
* [JIBREM-23] - Refactor Connector so can configure transports

* [JBREM-29] - Over load invoke() method in Client so metadata not required

JBossMarch 27, 2006

94

	JBoss Remoting Guide
	Table of Contents
	Chapter 1. Overview
	1.1. What is JBoss Remoting
	1.2. Features
	1.3. How to get JBoss Remoting

	Chapter 2. Architecture
	Chapter 3. JBoss Remoting Components
	Chapter 4. Configuration
	4.1. General Connector and Invoker configuration
	4.2. Handlers
	4.3. Discovery (Detectors)
	4.4. Transports (Invokers)
	4.4.1. Server Invokers
	4.4.2. Configurations affecting the invoker client
	4.4.3. How the server bind address and port is ultimately determined
	4.4.4. Socket Invoker
	4.4.5. SSL Socket Invoker
	4.4.6. RMI Invoker
	4.4.7. HTTP Invoker
	4.4.8. HTTPS Invoker
	4.4.9. HTTP(S) Client Invoker - proxy and basic authentication
	4.4.10. Servlet Invoker
	4.4.11. Multiplex Invoker
	4.4.11.1. Setting up the server
	4.4.11.2. Setting up the client
	4.4.11.2.1. Notes

	4.4.11.3. Shutting down invoker groups.
	4.4.11.4. Examples
	4.4.11.5. Configuration properties

	4.5. Marshalling
	4.6. Callbacks
	4.6.1. Callback overview
	4.6.2. Callback Configuration
	4.6.3. Callback Exception Handling

	4.7. Programmatic configuration
	4.8. SSL Support and configuration

	Chapter 5. Sending streams
	5.1. Configuration
	5.2. Issues

	Chapter 6. Serialization
	Chapter 7. Connection Exception Listeners
	Chapter 8. Transporters - beaming POJOs
	Chapter 9. How to use it - sample code
	9.1. Simple invocation
	9.2. HTTP invocation
	9.3. Oneway invocation
	9.4. Discovery and invocation
	9.5. Callbacks
	9.6. Streaming
	9.7. JBoss Serialization
	9.8. Transporters
	9.8.1. Transporter sample - basic
	9.8.2. Transporter sample - JBoss serialization
	9.8.3. Transporter sample - clustered
	9.8.4. Transporter sample -complex

	9.9. Multiplex invokers

	Chapter 10. Client programming model
	Chapter 11. Getting the JBossRemoting source and building
	Chapter 12. Known issues
	Chapter 13. Future plans
	Chapter 14. Release Notes

