
HIBERNATE - Relational
Persistence for Idiomatic Java

Using JBoss Cache 2 as a
Hibernate Second Level Cache

3.3.1.GA

HIBERNATE - Relational Persistence for Idiomatic Java
Copyright © 2008 Red Hat Middleware, LLC.

Legal Notice

 1801 Varsity Drive
 Raleigh, NC27606-2072USA
 Phone: +1 919 754 3700
 Phone: 888 733 4281
 Fax: +1 919 754 3701
 PO Box 13588Research Triangle Park, NC27709USA

Copyright © 2008 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions
set forth in the Open Publication License, V1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit permission of the
copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form for commercial purposes is
prohibited unless prior permission is obtained from the copyright holder.

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

All other trademarks referenced herein are the property of their respective owners.

The GPG fingerprint of the security@redhat.com key is:

CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

http://www.opencontent.org/openpub/

Hibernate 3.3.1.GA iii

Preface .. v
1. Introduction ... 1

1.1. Overview .. 1
1.2. Requirements .. 1

1.2.1. Dependencies ... 1
1.2.2. JTA Transactional Support ... 2

1.3. Configuration Basics .. 2
2. Core Concepts .. 5

2.1. Types of Cached Data .. 5
2.1.1. Entities .. 5
2.1.2. Collections .. 7
2.1.3. Queries ... 8
2.1.4. Timestamps .. 9

2.2. Key JBoss Cache Behaviors ... 10
2.2.1. Replication vs. Invalidation vs. Local Mode 10
2.2.2. Synchronous vs. Asynchronous .. 11
2.2.3. Locking Scheme ... 12
2.2.4. Isolation Level ... 12
2.2.5. Initial State Transfer .. 13
2.2.6. Cache Eviction .. 14
2.2.7. Buddy Replication and Cache Loading 14

2.3. Matching JBC Behavior to Types of Data 14
2.3.1. The RegionFactory Interface ... 15
2.3.2. The CacheManager API ... 15
2.3.3. Sharable JGroups Resources ... 16
2.3.4. Bringing It All Together ... 17

3. Configuration .. 19
3.1. Configuring the Hibernate Session Factory 19

3.1.1. Basics ... 19
3.1.2. Specifying the RegionFactory Implementation 20
3.1.3. The SharedJBossCacheRegionFactory 20
3.1.4. The JndiSharedJBossCacheRegionFactory 21
3.1.5. The MultiplexedJBossCacheRegionFactory 21
3.1.6. The JndiMultiplexedJBossCacheRegionFactory 23

3.2. Configuring JBoss Cache .. 23
3.2.1. Configuring a Single Standalone Cache 23
3.2.2. Managing Multiple Caches via a CacheManager 24
3.2.3. JBoss Cache Configuration Details 25

3.2.3.1. CacheMode .. 25
3.2.3.2. NodeLockingScheme ... 25
3.2.3.3. IsolationLevel ... 25
3.2.3.4. JGroups Channel Configuration 26
3.2.3.5. Initial State Transfer ... 26

iv Hibernate 3.3.1.GA

3.2.3.6. Region-Based Marshalling 26
3.2.3.7. Eviction ... 27

3.2.4. Standard JBoss Cache Configurations 27
3.3. JGroups Configuration ... 29

3.3.1. Transport -- UDP vs. TCP .. 29
3.3.2. Standard JGroups Configurations 30

4. Cache Eviction .. 31
4.1. Overview .. 31

4.1.1. The Eviction Process .. 31
4.1.2. Eviction Regions ... 32
4.1.3. Eviction Policies .. 32

4.1.3.1. The LRUPolicy .. 32
4.1.3.2. The NullEvictionPolicy ... 33

4.2. Organization of Data in the Cache .. 33
4.2.1. Region Prefix and Region Name 33
4.2.2. Entities .. 34
4.2.3. Collections .. 34
4.2.4. Queries ... 35
4.2.5. Timestamps ... 35

4.3. Example Configuration .. 36
4.4. Best Practices .. 38

5. Architecture .. 41
5.1. Hibernate Interface to the Caching Subsystem 41
5.2. Single JBoss Cache Instance Architecture 42
5.3. Multiple JBoss Cache Instance Architecture 44

Hibernate 3.3.1.GA v

Preface
This document is focused on the use of the JBoss Cache
[http://labs.jboss.org/jbosscache] clustered transactional caching library as a
tool for caching data in a Hibernate-based application.

Working with object-oriented software and a relational database can be
cumbersome and time consuming in today's enterprise environments.
Hibernate is an object/relational mapping tool for Java environments. The
term object/relational mapping (ORM) refers to the technique of mapping a
data representation from an object model to a relational data model with a
SQL-based schema.

Hibernate not only takes care of the mapping from Java classes to database
tables (and from Java data types to SQL data types), but also provides data
query and retrieval facilities and can significantly reduce development time
otherwise spent with manual data handling in SQL and JDBC.

In any application that works with a relational database, caching data
retrieved from the database can potentially improve application performance.
Hibernate provides a number of facilities for caching data on the database
client side, i.e. in the Java process in which Hibernate is running. The primary
facility is the Hibernate Session itself, which maintains a transaction-scoped
cache of persistent data. If you wish to cache data beyond the scope of a
transaction, it is possible to configure a cluster or JVM-level (technically a
SessionFactory-level) cache on a class-by-class, collection-by-collection and
query-by-query basis. This type of cache is referred to as a Second Level
Cache.

Hibernate provides a pluggable architecture for implementing its Second
Level Cache, allowing it to integrate with a number of third-party caching
libraries. This document is focused on the use of the JBoss Cache
[http://labs.jboss.org/jbosscache] clustered transactional caching library as an
implementation of the Second Level Cache. It specifically focuses on JBoss
Cache 2.

If you are new to Hibernate and Object/Relational Mapping or even Java,
please follow these steps:

1. Read the Hibernate Reference Documentation, particularly the
Introduction and Architecture sections.

2. Have a look at the eg/ directory in the Hibernate distribution, it contains a
simple standalone application. Copy your JDBC driver to the lib/ directory
and edit etc/hibernate.properties, specifying correct values for your

http://labs.jboss.org/jbosscache
http://labs.jboss.org/jbosscache
http://labs.jboss.org/jbosscache
http://labs.jboss.org/jbosscache

vi Hibernate 3.3.1.GA

database. From a command prompt in the distribution directory, type ant
eg (using Ant), or under Windows, type build eg.

3. Use the Hibernate Reference Documentation as your primary source
of information. Consider reading Java Persistence with Hibernate
(http://www.manning.com/bauer2) if you need more help with
application design or if you prefer a step-by-step tutorial. Also visit
http://caveatemptor.hibernate.org and download the example application
for Java Persistence with Hibernate.

4. FAQs are answered on the Hibernate website.

5. Third party demos, examples, and tutorials are linked on the Hibernate
website.

6. The Community Area on the Hibernate website is a good resource for
design patterns and various integration solutions (Tomcat, JBoss AS,
Struts, EJB, etc.).

If you are new to the Hibernate Second Level Cache or to JBoss Cache,
please follow these steps:

1. Read the Hibernate Reference Documentation, particularly the Second
Level Cache and Configuration sections.

2. Read the JBoss Cache User Guide, Core Edition
[http://labs.jboss.org/jbosscache/docs/index.html].

3. Use this guide as your primary source of information on the usage of
JBoss Cache 2 as a Hibernate Second Level Cache.

If you have questions, use the user forum linked on the Hibernate website.
The user forum on the JBoss Cache website is also useful. We also provide
a JIRA issue tracking system for bug reports and feature requests. If you are
interested in the development of Hibernate, join the developer mailing list.
If you are interested in translating this documentation into your language,
contact us on the developer mailing list.

Commercial development support, production support, and
training for Hibernate is available through Red Hat Inc. (see
http://www.hibernate.org/SupportTraining/). Hibernate is a Professional Open
Source project and a critical component of the JBoss Enterprise Middleware
System (JEMS) suite of products.

http://labs.jboss.org/jbosscache/docs/index.html
http://labs.jboss.org/jbosscache/docs/index.html

Hibernate 3.3.1.GA 1

Chapter 1. Introduction

1.1. Overview

JBoss Cache is a tree-structured, clustered, transactional cache. It includes
support for maintaining cache consistency across multiple cache instances
running in a cluster. It integrates with JTA transaction managers, supporting
transaction-scoped locking of cache elements and automatic rollback of
cache changes upon transaction rollback. It supports both pessimistic and
optimistic locking, with the tree-structure of the cache allowing maximum
concurrency.

All of these features make JBoss Cache an excellent choice for use as a
Hibernate Second Level Cache, particularly in a clustered environment. A
Hibernate Session is a transaction-scoped cache of persistent data -- data
accessed via the Session is cached in the Session for the duration of the
current transaction, and then is cleared. A Second Level Cache is an optional
cluster or JVM-level cache whose contents are maintained beyond the life of
a transaction and whose contents can be shared across transactions. Use
of a Second Level Cache is configured as part of the configuration of the
Hibernate SessionFactory. If a Second Level Cache is enabled, caching of an
instance of a particular entity class or of results of a particular query can be
configured on a class-by-class, collection-by-collection and query-by-query
basis. See the Hibernate Reference Documentation for more on Second
Level Cache basics and how to configure entity classes, collections and
queries for caching.

The JBoss Cache Second Level Cache integration supports the
transactional and read only cache concurrency strategies discussed in the
Hibernate Reference Documentation. It supports query caching and is, of
course, cluster safe.

1.2. Requirements

1.2.1. Dependencies

Second level caching with JBoss Cache 2 requires the use of JBoss Cache
2.1.0 or later. The core JBoss Cache project is used; the related PojoCache
project/library is not needed. The following jars, included with the JBoss
Cache distribution, need to be on the classpath:

• jbosscache-core.jar

• commons-logging.jar

Chapter 1. Introduction

2 Hibernate 3.3.1.GA

• jboss-common-core.jar

• jgroups.jar

JBoss Cache also needs to have the classes in the javax.transaction
package on the classpath, but those are already included in the Hibernate
distribution.

The hibernate-jbosscache2.jar that is included with the Hibernate
distribution also needs to be on the classpath.

A JBoss Cache configuration file, and usually a JGroups configuration

file1, need to be on the classpath. The hibernate-jbosscache2.jar includes
standard configuration files in the org.hibernate.cache.jbc2.builder
package. The jbc2-configs.xml file is for JBoss Cache and the
jgroups-stacks.xml file is for JGroups. See Section 3.2, “Configuring JBoss
Cache” and Section 3.3, “JGroups Configuration” for more details on these
files. Users can create their own versions and tell the SessionFactory to
use them; see Section 3.1, “Configuring the Hibernate Session Factory” for
details.

1.2.2. JTA Transactional Support

JBoss Cache requires integration with a JTA TransactionManager in order to
meet the requirements of the second level caching use case. This means
your Hibernate application must be configured to use JTA:

• You must configure a hibernate.transaction.manager_lookup_class.

• You must configure a hibernate.transaction.factory_class, specifying
a transaction factory that supports JTA. In practice, this means
org.hibernate.transaction.JTATransactionFactory if you are using JTA
directly, or org.hibernate.transaction.CMTTransactionFactory if you are
accessing Hibernate via a CMT session bean.

• Finally, make sure hibernate.current_session_context_class is either
unset (backwards compatiblity), or set to "jta".

See the Hibernate Reference Documentation for an in-depth discussion of
using Hibernate with JTA

1.3. Configuration Basics

The key steps in using JBoss Cache as a second level cache are to:

1JGroups [http://labs.jboss.org/jgroups] is the group communication library used by JBoss Cache for
intra-cluster communication.

http://labs.jboss.org/jgroups
http://labs.jboss.org/jgroups

Configuration Basics

Hibernate 3.3.1.GA 3

• Tell Hibernate in your SessionFactory configuration that you want to use
JBoss Cache 2 as your Second Level Cache implementation:

hibernate.cache.region.factory_class=

 org.hibernate.cache.jbc2.MultiplexedJBossCacheRegionFactory

There are a number of values that can be provided for the
hibernate.cache.region.factory_class property, depending on how
you want the JBoss Cache integration to work. Based on what factory
class you specify, there are additional detail configuration properties you
can add to further control that factory. However, simply specifying the
MultiplexedJBossCacheRegionFactory shown above provides a reasonable
set of default values useful for many applications. See Section 3.1.2,
“Specifying the RegionFactory Implementation” for more details.

Do not set the legacy hibernate.cache.provider_class property when
using JBoss Cache 2. That is a legacy property from before Hibernate
3.3's redesign of second level caching internals. It will not work with JBoss
Cache 2.

• Tell Hibernate you want to enable caching of entities and collections. No
need to set this property if you don't:

hibernate.cache.use_second_level_cache=true

• Tell Hibernate you want to enable caching of query results. No need to set
this property if you don't:

hibernate.cache.use_query_cache=true

• If you have enabled caching of query results, tell Hibernate if you want to
suppress costly replication of those results around the cluster. No need to
set this property if you want query results replicated:

hibernate.cache.region.jbc2.query.localonly=true

See Chapter 3, Configuration for full details on configuration.

4 Hibernate 3.3.1.GA

Hibernate 3.3.1.GA 5

Chapter 2. Core Concepts
This chapter focuses on some of the core concepts underlying how the
JBoss Cache-based implementation of the Hibernate Second Level Cache
works. There's a fair amount of detail, which certainly doesn't all need to
be mastered to use JBoss Cache with Hibernate. But, an understanding of
some of the basic concepts here will help a user understand what some of
the typical configurations discussed in the next chapter are all about.

If you want to skip the details for now, feel free to jump ahead to
Section 2.3.4, “Bringing It All Together”

2.1. Types of Cached Data

The Second Level Cache can cache four different types of data: entities,
collections, query results and timestamps. Proper handling of each of the
types requires slightly different caching semantics. A major improvement in
Hibernate 3.3 is the addition of the org.hibernate.cache.RegionFactory API,
which allows Hibernate to tell the caching integration layer what type of data
is being cached. Based on that knowledge, the cache integration layer can
apply the semantics appropriate to that type.

2.1.1. Entities

Entities are the most common type of data cached in the second level cache.
Entity caching requires the following semantics in a clustered cache:

• Newly created entities should only be stored on the node on which they
are created until the transaction in which they were created commits. Until
that transaction commits, the cached entity should only be visible to that
transaction. After the transaction commits, cluster-wide the cache should
be in a "consistent" state. The cache is consistent if on any node in the
cluster, the new entity is either:

• stored in the cache, with all non-collection fields matching what is in the
database.

• not stored in the cache at all.

Maintaining cache consistency basically requires that the cluster-wide
update messages that inform other nodes of the changes made during
a transaction be made synchronously as part of the transaction commit
process. This means that the transaction thread will block until the changes
have been transmitted to all nodes in the cluster, those nodes have
updated their internal state to reflect the changes, and have responded to

Chapter 2. Core Concepts

6 Hibernate 3.3.1.GA

the originating node telling them of their success (or failure) in doing so.
JBoss Cache uses a 2 phase commit protocol, so there will actually be 2
synchronous cluster-wide messages per transaction commit. If any node
in the cluster fails in the initial prepare phase of the 2PC, the underlying
transaction will be rolled back and in the second phase JBoss Cache will
tell the other nodes in the cluster to revert the change.

• For existing entities that are modified in the course of a transaction, the
updated entity state should only be stored on the node on which the
modification occurred until the transaction commits. Until that transaction
commits, the changed entity state should only be visible to that transaction.
After the transaction commits, cluster-wide the cache should be in a
"consistent" state, as described above.

Concurrent cache updates of the same entity anywhere in the cluster
should not be possible, as Hibernate will acquire an exclusive lock on
the database representation of the entity before attempting to update the
cache.

• A read of a cached entity holds a transaction scope read lock on the
relevant portion of cache. The presence of a read lock held by one
transaction should not prevent a concurrent read by another transaction.
Whether the presence of that read lock prevents a concurrent write
depends on whether the cache is configured for READ_COMMITTED or
REPEATABLE_READ semantics and whether the cache is using optimistic
locking. READ_COMMITTED will allow a concurrent write to proceed;
pessimistic locking with REPEATABLE_READ will cause the write to block
until the transaction with the read lock commits. Optimistic locking allows
a REPEATABLE_READ semantic without forcing the writing transaction to
block.

A read of a cached entity does not result in any messages to other nodes
in the cluster or any cluster-wide read locks.

• The basic operation of storing an entity that has been directly read from
the database should have a fail-fast semantic. This type of operation is
referred to as a put and is the most common type of operation. Basically,
the rules for handling new entities or entity updates discussed above
mean the cache's representation of an entity should always match the
database's. So, if a put attempt encounters any existing copy of the entity
in the cache, it should assume that existing copy is either newer or the
same as what it is trying to store, and the put attempt should promptly and
silently abort, with no impact on any ongoing transactions.

A put operation should not acquire any long-lasting locks on the cache.

Collections

Hibernate 3.3.1.GA 7

If the cache is configured to use replication, the replication of the put
should occur immediately, not waiting for transaction commit and without
the calling thread needing to block waiting for responses from the other
nodes in the cluster. This is a "fire-and-forget" semantic that JBoss
Cache refers to as asynchronous replication. When other nodes receive a
replicated put, they use the same fail-fast semantics as a local put -- i.e.
promptly and silently abort if the entity is already cached.

If the cache is configured to use invalidation, a put should not result in
any cluster-wide message at all. The fact that one node in the cluster has
cached an entity should not invalidate another node's cache of that same
entity -- both caches are storing the same information.

• A removal of an entity from the cache (i.e. to reflect a DELETE from the
underlying database) is basically a special case of a modification; the
removal should not be visible on other nodes or to other transactions until
the transaction that did the remove commits. Cache consistency after
commit means the removed entity is no longer in the cache on any node in
the cluster.

2.1.2. Collections

Collection caching refers to the case where a cached entity has as one of its
fields a collection of other entities. Hibernate handles this field specially in the
second level cache; a special area in the cache is created where the primary
keys of the entities in the collection are stored.

The management of collection caching is very similar to entity caching, with a
few differences:

• When a new entity is created that includes a collection, no attempt is made
to insert the collection into the cache.

• When a transaction updates the contents of a collection, no attempt is
made to reflect the new contents of the collection in the cache. Instead,
the existing collection is simply removed from the cache across the cluster,
using the same semantics as an entity removal.

In essence, for collections Hibernate only supports cache reads and the put
operation, with any modification of the collection resulting in cluster-wide
invalidation of that collection from the cache. If the collection field is accessed
again, a new read from the database will be done, followed by another cache
put.

Chapter 2. Core Concepts

8 Hibernate 3.3.1.GA

2.1.3. Queries

Hibernate supports caching of query results in the second level cache. The
HQL statement that comprised the query is cached (including any parameter
values) along with the primary keys of all entities that comprise the result set.

The semantics of query caching are significantly different from those of
entity caching. A database row that reflects an entity's state can be locked,
with cache updates applied with that lock in place. The semantics of entity
caching take advantage of this fact to help ensure cache consistency across
the cluster. There is no clear database analogue to a query result set that
can be efficiently locked to ensure consistency in the cache. As a result,
the fail-fast semantics used with the entity caching put operation are not
available; instead query caching has semantics akin to an entity insert,
including costly synchronous cluster updates and the JBoss Cache two
phase commit protocol. Furthermore, Hibernate must agressively invalidate
query results from the cache any time any instance of one of the entity
classes involved in the query's WHERE clause changes. All such query
results are invalidated, even if the change made to the entity instance would
not have affected the query result. It is not performant for Hibernate to try to
determine if the entity change would have affected the query result, so the
safe choice is to invalidate the query. See Section 2.1.4, “Timestamps” for
more on query invalidation.

The effect of all this is that query caching is less likely to provide a
performance boost than entity/collection caching. Use it with care and
benchmark your application with it enabled and disabled. Be careful about
replicating query results; caching them locally only on the node that executed
the query will be more performant unless the query is quite expensive, is very
likely to be repeated on other nodes, and is unlikely to be invalidated out of

the cache.1.

The JBoss Cache-based implementation of query caching adds a couple of
interesting semantics, both designed to ensure that query cache operations
don't block transactions from proceeding:

• The insertion of a query result into the cache is very much like the insertion
of a new entity. The difference is it is possible for two transactions, possibly
on different nodes, to try to insert the same query at the same time. (If
this happened with entities, the database would throw an exception with a
primary key violation before any caching work could start). This could lead

1See the discussion of the hibernate.cache.region.jbc2.query.localonly property in Section 3.1,
“Configuring the Hibernate Session Factory”

Timestamps

Hibernate 3.3.1.GA 9

to long delays as the transactions compete for cache locks. To prevent
such delays, the cache integration layer will set a very short (a few ms)
lock timeout before attempting to cache a query result. If there is any sort
of locking conflict, it will be detected quickly, and the attempt to cache the
result will be quietly abandonded.

• A read of a query result does not result in any long-lasting read lock in
the cache. Thus, the fact that an uncommitted transaction had read a
query result does not prevent concurrent transactions from subsequently
invalidating that result and caching a new result set. However, an insertion
of a query result into the cache will result in an exclusive write lock that
lasts until the transaction that did the insert commits; this lock will prevent
other transactions from reading the result. Since the point of query caching
is to improve performance, blocking on a cache read for an extended
period seems suboptimal. So, the cache integration code will set a very
low lock acquisition timeout before attempting the read; if there is a
lock conflict, the read will silently fail, resulting in a cache miss and a
re-execution of the query against the database.

2.1.4. Timestamps

Timestamp caching is an internal detail of query caching. As part of each
query result, Hibernate stores the timestamp of when the query was
executed. There is also a special area in the cache (the timestamps cache)
where, for each entity class, the timestamp of the last update to any instance
of that class is stored. When a query result is read from the cache, its
timestamp is compared to the timestamps of all entities involved in the query.
If any entity has a later timestamp, the cached result is discarded and a new
query against the database is executed.

The semantics of of the timestamp cache are quite different from those of the
entity, collection and query caches.

• For all nodes in the cluster, the contents of the timestamp cache should be
identical, with all timestamps represented. For the other cache types, it is
acceptable for some nodes in the cluster to not store some data, as long
as everyone who does store an item stores the same thing. Not so with
timestamps -- everyone must store all timestamps. Using a JBoss Cache
configured for invalidation is not allowed for the timestamps cache. Further,
configuring JBoss Cache eviction to remove old or infrequently used data
from the timestamps cache should not be done. Also, when a new node
joins a running cluster, it must acquire the current state of all timestamps
from another member, performing what is known as an initial state transfer.
For other cache types, an initial state transfer is not required.

Chapter 2. Core Concepts

10 Hibernate 3.3.1.GA

• A timestamp represents an entire entity class, not a single instance. Thus
it is quite likely that two concurrent transactions will both attempt to update
the same timestamp. These updates need to be serialized, but no long
lasting exclusive lock on the timestamp is held.

• As soon as a timestamp is updated, the new value needs to be propagated
around the cluster. Waiting until the transaction that changed the
timestamp commits is inadequate. So, changes to timestamps can be
quite "chatty" in terms of how many messages are sent around the cluster.
Sending the timestamp update messages synchronously would have a
serious impact on performance, and would quite likely result in cluster-wide
lock conflicts that would prevent transactions from progressing for tens of
seconds at a time. To mitigate these issues, timestamp updates are sent
asynchronously.

2.2. Key JBoss Cache Behaviors

JBoss Cache is a very flexible tool and includes a great number of
configuration options. See the JBoss Cache User Guide for an in depth
discussion of these options. Here we focus on the main concepts that are
most important to the Second Level Cache use case. This discussion will
focus on concepts; see Section 3.2, “Configuring JBoss Cache” for details on
the actual configurations involved.

2.2.1. Replication vs. Invalidation vs. Local Mode

JBoss Cache provides three different choices for how a node in the cluster
should interact with the rest of the cluster when its local state is updated:

• Replication: The updated cache will send its new state (e.g. the new values
for an entity's fields) to the other members of the cluster. This is heavy
in terms of the size of network traffic, since the new state needs to be
transmitted. It also has the effect forcing the data that is cached in each
node in the cluster to be the same, even if the users accessing the various
nodes are interested in different data. So, if a user on node A reads an
Order entity with primary key 12343439485030 from the database, with
replication that entity will be cached on every node in the cluster, even
though no other users are interested in that particular Order.

Because of these downsides, replication is generally not the best choice
for entity, collection and query caching. However, in a cluster replication is
the only valid choice for the timestamps cache.

• Invalidation: The updated cache will send a message to the other members
of the cluster telling them that a particular piece of data (e.g. a particular

Synchronous vs. Asynchronous

Hibernate 3.3.1.GA 11

entity) has been modified. Upon receipt of this message, the other nodes
will remove this data from their local cache, if it is stored there. Invalidation
is lighter than replication in terms of network traffic, since only the "id" of
the data needs to be transmitted, not the entire new state. The downside
to invalidation is that if the invalidated data is needed again, it has to be
re-read from the database. However, in most cases data that many nodes
in the cluster all want to have in memory is not data that is frequently
changed.

Invalidation makes no sense for query caching; if it is used for a query
cache region the Hibernate/JBoss Cache integration will detect this and
switch any query cache related calls to Local mode. Invalidation must not
be used for timestamp caching; Hibernate will throw an exception during
session factory startup if it finds that it is.

• Local: The updated cache does not even know if there are any other
nodes, and will not attempt to update them. If JBoss Cache is used as
a Second Level Cache in a non-clustered environment, Local mode
should be used. If there is a cluster, Local mode should never be used for
entity, collection or timestamp caching. Local mode can be used for query
caching in a cluster, since the replicated timestamps cache will ensure that
outdated cached queries are not used. Often Local mode is the best choice
for query caching, as query results can be large and the cost of replicating
them high.

If the same underlying JBoss Cache instance is used for the query cache
and any of the other caches, the SessionFactory can be configured to
suppress replication of the queries, essentially making the queries operate
in Local mode. This is done by adding the following configuration:

hibernate.cache.region.jbc2.query.localonly=true

If the JBoss Cache instance that the query cache is using is configured for
invalidation, setting this property isn't even necessary; the Hibernate/JBoss
Cache integration will detect this condition and switch any query
cache-related calls to Local mode.

2.2.2. Synchronous vs. Asynchronous

In JBoss Cache terms, synchronous vs. asynchronous refers to whether a
thread that initiates a cluster-wide message blocks until that message has
been received, processed and acknowledged by the other members of the
cluster. Synchronous means the thread blocks; asynchronous means the
message is sent and the thread immediately returns; more of a "fire and

Chapter 2. Core Concepts

12 Hibernate 3.3.1.GA

forget". An example of a message would be a set of cache inserts, updates
and removes sent out to the cluster as part of a transaction commit.

In almost all cases, the cache should be configured to use synchronous
messages, as these are the only way to ensure data consistency across
the cluster. JBoss Cache supports programatically overriding the default
configured behavior on a per-call basis, so for the special cases where
sending a message asynchronously is appropriate, the Hibernate/JBoss
Cache integration code will force the call to go asynchronously. So, configure
your caches to use synchronous messages.

2.2.3. Locking Scheme

JBoss Cache supports both optimistic and pessimistic locking schemes. See
the JBoss Cache User Guide for an in depth discussion of these options. In
the Second Level Cache use case, the main benefit of optimistic locking is
that updates of cached entities by one transaction do not block reads of the
cached entity by other transactions, yet REPEATABLE_READ semantics are
preserved.

If you are using optimistic locking and data versioning in Hibernate for your
entities, you should use it in the entity cache as well. If you are not using data
versioning, pessimistic locking should be a better choice. Optimistic locking
has a higher level of runtime overhead than pessimistic locking, and in most
Second Level Cache use cases a REPEATABLE_READ semantic from the
cache is not required (see Section 2.2.4, “Isolation Level” for details on why
not).

2.2.4. Isolation Level

If the PESSIMISTIC node locking scheme is used, JBoss Cache supports
a number of different isolation level configurations that specify how
different transactions coordinate the locking of nodes in the cache. These
are somewhat analogous to database isolation levels; see the JBoss
Cache User Guide for an in depth discussion of these options. For the
Second Level Cache use case, only two are valid: READ_COMMITTED
and REPEATABLE_READ. In both cases, cache reads do not block
for other reads. In both cases a transaction that writes to a node in the
cache tree will hold an exclusive lock on that node until the transaction
commits, causing other transactions that wish to read the node to block.
In the REPEATABLE_READ case, the read lock held by an uncommitted
transaction that has read a node will cause another transaction wishing to
write to that node to block until the read transaction commits. This ensures
the reader transaction can read the node again and get the same results, i.e.
have a repeatable read.

Initial State Transfer

Hibernate 3.3.1.GA 13

READ_COMMITTED allows the greatest concurrency, since reads don't
block each other and also don't block a write.

If the OPTIMISTIC node locking scheme is used, any isolation level
configuration is ignored by the cache. Optimistic locking provides a
repeatable read semantic but does not cause writes to block for reads.

In most cases, a REPEATABLE_READ setting on the cache is not needed,
even if the application wants repeatable read semantics. This is because the
Second Level Cache is just that -- a secondary cache. The primary cache for
an entity or collection is the Hibernate Session object itself. Once an entity
or collection is read from the second level cache, it is cached in the Session
for the life of the transaction. Subsequent reads of that entity/collection will
be resolved from the Session cache itself -- there will be no repeated read
of the Second Level Cache by that transaction. So, there is no benefit to a
REPEATABLE_READ configuration in the Second Level Cache.

The only exception to this is if the application uses Session's evict() or
clear() methods to remove data from the Session cache and during the
course of the same transaction wants to read that same data again with a
repeatable read semantic.

Note that for query and timestamp caches, the behavior of the Hibernate/JBC
integration will not allow repeatable read semantics even if JBC is configured
for REPEATABLE_READ. A cache read will not result in a read lock in the
cache being held for the life of the transaction. So, for these caches there is
no benefit to a REPEATABLE_READ configuration.

2.2.5. Initial State Transfer

When a new node joins a running cluster, it can request from an existing
member a copy of that member's current cache contents. This process is
known as an initial state transfer. Doing an initial state transfer allows the
new member to have a "hot cache"; i.e. as user requests come in, data will
already be cached, helping avoid an initial set of reads from the database.

However, doing an initial state transfer comes at a cost. The node providing
the state needs to lock its entire tree, serialize it and send it over the
network. This could be a large amount of data and the transfer could take
a considerable period of time to process. While the transfer is ongoing, the
state provider is holding locks on its cache, preventing any local or replicated
updates from proceeeding. All work around the cache can come to a halt for
a period.

Chapter 2. Core Concepts

14 Hibernate 3.3.1.GA

Because of this cost, we generally recommend avoiding initial state transfers
in the second level cache use case. The exception to this is the timestamps
cache. For the timestamps cache, an initial state transfer is required.

2.2.6. Cache Eviction

Eviction refers to the process by which old, relatively unused, or excessively
voluminous data can be dropped from the cache, allowing the cache to
remain within a memory budget. Generally, applications that use the Second
Level Cache should configure eviction. See Chapter 4, Cache Eviction for
details.

2.2.7. Buddy Replication and Cache Loading

Buddy replication refers to a JBoss Cache feature whereby each node in the
cluster replicates its cached data to a limited number (often one) of "buddies"
rather than to all nodes in the cluster. Buddy replication should not be used
in a Second Level Cache. It is intended for use cases where one node in the
cluster "owns" some data , and just wants to make a backup copy of the data
to provide high availability. The data (e.g. a web session) is never meant to
be accessed simultaneously on two different nodes in the cluster. Second
Level Cache data does not meet this "ownership" criteria; entities are meant
to be simultaneously usable by all nodes in the cluster.

Cache Loading refers to a JBoss Cache feature whereby cached data can
be persisted to disk. The persisted data either serves as a highly available
copy of the data in case of a cluster restart, or as an overflow area for
when the amount of cached data exceeds an application's memory budget.
Cache loading should not be used in a Second Level Cache. The underlying
database from which the cached data comes already serves the same
functions; adding a cache loader to the mix is just wasteful.

2.3. Matching JBC Behavior to Types of Data

The preceding discussion has gone into a lot of detail about what Hibernate
wants to accomplish as it caches data, and what JBoss Cache configuration
options are available. What should be clear is that the configurations
that are best for caching one type of data are not the best (and are
sometimes completely incorrect) for other types. Entities likely work best
with synchronous invalidation; timestamps require replication; query caching
might do best in local mode.

Prior to Hibernate 3.3 and JBoss Cache 2.1, the conflicting requirements
between the different cache types led to a real dilemna, particularly if query
caching was enabled. This conflict arose because all four cache types

The RegionFactory Interface

Hibernate 3.3.1.GA 15

needed to share a single underlying cache, with a single configuration. If
query caching was enabled, the requirements of the timestamps cache
basically forced use of synchronous replication, which is the worst performing
choice for the more critical entity cache and is often inappropriate for the
query cache.

With Hibernate 3.3 and JBoss Cache 2.1 it has become possible, even easy,
to use separate underlying JBoss Cache instances for the different cache
types. As a result, the entity cache can be optimally configured for entities
while the necessary configuration for the timestamps cache is maintained.

There were three key changes that make this improvement possible:

2.3.1. The RegionFactory Interface

As mentioned previously, Hibernate 3.3 introduced the RegionFactory API
as its mechanism for managing the Second Level Cache. This API makes it
possible for implementations to know at all times whether they are working
with entities, collections, queries or timestamps. That knowledge allows the
Hibernate/JBoss Cache integration layer to make the best use of the various
options JBoss Cache provides.

A Hibernate user doesn't need to understand the RegionFactory API in
any detail at all; the main point is internally it makes possible independent
management of the different cache types.

2.3.2. The CacheManager API

The CacheManager API is a new feature of JBoss Cache 2.1. It provides an
API for managing multiple distinct JBoss Cache instances in the same VM.
Basically a CacheManager is instantiated and provided a set of named cache
configurations. An application like the Hibernate/JBoss Cache integration
layer accesses the CacheManager and asks for a cache configured with a
particular named configuration.

Again,a Hibernate user doesn't need to understand the CacheManager; it's an
internal detail. The thing to understand is that the task of a Hibernate Second
Level Cache user is to:

• Provide a set of named JBoss Cache configurations in an XML
file (or just use the default set included in the jbc2-configs.xml
file found in the org.hibernate.cache.jbc2.builder package in
hibernate-jbosscache2.jar).

• Tell Hibernate which cache configurations to use for entity, collection,
query and timestamp caching. In practice, this can be quite simple, as
there is a reasonable set of defaults.

Chapter 2. Core Concepts

16 Hibernate 3.3.1.GA

See Chapter 3, Configuration for more on how to do this.

2.3.3. Sharable JGroups Resources

JGroups is the group communication library JBoss Cache uses to send
messages around a cluster. Each cache has a JGroups Channel; different
channels around the cluster that have the same name and compatible
configurations detect each other and form a group for message transmission.

A Channel is a fairly heavy object, typically using a good number of threads,
several sockets and some good sized network I/O buffers. Creating multiple
different channels in the same VM was therefore costly, and was an
administrative burden as well, since each channel would need separate
configuration to use different network addresses or ports. Architecturally, this
mitigated against having multiple JBoss Cache instances in an application,
since each would need its own Channel.

Added in JGroups 2.5 and much improved in the JGroups 2.6 series is the
concept of sharable JGroups resources. Basically, the heavyweight JGroups
elements can be shared. An application (e.g. the Hibernate/JBoss Cache
integration layer) uses a JGroups ChannelFactory. The ChannelFactory
is provided with a set of named channel configurations. When a Channel
is needed (e.g. by a JBoss Cache instance), the application asks the
ChannelFactory for the channel by name. If different callers ask for a channel
with the same name, the ChannelFactory ensures that they get channels that
share resources.

The effect of all this is that if a user wants to use four separate JBoss Cache
instances, one for entity caching, one for collection caching, one for query
caching and one for timestamp caching, those four caches can all share the
same underlying JGroups resources.

The task of a Hibernate Second Level Cache user is to:

• Provide a set of named JGroups configurations in an XML file (or
just use the default set included in the jgroups-stacks.xml file
found in the org.hibernate.cache.jbc2.builder package in the
hibernate-jbosscache2.jar).

• Tell Hibernate where to find that set of configurations on the classpath.
See Section 3.1, “Configuring the Hibernate Session Factory” for details
on how to do this. This is not necessary if the default set included in
hibernate-jbosscache2.jar is used.

• In the JBoss Cache configurations you are using specify the name of the
channel you want to use. This should be one of the named configurations

Bringing It All Together

Hibernate 3.3.1.GA 17

in the JGroups XML file. The default set of JBoss Cache configurations
found in the hibernate-jbosscache2.jar already have appropriate default
choices. See Section 3.2.3.4, “JGroups Channel Configuration” for details
on how to set this if you don't wish to use the defaults.

See Section 3.3, “JGroups Configuration” for more on JGroups.

2.3.4. Bringing It All Together

So, we've seen that Hibernate caches up to four different types of data
(entities, collections, queries and timestamps) and that Hibernate 3.3 + JBoss
Cache 2 gives you the flexibility to use a separate underlying JBoss Cache,
with different behavior, for each type. You can actually deploy four separate
caches, one for each type.

In practice, four separate caches are unnecessary. For example, entities
and collection caching have similar enough semantics that there is no
reason not to share a JBoss Cache instance between them. The queries
can usually use the same cache as well. Similarly, queries and timestamps
can share a JBoss Cache instance configured for replication, with the
hibernate.cache.region.jbc2.query.localonly=true configuration letting you
turn off replication for the queries if you want to.

Here's a decision tree you can follow:

1. Decide if you want to enable query caching.

2. Decide if you want to use invalidation or replication for your entities
and collections. Invalidation is generally recommended for entities and
collections.

• If you want invalidation, and you want query caching, you will need
two JBoss Cache instances, one with synchronous invalidation for the
entities and collections, and one with synchronous replication for the
timestamps. The queries will go in the timestamp cache if you want
them to replicate; they can go with the entities and collections otherwise.

• If you want invalidation but don't want query caching, you can use a
single JBoss Cache instance, configured for synchronous invalidation.

• If you want replication, whether or not you want query caching, you
can use a single JBoss Cache instance, configured for synchronous
replication.

3. If you are using query caching, from the above decision tree you've either
got your timestamps sharing a cache with other data types, or they are by

Chapter 2. Core Concepts

18 Hibernate 3.3.1.GA

themselves. Either way, the cache being used for timestamps must have
initial state transfer enabled. Now, if the timestamps are sharing a cache
with entities, collections or queries, decide whether you want initial state
transfer for that other data. See Section 2.2.5, “Initial State Transfer” for
the implications of this. If you don't want initial state transfer for the other
data, you'll need to have a separate cache for the timestamps.

4. Finally, if your queries are sharing a cache configured for replication,
decide if you want the cached query results to replicate. (The
timestamps cache must replicate.) If not, you'll want to set the
hibernate.cache.region.jbc2.query.localonly=true option when you
configure your SessionFactory

Once you've made these decisions, you know whether you need just one
underlying JBoss Cache instance, or more than one. Next we'll see how to
actually configure the setup you've selected.

Hibernate 3.3.1.GA 19

Chapter 3. Configuration
There are three main areas of configuration involved in using JBoss
Cache 2 for your Hibernate Second Level Cache: configuring the
Hibernate SessionFactory, configuring the underlying JBoss Cache
instance(s), and configuring the JGroups ChannelFactory. If you use
the standard JBoss Cache and JGroups configurations that ship with
the hibernate-jbosscache2.jar, then all you need to worry about is the
SessionFactory configuration.

3.1. Configuring the Hibernate Session Factory

3.1.1. Basics

There are five basic steps to configuring the SessionFactory:

• Make sure your Hibernate is configured to use JTA transactions. See
Section 1.2.2, “JTA Transactional Support” for details.

• Tell Hibernate you whether to enable caching of entities and collections.
No need to set this property if you don't:

hibernate.cache.use_second_level_cache=true

• Tell Hibernate you want to enable caching of query results. No need to set
this property if you don't:

hibernate.cache.use_query_cache=true

• If you have enabled caching of query results, tell Hibernate if you want to
suppress costly replication of those results around the cluster. No need to
set this property if you want query results replicated:

hibernate.cache.region.jbc2.query.localonly=true

• Finally, you need to tell Hibernate what RegionFactory implementation
to use to manage your caches. You do this by setting the
hibernate.cache.region.factory_class configuration option.

hibernate.cache.region.factory_class=

 org.hibernate.cache.jbc2.MultiplexedJBossCacheRegionFactory

To determine the correct factory class, you must decide whether you need
just one underlying JBoss Cache instance to support the different types

Chapter 3. Configuration

20 Hibernate 3.3.1.GA

of caching you will be doing, or whether you need more than one. See
Chapter 2, Core Concepts and particularly Section 2.3.4, “Bringing It All
Together” for more on how to make that decision. Once you know the
answer, see Section 3.1.2, “Specifying the RegionFactory Implementation”
to find the factory class that best meets your needs.

Once you've specified your factory class, there may be other
factory-class-specific configurations you may want to set. The available
options are explained below.

3.1.2. Specifying the RegionFactory Implementation

Hibernate 3.3 ships with the following RegionFactory implementations that
work with JBoss Cache 2. Select the one that is appropriate to your needs
and use it with the hibernate.cache.region.factory_class configuration
option.

org.hibernate.cache.jbc2.SharedJBossCacheRegionFactory

Instantiates a single JBoss Cache instance for use with all cache data
types (entities, collections, queries, timestamps).

org.hibernate.cache.jbc2.JndiSharedJBossCacheRegionFactory

Uses a single JBoss Cache instance for all cache data types. However,
does not instantiate the JBoss Cache instance itself; instead looks for
an existing cache in JNDI. This allows sharing of a single JBoss Cache
instance across multiple Hibernate session factories running in the same
environment.

org.hibernate.cache.jbc2.MultiplexedJBossCacheRegionFactory

Supports using multiple JBoss Cache instances with different cache data
types (entities, collections, queries, timestamps) assigned to different
JBoss Cache instances. Instantiates a JBoss Cache CacheManager to
manage the JBoss Cache instances.

org.hibernate.cache.jbc2.JndiMultiplexedJBossCacheRegionFactory

Functions like JndiMultiplexedJBossCacheRegionFactory, but instead of
instantiating its own CacheManager it looks for an existing one in JNDI.
This allows sharing of the various JBoss Cache instances across multiple
Hibernate session factories running in the same environment.

3.1.3. The SharedJBossCacheRegionFactory

The SharedJBossCacheRegionFactory supports a number of additional
configuration options:

The JndiSharedJBossCacheRegionFactory

Hibernate 3.3.1.GA 21

hibernate.cache.region.jbc2.cfg.shared

Classpath or filesystem resource containing JBoss Cache configuration
settings the underlying cache should use. Default value is treecache.xml.

hibernate.cache.region.jbc2.cfg.multiplexer.stacks

Classpath or filesystem resource containing JGroups protocol
stack configurations the ChannelFactory should use. Default is
org/hibernate/cache/jbc2/builder/jgroups-stacks.xml, a file found in the
hibernate-jbosscache2.jar.

Note that the default treecache.xml file does not exist; it is up to the user to
provide it.

3.1.4. The JndiSharedJBossCacheRegionFactory

The JndiSharedJBossCacheRegionFactory supports an additional configuration
option:

hibernate.cache.region.jbc2.cfg.shared

Specifies the JNDI name under which the JBoss Cache instance to use is
bound. Note that although this configuration property has the same name
as the one used by SharedJBossCacheRegionFactory, the meaning here
is different. Note also that in this class' usage of the property, there is no
default value -- the user must specify the property.

The JndiSharedJBossCacheRegionFactory requires that the JBoss Cache
instance is already bound in JNDI; it will not create and bind one if it isn't. It is
up to the the user to ensure the cache is created and bound in JNDI before
the Hibernate SessionFactory is created.

3.1.5. The MultiplexedJBossCacheRegionFactory

The MultiplexedJBossCacheRegionFactory supports a number of additional
configuration options:

hibernate.cache.region.jbc2.configs

Classpath or filesystem resource containing JBoss Cache
configurations the CacheManager should use. Default is
org/hibernate/cache/jbc2/builder/jbc2-configs.xml, a file found in the
hibernate-jbosscache2.jar.

hibernate.cache.region.jbc2.cfg.multiplexer.stacks

Classpath or filesystem resource containing JGroups protocol
stack configurations the ChannelFactory should use. Default is
org/hibernate/cache/jbc2/builder/jgroups-stacks.xml, a file found in the
hibernate-jbosscache2.jar.

Chapter 3. Configuration

22 Hibernate 3.3.1.GA

hibernate.cache.region.jbc2.cfg.entity

Name of the configuration that should be used for entity caches. Default
value is optimistic-entity.

hibernate.cache.region.jbc2.cfg.collection

Name of the configuration that should be used for collection caches. No
default value, as by default we try to use the same JBoss Cache instance
that is used for entity caching.

hibernate.cache.region.jbc2.cfg.ts

Name of the configuration that should be used for timestamp caches.
Default value is timestamps-cache.

hibernate.cache.region.jbc2.cfg.query

Name of the configuration that should be used for query caches. By
default, tries to use the same cache as is used for entity caching. If there
is no entity cache, the default value is local-query.

Many of the default values name JBoss Cache configurations in the
standard jbc2-configs.xml file found in the hibernate-jbosscache2.jar. See
Section 3.2.4, “Standard JBoss Cache Configurations” for details on those
configurations. If you want to set hibernate.cache.region.jbc2.configs and
use your own JBoss Cache configuration file, you can still take advantage of
these default names; just name the configurations in your file to match.

This is all looks a bit complex, so let's show what happens if you just
configure the defaults, with query caching enabled:

hibernate.cache.use_second_level_cache=true

hibernate.cache.use_query_cache=true

hibernate.cache.region.factory_class=

 org.hibernate.cache.jbc2.MultiplexedJBossCacheRegionFactory

You would end up using two JBoss Cache instances:

• One, for the entities, collection and queries, would use the
optimistic-entity configuration. This cache would use optimistic locking,
synchronous invalidation and would disable initial state transfer.

• The second, for timestamps, would use the timestamps-cache
configuration. This cache would use pessimistic locking, asynchronous
replication and would enable initial state transfer.

See Section 3.2.4, “Standard JBoss Cache Configurations” for more on these
standard cache configurations.

If you hadn't set hibernate.cache.use_query_cache=true you'd just have the
single optimistic-entity cache, shared by the entities and collections.

The
JndiMultiplexedJBossCacheRegionFactory

Hibernate 3.3.1.GA 23

3.1.6. The JndiMultiplexedJBossCacheRegionFactory

The JndiMultiplexedJBossCacheRegionFactory supports the following
additional configuration options:

hibernate.cache.region.jbc2.cachefactory

Specifies the JNDI name under which the CacheManager to use is bound.
There is no default value -- the user must specify the property.

hibernate.cache.region.jbc2.cfg.entity

Name of the configuration that should be used for entity caches. Default
value is optimistic-entity.

hibernate.cache.region.jbc2.cfg.collection

Name of the configuration that should be used for collection caches. No
default value, as by default we try to use the same JBoss Cache instance
that is used for entity caching.

hibernate.cache.region.jbc2.cfg.ts

Name of the configuration that should be used for timestamp caches.
Default value is timestamps-cache.

hibernate.cache.region.jbc2.cfg.query

Name of the configuration that should be used for query caches. By
default, tries to use the same cache as is used for entity caching. If there
is no entity cache, the default value is local-query.

See Section 3.1.5, “The MultiplexedJBossCacheRegionFactory” for a
discussion of how the various hibernate.cache.region.jbc2.cfg options
combine to determine what JBoss Cache instances are used.

The JndiMultiplexedJBossCacheRegionFactory requires that the JBoss Cache
CacheManager is already bound in JNDI; it will not create and bind one if it
isn't. It is up to the the user to ensure the cache is CacheManager and bound in
JNDI before the Hibernate SessionFactory is created.

3.2. Configuring JBoss Cache

JBoss Cache provides a great many different configuration options; here we
are just going to look at a few that are most relevant to the Second Level
Cache use case. Please see the JBoss Cache User Guide for full details.

3.2.1. Configuring a Single Standalone Cache

To configure a single standalone cache (i.e. for use by a
SharedJBossCacheRegionFactory), you need to create a standard JBoss Cache

Chapter 3. Configuration

24 Hibernate 3.3.1.GA

XML configuration file and place it on the classpath. See the JBoss Cache
User Guide and the JBoss Cache distribution for examples of JBoss Cache
configuration files.

If the resource path to your file is treecache.xml, the
SharedJBossCacheRegionFactory will find it by default; otherwise you will need
to use a configuration option to tell it where it is. See Section 3.1.3, “The
SharedJBossCacheRegionFactory” for instruction on how to do that.

3.2.2. Managing Multiple Caches via a CacheManager

If you are using MultiplexedJBossCacheRegionFactory you will need to provide
a set of JBoss Cache configurations for its CacheManager to use. (Or, use the
set in the jbc2-configs.xml file that ships with hibernate-jbosscache2.jar.)
The XML file used by a CacheManager is very similar to the usual config file
used by a standalone cache; the biggest difference is it can include multiple,
named, configurations. The format looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<cache-configs>

 <!-- A config appropriate for entity/collection caching. -->

 <cache-config name="optimistic-entity">

 <!-- Node locking scheme -->

 <attribute name="NodeLockingScheme">OPTIMISTIC</attribute>

 other configuration attributes

 </cache-config>

 <!-- A config appropriate for entity/collection caching that

 uses pessimistic locking -->

 <cache-config name="pessimistic-entity">

 <!-- Node locking scheme -->

 <attribute name="NodeLockingScheme">PESSIMISTIC</attribute>

 other configuration attributes

 </cache-config>

</cache-configs>

Each <cache-config> element contains a complete cache configuration,
with the same contents as what you would place in the <mbean> element in a
standalone cache configuration file. The name attribute on the <cache-config>

JBoss Cache Configuration Details

Hibernate 3.3.1.GA 25

element provides the identifier for the configuration; users of the CacheManager
will provide this name when requesting a JBoss Cache instance that uses
this configuration.

3.2.3. JBoss Cache Configuration Details

Let's look at how to specify a few of the JBoss Cache configuration options
that are most relevant to the Hibernate use case.

3.2.3.1. CacheMode

The JBoss Cache CacheMode attribute encapsulates whether the cache
uses replication, invalidation or local mode, as well as whether messages
should be synchronous or asynchronous. See Section 2.2.1, “Replication
vs. Invalidation vs. Local Mode” and Section 2.2.2, “Synchronous vs.
Asynchronous” for a discussion of these concepts.

The CacheMode is configured as follows:

<!-- Legal modes are LOCAL

 REPL_ASYNC

 REPL_SYNC

 INVALIDATION_ASYNC

 INVALIDATION_SYNC

-->

<attribute name="CacheMode">INVALIDATION_SYNC</attribute>

3.2.3.2. NodeLockingScheme

The JBoss Cache NodeLockingScheme attribute configures whether
optimistic locking or pessimistic locking should be used. See Section 2.2.3,
“Locking Scheme” for a discussion of locking.

The NodeLockingScheme is configured as follows:

<!-- Node locking scheme:

 OPTIMISTIC

 PESSIMISTIC (default)

-->

<attribute name="NodeLockingScheme">OPTIMISTIC</attribute>

3.2.3.3. IsolationLevel

The JBoss Cache IsolationLevel attribute configures whether
READ_COMMITTED or REPEATABLE_READ semantics are needed if
pessimistic locking is used. It has no effect if optimistic locking is used. See
Section 2.2.4, “Isolation Level” for a discussion of isolation levels.

Chapter 3. Configuration

26 Hibernate 3.3.1.GA

The IsolationLevel is configured as follows:

<!-- Isolation level:

 READ_COMMITTED

 REPEATABLE_READ

-->

<attribute name="IsolationLevel">READ_COMMITTED</attribute>

3.2.3.4. JGroups Channel Configuration

Each JBoss Cache instance (except those with CacheMode LOCAL) will
need a JGroups Channel. The cache configuration needs to tell JGroups how
to set up the channel's protocol stack. This is configured as follows:

<attribute name="MultiplexerStack">udp</attribute>

An alternate approach is to include the full protocol stack configuration in the
JBoss Cache configuration:

<!-- JGroups protocol stack properties. -->

<attribute name="ClusterConfig">

 <config>

 <UDP mcast_addr="228.10.10.10"

 mcast_port="45588"

 tos="8"

 ... many more details

 <pbcast.STATE_TRANSFER/>

 <pbcast.FLUSH timeout="0"/>

 </config>

</attribute>

See Section 3.3, “JGroups Configuration” for more on JGroups configuration.

3.2.3.5. Initial State Transfer

See Section 2.2.5, “Initial State Transfer” for a discussion of the concept of
initial state transfer.

Initial State Transfer is configured as follows:

<!-- Whether or not to fetch state on joining a cluster. -->

<attribute name="FetchInMemoryState">false</attribute>

3.2.3.6. Region-Based Marshalling

JBoss Cache includes a feature called Region Based Marshalling that
helps ensure the correct classloader is in place when objects are serialized

Standard JBoss Cache Configurations

Hibernate 3.3.1.GA 27

and deserialized as part of replication and invalidation messages. This
feature adds some overhead, but it allows your cache to work in complex
classloading environments such as those found in many application servers.
It can be disabled if your application meets the following criteria:

• No cached entities use custom types (i.e. types persisted as BLOBs or
CLOBs or as a Hibernate UserType) in their fields, and no entities use
complex primary keys.

• OR all custom types and complex primary key types are visible to the
classloader that loads JGroups.

Region based marshalling is configured as follows:

<!--

 Whether to use marshalling or not. Default is "false".

-->

<attribute name="UseRegionBasedMarshalling">true</attribute>

<!-- Must match the value of "UseRegionBasedMarshalling" -->

<attribute name="InactiveOnStartup">true</attribute>

Region based marshalling is enabled in the standard cache configurations
that ship with hibernate-jbosscache2.jar

3.2.3.7. Eviction

This topic deserves a chapter of it's own. See Chapter 4, Cache Eviction.

3.2.4. Standard JBoss Cache Configurations

Hibernate ships with a number of standard JBoss Cache configurations in
the hibernate-jbosscache2.jar's jbc2-configs.xml file. The following table
highlights the key features of each configuration.

Chapter 3. Configuration

28 Hibernate 3.3.1.GA

Table 3.1. Standard JBoss Cache Configurations

Name Valid For Optimal
For

CacheMode Locking State
Transfer

optimistic-
entity

E/C/Q E/C/Q INVALIDATION_SYNCOPTIMISTICno

pessimistic-
entity

E/C/Q E/C/Q INVALIDATION_SYNCPESSIMISTICno

local-
query

Q Q LOCAL PESSIMISTICno

replicated-
query

Q -- LOCAL OPTIMISTICno

timestamps-
cache

T T REPL_ASYNC PESSIMISTICyes

optimistic-
shared

E/C/Q/T -- REPL_SYNC OPTIMISTICyes

pessimistic-
shared

E/C/Q/T -- REPL_SYNC PESSIMISTICyes

A few notes on the above table:

• Valid For and Optimal For describe the suitability of the configuration for
the four types of data -- Entities, Collections, Queries and Timestamps.

• State Transfer indicates whether an initial state transfer will be performed
when a cache region is activated.

• Each of the configurations uses the udp JGroups protocol stack
configuration (except local-query, which doesn't use JGroups at all). Since
they all use the same stack, if more than one of these caches is created
they will share their JGroups resources. See Section 3.3.2, “Standard
JGroups Configurations” for a description of the standard stacks.

• The configurations that use PESSIMISTIC locking use isolation
level READ_COMMITTED. There are also two other standard
configurations not shown in the table that use REPEATABLE_READ:
pessimistic-entity-repeatable and pessimistic-shared-repeatable. In all
other respects those configurations are the same as the similarly named
non- "-repeatable" configurations shown in the table.

These standard configurations are a good choice for many applications. The
primary reason users may want to use their own configurations is to support
more complex eviction setups. See Chapter 4, Cache Eviction for more on
the kinds of things you can do with eviction.

JGroups Configuration

Hibernate 3.3.1.GA 29

3.3. JGroups Configuration

JGroups configuration is a complex area that goes well beyond the scope of
this document. Users interested in exploring the details are encouraged to
visit the JGroups website at http://www.jgroups.org as well as the JGroups
wiki page at jboss.com.

The jgroups-stacks.xml file found in the org.hibernate.cache.jbc2.builder
package in the hibernate-jbosscache2.jar provides a good set of standard
JGroups configurations; these should be suitable for most needs. If you need
to create your own configuration set, we recommend that you start with this
file as a base.

3.3.1. Transport -- UDP vs. TCP

The JGroups transport refers to the mechanism JGroups uses for sending
messages to the group members. Choosing which transport to use is the
main JGroups-related decision users will need to make. There are three
transport types:

• UDP -- uses UDP multicast for transmitting messages to all members of
the group. Multicast is efficient for the Second Level Cache use case,
particularly with larger clusters, since maintaining cache consistency
means many messages need to be sent to all members. UDP-based
channel configurations are used in the JBoss Cache configurations in the
standard jbc2-configs.xml file that ships with Hibernate.

• TCP -- uses multiple TCP unicasts for transmitting messages to all
members of the group. Less efficient for the Second Level Cache use
case, particularly as clusters get larger, i.e. over 4 to 6 nodes. However, in
some network environments UDP multicast is not an option, in which case
TCP is available.

If a TCP-based channel is used, there are a couple of options available
for how a channel "discovers" the other members in the group when it first
starts.

• TCP + TCPPING -- here a static list of all the possible nodes in the
cluster must be provided. The TCPPING "discovery" protocol uses
that static list to probe for available peers, using TCP messages. The
downside here is the need to provide and maintain the static list. The
upside, for multicast-averse environments, is all communication uses
TCP.

• TCP + MPING -- here the MPING "discovery" protocol uses UDP
multicast to probe for available peers; once they are detected all regular

Chapter 3. Configuration

30 Hibernate 3.3.1.GA

message traffic uses TCP. The downside here, for the multicast-averse,
is that multicast is used. The upside is there is no need for a static
configuration of all possible peers.

The TCP-based configurations in the jgroups-stacks.xml file found
in hibernate-jbosscache2.jar all use TCP + MPING. This is because
there is no way for the Hibernate authors to provide a meaningful static
configuration for TCPPING. If you want to use TCP + TCPPING you will
need to provide your own JGroups configuration file.

• TUNNEL -- a specialized protocol designed for cases where cluster
members need to communicate across firewalls. See the JGroups
documentation for details.

3.3.2. Standard JGroups Configurations

By default the Second Level Cache will use JGroups configurations found in
the jgroups-stacks.xml file included in hibernate-jbosscache2.jar. Following
are their names and a brief description of each:

udp

UDP multicast-based config; appropriate for all cache types. Includes
JGroups flow control (FC) which is needed for caches that send
significant numbers of asynchronous messages (i.e. timestamp caches
and entity/collection caches configured for replication instead of
invalidation). If you're not sure and want to use UDP multicast, this is the
best choice.

udp-sync

UDP multicast-based config that omits JGroups flow control (FC).
Optimal for caches that send little or no asynchronous messages,
i.e. entity/collection caches configured for invalidation. Unsuitable for
timestamp caches or entity/collection caches configured for replication.

tcp

TCP-based config with UDP multicast discovery (MPING). Includes
JGroups flow control (FC); see udp above for the significance of that.

tcp-sync

TCP-based config with UDP multicast discovery (MPING). Omits JGroups
flow control (FC); see udp-sync above for the significance of that.

tunnel

Uses a specialized protocol designed for cases where cluster members
need to communicate across firewalls. See the JGroups documentation
for details.

Hibernate 3.3.1.GA 31

Chapter 4. Cache Eviction

4.1. Overview

Eviction refers to the process by which old, relatively unused, or excessively
voluminous data can be dropped from the cache, allowing the cache to
remain within a memory budget. Generally, applications that use the Second
Level Cache should configure eviction, unless only a relatively small amount
of reference data is cached. This chapter provides a brief overview of how
JBoss Cache eviction works, and then explains how to configure eviction to
effectively manage the data stored in a Hibernate Second Level Cache. A
basic understanding of JBoss Cache eviction and of concepts like FQNs is
assumed; see the JBoss Cache User Guide for more information.

4.1.1. The Eviction Process

The JBoss Cache eviction process is fairly straightforward. Whenever a
node in a cache read or written to, added or removed, the cache finds the
eviction region (see below) that contains the node and passes an eviction
event object to the eviction policy (see below) associated with the region. The
eviction policy uses the stream of events it receives to track activity in the
region. Periodically, a background thread runs and contacts each region's
eviction policy. The policy uses its knowledge of the activity in the region,
along with any configuration it was provided at startup, to determine which
if any cache nodes should be evicted from memory. It then tells the cache
to evict those nodes. Evicting a node means dropping it from the cache's
in-memory state. The eviction only occurs on that cache instance; there is no
cluster-wide eviction.

An important point to understand is that eviction proceeds independently on
each peer in the cluster, with what gets evicted depending on the activity
on that peer. There is no "global eviction" where JBoss Cache removes a
piece of data in every peer in the cluster in order to keep memory usage
inside a budget. The Hibernate/JBC integration layer may remove some data
globally, but that isn't done for the kind of memory management reasons
we're discussing in this chapter.

An effect of this is that even if a cache is configured for replication, if eviction
is enabled the contents of a cache will be different between peers in the
cluster; some may have evicted some data, while others will have evicted
different data. What gets evicted is driven by what data is accessed by users
on each peer.

Chapter 4. Cache Eviction

32 Hibernate 3.3.1.GA

Controlling when data is evicted from the cache is a matter of setting up
appropriate eviction regions and configuring appropriate eviction policies for
each region.

4.1.2. Eviction Regions

JBoss Cache stores its data in a set of nodes organized in a tree structure.
An eviction region is a just a portion of the tree to which an eviction policy
has been assigned. The name of the region is the FQN of the topmost node
in that portion of the tree. An eviction configuration always needs to include a
special region named _default_; this region is rooted in the root node of the
tree and includes all nodes not covered by other regions.

It's possible to define regions that overlap. In other words, one region can be
defined for /a/b/c, and another defined for /a/b/c/d (which is just the d subtree
of the /a/b/c sub-tree). The algorithm that assigns eviction events to eviction
regions handles scenarios like this consistently by always choosing the first
region it encounters. So, if the algorithm needed to decide how to handle an
event affecting /a/b/c/d/e, it would start from there and work its way up the
tree until it hits the first defined region - in this case /a/b/c/d.

4.1.3. Eviction Policies

An Eviction Policy is a class that knows how to handle eviction events to
track the activity in its region. It may have a specialized set of configuration
properties that give it rules for when a particular node in the region should be
evicted. It can then use that configuration and its knowledge of activity in the
region to to determine what nodes to evict.

JBoss Cache ships with a number of eviction policies. See the JBoss Cache
User Guide for a discussion of all of them. Here we are going to focus on just
two.

4.1.3.1. The LRUPolicy

The org.jboss.cache.eviction.LRUPolicy evicts nodes that have been Least
Recently Used. It has the following configuration parameters:

• maxNodes - This is the maximum number of nodes allowed in this region. 0
denotes no limit. If the region has more nodes than this, the least recently
used nodes will be evicted until the number of nodes equals this limit.

• timeToLiveSeconds - The amount of time a node is not written to or read (in
seconds) before the node should be evicted. 0 denotes no limit. Nodes that

Organization of Data in the Cache

Hibernate 3.3.1.GA 33

exceed this limit will be evicted whether or not a maxNodes limit has been
breached.

• maxAgeSeconds - Lifespan of a node (in seconds) regardless of idle time
before the node is swept away. 0 denotes no limit. Nodes that exceed this
limit will be evicted whether or not a maxNodes or timeToLiveSeconds limit
has been breached.

• minTimeToLiveSeconds - the minimum amount of time a node must be
allowed to live after being accessed before it is allowed to be considered
for eviction. 0 denotes that this feature is disabled, which is the default
value. Should be set to a value less than timeToLiveSeconds. It is
recommended that this be set to a value slightly greater than the maximum
amount of time a transaction that affects the region should take to
complete. Configuring this is particularly important when optimistic locking
is used in conjunction with invalidation.

4.1.3.2. The NullEvictionPolicy

The org.jboss.cache.eviction.NullEvictionPolicy is a simple policy
that very efficiently does ... nothing. It is used to efficiently short-circuit
eviction handling for regions where you don't want objects to be evicted
(e.g. the timestamps cache, which should never have data evicted). Since
the NullEvictionPolicy doesn't actually evict anything, it doesn't take any
configuration parameters.

4.2. Organization of Data in the Cache

In order to understand how to configure eviction, you need to understand
how Hibernate organizes data in the cache.

4.2.1. Region Prefix and Region Name

All FQNs in a second level cache include two elements:

• A Region Prefix, which is simply any value assigned to the
hibernate.cache.region_prefix Hibernate configuration property. If no
Region Prefix is set, this portion of the FQN is omitted.

If different session factories are sharing the same underlying JBoss Cache
instance(s) it is strongly encouraged that a distinct Region Prefix be
assigned to each. This will help ensure that the different session factories
cache their data in different subtrees in JBoss Cache.

• A Region Name, which is either

Chapter 4. Cache Eviction

34 Hibernate 3.3.1.GA

• any value assigned to a <cache> element's region attribute in a class or
collection mapping. See Section 4.2.2, “Entities” for an example.

• Any value assigned to a Hibernate Query object's cacheRegion property.
See Section 4.2.4, “Queries” for an example.

• The escaped class name of the type being cached. An escaped class
name is simply a fully-qualified class name with any . replaced with a /
-- for example org/example/Foo.

4.2.2. Entities

The FQN for the cache region where entities of a particular class are stored
is derived as follows:

/ + Region Prefix + / + Region Name + /ENTITY

If no region prefix was specified, the leading / and Region Prefix is not
included in the FQN. So, if hibernate.cache.region_prefix was set to "appA"
and a class was mapped like this:

<class name="org.example.Foo">

 <cache usage="transactional" region="foo_region"/>

</class>

The FQN of the region where Foo entities would be cached is
/appA/foo_region/ENTITY.

If the class mapping does not include a region attribute, the region name is
based on the name of the entity class, e.g.

<class name="org.example.Bar">

 <cache usage="transactional"/>

</class>

the FQN of the region where Bar entities would be cached is
/appA/org/example/Bar/ENTITY.

4.2.3. Collections

The FQN for the cache region where entities of a particular class is stored is
derived as follows:

/ + Region Prefix + / + Region Name + /COLL

Queries

Hibernate 3.3.1.GA 35

So, let's say our example Foo entity included a collection field bars that we
wanted to cache:

<class name="org.example.Foo">

 <cache usage="transactional"/>

 <set name="bars">

 <cache usage="transactional" region="foo_region"/>

 <key column="FOO_ID"/>

 <one-to-many class="org.example.Bar"/>

 </set>

</class>

The FQN of the region where the collection would be cached would be
/appA/foo_region/COLL.

If the collection's <cache> element did not include a region, the FQN would be
/appA/org/example/Foo/COLL.

4.2.4. Queries

Queries follow this pattern:

/ + Region Prefix + / + Region Name + /QUERY

Say we had the following query (again with a region prefix set to "appA"):

List blogs = sess.createQuery("from Blog blog " +

 "where blog.blogger = :blogger")

 .setEntity("blogger", blogger)

 .setMaxResults(15)

 .setCacheable(true)

 .setCacheRegion("frontpages")

 .list();

The FQN of the region where this query's results would be cached would be
/appA/frontpages/QUERY.

If the call to setCacheRegion("frontpages") were ommitted, the Region
Name portion of the FQN would be based on a Hibernate class:
/appA/org/hibernate/cache/StandardQueryCache/QUERY

4.2.5. Timestamps

Timestamps follow this pattern:

/TS/ + Region Prefix + /org/hibernate/cache/UpdateTimestampsCache

again with a / and the Region Prefix portion omitted if no region prefix was
set.

Chapter 4. Cache Eviction

36 Hibernate 3.3.1.GA

Note that in the timestamps case the special constant ("TS") comes at the
start of the FQN rather than the end. This makes it easier to ensure that
eviction is never enabled for the timestamps region.

4.3. Example Configuration

So far we've been looking at things in the abstract; let's see an example
of how this comes together. In this example, imagine we have a Hibernate
application with the following characteristics.

• Query caching is enabled.

• There is a region prefix set as part of the Hibernate configuration:
hibernate.cache.region_prefix==appA

• Some cachable entities and collections have a region name of "reference"
set in their Hibernate mapping.

• Some cachable queries have the "reference" region name set when they
are created.

• Other cachable entities and collections in the org.example.hibernate
package don't have a region name set in their Hibernate mapping.

• Other cachable queries don't have a region name set when they are
created.

Let's see a possible eviction configuration for this scenario:

<attribute name="EvictionPolicyConfig">

 <config>

 <attribute name="wakeUpIntervalSeconds">5</attribute>

 <attribute

 name="policyClass">org.jboss.cache.eviction.LRUPolicy</attribute>

 <!--

 Default region to pick up anything we miss in the more

 specific regions below.

 -->

 <region name="/_default_">

 <attribute name="maxNodes">500</attribute>

 <attribute name="timeToLiveSeconds">300</attribute>

 <attribute name="minTimeToLiveSeconds">120</attribute>

 </region>

 <!-- Don't ever evict modification timestamps -->

 <region name="/TS"

 policyClass="org.jboss.cache.eviction.NullEvictionPolicy"/>

Example Configuration

Hibernate 3.3.1.GA 37

 <!-- Reference data -->

 <region name="/appA/reference">

 <!-- Keep all reference data if it's being used -->

 <attribute name="maxNodes">0</attribute>

 <!-- Keep it around a long time (4 hours) -->

 <attribute name="timeToLiveSeconds">14400</attribute>

 <attribute name="minTimeToLiveSeconds">120</attribute>

 </region>

 <!-- Be more aggressive about queries on reference data -->

 <region name="/appA/reference/QUERY">

 <attribute name="maxNodes">200</attribute>

 <attribute name="timeToLiveSeconds">1000</attribute>

 <attribute name="minTimeToLiveSeconds">120</attribute>

 </region>

 <!--

 Lots of entity instances from this package, but different

 users are unlikely to share them. So, we can cache

 a lot, but evict unused ones pretty quickly.

 -->

 <region name="/appA/org/example/hibernate">

 <attribute name="maxNodes">50000</attribute>

 <attribute name="timeToLiveSeconds">1200</attribute>

 <attribute name="minTimeToLiveSeconds">120</attribute>

 </region>

 <!-- Clean up misc queries very promptly -->

 <region name="/appA/org/hibernate/cache/StandardQueryCache">

 <attribute name="maxNodes">200</attribute>

 <attribute name="timeToLiveSeconds">240</attribute>

 <attribute name="minTimeToLiveSeconds">120</attribute>

 </region>

 </config>

</attribute>

Notes on the above:

• The wakeUpIntervalSeconds configuration controls how often the
background eviction process kicks in to evict nodes.

• The first policyClass configuration sets the default eviction policy class to
use for each region. Here we want to use the standard LRUPolicy This can
be overridden on a per-region basis, as is done here for the /TS region.

• We set up a /_default_ region. Having such a region is a requirement if
eviction is used. Here we don't expect any data to end up in this default
region, but if by mistake someone adds a new entity type that doesn't fall
into one of our other regions, we may not have a large memory budget for
it so we evict fairly agressively.

Chapter 4. Cache Eviction

38 Hibernate 3.3.1.GA

• Evicting timestamps is forbidden, so we add a /TS region that disables it.
Here we see how to override the default eviction policy.

• The /appA/reference region covers our reference data entities and
collections. This is our most likely to be reused data, so we configure the
cache to be very slow to evict it.

• The queries related to our reference data are less likely to be reused, and
may take up a lot of memory, so we override the /appA/reference region
with a /appA/reference/QUERY region that is more agressive about eviction.

• The org.example.hibernate package includes a lot of entity classes like
Order, where there are hundreds of thousands of records in the database.
These are unlikely to be reused across users, but we have a lot of users
and want to be able to cache many of them so a user can have fast access
to his or her data during the course of their interaction with the system.
So we create a /appA/org/example/hibernate region with a high maxNodes
value but a fairly low timeToLiveSeconds. The low time-to-live ensures an
Order is evicted quickly once a user is done with it.

• Finally, cacheable queries that aren't assigned to to the reference region
will end up in /appA/org/hibernate/cache/StandardQueryCache. We've
elected not to keep these around long at all.

4.4. Best Practices

Some best practices to follow:

• Set hibernate.cache.region_prefix in your configuration. It makes it simple
to ensure the different session factories don't step on each other if they
share a JBoss Cache instance.

• Always set up an eviction region for the /TS FQN that uses the
NullEvictionPolicy. This will ensure that timestamps never get evicted.
Even if you are not doing query caching or aren't caching timestamps in a
particular cache, this is still a good practice, as it costs almost nothing and
helps to ensure that timestamp eviction doesn't slip in unnoticed later.

• Assign a region to your entities, collections and queries rather than
relying on class names to compose the FQN. It makes it easier to set up
eviction, and helps prevent your eviction setup breaking if class names are
refactored.

• Assign a different region name to your entities, collections or queries that
have different desirable eviction characteristics. Put objects like often used
reference data in one region, data probably only accessed by a single user

Best Practices

Hibernate 3.3.1.GA 39

in another. Aggressively evict the latter region; be less agressive with the
former if you evict it at all.

• In some cases, there is an external application (i.e. outside of Hibernate's
control) that can modify data in the database. Generally, a Second Level
Cache should not be used in this sort of case, since it can result in data in
the cache being out of date with respect to the database. But sometimes
application designers can tolerate having out of date data in the cache. In
this sort of situation, use an LRUPolicy with a fairly low maxAgeSeconds. This
will ensure that out-of-date data eventually gets flushed from the cache.

40 Hibernate 3.3.1.GA

Hibernate 3.3.1.GA 41

Chapter 5. Architecture
We've now gone through all the main concepts and the configuration details;
now we'll look a bit under the covers to understand a bit more about the
architectural design of the Hibernate/JBoss Cache integration. Readers can
skip this chapter if they aren't interested in a look under the covers.

5.1. Hibernate Interface to the Caching Subsystem

The rest of Hibernate interacts with the Second Level Cache
subsystem via the org.hibernate.cache.RegionFactory interface. What
implementation of the interface is used is determined by the value of the
hibernate.cache.region.factory_class configuration property. The interface
itself is straightforward:

void start(Settings settings, Properties properties)

 throws CacheException;

void stop();

boolean isMinimalPutsEnabledByDefault();

long nextTimestamp();

EntityRegion buildEntityRegion(String regionName,

 Properties properties,

 CacheDataDescription metadata)

 throws CacheException;

CollectionRegion buildCollectionRegion(String regionName,

 Properties properties,

 CacheDataDescription cdd)

 throws CacheException;

QueryResultsRegion buildQueryResultsRegion(String regionName,

 Properties properties)

 throws CacheException;

TimestampsRegion buildTimestampsRegion(String regionName,

 Properties properties)

 throws CacheException;

• The start method is invoked during SessionFactory startup and allows
the region factory implementation to access all the configuration settings
and initialize itself. The stop method is invoked during SessionFactory
shutdown.

• The various build***Region methods are invoked as Hibernate detects
it needs to cache different data. Hibernate can invoke these methods

Chapter 5. Architecture

42 Hibernate 3.3.1.GA

multiple times, with different regionName values; each call results in
the establishment of a separate area in the underlying JBoss Cache
instance(s). For example, if an application includes an entity class
org.example.Order and another entity class org.example.LineItem, you
would see two calls to buildEntityRegion, one for the Order class and
one for the LineItem class. (Note that it is possible, and recommended, to
configure one or more shared regions for entities, collections and queries.
See Section 4.2, “Organization of Data in the Cache” for some examples.)

• For each call to a build***Region method, the region factory returns
a region object implementing the EntityRegion, CollectionRegion,
QueryResultsRegion or TimestampsRegion interface. Each interface specifies
the needed semantics for caching the relevant type of data. Thereafter,
the Hibernate core invokes on that region object to manage reading and
writing data in the cache.

Next, we'll look at the architecture of how the JBoss Cache integration
implements these interfaces, first in the case where a single JBoss Cache
instance is used, next in the case where multiple instances are desired.

5.2. Single JBoss Cache Instance Architecture

The following diagram illustrates the key elements involved when a single
JBoss Cache instance is used:

Single JBoss Cache Instance Architecture

Hibernate 3.3.1.GA 43

• For the single cache case, the user should
specify SharedJBossCacheRegionFactory as their
hibernate.cache.region.factory_class.

• As part of its startup process, the region factory delegates responsibility
for providing JBoss Cache instances to an implementation of the
org.hibernate.cache.jbc2.CacheInstanceManager interface. The region
factory separately requests a JBoss Cache instance for entities, one
for collections, one for queries and one for timestamps. Whether the
CacheInstanceManager provides the same underlying JBoss Cache instance
for each request or provides multiple caches is an implementation detail of
the CacheInstanceManager.

• SharedJBossCacheRegionFactory creates an instance of
SharedCacheInstanceManager as its CacheInstanceManager.
SharedCacheInstanceManager uses the JBoss Cache configuration
file specified by the user to create a single org.jboss.cache.Cache
instance, and provides that same instance to the region factory when
it requests the cache for entities, collections, queries and timestamps.
SharedCacheInstanceManager also creates an org.jgroups.ChannelFactory
and passes it to the Cache. The ChannelFactory provides the cache with the
org.jgroups.Channel it uses for intra-cluster communication.

Chapter 5. Architecture

44 Hibernate 3.3.1.GA

• At this point, the region factory has a reference to a cache for entities,
a reference to a cache for collections, one for queries and one for
timestamps. In this particular case, each reference points to the
same underlying Cache instance. When core Hibernate invokes the
buildEntityRegion operation on the region factory, it instantiates an
implementation of the EntityRegion interface that knows how to interface
with JBoss Cache, passing it a reference to its entity cache. Same thing
happens for collections, etc.

• Core Hibernate invokes on the EntityRegion, which in turn invokes read
and write operations on the underlying JBoss Cache. The cache uses its
Channel to propagate changes to its peers in the cluster.

• When the SessionFactory shuts down, it invokes stop() on the region
factory, which in turn ensures that the JBoss Cache instance is stopped
and destroyed (which in turn closes the JGroups channel).

5.3. Multiple JBoss Cache Instance Architecture

The situation when multiple JBoss Cache instances are used is very similar
to the single cache case:

• Here the user should specify MultiplexedJBossCacheRegionFactory
as their hibernate.cache.region.factory_class. The

Multiple JBoss Cache Instance Architecture

Hibernate 3.3.1.GA 45

MultiplexedJBossCacheRegionFactory shares almost all its code
with SharedJBossCacheRegionFactory; the main difference is it
constructs a different CacheInstanceManager implementation -- the
MultiplexedCacheInstanceManager.

• MultiplexedCacheInstanceManager differs from SharedCacheInstanceManager
in that it does not directly instantiate a cache. Rather, it creates an instance
of org.jboss.cache.CacheManager, providing it with a ChannelFactory and
the location of the user-specified cache configuration file. The CacheManager
parses the configuration file.

• MultiplexedCacheInstanceManager analyzes Hibernate's configuration
to determine the name of the desired cache configuration for entities,
collections, queries and timestamps. See Section 3.1.5, “The
MultiplexedJBossCacheRegionFactory” for details. It then asks its
CacheManager to provide each needed cache. In the diagram, two different
caches are needed:

• One, using the "optimistic-entity" configuration, that is used for entities,
collections and queries

• Another, with the "timestamps-cache" configuration, that is used for
timestamps.

Both the "optimistic-entity" configuration and the "timestamps-cache"
configuration specify the use of the "udp" JGroups channel configuration,
so the CacheManager's ChannelFactory will ensure that they share the
underlying JGroups resources.

• The way the region factory creates regions is exactly the same as in the
single JBoss Cache case; the only difference is the region factory's internal
reference to its timestamps cache now points to a different cache object
from the entity, collection and query cache references.

46 Hibernate 3.3.1.GA

	HIBERNATE - Relational Persistence for Idiomatic Java
	Table of Contents
	Preface
	Chapter 1. Introduction
	1.1. Overview
	1.2. Requirements
	1.2.1. Dependencies
	1.2.2. JTA Transactional Support

	1.3. Configuration Basics

	Chapter 2. Core Concepts
	2.1. Types of Cached Data
	2.1.1. Entities
	2.1.2. Collections
	2.1.3. Queries
	2.1.4. Timestamps

	2.2. Key JBoss Cache Behaviors
	2.2.1. Replication vs. Invalidation vs. Local Mode
	2.2.2. Synchronous vs. Asynchronous
	2.2.3. Locking Scheme
	2.2.4. Isolation Level
	2.2.5. Initial State Transfer
	2.2.6. Cache Eviction
	2.2.7. Buddy Replication and Cache Loading

	2.3. Matching JBC Behavior to Types of Data
	2.3.1. The RegionFactory Interface
	2.3.2. The CacheManager API
	2.3.3. Sharable JGroups Resources
	2.3.4. Bringing It All Together

	Chapter 3. Configuration
	3.1. Configuring the Hibernate Session Factory
	3.1.1. Basics
	3.1.2. Specifying the RegionFactory Implementation
	3.1.3. The SharedJBossCacheRegionFactory
	3.1.4. The JndiSharedJBossCacheRegionFactory
	3.1.5. The MultiplexedJBossCacheRegionFactory
	3.1.6. The JndiMultiplexedJBossCacheRegionFactory

	3.2. Configuring JBoss Cache
	3.2.1. Configuring a Single Standalone Cache
	3.2.2. Managing Multiple Caches via a CacheManager
	3.2.3. JBoss Cache Configuration Details
	3.2.3.1. CacheMode
	3.2.3.2. NodeLockingScheme
	3.2.3.3. IsolationLevel
	3.2.3.4. JGroups Channel Configuration
	3.2.3.5. Initial State Transfer
	3.2.3.6. Region-Based Marshalling
	3.2.3.7. Eviction

	3.2.4. Standard JBoss Cache Configurations

	3.3. JGroups Configuration
	3.3.1. Transport -- UDP vs. TCP
	3.3.2. Standard JGroups Configurations

	Chapter 4. Cache Eviction
	4.1. Overview
	4.1.1. The Eviction Process
	4.1.2. Eviction Regions
	4.1.3. Eviction Policies
	4.1.3.1. The LRUPolicy
	4.1.3.2. The NullEvictionPolicy

	4.2. Organization of Data in the Cache
	4.2.1. Region Prefix and Region Name
	4.2.2. Entities
	4.2.3. Collections
	4.2.4. Queries
	4.2.5. Timestamps

	4.3. Example Configuration
	4.4. Best Practices

	Chapter 5. Architecture
	5.1. Hibernate Interface to the Caching Subsystem
	5.2. Single JBoss Cache Instance Architecture
	5.3. Multiple JBoss Cache Instance Architecture

