
JBESB-PG-9/22/06 i

JBoss ESB 4.0 Beta 1

Programmers Guide
JBESB-PG-9/22/06

Legal Notices

The information contained in this documentation is subject to change without notice.

JBoss Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. JBoss Inc. shall not be liable for
errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Java™ and J2EE is a U.S. trademark of Sun Microsystems, Inc. Microsoft® and Windows NT® are
registered trademarks of Microsoft Corporation. Oracle® is a registered U.S. trademark and Oracle9™,
Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here
as a generic term covering all versions of the UNIX® operating system. UNIX is a registered trademark in
the United States and other countries, licensed exclusively through X/Open Company Limited.

Copyright

JBoss, Home of Professional Open Source Copyright 2006, JBoss Inc., and individual contributors as
indicated by the @authors tag. All rights reserved.

See the copyright.txt in the distribution for a full listing of individual contributors. This copyrighted
material is made available to anyone wishing to use, modify, copy, or redistribute it subject to the terms
and conditions of the GNU General Public License, v. 2.0. This program is distributed in the hope that it
will be useful, but WITHOUT A WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details. You should have received a copy of the GNU
General Public License, v. 2.0 along with this distribution; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Software Version

JBoss ESB 4.0 Beta 1

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause 52.227-FAR14.

© Copyright 2006 JBoss Inc.

Contents
About This Guide ... 4

What This Guide Contains............................... 4
Audience ... 4
Prerequisites.. 4
Organization.. 4
Documentation Conventions 5
Additional Documentation............................... 5
Contacting Us ... 6

Service Oriented Architecture 8

Overview... 8
Why SOA?.. 10
Basics of SOA... 11
Advantages of SOA.. 12

The Enterprise Service Bus 14

Overview... 14
Architectural requirements............................. 16

When to use JBossESB.................................... 19

Introduction... 19

JBossESB ... 23

Rosetta... 23
JBossESB components................................... 25
The Object Store... 26
Configuration Table 35

Index... 37

JBESB-PG-9/22/06 4

About This Guide

What This Guide Contains

The Programmers Guide contains descriptions on the principles behind Service
Oriented Architecture and Enterprise Service Bus, as well as how they relate to
JBossESB. This guide also contains information on how to use JBoss ESB 4.0 Beta
1.

Note: For the beta release, we recommend that you use this manual in
conjunction with the trailblazer example, the user forum
(http://www.jboss.com/index.html?module=bb&op=viewforum&f=2
46) and the javadocs associated with the code.

Audience

This guide is most relevant to engineers who are responsible for using JBoss ESB 4.0
Beta 1 installations and want to know how it relates to SOA and ESB principles.

Prerequisites

None.

Organization

This guide contains the following chapters:

1. Chapter 1, What is SOA?: JBossESB is a SOA infrastructure. This chapter
gives an overview of SOA and the benefits it can provide.

2. Chapter 2, The Enterprise Service Bus: an overview of what constitutes
an ESB and how JBossESB may differ from traditional ESB definitions.

3. Chapter 3, JBossESB core: a description of the core components within
JBossESB and how they are intended to be used.

4. Chapter 4, Configuration: a description of the configuration options
within JBossESB.

JBESB-PG-9/22/06 5

Documentation Conventions

The following conventions are used in this guide:

Table 1 Formatting Conventions

Additional Documentation

In addition to this guide, the following guides are available in the JBoss ESB 4.0 Beta
1 documentation set:

1. JBoss ESB 4.0 Beta 1 Trailblazer Guide: Provides guidance for using the
trailblazer example.

2. JBoss ESB 4.0 Beta 1 Getting Started Guide: Provides a quick start
reference to configuring and using the ESB.

3. JBoss ESB 4.0 Beta 1 Configuring Hypersonic Guide: This is necessary for
setting up the Hypersonic database if you want to use it within the
trailblazer.

Convention Description

Italic In paragraph text, italic identifies the titles of documents that are
being referenced. When used in conjunction with the Code text
described below, italics identify a variable that should be replaced
by the user with an actual value.

Bold Emphasizes items of particular importance.
Code Text that represents programming code.
Function | Function A path to a function or dialog box within an interface. For example,

“Select File | Open.” indicates that you should select the Open
function from the File menu.

() and | Parentheses enclose optional items in command syntax. The
vertical bar separates syntax items in a list of choices. For
example, any of the following three items can be entered in this
syntax:

persistPolicy (Never | OnTimer | OnUpdate |
NoMoreOftenThan)

Note:

Caution:

A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to
avoid damage to equipment, damage to software, loss of data, or
invalid test results.

JBESB-PG-9/22/06 6

Contacting Us

Questions or comments about JBoss ESB 4.0 Beta 1 should be directed to our support
team.

JBESB-PG-9/22/06 7

JBESB-PG-9/22/06 8

Chapter 1

Service Oriented
Architecture

Overview

JBossESB is a Service Oriented Architecture (SOA) infrastructure. SOA represents a
popular architectural paradigm1 for applications, with Web Services as probably the
most visible way of achieving an SOA2. Web Services implement capabilities that are
available to other applications (or even other Web Services) via industry standard
network and application interfaces and protocols. SOA advocates an approach in
which a software component provides its functionality as a service that can be
leveraged by other software components. Components (or services) represent
reusable software building blocks.

SOA allows the integration of existing systems, applications and users into a flexible
architecture that can easily accommodate changing needs. Integrated design, reuse of
existing IT investments and above all, industry standards are the elements needed to
create a robust SOA.

As enterprises slowly emerge from the mad rush of cost reduction into a more stable
period of cost management, many of them find themselves in unfamiliar territory.
Prior to the economic slow down, most firms understood the options they had for IT
investment. Many embarked on major package implementations (e.g., Siebel,
Peoplesoft and so on), while others built on the legacy systems they have trusted for
years. Either way, most firms recognized the return promised and made the
investment. Today, the appetite for such large investment is gone.

However, enterprises still need to make forward progress and keep ahead of the
competition. SOA (and typically Web Services as a concrete implementation of those
principles) make this possible. The result is dramatic improvements in collaboration
between users, applications and technology components, generating significant value
for any business creating competitive advantage.

Imagine a company that has existing software from a variety of different vendors,
e.g., SAP, PeopleSoft. Some of these software packages may be useful to conduct
business with other companies (customers, suppliers, etc.) and therefore what the
company would like to do is to take those existing systems and make them available
to other companies, by exposing them as services. A service here is some software

1The principles behind SOA have been around for many years, but Web Services have
popularised it.
2It is possible to build non-SOA applications using Web Services.

JBESB-PG-9/22/06 9

component with a stable, published interface that can be invoked by clients (other
software components). So, requesting and executing services involves software
components owned by one company talking to components owned by another
company, i.e., business-to-business (B2B) transactions.

Conventional distributed system infrastructures (middleware) are not sufficient for
these cross-organizational exchanges. For instance

• You would need agreement between the parties involved on the
middleware platform

• There is an implicit (and sometimes explicit) lack of trust between the
parties involved.

• Business data is confidential and should only to be seen by the intended
recipient.

• Many assumptions of conventional middleware are invalid in cross-
organizational interactions. Transactions, for instance, last longer -
possibly for hours or days so conventional transaction protocols such as
two phase commit are not applicable.

So, in B2B exchanges the lack of standardization across middleware platforms makes
point-to-point solutions costly to realize in practice. The Internet alleviated some of
these problems by providing standard interaction protocols (HTTP) and data formats
(XML) but by themselves these standards are not enough to support application
integration. They don't define interface definition languages, name and directory
services, transaction protocols, etc,. It is the gap between what the Web provides and
what application integration requires that Web services are trying to fill.

However, whilst the challenge and ultimate goal of SOA is inter-company
interactions, services do not need to be accessed through the Internet. They can be
made available to clients residing on a local LAN. Indeed, at this current moment in
time, many Web services are being used in this context - intra-company integration
rather than inter-company exchanges.

An example of how Web services can connect applications both intra-company and
inter-company can be understood by considering a stand-alone inventory system. If
you don't connect it to anything else, it's not as valuable as it could be. The system
can track inventory, but not much more. Inventory information may have to be
entered separately in the accounting and customer relationship management systems.
The inventory system may be unable to automatically place orders to suppliers. The
benefits of such an inventory system are diminished by high overhead costs.

However, if you connect your inventory system to your accounting system with
XML, it gets more interesting. Now, whenever you buy or sell something, the
implications for your inventory and your cash flow can be tracked in one step. If you
go further, and connect your warehouse management system, customer ordering
system, supplier ordering systems, and your shipping company with XML, suddenly
that inventory management system is worth a lot. You can do end-to-end
management of your business while dealing with each transaction only once, instead

JBESB-PG-9/22/06 10

of once for every system it affects. A lot less work and a lot less opportunity for
errors. These connections can be made easily using Web services.

Businesses are waking up to the benefits of SOA. These include:

5. opening the door to new business opportunities by making it easy to connect
with partners;

6. saving time and money by cutting software development time and
consuming a service created by others;

7. increasing revenue streams by easily making your own services available.

Why SOA?

The problem space can be categorized by past IT investments in the area of
eProcurement, eSourcing, Supply Chain Management, Customer Relationship
Management (CRM) and Internet computing in general. All of these investments
were made in a silo. Along with the incremental growth in these systems to meet
short-term (tactical) requirements, the decisions made in this space hurt the long-term
viability of the applications and infrastructure.

The three key drivers for implementing an SOA approach are:

• Cost Reduction: Achieved by the ways services talk to each other. The direct cost effect is
delivered through enhanced operations productivity, effective sourcing options, and a
significantly enhanced ability to shift ongoing costs to a variable model.

• Delivering IT solutions faster and smarter: A standards based approach will allow
organizations to connect and share information and business processes much faster and easier
than before. IT delivery productivity is markedly improved through simplification of the
developer’s role by providing standard frameworks and interfaces. Delivery timescales have
been drastically reduced by easing the integration load of individual functionality, and
applying accelerated delivery techniques within the environment.

• Maximizing return on investment: Web Services opens the way for new business
opportunities by enabling new business models. Web Services present the ability to measure
value and discrete return much differently than traditional functional-benefit methods.
Typical Total Cost of Ownership (TCO) models do not take into account the lifetime value
generated by historical investment. This cost centric view destroys many opportunities to
exploit these past investments and most enterprises end up building redundancy into their
architecture, not out of necessity, but of perceived need. These same organizations focus the
value proposition of their IT investment on a portfolio of applications, balanced by the
overhead of infrastructure. An approach based on Web Services takes into account the
lifetime contribution of legacy IT investment and promotes an evolution of these investments
rather than a planned replacement.

SOA/Web Services fundamentally changes the way enterprise software is developed
and deployed. SOA has evolved where new applications will not be developed using
monolithic approaches, but instead become a virtualized on-demand execution model
that breaks the current economic and technological bottleneck caused by traditional
approaches.

JBESB-PG-9/22/06 11

Software as a service has become pervasive as a model for forward looking
enterprises to streamline operations, lower cost of ownership and provides
competitive differentiation in the marketplace. Web Services offers a viable
opportunity for enterprises to drive significant costs out of software acquisitions,
react to rapidly changing market conditions and conduct transactions with business
partners at will. Loosely coupled, standards-based architectures are one approach to
distributed computing that will allow software resources available on the network to
be leveraged. Applications that separate business processes, presentation rules,
business rules and data access into separate loosely coupled layers will not only assist
in the construction of better software but also make it more adaptable to future
change.

SOA will allow for combining existing functions with new development efforts,
allowing the creation of composite applications. Leveraging what works lowers the
risks in software development projects. By reusing existing functions, it leads to
faster deliverables and better delivery quality.

Loose coupling helps preserve the future by allowing parts to change at their own
pace without the risks linked to costly migrations using monolithic approaches. SOA
allows business users to focus on business problems at hand without worrying about
technical constraints. For the individuals who develop solutions, SOA helps in the
following manner:

• Business analysts focus on higher order responsibilities in the development lifecycle while
increasing their own knowledge of the business domain.

• Separating functionality into component-based services that can be tackled by multiple teams
enables parallel development.

• Quality assurance and unit testing become more efficient; errors can be detected earlier in the
development lifecycle

• Development teams can deviate from initial requirements without incurring additional risk

• Components within architecture can aid in becoming reusable assets in order to avoid
reinventing the wheel

• Functional decomposition of services and their underlying components with respect to the
business process helps preserve the flexibility, future maintainability and eases integration
efforts

• Security rules are implemented at the service level and can solve many security
considerations within the enterprise

Basics of SOA

Traditional distributed computing environments have been tightly coupled in that
they do not deal with a changing environment well. For instance, if an application is
interacting with another application, how do they handle data types or data encoding
if data types in one system change? How are incompatible data-types handled?

The service-oriented architecture (SOA) consists of three roles: requester, provider,
and broker.

JBESB-PG-9/22/06 12

• Service Provider: A service provider allows access to services, creates a description of a
service and publishes it to the service broker.

• Service Requestor: A service requester is responsible for discovering a service by searching
through the service descriptions given by the service broker. A requester is also responsible
for binding to services provided by the service provider.

• Service Broker: A service broker hosts a registry of service descriptions. It is responsible for
linking a requestor to a service provider.

Advantages of SOA

SOA provide several significant benefits for distributed enterprise systems. Some of
the most notable benefits include: interoperability, efficiency, and standardization.
We will briefly explore each of these in this section.

Interoperability

Interoperability is the ability of software on different systems to communicate by
sharing data and functionality. SOA/Web Services are as much about interoperability
as they are about the Web and Internet scale computing. Most companies will have
numerous business partners throughout the life of the company. Instead of writing a
new addition to your applications every time you gain a new partner, you can write
one interface using Web service technologies like SOAP. So now your partners can
dynamically find the services they need using UDDI and bind to them using SOAP.
You can also extend the interoperability of your systems by implementing Web
services within your corporate intranet. With the addition of Web services to your
intranet systems and to your extranet, you can reduce the cost integration, increase
communication and increase your customer base.

It is also important to note that the industry has even established the Web Services
Interoperability Organization.

“The Web Services Interoperability Organization is an open industry effort chartered
to promote Web Services interoperability across platforms, applications, and
programming languages. The organization brings together a diverse community of
Web services leaders to respond to customer needs by providing guidance,
recommended practices, and supporting resources for developing interoperable Web
services.” (www.ws-i.org)

The WS-I will actually determine whether a Web service conforms to WS-I standards
as well as industry standards. In order to establish integrity and acceptance,
companies will seek to build their Web services in compliance with the WS-I
standards.

Efficiency

SOA will enable you to reuse your existing applications. Instead of creating totally
new applications, you can create them using various combinations of services
exposed by your existing applications. Developers can be more efficient because
they can focus on learning industry standard technology. They will not have to spend
a lot of time learning every new technology that arises. For a manager this means a

JBESB-PG-9/22/06 13

reduction in the cost of buying new software and having to hire new developers with
new skill sets. This approach will allow developers to meet changing business
requirements and reduce the length of development cycles for projects. Overall, SOA
provides for an increase in efficiency by allowing applications to be reused,
decreasing the learning curve for developers and speeding up the total development
process.

Standardization

For something to be a true standard, it must be accepted and used by the majority of
the industry. One vendor or small group of vendors must not control the evolution of
the technology or specification. Most if not all of the industry leaders are involved in
the development of Web service specifications. Almost all businesses use the
Internet and World Wide Web in one form or another. The underlying protocol for
the WWW is of course HTTP. The foundation of Web services is built upon HTTP
and XML. Although SOA does not mandate a particular implementation framework,
interoperability is important and SOAP is one of the few protocols that all good SOA
implementations can agree on.

JBESB-PG-9/22/06 14

Chapter 2

The Enterprise Service
Bus

Overview

The ESB is seen as the next generation of EAI – better and without the vendor-lockin
characteristics of old. As such, many of the capabilities of a good ESB mirror those
of existing EAI offerings. Traditional EAI stacks consist of: Business Process
Monitoring, Integrated Development Environment, Human Workflow User Interface,
Business Process Management, Connectors, Transaction Manager, Security,
Application Container, Messaging Service, Metadata Repository, Naming and
Directory Service, Distributed Computing Architecture.

As with EAI systems, ESB is not about business logic – that is left to higher levels. It
is about infrastructure logic. Although there are many different definitions of what
constitutes an ESB, what everyone agrees on now is that an ESB is part of an SOA
infrastructure. However, SOA is not simply a technology or a product: it's a style of
design, with many aspects (such as architectural, methodological and organisational)
unrelated to the actual technology. But obviously at some point it becomes necessary
to map the abstract SOA to a concrete implementation and that's where the ESB
comes in to play.

By considering ESB in terms of an SOA infrastructure, then we have the flexibility to
abstract away from given implementation choices, such as JMS, SOAP etc. Then we
define the capabilities that we want from our SOA infrastructure, which become the
capabilities for the ESB. However, because of their heritage, ESBs typically come
with a few assumptions that are not inherent to SOA:

• Java specific.

• Run-time message mediator.

• Message translation.

• Security model translation.

Loose coupling does not require a mediator to route messages, although that is
dominant ESB architecture. This is also a requirement within the JBI specification.
The ESB model should not restrict the SOA model, but should be seen as a concrete
representation of SOA. As a result, if there is a conflict between the way SOA would
approach something and the way in which is may be done in a traditional ESB, the
SOA approach will win within JBossESB.

JBESB-PG-9/22/06 15

Therefore, in JBossESB mediation is a deployment choice and not a mandatory
requirement. Obviously for compliance with certain specifications it may be
configured by default, but if developers don't need that compliance point, they should
be able to remove it (generally or on a per service basis).

Note: Content-based routing is not supported in the beta release of
JBossESB.

The abstract view of the ESB/SOA infrastructure is shown below in Figure 1:

At its core, a good SOA should have a good messaging infrastructure (MI), and JMS
is a fairly good example of a standards-compliant MI. But it obviously will not be the
only implementation supported. Other capabilities that an ESB provides include:

• Process orchestration, typically via WS-BPEL.

• Protocol translation.

• Adapters.

• Change management (hot deployment, versioning, lifecycle management).

• Quality of service (transactions, failover).

• Qualify of protection (message encryption, security).

• Management.

Access control lists (ACLs) are important and complimentary to security protocols,
such as WS-Security/WS-Trust, and often overlooked by existing implementations.
JBossESB will support ACLs are part of the security capabilities.

JBESB-PG-9/22/06 16

Many of these capabilities can be obtained by plugging in other services or layering
existing functionality on the ESB. We should see the ESB as the fabric for building,
deploying and managing event-driven SOA applications and systems. There are
many different ways in which these capabilities can be realised and JBossESB does
not mandate one implementation over another. Therefore, all capabilities will be
accesses as services which will give plug-and-play configurability and extensibility
options.

Figure 2: ESB components and multi-bus support.

Architectural requirements

In a distributed environment services can communicate with each other using a
variety of message passing protocols. With the aid of client and server stub code,
RPC semantics can be used to maintain the abstraction of local procedure calls across
address space boundaries. Client stub code is a local proxy for the remote object,
which is controlled by the corresponding server stub code. It is the responsibility of
the client stub to marshal information which identifies the remote method and its
parameters, transmit this information across the network to the object, receive the
reply message, and unmarshal the reply to return to the invoker.

JBESB-PG-9/22/06 17

However, SOA does not imply a specific carrier protocol and neither does it imply
RPC semantics (in fact, loose coupling of services forces developers into an
asynchronous message passing pattern3). Therefore, multiple protocols should be
supported simultaneously. In most cases, clients will know the communication
protocol to use when interacting with a service; however, in some situations this may
not be the case, and the communication stack may need to be assembled dynamically
(via a hand-shake protocol, where the client stub may have to be dynamically
constructed4).

At the core of JBossESB is a messaging infrastructure (MI), but this MI is abstract,
in that it will does not force us into just JMS or SOAP styles. For example, a pure-
play Web Services deployment within the ESB can be supported. As such, JBossESB
assumes a single MI abstraction, but the capabilities may be provided by multiple
different implementations. This is further support for the notion of having multiple
buses within the ESB (each bus may be controlled by a separate MI implementation).

Note: Support for the multiple bus abstraction will be available in the GA
release of JBossESB. However, the beta release supports
multiple messaging infrastructure implementations.

The service description and service contract are extremely important in the context of
SOA and therefore ESB. In general, the developers create the contracts and the ESB
maps it to whatever technology is being used to implement the SOA, e.g., WSDL.
JBossESB will allow this mapping to technology to be configurable and dynamic,
i.e., it will support multiple SOA implementation technologies.

Registries and repositories

There are actually two different aspects to the service bus: first, turning legacy
systems and services into services that work within the SOA infrastructure; secondly,
there is taking the services and adding policy and mediation control between those
services. Integral to this is the notion of SOA Repositories: a repository is a persistent
representation of an SOA Registry, which is needed to publish, discover and
consume services. JBossESB will support a range of registry implementations, with
UDDI as one of the first.

Versioning of Services

Using the ESB/SOA actually consists of two phases: the initial creation phase and the
maintenance phase, which may have different requirements from the creation phase.
Services evolve over time and it is often difficult or impossible to find a quiescent
period in which to replace a service. As such, in any enterprise deployment there is
likely going to be multiple versions of services being used by clients at the same

3Actually true asynchrony is often not necessary: synchronous one-way (void returns) RPCs can
be used and often are in Web Services.
4 Services may be available via multiple different protocols simultaneously, e.g., CORBA IIOP
and JMS. A service repository (aka Name Service/Trading Service) will maintain service
identities with their endpoint references and contract definitions (CORBA IDL, WSDL, etc.)

JBESB-PG-9/22/06 18

time. Some of the version mismatch may be hidden by suitable routing and on-the-fly
message modifications. JBossESB will address the challenge of versioning of
services, something that other implementations tend to ignore. Services will be
identifiable via major and minor version numbers, with pattern matching capabilities
provided by a pluggable rules engine, e.g., a default rule would be that all minor
versions are compatible within the scope of the same major version number, but that
can be overridden with a specific rule by the service provider or system
administrator.

JBESB-PG-9/22/06 19

Chapter 3

When to use
JBossESB

Introduction

We have already discussed when SOA principles and an ESB implementation may be
useful. The table below illustrates some further, concrete examples where JBossESB
would be useful. Although these examples are specific to interactions between
participants using non-interoperable JMS implementations, the principles are general.

The diagram below shows simple file movement between two systems where
messaging queuing is not involved.

The next diagram illustrates how transformation can be injected into the same
scenario using JBossESB.

JBESB-PG-9/22/06 20

In the next series of examples, we use a queuing system (e.g., a JMS
implementation).

The diagram below shows transformation and queuing in the same situation.

JBossESB can be used in more than multi-party scenarios. For example, the diagram
below shows basic data transformation via the ESB using the file system.

JBESB-PG-9/22/06 21

The final scenario is again a single party example using transformation and a queuing
system.

JBESB-PG-9/22/06 22

JBESB-PG-9/22/06 23

Chapter 4

JBossESB
Rosetta

The core of JBossESB is Rosetta5, an ESB that has been in commercial deployment
at a mission critical site for over 3 years. The architecture of Rosetta is shown below
in Figure 3:

Note: In the diagram, Processors refers to the Action classes within the
core which are responsible for processing on triggered events.

RMI - Filesystem - RDBMS - TCP - Http - etc. etc.

General purpose

Object persistence services

Batch Handling

services

Notification

services

(triggers events)

Resources

Base Rosetta classes
(jars)

Common

Utility

Notification

Parameters

Helpers

Factories

Service Business delegates

Rosetta Listeners

Triggered by events

Invoke Processor classes

Parameter

repository

External Processes

Trigger events

Listen to events

Use Rosetta services through

appropriate transport adapters

5 Rosetta borrowed its name from the stone found in 1799 by French soldiers in the Nile delta’s
town of Rosetta (French for Rashid) that was instrumental in Jean-François Champollion
deciphering of Egyptian hieroglyphs.

JBESB-PG-9/22/06 24

There are many reasons why users may want disparate applications, services and
components to interoperate, e.g., leveraging legacy systems in new deployments.
Furthermore, as we have seen such interactions between these entities may occur
both synchronously or asynchronously. As with most ESBs, Rosetta was developed
to facilitate such deployments, but providing an infrastructure and set of tools that
could:

• Be easily configured to work with a wide variety of transport mechanisms (e.g., email and
JMS).

• Offer a general purpose object repository.

• Enable pluggable data transformation mechanisms.

• Provide a batch handling capability.

• Support logging of interactions.

To date, Rosetta has been used in mission critical deployments using Oracle
Financials. The multi platform environment included an IBM mainframe running
z/OS, DB2 and Oracle databases hosted in the mainframe and in smaller servers, with
additional Windows and Linux servers and a myriad of third party applications that
offered dissimilar entry points for interoperation. It used JMS and MQSeries for
asynchronous messaging and Postgress for object storage. Interoperation with third
parties outside of the corporation’s IT infrastructure was made possible using IBM
MQSeries, FTP servers offering entry points to pick up and deposit files to/from the
outside world and attachments in e-mail messages to ‘well known’ e-mail accounts.

As we shall see when examining the JBossESB core, which is based on Rosetta, the
challenge was to provide a set of tools and a methodology that would make it simple
to isolate business logic from transport and triggering mechanisms, to log business
and processing events that flowed through the framework and to allow flexible plug
ins of ad hoc business logic and data transformations. Emphasis was placed on
ensuring that it possible (and simple) for future users to replace/extend the standard
base classes that come with the framework (and are used for the toolset), and to
trigger their own ‘action classes’ that can be unaware of transport and triggering
mechanisms.

The core of JBossESB in a nutshell

Rosetta is built on three core architectural components:

• Event handling and process triggering/chaining using the Action and Listener classes, and the
Notification framework.

• Reusable data transformation libraries in public FormatAdapter classes.

• A simple general purpose BusinessObject repository.

These capabilities are offered through a set of business classes, adapters and
processors, which will be described in detail later. Interactions between clients and
services are supported via a range of different approaches, including JMS, flat-file
system and email.

JBESB-PG-9/22/06 25

A typical Rosetta deployment is shown below. We shall return to this diagram in
subsequent sections.

Note: Some of the components in the diagram (e.g., LDAP server) are
configuration choices and although can be supported in the beta
release of JBossESB, they are not provided.

Figure 4: ESB Core components.

Note: The Processor and Action class distinction shown in the above
diagram no longer exists in the beta release.

JBossESB components

In the following sections we shall examine the core components of JBossESB.

Note: Some class and interface names may change between the beta
release and the GA.

JBESB-PG-9/22/06 26

Configuration

All components within the core receive their configuration parameters as XML. How
these parameters are provided to the system is hidden by the
org.jboss.soa.esb.parameters.ParamRepositoryFactory:

public abstract class ParamRepositoryFactory
{
 public static ParamRepository getInstance();
}

This returns implementations of the
org.jboss.soa.esb.parameters.ParamRepository interface which allows
for different implementations:

public interface ParamRepository
{
 public void add(String name, String value) throws
 ParamRepositoryException;
 public String get(String name) throws ParamRepositoryException;
 public void remove(String name) throws ParamRepositoryException;
}

With the beta version of JBossESB, there is only a single implementation, the
org.jboss.soa.esb.parameters.ParamFileRepository, which expects to
be able to load the parameters from a file. The implementation to use may be
overridden using the org.jboss.soa.esb.paramsRepository.class property.

Note: In the beta release the Object Store configuration is handled
differently. See the section on the Object Store for more details.

The Object Store

JBossESB has an object store that can be used to support the following requirements:

• Provide persistency of data until all the currently known subscribers have successfully
received the data.

• Provide recovery of data to a subscriber; data can be resent from JBossESB as opposed to
having to be resent from the publisher.

• Provide historical data to a new or existing subscriber without having to go back to the
publisher.

Data is not stored in a manner to provide data mining or reporting capabilities. Stored
entities are instances of the org.jboss.soa.esb.util.BaseBusinessObject
class. The framework expects that all classes that extend BaseBusinessObject are
able to serialize into a BobjStdDTO (data transfer object) and to have a constructor
that takes a BobjStdDTO as the sole argument.

The org.jboss.soa.esb.util.BobjStdDTO class is a specialized tree that has
(among other methods) a toXml() method and a constructor that takes a valid XML

JBESB-PG-9/22/06 27

string as an argument. The persistence interface uses BobjStdDTO as the argument to
store, retrieve or replace objects in the store and is completely agnostic of the
business class that the argument represents. Therefore, the store is able to deal with
unknown user objects, as long as they are able to serialize to, and construct from, a
BobjStdDTO, and that a proper entry is included in the object store's runtime
configuration file.

org.jboss.soa.esb.common.bizclasses.BatchProcess offers simple
functionality to group a series of objects that are handed asynchronously to the
org.jboss.soa.esb.services.IbatchHandler interface. You can initiate a
new batch, add elements to the batch header, add batch, close and eventually commit
the batch. The concept of batch strongly relies on the existence of the object store.
The basic idea is to provide functionality to batch information that might reside in
different sources and store all atomic elements in the object store until a trigger to
commit the batch is received. When this happens, all the information resides within
the framework and standard methods can be used to process it.

The ability to store BaseBusinessObjects and BatchProcess in persistent
media, provides a simple mechanism for decoupling successive steps in a chain of
individual asynchronous processing steps. The object store uses a simple yet effective
scheme that allows for storage of the serialized object (in the standard XML format),
plus index information (Object’s UID, batch UID, timestamp, etc.) in a single SQL
table (and as many SQL index tables as configured in the Object Store configuration
class.

Note: The purpose of this repository is NOT to act as a high
performance general purpose database. It is used to store
batches until the batch is commited/rolled back, and/or to store
BusinessObjects for future retrieval, together with the RDBMS
index tables according to the BusinessObject’s locator(int)
methods

The object storage and retrieval functionality is usable only through the business
delegate of the actual implementation (currently a J2EE stateless session bean) that
can be obtained by the Processor classes using the
org.jboss.soa.esb.services.ipersistHandler interface and
org.jboss.soa.esb.services.PersistHandlerFactory class:

JBESB-PG-9/22/06 28

public interface IpersistHandler
{
 public long getUidChunk(int p_iHowMany) throws Exception;
 public ObjLocator[] getLocatorList(Class p_oCls,Properties
p_oProp) throws Exception;
 public long addObject(BaseBusinessObject p_oQ) throws
Exception;
 public BaseBusinessObject getObject(Class p_oCls,long p_lUid)
throws Exception;
 public void rplObject(BaseBusinessObject p_o) throws
Exception;
 public void rmvObject(Class p_oCls,long p_lUid) throws Exception;
 public void remove() throws Exception;
}

Instances of classes that implement this interface represent the contract of the Object
Repository service.

public class PersistHandlerFactory
{
 public static IpersistHandler getPersistHandler(String p_sLocRem,
 String p_sJndiType, String p_sJndiServer) throws Exception;

 public static IpersistHandler getPersistHandler(Context p_oCtx)
 throws Exception;
}

Through the factory, implementation specific details of the contract are hidden.

As mentioned earlier, the object store is configured separately to other components
within Rosetta. The object store is configured through an XML property file, an
example of which is shown below:

<ObjectStore dataSourceJndiName="java:JbossEsbDS"
uidTable="uid_table"
 batchTable="batches" >
 <Class name="org.jboss.soa.esb.common.bizclasses.Person"
 table="object_snap" type="Person" encrypt="false" >
 <Index table="people_index" />
 </Class>

 <Class name="org.jboss.soa.esb.samples.Customer"
table="object_snap"
 type="Customer" encrypt="false" >
 <Index table="customer_index" />
 </Class>
</ObjectStore>

The location of the property file may be set through the
org.jboss.soa.esb.objStore.configfile property.

JBESB-PG-9/22/06 29

Serialization of deployed objects

Every class stored in the repository is responsible for knowing how to serialize and
deserialize itself from XML. The combination of BaseBusinessObject and
BobjStdDTO classes are used to accomplish this.

public abstract class BaseBusinessObject
{
 public BobjStdDTO toDTO () throws Exception;
 public static final BaseBusinessObject getFromDTO (BobjStdDTO
param)
 throws Exception;
}

public class BobjStdDTO implements Serializable
{
 public String toXml() throws Exception;
 public static BobjStdDTO getFromXml(String p_sXml) throws
Exception;
}

All instances of BaseBusinessObject are thus converted to and from the Date
Transfer Object format (BobjStdDTO). It is this instance that is then responsible for
converting to and from an XML representation.

All classes derived from BaseBusinessObject that wish to be stored in the object
store must provide a locator() method and may optionally provide a
locator(int) method, as shown below.

public abstract class BaseBusinessObject
{
 public String[] locator();
 public String[] locator(int p_i);
}

locator(0) is assumed to be the same as locator(). These operations provide
indexing information for the object store searches using standard SQL queries.

Note: The default implementation of locator returns a zero-length
String array.

Data transformation

Often clients and services will communicate using the same vocabulary. However,
there are situations where this is not the case and on-the-fly transformation from one
data format to another will be required. It is unrealistic to assume that a single data
format will be suitable for all business objects, particularly in a large scale or long
running deployment. Therefore, it is necessary to provide a mechanism for
transforming from one data format to another. In JBossESB this is the role of Format
Adapters, whose sole responsibility is data transformation.

JBESB-PG-9/22/06 30

Note: In the beta release of JBossESB, Format Adapters are not a
service or a component of the core: they are a pattern that we use
within the core and recommend for users. This will be rectified in
the GA release.

Format adapters should be the only place that needs to be aware of coupling between
different applications’ representation of the same underlying entity.

For example, let us assume we have an application that needs to translate between
two different representations of a customer and the developer creates a
CustomerAdapter:

public class CustomerAdapter
{
 public static Customer esbFromWeb (WebCustomer p_o);
 public static WebCustomer webFromEsb (Customer p_o);
}

Note: Error handling code has been removed for clarity.

The developer can then use this format adapter when working with the object store:

public void RequestLoan(WebCustomer customer)
{
 IpersistHandler esbHandler =
 PersistHandlerFactory.getPersistHandler("remote",
 EsbSysProps.getJndiServerType(),
 EsbSysProps.getJndiServerURL());
 long lUid =
esbHandler.addObject(CustomerAdapter.esbFromWeb(customer));
}

Listener classes

Listeners encapsulate the endpoints for message reception. Upon a receipt of a
message, a Listener triggers an Action class to do work based on the content of the
message. As illustrated in Figure 4 there are several ways in which triggering of
Actions can occur in JBossESB:

• Queue/Topic listeners (in independent processes and/or as MDBs within a J2EE container),
raw or protocol specific socket listeners:
org.jboss.soa.esb.listeners.JmsQueueListener

• Directory pollers (in independent processes and/or as MBeans):
org.jboss.soa.esb.listeners.DirectoryPoller

• RDBMS table pollers (org.jboss.soa.esb.listeners.SqlTablePoller), email
listeners, etc.

As mentioned above, the main responsibility of a Listener is to trigger Actions, which
are registered with them via the configuration information. For example:

<JBossESB-LoanBroker-TrailBlazer
 commandConnFactoryClass="ConnectionFactory" commandJndiType="jboss"

JBESB-PG-9/22/06 31

 commandJndiURL="localhost" commandIsTopic="false"
 messageSelector="esbApp='esbApp'" commandJndiName="queue/A"
 parameterReloadSecs="60">

 <CreditAgencyJMSInput
 listenerClass="org.jboss.soa.esb.listeners.JmsQueueListener"
actionClass="org.jboss.soa.esb.samples.loanbroker.actions.ProcessCreditReques
t"
 xyzactionClass="org.jboss.soa.esb.actions.DummyAction" maxThreads="1"
 queueConnFactoryClass="ConnectionFactory" listenJndiType="jboss"
 listenJndiURL="localhost" listenQueue="queue/A"
 listenMsgSelector="sample_loanbroker_servicecode='creditRequest'">

 <NotificationList type="OK">
 <target class="NotifyQueues" >
 <queue jndiName="queue/A">
 <messageProp name="sample_loanbroker_servicecode"
 value="creditResponse" />
 </queue>
 </target>
 </NotificationList>
 </CreditAgencyJMSInput>

 <CreditAgencyJMSOutput
 listenerClass="org.jboss.soa.esb.listeners.JmsQueueListener"
xyzactionClass="org.jboss.soa.esb.samples.loanbroker.actions.ProcessCreditRes
ponse"
 actionClass="org.jboss.soa.esb.actions.DummyAction" maxThreads="1"
 queueConnFactoryClass="ConnectionFactory" listenJndiType="jboss"
 listenJndiURL="localhost" listenQueue="queue/A"
 listenMsgSelector="sample_loanbroker_servicecode='creditResponse'">

 <NotificationList type="OK">
 <target class="NotifyFiles">
 <file
URI="file:///C:/dev/jbossesb/product/docs/samples/trailblazer/bankloanbrokerd
emo/creditAgency.notifOK" append="true"/>
 </target>
 </NotificationList>
 </CreditAgencyJMSOutput>

</JBossESB-LoanBroker-TrailBlazer>

Here we are using a JMS listener and the Action is defined in the actionClass
attribute, along with additional information needed by the processor instance. The
configuration file is provided to the ESB when it is started:

java MyProgram Configuration.xml

Where the code for MyProgram in this case would be:

JmsQueueListener jms = new JmsQueueListener(args [0]);

The relationship between listeners and actions is shown below:

JBESB-PG-9/22/06 32

Listener Controller

(GpListener
Run time Commands

Starts and controls transport specific listeners in child threads

Responsible of reloading configuration and ending execution

Can (optionally) listen for commands in a queue or topic

When parameters are reloaded -> stops child processes -> starts

listeners according to new config

Transport specific

Listen for events (Directory poller, JMS listener, socket listener, etc)

Is able to start one or more (maxThreads) instances of the same action

class in child threads

Dynamically started/stopped by controller

3

2

Listener 1

instance
E v e n t s

ActionClass

instance 1

3

2

Listener 2

instance
E v e n t s

ActionClass

instance 1 Instantiated by transport specific listeners

One shot: Triggered->Process trigger->end

Note: In the beta release of JBossESB, messages are represented as

Serializable objects. This gives great flexibility over the content
that can be exchanged between endpoints. However, it does
mean that endpoints must be able to deserialize received
messages. This means that classes representing message
objects must be deployed within the application server.

Action classes

Action classes are responsible for doing the work requested (or implied) by the
receipt of a message. As such, Actions are often implemented on a per-application
basis, using the provided base classes (all in the org.jboss.soa.esb.actions
package) AbstractFileAction, AbstractSqlRowAction and FileCopier, for
working on file processing, SQL processing and file copying respectively.

Actions that are also instances of BaseBusinessObject can perform
transformations using the format adapters pattern, are triggered by Listeners and can
provide operations to learn about the processing outcome.

Common to all Actions is the concept of sending a result object. This result may
indicate a successful outcome or an error outcome and all Action classes inherit the
capability from the AbstractAction base class:

public abstract class AbstractAction extends Observable
 implements Runnable
{
 public abstract void processCurrentObject() throws Exception;
 public abstract Serializable getOkNotification();
 public abstract Serializable getErrorNotification();

 protected DomElement m_oParms;
 protected Object m_oCurr;

JBESB-PG-9/22/06 33

 protected Logger m_oLogger = Logger.getLogger(this.getClass());
}

The DomElement contains configuration information that the AbstractAction
may use at runtime. The Object is a reference to the current message. Both
parameters are provided to the AbstractAction implementation at creation time.

The processCurrentObject method is called to instruct the Action
implementation to do some work. How often the method is invoked and how the
work is performed is implementation specific: it is not mandated by the ESB.

The getOkNotification and getErrorNotification methods are used by the
underlying notification framework. They must be overridden by derived classes to
return an application specific object to the recipient. They are frequently used to
chain together sequences of interactions in a multi-step process.

For example, consider the scenario where a bank receives a message that requires it
to send back a customer’s credit rating. We will use the MsgProcessor class and as
a result redefine its processMessage and getOkNotification methods to
accomplish this:

public class ProcessCreditRequest extends AbstractAction
{
 public Integer creditScore;

 public void processCurrentObject() throws Exception
 {
 m_oLogger.info("processObject was called with
 <<"+m_oCurr.toString()+">>");

 if (! (m_oCurr instanceof ObjectMessage))
 throw new Exception("Message must be a ObjectMessage");

 System.out.println(m_oCurr);

 CreditCheckRequest creditRequest =
 (CreditCheckRequest)((ObjectMessage)m_oCurr).getObject();

 //use the notification framework to send back our response
 //use a dummy score between 0 and 10

 Random generator = new Random();

 creditScore = new Integer(generator.nextInt(10));

 //create our Response

 creditResponse =
 new CreditCheckResponse(creditRequest.requestID, creditScore);
 }

 //this is how the response is sent back, through OK notification
 //you could also send back a special ERROR credit score condition

 public Serializable getOkNotification()
 {
 return creditScore;

JBESB-PG-9/22/06 34

 }

 public Serializable getErrorNotification()
 {
 return "error occured in " + this.getClass();
 }
}

This implementation of AbstractAction is expected to be driven by a JMS listener
and so receives an appropriate message format to deal with, which is passed in to the
implementation during creation as one of the AbstractAction member variables
(m_oCurr). In this simple example the body of the processCurrentObject
method simply determines a random credit rating and uses this to initiate the
creditScore. This score is subsequently returned when the notification
infrastructure invokes the getOkNotification upon successful execution.

Notification infrastructure

JBossESB uses a notification infrastructure to enable triggering of processing events,
which can be subsequently used by Listeners to continue/interrupt/branch process
steps. At the heart of the notification framework is the
org.jboss.soa.esb.helpers.InotificationHandler class:

public interface InotificationHandler
{
 public void sendNotifications(DomElement p_oP, Serializable p_o)
throws Exception;
 public void sendNotifications(Serializable p_o) throws Exception;
}

sendNotification is responsible for sending the event/message represented by the
Serializable parameter to the list of registered notifications
(org.jboss.soa.esb.notification.NotificationTargets) which are
represented in XML form by the first parameters (a serialized NotificationList).
If no list is specified, then the registered targets are assumed to have been provided
statically at deployment time via an appropriate configuration file.

There are many different ways in which components within an ESB may wish to be
notified (contacted) by receiving a message. For example, email, ftp, database etc.
Therefore, NotificationTarget is a base class from which all supported
notification implementations inherit:

public abstract class NotificationTarget
{

 /**
 * Derived classes must implement this method to do what has to
be done
 * to trigger that specific type of notification event.
 *
 * @param p_o Object - The toString() method of this object will

JBESB-PG-9/22/06 35

be the
 * actual notification content.
 * @throws Exception - invoke Exception.getMessage() at runtime
for this
 * object.
 */

 public abstract void sendNotification(java.io.Serializable p_o)
throws Exception;
}

Currently supported implementations include (all in the
org.jboss.soa.esb.notification package): NotifyEmail, NotifyFiles,
NotifySqlTable and NotifyJMS (with two sub-classes of NotifyQueues and
NotifyTopics).

As mentioned above, the NotificationList is a list of targets (represented in
XML) for events. As shown below, the XML representation of targets is passed to
the NotificationList during construction:

public class NotificationList extends DomElement
{
 public NotificationList(DomElement p_oP) throws Exception;

 public void sendNotification(Serializable p_o) throws Exception;
}

The sendNotification method is used to send the specified message to all
registered targets. Messages of arbitrary content are provided through the
Serializable parameter. These objects are typically provided by Actions using
either the getOkNotification or getErrorNotification methods we
discussed earlier.

In the beta version of JBossESB the InotificationHandler interface is driven in
the AS; the NotificationHandlerFactory returns a reference to an EJB. A
consequence of this is that all URI attributes for the NotifyFiles implementation
reference the file system as seen by the server (application server) that hosts the
instance, as opposed to the client (the environment in which the listeners reside).
Similarly, e-mails sent as a result of a NotifyEmail implementation will be sent by
the server, so SMTP information used to send these mails is as configured for the
application server (e.g., .../conf/jbossEsb.properties). Similarly for JMS
messages (NotifyQueues, NotifyTopics) use queues/topics in the context of the
application server that hosts the NotificationHandlerBean instances.

Note: This is irrelevant when the client and server run in the same
address space.

Configuration Table

The table below shows the various configuration options available for JBossESB
Beta 1.

JBESB-PG-9/22/06 36

Property name Description Default value
org.jboss.soa.esb.mail.smtp.host SMTP host

name
localhost

org.jboss.soa.esb.mail.smtp.user SMTP user
name

“”

org.jboss.soa.esb.mail.smtp.password SMTP
password

“”

org.jboss.soa.esb.mail.smtp.port SMTP port 25
org.jboss.soa.esb.jndi.server.type JNDI server

type
jboss

org.jboss.soa.esb.jndi.server.url JNDI server
URL

localhost

org.jboss.soa.esb.paramsRepository.class Parameter
repository
implementation

NONE

org.jboss.soa.esb.objStore.configfile Object store
configuration
file

NONE

org.jboss.soa.esb.encryption.factory.class Encryption
class

org.jboss.soa.esb.services.DefaultEncryptionFactory

Table 2: Configuration options.

Information concerning the various XML data structures needed to configure
JBossESB are provided in separate documents.

JBESB-PG-9/22/06 37

Index
actionClass, 31
Actions, 32

relationship to notification framework,
33

result objects, 32
supported implementations, 32

Architectural components, 24
Configuring JBossESB, 26, 28, 35
ESB Overview, 14
Format adapters, 29

example, 30
JBossESB

Access Control Lists, 15
content-based routing, 15
contract definition language, 17
implementation flexibility, 16

multi-bus support, 17
Listeners, 30

actionClass, 31
relationship to Actions, 30
supported implementations, 30

Notification framework, 34
supported implementations, 35

Rosetta, 23
history, 24

Serialized objects and the object store,
29

SOA Overview, 8
basics, 11
benefts, 10
Why SOA?, 10

The Data Transfer Object, 29

