
JBossESB 4.2.1 GA
Connectors and Adapters Guide

JBESB-CAG-10/31/07

JBESB-CAG-10/31/07

Legal Notices

The information contained in this documentation is subject to change without notice.

JBoss Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. JBoss Inc. shall not be liable
for errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this materi al.

Java™ and J2EE is a U.S. trademark of Sun Microsyst ems, Inc. Microsoft® and Windows NT® are
registered trademarks of Microsoft Corporation. Oracle® is a regi stered U.S. trademark and Oracle9™,
Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here
as a generic term covering all versions of the UNIX® operating system. UNIX is a regi stered trademark
in the United States and other countries, licensed exclusively through X/Open Company Limited.

Copyright

JBoss, Home of Professional Open Source Copyright 2006, JBoss Inc., and individual contributors as
indicated by the @authors tag. All rights reserved.

See the copyright.txt in the distribut ion for a full listing of individual contributors. This copyrighted
material is made available to anyone wishing to use, modify, copy, or redistribute it subject to the terms
and conditions of the GNU General Public License, v. 2.0. This program is distributed in the hope that it
will be useful, but WITHOUT A WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details. You should have received a copy of the GNU
General Public License, v. 2.0 along with this distribution; if not, write to the Free Software Foundat ion,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Software Version

JBossESB 4.2.1 GA

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause 52.227-FAR14.

© Copyright 2007 JBoss Inc.

Contents
Table of Contents

Contents... ..iv

About This Guide..............................5

What This Guide Contains..........5
Audience.................................5
Prerequisites......................................5
Organization...5
Documentation Conventions.........5

Additional Documentation..........6
Contacting Us..6

Connectors and Adapters...............................8

Introduction...8
The Gateway..........................8
Connecting via JCA...................................... 10
Configuration.. 11

Index...13

About This Guide
What This Guide Contains

The Connectors and Adapters Guide contains descriptions on the principles behind
Service Oriented Architecture and Enterprise Service Bus, as well as how they relate
to JBossESB. This guide also contains information on how to use JBossESB 4.2.1
GA.

Audience

This guide is most relevant to engineers who are responsible for using JBossESB
4.2.1 GA installations and want to know how it relates to SOA and ESB principles.

Prerequisites

None.
Organization

This guide contains the following chapters:

• Chapter 1, Gateways: A description of how to interface non-ESB aware
services and consumers with JBossESB.

• Chapter 2, JCA: How to tie JCA in to JBossESB.

Documentation Conventions

The following conventions are used in this guide:

JBESB-CAG-10/31/07 4

Table 1 Formatting Conventions

Additional Documentation

In addition to this guide, the following guides are available in the JBossESB 4.2.1
GA documentation set:

1. JBossESB 4.2.1 GA Trailblazer Guide: Provides guidance for using the
trailblazer example.

2. JBossESB 4.2.1 GA Getting Started Guide: Provides a quick start
reference to configuring and using the ESB.

3. JBossESB 4.2.1 GA Administration Guide: How to manage JBossESB.

4. JBossESB 4.2.1 GA Release Notes: Information on the differences
between this release and previous releases.

5. JBossESB 4.2.1 GA Services Guides: Various documents related to the
services available with the ESB.

Contacting Us

Questions or comments about JBossESB 4.2.1 GA should be directed to our support
team.

JBESB-CAG-10/31/07 5

Convention Description
Italic In paragraph text, italic identifies the titles of documents that are

being referenced. When used in conjunction with the Code text
described below, italics identify a variable that should be replaced by
the user with an actual value.

Bold Emphasizes items of particular importance.
Code Text that represents programming code.
Function | Function A path to a function or dialog box within an interface. For example,

“Select File | Open.” indicates that you should select the Open
function from the File menu.

() and | Parentheses enclose optional items in command syntax. The vertical
bar separates syntax items in a list of choices. For example, any of
the following three items can be entered in this syntax:

persistPolicy (Never | OnTimer | OnUpdate |
NoMoreOftenThan)

Note:

Caution:

A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to
avoid damage to equipment, damage to software, loss of data, or
invalid test results.

JBESB-CAG-10/31/07 6

Chapter 1

Connectors and
Adapters

Introduction
Not all clients and services of JBossESB will be able to understand the protocols and
Message formats it uses natively. As such there is a need to be able to bridge
between ESB-aware endpoints (those that understand JBossESB) and ESB-unaware
endpoints (those that do not understand JBossESB). Such bridging technologies have
existed for many years in a variety of distributed systems and are often referred to as
Connectors, Gateways or Adapters.

One of the aims of JBossESB is to allow a wide variety of clients and services to
interact. JBossESB does not require that all such clients and services be written
using JBossESB or any ESB for that matter. There is an abstract notion of an
Interoperability Bus within JBossESB, such that endpoints that may not be
JBossESB-aware can still be “plugged in to” the bus.

Note: in what follows, the terms “within the ESB” or “inside the ESB” refer to
ESB-aware endpoints.

All JBossESB-aware clients and services communicate with one another using
Messages, to be described later. A Message is simply a standardized format for
information exchange, containing a header, body (payload), attachments and other
data. Furthemore, all JBossESB-aware services are identified using Endpoint
References (EPRs), to be described later.

It is important for legacy interoperability scenarios that a SOA infrastructure such as
JBossESB allow ESB-unaware clients to use ESB-aware services, or ESB-aware
clients to use ESB-unaware services. The concept that JBossESB uses to facilitate
this interoperability is through Gateways. A gateway is a service that can bridge
between the ESB-aware and ESB-unaware worlds and translate to/from Message
formats and to/from EPRs.

JBossESB currently supports Gateways and Connectors. In the following sections
we shall examine both concepts and illustrate how they can be used.

The Gateway

Not all users of JBossESB will be ESB-aware. In order to facilitate those users
interacting with services provided by the ESB, JBossESB has the concept of a
Gateway: specialised servers that can accept messages from non-ESB clients and
services and route them to the required destination.

A Gateway is a specialised listener process, that behaves very similarly to an ESB
aware listener. There are some important differences however:

JBESB-CAG-10/31/07 7

● Gateway classes can pick up arbitrary objects contained in files, JMS
messages, SQL tables etc (each 'gateway class' is specialized for a
specific transport), whereas JBossESB listeners can only process
JBossESB normalized Messages as described in “The Message”
section of this document. However, those Messages can contain
arbitrary data.

● Only one action class is invoked to perform the 'message composing'
action. ESB listeners are able to execute an act ion processing pipeline.

● Objects that are 'picked up' will be used to invoke a single 'composer
class' (the action) that will return an ESB Message object, which will
be delivered to a target service that must be an ESB aware service. The
target service defined at configurat ion time, will be translated at
runtime into an EPR (or a list of EPRs) by the Regist ry. The
underlying concept is that the EPR returned by the Registry is
analogous to the 'toEPR' contained in the header of ESB Messages,
but because incoming objects are 'ESB unaware' and there is thus no
dynamic way to determine the toEPR, this value is provided to the
gateway at configuration time and included in all outgoing messages.

There are a few off the shelf composer classes: the default 'file' composer class will
just package the file contents into the Message body; same idea for JMS messages.
Default message composing class for a SQL table row is to package contents of all
columns specified in configurat ion, into a java.util.Map.

Although these default composer classes will be enough for most use cases, it is
relatively straightforward for users to provide their own message composing classes.
The only requirements are a) they must have a constructor that takes a single
ConfigTree argument, and b) they must provide a 'Message composing' method
(default name is 'process' but this can be configured differently in the 'process'
attribute of the <action> element within the ConfigTree provided at constructor
time. The processing method must take a single argument of type Object, and
return a Message value.

Gateway Data Mappings
When a non-JBossESB message is received by a Gateway it must be converted to a
Message. How this is done and where in the Message the received data resides,
depends upon the type of Gateway. How this conversion occurs depends upon the
type of Gateway; the default conversion approach is described below:

• JMS Gateway: if the input message is a JMS TextMessage, then the
associated String will be placed in the default named Body location; if it
is an ObjectMessage or a BytesMessage then the contents are placed
within the BytesBody.BYTES_LOCATION named Body location.

• Local File Gateway: the contents are placed within the
BytesBody.BYTES_LOCATION named Body location.

• Hibernate Gateway: the contents are placed within the
ListenerTagNames.HIBERNATE_OBJECT_DATA_TAG named Body
location.

JBESB-CAG-10/31/07 8

• Remote File Gateway: the contents are placed within the
BytesBody.BYTES_LOCATION named Body location.

How to change the Gateway Data Mappings
If you want to change how this mapping occurs then it will depend upon the type of
Gateway:

• File Gateways: instances of the
org.jboss.soa.esb.listeners.message.MessageComposer
interface are responsible for performi ng the conversion. To change the
default behavior, provide an appropriate implementation that defines your
own compose and decompose methods. The new MessageComposer
implementation should be provided in the configuration file using the
composer-class attribute name.

• JMS and Hibernate Gateways: these implementations use a reflect ive
approach for defining composition classes. Provide your own Message
composer class and use the composer-class attribute name in the
configuration file to inform the Gateway which instance to use. You can use
the composer-process attribute to inform the Gateway which operation of
the class to call when it needs a Message; this method must take an
Object and return a Message. If not specified, a default name of process
is assumed.

Note: Whichever of the methods you use to redefi ne the Message composition, it is
worth noting that you have complete control over what is in the Message and
not just the Body. For example, if you want to define ReplyTo or FaultTo
EPRs for the newly created Message, based on the original content, sender etc.,
then you should consider modifying the header too.

Connecting via JCA

You can use JCA Message Inflow as an ESB Gateway. This integration does not use
MDBs, but rather ESB's lightweight inflow integration. To enable a gateway for a
service, you must first implement an endpoint class. This class is a Java class that
must implement the org.jboss.soa.esb.listeners.jca.InflowGateway class:

public interface InflowGateway
{

public void setServiceInvoker(ServiceInvoker invoker);
}

The endpoint class must either have a default constructor, or a constructor that takes
a ConfigTree parameter. This Java class must also implement the messaging type of
the JCA adapter you are binding to. Here's a simple endpoint class example that
hooks up to a JMS adapter:

public class JmsEndpoint implements InflowGateway, MessageListener
{
 private ServiceInvoker service;

JBESB-CAG-10/31/07 9

 private PackageJmsMessageContents transformer = new
PackageJmsMessageContents();

 public void setServiceInvoker(ServiceInvoker invoker)
 {
 this.service = invoker;
 }

 public void onMessage(Message message)
 {
 try
 {
 org.jboss.soa.esb.message.Message esbMessage =
transformer.process(message);

 service.postMessage(esbMessage);
 }
 catch (Exception e)
 {
 throw new RuntimeException(e);
 }
 }
}

One instance of the JmsEndpoint class will be created per gateway defined for this
class. This is not like an MDB that is pooled. Only one instance of the class will
service each and every incoming message, so you must write threadsafe code.

At configuration time, the ESB creates a ServiceInvoker and invokes the
setServiceInvoker method on the endpoint class. The ESB then activates the JCA
endpoint and the endpoint class instance is ready to receive messages. In the
JmsEndpoint example, the instance receives a JMS message and converts it to an
ESB message type. Then it uses the ServiceInvoker instance to invoke on the target
service.

Note: The JMS Endpoint class is provided for you with the ESB distribution under
org.jboss.soa.esb.listeners.jca.JmsEndpoint It is quite possible that this class
would be used over and over again with any JMS JCA inflow adapters.

Configuration
A JCA inflow gateway is configured in a jboss-esb.xml file. Here's an example:

...
 <service category="HelloWorld_ActionESB"
 name="SimpleListener"
 description="Hello World">
 <listeners>
 <jca-gateway name="JMS-JCA-Gateway"
 adapter="jms-ra.rar"
 endpointClass="org.jboss.soa.esb.listeners.
jca.JmsEndpoint">
 <activation-config>
 <property name="destinationType"
value="javax.jms.Queue"/>
 <property name="destination"
value="queue/esb_gateway_channel"/>
 </activation-config>
 </jca-gateway>

JBESB-CAG-10/31/07 10

...
 </service>

JCA gateways are defined in <jca-gateway> elements. These are the configurable
attributes of this XML element.

Attribute Required Description
name yes The name of the gateway
adapter yes The name of the adapter

you are using. In JBoss it is
the filename of the RAR you
deployed, e.g., jms-ra.rar

endpointClass yes The name of your endpoint
class

messagingType no The message interface for
the adapter. If you do not
specify one, ESB will guess
based on the endpoint
class.

transacted no Default to true. Whether or
not you want to invoke the
message within a JTA
transaction.

You must define an <activation-config> element within <jca-gateway>. This element
takes one or more <property> elements which have the same syntax as action
properties. The properties under <activation-config> are used to create an activation
for the JCA adapter that will be used to send messages to your endpoint class. This is
really no different than using JCA with MDBs.

You may also have as many <property> elements as you want within <jca-gateway>.
This option is provided so that you can pass additional configuration to your
endpoint class. You can read these through the ConfigTree passed to your
constructor.

JBESB-CAG-10/31/07 11

Index

JBESB-CAG-10/31/07 12

	Gateway Data Mappings
	How to change the Gateway Data Mappings

	Configuration

