
JBossESB 4.2.1 GA
Programmers Guide

JBESB-PG-10/31/07

JBESB-PG-10/31/07

Legal Notices

The information contained in this documentation is subject to change without notice.

JBoss Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. JBoss Inc. shall not be liable
for errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this materi al.

Java™ and J2EE is a U.S. trademark of Sun Microsyst ems, Inc. Microsoft® and Windows NT® are
registered trademarks of Microsoft Corporation. Oracle® is a regi stered U.S. trademark and Oracle9™,
Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here
as a generic term covering all versions of the UNIX® operating system. UNIX is a regi stered trademark
in the United States and other countries, licensed exclusively through X/Open Company Limited.

Copyright

JBoss, Home of Professional Open Source Copyright 2006, JBoss Inc., and individual contributors as
indicated by the @authors tag. All rights reserved.

See the copyright.txt in the distribut ion for a full listing of individual contributors. This copyrighted
material is made available to anyone wishing to use, modify, copy, or redistribute it subject to the terms
and conditions of the GNU General Public License, v. 2.0. This program is distributed in the hope that it
will be useful, but WITHOUT A WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details. You should have received a copy of the GNU
General Public License, v. 2.0 along with this distribution; if not, write to the Free Software Foundat ion,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Software Version

JBossESB 4.2.1 GA

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause 52.227-FAR14.

© Copyright 2007 JBoss Inc.

Contents
Table of Contents

Contents... ..iv

About This Guide..............................6

What This Guide Contains..........6
Audience.................................6
Prerequisites......................................6
Organization...6
Documentation Conventions.........7
Additional Documentation...........7
Contacting Us...8

The Enterprise Service Bus..........................10

What is an ESB?... ..10
When would you use JBossESB?.................10

JBossESB..14

Rosetta.. ..14
The core of JBossESB in a nutshell..............15

Services and Messages.............................17

Introduction..17
The Service... 17
Mapping of EPR to Service..................18
The Message... 19
Extensions to Body....................................... 24
The Message Header...................25

Default FaultTo....................................27
Default ReplyTo...................................27

The Message payload.....................28
The MessageFactory..................................... 29
Message Formats......................................30

MessageType.JAVA_SERIALIZED....30
MessageType.JBOSS_XML................30

Building and Using Services............................ ..32

Listeners, Couriers and Actions...................32
Actions and Messages................36
Handling responses....................................... 37
Error handling when processing actions.......37
Meta-data and Filters................................. ...38
What is a Service?............................39
ServiceInvoker......................40
Services and ServiceInvoker........................41

Other Components.. ...42

Introduction.......................................42
The Message Store....................42
Data Transformation.................................... .42
Content-based Routing.....................43
The Registry....................................43

Example...44

How to use the Message....................44
The Message structure.............................44
The Service... 45
Unpicking the payload.................................. 46
The Client..47
Hints and Tips......................48

Advanced Topics.............................49

Introduction.......................................49
Fail-over Support.. 49
Services, EPRs, listeners and actions...........49
Distributed Services................50
Protocol Clustering.................................... ...51
Channel Fail-over and Load Balancing........52
Message Redelivery..............54
Scheduling of Services..................55
Simple Schedule...................................56
Cron Schedule............................56
Scheduled Listener.......................57
Example Configurations.........................57
Quartz Scheduler Property Configuration....58

Fault-tolerance and Reliability............59

Introduction..59
Failure classification..............59
JBossESB and the Fault Models.................. .60
Failure Detectors and Failure Suspectors.....62
Reliability guarantees...........................63
Message loss... 63
Suspecting Endpoint Failures.............64
Supported Crash Failure Modes...................64
Component Specifics.................................... 65
Gateways...65
ServiceInvoker.......................65
JMS Broker.............................65
Action Pipelining.. 65
Recommendations..........................65

Configuration..68

Overview..68
Providers...............................69
Services..70
Transport Specific Type Implementations....73
FTP Provider configuration75
FTP Listener configuration76
Read-only FTP Listener................................ 76
Read-only FTP Listener Configuration76
Transitioning From The Old Configuration

Model..78
Configuration.........................78

Index...80

About This Guide
What This Guide Contains

The Programmers Guide contains information on how to use JBossESB 4.2.1 GA.
Audience

This guide is most relevant to engineers who are responsible for using JBossESB
4.2.1 GA installations and want to know how it relates to SOA and ESB principles.

Prerequisites

None.
Organization

This guide contains the following chapters:

• Chapter 1, The ESB: an overview of the ESB concept.

• Chapter 2, JBossESB: a description of the core components within
JBossESB and how they are intended to be used.

• Chapter 3, Services and Messages: a discussion on the two core concepts
within JBossESB.

• Chapter 4, Building and Using Services: How to use listeners and actions
to develop services and consumers.

• Chapter 5, Other Components: An overview of the other services within
JBossESB.

• Chapter 6, Example: A worked example using some of the principles
examined so far.

• Chapter 7, Advanced Topics: Some advanced concepts available within
JBossESB, such as automatic fail-over and scheduling.

• Chapter 8, Fault-tolerance and Reliability: A discussion of how failures
may affect applications developed on an ESB and how JBossESB can help
tolerate them.

• Chapter 9, Configuration: a description of the configuration opt ions
within JBossESB.

Documentation Conventions

The following conventions are used in this guide:

JBESB-PG-10/31/07 6

Table 1 Formatting Conventions

Additional Documentation

In addition to this guide, the following guides are available in the JBossESB 4.2.1
GA documentation set:

1. JBossESB 4.2.1 GA Trailblazer Guide: Provides guidance for using the
trailblazer example.

2. JBossESB 4.2.1 GA Getting Started Guide: Provides a quick start
reference to configuring and using the ESB.

3. JBossESB 4.2.1 GA Administration Guide: How to manage JBossESB.

JBESB-PG-10/31/07 7

Convention Description
Italic In paragraph text, italic identifies the titles of documents that are

being referenced. When used in conjunction with the Code text
described below, italics identify a variable that should be replaced by
the user with an actual value.

Bold Emphasizes items of particular importance.
Code Text that represents programming code.
Function | Function A path to a function or dialog box within an interface. For example,

“Select File | Open.” indicates that you should select the Open
function from the File menu.

() and | Parentheses enclose optional items in command syntax. The vertical
bar separates syntax items in a list of choices. For example, any of
the following three items can be entered in this syntax:

persistPolicy (Never | OnTimer | OnUpdate |
NoMoreOftenThan)

Note:

Caution:

A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to
avoid damage to equipment, damage to software, loss of data, or
invalid test results.

4. JBossESB 4.2.1 GA Release Notes: Information on the differences
between this release and previous releases.

5. JBossESB 4.2.1 GA Services Guides: Various documents related to the
services available with the ESB.

Contacting Us

Questions or comments about JBossESB 4.2.1 GA should be directed to our support
team.

JBESB-PG-10/31/07 8

JBESB-PG-10/31/07 9

Chapter 1

The Enterprise Service
Bus

What is an ESB?

The ESB is seen as the next generation of EAI – better and without the vendor-
lockin characteristics of old. As such, many of the capabilities of a good ESB mirror
those of existing EAI offerings. Traditional EAI stacks consist of: Business Process
Monitoring, Integrated Development Environment, Human Workflow User Interface,
Business Process Management, Connectors, Transaction Manager, Security,
Application Container, Messaging Service, Metadata Repository, Naming and
Directory Service, Distributed Computing Architecture.

As with EAI systems, ESB is not about business logic – that is left to higher levels.
It is about infrastructure logic. Although there are many different definitions of what
constitutes an ESB, what everyone agrees on now is that an ESB is part of an SOA
infrastructure. However, SOA is not simply a technology or a product: it's a style of
design, with many aspects (such as architectural, methodological and organisational)
unrelated to the actual technology. But obviously at some point it becomes necessary
to map the abstract SOA to a concrete implementation and that's where the ESB
comes in to play.

Note: You can learn more about SOA principles and ESB architectures in the SOA
Background Concepts document.

When would you use JBossESB?

The figures below illustrate some concrete examples where JBossESB would be
useful. Although these examples are specific to interactions between participants
using non-interoperable JMS implementations, the principles are general and can be
applied to other transports such as FTP and HTTP.

The first diagram shows simple file movement between two systems where
messaging queuing is not involved.

The next diagram illustrates how transformation can be injected into the same
scenario using JBossESB.

JBESB-PG-10/31/07 10

In the next series of examples, we use a queuing system (e.g., a JMS
implementation).

The diagram below shows transformation and queuing in the same situat ion.

JBESB-PG-10/31/07 11

JBossESB can be used in more than multi-party scenarios. For example, the diagram
below shows basic data transformation via the ESB using the file system.

The final scenario is again a single party example using transformation and a
queuing system.

JBESB-PG-10/31/07 12

In the following chapters we shall look at the core concepts within JBossESB and
how they can be used to develop SOA-based applications.

JBESB-PG-10/31/07 13

Chapter 2

JBossESB
Rosetta

The core of JBossESB is Rosetta1, an ESB that has been in commercial deployment
at a mission critical site for over 3 years. The architecture of Rosetta is shown below
in Figure 1:

Note: In the diagram, processor classes refer to the Action classes within the core
that are responsible for processing on triggered events.

There are many reasons why users may want disparate applications, services and
components to interoperate, e.g., leveraging legacy systems in new deployments.
Furthermore, such interactions between these entities may occur both synchronously
or asynchronously. As with most ESBs, Rosetta was developed to facilitate such
deployments, but providing an infrast ructure and set of tools that could:

1 Rosetta borrowed its name from the stone found in 1799 by French soldiers in the Nil e
delta’s town of Rosetta (French for Rashid) that was instrumental in Jean-François Champollion
deciphering of Egyptian hieroglyphs.

JBESB-PG-10/31/07 14

• Be easily configured to work with a wide variety of transport mechanisms
(e.g., email and JMS).

• Offer a general purpose object repository.

• Enable pluggable data transformation mechanisms.

• Support logging of interactions.

To date, Rosetta has been used in mission critical deployments using Oracle
Financials. The multi platform environment included an IBM mainframe running
z/OS, DB2 and Oracle databases hosted in the mainframe and in smaller servers,
with additional Windows and Linux servers and a myriad of third party applications
that offered dissimilar entry points for interoperation. It used JMS and MQSeries for
asynchronous messaging and Postgress for object storage. Interoperation with third
parties outside of the corporation’s IT infrastructure was made possible using IBM
MQSeries, FTP servers offering entry points to pick up and deposit files to/from the
outside world and attachments in e-mail messages to ‘well known’ e-mail accounts.

As we shall see when examining the JBossESB core, which is based on Rosetta, the
challenge was to provide a set of tools and a methodology that would make it simple
to isolate business logic from transport and triggering mechanisms, to log business
and processing events that flowed through the framework and to allow flexible plug
ins of ad hoc business logic and data transformations. Emphasis was placed on
ensuring that it possible (and simple) for future users to replace/extend the standard
base classes that come with the framework (and are used for the toolset), and to
trigger their own ‘action classes’ that can be unaware of transport and triggering
mechanisms.

Note: Within JBossESB source we have two trees: org.jboss.internal.soa.esb and
org.jboss.soa.esb. You should limit your use of anything within the
org.jboss.internal.soa.esb package because the contents are subject to change
without notice. Alternatively anything within the org.jboss.soa.esb is covered by
our deprecation policy.

The core of JBossESB in a nutshell
Rosetta is built on three core architect ural components:

• Message Listener and Message Filtering code. Message Listeners act as
“inbound” message routers that listen for messages (e.g. on a JMS
Queue/Topic, or on the filesystem) and present the message to a message
processing pipeline that filters the message and routes it (“outbound”
router) to another message endpoint.

• Data transformation via the SmooksTransformer action processor. See the
Message Transformation Guide.

• A Content Based Routing Service. See the CBR Guide.

• A Message Repository, for saving messages/events exchanged within the
ESB. See the Message Store Guide for further details.

JBESB-PG-10/31/07 15

These capabilities are offered through a set of business classes, adapters and
processors, which will be described in detail later. Interactions between clients and
services are supported via a range of different approaches, including JMS, flat-file
system and email.

A typical JBossESB deployment is shown below. We shall return to this diagram in
subsequent sections.

Note: Some of the components in the diagram (e.g., LDAP server) are configuration
choices and may not be provided out-of-the-box. Furthermore, the Processor
and Action distinction shown in the above diagram is merely an illustrative
convenience to show the concepts involved when an incoming event (message)
triggers the underlying ESB to invoke higher-level services.

Figure 2: ESB Core components.

In the following chapters we shall look at the various components within JBossESB
and show how they interact and can be used to develop SOA-based applications.

JBESB-PG-10/31/07 16

Chapter 3

Services and
Messages

Introduction
In keeping with SOA principles, everything within JBossESB is considered to be
either a service or a message. Services encapsulate the business logic or points of
integration with legacy systems. Messages are the way in which clients an d services
communicate with each other.

In the following sections we shall look at how Services and Messages are supported
within JBossESB.

The Service

All clients and services within JBossESB are addressed using Endpoint References
(EPRs). An EPR is essentially an address, to which messages are delivered by the
ESB. How the message is delivered (e.g., FTP or JMS) is part of the binding of the
EPR to messaging infrastructure and is typically reflected within the To component
of the EPR, e.g., jms://foo.bar. The binding aspect is important because it imparts
important semantic information as to the delivery characteristics for the message.
For example, if using HTTP and the ultimate recipient of the message (e.g., business
object) is not available, attempts to deliver the message will fail. If using JMS, it
may be possible to deposit the message within a queue without delivery to the
ultimate destination taking place. Obviously failure to deliver the message may
subsequently occur, but unlike in the case of HTTP the sender will not be
immediately notified of such a failure.

An EPR has the following XML-based composi tion:

• [address] : URI (mandatory). An address URI that ident ifies the endpoint.
This may be a network address or a logical address.

• [reference properties] : xs:any (0..unbounded). A reference may contain a
number of individual properties that are required to identify the enti ty or
resource being conveyed. Reference identification properties are element
information items that are named by QName and are required to properly
dispatch messages to endpoints at the endpoint side of the interaction.
Reference properties are provided by the issuer of the endpoint reference
and are otherwise assumed to be opaque to consuming applications. The
interpretation of these propert ies (as the use of the endpoint reference in
general) is dependent upon the protocol binding and data encoding used to
interact with the endpoint. Consuming applications should assume that
endpoints represented by endpoint references with different [reference
properties] may accept different sets of messages or follow a different set
of policies, and consequently may have different associated metadata (e.g.,
WSDL, XML Schema, and WS-Policy policies).

JBESB-PG-10/31/07 17

• [reference parameters] : xs:any (0..unbounded). A reference may contain
a number of individual parameters which are associated with the endpoint
to facilitate a particular interact ion. Reference parameters are element
information items that are named by QName and are required to properly
interact with the endpoint. Reference parameters are also provided by the
issuer of the endpoint reference and are otherwise assumed to be opaque to
consuming applications. The use of reference parameters is dependent upon
the protocol binding and data encoding used to interact with the endpoint.
Unlike [reference properties], the [reference parameters] of two endpoint
references may differ without an implication that different XML Schema,
WSDL or policies apply to the endpoints.

Note: It should already be apparent that EPRs are a low-level type of address and
not something that most applications will have to deal with. You may have to
deal with them for more advanced techniques such as direction of responses to
recipients other than the sender, or routing failure notifications elsewhere.
However, in general you should use the higher level Service Name and
ServiceInvoker approach in conjunction with the Registry.

JBossESB uses the org.jboss.soa.esb.addressing.EPR and
org.jboss.soa.esb.addressing.PortReference classes to represent
endpoint references.

public class EPR
{

public EPR ();
public EPR (PortReference addr);
public EPR (URI uri);

public void setAddr (PortReference uri);
public PortReference getAddr () throws URISyntaxException;

public void copy (EPR from);

public boolean equals (Object obj);
}

Note: The use of EPRs is based on the WS-Addressing specification from the
W3C. However, in the 4.2 release the JBossESB implementation of EPRs is
closer to the 2004 version of the speci fication from IBM, Microsoft et al.

Mapping of EPR to Service
How services map to EPRs can be a very important aspect of any application based
on Service Oriented Architecture principles. Too tight a coupling can lead to brittle
applications, whereas too loose a coupling can result in more development effort at
the higher levels of the application. This section gives some general hints and tips on
developing services, particularly when working with sessions. If you already have a
good understanding of how your back-end implementation choices (e.g., EJB3)
should map to services, then you can skip this sect ion.

It has long been recognized that the World Wide Web is probably the most successful
distributed system created. It is inherently loosely coupled (clients and servers
frequently interact across the globe) and highly scaleable (many thousands of Web

JBESB-PG-10/31/07 18

sites). There are a number of factors that can be attributed to the Web’s success, but
two of the most important are:

 Sessions between clients and servers are maintained only long enough
to transfer an HTML page and are dropped immediately afterward. This
means that costly resources (e.g., TCP/IP connections, threads,
processes) are not maintained for long durations, particularly when
there are many users interacting with a service.

 Server interactions are either stateless, meaning that any instance of a
Web server offering a particular service, e.g., airline reservation, can
field the request, or information requi red to identify a previous user
(and possibly state) is propagated with the invocation, e.g., the cookie.

Both of these factors mean that clusters of servers can relatively easily be used to
distribute the load and provide improved availability/fault-tolerance to users. Web
servers offering critical services are typically deployed over a cluster of machines. A
locally distributed cluster of machines with the illusion of a single IP address and
capable of working together to host a Web site provides a practical way of scaling up
processing power and sharing load at a given site. Commercially available server
clusters rely on a specially designed gateway router to distribute the load using a
mechanism known as network address translation (NAT). The mechanism operates
by editing the IP headers of packets so as to change the destination address before
the IP to host address translation is performed. Similarly, return packets are edited to
change their source IP address. Such translations can be performed on a per session
basis so that all IP packets corresponding to a particular session are consistently
redirected.

The Message

All interactions between clients and services within JBossESB occur through the
exchange of Messages. In order to encourage loose coupling we recommend a
message-exchange pattern based on one-way messages, i.e., requests and responses
are independent messages, correlated where necessary by the infrastructure or
application. Applications constructed in this way are less brittle and can be more
tolerant of failures, giving developers more flexibility in their deployment and
message delivery requirements.

To ensure loose coupling of services and develop SOA applications, it is necessary
to:

• Use one-way message exchanges rather than request-response.

• Keep the contract definition within the exchanged messages. Try not to
define a service interface that exposed back-end implementation choices,
because that will make changing the implementation more difficult later.

• Use an extensible message structure for the message payload so that
changes to it can be versioned over time, for backward compatibility.

• Do not develop fine-grained services: this is not a distributed-object
paradigm, which can lead to brittle appli cations.

JBESB-PG-10/31/07 19

In order to use a one-way message delivery pattern with requests and responses, it is
obviously necessary to encode information about where responses should be sent.
That information may be present in the message body (the payload) and hence dealt
with solely by the application, or part of the initial request message and typically
dealt with by the ESB infrastructure.

Therefore, central to the ESB is the notion of a message, whose structure is similar
to that found in SOAP:

<xs:complexType name="Envelope">
<xs:attribute ref="Header" use="required"/>
<xs:attribute ref="Context" use="required"/>
<xs:attribute ref="Body" use="required"/>
<xs:attribute ref="Attachment" use="optional"/>
<xs:attribute ref="Properties" use="optional"/>
<xs:attribute ref="Fault" use="optional"/>

</xs:complexType>

Pictorially the basic structure of the Message can be represented as shown below. In
the rest of this section we shall examine each of these components in more detai l.

In UML, the Message structure can be represent ed as:

JBESB-PG-10/31/07 20

Each message is an implementation of the
org.jboss.soa.esb.message.Message interface. Within that package are
interfaces for the various fields within the Message as shown below:

public interface Message
{

public Header getHeader ();
public Context getContext ();
public Body getBody ();
public Fault getFault ();
public Attachment getAttachment ();
public URI getType ();
public Properties getProperties ();

}

Note: In JBossESB, Attachments and Properties are not treated differently
from the Body. The general concepts they embody are currently being re-
evaluated and may change significantly in future releases. As such, we
recommend developers do not use Attachments.

The Header contains routing and addressing information for this message. As we
saw earlier, JBossESB uses an addressing scheme based on the WS-Addressing
standard from W3C. We shall discuss the
org.jboss.soa.esb.addressing.Call class in the next section.

public interface Header
{

public Call getCall ();
public void setCall (Call call);

}

The Context contains session related information, such as transaction or security
contexts.

JBESB-PG-10/31/07 21

Note: The 4.x release of JBossESB does not support user-enhanced Contexts.
This will be a feature of the 5.0 release.

The Body typically contains the payload of the message. It may contain a list of
Objects of arbitrary types. How these objects are serialized to/from the message
body when it is transmitted is up to the specifi c Object type.

Note: You should be extremely careful about sending Serialized objects within the
Body: not everything that can be Serialized will necessarily be meaningful at the
receiver, e.g., database connections.

public interface Body
{
 public static final String DEFAULT_LOCATION =
"org.jboss.soa.esb.message.defaultEntry";

public void add (String name, Object value);
public Object get (String name);
public void add (Object value);
public Object get ();
public Object remove (String name);
public void replace (Body b);
public void merge (Body b);

}

A Body can be used to convey arbitrary information types and arbitrary numbers of
each type, i.e., it is not necessary to restrict yourself to sending and receiving single
data items within a Body.

Note: The byte array component of the Body was deprecated in JBossESB 4.2.1. If
you wish to continue using a byte array in conjunction with other data stored in
the Body, then simply use add with a unique name.If your clients and services
want to agree on a location for a byte array, then you can use the one that
JBossESB uses: ByteBody.BYTES_LOCATION.

Note: The default named Object (DEFAULT_LOCATION) should be used with
care so that multiple services or Acti ons do not overwrite each other's data.

The Fault can be used to convey error information. The information is represented
within the Body.

public interface Fault
{

public URI getCode ();
public void setCode (URI code);

public String getReason ();
public void setReason (String reason);

 public Throwable getCause ();
 public void setCause (Throwable ex);
}

JBESB-PG-10/31/07 22

Note: In JBossESB, Attachments and Properties are not treated differently
from the Body. The general concepts they embody are currently being re-
evaluated and may change significantly in future releases. As such, we
recommend developers do not use Attachments or Properties.

A set of message properties, which can be used to define additional meta-data for the
message.

public interface Properties
{

public Object getProperty(String name);
public Object getProperty(String name, Object defaultVal);

public Object setProperty(String name, Object value);
public Object remove(String name);

public int size();
public String[] getNames();

}

Note: JBossESB does not implement Properties as java.util.Properties for the
same reason Web Services stacks do not: it places restrictions on the types of
clients and services that can used. If you need to send java.util.Properties then
you can embed them within the current abstraction.

Messages may contain attachments that do not appear in the main payload body. For
example, imagines, drawings, binary document formats, zip files etc. The
Attachment interface supports both named and unnamed attachments.

public interface Attachment
{

Object get(String name);
Object put(String name, Object value);

Object remove(String name);

String[] getNames();

Object itemAt (int index) throws IndexOutOfBoundsException;
Object removeItemAt (int index) throws IndexOutOfBoundsException
Object replaceItemAt(int index, Object value)

throws IndexOutOfBoundsException;

void addItem (Object value);
void addItemAt (int index, Object value)

throws IndexOutOfBoundsException;

public int getNamedCount();
}

Attachments may be used for a number of reasons (some of which have been
outlined above). At a minimum, they may be used to more logically structure your
message and improve performance of large messages, e.g., by streaming the
attachments between endpoints.

JBESB-PG-10/31/07 23

Note: At present JBossESB does not support specifying other encoding
mechanisms for the Message or attachment streaming. This will be added in
later releases and where appropriate will be tied in to the SOAP-with-
attachments delivery mechanism. Therefore, currently attachments are treated in
the same was as named objects within the Body.

Given that there are attachments, properties, and named objects, you may be
wondering where should you put your payload? The answer is fairly straight forward:

• As a service developer, you define the contract that clients use in order to
interact with your service. As part of that contract, you will specific both
functional and non-functional aspects of the service, e.g., that it is an airline
reservation service (functional) and that it is transactional (non-functional).
You'll also define the operations (messages) that the service can understand.
As part of the message definition, you stipul ate the format (e.g., Java
Serialized message versus XML) and the content (e.g., transaction context,
seat number, customer name etc.) When defining the content, you can
specify where in the Message your service will expect to find the payload.
That can be in the form of attachments or speci fic named objects (even the
default named object if you so wish). It is entirel y up to the service
developer to determine. The only restri ctions are that objects and
attachments must be globally uniquely named, or one service (or Action)
may inadvertently pick up a partial payload meant for another if the same
Message Body is forwarded across multiple hops.

• As a service users, you obtain the contract definition about the service (e.g.,
through UDDI or out-of-band communication) and this will define where in
the message the payload must go. Informat ion placed in other locations wil l
likely be ignored and result in incorrect operation of the service.

There is more information about how to define your Message payload in the
Message Payload section of this document.

Getting and Setting Data on the Message Body
By default, all JBossESB 4.2.1GA+ components (Actions, Listeners, Gateways,
Routers, Notifiers etc) get and set data on the message through the messages
“Default Payload Location”. This simple means that, by default, all components wil l
get the payload to be processed (transformed, routed etc) by calling
Message.getBody().get() and will set the processed result into the outgoing message
by calling Message.getBody().add().

This default behavior can be overridden by all components in exactly the same way;
by setting the “get-payload-location” and/or “set-payload-location” properties on
the relevant component's configuration.

Prior to JBossESB 4.2.1GA there was no default message payload exchange pattern
in place. JBossESB 4.2.1GA+ can be configured to exchange payload data
according to the pre 4.2.1GA approach (i.e. is backward compatible with) by setting
the “use.legacy.message.payload.exchange.patterns” property to “true” in the “core”
section/module of the jbossesb-proper ties.xml file (found in the jbossesb. sar).

JBESB-PG-10/31/07 24

Extensions to Body
Although you can manipulate the contents of a Message Body directly in terms of
bytes or name/value pairs, it is often more natural to use one of the following
predefined Message structures, which are simply different views onto the data
contained in the underlying Body.

As well as the basic Body interface, JBossESB supports the following interfaces,
which are extensions on the basic Body interface:

• org.jboss.soa.esb.message.body.content.TextBody: the content
of the Body is an arbitrary String, and can be manipulated via the
getText and setText methods.

• org.jboss.soa.esb.message.body.content.ObjectBody: the
content of the Body is a Serialized Object, and can be manipulated via the
getObject and setObject methods.

• org.jboss.soa.esb.message.body.content.MapBody: the content
of the Body is a Map<String, Serialized), and can be manipulated
via the setMap and other methods.

• org.jboss.soa.esb.message.body.content.BytesBody: the
content of the Body is a byte stream that contains arbitrary Java data-types.
It can be manipulated using the various setter and getter methods for the
data-types. Once created, the BytesMessage should be placed into either a
read-only or write-only mode, depending upon how it needs to be
manipulated. It is possible to change bet ween these modes (using readMode
and writeMode), but each time the mode is changed the buffer pointer will
be reset. In order to ensure that all of the updates have been pushed into the
Body, it is necessary to call flush when finished.

You can create Messages that have Body implementations based on one of these
specific interfaces through the XMLMessageFactory or
SerializedMessageFactory classes. The need for two different factories is
explained in the section on Message Formats, which is described later in the
document.

For each of the various Body types, you will find an associated create method (e.g.,
createTextBody) that allows you to create and initialize a Message of the specific
type. Once created, the Message can be manipulated directly through the raw Body
or via the specific interface. If the Message is transmitted to a recipient, then the
Body structure will be maintained, e.g., it can be manipulated as a TextBody.

The XMLMessageFactory and SerializedMessageFactory are more
convenient ways in which to work with Messages than the MessageFactory and
associated classes, which are described in the following sections.

Note: these extensions to the base Body interface are provided in a complimentary
manner to the original Body. As such they can be used in conjunction with
existing clients and services. Message consumers can remain unaware of these
new types if necessary because the underlying data structure within the
Message remains unchanged.

JBESB-PG-10/31/07 25

The Message Header
As we saw above, the Header of a Message contains a reference to the
org.jboss.soa.esb.addressing.Call class:

public class Call
{

public Call ();
public Call (EPR epr);

public void setTo (EPR epr);
public EPR getTo () throws URISyntaxException;

public void setFrom (EPR from);
public EPR getFrom () throws URISyntaxException;

public void setReplyTo (EPR replyTo);
public EPR getReplyTo () throws URISyntaxException;

public void setFaultTo (EPR uri);
public EPR getFaultTo () throws URISyntaxException;

public void setRelatesTo (URI uri);
public URI getRelatesTo () throws URISyntaxException;

public void setAction (URI uri);
public URI getAction () throws URISyntaxException;

public void setMessageID (URI uri);
public URI getMessageID () throws URISyntaxException;

public void copy (Call from);
}

The properties below support both one way and request reply interaction patterns:

• [To] : URI (mandatory). The address of the intended receiver of this
message.

• [From] : endpoint reference (0..1). Reference of the endpoint where the
message originated from.

• [ReplyTo] : endpoint reference (0..1). An endpoint reference that identi fies
the intended receiver for replies to this message. If a reply is expected, a
message must contain a [ReplyTo]. The sender must use the contents of the
[ReplyTo] to formulate the reply message. If the [ReplyTo] is absent, the
contents of the [From] may be used to formul ate a message to the source.
This property may be absent if the message has no meaningful reply. If this
property is present, the [MessageID] property is required.

• [FaultTo] : endpoint reference (0..1). An endpoint reference that identi fies
the intended receiver for faults rel ated to this message. When formulat ing a
fault message the sender must use the contents of the [FaultTo] of the
message being replied to to formulate the fault message. If the [FaultTo] is
absent, the sender may use the contents of the [Repl yTo] to formulate the
fault message. If both the [FaultTo] and [ReplyTo] are absent, the sender

JBESB-PG-10/31/07 26

may use the contents of the [From] to formul ate the fault message. This
property may be absent if the sender cannot receive fault messages (e.g., is
a one-way application message). If this property is present, the
[MessageID] property is required.

• [Action] : URI (mandatory). An identifier that uniquely (and opaquely)
identifies the semantics impl ied by this message.

• [MessageID] : URI (0..1). A URI that uniquely identifies this message in
time and space. No two messages with a distinct application intent may
share a [MessageID] property. A message may be retransmitted for any
purpose including communications failure and may use the same
[MessageID] property. The value of this property is an opaque URI whose
interpretation beyond equivalence is not defined. If a reply is expected, this
property must be present.

The relationship between the Header and the various EPRs can be illustrated as
follows in UML:

When working with Messages, you should consider the role of the header when
developing and using your clients and services. For example, if you require a
synchronous interaction pattern based on request/response, you will be expected to
set the ReplyTo field, or a default EPR will be used; even with request/response, the
response need not go back to the original sender, if you so choose. Likewise, when
sending one-way messages (no response), you should not set the ReplyTo field
because it will be ignored.

Default FaultTo
When sending Messages, it is possible that errors will occur, either during the
transmission or reception/processing of the Message. JBossESB will route any
faults to the EPR mentioned in the FaultTo field of the incoming message. If this
is not set, then it will use the ReplyTo field or, failing that, the From field. If no
valid EPR is obtained as a result of checking all of these fields, then the error will be
output to the console. If you do not wish to be informed about such faults, such as
when sending a one-way message, you may wish to use the DeadLetter Queue
Service EPR as your FaultTo. In this way, any faults that do occur will be saved for
later processing.

JBESB-PG-10/31/07 27

Default ReplyTo
Because the recommended interaction pattern for within JBossESB is based on one-
way message exchange, responses to messages are not necessarily automatic: it is
application dependent as to whether or not a sender expects a response. As such, a
reply address (EPR) is an optional part of the header routing information and
applications should be setting this value if necessary. However, in the case where a
response is required and the reply EPR (ReplyTo EPR) has not been set, JBossESB
supports default values for each type of transport. Some of these ReplyTo defaults
require system administrators to configure JBossESB correctly.

 For JMS, it is assumed to be a queue with a name based on the one used to
deliver the original request: <request queue name>_reply

 For JDBC, it is assumed to be a table in the same database with a name based
on the one used to deliver the original request : <request table
name>_reply_table. The new table needs the same columns as the request
table.

 For files (both local and remote), no admini stration changes are required:
responses will be written into the same directory as the request but with a
unique suffix to ensure that only the original sender will pick up the response.

The Message payload
From an application/service perspective the message payload is a combination of the
Body and Attachments. In this section we shall give an overview of best practices
when constructing and using the message payload.

Note: In JBossESB, Attachments and Properties are not treated differently
from the Body. The general concepts they embody are currently being re-
evaluated and may change significantly in future releases. As such we shall not
be considering the Attachments as part of the payload in the rest of this
discussion.

The UML representation of the payload is shown below:

JBESB-PG-10/31/07 28

More complex content may be added through the add method, which supports
named Objects. Names must be unique on behalf of a given Message or an
appropriate exception will be thrown. Using <name, Object> pairs allows for a
finer granularity of data access. The type of Objects that can be added to the Body
can be arbitrary: they do not need to be Java Serializable. However, in the case
where non-Serializable Objects are added, it is necessary to provide JBossESB
with the ability to marshal/unmarshal the Message when it flows across the
network. See the section of Message Formats for more details.

If no name is supplied to set or get, then the default name defined by
DEFAULT_LOCATION will be used.

Note: be careful when using Serialized Java objects in messages because it
constrains the service implementations.

In general you will find it easier to work with the Message Body through the named
Object approach. You can add, remove and inspect individual data items within the
Message payload without having to decode the entire Body. Furthermore, you can
combine named Objects within the payload with the byte array.

Note: in the current release of JBossESB only Java Serialized objects may be
attachments. This restriction will be removed in a subsequent release.

The MessageFactory
Internally to an ESB component, the message is a collection of Java objects.
However, messages need to be serialized for a number of reasons, e.g., transmitted
between address spaces (processes) or saved to a persistent datastore for auditing or
debugging purposes. The external representation of a message may be influenced by
the environment in which the ESB is deployed. Therefore, JBossESB does not
impose a specific normalized message format, but supports a range of them.

JBESB-PG-10/31/07 29

All implementations of the org.jboss.soa.esb.message.Message interface are
obtained from the org.jboss.soa.esb.message.format.MessageFactory
class:

public abstract class MessageFactory
{

public abstract Message getMessage ();
public abstract Message getMessage (URI type);

public static MessageFactory getInstance ();
}

Message serialization implementations are uniquely identified by a URI. The type of
implementation required may be specified when requesting a new instance, or the
configured default implementation may be used. Currently JBossESB provides two
implementations, which are defined in the
org.jboss.soa.esb.message.format.MessageType class:

• MessageType.JBOSS_XML: this uses an XML representation of the
Message on the wire. The schema for the message is defined in the
message.xsd within the schemas directory. The URI is
urn:jboss/esb/message/type/JBOSS_XML.

• MessageType.JAVA_SERIALIZED: this implementation requires that all
components of a Message are Serializable. It obviously requires that
recipients of this type of Message have sufficient information (the Java
classes) to be able to de-serialize the Message. The URI is
urn:jboss/esb/message/type/JAVA_SERIALIZED.

Note: You should be wary about using the JAVA_SERIALIZED version of the
Message format because it more easily ties your applications to specific service
implementations, i.e., it breaks loose coupling.

Other Message implementations may be provided at runtime through the
org.jboss.soa.esb.message.format.MessagePlugin:

public interface MessagePlugin
{

public static final String MESSAGE_PLUGIN =
 "org.jboss.soa.esb.message.format.plugin";

public Message getMessage ();
public URI getType ();

}

Each plug-in must uniquely identify the type of Message implementation it provides
(via getMessage), using the getType method. Plug-in implementations must be
identified to the system via the jbossesb-properties.xml file using property
names with the org.jboss.soa.esb.message.format.plugin extension.

Note: The default Message type is JBOSS_XML. However, this can be changed by
setting the property org.jboss.soa.esb.message.default.uri to the desired URI.

JBESB-PG-10/31/07 30

Message Formats
As mentioned previously, JBossESB supports two serialized message formats:
MessageType.JBOSS_XML and MessageType.JAVA_SERIALIZED. In the
following sections we shall look at each of these formats in more detail.

MessageType.JAVA_SERIALIZED
This implementation requires that all contents are Java Serializable. Any attempt to
add a non-Serializable object to the Message will result in a
IllegalParameterException being thrown.

MessageType.JBOSS_XML
This implementation uses an XML representation of the Message on the wire. The
schema for the message is defined in the message.xsd within the schemas
directory. Arbitrary objects may be added to the Message, i.e., they do not have to
be Serializable. Therefore, it may be necessary to provide a mechanism to
marshal/unmarshal such objects to/from XML when the Message needs to be
serialized. This support can be provided through the
org.jboss.soa.esb.message.format.xml.marshal.MarshalUnmarshalPl
ugin:

public interface MarshalUnmarshalPlugin
{

public static final String MARSHAL_UNMARSHAL_PLUGIN =
 "org.jboss.soa.esb.message.format.xml.plugin";

public boolean marshal (Element doc, Object param)
throws MarshalException;

public Object unmarshal (Element doc) throws UnmarshalException;

public URI type ();
}

Note: Java Serialized objects are supported by default.

Plug-ins can be registered with the system through the jbossesb-
properties.xml configuration file. They should have attribute names that start
with the MARSHAL_UNMARSHAL_PLUGIN. When packing objects in XML, JBossESB
runs through the list of registered plug-ins until it finds one that can deal with the
object type (or faults). When packing, the name (type) of the plug-in that packed the
object is also attached to facilitat e unpacking at the Message receiver.

Now that we have looked at the concepts behind services and Messages, we shall
examine how to construct services using the framework provided by Rosetta in the
following Chapter.

JBESB-PG-10/31/07 31

Chapter 4

Building and Using
Services

Listeners, Couriers and Actions

Listeners encapsulate the endpoints for message reception. Upon receipt of a
message, a Listener feeds that message into a “pipeline” of message processors that
process the message before routing the result to the “replyTo” endpoint. The action
processing that takes place in the pipeline may consist of steps wherein the message
gets transformed in one processor, some business logic is applied in the next
processor, before the result gets routed to the next step in the pipeline, or to another
endpoint. Listeners rely on the Courier interface to pick up and deliver Messages.

The Courier interface encapsulates transport details from listeners.

public interface Courier
{

public boolean deliver(Message message) throws CourierException;
}

The TwoWayCourier class that extends Courier, can also pickup Messages from an
EPR. It is useful when a response is expected from the target of the outgoing
Message (see for example org.jboss.soa.esb.actions.CbrProxyAction).

public interface TwoWayCourier extends Courier
{

...
public Message pickup(long waitTime, EPR epr) throws

CourierException, CourierTimeoutException;
...

}

The CourierFactory class will return an appropriate Courier (or TwoWayCourier)
class for specific EPRs.

public class CourierFactory
{

....

public static Courier getCourier(EPR toEPR) throws
CourierException

{

...

JBESB-PG-10/31/07 32

}

public static TwoWayCourier getCourier(EPR toEPR, EPR replyToEPR)
throws CourierException

{
...

}
...

}

The default internal TwoWayCourierImpl checks if the transport specific courier has
a public 'void cleanup()' method and if so, invokes it to do housekeeping that need
not be implemented for all transports. See
org.jboss.internal.soa.esb.couriers.JmsCourier for example.

Transport specific classes that implement the Courier or TwoWayCourier interfaces
can publish other utility methods that are specific for that particular transport.

As outlined above, the responsibility of a listener is to act as a message delivery
endpoint and to deliver messages to an “Action Processing Pipeline”. Each listener
configuration needs to supply informat ion for:

● the Registry (see service-category, service-name, service-description
and EPR-description tag names)

● instantiation of the listener class (see listenerClass tag name)

● the EPR that the listener will be servicing. This is transpor t specific.
The following example corresponds to a JMS EPR (see connection-
factory, destination-type, destination-name, jndi-type, jndi-URL and
message-selector tag names)

● the “action processing pipeline”. One or more <action> elements each
that must contain at least the ' class' tagname that will determine which
action class will be instantiated for that step in the processing chain

<?xml version = "1.0" encoding = "UTF-8"?>

<jbossesb
xmlns="http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/etc/sc
hemas/xml/jbossesb-1.0.1.xsd" parameterReloadSecs="5">

 <providers>
 <jms-provider name="JBossMQ"
 connection-factory="ConnectionFactory"
 jndi-URL="jnp://127.0.0.1:1099"
 jndi-context-factory="org.jnp.interfaces.NamingContextFactory"
 jndi-pkg-prefix="org.jboss.naming:org.jnp.interfaces">

 <jms-bus busid="quickstartGwChannel">
 <jms-message-filter
 dest-type="QUEUE"
 dest-name="queue/quickstart_helloworld_Request_gw"
 />
 </jms-bus>
 <jms-bus busid="quickstartEsbChannel">

JBESB-PG-10/31/07 33

 <jms-message-filter
 dest-type="QUEUE"
 dest-name="queue/quickstart_helloworld_Request_esb"
 />
 </jms-bus>

 </jms-provider>
 </providers>

 <services>
 <service
 category="FirstServiceESB"
 name="SimpleListener"
 description="Hello World">
 <listeners>
 <jms-listener name="JMS-Gateway"
 busidref="quickstartGwChannel"
 maxThreads="1"
 is-gateway="true"
 />
 <jms-listener name="helloWorld"
 busidref="quickstartEsbChannel"
 maxThreads="1"
 />
 </listeners>
 <actions>
 <action name="action1"
class="org.jboss.soa.esb.samples.quickstart.helloworld.MyJMSListenerAct
ion"
 process="displayMessage"
 />
 <action name="notificationAction"

class="org.jboss.soa.esb.actions.Notifier">
<property name="okMethod" value="notifyOK" />
<property name="notification-details">

 <NotificationList type="ok">
<target class="NotifyConsole"/>

</NotificationList>
<NotificationList type="err">

<target class="NotifyConsole"/>
</NotificationList>

</property>
 </action>

 </actions>
 </service>
 </services>

</jbossesb>

This example configuration will instantiate a listener object (jms-listener attribute)
that will wait for inconimg ESB Messages, serialized within a
javax.jms.ObjectMessage, and will deliver each incoming message to an
ActionProcessingPipeline consiting of two steps (<action> elements):

1. action1. MyJMSListenerActionAction (a trivial example follows)

JBESB-PG-10/31/07 34

2. notificationAction. An
org.jboss.soa.esb.actions.SystemPrintln

The following trivial action class will prove useful for debugging your XML action
configuration

public class MyJMSListenerAction
{
 ConfigTree _config;

 public MyJMSListenerAction(ConfigTree config) { _config =
config; }

 public Message process (Message message) throws Exception
 {
 System.out.println(message.getBody().getContents());
 return message;
 }
}

Action classes are the main way in which ESB users can tailor the framework to
their specific needs. The ActionProcessingPipeline class will expect any action class
to provide at least the following:

● A public constructor that takes a single argument of type ConfigTree

● One or more public methods that take a Message argument, and return
a Message result

Optional public callback methods that take a Message argument will be used for
notification of the result of the specific step of the processing pipeline (see items 5
and 6 below).

The
org.jboss,soa.esb.listeners.message.ActionProcessingPipeline
class will perform the following steps for all steps configured using <action>
elements

1. Instantiate an object of the class speci fied in the 'class' attribute with a
constructor that takes a single argument of type ConfigTree

2. Analyze contents of the 'process' attribute.

Contents can be a comma separated list of public method names of the
instantiated class (step 1), each of which must take a single argument of
type Message, and return a Message object that will be passed to the
next step in the pipeline

If the 'process' attribute is not present , the pipeline will assume a single
processing method called “process”

Using a list of method names in a single <act ion> element has some
advantages compared to using successive <action> elements, as the

JBESB-PG-10/31/07 35

action class is instantiated once, and methods will be invoked on the
same instance of the class. This reduces overhead and allows for state
information to be kept in the instance objects.

This approach is useful for user supplied (new) action classes, but the
other alternative (list of <action> elements) continues to be a way of
reusing other existing action classes.

3. Sequentially invoke each method in the list using the Message returned
by the previous step

4. If the value returned by any step is null the pipel ine will stop
processing immediately.

5. Callback method for success in each <action> element: If the list of
methods in the 'process' attribute was executed successful ly, the
pipeline will analyze contents of the 'okMethod' attribute. If none is
specified, processing will continue with the next <action> element. If a
method name is provided in the 'okMethod' attribute, it will be invoked
using the Message returned by the last method in step 3. If the pipeline
succeeds then the okMethod notification will be called on all handlers
from the last one back to the initial one.

6. Callback method for failure in each <action> element: If an Exception
occurs then the exceptionMethod notification will be called on all
handlers from the current (failing) handler back to the initial handler.
At present time, if no exceptionMethod was specified, the only output
will be the logged error. If an ActionProcessingFaultException is
thrown from any process method then an error message will be
returned as per the rules defined in the next section. The cont ents of the
error message will either be whatever is returned from the
getFaultMessage of the exception, or a default Fault containing the
information within the original exception.

Action classes supplied by users to tailor behaviour of the ESB to their specific
needs, might need extra run time configuration (for example the Notifier class in the
XML above needs the <NotificationList> child element). Each <action> element
will utilize the attributes mentioned above and will ignore any other attributes and
optional child elements. These will be however passed through to the action class
constructor in the require ConfigTree argument. Each action class will be
instantiated with it's corresponding <action> element and thus does not see (in fact
must not see) sibling action element s.

Actions and Messages
Actions are triggered by the arrival of a Message. The specific Action
implementation is expected to know where the data resides within a Message.
Because a Service may be implemented using an arbitrary number of Actions, it is
possible that a single input Message could contain information on behalf of more
than one Action. In which case it is incumbent on the Action developer to choose
one or more unique locations within the Message Body for its data and
communicate this to the Service consumers.

JBESB-PG-10/31/07 36

Furthermore, because Actions may be chained together it is possible that an
Action earlier in the chain modifies the original input Message, or replaces it
entirely.

Note: From a security perspective, you should be careful about using unknown
Actions within your Service chain. We recommend encrypting information.

If Actions share data within an input Message and each one modifies the
information as it flows through the chain, by default we recommend retaining the
original information so that Actions further down the chain still have access to it.
Obviously there may be situations where this is either not possible or would be
unwise. Within JBossESB, Actions that modify the input data can place this within
the org.jboss.soa.esb.actions.post named Body location. This means that
if there are N Actions in the chain, Action N can find the original data where it
would normally look, or if Action N-1 modified the data then N will find it within
the other specified location. To further facilitate Action chaining, Action N can
see if Action N-2 modified the data by looking in the
org.jboss.soa.esb.actions.pre named Body location.

Note: As mentioned earlier, you should use the default named Body location with
care when chaining Actions in case chained Actions use it in a conflicting
manner.

Handling responses
There are two processing mechanisms supported for handling responses in the action
pipeline, implicit processing (based on the response of the actions) and explicit
processing.

If the processing is implicit then responses will be processed as follows: -

• If any action in the pipeline returns a null message then no response will be
sent.

• If the final action in the pipeline returned a non-error response then a reply
will be sent to the ReplyTo EPR of the request message or, if not set, to the
From EPR of the request message. In the event that there is no way to route
responses, an error message will be logged by the system.

If the processing is explicit then responses will be processed as follows: -

• If the action pipeline is specified as 'OneWay' then the pipeline will never
send a response

• If the pipeline is specific as 'RequestResponse' then a reply will be sent to
the ReplyTo EPR of the request message or, if not set, to the From EPR of
the request message. In the event that there is no EPR is speci fied then no
error message will be logged by the system.

We recommend that all action pipelines should use the explicit processing
mechanism. This can be enabled by simply adding the 'mep' attribute to the 'actions'
element in the jboss-esb.xml file. The value of this attribute should be either
'OneWay' or 'RequestResponse'.

JBESB-PG-10/31/07 37

Error handling when processing actions
When processing an action chain, it is possible that errors may occur. Such errors
should be thrown as exceptions from the Action pipeline, thus terminating the
processing of the pipeline. As mentioned earlier, a Fault Message may be returned
within an ActionProcessingFaultException. If it is important for information about
errors to be returned to the sender (or some intermediary) then the FaultTo EPR
should be set. If this is not set, then JBossESB will attempt to deliver error messages
based on the ReplyTo EPR and, if that is also not set, the From EPR. If none of these
EPRs has been set, then error information will be logged locally.

Error messages of various types can be returned from the Action implementations.
However, JBossESB supports the following “system” error messages, all of which
may be identified by the mentioned URI in the message Fault, in the case that an
exception is thrown and no application specific Fault Message is present :

• urn:action/error/actionprocessingerror: this means that an
action in the chain threw an ActionProcessingFaultException but
did not include a fault message to return. The exception details will be
contained within the “reason” String of the Fault.

• urn:action/error/unexpectederror: an unexpected exception was
caught during the processing. Details about the exception can be found in
the “reason” String of the Fault.

• urn:action/error/disabled: action processing is disabled.

If an exception is thrown within your Action chain, then it will be propagated back
to the client within a FaultMessageException, which is re-thrown from the
Courier or ServiceInvoker classes. This exception, which is also thrown
whenever a Fault message is received, will contain the Fault code and reason, as
well as any propagated exception.

Meta-data and Filters

As a message flows through the ESB it may be useful to attach meta-data to it, such
as the time it entered the ESB and the time it left. Furthermore, it may be necessary
to dynamically augment the message; for example, adding transaction or security
information. Both of these capabilities are supported in JBossESB through the filter
mechanism, for both gateway and ESB nodes.

Note: the filter property name, the package for the InputOutputFilter and its
signature all changed in JBossESB 4.2 MR3 from earlier milestone releases.

The class org.jboss.soa.esb.filter.InputOutputFilter has two methods:

• public Message onOutput (Message msg, Map<String,
Object> params) throws CourierException which is called as a
message flows to the transport. An implement ation may modify the
message and return a new version. Additional information may be provided
by the caller in the form of extra parameters.

• public Message onInput (Message msg, Map<String, Object>
params) throws CourierException which is called as a message
flows from the transport. An implementation may modify the message and

JBESB-PG-10/31/07 38

return a new version. Additional informat ion may be provided by the caller
in the form of extra parameters.

Filters are defined in the filters section of the jbossesb-properties.xml file using the
property org.jboss.soa.esb.filter.<number>, where <number> can be any
value and is used to indicate the order in which multiple filters are to be called
(lowest to highest).

Note: you will need to place any changes to your jbossesb-properties.xml file on
each ESB instance that is deployed in your environment. This will ensure that all
ESB instances can process the same meta-data.

JBossESB ships with
org.jboss.internal.soa.esb.message.filter.MetaDataFilter and
org.jboss.internal.soa.message.filter.GatewayFilter which add the
following meta-data to the Message as Properties with the indicated property
names and the returned String values. See the Adapter Guide for more information
about Gateways.

Message Property Name Value
org.jboss.soa.esb.message.transport
.type

File, FTP, JMS, SQL, or Hibernate.

org.jboss.soa.esb.message.source The name of the file from which the
message was read.

org.jboss.soa.esb.message.time.dob The time the message entered the ESB,
e.g., the time it was sent, or the time it
arrived at a gateway.

org.jboss.soa.esb.mesage.time.dod The time the message left the ESB, e.g.,
the time it was received.

org.jboss.soa.esb.gateway.original.
file.name

If the message was received via a file
related gateway node, then this element
will contain the name of the original file
from which the message was sourced.

org.jboss.soa.esb.gatway.original.q
ueue.name

If the message was received via a JMS
gateway node, then this element will
contain the name of the queue from which
it was received.

org.jboss.soa.esb.gateway.original.
url

If the message was received via a SQL
gateway node, then this element will
contain the original database URL.

Note: Although it is safe to deploy the GatewayFilter on all ESB nodes, it will only
add information to a Message if it is deployed on a gateway node.

More meta-data can be added to the message by creating and registering suitable
filters. Your filter can determine whether or not it is running within a gateway node
through the presence (or absence) of the following named entries within the
additional parameters.

JBESB-PG-10/31/07 39

Name Value
org.jboss.soa.esb.gateway.file The File from which the Message was

sourced. This will only be present if this
gateway is file based.

org.jboss.soa.esb.gateway.config The ConfigTree that was used to initialize
the gateway instance.

Note: Only file based, JMS and SQL gateways have support for the
GatewayFilter in JBossESB 4.2.1 GA.

What is a Service?

JBossESB does not impose restrictions on what constitutes a service. As we
discussed earlier in this document, the ideal SOA infrastructure encourages a loosely
coupled interaction pattern between clients and services, where the message is of
critical importance and implementation specific details are hidden behind an abstract
interface. This allows for the implementations to change without requiring
clients/users to change. Only changes to the message definitions necessitate updates
to the clients.

As such and as we have seen, JBossESB uses a message driven pattern for service
definitions and structures: clients send Messages to services and the basic service
interface is essentially a single process method that operates on the Message
received. Internally a service is structured from one or more Actions, that can be
chained together to process incoming the incoming Message. What an Action does
is implementation dependent, e.g., update a database table entry, or call an EJB.

When developing your services, you first need to determine the conceptual
interface/contract that it exposes to users/consumers. This contract should be defined
in terms of Messages, e.g., what the payload looks like, what type of response
Message will be generated (if any) etc.

Note: Once defined, the contract information should be published within the
registry. At present JBossESB does not have any automatic way of doing this.

Clients can then use the service as long as they do so according to the published
contract. How your service processes the Message and performs the work necessary,
is an implementation choice. It could be done within a single Action, or within
multiple Actions. There will be the usual trade-offs to make, e.g., manageability
versus re-useability.

Note: in subsequent releases we will be improving tool support to facilitate the
development of services.

ServiceInvoker
From a clients perspective, the Courier interface and its various implementations can
be used to interact with services. However, this is still a relatively low-level
approach, requiring developer code to contact the registry and deal with failures.
Furthermore, since JBossESB has fail-over capabilities for stateless services, this
would again have to be managed by the application. See the Advanced chapter for
more details on fail-over.

JBESB-PG-10/31/07 40

In JBossESB 4.2, the ServiceInvoker was introduced to help simplify the
development effort. The ServiceInvoker hides much of the lower level details
and opaquely works with the stateless service fail-over mechanisms. As such,
ServiceInvoker is the recommended client-side interface for using services
within JBossESB.

 public class ServiceInvoker
 {
 public ServiceInvoker(Service service) throws
MessageDeliverException;
 public ServiceInvoker(String serviceCategory, String
serviceName) throws MessageDeliverException;

 public Message deliverSync(Message message, long
timeoutMillis) throws MessageDeliverException, RegistryException,
FaultMessageException;
 public void deliverAsync(Message message) throws
MessageDeliverException;
 }

An instance of ServiceInvoker can be created for each service with which the
client requires interactions. Once created, the instance contacts the registry where
appropriate to determine the primary EPR and, in the case of fail-overs, any
alternative EPRs.

Once created, the client can determine how to send Messages to the service:
synchronously (via deliverSync) or asynchronously (via deliverAsync). In the
synchronous case, a timeout must be specified which represents how long the client
will wait for a response. If no response is received within this period, a
MessageDeliverException is thrown.

As mentioned earlier in this document, when sending a Message it is possible to
specify values for To, ReplyTo, FaultTo etc. within the Message header. When
using the ServiceInvoker, because it has already contacted the registry at
construction time, the To field is unnecessary. In fact, when sending a Message
through ServiceInvoker, the To field will be ignored in both the synchronous and
asynchronous delivery modes. In a future release of JBossESB it may be possible to
use any supplied To field as an alternate delivery destination should the EPRs
returned by the registry fail to resolve to an active service.

Services and ServiceInvoker
In a client-service environment the terms client and service are used to represent
roles and a single entity can be a client and a service simultaneously. As such, you
should not consider ServiceInvoker to be the domain of “pure” clients: it can be
used within your Services and specifically within Actions. For example, rather than
using the built-in Content Based Routing, an Action may wish to re-route an
incoming Message to a different Service based on evaluation of certain business
logic. Or an Action could decide to route specific types of fault Messages to the
Dead Letter Queue for later administ ration.

The advantage of using ServiceInvoker in this way is that your Services will be
able to benefit from the opaque fail-over mechanism described in the Advanced

JBESB-PG-10/31/07 41

chapter. This means that one-way requests to other Services, faults etc. can be routed
in a more robust manner without imposing more complexity on the developer.

JBESB-PG-10/31/07 42

Chapter 5

Other Components
Introduction

In this Chapter we shall look at other infrastructural components and services within
JBossESB. Several of these services have their own documentation which you
should also read: the aim of this Chapter is to simply give an overview of what else
is available to developers.

The Message Store
The message store mechanism in JBossESB is designed with audit tracking purposes
in mind. As with other ESB services, it is a pluggable service, which allows for you,
the developer to plug in your own persistence mechanism should you have special
needs. The implementation supplied with JBossESB is a database persistence
mechanism. If you require say, a file persistence mechanism, then it’s just a matter of
you writing your own service to do this, and override the default behaviour with a
configuration change.

One thing to point out with the Message Store – this is a base implementation. We
will be working with the community and partners to drive the feature functionality
set of the message store to support advanced audit and management requirements.
This is meant to be a starting point.

Data Transformation
Often clients and services will communicate using the same vocabulary. However,
there are situations where this is not the case and on-the-fly transformation from one
data format to another will be required. It is unrealistic to assume that a single data
format will be suitable for all business objects, particularly in a large scale or long
running deployment. Therefore, it is necessary to provide a mechanism for
transforming from one data format to another.

In JBossESB this is the role the Transformation Service. This version of the ESB is
shipped with an out-of-the-box Transformation Service based on Milyn Smooks.
Smooks is a Transformation Implementation and Management framework. It allows
you implement your transformation logic in XSLT, Java etc and provides a
management framework through which you can centrally manage the transformation
logic for your message-set.

For more details see the Message Transformation Guide.

Content-based Routing
Sometimes it is necessary for the ESB to dynamically route messages to their
sources. For example, the original destination may no longer be available, the
service may have moved, or the application simply wants to have more control over
where messages go based on content, time-of-day etc. The Content-based Routing
mechanism within JBossESB can be used to route Messages based on arbitrarily
complex rules, which can be defined within XPath or Jboss Rules notation.

JBESB-PG-10/31/07 43

http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks
http://milyn.codehaus.org/Smooks

The Registry
In the context of SOA, a registry provides applications and businesses a central point
to store information about their services. It is expected to provide the same level of
information and the same breadth of services to its clients as that of a conventional
market place. Ideally a registry should also facilitate the automated discovery and
execution of e-commerce transactions and enabling a dynamic environment for
business transactions. Therefore, a registry is more than an “e-business directory”. It
is an inherent component of the SOA infrastructure.

In many ways, the Registry Service is at the heart of JBossESB: services can self-
publish their endpoint references (EPRs) into the Registry when they are activated,
and remove them when they are taken out of service. Consumers can introspect over
the Registry to determine the EPR for the right service for the work at hand.

JBESB-PG-10/31/07 44

Chapter 6

Example
How to use the Message

The Message is a critical component in the SOA development approach. In contains
application specific data sent from clients to services and vice versa. In some cases
that data may be as simple as “turn on the light”, or as complex as “search this start
chart for any anomalous data that may indicate a planet.” What goes into a Message
is entirely application specific and represents an important aspect of the contract
between a service and its clients. In this section we shall describe some best
practices around the Message and how to use it.

Let's consider the following example which uses a Flight Reservation service. This
service supports the following operations:

• reserveSeat: this takes a flight number and seat number and returns success
or failure indication.

• querySeat: this takes a flight number and a seat number and returns an
indication of whether or not the seat is currently reserved.

• upgradeSeat: this takes a flight number and two seat numbers (the currently
reserved seat and the one to move to).

When developing this service, it will likely use technologies such as EJB3,
Hibernate etc. to implement the business logic. In this example we shall ignore how
the business logic is implemented and concentrate on the service.

The role of the service is to plug the logic into the bus. In order to do this, we must
determine how the service is exposed on to the bus, i.e., what contract it defines for
clients. In the current version of JBossESB, that contract takes the form of the
Messages that clients and services can exchange. There is no formal specification
for this contract within the ESB, i.e., at present it is something that the developer
defines and must communicate to clients out-of-band from the ESB. This will be
rectified in subsequent releases.

The Message structure
From a service perspective, of all the components within a Message, the Body is
probably the most important, since it is used to convey information specific to the
business logic. In order to interact, both client and service must understand each
other. This takes the form of agreeing on the transport (e.g., JMS or HTTP), as well
as agreeing on the dialect (e.g., where in the Message data will appear and what
format it will take).

If we take the simple case of a client sending a Message directly to our Flight
Reservation service, then we need to determine how the service can determine which

JBESB-PG-10/31/07 45

of the operations the Message concerns. In this case the developer decides that the
opcode (operation code) will appear within the Body as a String (“reserve”, “query”,
“upgrade”) at the location “org.example.flight.opcode”. Any other String value (or
the absence of any value) will be considered an illegal Message.

Note: It is important that all values within a Message are given unique names, to
avoid clashes with other clients or servi ces.

The Message Body is the primary way in which data should be exchanged between
clients and services. It is flexible enough to contain any number of arbitrary data
type. The other parameters necessary for carrying out the business logic associated
with each operation would also be suitably encoded.

• “org.example.flight.seatnumber” for the seat number, which will be an
integer.

• “org.example.flight.flightnumber” for the flight number, which will be a
String.

• “org.example.flight.upgradenumber” for the upgraded seat number, which
will be an integer.

Operation org.example.fli
ght.opcode

org.example.fli
ght.seatnumbe
r

org.example.flight
.flightnumber

org.example.fl
ight.upgraden
umber

reserveSeat String: reserve integer String N/A
querySeat String: query integer String N/A
upgradeSeat String: upgrade integer String integer

As we have mentioned, all of these operations return information to the client. Such
information will likewise be encapsulated within a Message. The determination of
the format of such response Messages will go through the same processes as we are
currently describing. For simplification purposes we shall not consider the response
Messages further.

From a JBossESB Action perspective, the service may be built using one or more
Actions. For example, one Action may pre-process the incoming Message and
transform the content in some way, before passing it on to the Action which is
responsible for the main business logic. Each of these Actions may have been
written in isolation (possibly by different groups within the same organization or by
completely different organizations). In such an architecture it is important that each
Action has its own unique view of where the Message data resides that is of
interest only to that Action or it is entirely possible for chained Actions to
overwrite or interfere with one another.

The Service
At this point we have enough information to construct the service. For simplicity, we
shall assume that the business logic is encapsulated within the following pseudo-
object:

JBESB-PG-10/31/07 46

class AirlineReservationSystem
{
 public void reserveSeat (...);
 public void querySeat (...);
 public void upgradeSeat (...);
}

Note: You could develop your business logic from POJOs, EJBs, Spring etc.
JBossESB provides support for many of these approaches out of the box. You
should examine the relevant documentation and examples.

The process method of the service Action (we'll assume no chaining of Actions)
then becomes (ignoring error checking):

public Message process (Message message) throws Exception
{

String opcode =
message.getBody().get(“org.example.flight.opcode”);

 if (opcode.equals(“reserve”))
 reserveSeat(message);
 else
 if (opcode.equals(“query”))
 querySeat(message);
 else
 if (opcode.equals(“upgrade”))
 upgradeSeat(message);
 else
 throw new InvalidOpcode();

 return null;
}

Note: As with WS-Addressing, rather than embed the opcode within the Message
Body, you could use the Action field of the Message Header. This has the
drawback that it does not work if multiple JBossESB Actions are chained
together and each needs a different opcode.

Unpicking the payload
As you can see, the process method is only the start. Now we must provide
methods to decode the incoming Message payload (the Body):

public void reserveSeat (Message message) throws Exception
{

 int seatNumber =
message.getBody().get(“org.example.flight.seatnumber”);
 String flight =
message.getBody().get(“org.example.flight.flightnumber”);

 boolean success =
airlineReservationSystem.reserveSeat(seatNumber, flight);

 // now create a response Message

 Message responseMessage = ...

JBESB-PG-10/31/07 47

 responseMessage.getHeader().getCall().setTo(message.getHeader().g
etCall().getReplyTo());
 responseMessage.getHeader().getCall().setRelatesTo(message.getHea
der().getCall().getMessageID());

 // now deliver the response Message
}

What this method illustrates is how the information within the Body is extracted and
then used to invoke a method on some business logic. In the case of reserveSeat,
a response is expected by the client. This response Message is constructed using any
information returned by the business logic as well as delivery information obtained
from the original received Message. In this example, we need the To address for the
response, which we take from the ReplyTo field of the incoming Message. We also
need to relate the response with the original request and we accomplish this through
the RelatesTo field of the response and the MessageID of the request.

All of the other operations supported by the service will be similarly coded.

The Client
As soon as we have the Message definitions supported by the service, we can
construct the client code. The business logic used to support the service is never
exposed directly by the service (that would break one of the important principles of
SOA: encapsulation). This is essentially the inverse of the service code:

ServiceInvoker flightService = new ServiceInvoker(...);
Message request = // create new Message of desired type

request.getBody().add(“org.example.flight.seatnumber”, 1);
request.getBody().add(“ org.example.flight.flightnumber”, “BA1234”);

request.getHeader().getCall().setMessageID(1234);
request.getHeader().getCall().setReplyTo(myEPR);

Message response = null;

do
{
 response = flightService.deliverSync(request, 1000);

 if (response.getHeader().getCall().getRelatesTo() == 1234)
 {
 // it's out response!

 break;
 }
 else
 response = null; // and keep looping

} while maximumRetriesNotExceeded;

Note: Much of what we have outlined above may seem similar to those who have
worked with traditional client/server stub generators. In those systems, the low-
level details, such as opcodes and parameters, would be hidden behind higher
level stub abstractions. In future releases of JBossESB we intend to support such
abstractions to easy the development approach. As such, working with the raw

JBESB-PG-10/31/07 48

Message components, such as Body and Header, will be hidden from the
majority of developers.

Hints and Tips
You may find the following useful when developing your clients and services.

• When developing your Actions make sure that any payload informat ion
specific to an Action is maintained in unique locations within the
Message Body.

• Try not to expose any back-end service implementation details within your
Message. This will make it difficult to change the implement ation without
affecting clients. Message definitions (contents, formats etc.) which are
implementation agnostic help to maintain loose coupling.

• For stateless services, use the ServiceInvoker as it will opaquely handle
fail-over.

• When building request/response applications, use the correlat ion
information (MessageID and RelatesTo) within the Message Header.

• Consider using the Header Action field for your main service opcode.

• If using asynchronous interactions in which there is no delivery address for
responses, consider sending any errors to the MessageStore so that they can
be monitored later.

• Until JBossESB provides more automatic support for service contract
definitions and dissemination, consider maintaining a separate repository of
these definitions that is available to developers and users.

JBESB-PG-10/31/07 49

Chapter 7

Advanced Topics
Introduction

In this Chapter we shall look at some more advanced concepts within JBossESB.

Fail-over Support
In mission critical systems it is important to design with redundancy in mind.
JBossESB 4.2.GA is the first version with build-in fail-over, load balancing and
delayed message redelivery to help you build a robust architecture. When you use
SOA it is implied that the Service has become the building unit. JBossESB allows
you to replicate identical services across many nodes. Where each node can be a
virtual or physical machine running an instance of JBossESB. The collective of all
these JBossESB instances is called "The Bus". Services within the bus use different
delivery channels to exchange messages. In ESB terminology one such channel
maybe JMS, FTP, HTTP, etc. These different "protocols" are provided by systems
external to the ESB; the JMS-provider, the FTP server, etc. Services can be
configured to listen to one or more protocols. For each protocol that it is configured
to listen on, it creates an End Point Reference (EPR) in the Registry.

Services, EPRs, listeners and actions

In the jboss-esb.xml is service element consists of one or more listeners and one or
more actions. Let's take a look at the JBossESBHelloworld example. The
configuration fragment below is loosely based on the configuration of the
JBossESBHelloworld example. When the service initializes it registers the category,
name and description to the UDDI registry. Also for each listener element it will
register a ServiceBinding to UDDI, in which it stores an EPR xml which is much
like a URI, but somewhat richer. In this case it will register a JMSEPR for this
service, as it is a jms-listener. The jms specific like queue name etc are not shown,
but appeared at the top of the jboss-esb.xml where you can find the 'provider'
section. In the jms-listener we can simply reference the "quickstartEsbChannel" in
the busidref attribute.

JBESB-PG-10/31/07 50

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESBHelloworld
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESBHelloworld
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESBHelloworld
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESBHelloworld
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESBHelloworld
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESBHelloworld

Figure 7-1: Hello World configuration fragment, one service instance on one node.

...
<service category="FirstServiceESB" name="SimpleListener"
description="Hello World">
 <listeners>
 <jms-listener name="helloWorld" busidref="quickstartEsbChannel"
maxThreads="1"/>
 </listeners>
 <actions>
 <action name="action1"
class="org.jboss.soa.esb.actions.SystemPrintln"/>
 </actions>
</service>
...

Given the category and service name, another service can send a message to our
Hello World Service by looking up the Service in the Registry. It will receive the
JMSEPR and it can use that to send a message to. All this heavy lifting is done in the
ServiceInvoker class. When our HelloWorld Service receives a message over the
quickstartEsbChannel, it will hand this message to the process method of the first
action in the ActionPipeline, which is the SystemPrintln action.

Distributed Services

In our example we have this service running on let's say Node1. What happens if we
simply take the helloworld.esb and deploy it to Node2 as well (see figure 7-2)? Let's
say we're using jUDDI for our Registry and we have configured all our nodes to
access one central jUDDI database (it is recommended to use a clustered database
for that). Node2 will find that the FirstServiceESB - SimpleListener Service is
already registered! It will simply add a second ServiceBinding to this service. So
now we have 2 ServiceBindings for this Service. We now have our first distributed
Service! If Node1 goes down, Node2 will keep on working.

JBESB-PG-10/31/07 51

Figure 7-2: Two service instance each on a different node.

You will get load balancing as both service instances listen to the same queue.
However this means that we still have a single point of failure in our setup. This is
where Protocol Clustering maybe an option.

Protocol Clustering
Some JMS providers can be clustered. JBossMessaging is one of these providers,
which is why we use this as our default JMS provider in JBossESB. When you
cluster JMS you remove a single point of failure from your architecture, see Figure
7-3.

JBESB-PG-10/31/07 52

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESB
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESB
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESB
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossMessaging
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossMessaging
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossMessaging

Figure 7-3: Protocol clustering: Here we cluster JMS.

Please read the documentation on Clustering for JBossMessaging if you want to
enable JMS clustering. Other examples of Protocol Clustering would be a NAS for
the FileSystem protocol, but what if your provider simply cannot provide any
clustering? Well in that case you can add multiple listeners to your service, and use
multiple (JMS) providers. However this will require fail-over and load-balancing
across providers which leads us to the next section.

Channel Fail-over and Load Balancing
Our HelloWorld Service can listen to more then 1 protocol. Here we have add an ftp
channel.

...
<service category="FirstServiceESB" name="SimpleListener"
description="Hello World">

JBESB-PG-10/31/07 53

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossMessaging
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossMessaging
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossMessaging

 <listeners>
 <jms-listener name="helloWorld"
busidref="quickstartEsbChannel" maxThreads="1"/>
 <jms-listener name="helloWorld2"
busidref="quickstartFtpChannel2" maxThreads="1"/>
 </listeners>
...

Figure 7-4. Adding another JMS channel .

Now our Service is simultaneously listening to two JMS queues. Now these queues
can be provided by JMS providers on different physical boxes! So we now have a
made a redundant JMS connection between two services. We can even mix protocols
in this setup, so we can also add and ftp-listener to the mix.

...

JBESB-PG-10/31/07 54

<service category="FirstServiceESB" name="SimpleListener"
description="Hello World">
 <listeners>
 <jms-listener name="helloWorld"
busidref="quickstartEsbChannel" maxThreads="1"/>
 <jms-listener name="helloWorld2"
busidref="quickstartJmsChannel2" maxThreads="1"/>
 <ftp-listener name="helloWorld3"
busidref="quickstartFtpChannel3" maxThreads="1"/>
 <ftp-listener name="helloWorld4"
busidref="quickstartFtpChannel3" maxThreads="1"/>
 </listeners>
...

Figure 7-5: Adding an 2 FTP servers to the mix.

When the ServiceInvoker tries to deliver a message to our Service it will get a choice
of 8 EPRs now (4 EPRs from Node1 and 4 EPRs from Node2). How will it decide
which one to use? For that you can configure a Policy. In the jbossesb-properties.xml
you can set the 'org.jboss.soa.esb.loadbalancer.policy'. Right now three Policies are
provided, or you can create your own.

• First Available. If a healthy ServiceBinding is found it will be used unless it
dies, and it will move to the next EPR in the list. This Policy does not
provide any load balancing between the two service instances.

• Round Robin. Typical Load Balance Policy where each EPR is hit in order
of the list.

• Random Robin. Like the other Robin but then random.

The EPR list the Policy works with may get smaller over time as dead EPRs will be
removed from the (cached) list. When the list is exhausted or the time-to-live of the
list cache is exceeded, the ServiceInvoker will obtain a fresh list of EPRs from the
Registry. The 'org.jboss.soa.esb.registry.cache.life' can be set in the jbossesb-
properties file, and is defaulted to 60,000 milliseconds. What if none of the EPRs
work at the moment? This is where we may use Message Redelivery Service.

Message Redelivery
If the list of EPRs contains nothing but dead EPRs the ServiceInvoker can do one of
two things:

• If you are trying to deliver the message synchronousl y it will send the
message to the DeadLetterService, which by default will store to the DLQ
MessageStore, and it will send a failure back to the caller. Processing will
stop. Note that you can configure the DeadLetterService in the jbossesb.esb
if for instance you want it to go to a JMS queue, or if you want to receive a
notification.

• If you are trying to deliver the message asynchronousl y (recommended), it
too will send the message to the DeadLetterService, but the message will
get stored to the RDLVR MessageStore. The Redeliver Service
(jbossesb.esb) will retry sending the message until the maximum number of

JBESB-PG-10/31/07 55

redelivery attempts is exceeded. In that case the message will get stored to
the DLQ MessageStore and processing will stop.

Figure 7-6. If all the EPRs are bad at a given moment , async requests can be
store in the MessageStore for redelivery at a later time.

Note: The DeadLetterService is turned on by default, however in the jbossesb-
properties.xml you could set org.jboss.soa.esb.dls.redeliver to false to turn off its
use.

Scheduling of Services
JBossESB 4.2.1 GA supports 2 types of providers:

1. Bus Providers, which supply messages to action processing pipelines via
messaging protocols such as JMS and HTTP. This provider type is
“triggered” by the underlying messaging provider.

2. Schedule Providers, which supply messages to action processing pipelines
based on a schedule driven model i.e. where the underlying message

JBESB-PG-10/31/07 56

delivery mechanism (e.g. the file system) offers no support for triggering the
ESB when messages are available for processing, a scheduler periodically
triggers the listener to check for new messages.

Scheduling is new to 4.2 of the ESB and not all of the listeners have been migrated
over to this model yet2.

JBossESB 4.2.1 GA offers a <schedule-listener> as well as 2 <schedule-provider>
types - <simple-schedule> and <cron-schedule>. The <schedule-listener> is
configured with a “composer” class, which is an implementation of the
org.jboss.soa.esb.listeners.ScheduledEventMessageComposer interface.

Simple Schedule
This schedule type provides a simple scheduling capability based on a the following
attributes:

1. “scheduleid”: A unique identifier string for the schedule. Used to reference
a schedule from a listener.

2. “frequency”: The frequency (in seconds) with which all schedule listeners
should be triggered.

3. “execCount”: The number of times the schedule should be executed.

4. “startDate”: The schedule start date and time. The format of this attribute
value is that of the XML Schema type “dateTime”. See dateTime.

5. “endDate”: The schedule end date and time. The format of this attribute
value is that of the XML Schema type “dateTime”. See dateTime.

Example:
 <providers>
 <schedule-provider name="schedule">
 <simple-schedule scheduleid="1-sec-trigger" frequency="1" execCount="5" />
 </schedule-provider>
 </providers>

Cron Schedule
This schedule type provides scheduling capability based on a CRON expression.
The attributes for this schedule type are as follows:

1. “scheduleid”: A unique identifier string for the schedule. Used to reference
a schedule from a listener.

2. “cronExpression”: CRON expression.

3. “startDate”: The schedule start date and time. The format of this attribute
value is that of the XML Schema type “dateTime”. See dateTime.

4. “endDate”: The schedule end date and time. The format of this attribute
value is that of the XML Schema type “dateTime”. See dateTime.

Example:
 <providers>

2 Most of the schedule based listener candidates are currently using a “threaded polling”
model, in which they run a thread internally. This thread sleeps and wakes up
periodically, checking for new messages.

JBESB-PG-10/31/07 57

http://books.xmlschemata.org/relaxng/ch19-77049.html
http://books.xmlschemata.org/relaxng/ch19-77049.html
http://books.xmlschemata.org/relaxng/ch19-77049.html
http://books.xmlschemata.org/relaxng/ch19-77049.html
http://books.xmlschemata.org/relaxng/ch19-77049.html
http://books.xmlschemata.org/relaxng/ch19-77049.html
http://books.xmlschemata.org/relaxng/ch19-77049.html
http://books.xmlschemata.org/relaxng/ch19-77049.html
http://books.xmlschemata.org/relaxng/ch19-77049.html
http://books.xmlschemata.org/relaxng/ch19-77049.html
http://books.xmlschemata.org/relaxng/ch19-77049.html
http://books.xmlschemata.org/relaxng/ch19-77049.html

 <schedule-provider name="schedule">
 <cron-schedule scheduleid="cron-trigger" cronExpression="0/1 * * * * ?" />
 </schedule-provider>
 </providers>

Scheduled Listener
The <scheduled-listener> can be used to perform scheduled tasks based on a
<simple-schedule> or <cron-schedule> configuration.

It's configured with an “event-processor” class, which can be an implementat ion of
one of org.jboss.soa.esb.schedule.ScheduledEventListener or
org.jboss.soa.esb.listeners.ScheduledEventMessageComposer.

● ScheduledEventListener: Event Processors that implement this interface are
simply triggered through the “onSchedule” method. No action processing
pipeline is executed.

● ScheduledEventMessageComposer: Event Processors that implement this
interface are capable of “composing” a message for the action processing
pipeline associated with the listener.

The attributes of this listener are:

1. “name”: The name of the listener instance.

2. “event-processor”: The event processor class that's called on every
schedule trigger. Se above for implementation details.

3. One of:

● “scheduleidref”: I the scheduleid of the schedule to use for triggering
this listener.

● “schedule-frequency”: Schedule frequency (in seconds). A convenient
way of specifying a simple schedule directly on the listener.

Example Configurations
The following is an example configuration involving the <scheduled-listener> and
the <cron-schedule>.

<?xml version = "1.0" encoding = "UTF-8"?>
<jbossesb xmlns="http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/etc/schemas/xml/jbossesb-
1.0.1.xsd">

 <providers>
 <schedule-provider name="schedule">
 <cron-schedule scheduleid="cron-trigger" cronExpression="0/1 * * * * ?" />
 </schedule-provider>
 </providers>

 <services>
 <service category="ServiceCat" name="ServiceName" description="Test Service">

 <listeners>
 <scheduled-listener name="cron-schedule-listener" scheduleidref="cron-trigger"
 event-processor="org.jboss.soa.esb.schedule.MockScheduledEventMessageComposer" />
 </listeners>

 <actions>
 <action name="action" class="org.jboss.soa.esb.mock.MockAction" />
 </actions>
 </service>
 </services>

JBESB-PG-10/31/07 58

</jbossesb>

Quartz Scheduler Property Configuration
The Scheduling functionality in JBossESB is built on top of the Quartz Scheduler.
The default Quartz Scheduler instance configuration used by JBossESB is as
follows:

org.quartz.scheduler.instanceName = DefaultQuartzScheduler
org.quartz.scheduler.rmi.export = false
org.quartz.scheduler.rmi.proxy = false
org.quartz.scheduler.wrapJobExecutionInUserTransaction = false

org.quartz.threadPool.class = org.quartz.simpl.SimpleThreadPool
org.quartz.threadPool.threadCount = 2
org.quartz.threadPool.threadPriority = 5
org.quartz.threadPool.threadsInheritContextClassLoaderOfInitializingThread = true

org.quartz.jobStore.misfireThreshold = 60000

org.quartz.jobStore.class = org.quartz.simpl.RAMJobStore

Any of these Scheduler configurations can be overridden, or/and new ones can be
added. You can do this by simply specifying the configuration directly on the
<schedule-provider> configuration as a <property> element. For example, if you
wish to increase the thread pool size to 5:

<schedule-provider name="schedule">
 <property name=”org.quartz.threadPool.threadCount” value=”5” />
 <cron-schedule scheduleid="cron-trigger" cronExpression="0/1 * * * * ?" />
</schedule-provider>

JBESB-PG-10/31/07 59

http://www.opensymphony.com/quartz/
http://www.opensymphony.com/quartz/
http://www.opensymphony.com/quartz/

Chapter 8

Fault-tolerance and
Reliability

Introduction
In this Chapter we shall look at the reliability characteristics of JBossESB. We shall
examine what failure modes you should expect to be tolerated with this release and
give advice on how to improve the fault tolerance of your applications. However, in
order to proceed we need to define some important terms. If you wish to skip the
following sections because you understand this topic already, you may go straight to
the Reliability Guarantees section.

Dependability is defined as the trustworthiness of a component such that reliance can
be justifiably placed on the service (the behavior as perceived by a user) it delivers.
The reliability of a component is a measure of its continuous correct service
delivery. A failure occurs when the service provided by the system no longer
complies with its specification. An error is that part of a system state which is liable
to lead to failure, and a fault is defined as the cause of an error.

A fault-tolerant system is one which is designed to fulfill its specified purpose
despite the occurrence of component failures. Techniques for providing fault-
tolerance usually require mechanisms for consistent state recovery mechanisms, and
detecting errors produced by faulty components. A number of fault-tolerance
techniques exist, including replication and transactions.

Failure classification

Given a (distributed) system, it would be useful if we were able to describe its
behavior formally in a way that will help establish the correctness of the applications
run on it. If this then imposes restrictions on the permissible behavior of the
applications we will need to understand how these restrictions can be enforced and
the implications in weakening or strengthening them. A useful method of building
such a formal description with respect to fault-tolerance is to categorize the system
components according to the types of faults they are assumed to exhibit.

Four possible classifications of failures are: omission, value, timing, and arbitrary.
Associated with each component in the system will be a specification of its correct
behavior for a given set of inputs. A non-faulty component will produce an output
that is in accordance with this specification. The response from a faulty component
need not be as specified, i.e., it can be anything. The response from a given
component for a given input will be considered to be correct if not only the output
value is correct but also that the output is produced on time, i.e., produced within a
specified time limit.

The classifications are:

JBESB-PG-10/31/07 60

 Omission fault/failure: a component that does not respond to an input from
another component, and thereby fails by not producing the expected output
is exhibiting an omission fault and the corresponding failure an omission
failure. A communication link which occasionally loses messages is an
example of a component suffering from an omission fault.

 Value fault/failure: a fault that causes a component to respond within the
correct time interval but with an incorrect value is termed a value faul t (with
the corresponding failure called a value failure). A communication link
which delivers corrupted messages on time suffers from a value fault.

 Timing fault/failure: a timing fault causes the component to respond with the
correct value but outside the speci fied interval (either too soon, or too lat e).
The corresponding failure is a timing failure. An overloaded processor
which produces correct values but with an excessive delay suffers from a
timing failure. Timing failures can only occur in systems which impose
timing constraints on computations.

 Arbitrary fault/failure: the previous failure classes have specified how a
component can be considered to fail in either the value or time domain. It is
possible for a component to fail in both the domains in a manner which is
not covered by one of the previous classes. A failed component which
produces such an output will be said to be exhibiting an arbitrary failure
(Byzantine failure).

An arbitrary fault causes any violation of a component’s specified behavior. All
other fault types preclude certain types of fault behavior, the omission fault type
being the most restrictive. Thus the omission and arbitrary faults represent two ends
of a fault classification spectrum, with the other fault types placed in between. The
latter failure classifications thus subsume the characteristics of those classes before
them, e.g., omission faults (failures) can be treated as a special case of value, and
timing faults (failures). Such orderi ng can be represented as a hierarchy:

Omission

Arbitrary

Value Timing

Fault classification hierarchy.

JBossESB and the Fault Models
Within JBossESB there is nothing that will allow it to tolerate Bizantine/arbitrary
failures. As you can probably imagine, these are extremely difficult failures to detect
due to their nature. Protocols do exist to allow systems to tolerate arbitrary failures,

JBESB-PG-10/31/07 61

but they often require multi-phase coordination or digital signatures. Future releases
of JBossESB may incorporate support for some of these approaches.

Because value, timing and omission failures often require semantic information
concerning the application (or specific operations), there is only so much that
JBossESB can do directly to assist with these types of faults. However, by correct
use of JBossESB capabilities such as RelatesTo and MessageID within the
Message header, it is possible for applications to determine whether or not a
received Message is the one they are waiting for or a delayed Message, for
example. Unfortunately Messages that are provided too soon by a service, e.g.,
asynchronous one-way responses to one-way requests, may be lost due to the
underlying transport implementation. For instance, if using a protocol such as HTTP
there is a finite buffer (set at the operating system level) within which responses can
be held before they are passed to the application. If this buffer is exceeded then
information within it may be lost in favor of new Messages. Transports such as FTP
or SQL do not necessarily suffer from this specific limitation, but may exhibit other
resource restrictions that can result in the same behavior.

Tolerating Messages that are delayed is sometimes easier than tolerating those that
arrive too early. However, from an application perspective, if an early Message is
lost (e.g., by buffer overflow) it is not possible to distinguish it from one that is
infinitely delayed. Therefore, if you construct your applications (consumers and
services) to use a retry mechanism in the case of lost Messages, timing and
omission failures should be tolerated, with the following exception: your consumer
picks up an early response out of order and incorrectly processes it (which then
becomes a value failure). Fortunately if you use RelatesTo and MessageID within
the Message header, you can spot incorrect Message sequences without having to
process the entire payload (which is obviously another option available to you).

Within a synchronous request-response interaction pattern, many systems built upon
RPC will automatically resend the request if a response has not been received within
a finite period of time. Unfortunately at present JBossESB does not do this and you
will have to used the timeout mechanism within Couriers or ServiceInvoker to
determine when (and whether) to send the Message again. As we saw in the
Advanced Chapter, it will retransmit the Message if it suspects a failure of the
service has occurred that would affect Message delivery.

Note: You should use caution when retransmitting Messages to services. JBossESB
currently has no notion of retained resul ts or detecting retransmissions within the
service, so any duplicate Messages will be delivered to the service automatically.
This may mean that your service receives the same Message multiple times (e.g.,
it was the initial service response that got lost rather than the initial request). As
such, your service may attempt to perform the same work. If using
retransmission (either explicitly or through the ServiceInvoker fail-over
mechanisms), you will have to deal with multiple requests within your service to
ensure it is idempotent.

The use of transactions (such as those provided by JBossTS) and replication
protocols (as provided by systems like JGroups) can help to tolerate many of these
failure models. Furthermore, in the case where forward progress is not possible
because of a failure, using transactions the application can then roll back and the
underlying transaction system will guarantee data consistency such that it will
appear as though the work was never attempted. At present JBossESB offers

JBESB-PG-10/31/07 62

transactional support through JBossTS when deployed within the JBoss Application
Server.

Failure Detectors and Failure Suspectors
An ideal failure detector is one which can allow for the unambiguous determination
of the liveliness of an entity, (where an entity may be a process, machine etc.,),
within a distributed system. However, guaranteed detection of failures in a finite
period of time is not possible because it is not possible to differentiate between a
failed system and one which is simply slow in responding.

Current failure detectors use timeout values to determine the liveness of entities: for
example, if a machine does not respond to an “are-you-alive?” message within a
specified time period, it is assumed to have failed. If the values assigned to such
timeouts are wrong (e.g., because of network congestion), incorrect failures may be
assumed, potentially leading to inconsistencies when some machines “detect” the
failure of another machine while others do not. Therefore, such timeouts are
typically assigned given what can be assumed to be the worst case scenario within
the distributed environment in which they are to be used, e.g., worst case network
congestion and machine load. However, distributed systems and applications rarely
perform exactly as expected from one execution to another. Therefore, fluctuations
from the worst case assumptions are possible, and there is always a finite probability
of making an incorrect failure detect ion decision.

Given that guaranteed failure detection based upon timeouts is not possible, there
has been much work on failure suspectors: a failure suspector works by realising that
although guaranteed failure detection is impossible, enforcing a decision that a given
entity may have failed on to other, active entities is possible. Therefore, if one entity
assumes another has failed, a protocol is executed between the remaining entities to
either agree that it will be assumed to have failed (in which case it is excluded from
the system and no further work by it will be accepted) or that it has not failed: the
fact that one entity thinks it has failed does not mean that all entities will reach the
same decision. If the entity has not failed and is excluded then it must eventually
execute another protocol to be recognised as being alive.

The advantage of the failure suspector is that all correctly functioning entities within
the distributed environment will agree upon the liveness of another suspected failed
entity. The disadvantage is that such failure suspection protocols are heavy-weight,
typically requiring several rounds of agreement. In addition, since suspected failure
is still based upon timeout values, it is possi ble for non-failed entities to be excluded,
thus reducing (possibly critical) resource utilisation and avai lability.

Some applications can tolerate the fact that failure detection mechanisms may
occasionally return an incorrect answer. However, for other applications the incorrect
determination of the liveliness of an entity may lead to problems such as data
corruption, or in the case of mission critical applications (e.g., aircraft control
systems or nuclear reactor moni toring) could result in loss of life.

At present JBossESB does not support failure detectors or failure suspectors. We
hope to address this shortcoming in future releases. For now you should develop
your consumers and services using the techniques previously mentioned (e.g.,
MessageID and time-out/retry) to attempt to determine whether or not a given
service has failed. In some situations it is better and more efficient for the
application to detect and deal with suspect ed failures.

JBESB-PG-10/31/07 63

Reliability guarantees

As we have seen, there are a range of ways in which failures can happen within a
distributed system. In this section we will translate those into concrete examples of
how failures could affect JBossESB and applications deployed on it. In the section
on Recommendations we shall cover ways in which you can configure JBossESB to
better tolerate these faults, or how you should approach your application
development.

There are many components and services within JBossESB. The failure of some of
them may go unnoticed to some or all of your applications depending upon when the
failure occurs. For example, if the Registry Service crashes after your consumer has
successfully obtained all necessary EPR information for the services it needs in order
to function, then it will have no adverse affect on your application. However, if it
fails before this point, your application will not be able to make forward progress.
Therefore, in any determination of reliability guarantees it is necessary to consider
when failures occur as well as the types of those failures.

It is never possible to guarantee 100% reliability and fault tolerance. The laws of
physics (namely thermodynamics and the always increasing nature of entropy) mean
that hardware degrades and human error is inevitable. All we can ever do is offer a
probabilistic approach: with a high degree of probability, a system will tolerate
failures and ensure data consistency/make forward progress3. Furthermore, proving
fault-tolerance techniques such as transactions or replication comes at a price:
performance. This trade-off between performance and fault-tolerance is best
achieved with application knowledge: any attempts at opaquely imposing a specific
approach will inevitably lead to poorer performance in situations where it is imply
not necessary. As such, you will find that many of the fault-tolerance techniques
supported by JBossESB are disabled by default. You should enable them when it
makes sense to do so.

Message loss
We have previously discussed how message loss or delay may adversely affect
applications. We have also shown some examples of how messages could be lost
within JBossESB. In this section we shall discuss message loss in more detail.

Many distributed systems support reliable message delivery, either point-to-point
(one consumer and one provider) or group based (many consumers and one
provider). Typically the semantics imposed on reliability are that the message will be
delivered or the sender will be able to know with certainty that it did not get to the
receiver, even in the presence of failures4. It is frequently the case that systems
employing reliable messaging implementations distinguish between a message being
delivered to the recipient and it being processed by the recipient: for instance, simply
getting the message to a service does not mean much if a subsequent crash of the
service occurs before it has time to work on the contents of the message.

Within JBossESB, the only transport you can use which gives the above mentioned
failure semantics on Message delivery and processing is JMS: with transacted

3Aircraft manufacturing has a very high fault tolerance requirement: the chance of a
failure occurring should be no higher than 10-9.
4When groups of receivers are present then the semantics are typically based around
atomic delivery, i.e., either all recipients get the message or none of them get it.

JBESB-PG-10/31/07 64

sessions (an optional part of the JMSEpr), it is possible to guarantee that Messages
are received and processed in the presence of failures. If a failure occurs during
processing by the service, the Message will be placed back on to the JMS queue for
later re-processing. However, this does have some important performance
implications: transacted sessions can be significantly slower than non-transacted
sessions so should be used with caution.

Because none of the other transports supported by JBossESB come with
transactional or reliable delivery guarantees, it is possible for Messages to be lost.
However, in most situations the likelihood of this occurring is small. Unless there is
a simultaneous failure of both sender and receiver (possible but not probable), the
sender will be informed by JBossESB about any failure to deliver the Message. If a
failure of the receiver occurs whilst processing and a response was expected, then
the receiver will eventually time-out and can retry.

Note: Using asynchronous message delivery can make failure detection/suspicion
difficult (theoretically impossible to achieve). You should consider this aspect
when developing your applications.

For these reasons, the Message fail-over and redelivery protocol that was described
in the Advanced Chapter is a good best-effort approach. If a failure of the service is
suspected then it will select an alternative EPR (assuming one is available) and use
it. However, if this failure suspicion is wrong, then it is possible that multiple
services will get to operate on the same Message concurrently. Therefore, although it
offers a more robust approach to fail-over, it should be used with care. It works best
where your services are stateless and idempotent, i.e., the execution of the same
message multiple times is the same as executing it once.

For many services and applications this type of redelivery mechanism is fine. The
robustness it provides over a single EPR can be a significant advantage. The failure
modes where it does not work, i.e., where the client and service fails or the service is
incorrectly assumed to have failed, are relatively uncommon. If your services cannot
be idempotent, then until JBossESB supports transactional delivery of messages or
some form of retained results, you should either use JMS or code your services to be
able to detect retransmissions and cope with multiple services performing the same
work concurrently.

Suspecting Endpoint Failures
We saw earlier how failure detection/suspicion is difficult to achieve. In fact
until/unless a failed machine recovers, it is not possible to determine the difference
between a crashed machine or one that is simply running extremely slowly.
Furthermore, because networks can become partitioned, it is entirely possible that
different consumers have different views of which services are available (often
referred to as split-brain syndrome).

Supported Crash Failure Modes
Unless using transactions or a reliable message delivery protocol such as JMS,
JBossESB will only tolerate crash failures that are not catastrophic (i.e., the entire
system does not fail) and result in the ability of JBossESB and/or the application to
unambiguously reason about the liveness of the endpoints involved. If services crash
or shutdown cleanly before receiving messages, then it is safe to use transports other
than JMS.

JBESB-PG-10/31/07 65

Component Specifics
In this section we shall look at specific component s and services within JBossESB.

Gateways
Once a message is accepted by a Gateway it will not be lost unless sent within the
ESB using an unreliable transport. All of the following JBossESB transports can be
configured to either reliably deliver the Message or ensure it is not removed from
the system: JMS, FTP, SQL. Unfortunately HTTP cannot be so configured.

ServiceInvoker
The ServiceInvoker will place undeliverable Messages to the Redelivery Queue if
sent asynchronously. Synchronous Message delivery that fails will be indicated
immediately to the sender. In order for the ServiceInvoker to function correctly the
transport must indicate an unambiguous failure to deliver to the sender. A
simultaneous failure of the sender and receiver may result in the Message being
lost.

JMS Broker
Messages that cannot be delivered to the JMS broker will be queued within the
Redelivery Queue. For enterprise deployments a clustered JMS broker is
recommended.

Action Pipelining
As with most distributed systems, we differentiate between a Message being
received by the container within which services reside and it being processed by the
ultimate destination. It is possible for Messages to be delivered successfully but for
an error or crash during processing within the Action pipeline to cause it to be lost.
As mentioned previously, it is possible to configure some of the JBossESB transport s
to they do not delete received Messages when they are processed, so they will not
be lost in the event of an error or crash.

Recommendations

Given the previous overview of failure models and the capabilities within JBossESB
to tolerate them, we arrive at the following recommendations:

• Try to develop stateless and idempotent services. If this is not possible, use
MessageID to identify Messages so your application can detect
retransmission attempts. If retrying Message transmission, use the same
MessageID. Services that are not idempotent and would suffer from
redoing the same work if they receive a retransmi tted Message, should
record state transitions against the MessageID, preferably using
transactions. Applications based around stateless services tend to scale
better as well.

• If developing stateful services, use transactions and a JMS implementation
(clustered preferably).

• Cluster your Registry and use a clustered/ fault-tolerant back-end database,
to remove any single points of failure.

JBESB-PG-10/31/07 66

• Ensure that the Message Store is backed by a highly available database.

• Clearly identify which services and which operations on services need
higher reliability and fault tolerance capabilities than others. This will
allow you to target transports other than JMS at those services, potentially
improving the overall performance of applications. Because JBossESB
allows services to be used through different EPRs concurrently, it is also
possible to offer these different qualit ies of service (QoS) to different
consumers based on application specific requirements.

• Because network partitions can make services appear as though they have
failed, avoid transports that are more prone to this type of failure for
services that cannot cope with being misidentified as having crashed.

• In some situations (e.g., HTTP) the crash of a server after it has dealt with a
message but before it has responded could result in another server doing the
same work because it is not possible to different iate between a machine that
fails after the service receives the message and process it, and one where it
receives the message and doesn' t process it.

• Using asynchronous (one-way) delivery patterns will make it difficult to
detect failures of services: there is typically no notion of a lost or delayed
Message if responses to requests can come at arbitrary times. If there are
no responses at all, then it obviously makes failure detection more
problematical and you may have to rely upon application semantics to
determine that Messages did not arrive, e.g., the amount of money in the
bank account does not match expectat ions. When using either the
ServiceInvoker or Couriers to del ivery asynchronous Messages, a return
from the respective operation (e.g., deliverAsync) does not mean the
Message has been acted upon by the service.

• The Message Store is used by the redelivery protocol. However, as
mentioned previously this is a best -effort protocol for improved robustness
and does not use transactions or reliable message delivery. This means that
certain failures may result in Messages being lost entirely (they do not get
written to the store before a crash), or delivered multiple times (the
redelivery mechanism pulls a Message from the store, delivers it
successfully but there is a crash that prevents the Message from being
removed from the store; upon recovery the Message will be delivered
again).

• Some transports, such as FTP, can be configured to retain Messages that
have been processed, although they will be uniquely marked to differentiate
them from un-processed Messages. The default approach is often to delete
Messages once they have been processed, but you may want to change this
default to allow your applications to determine which Messages have been
dealt with upon recovery from failures.

 Despite what you may have read in this Chapter, failures are uncommon. Over the
years hardware reliability has improved significantly and good software
development practices including the use of formal verification tools have reduced
the chances of software problems. We have given the information within this

JBESB-PG-10/31/07 67

Chapter to assist you in determining the right development and deployment
strategies for your services and applications. Not all of them will require high levels
of reliability and fault tolerance, with associated reducing in performance. However,
some of them undoubtedly will.

JBESB-PG-10/31/07 68

Chapter 9

Configuration
Overview

JBossESB 4.2.1 GA configuration is based on the jbossesb-1.0.1 XSD.

The basic elements/types of the configuration schema have the following
relationships, with the <jbossesb> element/type at the root of the model .

JBoss ESB Configuration Model

From this, you can see that the model has 2 main secti ons:

1. <providers>: This part of the model centrally defines all the message
<bus>5 providers used by the message <listener>s, defined within the
<services> section of the model .

2. <services>: This part of the model centrally defines all of the services
under the control of a single instance of JBoss ESB. Each <service>
instance contains either a “Gateway” or “Message Aware” listener
definition.

By far the easiest way to create configurations based on this model, is to use an XSD
aware XML Editor such as the XML Editor in the Eclipse IDE. This provides the
author with auto-completion features when editing the configuration. Right mouse-
click on the file -> Open With -> XML Editor.

Providers

5A message bus defines the details of a specific message channel/transport.

JBESB-PG-10/31/07 69

http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/etc/schemas/xml/jbossesb-1.0.1.xsd
http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/etc/schemas/xml/jbossesb-1.0.1.xsd
http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/etc/schemas/xml/jbossesb-1.0.1.xsd

The <providers> part of the configuration defines all of the bus <provider> and
<bus> instances for a single instance of the ESB. A <provider> can contain multiple
<bus> definitions. The <provider> can also be decorated with <property>6 instances
relating to provider specific properties that are common across all <bus> instances
defined on that <provider> (e.g. for JMS - “connection-factory”, “jndi-context-
factory” etc). Likewise, each <bus> instance can be decorated with <property>
instances specific to that <bus> instance (e.g. for JMS - “destination-type”,
“destination-name” etc).

As an example, a provider configuration for JMS would be as follows7:

<providers>
 <provider name="JBossMQ">

<property name="connection-factory" value="ConnectionFactory" />
<property name="jndi-URL" value="jnp://localhost:1099" />
<property name="protocol" value="jms" />
<property name="jndi-pkg-prefix" value="com.xyz"/>

<bus busid="local-jms">
 <property name="destination-type" value="topic" />
 <property name="destination-name" value="queue/B" />
 <property name="message-selector" value="service='Reconciliation'"
 <property name=”persistent” value=”true”/>
</bus>

 </provider>
</providers>

The above example uses the “base” <provider> and <bus> types. This is perfectly
legal, but we recommend use of the specialized extensions of these types for creating
real configurations, namely <jms-provider> and <jms-bus> for JMS. The most
important part of the above configuration is the busid attribute defined on the <bus>
instance. This is a required attribute on the <bus> element/type (including all of its
specializations - <jms-bus> etc). This attribute is used within the <listener>
configurations to refer to the <bus> instance on which the listener receives its
messages. More on this later.

6A <property> is typically just a simple name-value-pair. However, it also supports free
form (xsd:any) style content.
7This JMS example is only for demonstration purposes. We recommend that people use
the more strongly typed JMS specific extensions of <provider> and <bus> i.e. <jms-
provider> and <jms-bus>.

JBESB-PG-10/31/07 70

Services

The <services> part of the configuration defines each of the Services under the
management of this instance of the ESB. It defines them as a series of <service>
configurations. A <service> can also be decorated with the following attributes.

Name Description Type Required
name The Service Name under which the

Service is Registered in the Service
Registry.

xsd:string true

category The Service Category under which the
Service is Registered in the Service
Registry.

xsd:string true

description Human readable description of the
Service. Stored in the Registry.

xsd:string true

Service Attributes (<service>)
A <service> may define a set of <listeners> and a set of <actions>. The
configuration model defines a “base” <listener> type, as well as specializations for
each of the main supported transports i.e. <jms-listener>, <sql-listener> etc.8

The “base” <listener> defines the following attribute. These attribute definitions are
inherited by all <listener> extensions.

Name Description Type Required
name The name of the listener. This attribute is

required primarily for logging purposes.
xsd:string true

busrefid Reference to the busid of the <bus>
through which the listener instance
receives messages.

xsd:string true

maxThreads The max number of concurrent message
processing threads that the listener can
have active.

xsd:int True

is-gateway Whether or not the listener instance is a xsd:boolea true

8New listener implementations (as well as all existing) can be supported using the “base”
listener type. The specializations are only there to aid usability.

JBESB-PG-10/31/07 71

Name Description Type Required
“Gateway” or “Message Aware” Listener.
See footnote #5.

n

Listener Attributes (<listener>)

Listeners can define a set of zero or more <property> elements (just like the
<provider> and <bus> elements/types). These are used to define listener specific
properties.

Note: For each gateway listener defined in a service, an ESB aware listener (or
“native”) listener must also be defined as gateway listeners do not define
bidirectional endpoints, but rather “startpoints” into the ESB. From within the
ESB you cannot send a message to a Gateway. Also, note that since a gateway is
not an endpoints, it does not have an Endpoint Reference (EPR) persisted in the
registry.

An example of a <listener> reference to a <bus> can be seen in the following
illustration (using “base” types only).

JBESB-PG-10/31/07 72

A Service will do little without a list of one or more <actions>. The actions are
effectively the “meat” of the Service. <action>s typically contain the logic for
processing the payload of the messages received by the service (through it's
listeners). Alternatively, it may contain the transformation or routing logic for
messages to be consumed by an external Service/entity.

The <action> element/type defines the following attributes.

Name Description Type Required
name The name of the action. This attribute is

required primarily for logging purposes.
xsd:string true

class The
org.jboss.soa.esb.actions.ActionProcesso
r implementation class name.

xsd:string true

process The name of the “process” method that
will be reflectively called for message
processing.
(Default is the “process” method as
defined on the ActionProcessor class)9.

xsd:int false

In a list of <action> instances within an <actions> set, the actions are called (their
“process” method is called) in the order in which the <action> instances appear in
the <actions> set. The message returned from each <action> is used as the input
message to the next <action> in the list .

Like a number of other elements/types in this model, the <action> type can also
contain zero or more <property> element instances. The <property> element/type
can define a standard name-value-pair, or contain free form content (xsd:any).
According to the XSD, this free form content is valid child content for the
<property> element/type no matter where it is in the configuration (on any of
<provider>, <bus>, <listener> and any of their derivatives). However, it is only on
<action> defined <property> instances that this free form child content is used.

As stated in the <action> definition above, actions are implemented through
implementing the org.jboss.soa.esb.actions.ActionProcessor class. All
implementations of this interface must contain a public constructor of the following
form:

public ActionZ(org.jboss.soa.esb.helpers.ConfigTree configuration);

It is through this constructor supplied ConfigTree instance that all of the action
attributes are supplied, including the free form content from the action <property>

9It is recommended to not use the optional “process” attribute on <action> configurations.
Instead, stick with the default “process” method as explicitly defined on the
ActionProcessor implementation. It is very likely that this “process” attribute will be
removed from this type in a future release. Reflection is great, but the lack of compile
time checking is not adequately repaid in this case. If you find that you need to define
more than one “process” method on an ActionProcessor implementation, you should
consider the possibility that the action in question is really 1+ separate actions.

JBESB-PG-10/31/07 73

instances. The free form content is supplied as child content on the ConfigTree
instance10.

So an example of an <actions> configurat ion might be as follows:
<actions>
 <action name="MyAction-1" class="com.acme.MyAction1"/>
 <action name="MyAction-2" class="com.acme.MyAction2">
 <property name=”propA” value=”propAVal” />
 </action>
 <action name="MyAction-3" class="com.acme.MyAction3">
 <property name=”propB” value=”propBVal” />
 <property name=”propC”>
 <!-- Free form child content... -->
 <some-free-form-element>zzz<some-free-form-element>
 </property>
 </action>
</actions>

Transport Specific Type Implementations
The JBoss ESB configuration model defines transport specific specializations of the
“base” types <provider>, <bus> and <listener> (JMS, SQL etc). This allows us to
have stronger validation on the configuration, as well as making configuration easier
for those that use an XSD aware XML Editor (e.g. the Eclipse XML Editor). These
specializations explicitly define the configuration requirements for each of the
transports supported by JBoss ESB out of the box. It is recommended to use these
specialized types over the “base” types when creating JBoss ESB configurations, the
only alternative being where a new transport is being supported outside an official
JBoss ESB release.

The same basic principals that apply when creating configurations from the “base”
types also apply when creating configurations from the transport specific
alternatives:

1. Define the provider configuration e.g. <jms-provder>.

2. Add the bus configurations to the new provider (e.g. <jms-bus>),
assigning a unique busid attribute value.

3. Define your <services> as normal, adding transport specific listener
configurations (e.g. <jms-listener> that reference (using busrefid) the
new bus configurations you just made e.g. <jms-listener> referencing a
<jms-bus>.

The only rule that applies when using these transport specific types is that you
cannot cross reference from a listener of one type, to a bus of another type i.e. you
can only reference a <jms-bus> from a <jms-listener>. A runtime error will result
where cross references are made.

So the transport specific implementations that are in place in this release are:

10In its current implementation, it really only makes sense to supply free form content on
one <property> instance within a list of <action> <property> instances. If defined on
more than one property, the child content will be appended to the child content of the
ConfigTree instance supplied to the action.

JBESB-PG-10/31/07 74

1. JMS: <jms-provider>, <jms-bus>, <jms-listener> and <jms-message-
filter>: The <jms-message-fi lter> can be added to either the <jms-bus>
or <jms-listener> elements. Where the <jms-provider> and <jms-bus>
specify the JMS connection propert ies, the <jms-message-fi lter>
specifies the actual message QUEUE/TOPIC and selector details.

2. SQL: <sql-provider>, <sql-bus>, <sql-listener> and <sql-message-
filter>: The <sql-message-fi lter> can be added to either the <sql -bus>
or <sql-listener> elements. Where the <sql-provider> and <ftp-bus>
specify the JDBC connection properties, the <sql-message-fil ter>
specifies the message/row selection and processing properties11.

3. FTP: <ftp-provider>, <ftp-bus>, <ftp-listener> and <ftp-message-
filter>: The <ftp-message-fi lter> can be added to either the <ftp-bus>
or <ftp-listener> elements. Where the <ftp-provider> and <ftp-bus>
specify the FTP access properties, the <ftp-message-filter> specifies
the message/file selection and processing properties

4. Hibernate: <hibernate-provider>, <hibernate-bus>, <hibernate-listener>
: The <hibernate-message-filter> can be added to either the <hibernat e-
bus> or <hibernate-listener> selements. Where the <hibernate-
provider> specifies File System access properties like the locat ion of
the hibernate configuration property, the <hibernate-message-filter>
specifies what classnames and events should be intercepted.

5. File System: <fs-provider>, <fs-bus>, <fs-listener> and <fs-message-
filter> The <fs-message-fi lter> can be added to either the <fs-bus> or
<fs-listener> elements. Where the <fs-provider> and <sql-bus> specify
the File System access properties, the <fs-message-filter> specifies the
message/file selection and processing properties.

6. Schedule: <schedule-provider>. This is a special type of provider and
differs from the bus based providers listed above. See Scheduling for
more.

7. JMS/JCA integration: <jms-jca-provider>: This provider can be used
in place of the <jms-provider> to enable delivery of incoming
messages using JCA inflow. This introduces a transacted flow to the
action pipeline, encompassing actions within a JTA transaction.

As you'll notice, all of the currently implemented transport specific types include an
additional type not present in the “base” types, that being <*-message-filter>. This
element/type can be added inside either the <*-bus> or <*-listener>. Allowing this
type to be specified in both places means you can specify message filtering globally
for the bus (for all listeners using that bus), or locally on a listener by listener basis.

Note: In order to list and describe the attributes for each transport specific type, you
can use the jbossesb-1.0.1 XSD, which is fully annotated with descriptions of
each of the attributes. Using an XSD aware XML Editor such as the Eclipse
XML Editor makes working with these types far easier.

11The message processing attributes on <sql-message-filter> should really be on the <sql-
bus>. This will be rectified in the GA release.

JBESB-PG-10/31/07 75

http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/etc/schemas/xml/jbossesb-1.0.1.xsd
http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/etc/schemas/xml/jbossesb-1.0.1.xsd
http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/etc/schemas/xml/jbossesb-1.0.1.xsd

FTP Provider configuration

Property Name Description Comments

hostname Can be a combination of <host:port> of
just <host> which will use port 21.

Mandatory.

username Username that will be used for the ftp
connection.

Mandatory.

password Password for the above user Mandatory.

directory The ftp directory that is monitored for
incoming new files

Mandatory.

input-suffix The file suffix used to filter files targeted
for comsumption by the ESB (note: add
the dot, so something like '.esbIn'). This
can also be specified as an empty string
to specify that all files should be
retrieved.

Mandatory.

work-suffix The file suffix used while the file is being
process, so that another thread or
process won't pick it up too.

Optional. Defaults to
.esbInProcess.

post-delete If true, the file will be deleted after it is
processed. Note that
in that case post-directory and post-
suffix have no effect.

Optional. Defaults to true.

post-directory The ftp directory to which the file will be
moved after it is processed by the ESB

Optional. Defaults to the value
of directory above.

post-suffix The file suffix which will be added to the
file name after it is processed.

Optional. Defaults to
.esbDone.

error-delete If true, the file will be deleted if an error
occurs during processing. Note that in
that case error-directory and error-suffix
have no effect.

Optional. Defaults to true.

error-directory The ftp directory to which the file will be
moved after when an
error occurs during processing.

Optional. Defaults to the value
of directory above.

error-suffix The file suffix which will be added to the
file name after an error occurs during
processing.

Optional. Defaults to
.esbError.

protocol The protocol, can be on of:
● sftp (SSH File Transfer Protocol)
● ftps (FTP over SLL)
● ftp (default).

Optional. Defaults to ftp.

passive Indicates that the ftp connection is in
passive. Setting this to true means the
ftp client will establish two connection to
the ftpserver client.

Optional. Defaults to false,
meaning that the client will tell
the ftpserver which port the
ftpserver should connect to .
The ftpserver then
estabilshes the connection to

JBESB-PG-10/31/07 76

the client.

ready-only If true, the ftp server does not permit
write opertations on files.
Note that in this case the following
properties have no effect: work-suffix,
post-delete,post-directory, post-suffix,
error-delete, error-directory, and error-
suffix.

Optional. Defaults to false.
See section “Read-only FTP
Listener for more information

FTP Listener configuration
Schedule Listener that polls for remote files based on the configured schedule
(scheduleidref). See Service Scheduling.

Read-only FTP Listener
Setting the ftp-provider property “read-only” to true will tell the system that the
remote file system does not allow write operations. This is often the case when the
ftp server is running on a mainframe computer where permissions are given to a
specific file.

The read-only implementation uses JBoss TreeCache to hold a list of the filenames
that have been retrieved and only fetch those that have not previously been retrieved.
The cache should be configured to use a cacheloader to persist the cache to stable
storage.

Please note that there must exist a strategy for removing the filenames from the
cache. There might be an archiving process on the mainframe that moves the files to
a different location on a regular basis. The removal of filenames from the cache
could be done by having a database procedure that removes all filenames from the
cache every couple of days. Another strategy would be to specify a
TreeCacheListener that upon evicting filenames from the cache also removes them
from the cacheloader. The eviction period would then be configurable. This can be
configured by setting a property (removeFilesystemStrategy-cacheListener) in the
ftp-listener configuration.

Read-only FTP Listener Configuration

Property Name Description Comments

scheduleidref Schedule used by the FTP listener See Service Scheduling.

remoteFilesystemStrategy-
class

Override the remote file system strategy
with a class that implements:
org.jboss.soa.esb.listeners.g
ateway.remotestrategies.Remot
eFileSystemStrategy.

Optional. Defaults to
org.jboss.soa.esb.l
isteners.gateway.re
motestrategies.Read
OnlyRemoteFileSyste
mStrategy

remoteFilesystemStrategy-
configFile

Specifiy a JBoss TreeCache
configuration file on the local file system
or one that exists on the classpath.

Optional. Defaults to
looking for a file named
/ftpfile-cache-config.xml
which it expects to find in
the root of the classpath

JBESB-PG-10/31/07 77

removeFilesystemStrategy-
cacheListener

Specifies an JBoss TreeCacheListener
implementation to be used with the
TreeCache.

Optional. Default is no
TreeCacheListener.

Example configuration:
 <ftp-listener name="FtpGateway"
 busidref="helloFTPChannel"
 maxThreads="1"
 is-gateway="true"
 schedule-frequency="5">
 <property name="remoteFileSystemStrategy-configFile" value="./ftpfile-cache-
config.xml"/>
 <property name="remoteFileSystemStrategy-cacheListener"
value="org.jboss.soa.esb.listeners.gateway.remotestrategies.cache.DeleteOnEvictT
reeCacheListener"/>

</ftp-listener>

Example snippet from JBoss cache configuration:
<region name="/ftp/cache">

<attribute name="maxNodes">5000</attribute>
<attribute name="timeToLiveSeconds">1000</attribute>
<attribute name="maxAgeSeconds">86400</attribute>

</region>

Property Name Description Comments

maxNodes The maximum number of files that will
be stored in the cache.

0 denotes no limit

timeToLiveSeconds Time to idle (in seconds) before the
node is swept away.

0 denotes no limit

maxAgeSeconds Time an object should exist in
TreeCache (in seconds) regardless of
idle time before the node is swept away

0 denotes no limit

The helloworld_ftp_action quickstart demonstrates the readonly configuration. Run
'ant help' in the helloworld_ftp_action quickstart directory for instructions on
running the quickstart.

Please refer to the JBoss Cache documentation for more information about the
configuration options available (http://labs.jboss.com/jbosscache/docs/index.html).

JBESB-PG-10/31/07 78

Transitioning From The Old Configuration Model
This section is aimed at developers that are familiar with the old JBoss ESB non-
XSD based configuration model.

The old configuration model used a free form (non-validatable) XML configuration
with ESB components receiving thier configurations via an instance of
org.jboss.soa.esb.helpers.ConfigTree. The new configuration model is XSD based,
however the underlying component configuration pattern is still via an instance of
org.jboss.soa.esb.helpers.ConfigTree. This means that at the moment, the XSD
based configurations are mapped/transformed into ConfigTree style configurations.

Developers that were used to using the old model now need to keep the following in
mind:

1. Read all of the docs on the new configuration model. Don't assume you can
infer the new configurations based on your knowledge of the old.

2. The only location where free-form markup is supported in the new
configuration is on the <property> element/type. This type is allowed on
<provider>, <bus> and <listener> types (and sub-types). However, the only
location in which <property> based free form markup is mapped into the
ConfigTree configurations is where the <property> exists on an <action>. In
this case, the <property> content is mapped into the target ConfigTree
<action>. Note however, if you have 1+ <property> elements with free form
child content on an <action>, all this content will be concatenated together
on the target ConfigTree <action>.

3. When developing new Listener/Action components, you must ensure that the
ConfigTree based configuration these components depend on can be mapped
from the new XSD based configurations. An example of this is how in the
ConfigTree configuration model, you could decide to supply the
configuration to a listener component via attributes on the listener node, or
you could decide to do it based on child nodes within the listener
configuration – all depending on how you were feeling on the day. This type
of free form configuration on <listener> components is not supports on the
XSD to ConfigTree mapping i.e. the child content in the above example
would not be mapped from the XSD configuration to the ConfigTree style
configuration. In fact, the XSD configuration simply would not accept the
arbitrary content, unless it was in a <property> and even in that case (on a
<listener>), it would simply be ignored by the mapping code.

Configuration
All components within the core receive their configuration parameters as XML. How
these parameters are provided to the system is hidden by the
org.jboss.soa.esb.parameters.ParamRepositoryFactory:

public abstract class ParamRepositoryFactory
{

JBESB-PG-10/31/07 79

 public static ParamRepository getInstance();
}

This returns implementations of the
org.jboss.soa.esb.parameters.ParamRepository interface which allows
for different implementations:

public interface ParamRepository
{
 public void add(String name, String value) throws
 ParamRepositoryException;
 public String get(String name) throws ParamRepositoryException;
 public void remove(String name) throws ParamRepositoryException;
}

Within this version of the JBossESB, there is only a single implementation, the
org.jboss.soa.esb.parameters.ParamFileRepository, which expects to
be able to load the parameters from a file. The implementation to use may be
overridden using the org.jboss.soa.esb.paramsRepository.class property.

Note: we recommend that you construct your ESB configuration file using Eclipse
or some other XML editor. The JBossESB configuration information is
supported by an annotated XSD which should help if using a basic editor.

JBESB-PG-10/31/07 80

Index
Architectural components 14
Configuring JBossESB 75
Format adapters 40
Rosetta

history 14

JBESB-PG-10/31/07 81

	The core of JBossESB in a nutshell
	Mapping of EPR to Service
	Getting and Setting Data on the Message Body
	Extensions to Body
	The Message Header
	Default FaultTo
	Default ReplyTo

	The Message payload
	The MessageFactory
	Message Formats
	MessageType.JAVA_SERIALIZED
	MessageType.JBOSS_XML

	Actions and Messages
	Handling responses
	Error handling when processing actions
	ServiceInvoker
	Services and ServiceInvoker

	The Message Store
	Data Transformation
	Content-based Routing
	The Registry
	The Message structure
	The Service
	Unpicking the payload

	The Client
	Hints and Tips
	Services, EPRs, listeners and actions
	Distributed Services
	Protocol Clustering
	Channel Fail-over and Load Balancing
	Message Redelivery
	Simple Schedule
	Cron Schedule
	Scheduled Listener
	Example Configurations
	Quartz Scheduler Property Configuration
	JBossESB and the Fault Models
	Failure Detectors and Failure Suspectors
	Message loss
	Suspecting Endpoint Failures
	Supported Crash Failure Modes
	Component Specifics
	Gateways
	ServiceInvoker
	JMS Broker
	Action Pipelining

	Providers
	Services
	Transport Specific Type Implementations
	FTP Provider configuration
	FTP Listener configuration
	Read-only FTP Listener
	Read-only FTP Listener Configuration
	Transitioning From The Old Configuration Model
	Configuration

