
JBossESB 4.2.1 GA
SOA Background Concepts

JBESB-SBC-10/31/07

JBESB-SBC-10/31/07

Legal Notices

The information contained in this documentation is subject to change without notice.

JBoss Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. JBoss Inc. shall not be liable
for errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this materi al.

Java™ and J2EE is a U.S. trademark of Sun Microsyst ems, Inc. Microsoft® and Windows NT® are
registered trademarks of Microsoft Corporation. Oracle® is a regi stered U.S. trademark and Oracle9™,
Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here
as a generic term covering all versions of the UNIX® operating system. UNIX is a regi stered trademark
in the United States and other countries, licensed exclusively through X/Open Company Limited.

Copyright

JBoss, Home of Professional Open Source Copyright 2006, JBoss Inc., and individual contributors as
indicated by the @authors tag. All rights reserved.

See the copyright.txt in the distribut ion for a full listing of individual contributors. This copyrighted
material is made available to anyone wishing to use, modify, copy, or redistribute it subject to the terms
and conditions of the GNU General Public License, v. 2.0. This program is distributed in the hope that it
will be useful, but WITHOUT A WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details. You should have received a copy of the GNU
General Public License, v. 2.0 along with this distribution; if not, write to the Free Software Foundat ion,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Software Version

JBossESB 4.2.1 GA

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause 52.227-FAR14.

© Copyright 2007 JBoss Inc.

Contents
Table of Contents

Contents... ..iv

About This Guide..............................5

What This Guide Contains..........5
Audience.................................5
Prerequisites......................................5
Organization...5
Documentation Conventions.........5
Additional Documentation...........6
Contacting Us...6

Service Oriented Architecture.............8

Overview...8
Why SOA?...............................10
Basics of SOA............................11

Advantages of SOA...............................12
Interoperability....................................12
Efficiency12
Standardization...13
JBossESB and its relationship with SOA.....13

The Enterprise Service Bus.........................14

Overview..14
Architectural requirements................16
Registries and repositories............................ 17
Creating services.........................17
Versioning of Services.............................18
Incorporating legacy services.............18

Glossary...20

Index...24

About This Guide
What This Guide Contains

The SOA Background Concepts document contains descriptions on the principles
behind Service Oriented Architecture and Enterprise Service Bus, as well as how
they relate to JBossESB.

Audience

This guide is most relevant to engineers who are responsible for using JBossESB
4.2.1 GA installations and want to know how it relates to SOA and ESB principles.

Prerequisites

None.
Organization

This guide contains the following chapters:

• Chapter 1, What is SOA?: JBossESB is a SOA infrastructure. This
chapter gives an overview of SOA and the benefits it can provide.

• Chapter 2, The Enterprise Service Bus: an overview of what constitutes
an ESB and how JBossESB may differ from traditional ESB definitions.

Documentation Conventions

The following conventions are used in this guide:

JBESB-SBC-10/31/07 5

Table 1 Formatting Conventions

Additional Documentation

In addition to this guide, the following guides are available in the JBossESB 4.2.1
GA documentation set:

1. JBossESB 4.2.1 GA Trailblazer Guide: Provides guidance for using the
trailblazer example.

2. JBossESB 4.2.1 GA Programmer's Guide: Provides guidance for
developing applications using JBossESB.

3. JBossESB 4.2.1 GA Getting Started Guide: Provides a quick start
reference to configuring and using the ESB.

4. JBossESB 4.2.1 GA Administration Guide: How to manage JBossESB.

5. JBossESB 4.2.1 GA Release Notes: Information on the differences
between this release and previous releases.

6. JBossESB 4.2.1 GA Services Guides: Various documents related to the
services available with the ESB.

JBESB-SBC-10/31/07 6

Convention Description
Italic In paragraph text, italic identifies the titles of documents that are

being referenced. When used in conjunction with the Code text
described below, italics identify a variable that should be replaced by
the user with an actual value.

Bold Emphasizes items of particular importance.
Code Text that represents programming code.
Function | Function A path to a function or dialog box within an interface. For example,

“Select File | Open.” indicates that you should select the Open
function from the File menu.

() and | Parentheses enclose optional items in command syntax. The vertical
bar separates syntax items in a list of choices. For example, any of
the following three items can be entered in this syntax:

persistPolicy (Never | OnTimer | OnUpdate |
NoMoreOftenThan)

Note:

Caution:

A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to
avoid damage to equipment, damage to software, loss of data, or
invalid test results.

Contacting Us

Questions or comments about JBossESB 4.2.1 GA should be directed to our support
team.

JBESB-SBC-10/31/07 7

JBESB-SBC-10/31/07 8

Chapter 1

Service Oriented
Architecture

Overview
JBossESB is a Service Oriented Architecture (SOA) infrastructure. SOA represents a
popular architectural paradigm1 for applications, with Web Services as probably the
most visible way of achieving an SOA2. Web Services implement capabilities that
are available to other applications (or even other Web Services) via industry standard
network and application interfaces and protocols. SOA advocates an approach in
which a software component provides its functionality as a service that can be
leveraged by other software components. Components (or services) represent
reusable software building blocks.

SOA allows the integration of existing systems, applications and users into a flexible
architecture that can easily accommodate changing needs. Integrated design, reuse of
existing IT investments and above all, industry standards are the elements needed to
create a robust SOA.

As enterprises slowly emerge from the mad rush of cost reduction into a more stable
period of cost management, many of them find themselves in unfamiliar territory.
Prior to the economic slow down, most firms understood the options they had for IT
investment. Many embarked on major package implementations (e.g., Siebel,
Peoplesoft and so on), while others built on the legacy systems they have trusted for
years. Either way, most firms recognized the return promised and made the
investment. Today, the appetite for such large investment is gone.

However, enterprises still need to make forward progress and keep ahead of the
competition. SOA (and typically Web Services as a concrete implementation of those
principles) make this possible. The result is dramatic improvements in collaboration
between users, applications and technology components, generating significant value
for any business creating competitive advantage.

Imagine a company that has existing software from a variety of different vendors,
e.g., SAP, PeopleSoft. Some of these software packages may be useful to conduct
business with other companies (customers, suppliers, etc.) and therefore what the
company would like to do is to take those existing systems and make them available
to other companies, by exposing them as services. A service here is some software
component with a stable, published interface that can be invoked by clients (other
software components). So, requesting and executing services involves software
components owned by one company talking to components owned by another
company, i.e., business-to-business (B2B) transactions.

1 The principles behind SOA have been around for many years, but Web Services have
popularised it.
2 It is possible to build non-SOA applications using Web Services.

JBESB-SBC-10/31/07 9

Conventional distributed system infrastructures (middleware) are not sufficient for
these cross-organizational exchanges. For instance

• You would need agreement between the parties involved on the
middleware platform.

• There is an implicit (and somet imes explicit) lack of trust between the
parties involved.

• Business data is confidential and should only to be seen by the intended
recipient.

• Many assumptions of conventional middleware are invalid in cross-
organizational interactions. Transactions, for instance, last longer -
possibly for hours or days so convent ional transaction protocols such as
two phase commit are not applicable.

So, in B2B exchanges the lack of standardization across middleware platforms
makes point-to-point solutions costly to realize in practice. The Internet alleviated
some of these problems by providing standard interaction protocols (HTTP) and data
formats (XML) but by themselves these standards are not enough to support
application integration. They don't define interface definition languages, name and
directory services, transaction protocols, etc,. It is the gap between what the Web
provides and what application integration requires that Web services are trying to
fill.

However, whilst the challenge and ultimate goal of SOA is inter-company
interactions, services do not need to be accessed through the Internet. They can be
made available to clients residing on a local LAN. Indeed, at this current moment in
time, many Web services are being used in this context - intra-company integration
rather than inter-company exchanges.

An example of how Web services can connect applications both intra-company and
inter-company can be understood by considering a stand-alone inventory system. If
you don't connect it to anything else, it's not as valuable as it could be. The system
can track inventory, but not much more. Inventory information may have to be
entered separately in the accounting and customer relationship management systems.
The inventory system may be unable to automatically place orders to suppliers. The
benefits of such an inventory system are diminished by high overhead costs.

However, if you connect your inventory system to your accounting system with
XML, it gets more interesting. Now, whenever you buy or sell something, the
implications for your inventory and your cash flow can be tracked in one step. If you
go further, and connect your warehouse management system, customer ordering
system, supplier ordering systems, and your shipping company with XML, suddenly
that inventory management system is worth a lot. You can do end-to-end
management of your business while dealing with each transaction only once, instead
of once for every system it affects. A lot less work and a lot less opportunity for
errors. These connections can be made easi ly using Web services.

Businesses are waking up to the benefit s of SOA. These include:

• opening the door to new business opportunities by making it easy to
connect with partners;

JBESB-SBC-10/31/07 10

• saving time and money by cutting software development time and
consuming a service created by others;

• increasing revenue streams by easily making your own services avai lable.

Why SOA?
The problem space can be categorized by past IT investments in the area of
eProcurement, eSourcing, Supply Chain Management, Customer Relationship
Management (CRM) and Internet computing in general. All of these investments
were made in a silo. Along with the incremental growth in these systems to meet
short-term (tactical) requirements, the decisions made in this space hurt the long-
term viability of the applications and infrastructure.

The three key drivers for implement ing an SOA approach are:

1) Cost Reduction: Achieved by the ways services talk to each other. The
direct cost effect is delivered through enhanced operations productivity,
effective sourcing options, and a significantly enhanced ability to shift
ongoing costs to a variable model.

2) Delivering IT solutions faster and smarter: A standards based approach will
allow organizations to connect and share information and business
processes much faster and easier than before. IT delivery productivity is
markedly improved through simplification of the developer’s role by
providing standard frameworks and interfaces. Delivery timescales have
been drastically reduced by easing the integration load of individual
functionality, and applying accelerated delivery techniques within the
environment.

3) Maximizing return on investment: Web Services opens the way for new
business opportunities by enabling new business models. Web Services
present the ability to measure value and discrete return much differently
than traditional functional-benefit methods. Typical Total Cost of
Ownership (TCO) models do not take into account the lifetime value
generated by historical investment. This cost centric view destroys many
opportunities to exploit these past investments and most enterpri ses end up
building redundancy into their architecture, not out of necessity, but of
perceived need. These same organizations focus the value proposition of
their IT investment on a portfolio of applications, balanced by the overhead
of infrastructure. An approach based on Web Services takes into account
the lifetime contribution of legacy IT investment and promotes an evolution
of these investments rather than a planned replacement.

SOA/Web Services fundamentally changes the way enterprise software is developed
and deployed. SOA has evolved where new applications will not be developed using
monolithic approaches, but instead become a virtualized on-demand execution
model that breaks the current economic and technological bottleneck caused by
traditional approaches.

Software as a service has become pervasive as a model for forward looking
enterprises to streamline operations, lower cost of ownership and provides
competitive differentiation in the marketplace. Web Services offers a viable
opportunity for enterprises to drive significant costs out of software acquisitions,

JBESB-SBC-10/31/07 11

react to rapidly changing market conditions and conduct transactions with business
partners at will. Loosely coupled, standards-based architectures are one approach to
distributed computing that will allow software resources available on the network to
be leveraged. Applications that separate business processes, presentation rules,
business rules and data access into separate loosely coupled layers will not only
assist in the construction of better software but also make it more adaptable to future
change.

SOA will allow for combining existing functions with new development efforts,
allowing the creation of composite applications. Leveraging what works lowers the
risks in software development projects. By reusing existing functions, it leads to
faster deliverables and better delivery quality.

Loose coupling helps preserve the future by allowing parts to change at their own
pace without the risks linked to costly migrations using monolithic approaches. SOA
allows business users to focus on business problems at hand without worrying about
technical constraints. For the individuals who develop solutions, SOA helps in the
following manner:

• Business analysts focus on higher order responsibilities in the development
lifecycle while increasing their own knowledge of the business domain.

• Separating functionality into component-based services that can be tackled
by multiple teams enables paral lel development.

• Quality assurance and unit testing become more efficient; errors can be
detected earlier in the development lifecycle

• Development teams can deviate from initial requirements without incurring
additional risk

• Components within architecture can aid in becoming reusable asset s in
order to avoid reinventing the wheel

• Functional decomposition of services and their underlying component s
with respect to the business process helps preserve the flexibility, future
maintainability and eases integration efforts

• Security rules are implemented at the service level and can solve many
security considerations within the enterprise

Basics of SOA
Traditional distributed computing environments have been tightly coupled in that
they do not deal with a changing environment well. For instance, if an application is
interacting with another application, how do they handle data types or data encoding
if data types in one system change? How are incompat ible data-types handled?

The service-oriented architecture (SOA) consists of three roles: requester, provider,
and broker.

• Service Provider: A service provider allows access to services, creates a
description of a service and publishes it to the service broker.

JBESB-SBC-10/31/07 12

• Service Requestor: A service requester is responsible for discovering a
service by searching through the service descriptions given by the service
broker. A requester is also responsible for binding to services provided by
the service provider.

• Service Broker: A service broker hosts a registry of service descriptions. It
is responsible for linking a requestor to a service provider.

Advantages of SOA
SOA provide several significant benefits for distributed enterprise systems. Some of
the most notable benefits include: interoperability, efficiency, and standardization.
We will briefly explore each of these in this section.

Interoperability
Interoperability is the ability of software on different systems to communicate by
sharing data and functionality. SOA/Web Services are as much about interoperability
as they are about the Web and Internet scale computing. Most companies will have
numerous business partners throughout the life of the company. Instead of writing a
new addition to your applications every time you gain a new partner, you can write
one interface using Web service technologies like SOAP. So now your partners can
dynamically find the services they need using UDDI and bind to them using SOAP.
You can also extend the interoperability of your systems by implementing Web
services within your corporate intranet. With the addition of Web services to your
intranet systems and to your extranet, you can reduce the cost integration, increase
communication and increase your customer base.

It is also important to note that the industry has even established the Web Services
Interoperability Organization.

“The Web Services Interoperability Organization is an open industry effort chartered
to promote Web Services interoperability across platforms, applications, and
programming languages. The organization brings together a diverse community of
Web services leaders to respond to customer needs by providing guidance,
recommended practices, and supporting resources for developing interoperable Web
services.” (www.ws-i.org)

The WS-I will actually determine whether a Web service conforms to WS-I
standards as well as industry standards. In order to establish integrity and
acceptance, companies will seek to build their Web services in compliance with the
WS-I standards.

Efficiency
SOA will enable you to reuse your existing applications. Instead of creating totally
new applications, you can create them using various combinations of services
exposed by your existing applications. Developers can be more efficient because
they can focus on learning industry standard technology. They will not have to
spend a lot of time learning every new technology that arises. For a manager this
means a reduction in the cost of buying new software and having to hire new
developers with new skill sets. This approach will allow developers to meet
changing business requirements and reduce the length of development cycles for
projects. Overall, SOA provides for an increase in efficiency by allowing

JBESB-SBC-10/31/07 13

applications to be reused, decreasing the learning curve for developers and speeding
up the total development process.

Standardization
For something to be a true standard, it must be accepted and used by the majority of
the industry. One vendor or small group of vendors must not control the evolution of
the technology or specification. Most if not all of the industry leaders are involved
in the development of Web service specifications. Almost all businesses use the
Internet and World Wide Web in one form or another. The underlying protocol for
the WWW is of course HTTP. The foundation of Web services is built upon HTTP
and XML. Although SOA does not mandate a particular implementation framework,
interoperability is important and SOAP is one of the few protocols that all good SOA
implementations can agree on.

Statefull and Stateless services
Most proponents of Web Services agree that it is important that its architecture is as
scalable and flexible as the Web. As a result, the current interaction pattern for Web
Services is based on coarse-grained services or components. The architecture is
deliberately not prescriptive about what happens behind service endpoints: Web
Services are ultimately only concerned with the transfer of structured data between
parties, plus any meta-level information to safeguard such transfers (e.g., by
encrypting or digitally signing messages). This gives flexibility of implementation,
allowing systems to adapt to changes in requirements, technology etc. without
directly affecting users. Furthermore, most businesses will not want to expose their
back-end implementation decisions and strategies to users for a variety of reasons.

In distributed systems such as CORBA, J2EE and DCOM, interactions are typically
between stateful objects that resided within containers. In these architectures,
objects are exposed as individually referenceable entities, tied to specific containers
and therefore often to specific machines. Because most Web Services applications
are written using object-oriented languages, it is natural to think about extending that
architecture to Web Services. Therefore a service exposes Web Services resources
that represent specific states. The result is that such architectures produce tight
coupling between clients and services, making it difficult for them to scale to the
level of the World Wide Web.

Right now there are two primary models for the session concept that are being
defined by companies participating in defining Web services: the WS-Addressing
EndpointReference with ReferenceProperties/ReferenceParameters and the WS-
Context explicit context structure, both of which are supported within JBossESB.
The WS-Addressing session model provides coupling between the web service
endpoint information and the session data, which is analogous to object references in
distributed object systems.

WS-Context provides a session model that is an evolution of the session models
found in HTTP servers, transaction, and MOM systems. On the other hand, WS-
Context allows a service client to more naturally bind the relationship to the service
dynamically and temporarily. The client’s communication channel to the service is
not impacted by a specific session rel ationship.

This has important implications as we consider scaling Web services from intra-
domain deployments to general services offered on the Internet. The current
interaction pattern for Web Services is based on coarse-grained services or

JBESB-SBC-10/31/07 14

components. The architecture is deliberately not prescriptive about what happens
behind service endpoints: Web Services are ultimately only concerned with the
transfer of structured data between parties, plus any meta-level information to
safeguard such transfers (e.g., by encrypting or digitally signing messages). This
gives flexibility of implementation, allowing systems to adapt to changes in
requirements, technology etc. without directly affecting users. It also means that
issues such as whether or not a service maintains state on behalf of users or their
(temporally bounded) interactions, has been an implementation choice not typically
exposed to users.

If a session-like model based on WS-Addressing were to be used when interacting
with stateful services, then the tight coupling between state and service would
impact on clients. As in other distribution environments where this model is used
(e.g., CORBA or J2EE), the remote reference (address) that the client has to the
service endpoint must be remembered by the client for subsequent invocations. If the
client application interacts with multiple services within the same logical session,
then it is often the case that the state of a service has relevance to the client only
when used in conjunction with the associated states of the other services. This
necessarily means that the client must remember each service reference and
somehow associate them with a specific interaction; multiple interactions will
obviously result in different reference sets that may be combined to represent each
sessions.

For example, if there are N services used within the same application session, each
maintaining m different states, the client application will have to maintain N*m
reference endpoints. It is worth remembering that the initial service endpoint
references will often be obtained from some bootstrap process such as UDDI. But in
this model, these references are stateless and of no use beyond starting the
application interactions. Subsequent visits to these sites that require access to
specific states must use different references in the WS-Addressing model.

This obviously does not scale to an environment the size of the Web. However, an
alternative approach is to use WS-Context and continue to embrace the inherently
loosely-coupled nature of Web Services. As we have shown, each interaction with a
set of services can be modeled as a session, and this in turn can be modeled as a WS-
Context activity with an associated context. Whenever a client application interacts
with a set of services within the same session, the context is propagated to the
services and they map this context to the necessary states that the client interaction
requires.

How this mapping occurs is an implementation specific choice that need not be
exposed to the client. Furthermore, since each service within a specific session gets
the same context, upon later revisiting these services and providing the same context
again, the client application can be sure to return to a consistent set of states. So for
the N services and m states in our previous example, the client need only maintain N
endpoint references and as we mentioned earlier, typically these will be obtained
from the bootstrap process anyway. Thus, this model scales much better.

JBossESB and its relationship with SOA
SOA is more than technology: it does not come in a shrink-wrapped box and requires
changes to the way in which people work and interact as much as assistance from
underlying infrastructures, such as JBossESB. With JBossESB 4.2.1 GA, Red Hat is
providing a base SOA infrastructure upon which SOA applications can be developed.

JBESB-SBC-10/31/07 15

With the 4.2.1 release, most of the necessary hooks for SOA development are in
place and Red Hat is working with its partners to ensure that their higher level
platforms leverage these hooks appropriately. However, the baseline platform
(JBossESB) will continue to evolve, with out-of-the-box improvements around

tooling, runtime management, service life-cycle etc. In JBossESB 4.2.1 GA, it may
be necessary for developers to leverage these hooks themselves, using low-level API
and patterns.

JBESB-SBC-10/31/07 16

Chapter 2

The Enterprise Service
Bus

Overview

The ESB is seen as the next generation of EAI – better and without the vendor-
lockin characteristics of old. As such, many of the capabilities of a good ESB mirror
those of existing EAI offerings. Traditional EAI stacks consist of: Business Process
Monitoring, Integrated Development Environment, Human Workflow User Interface,
Business Process Management, Connectors, Transaction Manager, Security,
Application Container, Messaging Service, Metadata Repository, Naming and
Directory Service, Distributed Computing Architecture.

As with EAI systems, ESB is not about business logic – that is left to higher levels.
It is about infrastructure logic. Although there are many different definitions of what
constitutes an ESB, what everyone agrees on now is that an ESB is part of an SOA
infrastructure. However, SOA is not simply a technology or a product: it's a style of
design, with many aspects (such as architectural, methodological and organisational)
unrelated to the actual technology. But obviously at some point it becomes necessary
to map the abstract SOA to a concrete implementation and that's where the ESB
comes in to play.

By considering ESB in terms of an SOA infrastructure, then we have the flexibility
to abstract away from given implementation choices, such as JMS, SOAP etc. Then
we define the capabilities that we want from our SOA infrastructure, which become
the capabilities for the ESB. However, because of their heritage, ESBs typically
come with a few assumptions that are not inherent to SOA:

• Java specific.

• Run-time message mediator.

• Message translation.

• Security model translation.

Loose coupling does not require a mediator to route messages, although that is
dominant ESB architecture. This is also a requirement within the JBI specification.
The ESB model should not restrict the SOA model, but should be seen as a concrete
representation of SOA. As a result, if there is a conflict between the way SOA would
approach something and the way in which it may be done in a traditional ESB, the
SOA approach will win within JBossESB.

Therefore, in JBossESB mediation (e.g., content based routing) is a deployment
choice and not a mandatory requirement. Obviously for compliance with certain
specifications it may be configured by default, but if developers don't need that

JBESB-SBC-10/31/07 17

compliance point, they should be able to remove it (generally or on a per service
basis).

The abstract view of the ESB/SOA infrastructure is shown below in Figure 1:

At its core, a good SOA should have a good messaging infrastructure (MI), and JMS
is a fairly good example of a standards-compliant MI. But it obviously will not be
the only implementation supported. Other capabilities that an ESB provides include:

• Process orchestration, typical ly via WS-BPEL.

• Protocol translation.

• Adapters.

• Change management (hot deployment , versioning, lifecycle management).

• Quality of service (transactions, failover).

• Qualify of protection (message encryption, security).

• Management.

Access control lists (ACLs) are important and complimentary to security protocols,
such as WS-Security/WS-Trust, and often overlooked by existing implementations.
JBossESB will support ACLs are part of the security capabilities.

Many of these capabilities can be obtained by plugging in other services or layering
existing functionality on the ESB. We should see the ESB as the fabric for building,
deploying and managing event-driven SOA applications and systems. There are
many different ways in which these capabilities can be realized, and the JBossESB
does not mandate one implementation over another. Therefore, all capabilities will
be accessed as services which will give plug-and-play configuration and extensibility
options.

JBESB-SBC-10/31/07 18

Figure 2: ESB components and multi-bus support .

Architectural requirements
In a distributed environment services can communicate with each other using a
variety of message passing protocols. With the aid of client and server stub code,
RPC semantics can be used to maintain the abstraction of local procedure calls
across address space boundaries. Client stub code is a local proxy for the remote
object, which is controlled by the corresponding server stub code. It is the
responsibility of the client stub to marshal information which identifies the remote
method and its parameters, transmit this information across the network to the
object, receive the reply message, and un-marshal the reply to return to the invoker.

However, SOA does not imply a specific carrier protocol and neither does it imply
RPC semantics (in fact, loose coupling of services forces developers into an
asynchronous message passing pattern3). Therefore, multiple protocols should be
supported simultaneously. In most cases, clients will know the communication
protocol to use when interacting with a service; however, in some situations this may
not be the case, and the communication stack may need to be assembled dynamically

3 Actually true asynchrony is often not necessary: synchronous one-way (void returns)
RPCs can be used and often are in Web Services.

JBESB-SBC-10/31/07 19

(via a hand-shake protocol, where the client stub may have to be dynamically
constructed4).

At the core of JBossESB is a messaging infrastructure (MI), but this MI is abstract,
in that it does not force us into just JMS or SOAP styles. For example, a pure-play
Web Services deployment within the ESB can be supported. As such, JBossESB
assumes a single MI abstraction, but the capabilities may be provided by multiple
different implementations. This is further support for the notion of having multiple
buses within the ESB (each bus may be controlled by a separate MI
implementation).

The service description and service contract are extremely important in the context
of SOA and therefore ESB. In general, the developers create the contracts and the
ESB maps it to whatever technology is being used to implement the SOA, e.g.,
WSDL. JBossESB allows this mapping to technology to be configurable and
dynamic, i.e., it supports multiple SOA implementation technologies.

Registries and repositories
There are actually two different aspects to the service bus: first, turning legacy
systems and services into services that work within the SOA infrastructure; secondly,
there is taking the services and adding policy and mediation control between those
services. Integral to this is the notion of SOA Repositories: a repository is a
persistent representation of an SOA Registry, which is needed to publish, discover
and consume services. JBossESB will support a range of registry implementations,
with UDDI as one of the first.

Creating services
If you ask 100 people what they mean by SOA applications you'll probably get 100
different answers. However, there are some common requirements:

• they should scale from several to hundreds and thousands of
participants/services.

• they should be loosely coupled, so that changes of service implementation
at either end of an interaction can occur in rel ative isolation without
breaking the system.

• they need to be highly available.

• they need to be able to cope with interactions that span the globe and have
connectivity characteristics like the traditional Web (i.e., poor).

• asynchronous (request-request) invocations should be as natural as
synchronous request-response.

Scalability and availability are possible with other technologies, such as CORBA.
Although (ii) and (iv) can certainly be catered for in those technologies as well, the
default paradigm is one based on an implementation choice: objects. Objects have
well defined interfaces and although they can change, the languages used to

4 Services may be available via mult iple different protocols simultaneously, e.g., CORBA
IIOP and JMS. A service repository (aka Name Service/Trading Service) will maintain service
identities with their endpoint references and contract definitions (CORBA IDL, WSDL, etc.)

JBESB-SBC-10/31/07 20

implement them typically place restrictions on the type of changes that can occur.
Now although it is true that certain OO architectures, such as CORBA, allow for a
loosely coupled, weakly types interaction pattern (e.g., DII/DSI in the case of
CORBA), that is not typically the way in which applications are constructed and
hence tool support in this area is poor.

There is no objective way in which to approach the question of whether SOAs can be
catered for in traditional environments. The answer is obviously yes, because no new
language has been invented for SOAs and current tools are used to develop them.
However, the real question is what is the best paradigm in which to consider an SOA
that allows it to address all 5 points above.

Concentrating on the message and making it the central tenant of the architecture is
the key to addressing the 5 points. How this is mapped onto a logical architecture
(objects, procedures, etc.) and ultimately onto a physical implementation (objects,
methods, state, etc.) is not important. The fact is that many different
implementations and sub-architectures could be used. So what is the fundamental
concept or mind-set in which to work when considering SOA?

The answer is that this is not about request-response, request-request, asynchrony
etc. but it's about events. The fundamental SOA is a unitary event bus which is
triggered by receipt of a message: a service registers with this bus to be informed
when messages arrive. Next up the chain is a demultiplexing event handler
(dispatcher), that allows for sub-services (sub-components) to register for sub-
documents (sub-messages) that may be logically or physically embedded in the
initially received message. This is an entirely recursive architect ure.

Versioning of Services
Using the ESB/SOA actually consists of two phases: the initial creation phase and
the maintenance phase, which may have different requirements from the creation
phase. Services evolve over time and it is often difficult or impossible to find a
quiescent period in which to replace a service. As such, in any enterprise deployment
there is likely going to be multiple versions of services being used by clients at the
same time. Some of the version mismatch may be hidden by suitable routing and on-
the-fly message modifications. JBossESB will address the challenge of versioning of
services, something that other implementations tend to ignore. Services will be
identifiable via major and minor version numbers, with pattern matching capabilities
provided by a pluggable rules engine, e.g., a default rule would be that all minor
versions are compatible within the scope of the same major version number, but that
can be overridden with a specific rule by the service provider or system
administrator.

Incorporating legacy services
One of the key aspects of SOA is the ability to leverage existing infrastructural
investments. Being required to cast aside software systems in order to incorporate a
new technology such as an ESB, is not good practice and we would caution against
using such systems since they could lead to vendor lock-in.

JBossESB will allow existing services to be incorporated within the ESB
environment without modification to those services. Likewise, clients and services
that are deployed within JBossESB will be able to use services that are external to
the ESB in an automatic manner. This is illustrated in the figure below and explained
in more detail in subsequent chapters.

JBESB-SBC-10/31/07 21

JBESB-SBC-10/31/07 22

Chapter 3

Glossary
 ACL Access Control List. A mean of determining the

appropriate access rights to a given object
depending on certain aspects of the process that is
making the request.

 Action Classes A component that is responsible for doing a certain
type of work after a receipt of a message inside the
ESB.

 Bus A subsystem that transfers data between computer
components inside a computer or between
computers. Unlike a point-to-point connection, a
bus can logically connect several components over
the same structure.

 Content Based Router (CBR) A pluggable service inside the ESB that provides
capabilities for message routing based on the
content of the message.

 CORBA Common Object Request Broker Architecture. A
standard defined by the Object Management Group
that enables software components written in
multiple computer languages and running on
multiple computers to interoperate.

 CORBA IDL CORBA Interface Definition Language. A computer
language used to describe a software component's
interface. It describes an interface in a language-
neutral way, enabling communication between
software components written in different languages.

 EAI Enterprise Application Integration. A practice that
makes use of software and computer systems
architectural principles to integrate a set of different
enterprise computer applications.

 Endpoint Reference (EPR) A standard XML structure used to identify and
address services inside the ESB. This includes the
destination address of the message, any additional
parameters (reference properties) necessary to route
the message to the destination, and optional
metadata (reference parameters) about the service.

 ESB Enterprise Service Bus. An abstraction layer on top
of an implementation of an enterprise messaging
system that provides the features with which
Service Oriented Architectures may be
implemented.

 Fault A type of message that express an error condition

JBESB-SBC-10/31/07 23

inside a Web Service. Similar to the Exception
object in some programming languages.

 Gateway A specialized ESB listener process that can accept
messages from non-ESB clients and services and
route them to the required destination inside the
ESB, taking care of the appropriate bridging of
message types and EPRs.

 J2EE/JEE Java Platform Enterprise Edition (formerly known
as Java 2 Platform Enterprise Edition). A
programming platform, based on the Java language,
for developing and running distributed multi-tier
Java applications. It is based largely on modular
software components running on an application
server.

 JBI Java Business Integration. An API that provides a
standard pluggable architecture to build integration
systems that hosts service producers and consumers
components. Components interoperate through
mediated normalized message exchanges.

 JMS Java Message Service. An API for sending
messages between two or more systems.

 JTA Java Transaction API. An API that allows
distributed transactions to be done across multiple
XA resources

 Listener Classes A component that encapsulates the endpoints for
message reception on the ESB.

 Message A data item that is sent (usually asynchronously) to
a communication endpoint. This concept is the
higher-level version of a datagram except that
messages can be larger than a packet and can
optionally be made reliable, durable, secure, and/or
transacted.

 Message Factory A service inside the ESB that can build specific
types of messages according to their serialization
capabilities.

 Message Store A pluggable service inside the ESB that persists
messages for auditing and tracking purposes.

 MOM Message Oriented Middleware. A software
component that makes possible inter-application
communication relying on asynchronous message-
passing.

 Quality of Service A term that refers to control mechanisms that can
provide different priority to different users or data
flows, or guarantee a certain level of performance to
a data flow in accordance with requests from the
application program.

 RPC Remote Procedure Call. A protocol that allows a
computer program running on one computer to call

JBESB-SBC-10/31/07 24

a subroutine on another computer without the
programmer explicitly coding the details for this
interaction.

 SCA Service Component Architecture. A set of
specifications that describe a model for building
applications and systems using Service-Oriented
Architecture. It encourages an SOA organization of
applications based on components that offer their
capabilities through service-oriented interfaces and
which consume functions offered by other
components through service-oriented interfaces,
called service references.

 Service Registry A persistent repository of Service information. Used
by ESB components to publish, discover and
consume services.

 SOA Service Oriented Architecture. A perspective of
software architecture that defines the use of loosely
coupled software services to support the
requirements of the business processes and software
users. In an SOA environment, resources on a
network are made available as independent services
that can be accessed without knowledge of their
underlying platform implementation.

 SOAP A protocol for exchanging XML-based messages
over computer network, normally using HTTP.
SOAP forms the foundation layer of the Web
services stack, providing the basic messaging
framework.

 Transformation Service A pluggable service inside the ESB that provides
capabilities for transforming messages from one
data format to another.

 UDDI Universal Description, Discovery, and Integration.
A platform-independent, XML-based registry and
core Web Services standard. It is designed to be
interrogated by SOAP messages and to provide
access to Web Services Description Language
documents describing the protocol bindings and
message formats required to interact with the web
services listed in its directory.

 WS-Addressing A Web Service specification for addressing web
services and messages in a transport-neutral
manner. This specification enables messaging
systems to support message transmission through
networks that include processing nodes such as
endpoint managers, firewalls, and gateways.

 WS-BPEL Web Services Business Process Execution
Language. A choreography language for the formal
specification of business processes and business

JBESB-SBC-10/31/07 25

interaction protocols using Web Services. Thus
BPEL's messaging facilities depend on the use of
Web Services Description Language (WSDL) 1.1 to
describe incoming and outgoing messages.

 WS-Context A Web Service specification that provides a
definition, a structuring mechanism, and a software
service definition for organizing and sharing context
across multiple Web Services endpoints.
The context contains information (such as a unique
identifier) that allows a series of operations to share
a common outcome.

 WSDL Web Services Description Language. An XML
format for describing the public interface to a Web
services based on how to communicate using the
web service; namely, the protocol bindings and
message formats required to interact with it.

 WS-Policy A Web Service specification that allows web
services to advertise their policies (on security,
Quality of Service, etc.) and for web service
consumers to specify their policy requirements.

 WS-Security A Web Service specification that provides a set of
mechanisms to secure SOAP message exchanges.
Specifically, it describes enhancements to provide
quality of protection through the application of
message integrity, message confidentiality, and
single message authentication to SOAP messages.

 WS-Trust A Web Service specification that uses the secure
messaging mechanisms of WS-Security to define
additional primitives and extensions for the
issuance, exchange and validation of security
tokens.

 XA An X/Open specification for distributed transaction
processing. It describes the interface between the
global transaction manager and the local resource
manager to support a two-phase commit protocol.

 XML Extensible Markup Language. A general-purpose
markup language that supports a wide variety of
applications. Its primary purpose is to facilitate the
sharing of data across different information systems.

JBESB-SBC-10/31/07 26

Index
ESB Overview 15
JBossESB

Access Control Lists 16
contract definition language 18
implementation flexibility 17
multi-bus support 18

SOA Overview 9
SOA Overview

basics 12
benefts 10
Why SOA? 11

JBESB-SBC-10/31/07 27

	Why SOA?
	Basics of SOA
	Advantages of SOA
	Interoperability
	Efficiency
	Standardization
	Statefull and Stateless services
	JBossESB and its relationship with SOA

	Architectural requirements
	Registries and repositories
	Creating services
	Versioning of Services
	Incorporating legacy services

