
JBoss ESB 4.2.1 GA
Trailblazer Guide

JBESB-TB-10/31/07

JBESB-TB-10/31/07

Legal Notices

The information contained in this documentation is subject to change without notice.

JBoss Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. JBoss Inc. shall not be liable
for errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this materi al.

Java™ and J2EE is a U.S. trademark of Sun Microsyst ems, Inc. Microsoft® and Windows NT® are
registered trademarks of Microsoft Corporation. Oracle® is a regi stered U.S. trademark and Oracle9™,
Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here
as a generic term covering all versions of the UNIX® operating system. UNIX is a regi stered trademark
in the United States and other countries, licensed exclusively through X/Open Company Limited.

Copyright

JBoss, Home of Professional Open Source Copyright 2007, JBoss Inc., and individual contributors as
indicated by the @authors tag. All rights reserved.

See the copyright.txt in the distribut ion for a full listing of individual contributors. This copyrighted
material is made available to anyone wishing to use, modify, copy, or redistribute it subject to the terms
and conditions of the GNU General Public License, v. 2.0. This program is distributed in the hope that it
will be useful, but WITHOUT A WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details. You should have received a copy of the GNU
General Public License, v. 2.0 along with this distribution; if not, write to the Free Software Foundat ion,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Software Version

JBoss ESB 4.2.1 GA

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause 52.227-FAR14.

© Copyright 2007 JBoss Inc.

JBESB-TB-10/31/07 2

Contents
Table of Contents

Contents.......................................iii

...iii

About This Guide.. iv

What This Guide Contains............iv
Audience....................................iv
Prerequisites...iv
Organization...iv
Documentation Conventions............iv
Additional Documentation...........v

Contacting Us..v

Trailblazer...vi

Overview...vi

In Depth Look..viii

Client... viii
Web Service..............................viii

LoanBroker/ESB Components................... ix
Deploying and Testing the Trailblazer........xiv
System Requirements...........................xiv
Configurations...xiv
Running...xiv

JBESB-TB-10/31/07 3

About This Guide
What This Guide Contains

The Trailblazer Guide contains descriptions on the principles behind Service Oriented
Architecture and Enterprise Service Bus, as well as how they relate to JBossESB. This guide
also contains information on how to use JBoss ESB 4.2.1 GA.

Audience

This guide is most relevant to engineers who are responsible for using JBoss ESB 4.2.1 GA
installations and want to know how deploy and test the Trailblazer found under the Samples.

Prerequisites

You will need the JBossESB distribution, source or binary to run the trailblazer. You will
also need an instance of either the JBoss ESB Server 4.2.1.GA or an instance of JBoss
Application Server installed with the JBossESB. The “Getting Started” guide found in the
docs directory contains instructions on installing and configuring the server.

To test the email notification of quotes, you will require a mail server or the information from
your ISP/company email server.

Organization

This guide contains the following chapters:

• Chapter 1, Overview: an overview of the loanbroker trailblazer scenario used in
JBossESB.

• Chapter 2, In Depth Look: a more detailed look at the various arti facts that make
up the trailblazer.

• Chapter 3, Deploying and Testing the TB: how to compile, deploy, and test the
trailblazer.

Documentation Conventions

The following conventions are used in this guide:

Table 1 Formatting Conventions

JBESB-TB-10/31/07 4

Additional Documentation

In addition to this guide, the following guides are available in the JBoss ESB 4.2.1 GA
documentation set:

1. JBoss ESB 4.2.1 GA Administration Guide: How to manage the ESB.

2. JBoss ESB 4.2.1 GA Getting Started Guide: Provides a quick start reference to
configuring and using the ESB.

3. JBoss ESB 4.2.1 GA Programmers Guide: How to use JBossESB.

4. JBoss ESB 4.2.1 GA Release Notes: Information on the differences between this
release and previous releases.

5. JBoss ESB 4.2.1 GA Services Guides: Various documents related to the services
available with the ESB.

Contacting Us

Questions or comments about JBoss ESB 4.2.1 GA should be directed to our support team.

JBESB-TB-10/31/07 5

Convention Description
Italic In paragraph text, italic identifies the titles of documents that are

being referenced. When used in conjunction with the Code text
described below, italics identify a variable that should be replaced by
the user with an actual value.

Bold Emphasizes items of particular importance.
Code Text that represents programming code.
Function | Function A path to a function or dialog box within an interface. For example,

“Select File | Open.” indicates that you should select the Open
function from the File menu.

() and | Parentheses enclose optional items in command syntax. The vertical
bar separates syntax items in a list of choices. For example, any of
the following three items can be entered in this syntax:

persistPolicy (Never | OnTimer | OnUpdate |
NoMoreOftenThan)

Note:

Caution:

A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to
avoid damage to equipment, damage to software, loss of data, or
invalid test results.

Chapter 1

Trailblazer
Overview

The Trailblazer is meant to show a commonly understood use-case where the JBossESB can
be used to solve the integration problem at hand. The TB is loosely based on the Enterprise
Applications Integration book (http://www.eaipatterns.com/). The scenario is very simple - a
user is shopping around for a bank loan with the best terms, rate, etc. A loan broker will act
as middle-man between the user and the banks. The LoanBroker will gather all the required
information from the user, and the pass it on to each bank. As the quotes are received from
the various banks, the LoanBroker will pass those back to the requesting user. This is a
common practice in the financial services world today – it's a model used for insurance
quotes, mortgage quotes, and so on.

A simple scenario as described above, actually puts forth several integration challenges.
Each bank has it's own data feed structure (xml, delimited, positional, etc), it's own
communication protocol (file, jms, ftp, etc), and finally the responses from each of these is
very unique to each. A LoanBroker acting as the agent for these institutions must be able to
accommodate each scenario, without expecting the bank to adjust anything. The bank's
provide a service, and have a clearly defined contract in which to carry out that service. It's
our job as the LoanBroker developer to ensure we can be as flexible and adaptable as
possible to handle a variety of possible communication protocols, data formats and so on.

This is where JBossESB comes in. Traditionally, an organization would create custom code
and scripts to manage the end to end integration between the LoanBroker and each bank.
(aka point-to-point interfaces). This is cumbersome, and messy when it comes to
maintenance. Adding new banks, and new protocols is not easy. JBossESB gives us a central
framework for developing a solution built around a common set of services which can be
applied over and over to each unique bank requirement. Adding a new bank then becomes
trivial, and support is a lot simpler when you onl y need to work on one common codebase.

JBESB-TB-10/31/07 6

http://www.eaipatterns.com/
http://www.eaipatterns.com/
http://www.eaipatterns.com/

The diagram below shows the scenario at a high level:

* the diagram above is not using any specific notation or style (some of you might be
expecting the EIP symbols).

JBESB-TB-10/31/07 7

Chapter 2

In Depth Look
Client

The client is a simple JSP page, which routes the submit to a waiting web service. The Loan
Request consists of the typical information you would expect from such a request: A social
security number (ssn), some personal information like name, address, and so on, as well as
loan specific information – loan amount, etc.

Web Service
The web service, which is responsible for receiving the loan requests is a JSR-181 based
annotated web service. An annotated web service let's you take any pojo and expose the
methods as being capable of receiving requests. The class looks as follows:

package org.JBoss.soa.esb.samples.trailblazer.web;
import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;
import org.apache.log4j.Logger;
import org.JBoss.soa.esb.samples.trailblazer.loanbroker.LoanBroker;
/**
 * The Loan broker web service, which will handle a loan request.
 */

@WebService(name = "LoanBrokerWS",
targetNamespace = "http://localhost/trailblazer")
@SOAPBinding(style = SOAPBinding.Style.RPC)

public class LoanBrokerBean
{

private static Logger logger = Logger.getLogger(LoanBrokerWS.class);
@WebMethod
// method name is .NET friendly
public void RequestLoan(WebCustomer customer) {

logger.info("WebCustomer received: \n" + customer);
LoanBroker broker = new LoanBroker();

 broker.processLoanRequest(customer);
}

}

JSR-181 annotated pojo web services are a very easy and powerful way to expose plain old
java classes as web services. The JBossESB does not have built in support for web services
yet, but since we are working in Java, there is no reason why you cannot combine your own
web services with the JBossESB services, which is what was done in the trailblazer. The
class above is the server side web service. You still need to provide the client, the JSP in this
case the client stubs to communicate with the web service. JBossIDE which has a web
service client side generator to creat e these classes if you are looking for a tool to use for this.

JBESB-TB-10/31/07 8

http://localhost/trailblazer
http://localhost/trailblazer
http://localhost/trailblazer

The most important piece in the web service, is the line which invokes the LoanBroker
object, and passes a customer object for processing.

LoanBroker/ESB Components
The Loan Broker is a standard java application, which makes use of the services available in
the JBossESB to get data to and from the banks, and then finally back to the customer as an
email response.

Let's look first at the ESB components required for processing a loan request .

In this release, the Bank bundled include a JMS based bank, and a File based bank. Each has
it's own unique data requirements and data formats. These are external entities. In a real
production world scenario, these might be internal systems, accessible within your own
network, or they may be external providers which you will need to communicate with
through some protocol. Needless to say, for this example, we are not focusing on aspects like
security, authentication, and other concerns which you would most certainly face. We are
focusing solely on the JBossESB components and some sample configurations which you
could use to create a similar scenario.

JBossESB has a concept of “Gateway” and “ESB Aware” services. ESB Aware services are
able to communicate with the ESB directly using native APIs found in the ESB. These APIs
for instance require that you use a Message object. Since the LoanBroker is java based, and
has access to the JBossESB APIs, it will be an ESB Aware service. The banks on the other
hand, are NON-ESB Aware services. They have no idea, nor should they know anything
about the ESB. It is the job of the services in the ESB to facilitate communication to and
from the banks, as well as data transformation to/from and so on. These services (the Banks)
will interact with the JBossESB through what we call Gateway Services. To read more on
the differences between the two, please see the Programmer's Guide.

Let's look at just how you configure the various services in JBossESB. Inside the
<TRAILBLAZER_ROOT>/esb/conf/jbossesb.xml you will see the following deployed
services:

<?xml version = "1.0" encoding = "UTF-8"?>
<JBossesb
xmlns="http://anonsvn.labs.JBoss.com/labs/JBossesb/trunk/product/etc/schemas
/xml/JBossesb-1.0.xsd"

parameterReloadSecs="50">

<providers>
<jms-provider name="JBossMQ" connection-factory="ConnectionFactory"

jndi-context-factory="org.jnp.interfaces.NamingContextFactory"
jndi-URL="localhost">

<jms-bus busid="creditAgencyRequest">
<jms-message-filter dest-type="QUEUE" dest-name="queue/esb-tb-

creditAgencyQueue" selector="function='request' "/>
</jms-bus>

<jms-bus busid="bankResponseGateway">
<jms-message-filter dest-type="QUEUE" dest-name="queue/esb-tb-

bankRequestQueue"/>
</jms-bus>

JBESB-TB-10/31/07 9

<jms-bus busid="bankResponseListener">
<jms-message-filter dest-type="QUEUE" dest-name="queue/esb-tb-

bankResponseQueue"/>
</jms-bus>

</jms-provider>
</providers>
<services>

<service category="trailblazer" name="creditagency" description="Credit
Agency Service">

<listeners>
<jms-listener name="trailblazer-jmscreditagency"
 busidref="creditAgencyRequest" maxThreads="1"/>

</listeners>
<actions>

<action
xlass="org.JBoss.soa.esb.samples.trailblazer.actions.CreditAgencyActions"

process="processCreditRequest" name="fido">
</action>

</actions>
</service>

<service category="trailblazer-jmsbank" name="jmsbankreplies"
description="Trailblazer Bank Reply Service">

<listeners>
<jms-listener name="trailblazer-jmsbank"

busidref="bankResponseGateway" maxThreads="1"
is-gateway="true"/>

<jms-listener name="trailblazer-jmsbankreplies"
 busidref="bankResponseListener" maxThreads="1"/>

</listeners>
<actions>

<action
class="org.JBoss.soa.esb.samples.trailblazer.actions.BankResponseActions"

process="processResponseFromJMSBank" name="pepe"/>
</actions>

</service>
</services>

</JBossesb>

The config above uses a configuration structure which is described in much more detail in
Chapter 5 of the JBossESB Programmer's Guide. The config for the TB describes several
communication providers, listed in the <providers> section, all consisting of JMS in this
example, and using JBossMQ as the actual JMS transport. Next, several <services> are
listed, starting with the creditagency, and the various JMS bank services for sending and
receiving data from the banks. The banks have their own config files, which must be
configured to use and reply on the queues described above. Please see
<TRAILBLAZER_ROOT>/banks/bank.properties.

The LoanBroker makes use of the services described above, in the following lines of code:

public void processLoanRequest(WebCustomer wCustomer){
Customer customer = getCustomer(wCustomer);
//keep the customer in a file someplace for later use, if needed
CustomerMasterFile.addCustomer(String.valueOf(customer.ssn), customer);

JBESB-TB-10/31/07 10

//step 1 - send to credit agency for credit score if available
//uses 2way courier for a response
sendToCreditAgency(customer);

//step 2 - send to JMS Bank
sendToJMSBank(customer);

}

The sendToCreditAgency is where an interaction with the ESB takes place. Please see the
code for more detailed listing. The sections below illustrate the important parts:

courier.setReplyToEpr(replyEPR);
//wait for 5 seconds then give up
replyMessage = courier.pickup(5000);

We set the courier's ReplyToEpr with an EPR we create, then we tell the courier to pickup the
response for us, waiting a maximum of 5 seconds. For more detailed information on how
Couriers and 2WayCourier's work, please see the Programmer' s Guide.

The interaction with the Banks uses a simpler, asynchronous API – there is no waiting for a
reply from the banks. The bank replies come in on their own queue, and the GatewayService
defined for that purpose fires it off to an action class to handle the response. See the listing
from the jbossesb.xml:

<service category="trailblazer-jmsbank" name="jmsbankreplies"
description="Trailblazer Bank Reply Service">

<listeners>
<jms-listener name="trailblazer-jmsbank"

busidref="bankResponseGateway" maxThreads="1"
is-gateway="true"/>

<jms-listener name="trailblazer-jmsbankreplies"
 busidref="bankResponseListener" maxThreads="1"/>

</listeners>
<actions>

<action
class="org.JBoss.soa.esb.samples.trailblazer.actions.BankResponseActions"

process="processResponseFromJMSBank" name="pepe"/>
</actions>

</service>

The important element above is, that the
org.JBoss.soa.esb.samples.trailblazer.actions.BankResponseActions is the class that is
defined as being responsible for handling the bank JMS responses. The property
process=”processResponseFromJMSBank” tells the service which method in this class will
actually do the work. Below is a code snippet from this method:

public Message processResponseFromJMSBank(Message message) throws Exception
{

_message = message;
_logger.debug("message received: \n" + new
String(message.getBody().getContents()));

JBESB-TB-10/31/07 11

//get the response from the bank and set it in the customer
ConfigTree tree = ConfigTree.fromXml(new
String(message.getBody().getContents()));
String quoteID = tree.getFirstTextChild("quoteId");
String rate = tree.getFirstTextChild("interestRate");
String errorCode = tree.getFirstTextChild("errorCode");
String ssn = tree.getFirstTextChild("customerUID");
String email = tree.getFirstTextChild("customerEmail");

ProcessEmail procEmail = new ProcessEmail(email, quoteID, rate,
errorCode, ssn);
procEmail.sendEmail();

return message;

}

The code above retrieves the contents of the payload from the
Message.getBody().getContents(). Those contents are then used to populate some strings,
which are eventually used to fill in the emai l which goes back to the customer.

JBESB-TB-10/31/07 12

The sequence diagram below illustrates the full set of calls that are made in the trailblazers:

JBESB-TB-10/31/07 13

Chapter 3
Deploying and Testing the Trailblazer

System Requirements
1. ANT (1.6.5 or higher)

2. A mail server to send email notifications

3. JBoss ESB Server 4.2.1GA JBoss AS 4.2.1GA with JBossESB installed (see “Getting
Started Guide” for installation details).

Configurations
1. trailblazer.properties : Update the section titled "transports" and specify all of the

SMTP mail server settings for your environment.

2. deployment.properties : If you have followed the “Getting Started” guide, you
should have already created a deployment.properties file using the template in
deployment.properties-example and set the configuration and directory settings.

Running
1. Run your JBoss AS – use the run script within the bin directory. On Windows

there is a run.bat script, for any Unix variant (Unix/Linux/Mac OS X) there is a
run.sh.

2. From the TB_ROOT, execute the command to start the ESB: "ant deploy". This
should deploy the ESB and WAR files to your JBoss AS server/default.

3. From the TB_ROOT/banks execute the command to start the Bank service: "ant
runJMSBank"

4. In your browser, goto http://localhost:8080/trailblazer and submit some quote
requests.

5. Check your email for notifications.

JBESB-TB-10/31/07 14

http://localhost:8080/trailblazer
http://localhost:8080/trailblazer
http://localhost:8080/trailblazer

	System Requirements
	Configurations
	Running

