
JBoss ESB 4.2.1 GA
Registry Service

JBESB-RS-10/31/07

JBESB-RS-10/31/07

Legal Notices

The information contained in this documentation is subject to change without notice.

JBoss Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. JBoss Inc. shall not be liable
for errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this materi al.

Java™ and J2EE is a U.S. trademark of Sun Microsyst ems, Inc. Microsoft® and Windows NT® are
registered trademarks of Microsoft Corporation. Oracle® is a regi stered U.S. trademark and Oracle9™,
Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here
as a generic term covering all versions of the UNIX® operating system. UNIX is a regi stered trademark
in the United States and other countries, licensed exclusively through X/Open Company Limited.

Copyright

JBoss, Home of Professional Open Source Copyright 2006, JBoss Inc., and individual contributors as
indicated by the @authors tag. All rights reserved.

See the copyright.txt in the distribut ion for a full listing of individual contributors. This copyrighted
material is made available to anyone wishing to use, modify, copy, or redistribute it subject to the terms
and conditions of the GNU General Public License, v. 2.0. This program is distributed in the hope that it
will be useful, but WITHOUT A WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details. You should have received a copy of the GNU
General Public License, v. 2.0 along with this distribution; if not, write to the Free Software Foundat ion,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Software Version

JBoss ESB 4.2.1 GA

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause 52.227-FAR14.

© Copyright 2007 JBoss Inc.

Contents
Table of Contents

Contents... ..iv

About This Guide..............................5

What This Guide Contains..........5
Audience.................................5
Prerequisites......................................5
Organization...5
Documentation Conventions.........5
Additional Documentation...........7
Contacting Us...7

What is the Registry?.....................9

Introduction..9
Why do I need it ?.........................9
How do I use it ?....................9
Registry Vs Repository...........9
SOA components......................................9
UDDI..10

Configuring the Registry.......................11

Introduction....................................11

The components involved............................. 12
The Registry Implementation Class............12
Using JAXR............................13
Using Scout and jUDDI................................ 13

Chapter 2...15

Configuration Examples.................................... 15

Introduction.......................................15
Embedded.. ...15
RMI using the juddi.war or jbossesb.sar16
RMI using your own JNDI Registration of the

RMI Service..17
2.4 SOAP... .19
SAAJ...21

Chapter 3...22

Troubleshooting.........................22

Scout and jUDDI pitfalls....................22
More Information...........................22

About This Guide
What This Guide Contains

The Registry Service contains contain important information on changes to JBoss
ESB 4.2.1 GA since the last release and informat ion on any outstanding issues.

Audience

This guide is most relevant to engineers who are responsible for administering JBoss
ESB 4.2.1 GA installations.

Prerequisites

None.
Organization

This guide contains the following chapters:

• Chapter 1, What is the Registry: an overview of what the registry
provides and how it is used in JBossESB.

• Chapter 2, Configuration: this chapter contains informat ion on how to
configure the registry

• Chapter 2, Example Configurations: this chapter illustrates some useful
configurations..

• Chapter 3, Troubleshooting: information covering how to diagnose and
fix common problems.

Documentation Conventions

The following conventions are used in this guide:

JBESB-RS-10/31/07 5

Table 1 Formatting Conventions

Additional Documentation

In addition to this guide, the following guides are available in the JBoss ESB 4.2.1
GA documentation set:

1. JBoss ESB 4.2.1 GA Trailblazer Guide: Provides guidance for using the
trailblazer example.

2. JBoss ESB 4.2.1 GA Getting Started Guide: Provides a quick start
reference to configuring and using the ESB.

3. JBoss ESB 4.2.1 GA Programmers Guide: How to use JBossESB.

4. JBoss ESB 4.2.1 GA Release Notes: Information on the differences
between this release and previous releases.

5. JBoss ESB 4.2.1 GA Administration Guide: How to manage the ESB.

Contacting Us

Questions or comments about JBoss ESB 4.2.1 GA should be directed to our support
team.

JBESB-RS-10/31/07 6

Convention Description
Italic In paragraph text, italic identifies the titles of documents that are

being referenced. When used in conjunction with the Code text
described below, italics identify a variable that should be replaced by
the user with an actual value.

Bold Emphasizes items of particular importance.
Code Text that represents programming code.
Function | Function A path to a function or dialog box within an interface. For example,

“Select File | Open.” indicates that you should select the Open
function from the File menu.

() and | Parentheses enclose optional items in command syntax. The vertical
bar separates syntax items in a list of choices. For example, any of
the following three items can be entered in this syntax:

persistPolicy (Never | OnTimer | OnUpdate |
NoMoreOftenThan)

Note:

Caution:

A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to
avoid damage to equipment, damage to software, loss of data, or
invalid test results.

JBESB-RS-10/31/07 7

Chapter 1

What is the Registry?
Introduction

In the context of SOA, a registry provides applications and businesses a central point
to store information about their services. It is expected to provide the same level of
information and the same breadth of services to its clients as that of a conventional
market place. Ideally a registry should also facilitate the automated discovery and
execution of e-commerce transactions and enabling a dynamic environment for
business transactions. Therefore, a registry is more than an “e-business directory”. It
is an inherent component of the SOA infrastructure.

Why do I need it ?
It is not difficult to discover, manage and interface with business partners on a small
scale, using manual or ad hoc techniques. However, this approach does not scale as
the number of services, the frequency of interactions, the physical distributed nature
of the environment, increases. A registry solution based on agreed upon standards
provides a common way to publish and discover services. It offers a central place
where you query whether a partner has a service that is compatible with in-house
technologies or to find a list of companies that supports shipping services on other
side of the globe.

Service registries are central to most service oriented architectures and at runtime
act as a contact point to correlate service requests to concrete behaviors. A service
registry has meta-data entries for all artifacts within the SOA that are used at both
runtime and design time. Items inside a service registry may include service
description artifacts (e.g., WSDL), Service Pol icy descriptions, various XML schema
used by services, artifacts represent ing different versions of services, governance and
security artifacts (e.g., certificates, audit trails), etc. During the design phase,
business process designers may use the registry to link together calls to several
services to create a workflow or business process.

Note: The registry may be replicated or federated to improve performance
and reliability. It need not be a single point of failure.

How do I use it ?
From a business analyst’s perspective, it is similar to an Internet search engine for
business processes. From a developers perspective, they use the registry to publish
services and query the registry to discover services matching various criteri a.

Registry Vs Repository
A registry allows for the registration of services, discovery of metadata and
classification of entities into predefined categories. Unlike a respository, it does not
have the ability to store business process definitions or WSDL or any other
documents that are required for trading agreements. A registry is essentially a
catalogue of items, whereas a repository maintaines those items.

JBESB-RS-10/31/07 8

SOA components
As the W3C puts it: An SOA is a specific type of distributed system in which the
agents are "services" (http://www.w3.org/TR/2003/WD-ws-arch-
20030808/#id2617708).

The key components of a Service Oriented Architecture are the messages that are
exchanged, agents that act as service requesters and service providers, and shared
transport mechanisms that allow the flow of messages. A description of a service that
exists within an SOA is essentially just a description of the message exchange patter
between itself and its users. Within an SOA there are thus three critical roles:
requester, provider, and broker.

 Service provider: allows access to services, creates a descri ption of a
service and publishes it to the service broker.

 Service broker: hosts a registry of service descriptions. It is responsible
for linking a requestor to a service provi der.

 Service requester: is responsible for discovering a servi ce by searching
through the service descriptions given by the service broker. A
requestor is also responsible for binding to services provided by the
service provider.

Service
Broker

Service
Requestor

Service
Provider

Di
sc
ov

er Publish

Bind

UDDI
The Universal Distribution, Discover and Interoperability registry is a directory
service for Web Services. It enables service discovery through queries to the UDDI
registry at design time or at run time. It also allows providers to publish descriptions
of their services to the registry. The registry typically contains a URL that locates the
WSDL document for the web services and contact information for the service
provider. Within UDDI information is classified into the following categories.

JBESB-RS-10/31/07 9

 White pages: contain general information such as the name, address
and other contact information about the company providing the service.

 Yellow pages: categorize businesses based on the industry their
services cater to.

 Green pages: provide information that will enable a client to bind to the
service that is being provided.

The Registry and JBossESB
The registry plays a central role within JBossESB. It is used to store endpoint
references (EPRs) for the services deployed within the ESB. It may be updated
dynamically when services first start-up, or statically by an external administrator.

As with all environments within which registries reside, it is not possible for the
registry to determine the liveness of the entities its data represents, e.g., if an EPR is
registered with the registry then there can be no guarantee that the EPR is valid (it
may be malformed) or it may represent a services that is no longer active. At present
JBossESB does not perform life-cycle monitoring of the services that are deployed
within it. As such, if services fail or move elsewhere, their EPRs that may reside
within the registry will remain until they are explicitly updated or removed by an
administrator. Therefore, if you get warnings or errors related to EPRs obtained from
the registry, you should consider removing any out-of-date items.

JBESB-RS-10/31/07 10

Chapter 2

Configuring the
Registry

Introduction
The JBossESB Registry architecture allows for many ways to configure the ESB to
use either a Registry or Repository. By default the we use a JAXR implementation
(Scout) and a UDDI (jUDDI), in an embedded way.

The following properties can be used to configure the JBossESB Registry. In the
jbossesb-properties.xml there is section called 'registry':

 <properties name="registry">
<property name="org.jboss.soa.esb.registry.implementationClass"

value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>
<property name="org.jboss.soa.esb.registry.factoryClass"

value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>
 <property name="org.jboss.soa.esb.registry.queryManagerURI"
value="org.apache.juddi.registry.local.InquiryService#inquire"/>
 <property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
value="org.apache.juddi.registry.local.PublishService#publish"/>
 <property name="org.jboss.soa.esb.registry.user"
value="jbossesb"/>
 <property name="org.jboss.soa.esb.registry.password"
value="password"/>
 <!-- the following parameter is scout specific to set the type of
communication between scout and the UDDI (embedded, rmi, soap) -->
 <property name="org.jboss.soa.esb.scout.proxy.transportClass"
value="org.apache.ws.scout.transport.LocalTransport"/>
 </properties>

In short, the properties are

1. org.jboss.soa.esb.registry.implementationClass, a class that implements
the jbossesb Registry interface. We have provided one implementation
(JAXRRegistry interface).

2. org.jboss.soa.esb.registry.factoryClass, the class name of the JAXR
ConnectionFactory implementation.

3. org.jboss.soa.esb.registry.queryManagerURI, the URI used by JAXR to
query.

4. org.jboss.soa.esb.registry.lifeCycleManagerURI, the URI used by JAXR to
edit.

JBESB-RS-10/31/07 11

5. org.jboss.soa.esb.registry.user, the user used for edits.

6. org.jboss.soa.esb.registry.password, the password to go along with the
user.

7. org.jboss.soa.esb.scout.proxy.transportClass, the name of the class used by
scout to do the transport from scout to the UDDI.

The components involved
The registry can be configured in many ways. Figure 1 shows a blue print of all the
registry components. From the top down we can see that the JBossESB funnels all
interaction with the registry through the Registry Interface. By default it then calls
into a JAXR implementation of this interface. The JAXR API needs an
implementation, which by default is Scout. The Scout JAXR implementation calls
into a jUDDI registry. However there are many other configuration options.

Figure 1. Blue print of the Registry component architecture.

The Registry Implementation Class
Property: org.jboss.soa.esb.registry.implementationClass

By default we use the JAXR API. The JAXR API is a convenient API since it allows
us to connect any kind of XML based registry or repository. However, if for example
you want to use Systinet's Java API you can do that by writing your own
SystinetRegistryImplentation class and referencing it in this property.

JBESB-RS-10/31/07 12

JAXR
(JAXR-Implementation)

UDDI ebXML Other XML
Registry

JBossESB

Other Java API

Registry Interface

Using JAXR
Propery: org.jboss.soa.esb.registry.factoryClass

If you decided to use JAXR then you will have to pick which JAXR implementation
to use. This property is used to configure that class. By default we use Scout and
therefore it is set to the scout factory
'org.apache.ws.scout.registry.ConnectionFactoryImpl'. The next step
is to tell the JAXR implementation the location of the registry or repository for
querying and updating, which is done by setting the
org.jboss.soa.esb.registry.queryManagerURI, and
org.jboss.soa.esb.registry.lifeCycleManagerURI respectively, along
with the username (org.jboss.soa.esb.registry.user) and password
(org.jboss.soa.esb.registry.password) for the UDDI.

Using Scout and jUDDI
Property: org.jboss.soa.esb.scout.proxy.transportClass

When using Scout and jUDDI there is an additonal parameter that one can set. This
is the transport class that should be used for communication between Scout and
jUDDI. Thus far there are 4 implementations of this class which are based on SOAP,
SAAJ, RMI and Local (embedded java). Note that when you change the transport,
you will also have to change the query and lifecycl e URIs. For example:

SOAP
queryManagerURI http://localhost:8080/juddi/inquiry
lifeCycleManagerURI http://localhost:8080/juddi/publish
transportClass org.apache.ws.scout.transport.AxisTransport

RMI
queryManagerURI
jnp://localhost:1099/InquiryService?org.apache.juddi.registry.rmi.Inqui
ry#inquire
lifeCycleManagerURI
jnp://localhost:1099/PublishService?org.apache.juddi.registry.rmi.Publi
sh#publish
transportClass org.apache.ws.scout.transport.RMITransport

Local
queryManagerURI

org.apache.juddi.registry.local.InquiryService#inquire
lifeCycleManagerURI

org.apache.juddi.registry.local.PublishService#publish
transportClass org.apache.ws.scout.transport.LocalTransport

For jUDDI we have two requirements that need to be fulfilled:

1. access to the juddi database. You will need to create a schema in your
database, and add the jbossesb publisher. The product/install/jUDDI-registry
directory contains db create scripts for you favority database.

2. juddi.properties. The configuration of jUDDI itself. If you do not use a
datasource you need to take special care to set the following properties:

juddi.isUseDataSource=false
juddi.jdbcDriver=com.mysql.jdbc.Driver

JBESB-RS-10/31/07 13

juddi.jdbcUrl=jdbc:mysql://localhost/juddi
juddi.jdbcUsername=juddi
juddi.jdbcPassword=juddi

if you do use a datasource you need something like
juddi.isUseDataSource=true
juddi.dataSource=java:comp/env/jdbc/juddiDB

JBESB-RS-10/31/07 14

Chapter 2

Configuration
Examples

Introduction
As mentioned before, by default the JBossESB is configured to use the JAXR API using
Scout as its implementation and jUDDI as the registry. Here are some example how you
can use deploy this combo.

Embedded
All ESB components (with components we really mean JVMs in this case) can embed
the registry and they all can connect to the same database (or different once if that
makes sense).

Figure 2. Embedded jUDDI.
Properties example:

<properties name="registry">
<property name="org.jboss.soa.esb.registry.implementationClass"

value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>
<property name="org.jboss.soa.esb.registry.factoryClass"

value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>
 <property name="org.jboss.soa.esb.registry.queryManagerURI"
value="org.apache.juddi.registry.local.InquiryService#inquire"/>
 <property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
value="org.apache.juddi.registry.local.PublishService#publish"/>
 <property name="org.jboss.soa.esb.registry.user"
value="jbossesb"/>

JBESB-RS-10/31/07 15

JAXR
Scout

jUDDI

Java Application1

Local

JAXR
Scout

jUDDI

Java Application2

Local

 <property name="org.jboss.soa.esb.registry.password"
value="password"/>
 <!-- the following parameter is scout specific to set the type of
communication between scout and the UDDI (embedded, rmi, soap) -->
 <property name="org.jboss.soa.esb.scout.proxy.transportClass"
value="org.apache.ws.scout.transport.LocalTransport"/>
 </properties>

RMI using the juddi.war or jbossesb.sar
Deploy a version of the jUDDI that brings up an RMI service. The JBossESB comes
with a juddi.war in the product/install/jUDDI-registry directory. This war brings up
the regular webservices but also an RMI service. Along with the juddi.war you need
to deploy a datasource which points to your jUDDI database. An example file is
supplied for mysql. Note that the jbossesb.sar also registers a rmi service. So you'd
only need to deploy the juddi.war if you need webservi ce access.

Figure 3. RMI using the juddi.war
Properties example:

JBESB-RS-10/31/07 16

JAXR
Scout

juddi.war

Java Application1
JAXR
Scout

Java Application2

RMI

RMI-Service

RMI

Non Java App3

SOAP

<properties name="registry">
<property name="org.jboss.soa.esb.registry.implementationClass"

value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>
<property name="org.jboss.soa.esb.registry.factoryClass"

value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>
 <property name="org.jboss.soa.esb.registry.queryManagerURI"
value="jnp://localhost:1099/InquiryService?org.apache.juddi.registry.rm
i.Inquiry#inquire"/>
 <property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
value="jnp://localhost:1099/PublishService?org.apache.juddi.registry.rm
i.Publish#publish"/>
 <property name="org.jboss.soa.esb.registry.user"
value="jbossesb"/>
 <property name="org.jboss.soa.esb.registry.password"
value="password"/>
 <!-- the following parameter is scout specific to set the type of
communication between scout and the UDDI (embedded, rmi, soap) -->
 <property name="org.jboss.soa.esb.scout.proxy.transportClass"
value="org.apache.ws.scout.transport.RMITransport"/>

The juddi.war is configured to bring up a RMI Service, which is triggered by the
following setting in the web.xml

<!-- uncomment if you want to enable making calls in juddi with rmi
-->
 <servlet>
 <servlet-name>RegisterServicesWithJNDI</servlet-name>
 <servlet-
class>org.apache.juddi.registry.rmi.RegistrationService</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

Make sure to include -for example- the following JNDI settings in your
juddi.properties:

JNDI settings (used by RMITransport)
java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=jnp://localhost:1099
java.naming.factory.url.pkgs=org.jboss.naming

Note: The RMI clients need to have the scout-client.jar in their classpath.

RMI using your own JNDI Registration of the RMI
Service

If you don't want to deploy the juddi.war you can setup one of the ESB components
that runs in the the same JVM as jUDDI to register the RMI service.While the other
applications need to be configured to use RMI.

JBESB-RS-10/31/07 17

Figure 4. RMI using your own JNDI registration
Properties example: For application 1 you need need the Local settings:

<properties name="registry">
<property name="org.jboss.soa.esb.registry.implementationClass"

value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>
<property name="org.jboss.soa.esb.registry.factoryClass"

value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>
 <property name="org.jboss.soa.esb.registry.queryManagerURI"
value="org.apache.juddi.registry.local.InquiryService#inquire"/>
 <property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
value="org.apache.juddi.registry.local.PublishService#publish"/>
 <property name="org.jboss.soa.esb.registry.user"
value="jbossesb"/>
 <property name="org.jboss.soa.esb.registry.password"
value="password"/>
 <!-- the following parameter is scout specific to set the type of
communication between scout and the UDDI (embedded, rmi, soap) -->
 <property name="org.jboss.soa.esb.scout.proxy.transportClass"
value="org.apache.ws.scout.transport.LocalTransport"/>
 </properties>

while for application2 you need the RMI settings:

JBESB-RS-10/31/07 18

JAXR
Scout

jUDDI

Java Application1

Local

JAXR
Scout

Java Application2

RMI

RMI-Service

JNDI-Registration

<properties name="registry">
<property name="org.jboss.soa.esb.registry.implementationClass"

value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>
<property name="org.jboss.soa.esb.registry.factoryClass"

value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>
 <property name="org.jboss.soa.esb.registry.queryManagerURI"
value="jnp://localhost:1099/InquiryService?org.apache.juddi.registry.rm
i.Inquiry#inquire"/>
 <property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
value="jnp://localhost:1099/PublishService?org.apache.juddi.registry.rm
i.Publish#publish"/>
 <property name="org.jboss.soa.esb.registry.user"
value="jbossesb"/>
 <property name="org.jboss.soa.esb.registry.password"
value="password"/>
 <!-- the following parameter is scout specific to set the type of
communication between scout and the UDDI (embedded, rmi, soap) -->
 <property name="org.jboss.soa.esb.scout.proxy.transportClass"
value="org.apache.ws.scout.transport.RMITransport"/>

Where the hostname of the queryManagerURI and lifeCycleManagerURI need to
point to the hostname on which jUDDI is running (which would be where
application1 is running). Obviously application1 needs to have access to a naming
service. To do the registration process you need to do something like:

//Getting the JNDI setting from the config
String factoryInitial = Config.getStringProperty(
Properties env = new Properties();
env.setProperty(RegistryEngine.PROPNAME_JAVA_NAMING_FACTORY_INITIAL,factoryInit
ial);
env.setProperty(RegistryEngine.PROPNAME_JAVA_NAMING_PROVIDER_URL, providerURL);
env.setProperty(RegistryEngine.PROPNAME_JAVA_NAMING_FACTORY_URL_PKGS,
factoryURLPkgs);
log.info("Creating Initial Context using: \n"
 + RegistryEngine.PROPNAME_JAVA_NAMING_FACTORY_INITIAL + "=" + factoryInitial +
"\n"
 + RegistryEngine.PROPNAME_JAVA_NAMING_PROVIDER_URL + "=" + providerURL +
"\n"
 + RegistryEngine.PROPNAME_JAVA_NAMING_FACTORY_URL_PKGS + "=" + factoryURLPkgs
+ "\n");
InitialContext context = new InitialContext(env);
Inquiry inquiry = new InquiryService();
log.info("Setting " + INQUIRY_SERVICE + ", " + inquiry.getClass().getName());
mInquery = inquiry;
context.bind(INQUIRY_SERVICE, inquiry);
Publish publish = new PublishService();
log.info("Setting " + PUBLISH_SERVICE + ", " + publish.getClass().getName());
mPublish = publish;
context.bind(PUBLISH_SERVICE, publish);

2.4 SOAP
Finally, you can make the communication between Scout and jUDDI SOAP based.
Again you need to deploy the juddi.war and configure the datasource. You probably
want to shutdown the RMI service by commenting out the
RegisterServicesWithJNDI servlet in the web.xml.

JBESB-RS-10/31/07 19

Figure 5. SOAP.
Properties example:

<properties name="registry">
<property name="org.jboss.soa.esb.registry.implementationClass"

value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>
<property name="org.jboss.soa.esb.registry.factoryClass"

value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>
 <property name="org.jboss.soa.esb.registry.queryManagerURI"
value="http://localhost:8080/juddi/inquiry"/>

JBESB-RS-10/31/07 20

JAXR
Scout

juddi.war

Java Application1
JAXR
Scout

Java Application2Not Java Application3

SOAPSOAPSOAP

 <property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
value="http://localhost:8080/juddi/publish"/>
 <property name="org.jboss.soa.esb.registry.user"
value="jbossesb"/>
 <property name="org.jboss.soa.esb.registry.password"
value="password"/>
 <!-- the following parameter is scout specific to set the type of
communication between scout and the UDDI (embedded, rmi, soap) -->
 <property name="org.jboss.soa.esb.scout.proxy.transportClass"
value="org.apache.ws.scout.transport.AxisTransport"/>

SAAJ
JBoss 4.0.x comes with scout and juddi. If you run in clustered mode ('all'). It brings
up the jUDDI registry to which you can communicate using SAAJ. This is an
untested feature.

JBESB-RS-10/31/07 21

Chapter 3

Troubleshooting
Scout and jUDDI pitfalls

● Make sure to put our version of the jaxr-api-1.0.jar, scout-0.7rc2-
embedded.jar and the juddi-embedded.jar first. Other versions of these
libraries are present in the JbossAS libraries and they are, for the time being,
incompatible. This should get resolved in future release of the Application
Server.

● If you use RMI you need the juddi-client.jar.

● Make sure the jbossesb-properties.xml file is on the classpath and read or
else the registry will try to instantiat e classes with the name of 'null' .

● Make sure you have a juddi.properties file on your classpath for jUDDI to
configure itself.

● Make sure to read the README in the product/install/jUDDI-registry
directory, to prepopulate your own juddi database.

● In the event that a service fails or does not shut down cleanly, it is possible
that stale entries may persist within a registry. You will have to remove these
manually.

More Information
● For more information see the wiki http://labs.jboss.com/wiki/JudyEvaluation

● JBossESB user forum:
http://www.jboss.com/index.html?module=bb&op=viewforum&f=246

● When you deploy the juddi.war that ship with our esb, you enable access
through soap, which means that you can use any uddi brower. You can use
http://uddibrowser.org

JBESB-RS-10/31/07 22

http://labs.jboss.com/wiki/JudyEvaluation
http://uddibrowser.org/
http://uddibrowser.org/
http://uddibrowser.org/
http://www.jboss.com/index.html?module=bb&op=viewforum&f=246
http://www.jboss.com/index.html?module=bb&op=viewforum&f=246
http://www.jboss.com/index.html?module=bb&op=viewforum&f=246
http://labs.jboss.com/wiki/JudyEvaluation
http://labs.jboss.com/wiki/JudyEvaluation

	Why do I need it ?
	How do I use it ?
	Registry Vs Repository
	SOA components
	UDDI
	The Registry and JBossESB
	The components involved
	The Registry Implementation Class
	Using JAXR
	Using Scout and jUDDI
	Chapter 2
	Embedded
	RMI using the juddi.war or jbossesb.sar
	RMI using your own JNDI Registration of the RMI Service
	2.4 SOAP
	SAAJ

	Chapter 3

