
JBoss ESB 4.2 GA
Content Based Routing

JBESB-CBR-8/29/07

JBESB-CBR-8/29/07

Legal Notices

The information contained in this documentation is subject to change without notice.

JBoss Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. JBoss Inc. shall not be liable
for errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Java™ and J2EE is a U.S. trademark of Sun Microsystems, Inc. Microsoft® and Windows NT® are
registered trademarks of Microsoft Corporation. Oracle® is a registered U.S. trademark and Oracle9™,
Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here
as a generic term covering all versions of the UNIX® operating system. UNIX is a registered trademark
in the United States and other countries, licensed exclusively through X/Open Company Limited.

Copyright

JBoss, Home of Professional Open Source Copyright 2006, JBoss Inc., and individual contributors as
indicated by the @authors tag. All rights reserved.

See the copyright.txt in the distribution for a full listing of individual contributors. This copyrighted
material is made available to anyone wishing to use, modify, copy, or redistribute it subject to the terms
and conditions of the GNU General Public License, v. 2.0. This program is distributed in the hope that it
will be useful, but WITHOUT AWARRANTY;without even the implied warranty of
MERCHANTABILITYor FITNESS FOR A PARTICULARPURPOSE.

See the GNU General Public License for more details. You should have received a copy of the GNU
General Public License, v. 2.0 along with this distribution; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Software Version

JBoss ESB 4.2 GA

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause 52.227-FAR14.

© Copyright 2007 JBoss Inc.

Contents
Table of Contents

Contents... ..iv

About This Guide..............................5

What This Guide Contains..........5
Audience.................................5
Prerequisites......................................5
Organization...5
Documentation Conventions.........5
Additional Documentation...........6

Contacting Us..6

Content Based Routing....................................8

Introduction...8
JBossRules based Router............................... .8
Create a Content-Based Router......................8
Create a ruleSet...........................9
Use the XPath Custom Rule Language.........11
Use the Content Based Router..............11
Splitter..12
Aggregator ... 12

About This Guide
What This Guide Contains

The Content Based Routing contains contain important information on changes to
JBoss ESB 4.2 GA since the last release and information on any outstanding issues.

Audience

This guide is most relevant to engineers who are responsible for administering JBoss
ESB 4.2 GA installations.

Prerequisites

None.
Organization

This guide contains the following chapters:

• Chapter 1, What is Content-Based Routing: An overview of why you
would want to use CBR.

• Chapter 2, Content-Based Routing: this chapter contains information on
how to use the content based routing capabilities in JBossESB.

Documentation Conventions

The following conventions are used in this guide:

JBESB-RS-8/29/07 5

Table 1 Formatting Conventions

Additional Documentation

In addition to this guide, the following guides are available in the JBoss ESB 4.2 GA
documentation set:

1. JBoss ESB 4.2 GA Trailblazer Guide: Provides guidance for using the
trailblazer example.

2. JBoss ESB 4.2 GA Getting Started Guide: Provides a quick start reference
to configuring and using the ESB.

3. JBoss ESB 4.2 GA Programmers Guide: How to use JBossESB.

4. JBoss ESB 4.2 GA Release Notes: Information on the differences between
this release and previous releases.

5. JBoss ESB 4.2 GA Administration Guide: How to manage the ESB.

Contacting Us

Questions or comments about JBoss ESB 4.2 GA should be directed to our support
team.

JBESB-RS-8/29/07 6

Convention Description
Italic In paragraph text, italic identifies the titles of documents that are

being referenced. When used in conjunction with the Code text
described below, italics identify a variable that should be replaced by
the user with an actual value.

Bold Emphasizes items of particular importance.
Code Text that represents programming code.
Function | Function A path to a function or dialog box within an interface. For example,

“Select File | Open.” indicates that you should select the Open
function from the File menu.

() and | Parentheses enclose optional items in command syntax. The vertical
bar separates syntax items in a list of choices. For example, any of
the following three items can be entered in this syntax:

persistPolicy (Never | OnTimer | OnUpdate |
NoMoreOftenThan)

Note:

Caution:

A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to
avoid damage to equipment, damage to software, loss of data, or
invalid test results.

JBESB-RS-8/29/07 7

Chapter 1

What is Content-Based
Routing?

Introduction
Typically information with the ESB is conveniently packaged, transferred, and
stored in the form of a message. Messages are addressed to Endpoint References
(services or clients), that identify the machine/process/object that will ultimately
deal with the content of the message. However, what happens if the specified address
is no longer valid? For example, the service has failed or been removed from
service? It is also possible that the service no longer deals with messages of that
particular type; in which case, presumably some other service still handles the
original function, but how should the message be handled? What if other services
besides the intended recipient are interested in the message's content? What if no
destination is specified?

One possible solution to these problems is content-based routing. Content-based
routing seeks to route messages, not by a specified destination, but by the actual
content of the message itself. In a typical application, a message is routed by opening
it up and applying a set of rules to its content to determine the parties interested in its
content.

The ESB can determine the destination of a given message based on the content of
that message, freeing the sending application from having to know anything about
where a message is going to end up.

Content-based routing and filtering networks are extremely flexible and very
powerful. When built upon established technologies such as MOM (Message
Oriented Middleware), JMS (Java Message Services), and XML (Extensible Markup
Language) they are also reasonably easy to implement.

Simple example
Content-based routing systems are typically built around two types of entities:
routers (of which there may be only one) and services (of which there is usually
more than one). Services are the ultimate consumers of messages. How services
publish their interest in specific types of messages with the routers is implementation
dependent, but some mapping must exist between message type (or some aspect of
the message content) and services in order for the router to direct the flow of
incoming messages.

Routers, as their name suggests, route messages. They examine the content of the
messages they receive, apply rules to that content, and forward the messages as the
rules dictate.

In addition to routers and services, some systems may also include harvesters, which
specialize in finding interesting information, packaging it up as a formatted message

JBESB-RS-8/29/07 8

before sending it to a router. Harvesters mine many sources of information including
mail transfer agent message stores, news servers, databases and other legacy
systems.

The diagram below illustrates a typical CBR architecture using an ESB. At the heart
of the system, represented by the cloud, is the ESB. Messages are sent from the
client into the ESB, which directs them to the Router. This is then responsible for
sending the messages to their ultimate destination (or destinations, as shown in this
example).

JBESB-RS-8/29/07 9

Chapter 2

Content Based Routing
Introduction

The Content Based Router (CBR) in the JBossESB can be used to route message to
the next destination based on the content of the message. By default the ESB will use
JBossRules as it's evaluation engine, however this is left configurable. In the
jbossesb-properties.xml there is property called
'org.jboss.soa.esb.routing.cbrClass' in the 'messagerouting' section:

<properties name="messagerouting">
<property name="org.jboss.soa.esb.routing.cbrClass"

value="org.jboss.internal.soa.esb.services.routing.cbr.JBossRulesRo
uter"/>
</properties>

which can be used to plug in another evaluation engine.

JBossRules based Router
By default the Content Based router uses JBossRules. Read on to find how to bring
up CBR, how to give it a specific rule set, and how to send a message to the CBR.

Create a Content-Based Router
To bring up a Content-based router you need to bring up the CBR-service. Currently
this is done by bringing up ContentBasedRouting Service. To do this you need to add
an xml-chapter to your deployment-config.xml that looks like the following example
which uses JMS as transport protocol:

<?xml version = "1.0" encoding = "UTF-8"?>
<jbossesb
xmlns="http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/etc/schemas/xml/jbossesb
-1.0.xsd"
parameterReloadSecs="10">

<providers>
<jms-provider name="localhost"

connection-factory="ConnectionFactory"
jndi-context-factory="org.jnp.interfaces.NamingContextFactory"
jndi-URL="localhost" >

<jms-bus busid="QueueA">
<jms-message-filter

dest-type="QUEUE"
dest-name="queue/A"
selector="service='CBRouting-SerializableOrXml'"

/>
</jms-bus>

</jms-provider>
</providers>
<services>
<service

category="MessageRouting"
name="ContentBasedRoutingService"

JBESB-RS-8/29/07 10

description="CBR Listener">
<listeners>

<jms-listener name="XPathContentBasedRouter"
busidref="QueueA"
maxThreads="1">

</jms-listener>
</listeners>
<actions>

<action class="org.jboss.soa.esb.actions.ContentBasedRouter"
name="ContentBasedRouter">

<property name="ruleSet" value="JBossESBRules.drl"/>
<property name="ruleReload" value="true"/>
<property name="destinations">

<route-to destination-name="xml-destination-nodelivery" service-
category="category01" service-

name="jbossesbtest1" />
<route-to destination-name="serialized-destination-nodelivery"

service- category="category02" service-
name="jbossesbtest2" />

</property>
<property name="object-paths">

<object-path path="body.test1" />
<object-path path="body.test2" />

</property>
</action>
</actions>

</service>
</services>

</jbossesb>

Define a service and add a ContentBasedRouter

Cbr specific properties to the (jms-)listener:

1. ruleSet: The set of rules that should be used to evaluate the content.
Only 1 ruleSet can be given for each CBR. Just define more router if
you need composite CBR routing.

2. ruleLanguage: In JBossRules you can define a custom (business)
language. This (optional) field can be used to pass in that custom
language to go with the defined ruleSet.

3. RuleReload: the rules will reload 'hot' if refreshed

4. A set of destinations. The destination-name is what will be used in the
ruleSet. The service-category and service-name are then used to deliver
the message.

Note that you also have to define the following dependency in your
deployment.xml file:

<jbossesb-deployment>
<depends>jboss.esb:deployment=jbrules.esb</depends>

</jbossesb-deployment>

Create a ruleSet
A rule set can be created using the JBossIDE which includes a plug-in for
JbossRules. Figure 1 shows a screen shot the plug-in.

JBESB-RS-8/29/07 11

Figure 1. JBoss Rules IDE. Create a new ruleSet.

To add a new rule simple click on “New Rule resource”. Make sure your rules
import at least

import org.jboss.soa.esb.message.Message;

The message will be asserted into the working memory of the rules engine. You can
the values of parameters on the message in your evaluation. This is demonstrated in
the JBossESBRules.drl ruleSet where the rule checks if the type is XML or
Serializable. Note that JbossRules treats objects as shallow objects to achieve highly
optimized performance, so what if you want to evaluate an object deeper in the
object tree? Either you make serialize your message to XML, and you can use
XPATH,or you can sepcify 'object-paths', which extracts objects from the message,
using an ESB Message Object Path. The path should follow the syntax:

location.objectname.[beanname].[beanname]...

location : one of {body, header, properties, attachment}

JBESB-RS-8/29/07 12

objectname: name of the object name, attachments can be named or numbered, so for
attachments this can be a number too.

beannames: optionally you traverse a bean graph by specifying bean names;
examples :

properties. Order, gets the property object named "Order"

attachment.1, gets the first attachment Object

attachment.FirstAttachment, gets the attachment named 'FirstAttachment'

attachment.1.Order, calls getOrder() on the attached Object.

body.BODY_CONTENT,gets the byte[] of the body.

body.Order1.lineitem, obtains the object named "Order1" from the body of the
message. Next it will call getLineitem() on this object. More elements can be added
to the query to traverse the bean graph.

Make sure to import the objects into your rule. The Object Mapper cannot traverse
collections, so if you need to do that you have to a (Smooks-) transformation on the
message first, to unroll the collection.

Secondly you have to make sure to define:

global java.util.List destinationServices;

The destinationServices List is returned and should contain one or more destination
services. The format of the destination service should be:

<service-category>:<service-name>

If you save your rule into the product/core/services/rules package it will be jarred up
into the jbossesb-rules.jar. However as long as you your rules on the classpath
somewhere JBossRules should find it.

Use the XPath Custom Rule Language
For XML-based messages it is convenient to do XPath based evaluation. For this we
ship a custom rule language defined in the XpathLanuage.dsl. To use it you need to
reference it in your ruleSet with:

expander XPathLanguage.dsl

and you need to pass it in the name of this file in the attributes like:

ruleSet="JBossESBRules-XPath.drl"
ruleLanguage=”XPathLanguage.drl”/>

Currently the XPath Language makes sure the message is of the type JBOSS_XML
and it defines

1. xpathMatch “<element>”: yields true if is an element by this name is
matched.

JBESB-RS-8/29/07 13

2. xpathEquals “<element>”, “<value>”): yields true if the element is
found and it's value equals the value.

You can define your own Custom Rule Language.

Splitter
To make a message go to more then 1 destination (split) simply set up your rules to
match more then one destinations. You can also use the Static Router with multiple
destinations to achieve this. In either the StaticRouter action or ContentBasedRouter
action you can set the process=”split”, which will enable the Aggregator Action to
aggregrate the message further down to processing path.

Note: that those destinations could be different message transformers to
customize the outgoing messages.

Aggregator
The Aggregator action can be used to aggregate message that where split back into 1
message. This message will contain as many message attachments as the messages
that where aggregated. The next action in the pipeline should be a transformer action
to use the attachments to build a new aggregated message.

JBESB-RS-8/29/07 14

	Simple example
	JBossRules based Router
	Create a Content-Based Router
	Create a ruleSet
	Use the XPath Custom Rule Language
	Splitter
	Aggregator

