
JBoss ESB 4.8

Administration Guide

JBESB-AG-3/27/10

JBESB-AG-3/27/10

Legal Notices

The information contained in this documentation is subject to change without notice.

JBoss Inc. makes no warranty of any kind with regard to this material, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. JBoss Inc. shall not be liable
for errors contained herein or for incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Java™ and J2EE is a U.S. trademark of Sun Microsystems, Inc. Microsoft® and Windows NT® are
registered trademarks of Microsoft Corporation. Oracle® is a registered U.S. trademark and Oracle9™,
Oracle9 Server™ Oracle9 Enterprise Edition™ are trademarks of Oracle Corporation. Unix is used here
as a generic term covering all versions of the UNIX® operating system. UNIX is a registered trademark
in the United States and other countries, licensed exclusively through X/Open Company Limited.

Copyright

JBoss, Home of Professional Open Source Copyright 2006, JBoss Inc., and individual contributors as
indicated by the @authors tag. All rights reserved.

See the copyright.txt in the distribution for a full listing of individual contributors. This copyrighted
material is made available to anyone wishing to use, modify, copy, or redistribute it subject to the terms
and conditions of the GNU General Public License, v. 2.0. This program is distributed in the hope that it
will be useful, but WITHOUT A WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details. You should have received a copy of the GNU
General Public License, v. 2.0 along with this distribution; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Software Version

JBoss ESB 4.8

Restricted Rights Legend

Use, duplication, or disclosure is subject to restrictions as set forth in contract subdivision (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause 52.227-FAR14.

© Copyright 2010 JBoss Inc.

Contents
Table of Contents

Contents.. iii

About This Guide.. 5

What This Guide Contains.............................. 5
Audience... 5
Prerequisites.. 5
Organization.. 5
Documentation Conventions........................... 6
Additional Documentation.............................. 7
Contacting Us.. 7

Configuration.. 9

Standalone server.. 9
JBossESB JMS Providers...............................9
How can I configure them?............................. 9
Max Sessions Per Connection....................... 10
JBossMQ or JBossMessaging....................... 10
JBoss Messaging Clustering configuration. .11
ActiveMQ.. 11
Websphere MQ Series..................................11
Oracle AQ... 12
Tibco EMS.. 13
Extension properties...................................... 13
FTP Configuration..13
Database Configuration................................13
Switching databases...................................... 15
Using a JSR-170 Message Store...................17
Message Tracing... 17
Clustering and Fail-over support.................. 18

Registry.. 20

Configuring Web Service Integration..............21

Default ReplyTo EPR... 22

ServiceBinding Manager.................................... 23

Monitoring and Management............................ 24

Monitoring and Management 24
 25
Services... 26
MessageCounter.. 26

Transformations... 27
DeadLetterService... 27
Alerts... 28

Hot Deployment.. 29

Server mode..29
1. sar files.. 29
2. esb files.. 29
3. rule files... 29
4. transformation files................................... 29
5. Business Process Definitions....................29
Standalone (bootstrap) mode........................30

Contract Publishing.. 31

Overview... 31
“Contract” Application.................................31
Publishing a Contract from an Action..........32

jBPM.. 33

jBPM Console... 33
jBPM Message and Scheduler service..........33

Performance Tuning... 34

Wiki... 34

Index... 34

About This Guide
What This Guide Contains

The Administration Guide contains important information on how to configure and
manage installations of JBoss ESB 4.8.

Audience
This guide is most relevant to system administrators who are responsible for
managing and deploying JBoss ESB 4.8 installations.

Prerequisites
None.

Organization
This guide contains the following chapters:

• Chapter 1, Configuration: How to configure JBossESB and the services it
supports.

• Chapter 2, Registry: How to configure the Registry.

• Chapter 3, Configuring the Web Services Integration: How to configure
Web Services within JBossESB.

• Chapter 4, Default ReplyTo EPR: A description of how default ReplyTo
EPRs are selected.

• Chapter 5, ServiceBinding Manager: How to deploy multiple JBossESB
instances on the same machine.

• Chapter 6, Monitoring and Management: An overview of the monitoring
and management capabilities within JBossESB.

• Chapter 7, Hot Deployment: Describes the hot deployment capabilities.

• Chapter 8, Contract Publishing: An overview of the contract publishing
capabilities.

JBESB-AG-3/27/10 5

Documentation Conventions
The following conventions are used in this guide:

JBESB-AG-3/27/10 6

Table 1 Formatting Conventions

Additional Documentation
In addition to this guide, the following documents are available in the JBoss ESB 4.8
documentation set:

1. JBoss ESB 4.8 Trailblazer Guide: Provides guidance for using the
trailblazer example.

2. JBoss ESB 4.8 Getting Started Guide: Provides a quick start reference
to configuring and using the ESB.

3. JBoss ESB 4.8 Programmers Guide: How to use JBossESB.

4. JBoss ESB 4.8 Release Notes: Information on the differences between
this release and previous releases.

5. JBoss ESB 4.8 Services Guides: Various documents related to the
services available with the ESB.

Contacting Us
Questions or comments about JBoss ESB 4.8 should be directed to our support team.

JBESB-AG-3/27/10 7

Convention Description

Italic In paragraph text, italic identifies the titles of documents that are
being referenced. When used in conjunction with the Code text
described below, italics identify a variable that should be replaced by
the user with an actual value.

Bold Emphasizes items of particular importance.
Code Text that represents programming code.
Function | Function A path to a function or dialog box within an interface. For example,

“Select File | Open.” indicates that you should select the Open
function from the File menu.

() and | Parentheses enclose optional items in command syntax. The
vertical bar separates syntax items in a list of choices. For example,
any of the following three items can be entered in this syntax:

persistPolicy (Never | OnTimer | OnUpdate |
NoMoreOftenThan)

Note:

Caution:

A note highlights important supplemental information.

A caution highlights procedures or information that is necessary to
avoid damage to equipment, damage to software, loss of data, or
invalid test results.

JBESB-AG-3/27/10 8

Chapter 1

Configuration
Standalone server

If you wish to run the JBossESB server on the same machine as JBossAS, then you
should look at the Configuring Multiple JBoss Instances On One Machine Wiki
page.

JBossESB JMS Providers
The JBossESB supports a number of JMS providers. Currently we have successfully
tested JBoss Messaging, JBossMQ, ActiveMQ and Websphere MQ Series (version
5.3 and 6.0). We recommend JBoss Messaging. At this time we know of no reasons
why other JMS implementations should not also work, but have not been able to
verify this.

Note: This section is not intended as a replacement for the configuration
documentation that comes with the supported JMS implementations. For
advanced capabilities, such as clustering and management, you should
consult that documentation as well.

How can I configure them?

JMSListeners and JMSGateways can be configured to listen to a Queue or Topic.
For this you can use set the following parameters in the service configuration file:
jndi-URL, jndi-context-factory, jndi-pkg-prefix, connection-
factory, destination-type and destination-name. Furthermore you
will need to add the client jms jars of the JMS-provider you want to use to the
classpath.

In the following sections we will assume that your JMS provider runs on 'localhost',
that the connection-factory is 'ConnectionFactory', that we are listenening to a
destination-type 'queue' and that it's name is 'queue/A'.

Note: Each JMSListener and JMSGateway can be configured to use it's
own JMS provider, so you can use more then one provider in your
deployment.

When using JMS, JBossESB utilizes a connection pool to improve performance. By
default the size of this pool is set to 20, but can be over-ridden by setting the
org.jboss.soa.esb.jms.connectionPool property in the transports section of
the JBossESB configuration file. Likewise, if a session cannot be obtained initially,
JBossESB will keep retrying for up to 30 seconds before giving up. This time can be
configured using the org.jboss.soa.esb.jms.sessionSleep property.

JBESB-AG-3/27/10 9

http://wiki.jboss.org/wiki/ConfiguringMultipleJBossInstancesOnOneMachine

Max Sessions Per Connection

The JBoss ESB's JmsConnectionPool pools JMS Sessions and is used by all JMS
based components – JMS Listeners, JMS Couriers, JMS Router etc.

Some JMS providers limit the number of JMS Sessions per connection. This means
that the JMS Components in JBoss ESB need to support a control mechanism for the
maximum number of sessions created from each JMS Connection managed by a
single JmsConnectionPool instance. This is done simply be specifying one or both
of the following properties in the JNDI configuration of the JMS Component (JMS
Provider/Bus, JMSRouter etc):

•max-sessions-per-connection: This is the maximum total number of Sessions
allowed per connection i.e. XA + non-XA Session instances. This value defaults to
the maximum number of JMS Sessions allowed for a JmsConnectionPool as a whole,
which defaults to 20 (as configured in the jbossesb-properties.xml file).

•max-xa-sessions-per-connection: This is the maximum number of XA Sessions
allowed per connection i.e. XA only. This value defaults to the value of max-
sessions-per-connection.

So if neither of the above parameters are configured, the JmsConnectionPool will
create a single JMS Connection and create all JMS Sessions off that Connection
instance.

These configurations should be made as generic property configurations on the JMS
Provider configuration e.g.
<jms-provider ...>

 <property name="max-sessions-per-connection" value="5" />
 <property name="max-xa-sessions-per-connection" value="1" />

 <!-- And add providers.... -->

</jms-provider>

JBossMQ or JBossMessaging

The settings for JBossMQ and JBossMessaging are identical and you should set the
parameters to:
jndi-URL="localhost”
jndi-context-factory="org.jnp.interfaces.NamingContextFactory"
connection-factory="ConnectionFactory"
destination-type="queue"
destination-name="queue/A"

For JBossMQ you should have

jbossmq-client.jar,

In your classpath. Not that this jar is included in jbossall-client.jar, which can be
found in lib/ext. For JBossMessaging it should be

jboss-messaging-client.jar

While -for now- the JBossMQ is the default JMS provider in JBossAS, you can also
use JBoss Messaging. Instructions for installing JBoss Messaging can be found on
the project website.

JBESB-AG-3/27/10 10

http://www.jboss.org/jbossmessaging/docs/userguide-1.4.0.GA/html/installation.html

JBoss Messaging Clustering configuration

Configuring JBoss Messaging in a clustered setup gives you loadbalancing and
failover for JMS. Since this capability has changed between different versions of
JBoss Messaging and may continue to do so, you should consult the relevant JBoss
Messaging documentation.

ActiveMQ

For ActiveMQ you should set the parameters to:
jndi-URL="tcp://localhost:61616”
jndi-context-
factory="org.apache.activemq.jndi.ActiveMQInitialContextFactory"
connection-factory="ConnectionFactory"
destination-type="queue"
destination-name="queue/A"

In your classpath you should have

activemq-core-4.x

backport-util-concurrent-2.1.jar

Both jars can be found in lib/ext/jms/activemq. We tested with version 4.1.0-
incubator.

Websphere MQ Series

For Websphere MQ Series, you should set the main JNDI parameters to:

jndi-URL="localhost:1414/SYSTEM.DEF.SVRCONN”
jndi-context-
factory="com.ibm.mq.jms.context.WMQInitialContextFactory"
connection-factory="ConnectionFactory"
destination-type="queue"
destination-name="QUEUEA"

Note: Websphere likes all CAPS queue names and no slashes (QUEUEA),
and the name of the Queue Manager in MQ should match what the value
of 'connection-factory' is (or bind this name to JNDI). In our case we
created a Queue Manager named “ConnectionFactory”.

You will also need to configure the max-xa-sessions-per-connection property to a
value of “1” if using XA Connections. For more on how to configure this property,
see the Max Sessions Per Connection section.

On your classpath you should have

com.ibm.mq.pcf.jar

mqcontext.jar

and the client jars:

com.ibm.mq.jar

com.ibm.mqjms.jar

Please note that the client jars differ between MQ 5.3 and MQ 6.0. However the 6.0
jars should be backward compatible. The jars are not open source, and are therefor
not provided by us. You will have to obtain them from your WAS and MQ installs.

JBESB-AG-3/27/10 11

http://www.jboss.org/file-access/default/members/jbossmessaging/freezone/docs/userguide-1.4.0.SP1/html_single/index.html#conf.connectionfactory.attributes.loadbalancingfactory
http://www.jboss.org/file-access/default/members/jbossmessaging/freezone/docs/userguide-1.4.0.SP1/html_single/index.html#conf.connectionfactory.attributes.loadbalancingfactory

Also note that you may get the following exception when running MQ 6.0, which
can be fixed by adding the user that runs the jbossesb to the mqm group:

Note that for MQ 6.0:

Message: Unable to get a MQ series Queue Manager or Queue Connection. Reason:
failed to create connection --javax.jms. JMSSecurityException: MQJMS2013:
invalid security authentication supplied for MQQueueManager

Explanation: There is a problem with user permissions or access.

Tip: Make sure the user accessing MQ Queue Manager is part of the mqm group.

Oracle AQ

For Oracle AQ you should set the parameters to:

connection-factory=”QueueConnectionFactory”

and use the following properties:
<property name="java.naming.factory.initial"
value="org.jboss.soa.esb.oracle.aq.AQInitialContextFactory"/>
<property name="java.naming.oracle.aq.user" value="<user>"/>
<property name="java.naming.oracle.aq.password" value="<pw>"/>
<property name="java.naming.oracle.aq.server" value="<server>"/>
<property name="java.naming.oracle.aq.instance" value="<instance>"/>
<property name="java.naming.oracle.aq.schema" value="<schema>"/>
<property name="java.naming.oracle.aq.port" value="1521"/>
<property name="java.naming.oracle.aq.driver" value="thin"/>

or optionally specify a database connection url:
<property name="java.naming.factory.initial"
value="org.jboss.soa.esb.oracle.aq.AQInitialContextFactory"/>
<property name="java.naming.oracle.aq.user" value="<user>"/>
<property name="java.naming.oracle.aq.password" value="<pw>"/>
<property name="java.naming.oracle.aq.url"
value="jdbc:oracle:thin:@(description=(address_list=(load_balance=on
)(failover=on)(address=(protocol=tcp)(host=host1)(port=1621))
(address=(protocol=tcp)(host=host2)(port=1621)))
(connect_data=(service_name=SID)(failover_mode=(type=select)
(method=basic)))) "/>

The above example can be used to connect to Oracle Real Application Cluster
(RAC).

You may notice the reference to the InitialContext factory. You only need this is if
you want to avoid OracelAQ to register its queues with an LDAP. The
AqinitialContextFactory references code in a plugin jar that you can find in the
plugins/org.jboss.soa.esb.oracle.aq directory. The jar is called
org.jboss.soa.esb.oracle.aq-4.2.jar and you will have to deploy it to the
jbossesb.sar/lib directory.

Note that when creating a Queue in Oracle AQ make sure to select a payload type of
SYS AQ$_JMS_MESSAGE.

For a sample you can check the samples/quickstarts/helloworld_action/oracle-aq
directory for an example jboss-esb.xml configuration file.

JBESB-AG-3/27/10 12

Tibco EMS

For Tibco EMS you should set the parameters to:
jndi-URL="tcp://localhost:7222”
jndi-context-
factory=”com.tibco.tibjms.naming.TibjmsInitialContextFactory"
connection-factory="QueueConnectionFactory"
destination-type="queue"
destination-name="<queue-name>"

In your classpath you should have the client jars that ship with Tibco EMS, which
are found in the tibco/ems/clients/java dir.

jaxp.jar, jndi.jar, tibcrypt.jar, tibjmsapps.jar, tibrvjms.jar,

jms.jar, jta-spec1_0_1.jar, tibjmsadmin.jar, tibjms.jar

We tested with version 4.4.1.

Extension properties

The JNDI configuration used to retrieve the JMS resources will, by default, inherit
all properties with names prefixed by “java.naming.”. Some JMS providers may,
however, specify properties that use a different naming prefix.

In order to support these properties we provide a mechanism through which the
property prefixes can be specified for each provider, allowing properties using these
additional prefixes to be inherited.

The prefixes are configured by defining the “jndi-prefixes” property on the
associated jms-provider element, containing a comma separated list of the additional
prefixes. The extension properties are also configured in the same location.
<jms-provider name=”JMS” connection-factory=”ConnectionFactory”>
 <property name=”jndi-prefixes” value=”test.prefix.”/>
 <property name=”test.prefix.extension1” value=”extension1”/>
 ...
</jms-provider>

FTP Configuration
Most configuration options are set on the FTP EPR and described in the
Programmers Guide. However, the following are set at the global scope in the
jbossesb-properties file:

• org.jboss.soa.esb.ftp.renameretry: when transmitting files via FTP,
JBossESB sends them over with one file name which prevents them being
processed, before renaming them in order that they can be processed.
Unfortunately some FTP servers retain locks on the file during the time it is
written and then renamed, preventing the rename from happening. If this
happens, JBossESB will attempt to rename the file the defined number of
times (default 10), sleeping in between each attempt, before finally
generating an error message if the file cannot be renamed.

Database Configuration
The ESB uses a database for persisting Registry services, and the Message-Store.

Database scripts for each of these can be found under:

JBESB-AG-3/27/10 13

Message-Store: ESB_ROOT/services/jbossesb/src/main/resources/message-store-sql

Service Registry: The service registry is now jUDDI v 3.0.1, which does not use
SQL scripts but uses the persistence layer to initialize the database schema.

A few database types and their scripts are provided, and you should be able to easily
create one for your particular database (if you do, please contribute it back to us).

For the Message-Store you will need to also update the data-source setting properties
in the main ESB config file jbossesb-properties.xml. The following are settings you
will need to change, based on the connection information appropriate to your
environment – these settings are found in the DBSTORE section of the file.

As long as there is script for your database the ESB will auto-create the schema's on
startup. By default JBossESB is configured to use a JEE DataSource.

<properties name="dbstore">
 <property name="org.jboss.soa.esb.persistence.db.conn.manager"
value="org.jboss.soa.esb.persistence.manager.J2eeConnectionManager"/
>

 <!-- this property is only used if using the j2ee connection
manager -->
 <property
name="org.jboss.soa.esb.persistence.db.datasource.name"
value="java:/JBossESBDS"/>

</properties>

When running from the standalone bootstrapper use:

<properties name="dbstore">

 <!-- connection manager type -->
<property name="org.jboss.soa.esb.persistence.db.conn.manager"

value="org.jboss.soa.esb.persistence.manager.StandaloneConnectionMan
ager"/>

<property name="org.jboss.soa.esb.persistence.db.conn.manager"

<property name="org.jboss.soa.esb.persistence.db.connection.url"
value="jdbc:hsqldb:hsql://localhost:9001/jbossesb"/>

<property name="org.jboss.soa.esb.persistence.db.jdbc.driver"
value="org.hsqldb.jdbcDriver"/>

<property name="org.jboss.soa.esb.persistence.db.user"
value="sa"/>

<property name="org.jboss.soa.esb.persistence.db.pwd"
value=""/>

<property
name="org.jboss.soa.esb.persistence.db.pool.initial.size"
value="2"/>

<property name="org.jboss.soa.esb.persistence.db.pool.min.size"
value="2"/>

<property name="org.jboss.soa.esb.persistence.db.pool.max.size"
value="5"/>

JBESB-AG-3/27/10 14

<property name="org.jboss.soa.esb.persistence.db.pool.test.table"
value="pooltest"/>

<property
name="org.jboss.soa.esb.persistence.db.pool.timeout.millis"
value="5000"/>

</properties>

Property Setting

org.jboss.soa.esb.persistence.db.co
nn.manager

the db connection manager.

org.jboss.soa.esb.persistence.db.da
tasource.name

The datasource name (used for JNDI
lookup)

org.jboss.soa.esb.persistence.db.co
nnection.url

this is the db connection url for
your database.

org.jboss.soa.esb.persistence.db.jd
bc.driver

JDBC Driver

org.jboss.soa.esb.persistence.db.us
er

db user

org.jboss.soa.esb.persistence.db.pw
d

db password

org.jboss.soa.esb.persistence.db.po
ol.initial.size

initial size of db connection pool

org.jboss.soa.esb.persistence.db.po
ol.min.size

minimum size of db connection pool

org.jboss.soa.esb.persistence.db.po
ol.max.size

maximum size of db connection pool

org.jboss.soa.esb.persistence.db.po
ol.test.table

A table name (created dynamically
by pool manager) to test for valid
connections in the pool

org.jboss.soa.esb.persistence.db.po
ol.timeout.millis

timeout period to wait for
connection requests from pool

The Service Registry database information is contained in the esb.juddi.xml file.
You should consult the Service Registry section of this document for more detailed
information on what settings and their values and how they effect the behavior of the
ESB.

JBoss server comes with a pre-installed hypersonic database (HSQLDB). The
database can only be accessed in the same JVM. The data-source definition can be
found in the jbossesb.sar/message-store-ds.xml.

Note: Use of HSQLDB for production is not recommended.

Switching databases
This section describes the steps to move from using the default hypersonic database
to postgres. These steps should be the same for any other database. Just replace
postgres with the database you want to switch to.

JBESB-AG-3/27/10 15

Step by step

1. Remove deploy/hsqldb-ds.xml and add the following in a file
named deploy/postgres-ds.xml:
<?xml version="1.0" encoding="UTF-8"?>
<datasources>
 <local-tx-datasource>
 <jndi-name>DefaultDS</jndi-name>
 <connection-
url>jdbc:postgresql://host:port/database</connection-url>
 <driver-class>org.postgresql.Driver</driver-class>
 <user-name>username</user-name>
 <password>password</password>
 <metadata>
 <type-mapping>PostgreSQL 7.2</type-mapping>
 </metadata>
 <check-valid-connection-sql>select count(*) from
jbm_user</check-valid-connection-sql>
 </local-tx-datasource>
</datasources>

Modify the above to suite your needs, connection parameters and such. Make sure
the name of the DS is the same though(DefaultDS)

2. Replace deploy/jbossesb-registry.sar/juddi-ds.xml with the same
configuration in the previous step (change the database name if
needed).Again make sure the keep the jndi-name(juddiDB).

3. Replace deploy/jbossesb.esb/message-store-ds.xml with the
same configuration in step one (change the database name if
needed).Again make sure the keep the jndi-name(JBossESBDS). n

4. Replace the database name in the 'message-store-sql' element
in deploy/jbossesb.esb/jbossesb-service.xml:
<?xml version="1.0" encoding="UTF-8"?>

<server>
 <mbean
code="org.jboss.internal.soa.esb.dependencies.DatabaseInitializer"
 name="jboss.esb:service=MessageStoreDatabaseInitializer">
 <attribute name="Datasource">java:/JBossESBDS</attribute>
 <attribute name="ExistsSql">select * from message</attribute>
 <attribute name="SqlFiles">
 message-store-sql/postgresql/create_database.sql
 </attribute>
 <depends>jboss.jca:service=DataSourceBinding,name=JBossESBDS</
depends>
 </mbean>
</server>

5. Edit jbossesb-registry.sar/META-INF/persistence.xml. The
hibernate.dialect property must be set to the type of database that
you are using in your datasource
(org.hibernate.dialect.PostgreSQLDialect for example).

6. Replace deploy/jboss-messaging/hsqldb-persistence-service.xml
with the postgres-persistence-service.xml from the version of JBM
that you are running.

JBESB-AG-3/27/10 16

This needs to match the same version and might not work it the versions mismatch.
These files can be found in src/etc/server/default/deploy of a JBM distribution.

7. Copy the database driver to the servers lib directory and fire up
the server.

Using a JSR-170 Message Store
JBossESB allows for multiple message store implementations via a plugin-based
architecture. As an alternative to the default database message store, a JSR-170
(Java content repository) message store may be used. The JCR implementation
included with JBossESB is Apache Jackrabbit. To enable the JCR message store, add
the following property to the "core" section of jbossesb-properties.xml in the root of
the jboss-esb.sar (or the root of deployers/esb.deployer on AS5):

<property name="org.jboss.soa.esb.persistence.base.plugin.jcr"
 value="org.jboss.internal.soa.esb.persistence.format.jcr.JCRMess
ageStorePlugin"/>

This adds the JCR plugin to the list of available message stores. The JCR message
store can use an existing repository via JNDI or can create a standalone instance
locally on the application server. The following list of properties should be added in
the "dbstore" section of jbossesb-properties.xml to configure repository access:

<property name="org.jboss.soa.esb.persistence.jcr.jndi.path"
value="jcr"/>
<property name="org.jboss.soa.esb.persistence.jcr.username"
value="username"/>
<property name="org.jboss.soa.esb.persistence.jcr.password"
value="password"/>
<property name="org.jboss.soa.esb.persistence.jcr.root.node.path"
 value="JBossESB/MessageStore"/>

 jcr.jndi.path - optional path in JNDI where the repository is found. If not
specified, a new repository will be created based on the repository.xml located in
the root of jbossesb.sar. In this case, repository data is stored in the
JBossAS/server/{servername}/data/repository directory.

 jcr.username - username for getting a repository session
 jcr.password - password for gettging a repository session
 jcr.root.node.path - the path relative to the root of the repository where messages

will be stored.
An easy test for whether the JCR message store is configured properly is to add the
org.jboss.soa.esb.actions.persistence.StoreJCRMessage action onto an existing
service. The action will attempt to store the current message to the JCR store.

Message Tracing
It is possible to trace any and all Messages sent through JBossESB. This may be
important for a number of reasons, including audit trail and debugging. In order to
trace Messages you should ensure that they are uniquely identified using the
MessageID field of the Message header: as mentioned in the Programmers Guide,
this is the only way in which Messages can be uniquely identified within the ESB.

JBESB-AG-3/27/10 17

By default, JBossESB components (e.g., gateways, ServiceInvoker and load
balancing) log all interactions with Messages through standard logger messages.
Such log messages will contain the entire header information associated with the
Message which will enable correlation across multiple JBossESB instances. You
can identify these messages by looking for the following in your output:

header: [To: EPR: PortReference < <wsa:Address ftp://foo.bar/> >,
From: null, ReplyTo: EPR: PortReference < <wsa:Address http://bar.foo/>
>, FaultTo: null, Action: urn:dowork, MessageID: urn:foo/bar/1234,
RelatesTo: null]

Furthermore, you can enable a logging MetaData Filter, whose only role is to issue
log messages whenever a Message is either input to an ESB component, or output
from it. This filter,
org.jboss.internal.soa.esb.message.filter.TraceFilter, can be
placed within the Filter section of the JBossESB configuration file, in conjunction
with any other filters: it has no effect on the input or output Message. Whenever a
Message passes through this filter, you will see the following log at info level:

TraceFilter.onOutput (header: [To: EPR: PortReference < <wsa:Address
ftp://foo.bar/> >, From: null, ReplyTo: EPR: PortReference <
<wsa:Address http://bar.foo/> >, FaultTo: null, Action: urn:dowork,
MessageID: urn:foo/bar/1234, RelatesTo: null])

TraceFilter.onInput (header: [To: EPR: PortReference < <wsa:Address
ftp://foo.bar/> >, From: null, ReplyTo: EPR: PortReference <
<wsa:Address http://bar.foo/> >, FaultTo: null, Action: urn:dowork,
MessageID: urn:foo/bar/1234, RelatesTo: null])

TraceFilter will only log if the property org.jboss.soa.esb.messagetrace
is set to on/ON (the default setting is off/OFF). By default, if enabled it will log all
Messages that pass through it. However, for finer grained control you may enable
finer grained control over which Messages are logged and which are ignored. To do
this make sure that the property org.jboss.soa.esb.permessagetrace is set to
on/ON (the default is off/OFF). Once enabled, those Messages with a Property of
org.jboss.soa.esb.message.unloggable set to yes/YES will be ignored by
this filter.

Clustering and Fail-over support
Beginning with JBossESB 4.2, there is now support for fail-over of stateless
services. You should consult the Programmers Guide for further details, but the
pertinent issues to note are:

• Because ServiceInvoker hides much of the fail-over complexity from
users, it necessarily only works with native ESB Messages. Furthermore,
not all gateways have been modified to use the ServiceInvoker, so
incoming ESB-unaware messages to those gateway implementations may
not always be able to take advantage of service fail-over.

• When the ServiceInvoker tries to deliver a message to our Service it may
get a choice of potentially multiple EPRs now. In order to help it determine
which one to select, you can configure a Policy. In the jbossesb-
properties.xml you can set the 'org.jboss.soa.esb.loadbalancer.policy'. Right
now three Policies are provided, or you can create your own.

JBESB-AG-3/27/10 18

1. First Available. If a healthy ServiceBinding is found it will be used
unless it dies, and it will move to the next EPR in the list. This Policy
does not provide any load balancing between the two service instances.

2. Round Robin. Typical Load Balance Policy where each EPR is hit in
order of the list.

3. Random Robin. Like the other Robin but then random.

• The EPR list the Policy works with may get smaller over time as dead
EPRs will be removed from the (cached) list. When the list is exhausted or
the time-to-live of the list cache is exceeded, the ServiceInvoker will obtain
a fresh list of EPRs from the Registry. The
'org.jboss.soa.esb.registry.cache.life' can be set in the jbossesb-properties
file, and is defaulted to 60,000 milliseconds. What if none of the EPRs
work at the moment? This is where we may use Message Redelivery
Service.

• If you would like to run the same service on more than one node in a
cluster you have to wait for service registry cache revalidation before the
service is fully working in the clustered environment. You can setup this
cache revalidation timeout in deploy/jbossesb.sar/jbossesb-properties.xml
(or deploy/esb.deployers/jbossesb-properties.xml in AS5) :

<properties name="core">
 <property name="org.jboss.soa.esb.registry.cache.life"
value="60000"/>
<!-- 60 seconds is the default -->
</properties>

• If you set the org.jboss.soa.esb.failure.detect.removeDeadEPR
property to true, then whenever ServiceInvoker suspects an EPR has failed
it will remove it from the Registry. The default setting is false, because this
should be used with extreme care: for example, if the service represented
by the EPR is simply overloaded and slow to respond then it may be
excluded from future users. Therefore, if you allow ServiceInvoker to
remove EPRs it is possible orphan services (ones that eventually receive no
further interactions) may result and you may have to restart them.

JBESB-AG-3/27/10 19

Chapter 1

Registry
At the heart of all JBossESB deployments is the registry. This is fully described
elsewhere in the Services Guide, where configuration information is also discussed.
However, it is worth noting the following:

• When services run they typically place the EPR through which they can be
contacted within the registry. If they are correctly developed, then services
should remove EPRs from the registry when they terminate. However,
machine crashes, or incorrectly developed services, may leave stale entries
within the registry that prevent the correct execution of subsequent
deployments. In that case these entries may be removed manually.
However, it is obviously important that you ensure the system is in a
quiescent state before doing so.

• If you set the optional remove-old-service tag name in the EPR to true then
the ESB will remove any existing service entry from the Registry prior to
adding this new instance. However, this should be used with care, because
the entire service will be removed, including all EPRs.

JBESB-AG-3/27/10 20

Chapter 1

Configuring Web Service
Integration

JBoss ESB 4.8 exposes Webservice Endpoints for through the SOAPProcessor
action. This action integrates the JBoss Webservices v2.x container into JBossESB,
allowing you to invoke JBossWS Endpoints over any channel supported by
JBossESB. See the Programmers Guide for more details.

The SOAPProcessor action requires JBossWS 2.0.1.SP2 (native) or higher to to be
properly installed on your JBoss Application Server (v4.2.x.GA).

JBESB-AG-3/27/10 21

Chapter 2

Default ReplyTo EPR
JBossESB uses Endpoint References (EPRs) to address messages to/from services.
As described in the Programmers Guide, messages have headers that contain
recipient addresses, sequence numbers (for message correlation) and optional
addresses for replies, faults etc. Because the recommended interaction pattern within
JBossESB is based on one-way message exchange, responses to messages are not
necessarily automatic: it is application dependent as to whether or not a sender
expects a response.

As such, a reply address (EPR) is an optional part of the header routing information
and applications should be setting this value if necessary. However, in the case
where a response is required and the reply EPR (ReplyTo EPR) has not been set,
JBossESB supports default values for each type of transport. Some of these ReplyTo
defaults require system administrators to configure JBossESB correctly.

 For JMS, it is assumed to be a queue with a name based on the one used to
deliver the original request: <request queue name>_reply

 For JDBC, it is assumed to be a table in the same database with a name based
on the one used to deliver the original request: <request table
name>_reply_table. The new table needs the same columns as the request
table.

 For files (both local and remote), no administration changes are required:
responses will be written into the same directory as the request but with a
unique suffix to ensure that only the original sender will pick up the response.

JBESB-AG-3/27/10 22

Chapter 1

ServiceBinding
Manager

If you wish to run multiple ESB servers on the same machine, you may want to use JBoss
ServiceBinding Manager. The binding manager allows you to centralize port configuration for all
of the instances you will be running. The ESB server ships with a sample bindings file in
docs/examples/binding-manager/sample-bindings.xml. Chapter Ten of the JBoss appplication
server documentation contains instructions on how to set up the ServiceBinding manager. Two
notes :

 remoting-service.xml – If you are using jboss-messaging as your JMS provider, please
note that what you specify in your ServiceBinding manager xml for jboss-messaging
configuration must match what is in remoting-service.xml.

JBESB-AG-3/27/10 23

Chapter 1

Monitoring and
Management

There are a number of options for monitoring and managing your ESB server. Shipping with
the ESB are a number of useful JMX MBeans that help administrators monitor the performance
of their server.

Under the jboss.esb domain, you should see the following MBean types :

 deployment=<ESB package name> – Deployments show the state of all of the esb
packages that have been deployed and give information about their XML configuration
and their current state.

 listener-name=<Listener name> – All deployed listeners are displayed, with
information on their XML configuration, the start time, maxThreads, state, etc. The
administrator has the option of initialising/starting/stopping/destroying a listener.

 category=MessageCounter – Message counters break all of the services deployed for a
listener down into their separate actions and give counts of how many messages were
processed, as well as the processing time of each message.

 service=<Service-name> - Displays statistics per-service (message counts, state, average
size of message, processing time, etc). The message counts may be reset and services may
be stopped and started.

Additionally, jms domain MBeans show statistics for message queues, which is useful
information when debugging or determining performance.

Monitoring and Management
JbossESB provides management and monitoring through Embedded JOPR
(http://localhost:8080/admin-console).

The JBossESB monitoring console gathers information on the performance of
different ESB services that are deployed . As of JBoss ESB 4.2.0.GA, the monitoring
console allows users to get message counts by service, action, and node, as well as
other information like processing time, number of failed messages, bytes transferred,
and last successful and failed message date time. As of JBoss ESB 4.6, the
previous ESB monitoring tool has been deprecated.

The monitoring console is installed automatically in the stand-alone ESB server and
JBossAS.

JBESB-AG-3/27/10 24

http://localhost:8080/esb-console

Below is a screenshot of the console. The console requests MBean information from
each node within the ESB registry, and then displays it back.

JBESB-AG-3/27/10 25

Services

Each ESB service is displayed along with the processing time per action, processed
count per action, failed count per action, and overall message count (per service).

See below:

MessageCounter

Seen above, the monitoring console also provides an overall counter which counts all
messages that pass through the ESB. The MessageCounter keeps track of the
successful and failed message counts, as well as time and date.

JBESB-AG-3/27/10 26

Transformations
For each Smooks Transformation that is registered, a Mbean keeps track of the
processed count for each transformation, processing time for each transformation,
and the overall count for the transformation chain. You can see this information in
the jmx-console.

DeadLetterService

As has been mentioned in the Programmers Guide, the DeadLetterService (DLQ) can be used to
store messages that cannot be delivered. This is a JBossESB service and can be monitored and
inspected. Note, however, that the DLQ is not used if the underlying transport has native support,
e.g., JMS. In which case you should inspect the JBossESB DLQ as well as any transport-specific
equivalent.

JBESB-AG-3/27/10 27

Alerts
The JBoss Web Console is a utility within both the JBoss AS and the JBoss ESB Server
that is capable of monitoring and sending alerts based off of JMX MBean properties.
You can use this functionality to receive alerts for ESB-related events – such as the
DeadLetterService counter reaching a certain threshold.

1) Configure ./deploy/mail-service.xml with your SMTP settings.

2) Change ./deploy/monitoring-service.xml – uncomment the EmailAlertListener section and add
appropriate header related information.

3) Create a file ./deploy to serve as your monitor MBean.

File: ./deploy/DeadLetterQueue_Monitor-service.xml

<?xml version="1.0" encoding="UTF-8"?>

<server>

<mbean code="org.jboss.monitor.ThresholdMonitor"

 name="jboss.monitor:service=ESBDLQMonitor">

 <attribute name="MonitorName">ESB DeadLetterQueue Monitor</attribute>

 <attribute
name="ObservedObject">jboss.esb:category=MessageCounter,deployment=jbossesb.esb
,service-name=DeadLetterService</attribute>

 <attribute name="ObservedAttribute">overall service message count</attribute>

 <attribute name="Threshold">4</attribute>

 <attribute name="CompareTo">-1</attribute>

 <attribute name="Period">1000</attribute>

 <attribute name="Enabled">true</attribute>

 <depends-list optional-attribute-name="AlertListeners">

<depends-list-element>jboss.alerts:service=ConsoleAlertListener</depends-list-
element>

<depends-list-element>jboss.alerts:service=EmailAlertListener</depends-list-
element>

 </depends-list>

 <depends>jboss.esb:deployment=jbossesb.esb</depends>

</mbean>

</server>

This MBean will serve as a monitor, and once the DeadLetterService counter reaches 5, it will
send an e-mail to the address(es) specified in the monitoring-service.xml. Note that the alert is
only sent once – once the threshold has been reached. If you want to be alerted again once
resetting the counter, you can reset the alerted flag on your monitoring service MBean (in this
case jboss.monitor:service=ESBDLQMonitor).

For more details on how to use the JBoss Web Console monitoring, please see the Wiki pages.

JBESB-AG-3/27/10 28

http://wiki.jboss.org/auth/wiki/JBossMonitoring
http://wiki.jboss.org/auth/wiki/WebConsole

Chapter 1

Hot Deployment
Server mode

JBossAS as well as the JBossESB-Server are always checking the 'deploy' directory
for new files to deploy. So we're really talking about hot redeployment. So here is
what you have to do to make it redeploy an existing deployment for the different
components.

1. sar files

The jbossesb.sar is hot deployable. It will redeploy when

• the timestamp of the archive changes, if the sar is compressed archive.

• the timestamp of the META-INF/jboss-service.xml changes, if the sar is in
exploded from.

2. esb files

Any *.esb archive will redeploy when

• the timestamp of the archive changes, if the esb is compressed archive.

• the timestamp of the META-INF/jboss-esb.xml changes, if the esb is in
exploded from.

Our actions have lifecycle support, so upon hot deployment it goes down gracefully,
finishes active requests, and does not accept any more incoming messages until it is
back up. All of this can be done by simply redeploying the .esb archive. If you want
to update just one action, you can use groovy scripting to modify an action at
runtime (see the groovy QuickStart).

3. rule files

There are two options to refresh rule files (drl or dsl)

• redeploy the jbrules.esb (see 2)

• turn on the 'ruleReload' in the action config (see
JBossESBContentBasedRouting). Now if a rule file *changes* it will be
reloaded.

4. transformation files

The only way to refresh transformation files is to redeploy the esb archive in which
the transformation file resides.

5. Business Process Definitions

When using jBPM new Business Process Definitions can be deployed. From within
the jBPM eclipse plugin you can deploy a new definition to the jbpm database. New

JBESB-AG-3/27/10 29

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESBContentBasedRouting
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESBQuickStart

process instances will get the new version, in flight processes will finish their life
cycle on the previous definitions. For details please see the documentation on jBPM.

Standalone (bootstrap) mode.
The bootstrapper does not deploy esb archives. You can only have one jboss-esb.xml
configuration file per node. It will monitor the timestamp on this file and it will
reread the configuration if a change occurs. To updates rules you will have to use the
'ruleReload'. And finally to update BPDs you can follow the same process mentioned
above.

JBESB-AG-3/27/10 30

Chapter 1

Contract Publishing
Overview

Integrating to certain ESB endpoints may require information about that endpoint
and the operations it supports. This is particularly the case for Webservice endpoints
exposed via the SOAPProcessor action (see Message Action Guide).

“Contract” Application
For this purpose, we bundle the “Contract” application with the ESB1. This
application is installed by default with the ESB (after running “ant deploy” from the
install directory of the distro)2.

It can be accessed through the following URL:

http://localhost:8080/contract/

The following is a screenshot of this application.

As you can see, it groups the endpoint according to Service with which they are
associated (servicing). Another thing you'll notice is how some of them have an

1NOTE: This application is only being offered as a Technical Preview. It will be superseded in a
later release.
2Note that the Contract application is also bundled inside the JBossESB Console. If you
are deploying the console, you will first need to undeploy the default Contract
application. Just remove contract.war from the default/deploy folder of your ESB/App
Server.

JBESB-AG-3/27/10 31

http://localhost:8080/contract/

active “Contract” hyperlink. The ones visible here are for Webservice endpoints
exposed via the SOAPProcessor. This hyperlink links off to the WSDL.

Publishing a Contract from an Action
JBossESB discovers endpoint contracts based on the action pipeline that's configured
on a Service. It looks for the first action in the pipeline that publishes contract
information. If none of the actions publish contract information, then the Contract
application just displays “Unavailable” on Contract for that endpoint.

An Action publishes contract information by being annotated with the
org.jboss.internal.soa.esb.publish.Publish annotation as follows (using the
SOAPProcessor as an example):

@Publish(WebserviceContractPublisher.class)
public class SOAPProcessor extends AbstractActionPipelineProcessor {
 ...
}

See the SOAPProcessor code as an example.

You then need to implement a “ContractPublisher”
(org.jboss.soa.esb.actions.soap.ContractPublisher), which just requires
implementation of a single method:

public ContractInfo getContractInfo(EPR epr);

See the WebserviceContractPublisher code as an example.

JBESB-AG-3/27/10 32

http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/services/soap/src/main/java/org/jboss/soa/esb/actions/soap/WebserviceContractPublisher.java
http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/services/soap/src/main/java/org/jboss/soa/esb/actions/soap/SOAPProcessor.java

Chapter 2

jBPM
jBPM Console

The jBPM Web Console is deployed by default as part of jbpm.esb and can be found at
http://localhost:8080/jbpm-console/. Please refer to the jBPM documentation for information
regarding the console.

jBPM Message and Scheduler service
The jBPM integration within ESB now support additional Message and Scheduler

services, distinct from those offered natively by jBPM. In addition to the standard jBPM
configurations we now also support a JMS based Message Service, driven using JCA inflow, and
two additional Scheduling Services, based on JBoss Messaging and quartz.

The configuration, as shipped by default within ESB, uses the jBPM JobExecutor and
the database implementations of the Message and Scheduler service.

<service name="message"
factory="org.jbpm.msg.db.DbMessageServiceFactory" />
<service name="scheduler"
factory="org.jbpm.scheduler.db.DbSchedulerServiceFactory" />

<bean name="jbpm.job.executor" class="org.jbpm.job.executor.JobExecutor">
 ...
</bean>

In order to utilize the alternative services it is necessary to replace the active
configurations with the versions specific to your requirements.

The configuration for the alternative services can be found within the jbpm.esb/config
directory

• jbpm.esb/config/jmsscheduler for configuring the JMS message service and
a JBoss Messaging based scheduler service, or

• jbpm.esb/config/quartzscheduler for configuring the JMS message service
and a quartz based scheduler service.

The configuration files within the appropriate directory should be used to replace the
active configurations within the jbpm.esb directory, remembering to remove the .config suffix
from each. It should also be noted that only one of the quartz message queue service definitions
should be used, either jbm-queue-service.xml or jbmq-queue-service.xml, depending on which
JMS implementation is currently in use.

JBESB-AG-3/27/10 33

http://localhost:8080/jbpm-console/

Chapter 1

Performance Tuning
Wiki

Note: Please refer to the JBossESB wiki for information on Performance
Tuning: http://community.jboss.org/wiki/JBossESBPerformanceTuning

Index
Configuring Databases

Background 13
Configuring JMS

ActiveMQ 11, 13
JBossMQ 10
Legacy 9
WebSphere MQ 11, 12

JBESB-AG-3/27/10 34

http://community.jboss.org/wiki/JBossESBPerformanceTuning

	How can I configure them?
	Max Sessions Per Connection
	JBossMQ or JBossMessaging
	JBoss Messaging Clustering configuration
	ActiveMQ
	Websphere MQ Series
	Oracle AQ
	Tibco EMS
	Extension properties

	
	Services
	MessageCounter
	
Transformations
	DeadLetterService
	1. sar files
	2. esb files
	3. rule files
	4. transformation files
	5. Business Process Definitions

