
Services Guide

Your guide to services

available in JBossESB

by JBoss ESB Development Team with Community Contributions

iii

1. The Registry .. 1

1.1. What is the Registry? ... 1

1.1.1. Introduction .. 1

1.1.2. Why do I need it? .. 1

1.1.3. How do I use it? .. 1

1.1.4. Registry Vs Repository ... 2

1.1.5. SOA components ... 2

1.1.6. UDDI ... 3

1.1.7. The Registry and JBossESB ... 4

1.2. Configuring the Registry .. 4

1.2.1. The Components Involved .. 6

1.2.2. The Registry Implementation Class ... 7

1.2.3. Using JAXR ... 7

1.2.4. Using jUDDI Transports .. 8

1.2.5. Using Scout and jUDDI .. 9

1.2.6. Registry Interceptors .. 10

1.3. Registry Configuration Examples ... 11

1.3.1. Embedding .. 11

1.3.2. RMI using the jbossesb.sar ... 13

1.3.3. RMI using your own JNDI Registration of the RMI Service 15

1.3.4. SOAP .. 17

1.4. Registry Troubleshooting ... 19

1.4.1. Scout and jUDDI pitfalls ... 19

1.4.2. More Information .. 19

2. Rule Services ... 21

2.1. What is a Rule Service? ... 21

2.1.1. Introduction .. 21

2.2. Rule Services using Drools ... 22

2.2.1. Introduction .. 22

2.2.2. Rule Set Creation .. 22

2.2.3. Rule Service Consumers .. 24

2.2.4. Configuration .. 25

2.2.5. Object Paths .. 30

2.2.6. Channels ... 31

2.2.7. Deploying and Packaging ... 32

3. Content-Based Routing ... 35

3.1. What is Content-Based Routing? ... 35

3.1.1. Introduction .. 35

3.1.2. Simple example ... 35

3.2. Content-Based Routing using XPath .. 36

3.2.1. Introduction .. 36

3.2.2. Inline Rule Definitions ... 36

3.2.3. External Rule Definitions ... 37

3.2.4. Namespaces .. 38

Services Guide

iv

3.3. Content-Based Routing using Regex .. 38

3.3.1. Introduction .. 38

3.3.2. Inline Rule Definitions ... 38

3.3.3. External Rule Definitions ... 39

3.4. Content-Based Routing Using Drools ... 40

3.4.1. Introduction .. 40

3.4.2. Three Different Routing Action Classes ... 40

3.4.3. Rule-Set Creation ... 41

3.4.4. XPath Domain Specific Language ... 42

3.5. Content-Based Routing Using Smooks ... 49

3.5.1. Introduction .. 49

4. Message Transformation ... 53

4.1. Overview .. 53

4.2. Smooks .. 53

4.2.1. Samples and Tutorials .. 53

4.3. XSL Transformations ... 54

5. jBPM Integration .. 55

5.1. Introduction ... 55

5.2. Integration Configuration ... 55

5.3. jBPM configuration .. 58

5.4. Creation and Deployment of a Process Definition .. 59

5.5. JBossESB to jBPM ... 61

5.5.1. Exception Handling JBossESB to jBPM ... 65

5.6. jBPM to JBossESB ... 65

5.6.1. EsbNotifier ... 65

5.6.2. EsbActionHandler ... 67

5.6.3. Exception Handling jBPM -> JBossESB ... 69

5.6.4. Scenerio One: Time-out .. 69

5.6.5. Scenario Two: Exception Transition ... 71

5.6.6. Scenario Three: Exception Decision .. 72

6. Service Orchestration .. 75

6.1. Introduction ... 75

6.2. Orchestrating Web Services .. 75

6.3. Orchestration Diagram .. 76

6.4. Process Deployment and Instantiation .. 85

6.5. Conclusion .. 87

7. The Message Store .. 89

7.1. Introduction ... 89

7.2. Message Store Interface ... 89

7.2.1. Transaction .. 91

7.3. Configuring the Message Store .. 91

8. Security .. 95

8.1. Introduction ... 95

8.2. Security Service Configuration ... 95

v

8.2.1. Configuring Security on Services ... 98

8.3. Authentication ... 99

8.3.1. Authentication Request ... 100

8.4. JBossESB SecurityContext .. 100

8.5. Security Context Propagation ... 101

8.6. Customising security ... 101

8.7. Provided Login Modules .. 102

8.7.1. CertificateLoginModule .. 102

8.7.2. Role Mapping ... 103

8.8. Password Encryption ... 104

8.8.1. Creating an Encrypted Password File .. 104

8.8.2. SecurityService .. 104

9. References ... 107

A. GNU General Public License ... 109

A.1. Preamble .. 109

A.2. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION ... 110

A.2.1. Section 0 ... 110

A.2.2. Section 1 ... 110

A.2.3. Section 2 ... 110

A.2.4. Section 3 ... 111

A.2.5. Section 4 ... 112

A.2.6. Section 5 ... 112

A.2.7. Section 6 ... 112

A.2.8. Section 7 ... 112

A.2.9. Section 8 ... 113

A.2.10. Section 9 ... 113

A.2.11. Section 10 ... 113

A.2.12. NO WARRANTY Section 11 ... 114

A.2.13. Section 12 ... 114

A.3. How to Apply These Terms to Your New Programs .. 114

B. Revision History .. 117

vi

Chapter 1.

1

The Registry

1.1. What is the Registry?

1.1.1. Introduction

In the context of SOA, a registry provides applications and businesses a central point to store

information about their services. It is expected to provide the same level of information and the

same breadth of services to its clients as that of a conventional market place. Ideally a registry

should also facilitate the automated discovery and execution of e-commerce transactions and

enabling a dynamic environment for business transactions. Therefore, a registry is more than an

“e-business directory”. It is an inherent component of the SOA infrastructure.

1.1.2. Why do I need it?

It is not difficult to discover, manage and interface with business partners on a small scale, using

manual or ad hoc techniques. However, this approach does not scale as the number of services,

the frequency of interactions, the physical distributed nature of the environment, increases. A

registry solution based on agreed upon standards provides a common way to publish and discover

services. It offers a central place where you query whether a partner has a service that is

compatible with in-house technologies or to find a list of companies that support shipping services

on the other side of the globe.

Service registries are central to most service oriented architectures and at runtime act as a

contact point to correlate service requests to concrete behaviors. A service registry has meta-

data entries for all artifacts within the SOA that are used at both runtime and design time. Items

inside a service registry may include service description artifacts (e.g., WSDL), Service Policy

descriptions, various XML schema used by services, artifacts representing different versions of

services, governance and security artifacts (e.g., certificates, audit trails), etc. During the design

phase, business process designers may use the registry to link together calls to several services

to create a workflow or business process.

Note

The registry may be replicated or federated to improve performance and reliability.

It need not be a single point of failure.

1.1.3. How do I use it?

From a business analyst’s perspective, it is similar to an Internet search engine for business

processes. From a developers perspective, they use the registry to publish services and query

the registry to discover services matching various criteria.

Chapter 1. The Registry

2

1.1.4. Registry Vs Repository

A registry allows for the registration of services, discovery of metadata and classification of entities

into predefined categories. Unlike a respository, it does not have the ability to store business

process definitions or WSDL or any other documents that are required for trading agreements. A

registry is essentially a catalogue of items, whereas a repository maintaines those items.

1.1.5. SOA components

As the W3C puts it: An SOA is a specific type of distributed system in which the agents are

"services": http://www.w3.org/TR/2003/WD-ws-arch-20030808/#id2617708.

The key components of a Service Oriented Architecture are the messages that are exchanged,

agents that act as service requesters and service providers, and shared transport mechanisms

that allow the flow of messages. A description of a service that exists within an SOA is essentially

just a description of the message exchange patter between itself and its users. Within an SOA

there are thus three critical roles: requester, provider, and broker.

Service Provider

allows access to services, creates a description of a service and publishes it to the service

broker.

Service Broker

hosts a registry of service descriptions. It is responsible for linking a requestor to a service

provider.

Service Requester

is responsible for discovering a service by searching through the service descriptions given

by the service broker. A requestor is also responsible for binding to services provided by the

service provider.

http://www.w3.org/TR/2003/WD-ws-arch-20030808/#id2617708

 UDDI

3

1.1.6. UDDI

The Universal Description, Discovery and Integration registry is a directory service for Web

Services. It enables service discovery through queries to the UDDI registry at design time or

at run time. It also allows providers to publish descriptions of their services to the registry. The

registry typically contains a URL that locates the WSDL document for the web services and

contact information for the service provider. Within UDDI information is classified into the following

categories.

• White pages: contain general information such as the name, address and other contact

information about the company providing the service.

• Yellow pages: categorize businesses based on the industry their services cater to.

• Green pages: provide information that will enable a client to bind to the service that is being

provided.

Chapter 1. The Registry

4

1.1.7. The Registry and JBossESB

The registry plays a central role within JBossESB. It is used to store endpoint references (EPRs)

for the services deployed within the ESB. It may be updated dynamically when services first start-

up, or statically by an external administrator.

As with all environments within which registries reside, it is not possible for the registry to determine

the liveness of the entities its data represents, e.g., if an EPR is registered with the registry then

there can be no guarantee that the EPR is valid (it may be malformed) or it may represent a

services that is no longer active. At present JBossESB does not perform life-cycle monitoring of

the services that are deployed within it. As such, if services fail or move elsewhere, their EPRs

that may reside within the registry will remain until they are explicitly updated or removed by an

administrator. Therefore, if you get warnings or errors related to EPRs obtained from the registry,

you should consider removing any out-of-date items.

1.2. Configuring the Registry

The JBossESB Registry architecture allows for many ways to configure the ESB to use either a

Registry or Repository. By default we use a JAXR implementation (Scout) and a UDDI (jUDDI),

in an embedded way.

The following properties can be used to configure the JBossESB Registry. In the jbossesb-

properties.xml there is section called 'registry':

<properties name="registry">

 <property name="org.jboss.soa.esb.registry.implementationClass"

 value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>

 <property name="org.jboss.soa.esb.registry.factoryClass"

 value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>

 <property name="org.jboss.soa.esb.registry.queryManagerURI"

 value="org.apache.juddi.v3.client.transport.wrapper.UDDIInquiryService#inquire"/>

 <property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"

 value="org.apache.juddi.v3.client.transport.wrapper.UDDIPublicationService#publish"/>

 <property name="org.jboss.soa.esb.registry.securityManagerURI"

 value="org.apache.juddi.v3.client.transport.wrapper.UDDISecurityService#secure"/>

 <property name="org.jboss.soa.esb.registry.user" value="root"/>

 <property name="org.jboss.soa.esb.registry.password" value="root"/>

 <property name="org.jboss.soa.esb.scout.proxy.uddiVersion" value="3.0"/>

 <property name="org.jboss.soa.esb.scout.proxy.uddiNameSpace" value="urn:uddi-

org:api_v3"/>

 Configuring the Registry

5

 <property name="org.jboss.soa.esb.scout.proxy.transportClass"

 value="org.apache.ws.scout.transport.LocalTransport"/>

 <!-- specify the interceptors, in order -->

 <property name="org.jboss.soa.esb.registry.interceptors"

 value="org.jboss.internal.soa.esb.services.registry.InVMRegistryInterceptor,

 org.jboss.internal.soa.esb.services.registry.CachingRegistryInterceptor"/>

 <!-- The following properties modify the cache interceptor behaviour -->

 <property name="org.jboss.soa.esb.registry.cache.maxSize" value="100"/>

 <property name="org.jboss.soa.esb.registry.cache.validityPeriod" value="600000"/>

 <!-- Organization Category to be used by this deployment. -->

 <property name="org.jboss.soa.esb.registry.orgCategory"

 value="org.jboss.soa.esb.:category"/>

</properties>

Table 1.1. Registry Properties

Property Description

org.jboss.soa.esb.registry.implementationClass A class that implements the

jbossesb Registry interface.

We have provided one

implementation (JAXRRegistry

interface).

org.jboss.soa.esb.registry.factoryClass The class name of

the JAXR ConnectionFactory

implementation.

org.jboss.soa.esb.registry.queryManagerURI The URI used by JAXR to query

org.jboss.soa.esb.registry.lifeCycleManagerURI The URI used by JAXR to edit.

org.jboss.soa.esb.registry.securityManagerURI The URI used to authenticate.

org.jboss.soa.esb.registry.user The user used for edits.

org.jboss.soa.esb.registry.password The password to go along with

the user.

org.jboss.soa.esb.scout.proxy.uddiVersion The UDDI version of the query.

org.jboss.soa.esb.scout.proxy.uddiNameSpace The UDDI namespace.

org.jboss.soa.esb.scout.proxy.transportClass The name of the class used by

scout to do the transport from

scout to the UDDI.

org.jboss.soa.esb.registry.interceptors The list of interceptors that

are applied to the configured

registry. The codebase currently

Chapter 1. The Registry

6

Property Description

provides two interceptors, one

for handling InVM registration

and a second for applying a

cache over the registry.

The default interceptor list

consists solely the InVM

interceptor.

org.jboss.soa.esb.registry.cache.maxSize The maximum number of server

entries allowed in the cache.

If this value is exceeded then

entries will be evicted on a LRU

basis. The default value is 100

entries.

org.jboss.soa.esb.registry.cache.validityPeriod The validity period of the caching

interceptor. This is specified

in milliseconds and defaults to

600000 (ten minutes). If this

value is zero (or less) then there

is no expiry specified on the

cache.

org.jboss.soa.esb.registry.orgCategory The Organization Category

name for the ESB instance.

Default is

"org.jboss.soa.esb.:category".

1.2.1. The Components Involved

The registry can be configured in many ways. Figure 1 shows a blue print of all the registry

components. From the top down we can see that the JBossESB funnels all interaction with the

registry through the Registry Interface. By default it then calls into a JAXR implementation of this

interface. The JAXR API needs an implementation, which by default is Scout. The Scout JAXR

implementation calls into a jUDDI registry. However there are many other configuration options.

 The Registry Implementation Class

7

Figure 1.1. Blueprint of the Registry Component Architecture

1.2.2. The Registry Implementation Class

Property: org.jboss.soa.esb.registry.implementationClass

By default we use the JAXR API. The JAXR API is a convenient API since it allows us to

connect any kind of XML based registry or repository. However, if for example you want to use

Systinet's Java API you can do that by writing your own SystinetRegistryImplementation class

and referencing it in this property.

1.2.3. Using JAXR

Propery: org.jboss.soa.esb.registry.factoryClass

1. If you decided to use JAXR then you will have to pick which JAXR implementation to use. This

property is used to configure that class. By default we use Scout and therefore it is set to the

scout factory org.apache.ws.scout.registry.ConnectionFactoryImpl.

Chapter 1. The Registry

8

2. The next step is to tell the JAXR implementation the

location of the registry or repository for querying and updating,

which is done by setting the org.jboss.soa.esb.registry.queryManagerURI,

org.jboss.soa.esb.registry.lifeCycleManagerURI, and

org.jboss.soa.esb.registry.securityManagerURI respectively, along with the username

(org.jboss.soa.esb.registry.user) and password (org.jboss.soa.esb.registry.password) for the

UDDI.

1.2.4. Using jUDDI Transports

Property: org.jboss.soa.esb.scout.proxy.transportClass

When using Scout with a UDDI implementation there is an additional parameter that one can

set - the transport class that is used for communication between Scout and the UDDI registry.

If you are using Scout to communicate with jUDDI v3, we suggest leaving the transportClass as

LocalTransport and using jUDDI's esb.juddi.client.xml to use jUDDI's transports (InVM, RMI, WS).

jUDDI's esb.juddi.client.xml resides in the server/<config>/deploy/jbossesb.sar/META-INF

directory and contain the concept of a “node”, which is a jUDDI registry location. Use the node

settings to determine whether you want to use JAX-WS, InVM, or RMI as your transport:

<node>

 <!-- required 'default' node -->

 <name>default</name>

 <description>Main jUDDI node</description>

 <properties>

 <property name="serverName" value="localhost" />

 <property name="serverPort" value="8880" />

 </properties>

 <!-- JAX-WS Transport

 <proxyTransport>org.apache.juddi.v3.client.transport.JAXWSTransport</proxyTransport>

 <custodyTransferUrl>http://${serverName}:${serverPort}/juddiv3/services/custody-transfer?

wsdl</custodyTransferUrl>

 <inquiryUrl>http://${serverName}:${serverPort}/juddiv3/services/inquiry?wsdl</inquiryUrl>

 <publishUrl>http://${serverName}:${serverPort}/juddiv3/services/publish?wsdl</publishUrl>

 <securityUrl>http://${serverName}:${serverPort}/juddiv3/services/security?wsdl</securityUrl>

 <subscriptionUrl>http://${serverName}:${serverPort}/juddiv3/services/subscription?wsdl</

subscriptionUrl>

 <subscriptionListenerUrl>http://${serverName}:${serverPort}/juddiv3/services/subscription-

listener?wsdl</subscriptionListenerUrl>

 <juddiApiUrl>http://${serverName}:${serverPort}/juddiv3/services/juddi-api?wsdl</

juddiApiUrl>

 -->

 <!-- In VM Transport Settings

 Using Scout and jUDDI

9

 <proxyTransport>org.jboss.internal.soa.esb.registry.client.JuddiInVMTransport</

proxyTransport>

 <custodyTransferUrl>org.apache.juddi.api.impl.UDDICustodyTransferImpl</

custodyTransferUrl>

 <inquiryUrl>org.apache.juddi.api.impl.UDDIInquiryImpl</inquiryUrl>

 <publishUrl>org.apache.juddi.api.impl.UDDIPublicationImpl</publishUrl>

 <securityUrl>org.apache.juddi.api.impl.UDDISecurityImpl</securityUrl>

 <subscriptionUrl>org.apache.juddi.api.impl.UDDISubscriptionImpl</subscriptionUrl>

 <subscriptionListenerUrl>org.apache.juddi.api.impl.UDDISubscriptionListenerImpl</

subscriptionListenerUrl>

 <juddiApiUrl>org.apache.juddi.api.impl.JUDDIApiImpl</juddiApiUrl>

 -->

 <!-- RMI Transport Settings -->

<proxyTransport>org.apache.juddi.v3.client.transport.RMITransport</proxyTransport>

 <custodyTransferUrl>/juddiv3/UDDICustodyTransferService</custodyTransferUrl>

 <inquiryUrl>/juddiv3/UDDIInquiryService</inquiryUrl>

 <publishUrl>/juddiv3/UDDIPublicationService</publishUrl>

<securityUrl>/juddiv3/UDDISecurityService</securityUrl>

<subscriptionUrl>/juddiv3/UDDISubscriptionService</subscriptionUrl>

<subscriptionListenerUrl>/juddiv3/UDDISubscriptionListenerService</subscriptionListenerUrl>

<juddiApiUrl>/juddiv3/JUDDIApiService</juddiApiUrl>

<javaNamingFactoryInitial>org.jnp.interfaces.NamingContextFactory</

javaNamingFactoryInitial>

 <javaNamingFactoryUrlPkgs>org.jboss.naming</javaNamingFactoryUrlPkgs>

 <javaNamingProviderUrl>jnp://localhost:1099</javaNamingProviderUrl>

 </node>

As seen above, a transport should specify a proxyTransport, a URL for all of the supported UDDI

API (inquiry, publish, security, subscription, subscription-listener, custodytransfer), and a jUDDI

API URL. The RMI transport also includes JNDI settings. By default, the RMI settings are enabled

– to switch transports you can comment them out and enable whichever of the transports you

choose.

1.2.5. Using Scout and jUDDI

Property: org.jboss.soa.esb.scout.proxy.transportClass

When using Scout with jUDDI there is an additional parameter that one can set. This is the

transport class that should be used for communication between Scout and jUDDI. Thus far there

are 4 implementations of this class which are based on SOAP, SAAJ, RMI and Local (embedded

java). If you are using Scout to communicate with jUDDI v3, we suggest leaving the transportClass

as LocalTransport and using jUDDI's uddi.xml to use jUDDI's transports (InVM, RMI, WS).

However, when communicating with another UDDI registry (Systinet, SOA Software, etc), it is

preferable to use scout's JAXR transports. There are 4 implementations of this class which

Chapter 1. The Registry

10

are based on SOAP, SAAJ, RMI and Local (embedded java). Note that when you change the

transport, you will also have to change the query and lifecycle URIs. For example:

Table 1.2. Registry URIs

SOAP

queryManagerURI http://localhost:8080/juddi/inquiry

lifeCycleManagerURI http://localhost:8080/juddi/publish

transportClass org.apache.ws.scout.transport.AxisTransport

RMI

queryManagerURI jnp://localhost:1099/InquiryService?

org.apache.juddi.registry.rmi.Inquiry#inquire

lifeCycleManagerURI jnp://localhost:1099/PublishService?

org.apache.juddi.registry.rmi.Publish#publish

transportClass org.apache.ws.scout.transport.RMITransport

local

queryManagerURI org.apache.juddi.registry.local.InquiryService#inquire

lifeCycleManagerURI org.apache.juddi.registry.local.PublishService#publish

transportClass org.apache.ws.scout.transport.LocalTransport

For jUDDI we have two requirements that need to be fulfilled:

1. access to the jUDDI database. You will need to create a schema in your database, and add

the jbossesb publisher. The product/install/jUDDI-registry directory contains db create scripts

for you favorite database.

2. esb.juddi.xml and esb.juddi.client.xml. The configuration of jUDDI itself.

Note

The database can be automatically created if the user you have created has

enough rights to create tables. jUDDI should be able to create a database for any

database that has a Hibernate dialect associated with it.

1.2.6. Registry Interceptors

The registry supports the ability to intercept requests to the registry using an interceptor stack.

Each interceptor in the stack is provided with an opportunity to service the request, provide direct

responses to the request or to augment the responses received from a lower interceptor or registry

implementation as it wishes.

The interceptor stack is configured using the org.jboss.soa.esb.registry.interceptors property

within jbossesb-properties.xml

 Registry Configuration Examples

11

Figure 1.2. Registry Interceptors

There are two interceptors provided in the current implementation.

• org.jboss.internal.soa.esb.services.registry.InVMRegistryInterceptor

The InVM registry interceptor is responsible for handling any InVMEprs which are registered

by any of the services executing within the same server instance. The information about the

InVMEpr and its associated service will be cached within the interceptor, will not be propagated

to subsequent interceptors and will be returned to the caller by augmenting results from

subsequent interceptors/registry queries.

• org.jboss.internal.soa.esb.services.registry.CachingRegistryInterceptor

The Caching registry interceptor retains a cache of Eprs and their associated services, evicting

information from the cache on a LRU basis or after the information has expired.

The interceptor can be configured through the org.jboss.soa.esb.registry.cache.maxSize and

org.jboss.soa.esb.registry.cache.validityPeriod properties within jbossesb-properties.xml

1.3. Registry Configuration Examples

As mentioned before, by default the JBossESB is configured to use the JAXR API using Scout

as its implementation and jUDDI as the registry. Here are some examples of how you can deploy

this combo.

1.3.1. Embedding

All ESB components (with components we really mean JVMs in this case) can embed the registry

and they all can connect to the same database (or different once if that makes sense).

Chapter 1. The Registry

12

Figure 1.3. Embedded jUDDI

Properties example:

<properties name="registry">

 <property name="org.jboss.soa.esb.registry.implementationClass"

 value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>

 <property name="org.jboss.soa.esb.registry.factoryClass"

 value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>

 <property name="org.jboss.soa.esb.registry.queryManagerURI"

 value="org.apache.juddi.registry.local.InquiryService#inquire"/>

 <property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"

 value="org.apache.juddi.registry.local.PublishService#publish"/>

 <property name="org.jboss.soa.esb.registry.securityManagerURI"

 value="org.apache.juddi.registry.local.SecurityService#secure"/>

 <property name="org.jboss.soa.esb.registry.user" value="jbossesb"/>

 <property name="org.jboss.soa.esb.registry.password" value="password"/>

 <property name="org.jboss.soa.esb.scout.proxy.transportClass"

 value="org.apache.ws.scout.transport.LocalTransport"/>

 RMI using the jbossesb.sar

13

</properties>

1.3.2. RMI using the jbossesb.sar

Deploy a version of the jUDDI that brings up an RMI service. The JBossESB deploys the RMI

service by default – it starts the registry within the jbossesb.sar.

The jbossesb.sar also registers a RMI service.

Figure 1.4. Remote Method Invocation

Properties example:

<properties name="registry">

 <property name="org.jboss.soa.esb.registry.implementationClass"

Chapter 1. The Registry

14

 value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>

 <property name="org.jboss.soa.esb.registry.factoryClass"

 value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>

 <property name="org.jboss.soa.esb.registry.queryManagerURI"

 value="jnp://localhost:1099/InquiryService?org.apache.juddi.registry.rmi.Inquiry#inquire"/>

 <property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"

 value="jnp://localhost:1099/PublishService?org.apache.juddi.registry.rmi.Publish#publish"/>

 <property name="org.jboss.soa.esb.registry.securityManagerURI"

 value="jnp://localhost:1099/PublishService?org.apache.juddi.registry.rmi.Publish#publish"/>

 <property name="org.jboss.soa.esb.registry.user" value="jbossesb"/>

 <property name="org.jboss.soa.esb.registry.password" value="password"/>

 <property name="org.jboss.soa.esb.scout.proxy.transportClass"

 value="org.apache.ws.scout.transport.RMITransport"/>

</properties>

The juddi.war is configured to bring up a RMI Service, which is triggered by the following setting

in the web.xml

<!-- uncomment if you want to enable making calls in juddi with rmi -->

 <servlet>

 <servlet-name>RegisterServicesWithJNDI</servlet-name>

 <servlet-class>org.apache.juddi.registry.rmi.RegistrationService</servlet-class>

 <load-on-startup>1</load-on-startup>

 </servlet>

Make sure to include, for example, the following JNDI settings in your juddi.properties:

JNDI settings (used by RMITransport)

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory

java.naming.provider.url=jnp://localhost:1099

java.naming.factory.url.pkgs=org.jboss.naming

 RMI using your own JNDI Registration of the RMI Service

15

Important

The RMI clients need to have the scout-client.jar in their classpath.

1.3.3. RMI using your own JNDI Registration of the RMI Service

If you don't want to deploy the juddi.war you can setup one of the ESB components that runs in

the the same JVM as jUDDI to register the RMI service. While the other applications need to be

configured to use RMI.

Figure 1.5. RMI Using One's Own JNDI Registration

Properties example: For application 1 you need the Local settings:

<properties name="registry">

 <property name="org.jboss.soa.esb.registry.implementationClass"

value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>

Chapter 1. The Registry

16

 <property name="org.jboss.soa.esb.registry.factoryClass"

value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>

 <property name="org.jboss.soa.esb.registry.queryManagerURI"

value="org.apache.juddi.registry.local.InquiryService#inquire"/>

 <property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"

value="org.apache.juddi.registry.local.PublishService#publish"/>

 <property name="org.jboss.soa.esb.registry.securityManagerURI"

value="org.apache.juddi.registry.local.SecurityService#secure"/>

 <property name="org.jboss.soa.esb.registry.user" value="jbossesb"/>

 <property name="org.jboss.soa.esb.registry.password" value="password"/>

 <property name="org.jboss.soa.esb.scout.proxy.transportClass"

value="org.apache.ws.scout.transport.LocalTransport"/>

</properties>

while for application2 you need the RMI settings:

<properties name="registry">

 <property name="org.jboss.soa.esb.registry.implementationClass"

value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>

 <property name="org.jboss.soa.esb.registry.factoryClass"

value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>

 <property name="org.jboss.soa.esb.registry.queryManagerURI"

value="jnp://localhost:1099/InquiryService?org.apache.juddi.registry.rmi.Inquiry#inquire"/>

 <property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"

value="jnp://localhost:1099/PublishService?org.apache.juddi.registry.rmi.Publish#publish"/>

 <property name="org.jboss.soa.esb.registry.user" value="jbossesb"/>

 <property name="org.jboss.soa.esb.registry.password" value="password"/>

 <property name="org.jboss.soa.esb.scout.proxy.transportClass"

value="org.apache.ws.scout.transport.RMITransport"/>

</properties>

 SOAP

17

Where the hostname of the queryManagerURI and lifeCycleManagerURI need to point to the

hostname on which jUDDI is running (which would be where application1 is running). Obviously

application1 needs to have access to a naming service. To do the registration process you need

to do something like:

//Getting the JNDI setting from the config

Properties env = new Properties();

env.setProperty(RegistryEngine.PROPNAME_JAVA_NAMING_FACTORY_INITIAL,factoryInitial);

env.setProperty(RegistryEngine.PROPNAME_JAVA_NAMING_PROVIDER_URL, providerURL);

env.setProperty(RegistryEngine.PROPNAME_JAVA_NAMING_FACTORY_URL_PKGS,

 factoryURLPkgs);

InitialContext context = new InitialContext(env);

Inquiry inquiry = new InquiryService();

log.info("Setting " + INQUIRY_SERVICE + ", " + inquiry.getClass().getName());

mInquery = inquiry;

context.bind(INQUIRY_SERVICE, inquiry);

Publish publish = new PublishService();

log.info("Setting " + PUBLISH_SERVICE + ", " + publish.getClass().getName());

mPublish = publish;

context.bind(PUBLISH_SERVICE, publish);

1.3.4. SOAP

Finally, you can make the communication between Scout and jUDDI SOAP based. Again you

need to deploy the juddi.war and configure the datasource. You probably want to shutdown the

RMI service by commenting out the RegisterServicesWithJNDI servlet in the web.xml.

Chapter 1. The Registry

18

Figure 1.6. SOAP-based Communications

Properties example:

<properties name="registry">

 <property name="org.jboss.soa.esb.registry.implementationClass"

 value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>

 <property name="org.jboss.soa.esb.registry.factoryClass"

 value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>

 <property name="org.jboss.soa.esb.registry.queryManagerURI"

 value="http://localhost:8080/juddi/inquiry"/>

 <property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"

 value="http://localhost:8080/juddi/publish"/>

 Registry Troubleshooting

19

 <property name="org.jboss.soa.esb.registry.user" value="jbossesb"/>

 <property name="org.jboss.soa.esb.registry.password" value="password"/>

 <property name="org.jboss.soa.esb.scout.proxy.transportClass"

 value="org.apache.ws.scout.transport.AxisTransport"/>

</properties>

1.4. Registry Troubleshooting

1.4.1. Scout and jUDDI pitfalls

• If you use RMI you need the juddi-client.jar, which can be found as part of the jUDDI distribution.

• Make sure the jbossesb-properties.xml file is on the classpath and read or else the registry will

try to instantiate classes with the name of 'null'.

• Make sure you have META-INF/esb.juddi.client.xml that specifies a valid transport.

• Make sure the settings of your persistence.xml file are valid and that you are using the

Hibernate dialect that matches your database.

• Make sure you have a esb.juddi.xml file on your classpath for jUDDI to configure itself with.

• In the event that a service fails or does not shut down cleanly, it is possible that stale entries

may persist within a registry. You will have to remove these manually.

1.4.2. More Information

• For more information see the wiki: http://www.jboss.org/community/docs/DOC-11217

• JBossESB user forum: http://www.jboss.com/index.html?module=bb&op=viewforum&f=246.

http://www.jboss.org/community/docs/DOC-11217
http://www.jboss.com/index.html?module=bb&op=viewforum&f=246

20

Chapter 2.

21

Rule Services

2.1. What is a Rule Service?

2.1.1. Introduction

The JBossESB Rule Service allows you to deploy rules created in Drools as services on the ESB.

This is beneficial, because it means you don't have to develop as much client code to integrate

rules into your application environment, and rules can be accessed as part of an action chain

or orchestrated business process. To understand these types of services, you should first learn

about Drools.

Rule Services are supported by the BusinessRulesProcessor action class and the

DroolsRuleService, which implement the RuleService interface. While it is possible to use rule

engines other than Drools, only Drools is supported out the the box. The BusinessRulesProcessor

supports rules loaded from the classpath that are defined in .drl files, .dsl files (domain specific

language support), and .xls (decision table support) files. These are primarily for testing,

prototypes, and very simple rule services. There is no way to specify multiple rule files in the jboss-

esb.xml file, so complex rule services need to use the Drools KnowledgeAgent.

The RuleService uses the KnowledgeAgent to access rule packages from the Drools BRMS or

local file system. These rule packages can contain thousands of rules, the source of which can be:

1. Drools BRMS.

2. Imported DRL files.

3. Rules written in a Domain Specific Language.

4. Rules from Decision Tables.

Important

Use of the Drools KnowledgeAgent is the recommended approach for production

systems.

The BusinessRulesProcessor action supports both Drools stateless and stateful execution

models. Most rule services will be stateless. That is, a message will be sent to the rule service

that includes all the facts to be inserted into the rule engine in the message body, the rules will

execute, updating either the message and / or the facts. Stateful execution takes place over time,

with several messages being sent to the rule service, the rules being executed each time, the

message and / or facts being updated each time, and a final message that tells the rule service

to dispose of the stateful session working memory of the rule engine. There are limitations in this

Chapter 2. Rule Services

22

configuration, namely that there can only be a single (stateful) rule service in the message flow.

This may change in the future, when there are better ways to identify a stateful conversation over

the ESB.

Note

In ESB 4.8 and prior releases, the Drools Rule* API was used. In

ESB 4.9, which uses Drools 5.1.0, the Drools Knowledge* API is used.

The biggest change here is how the KnowledgeAgent is configured/run

differently than the RuleAgent. Polling configuration for DRL changes is

no longer done at the RuleAgent level (in the ruleAgentProperties file's

"poll" property). It is now done globally, and can be configured by

the property "org.jboss.soa.esb.services.rules.resource.scanner.interval", found

within jbossesb-properties.xml. The default is 60. This means every 60 seconds,

check for resource changes - across ALL KnowledgeAgents.

2.2. Rule Services using Drools

2.2.1. Introduction

The Rule Service support in the JBossESB uses Drools as its rule engine. JBossESB integrates

with Drools through

• The BusinessRulesProcessor action class

• Rules written in Drools drl, dsl, decision table, or business rule editor.

• The ESB Message

• The ESB Message content, i.e., the objects in the message, which is the data going into the

rules engine (the “facts”).

When a message is sent to the BusinessRulesProcessor, a certain rule set will execute over the

objects in the message, and update those objects and / or the message.

2.2.2. Rule Set Creation

A rule set can be created using the JBoss Developer Studio which includes a plug-in for Drools,

or with Eclispe 3.5 and the plugin installed (see Drools download site for the plugin). Since the

message is added as a global, you need to add jbossesb-rosetta.jar to your Drools project.

You can also write your rules using the Drools BRMS Business Rule Editor. When using the

Drools BRMS, it is not necessary to add the ESB Message class to the imports, as long as

jbossesb-rosetta.jar is somewhere on the classpath of the BRMS web application.

 Rule Set Creation

23

Note

For a detailed discussion on rule creation and the Drools language itself please

see the Drools documention.

For the most part, rules can be written without regard to their deployment on the ESB as a service.

There are a few caveats however:

1. All rules deployed as a rule service must define the ESB Message as a global, i.e.,

#declare any global variables here

global org.jboss.soa.esb.message.Message;

The rationale for this is that most rule services will want to update the message as a way

of communicating results to other services in the flow, so the BusinessRulesProcessor /

DroolsRuleService will always set the message as a global.

2. The BusinessRulesProcessor / DroolsRuleService does not provide a means to set globals in

the jboss-esb.xml and have them set in working memory. This would have made for additional

configuration support in the jboss-esb.xml, and could be supported in the future. For now, if

additional globals (other than the ESB Message) need to be set, they can be done in higher

salience rule. E.g.,

rule "Set a global"

 salience 100

 when

 then

 drools.setGlobal("foo", new Foo());

end

3. The DroolsRuleService does not provide a means to start a RuleFlow from the rule service.

This also would have made for additional configuration support in the jboss-esb.xml, and could

be supported in the future. For now, if a RuleFlow needs to be started, this can be done in

higher salience rule. E.g.,

rule "Start a ruleflow"

 salience 100

 when

 then

 drools.startProcess("processId");

Chapter 2. Rule Services

24

end

2.2.3. Rule Service Consumers

The consumer of a rule service has little to worry about. In a rule service environment there is no

need for the consumer to worry about creating rulebases, creating working memories, inserting

facts, or firing the rules. Instead the consumer just has to worry about adding facts to the message,

and possibly some properties to the message.

In some cases the client is ESB aware, and will add the objects to the message directly:

MessageFactory factory = MessageFactory.getInstance();

message = factory.getMessage(MessageType.JAVA_SERIALIZED);

order = new Order();

order.setOrderId(0);

order.setQuantity(20);

order.setUnitPrice(new Float("20.0"));

message.getBody().add("Order", order);

In other cases the data may be in an XML message, and a transformation service will be added

to the message flow to transform the XML to POJOs before the rule service is invoked.

Using stateful rule execution requires a few properties to be added the messages. For the first

message,

message.getProperties().setProperty("dispose", false);

message.getProperties().setProperty("continue", false);

For all the subsequest messages but the final message,

message.getProperties().setProperty("dispose", false);

message.getProperties().setProperty("continue", true);

For the final message:

message.getProperties().setProperty("dispose", true);

message.getProperties().setProperty("continue", true);

These can be added directly by an ESB aware client. A non-ESB aware client would have to

communicate the position of the message (first, ongoing, last) in the data, and an action class

 Configuration

25

would need to be added to the pipeline to add the properties to the ESB message (see quickstarts/

business_ruleservice_stateful for an example of this type of service).

Note

In ESB 4.6 and prior releases, the “continue” functionality for stateful rule execution

did not dispose of working memories if the value of the property was false or

it was absent. This has now been fixed through the work for JBESB-2900. The

previous behavior can be re-enabled by changing the value of the configuration

property “org.jboss.soa.esb.services.rules.continueState”, found within jbossesb-

properties.xml, to true.

2.2.4. Configuration

Configuration of a rule service is in the jboss-esb action element for the service. Several

configuration parameters are required or optional

The action class and name is required:

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"

 name="OrderDiscountRuleService">

This configures the action class and its name. The name is user defined.

One of the following is also required:

<property name="ruleSet" value="drl/OrderDiscount.drl" />

for specifying a drl file, or

<property name="ruleSet" value="dsl/approval.dslr" />

<property name="ruleLanguage" value="dsl/acme.dsl" />

for specifying a dsl and dslr (domain specific language) files , or

<property name="decisionTable" value="PolicyPricing.xls" />

or specifying a decisionTable on the classpath, or

Chapter 2. Rule Services

26

<property name="ruleAgentProperties"

 value="brmsdeployedrules.properties" />

for specifying a properties file on the classpath that tells the rule agent how to find the rule package.

This could specify a url or a local file system.

Several example configurations follow.

1. Rules are in a drl, execution is stateless:

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"

 name="OrderDiscountRuleService">

 <property name="ruleSet" value="drl/OrderDiscount.drl" />

 <property name="ruleReload" value="true" />

 <property name="object-paths">

 <object-path esb="body.Order" />

 </property>

</action>

2. Rules are in a drl, execution is stateful.

In this scenario, a service may receive multiple messages over time and wish to use rules to

accumulate data across this message set. Each time a message is received, the rules will be

fired within the context of a single Stateful Session. The active Session can be disposed of

(reset) via the “dispose” property.

Note

a. A single, synchronized Session instance is shared across all concurrent

executions of a Stateful Session deployments. This greatly limits the type of

usecase for which the Stateful deployment model is applicable. If multiple,

client oriented sessions are required per Service deployment, consider using

a jBPM/BPEL solution.

b. Stateful Sessions are not persistent and are therefore volatile in nature.

c. Stateful Sessions are not clustered.

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"

 name="OrderDiscountMultipleRuleServiceStateful">

 <property name="ruleSet"

 Configuration

27

 value="drl/OrderDiscountOnMultipleOrders.drl" />

 <property name="ruleReload" value="false" />

 <property name="stateful" value="true" >

 <property name="object-paths">

 <object-path esb="body.Customer" />

 <object-path esb="body.Order" />

 </property>

</action>

3. Rules are in a drl, execution is stateful, audit logging is enabled, and the Drools clockType,

eventProcessingType and channels are set to aid in Complex Event Processing (CEP).

In this scenario, a service may want to perform Drools audit logging so that the Drools Eclipse

editor can parse the audit file for debugging. It also wants to specify a specific clock type or

event processing type for CEP. Last it wants to specify Drools “Channels” to send Objects to

(“Channels” used to be known as “ExitPoints”).

Note

a. A CEP scenario is a stateful scenario, and thus is shared across all concurrent

executions of a Stateful Session deployment, just like in the Example above.

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"

 name="OrderEventsRuleServiceStateful">

 <property name="ruleSet" value="drl/OrderEvents.drl" />

 <property name="ruleReload" value="false" />

 <property name="stateful" value="true" >

 <property name="ruleFireMethod" value="FIRE_UNTIL_HALT" />

 <property name="ruleAuditType" value="THREADED_FILE" />

 <property name="ruleAuditFile" value="myaudit" />

 <property name="ruleAuditInterval" value="1000" />

 <property name="ruleClockType" value="REALTIME" />

 <property name="ruleEventProcessingType" value="STREAM" />

 <property name="object-paths">

 <object-path esb="body.OrderStatus"

 entry-point="OrderStatusStream" />

 <object-path esb="body.OrderInfo"

 entry-point="OrderInfoStream" />

 </property>

 <property name="channels">

 <!-- chan1 and chan2 are equivalent

 (but timeout only applies if async is false) -->

Chapter 2. Rule Services

28

 <send-to channel-name="chan1"

 service-category="cat1" service-name="svc1" />

 <send-to channel-name="chan2"

 service-category="cat1" service-name="svc1"

 channel-class="org.jboss.soa.esb.services.rules.ServiceChannel"

 async="true" timeout="30000"

 set-payload-location="org.jboss.soa.esb.message.defaultEntry" />

 <!-- chan3 is a custom channel -->

 <send-to channel-name="chan3"

 channel-class="com.example.MyChannel" />

 </property>

</action>

4. Rules are in a Domain Specific Language, execution is stateless:

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"

 name="PolicyApprovalRuleService">

 <property name="ruleSet" value="dsl/approval.dslr" />

 <property name="ruleLanguage" value="dsl/acme.dsl" />

 <property name="ruleReload" value="true" />

 <property name="object-paths">

 <object-path esb="body.Driver" />

 <object-path esb="body.Policy" />

 </property>

</action>

5. Rules are in a DecisionTable, execution is stateless:

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"

 name="PolicyPricingRuleService">

 <property name="decisionTable"

 value="decisionTable/PolicyPricing.xls" />

 <property name="ruleReload" value="true" />

 <property name="object-paths">

 <object-path esb="body.Driver" />

 <object-path esb="body.Policy" />

 </property>

</action>

6. Rules are in the BRMS, execution is stateless.

 Configuration

29

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"

 name="RuleAgentPolicyService">

 <property name="ruleAgentProperties"

 value="ruleAgent/brmsdeployedrules.properties" />

 <property name="object-paths">

 <object-path esb="body.Driver" />

 <object-path esb="body.Policy" />

 </property>

</action>

The action attributes to the action tag are show in Table 1. The attributes specify which action is

to be used and which name this action is to be given.

BusinessRulesProcessor Action Configuration Attributes

Attribute: Class

Description: Action class

Attribute: Name

Description: Custom action name

The action properties are shown in Table 2. The properties specify the set of rules (ruleSet) to

be used in this action.

BusinessRulesProcessor Action Configuration Properties

Property: ruleSet

Description: Optional reference to a file containing the Drools ruleSet. The set of rules that is

used to evaluate the content. Only 1 ruleSet can be given for each rule service instance.

Property: ruleLanguage

Description: Optional reference to a file containing the definition of a Domain Specific Language

to be used for evaluating the rule set. If this is used, the file in ruleSet should be a dslr file.

Property: ruleReload

Description: Optional property which can be to true to enable 'hot' redeployment of rule sets.

Note that this feature will cause some overhead on the rules processing. Note that rules will also

reload if the .esb archive in which they live is redeployed.

Property: decisionTable

Description: This is an optional reference to a file containing the definition of a rule-specification

spreadsheet.

Property: ruleAgentProperties

Description: Optional reference to a properties file containing the location (URL or file path) to the

compiled rule package(s). Note there is no need to specify ruleReload with a KnowledgeAgent,

since this is controlled through the Drools resource scanning/notification system.

Property: stateful

Chapter 2. Rule Services

30

Description: Optional property which can be to true to specify that the rule service will receive

multiple messages over time that will add fact to the rule engine working memory and re-execute

the rules. NOTE: A single shared session is shared across all Service executions.

Property: object-paths

Description: Optional property to pass Message objects into Drools WorkingMemory.

Property: ruleFireMethod

Description: Optional property to define the stateful rule execution method. Valid values are

FIRE_ALL_RULES (the default) and FIRE_UNTIL_HALT (which will kick off it's own Thread -

useful for Complex Event Processing "CEP")

Property: ruleAuditType

Description: Optional property to have Drools perform audit logging. The log can be read into the

Drools Eclipse plugin and inspected. Valid values are CONSOLE, FILE and THREADED_FILE.

The default is that no audit logging will be performed.

Property: ruleAuditFile

Description: Optional property to define the filepath for audit logging. Only applies to FILE or

THREADED_FILE ruleAuditType. The default is "event". Note that JBoss Drools will append ".log"

for you. The default location for this file is "." - the current working directory (which for JBoss is

in its bin/ directory).

Property: ruleAuditInterval

Description: Optional property to define how often to flush audit events to the audit log. Only

applies to the THREADED_FILE ruleAuditType. The default is 1000 (milliseconds).

Property: ruleClockType

Description: Optional property to define the clock used by JBoss Drools. Valid values are

REALTIME and PSEUDO. The default is REALTIME.

Property: ruleEventProcessingType

Description: Optional property to define the event processing option used by Drools. The valid

values are CLOUD or STREAM (useful for CEP). The default is CLOUD.

Property: channels

Description: Optional property to define any Channels a rule can send Objects to. The Channel

concept used to be known as an ExitPoint. Please refer to the "Channels" section below.

2.2.5. Object Paths

Note

Drools treats objects as shallow objects to achieve highly optimized performance,

so what if you want to evaluate an object deeper in the object tree? An the optional

'object-paths' property can be used, which results in the extraction of objects from

the message, using an “ESB Message Object Path”. MVEL is used to extract the

object and the path used should follow the syntax:

location.objectname.[beanname].[beanname]...

 Channels

31

where,

• location : one of {body, header, properties, attachment}

• objectname: name of the object name, attachments can be named or numbered, so for

attachments this can be a number too.

• beannames: optionally you traverse a bean graph by specifying bean names

examples:

MVEL Expressions

Expression: properties.Order

Result: gets the property object named "Order"

Expression: attachment.1

Result: gets the first attachment Object

Expression: attachment.AttachmentOne

Result: gets the attachment named 'FirstAttachment'

Expression: attachment.1.Order

Result: gets getOrder() return object on the attached Object.

Expression: body.Order1.lineitem

Result: obtains the object named "Order1" from the body of the message. Next it will call

getLineitem() on this object. More elements can be added to the query to traverse the bean graph.

Important

Remember that you have to add java import statements on the objects you import

into your rule set.

Finally, the Object Mapper can flatten out entire collections. For example a collectoin Orders will

be unrolled, and each order object inserted into working memory.

2.2.6. Channels

To send an Object to a Drools Channel in DRL, the syntax is very simple and goes on the RHS

(Right Hand Side) of the rule definition:

channels["mychannel"].send(myobject);

For this DRL to be functional, the "mychannel" channel needs to be registered to do this you add a

"channels" property section to the jboss-esb.xml configuration. You can define as many Channels

as you want, for the same or for different Channel names. (For a particular Channel name, the

Chapter 2. Rule Services

32

Channels will be executed in the same order as they appear in the configuration.) The types of

Channels supported are:

• The ServiceChannel, which is provided out-of-the-box. All you have to do, as attributes to the

send-to element, is specify the channel-name, service-category and service-name. There are

also the optional async, timeout and set-payload-location (where the Object sent to that channel

will be placed in a new ESB Message) attributes as described above. Under the covers, the

ServiceInvoker is used to send the newly created ESB message to the target Service.

<property name="channels">

 <send-to channel-name="mychannel"

 service-category="cat1" service-name="svc1" />

</property>

Important

Make sure you have invmScope="GLOBAL" defined on the target Service.

• Custom Channels. you can specify your own org.drools.runtime.Channel implementation

class. The send-to attribute for this is channel-class. Your implementation requires a public

no-arg constructor. If you want your implementation to be configurable, also implement the

org.jboss.soa.esb.Configurable interface, and your setConfiguration(ConfigTree) method

will be called, passing in the attributes and (sub) property elements to your custom Channel.

<property name="channels">

 <send-to channel-name="mychannel"

 channel-class="com.example.MyChannel" />

</property>

2.2.7. Deploying and Packaging

It is recommended that you package up your code into units of functionality, using .esb packages.

The idea is to package up your routing rules alongside the rule services that use the rule sets. The

below shows a layout of the business_rules_service quickstart to demonstrate a typical package.

.Quickstart_business_rules_service.esb

| jbm-queue-service.xml

| MyBusinessRules.drl

| MyBusinessRulesDiscount.drl

| MyRoutingRules.drl

 Deploying and Packaging

33

| smooks-res.xml

|

+---META-INF

| deployment.xml

| jboss-esb.xml

| MANIFEST.MF

|

\---org

 \---jboss

 \---soa

 \---esb

 \---dvdstore

 | Customer.class

 | OrderHeader.class

 | OrderItem.class

 \---samples

 \---quickstart

 \---businessrules

 | ReviewMessage.class

 \---test

 SendJMSMessage.class

Finally make sure to deploy and reference the jbrules.esb in your deployment.xml.

<jbossesb-deployment>

 <depends>jboss.esb:deployment=jbrules.esb</depends>

</jbossesb-deployment>

34

Chapter 3.

35

Content-Based Routing

3.1. What is Content-Based Routing?

3.1.1. Introduction

Typically, information within the ESB is conveniently packaged, transferred, and stored in the form

of a message. Messages are addressed to Endpoint References (services or clients), that identify

the machine/process/object that will ultimately deal with the content of the message. However,

what happens if the specified address is no longer valid? For example, the service has failed or

been removed from service? It is also possible that the service no longer deals with messages

of that particular type; in which case, presumably some other service still handles the original

function, but how should the message be handled? What if other services besides the intended

recipient are interested in the message's content? What if no destination is specified?

One possible solution to these problems is Content-Based Routing. Content-based routing seeks

to route messages, not by a specified destination, but by the actual content of the message itself.

In a typical application, a message is routed by opening it up and applying a set of rules to its

content to determine the parties interested in its content.

The ESB can determine the destination of a given message based on the content of that message,

freeing the sending application from having to know anything about where a message is going

to end up.

Content-based routing and filtering networks are extremely flexible and very powerful. When

built upon established technologies such as MOM (Message Oriented Middleware), JMS (Java

Message Services), and XML (Extensible Markup Language) they are also reasonably easy to

implement.

3.1.2. Simple example

Content-based routing systems are typically built around two types of entities: routers (of which

there may be only one) and services (of which there is usually more than one). Services are the

ultimate consumers of messages. How services publish their interest in specific types of messages

with the routers is implementation dependent, but some mapping must exist between message

type (or some aspect of the message content) and services in order for the router to direct the

flow of incoming messages.

Routers, as their name suggests, route messages. They examine the content of the messages

they receive, apply rules to that content, and forward the messages as the rules dictate.

In addition to routers and services, some systems may also include harvesters, which specialize

in finding interesting information, packaging it up as a formatted message before sending it to

a router. Harvesters mine many sources of information including mail transfer agent message

stores, news servers, databases and other legacy systems.

Chapter 3. Content-Based Routing

36

The diagram below illustrates a typical CBR architecture using an ESB. At the heart of the system,

represented by the cloud, is the ESB. Messages are sent from the client into the ESB, which

directs them to the Router. This is then responsible for sending the messages to their ultimate

destination (or destinations, as shown in this example).

3.2. Content-Based Routing using XPath

3.2.1. Introduction

An easy way of performing content based routing in JBoss ESB is is via the XPath rules provider

on the ContentBasedRouter action.

This provider is very easy to use and supports both inline and external rule definitions.

3.2.2. Inline Rule Definitions

Defining inline XPath routing rules is trivial. You just need to configure the “cbrAlias” property

to “XPath” and then define the routing rules in the <route-to> configurations in the container

destinations property.

<action class="org.jboss.soa.esb.actions.ContentBasedRouter" name="ContentBasedRouter">

 <property name="cbrAlias" value="XPath"/>

 <property name="destinations">

 External Rule Definitions

37

 <route-to service-category="BlueTeam" service-name="GoBlue" expression="/

Order[@statusCode='0']" />

 <route-to service-category="RedTeam" service-name="GoRed" expression="/

Order[@statusCode='1']" />

 <route-to service-category="GreenTeam" service-name="GoGreen" expression="/

Order[@statusCode='2']" />

 </property>

</action>

3.2.3. External Rule Definitions

Defining external XPath routing rules is also trivial. Again, you configure the “cbrAlias” property

to “XPath” and then

1. Define the routing expressions in a .properties file, where the property keys are the destination

names and the property values are the Xpath expressions for routing to the destination in

question.

2. Define the routing rules in the <route-to> configurations in the container destinations property,

with the “destination-name” attribute referring to the XPath rule key as defined in the

external .properties file.

<action class="org.jboss.soa.esb.actions.ContentBasedRouter" name="ContentBasedRouter">

 <property name="cbrAlias" value="XPath"/>

 <property name="ruleSet" value="/rules/xpath-rules.properties"/>

 <property name="ruleReload" value="true"/>

 <property name="destinations">

 <route-to destination-name="blue" service-category="BlueTeam" service-

name="GoBlue" />

 <route-to destination-name="red" service-category="RedTeam" service-

name="GoRed" />

 <route-to destination-name="green" service-category="GreenTeam" service-

name="GoGreen" />

 </property>

</action>

The XPath rules file is a simple .properties file as follows:

blue=/Order[@statusCode='0']

red=/Order[@statusCode='1']

green=/Order[@statusCode='2']

Chapter 3. Content-Based Routing

38

3.2.4. Namespaces

XML namespace prefix-to-uri mappings are defined in the <namespace> elements, contained

within the “namespaces” container property. Namespaces prefix-to-uri mappings are define in

exactly the same way for both inline and external rule definitions.

<action class="org.jboss.soa.esb.actions.ContentBasedRouter"

name="ContentBasedRouter">

 <property name="cbrAlias" value="XPath"/>

 <property name="namespaces">

 <route-to prefix="ord" uri="http://www.acne.com/order" />

 </property>

 <property name="destinations">

 <route-to service-category="BlueTeam"

 service-name="GoBlue" expression="/ord:Order[@statusCode='0']" />

 <route-to service-category="RedTeam"

 service-name="GoRed" expression="/ord:Order[@statusCode='1']" />

 <route-to service-category="GreenTeam"

 service-name="GoGreen" expression="/ord:Order[@statusCode='2']" />

 </property>

</action>

3.3. Content-Based Routing using Regex

3.3.1. Introduction

An easy way of performing content based routing in JBoss ESB is is via the Regex rules provider

on the ContentBasedRouter action.

This provider is very easy to use and supports both inline and external rule definitions.

3.3.2. Inline Rule Definitions

Defining inline Regex routing rules is trivial. You just need to configure the “cbrAlias” property

to “Regex” and then define the routing rules in the <route-to> configurations in the container

destinations property.

<action class="org.jboss.soa.esb.actions.ContentBasedRouter" name="ContentBasedRouter">

 <property name="cbrAlias" value="Regex"/>

 <property name="destinations">

 <route-to service-category="BlueTeam" service-name="GoBlue" expression="#*111#*" />

 <route-to service-category="RedTeam" service-name="GoRed" expression="#*222#*" />

 External Rule Definitions

39

 <route-to service-category="GreenTeam" service-

name="GoGreen" expression="#*333#*" />

 </property>

</action>

3.3.3. External Rule Definitions

Defining external XPath routing rules is also trivial. Again, you configure the “cbrAlias” property

to “Regex” and then

1. Define the routing expressions in a .properties file, where the property keys are the destination

names and the property values are the Regex expressions for routing to the destination in

question.

2. Define the routing rules in the <route-to> configurations in the container destinations property,

with the “destination-name” attribute referring to the Regex rule key as defined in the

external .properties file.

<action class="org.jboss.soa.esb.actions.ContentBasedRouter" name="ContentBasedRouter">

 <property name="cbrAlias" value="XPath"/>

 <property name="ruleSet" value="/rules/regex-rules.properties"/>

 <property name="ruleReload" value="true"/>

 <property name="destinations">

 <route-to destination-name="blue" service-category="BlueTeam" service-

name="GoBlue" />

 <route-to destination-name="red" service-category="RedTeam" service-

name="GoRed" />

 <route-to destination-name="green" service-category="GreenTeam" service-

name="GoGreen" />

 </property>

</action>

The XPath rules file is a simple .properties file as follows:

blue=#*111#*

red=#*222#*

green=#*333#*

Chapter 3. Content-Based Routing

40

3.4. Content-Based Routing Using Drools

3.4.1. Introduction

The Content Based Router (CBR) in the JBossESB uses Drools as its default rule provider engine.

JBossESB integrates with Drools through three different routing action classes,

• a routing rule set, written in Drools drl (and optionally dsl) language.

• The ESB Message content, either the serialized XML, or objects in the message, which is the

data going into the rules engine.

• destination(s) which is the result coming out of the rules engine.

When a message gets sent to the CBR, a certain rule set will evaluate the message content and

return a set of Service destinations. We discuss how a target rule set can be targeted, how the

message content is evaluated and what is done with the destination results.

3.4.2. Three Different Routing Action Classes

JBossESB ships with three slightly different routing action classes. Each of these action classes

implements an Enterprise Integration Pattern. For more information of the Enterprise Integration

Pattern you can check the JBossESB Wiki. The following actions are supported:

1. org.jboss.soa.esb.actions.ContentBasedRouter

Implements the Content Based Routing pattern. It routes a message to one or more destination

services based on the message content and the rule set it is evaluating it against. The

CBR throws an exception when no destinations are matched for a given rule set/message

combination. This action will terminate any further pipeline processing, so it should be the last

action of your pipeline.

2. org.jboss.soa.esb.actions.ContentBasedWireTap

Implements the WireTap pattern. The WireTap is an Enterprise Integration Pattern (EIP) where

a copy of the message is send to a control channel. The CBR-WT is identical in functionality

to the ContentBasedRouter, however it does not terminate the pipeline which makes it suitable

to be used as a WireTap.

3. org.jboss.soa.esb.actions.MessageFilter

Implements the Message-Filter pattern. The Message Filter pattern represents the case where

messages can simply be dropped if certain content requirements are not met. The CBR-MF is

identical in functionality to the ContentBasedRouter, but it does not throw an exception if the

rule set does not match any destinations. In this case the message is simply filter out.

 Rule-Set Creation

41

3.4.3. Rule-Set Creation

A rule set can be created using the JBoss Developer Studio which includes a plug-in for Drools.

Below is a screen shot of the plug-in. For a detailed discussion on rule creation and the Drools

language itself please see the Drools documention. To turn a regular ruleSet into a Countent

Based Routing RuleSet you must be evaluating an EsbMessage and the rule match should result

in a List of Strings containing the service destination names. To do this you need to make sure

you remember two things:

• your rule set imports the EsbMessage

import org.jboss.soa.esb.message.Message

• and your rule set defines

global java.util.List destinations;

which will make the list of destinations available to the ESB

Figure 3.1. Create a New Rule Set using the JBoss Developer Studio

Chapter 3. Content-Based Routing

42

The message will be asserted into the working memory of the rules engine. Figure 2 shows an

example where the MessageType is used to determine to which destination the Message is going

to be send. This particular ruleSet is shipped in the JBossESBRules.drl file and the rule checks

if the type is XML or Serializable.

3.4.4. XPath Domain Specific Language

For XML-based messages it is convenient to do XPath based evaluation. To support this we ship

a “Domain Specific Language” implementation which allows us to use XPath expressions in the

rule file. defined in the XPathLanguage.dsl. To use it you need to reference it in your ruleSet with:

expander XPathLanguage.dsl

Currently the XPath Language makes sure the message is of the type JBOSS_XML and it defines

1. xpathMatch “<element>”: yields true if an element by this name is matched.

2. xpathEquals “<element>”, “<value>”: yields true if the element is found and it's value equals

the value.

3. xpathGreaterThan “<element>”, “<value>”: yields true if the element is found and it's value is

greater than the value.

4. xpathLowerThan “<element>”, “<value>”: yields true if the element is found and it's value is

lower then the value.

3.4.4.1. XPath and namespaces

To use namespaces with XPath, one needs to specify which namespace prefixes are to be used in

the XPath expression. The namespace prefixes are specified as a comma separated list like this:

“prefix=uri,prefix=uri”. This can be accomplished for all the above types of XPath expressions:

1. xpathMatch expr "<expression>" use namespaces "<namepaces>"

2. xpathEquals expr "<expression>", "<value>" use namespaces "<namspaces>"

3. xpathGreaterThan "<expression>", "<value>" use namespaces "<namspaces>"

4. xpathLowerThan expr "<expression>", "<value>" use namespaces "<namespaces>"

Notice that the namespace aware statements differ in that they need the extra “expr” in front of the

XPath expression. This is do avoid colliding with the non XPath aware statements in the dsl file.

Note

The prefixes do not have to match those used in the xml to be evaluated, it only

matters that the URI is the same.

 XPath Domain Specific Language

43

The XPathLanguage.dsl is defined in a file called XPathLanguage.dsl, and can be customized if

needed, or you can define your own DSL altogether. The Quickstart called fun_cbr demonstrates

this use of XPath.

3.4.4.2. Configuration

Now that we have seen all the individual pieces how does it all tie together? It basically all comes

down to configuration at this point, which is all done in your jboss-esb.xml. The image shows a

service configuration fragment. In this fragment the service is listening on a JMS queue.

Each EsbMessage is passed on to in this case the ContentBasedRouter action class which is

loaded with a certain rule set. It sets the EsbMessage into Working Memory, fires the rules, obtains

the list of destinations and routes copies of the EsbMessage to these services. It uses the rule

set JbossESBRules.drl, which matches two destinations, name 'xml-destination' and 'serialized-

destination'. These names are mapped to real service names in the 'route-to' section.

<service

 category="MessageRouting"

 name="YourServiceName"

 description="CBR Service">

 <listeners>

 <jms-listener name="CBR-Listener"

 busidref="QueueA" maxThreads="1">

 </jms-listener>

 </listeners>

 <actions>

 <action class="org.jboss.soa.esb.actions.ContentBasedRouter"

 name="YourActionName">

 <property name="ruleSet" value="JBossESBRules.drl"/>

 <property name="ruleReload" value="true"/>

 <property name="destinations">

 <route-to destination-name="xml-destination"

 service-category="category01"

 service-name="jbossesbtest1" />

 <route-to destination-name="serialized-destination"

 service-category="category02"

 service-name="jbossesbtest2" />

 </property>

 <property name="object-paths">

 <object-path esb="body.test1" />

 <object-path esb="body.test2" />

 </property>

 </action>

 </actions>

Chapter 3. Content-Based Routing

44

 </service>

The action attributes to the action tag are show in the table below. The attributes specify which

action is to be used and which name this action is to be given.

Table 3.1. CBR Action Configuration Attributes

Attribute Description

Class Action class, one of : org.jboss.soa.esb.actions.ContentBasedRouter

org.jboss.soa.esb.actions.ContentBasedWireTap

org.jboss.soa.esb.actions.MessageFilter

Name Custom action name

The action properties are shown in the next table. The properties specify the set of rules (ruleSet)

to be used in this action.

Table 3.2. Action Configuration Properties

Property Description

ruleSet Name of the filename containing the Drools ruleSet. The set of rules that

is used to evaluate the content. Only 1 ruleSet can be given for each CBR

instance.

ruleLanguage Optional reference to a file containing the definition of a Domain Specific

Language to be used for evaluating the rule set.

ruleAgentPropertiesThis property points to a rule agent properties file located on the classpath.

The properties file can contain a property that points to precompiled rules

packages on the file system, in a directory, or identified by an URL for

integration with the BRMS. See the “KnowledgeAgent” section below for

more information.

ruleReload Optional property which can be to true to enable 'hot' redeployment of

rule sets. Note that this feature will cause some overhead on the rules

processing. Note that rules will also reload if the .esb archive in which they

live is redeployed.

stateful Optional property which tells the RuleService to use a stateful session

where facts will be remembered between invokations. See the “Stateful

Rules” section for more information about stateful rules.

destinations A set of route-to properties each containing the logical name of the

destination along with the Service category and name as referenced in the

registry. The logical name is the name which should be used in the rule

set.

object-paths Optional property to pass Message objects into Drools WorkingMemory.

ruleAuditType Optional property to have Drools perform audit logging. The log can

be read into the Drools Eclipse plugin and inspected. Valid values are

 XPath Domain Specific Language

45

Property Description

CONSOLE, FILE and THREADED_FILE. The default is that no audit

logging will be performed.

ruleAuditFile Optional property to define the filepath for audit logging. Only applies to

FILE or THREADED_FILE ruleAuditType. The default is "event". Note that

JBoss Drools will append ".log" for you. The default location for this file is

"." - the current working directory (which for JBoss is in its bin/ directory).

ruleAuditInterval Optional property to define how often to flush audit events to the audit log.

Only applies to the THREADED_FILE ruleAuditType. The default is 1000

(milliseconds).

3.4.4.3. Object Paths

Note

Drools treats objects as shallow objects to achieve highly optimized performance,

so what if you want to evaluate an object deeper in the object tree? An optional

'object-paths' property can be used, which results in the extraction of objects from

the message, using an “ESB Message Object Path”. MVEL is used to extract the

object and the path used should follow the syntax:

 location.objectname.[beanname].[beanname]...

where,

• location : one of {body, header, properties, attachment}

• objectname: name of the object name, attachments can be named or numbered, so for

attachments this can be a number too.

• beannames: optionally you traverse a bean graph by specifying bean names

examples:

• properties.Order, gets the property object named "Order"

• attachment.1, gets the first attachment Object

• attachment.FirstAttachment, gets the attachment named 'FirstAttachment'

• attachment.1.Order, gets getOrder() return object on the attached Object.

• body.Order1.lineitem, obtains the object named "Order1" from the body of the message. Next

it will call getLineitem() on this object. More elements can be added to the query to traverse

the bean graph.

Chapter 3. Content-Based Routing

46

Important

Remember that you have to add java import statements on the objects you import

into your rule set. Finally, the Object Mapper cannot flatten out entire collections,

so if you need to do that you have to perform a (Smooks-) transformation on the

message first, to unroll the collection..

3.4.4.4. Stateful Rules

Using stateful sessions means that facts will be remembered across invocations. When stateful

is set to true the working memory will not be disposed.

Stateful rule services must be told via message properties when to continue with a current stateful

session and when to dispose of it. To signal that you want to continue an existing stateful session

two message properties must be set:

message.getProperties().setProperty(#dispose#, false);

message.getProperties().setProperty(#continue#, true);

When one invokes the rules for the last time, one must set “dispose” to "true" so that the working

memory is disposed:

message.getProperties().setProperty(#dispose#, true);

message.getProperties().setProperty(#continue#, true);

Note

For more details about the RuleService please see RuleService chapter.

For an example of using stateful rules take a look at the business_ruleservice_stateful quickstart.

Note

1. A single, synchronized Session instance is shared across all concurrent

executions of a Stateful Session deployments. This greatly limits the type of

usecase for which the Stateful deployment model is applicable. If multiple, client

oriented sessions are required per Service deployment, consider using a jBPM/

BPEL solution.

 XPath Domain Specific Language

47

2. Stateful Sessions are not persistent and are therefore volatile in nature.

3. Stateful Sessions are not clustered.

3.4.4.5. KnowledgeAgent

By using the ruleAgentProperty property, you can use precompiled rules packages that can be

located on the local file system, in a local directory, or point to an URL. For information about the

configuration options that exist for the properties file please refer to the KnowledgeAgent section

of the Drools manual.

Note

For more details about the RuleService please see RuleService chapter.

Note

For an example of using a rule agent take a look at the

business_ruleservice_ruleAgent quickstart.

3.4.4.6. KnowledgeAgent and Business Rule Management System

By using the ruleAgentProperties property, you can effectively integrate your service with a

Business Rule Management System (BRMS). This can be accomplished by specifying a URL in

the rule agent properties file. For information about the how to configure the URL and the other

properties please refer to the KnowledgeAgent section of the Drools manual.

Note

For more details about the RuleService please see RuleService chapter.

Note

For information about the how to install and configure the BRMS please refer to

the Drools manual.

3.4.4.7. Executing Business Rules

Related to rule execution for routing is the rule execution to simply modifying

data in the message according to business rules. An example Quickstart called

Chapter 3. Content-Based Routing

48

business_rule_service demonstrates this use case. This quickstart uses the action class

org.jboss.soa.esb.actions.BusinessRulesProcessor

The functionality of the Business Rule Processor (BRP) is identical to the Content Based Router,

but it does not do any routing, instead it returns the modified EsbMessage for further action pipeline

processing. You may mix business and routing rules in one rule set if you wish to do so, but routing

will only occur if you use one of the three routing action classes mentioned earlier.

3.4.4.8. Changing RuleService implementations

If you would like to use a different RuleService then the default one that is shipped with JBossESB,

then this is possible by specifying the class you would like to use in the action configuration:

<property name="ruleServiceImplClass" value="org.com.YourRuleService" />

The requirement is that your rule service implements the interface:

org.jboss.soa.esb.services.rules.RuleService.

3.4.4.9. Deployment and Packaging

It is recommended that you package up your code into units of functionality, using .esb packages.

The idea is to package up your routing rules alongside the rule services that use the rule sets. The

example below shows a layout of the simple_cbr quickstart to demonstrate a typical package.

 simple_cbr.esb

| jbm-queue-service.xml

| SimpleCBRRules-XPath.drl

| SimpleCBRRules.drl

|

+---META-INF

| deployment.xml

| jboss-esb.xml

| MANIFEST.MF

|

\---org

 \---jboss

 \---soa

 \---esb

 \---samples

 \---quickstart

 \---simplecbr

 | MyJMSListenerAction.class

 | ReturnJMSMessage.class

 | RouteExpressShipping.class

Content-Based Routing Using Smooks

49

 | RouteNormalShipping.class

 |

 \---test

 ReceiveJMSMessage$1.class

 ReceiveJMSMessage.class

 SendJMSMessage.class

Finally make sure to deploy and reference the jbrules.esb in your deployment.xml.

<jbossesb-deployment>

 <depends>jboss.esb:deployment=jbrules.esb</depends>

</jbossesb-deployment>

3.5. Content-Based Routing Using Smooks

3.5.1. Introduction

The SmooksAction can be used for splitting HUGE messages into split fragments and performing

Content-Based Routing on these split fragments.

An example of this might be a huge order message with thousands/millions of order items per

message. You might need to split the order up by order item and route each order item split

fragment to one or more destinations based on the fragment content. This example can be

illustrated as follows:

Figure 3.2. Huge Message

Chapter 3. Content-Based Routing

50

The above illustration shows how we would like to perform the by-order-item splitting operation

and route the split messages to file. The split messages contain a full XML document with data

merged from the order header and the order item in question i.e. not just a dumb split. In this

illustration, we simply route all the message fragments to file, but with the Smooks Action, we

can also route the fragment messages to JMS and to a Database and in different formats (EDI,

populated Java Objects, etc).

The Smooks configuration for the above example would look as follows.

(1) <jb:bindings beanId="order" class="java.util.HashMap" createOnElement="order">

 <jb:value property="orderId" decoder="Integer" data="order/@id"/>

 <jb:value property="customerNumber" decoder="Long" data="header/customer/@number"/

>

 <jb:value property="customerName" data="header/customer"/>

 <jb:wiring property="orderItem" beanIdRef="orderItem"/>

 </jb:bindings>

(2) <jb:bindings beanId="orderItem" class="java.util.HashMap" createOnElement="order-

item">

 <jb:value property="itemId" decoder="Integer" data="order-item/@id"/>

 <jb:value property="productId" decoder="Long" data="order-item/product"/>

 <jb:value property="quantity" decoder="Integer" data="order-item/quantity"/>

 <jb:value property="price" decoder="Double" data="order-item/price"/>

 </jb:bindings>

(3) <file:outputStream openOnElement="order-item" resourceName="orderItemSplitStream">

 <file:fileNamePattern>

 order-${order.orderId}-${order.orderItem.itemId}.xml

 </file:fileNamePattern>

 <file:destinationDirectoryPattern>target/orders</file:destinationDirectoryPattern>

 <file:listFileNamePattern>order-${order.orderId}.lst</file:listFileNamePattern>

 <file:highWaterMark mark="3"/>

 </file:outputStream>

(4) <ftl:freemarker applyOnElement="order-item">

 <ftl:template>target/classes/orderitem-split.ftl</ftl:template>

 <ftl:use>

 <ftl:outputTo outputStreamResource="orderItemSplitStream"/>

 </ftl:use>

 </ftl:freemarker>

Resource configurations #1 and #2 are there to bind data from the source message into Java

Objects in the Smooks bean context. In this case, we're just binding the data into HashMaps. The

 Introduction

51

Map being populated in configuration #2 is recreated and repopulated for every order item as the

message is being filtered. The populated Java Objects (from resources #1 and #2) are used to

populate a FreeMarker template (resource #4), which gets applied on every order item, with the

result of the templating operation being output to a File OutputStream (resource #3). The File

OutputStream (resource #3) also gets applied on every order item, managing the file output for

the split messages.

What the above does not show is how to perform the content based routing using <condition>

elements on the resources. It also doesn't demonstrate how to route fragments to to message

aware endpoints. We will be adding a quickstart dedicated to demoing these features of the ESB.

Check the User Forum for details.

JBossESB 4.8 upgrades to Smooks v1.1, which means that the split described above can be done

without having to define the binding configurations (#1 and #2). For more on how to do this, see

the documentation on “FreeMarker Transforms using NodeModels” in section 4 of the Smooks

User Guide.

52

Chapter 4.

53

Message Transformation

4.1. Overview

JBoss ESB supports message data transformation through a number of mechanisms:

• Smooks: Smooks is, among other things, a Fragment based Data Transformation and Analysis

tool (XML, EID, CSV, Java etc). It supports a wide range of data processing and manipulation

features

• XSLT: JBoss ESB supports message transformation through the standard XSLT usage model,

as well as through the Smooks.

• ActionProcessor Data Transformation: Where Smooks can not handle a specific transformation

usecase, you can implement a custom transformation solution through implementation of the

org.jboss.soa.esb.actions.ActionProcessor interface.

4.2. Smooks

Message Transformation on JBossESB is supported by the SmooksAction component. This is an

ESB Action component that allows the Smooks Data Transformation/Processing Framework to

be plugged into an ESB Action Processing Pipeline.

A wide range of source (XML, CSV, EDI, Java etc) and target (XML, Java, CSV, EDI etc)

data formats are supported by the SmooksAction component. A wide range of Transformation

Technologies are also supported, all within a single framework. See the Message Action Guide

for more details.

4.2.1. Samples and Tutorials

1. A number of Transformation Quickstart samples accompany the JBossESB distribution (http://

community.jboss.org/wiki/jbossesb). Check out the "transform_*" Quickstarts 1

2. A number of tutorials are available online on the Smooks website (http://www.smooks.org/

mediawiki/index.php?title=Main_Page). Any of these samples can be easily ported to

JBossESB (http://community.jboss.org/wiki/jbossesb).

1 Note that some of the ESB Quickstarts are still using the older “SmooksTransformer” action class. The SmooksAction

is a more flexible and easier to use alternative to the SmooksTransformer. The SmooksTransformer will be deprecated

in a future release (and removed later again).

http://community.jboss.org/wiki/jbossesb
http://community.jboss.org/wiki/jbossesb
http://www.smooks.org/mediawiki/index.php?title=Main_Page
http://www.smooks.org/mediawiki/index.php?title=Main_Page
http://community.jboss.org/wiki/jbossesb

Chapter 4. Message Tran...

54

4.3. XSL Transformations

Note

XSLT transformation are supported by the XstlAction. Please see the section

“XSLTAction” in the ProgrammersGuide for more information.

Chapter 5.

55

jBPM Integration

5.1. Introduction

JBoss jBPM is a powerful workflow and BPM (Business Process Management) engine. It enables

the creation of business processes that coordinate between people, applications and services.

With its modular architecture, JBoss jBPM combines easy development of workflow applications

with a flexible and scalable process engine. The JBoss jBPM process designer graphically

represents the business process steps to facilitate a strong link between the business analyst and

the technical developer. This document assumes that you are familiar with jBPM. If you are not

you should read the jBPM documentation [TB-JBPM-USER] first. JBossESB integrates the jBPM

so that it can be used for two purposes:

1. Service Orchestration

ESB services can be orchestrated using jBPM. You can create a jBPM process definition which

makes calls into ESB services.

2. Human Task Management

jBPM allows you to incorporate human task management integrated with machine based

services.

5.2. Integration Configuration

The jbpm.esb deployment that ships with the ESB includes the full jBPM runtime and the

jBPM console. The runtime and the console share a common jBPM database. The ESB

DatabaseInitializer mbean creates this database on startup. The configuration for this mbean is

found in the file jbpm.esb/jbpm-service.xml.

<classpath codebase="deploy" archives="jbpm.esb"/>

<classpath codebase="deploy/jbossesb.sar/lib"

 archives="jbossesb-rosetta.jar"/>

<mbean code="org.jboss.internal.soa.esb.dependencies.DatabaseInitializer"

 name="jboss.esb:service=JBPMDatabaseInitializer">

 <attribute name="Datasource">java:/JbpmDS</attribute>

 <attribute name="ExistsSql">select * from JBPM_ID_USER</attribute>

 <attribute name="SqlFiles">

 jbpm-sql/jbpm.jpdl.hsqldb.sql,jbpm-sql/import.sql

 </attribute>

 <depends>jboss.jca:service=DataSourceBinding,name=JbpmDS</depends>

</mbean>

Chapter 5. jBPM Integra...

56

<mbean code="org.jboss.soa.esb.services.jbpm.configuration.JbpmService"

 name="jboss.esb:service=JbpmService">

</mbean>

The first Mbean configuration element contains the configuration for the DatabaseInitializer. By

default the attributes are configured as follows:

Table 5.1. ESB DatabaseInitializer M-Bean Default Values

Property Description Default

Data Source The data source for the jBPM database java:/JbpmDS

ExistsSql Use this SQL command to confirm the

existence of the database.

Select * from

JBPM_ID_USER

SqlFiles These files contain the SQL commands to

create the jBPM database if it is not found.

jbpm-sql/jbpm.jpdl.hsqldb.sql,

jbpm-sql/import.sql

The DatabaseInitializer mbean is configured in jbpm-service.xml to wait for the JbpmDS to be

deployed, before deploying itself. The second mbean “JbpmService” ties the lifecycle of the jBPM

job executor to the jbpm.esb lifecycle - it starts a job executor instance on startup and stops

it on shutdown. The JbpmDS datasource is defined in the jbpm-ds.xml and by default it uses

a HSQL database. In production you will want change to a production strength database. All

jbpm.esb deployments should share the same database instance so that the various ESB nodes

have access to the same processes definitions and instances.

The jBPM console is a web application accessible at http://localhost:8080/jbpm-console, when

you start the server. The login screen is shown below.

Figure 5.1. jBPM Console Log In

Please check the jBPM documentation [TB-JBPM-USER] to change the security settings for this

application, which will involve change some settings in the conf/login-config.xml. The console can

be used for deploying and monitoring jBPM processes, but is can also be used for human task

http://localhost:8080/jbpm-console

 Integration Configuration

57

management. For the different users a customized task list will be shown and they can work on

these tasks. The quickstart bpm_orchestration4 [JBESB-QS] demonstrates this feature.

The jbpm.esb/META-INF directory contains the deployment.xml and the jboss-esb.xml. The

deployment.xml specifies the resources this esb archive depends on:

<jbossesb-deployment>

 <depends>jboss.esb:deployment=jbossesb.esb</depends>

 <depends>jboss.jca:service=DataSourceBinding,name=JbpmDS</depends>

</jbossesb-deployment>

The jboss-esb.xml file deploys one internal service, called JBpmCallbackService:

<services>

 <service category="JBossESB-Internal" name="JBpmCallbackService"

 description="Service which makes Callbacks into jBPM">

 <listeners>

 <jms-listener name="JMS-DCQListener"

 busidref="jBPMCallbackBus" maxThreads="1" />

 </listeners>

 <actions mep="OneWay">

 <action name="action"

 class="org.jboss.soa.esb.services.jbpm.actions.JBpmCallback"/>

 </actions>

 </service>

</services>

This service listens to the jBPMCallbackBus, which by default is a JMS Queue on either a

JBossMQ (jbmq-queue-service.xml) or a JBossMessaging (jbm-queue-service.xml) messaging

provider. Make sure only one of these files gets deployed in your jbpm.esb archive. If you want to

use your own provider simple modify the provider section in the jboss-esb.xml to reference your

JMS provider. shown in this example:

<providers>

 <jms-provider name="CallbackQueue-JMS-Provider"

 connection-factory="ConnectionFactory">

 <jms-bus busid="jBPMCallbackBus">

 <jms-message-filter dest-type="QUEUE"

 dest-name="queue/CallbackQueue" />

 </jms-bus>

 </jms-provider>

Chapter 5. jBPM Integra...

58

</providers>

Note

For more details on what the JbpmCallbackService does, please see the “jBPM to

ESB” section later on in this chapter.

5.3. jBPM configuration

The configuration of jBPM itself is managed by three files, the jbpm.cfg.xml and the

hibernate.cfg.xml and the jbpm.mail.templates.xml.

By default the jbpm.cfg.xml is set to use the JTA transacion manager, as defined in the section:

<service name="persistence">

 <factory>

 <bean class="org.jbpm.persistence.jta.JtaDbPersistenceServiceFactory">

 <field name="isTransactionEnabled"><false/></field>

 <field name="isCurrentSessionEnabled"><true/></field>

 <!--field name="sessionFactoryJndiName">

 <string value="java:/myHibSessFactJndiName" />

 </field-->

 </bean>

 </factory>

</service>

Other settings are left to the default jBPM settings.

The hibernate.cfg.xml is also slightly modified to use the JTA transaction manager

<!-- JTA transaction properties (begin) ===

 ==== JTA transaction properties (end) -->

<property name="hibernate.transaction.factory_class">

 org.hibernate.transaction.JTATransactionFactory</property>

<property name="hibernate.transaction.manager_lookup_class">

 org.hibernate.transaction.JBossTransactionManagerLookup</property>

Hibernate is not used to create the database schema, instead we use our own DatabaseInitiazer

mbean, as mentioned in the previous section.

 Creation and Deployment of a Process Definition

59

The jbpm.mail.templates.xml is left empty by default. For each more details on each of these

configuration files please see the jBPM documentation.

Important

The configuration files that usually ship with the jbpm-console.war have been

removed so that all configuration is centralized in the configuration files in the root

of the jbpm.esb archive.

5.4. Creation and Deployment of a Process Definition

To create a Process Definition we recommend using the eclipse based jBPM Process Designer

Plugin [KA-JBPM-GPD]. You can either download and install it to eclipse yourself, or use JBoss

Developer Studio. The image below shows the graphical editor.

Figure 5.2. JBoss Developer Studio - jBPM Graphical Editor

Chapter 5. jBPM Integra...

60

The graphical editor allows you to create a process definition visually. Nodes and transitions

between nodes can be added, modified or removed. The process definition saves as an XML

document which can be stored on a file system and deployed to a jBPM instance (database).

Each time you deploy the process instance jBPM will version it and will keep the older copies.

This allows processes that are in flight to complete using the process instance they were started

on. New process instances will use the latest version of the process definition.

To deploy a process definition the server needs to be up and running. Only then can you go to

the 'Deployment' tab in the graphical designer to deploy a process archive (par). Figure 3 shows

the “Deployment” tab view.

Figure 5.3. JBoss Developer Studio - jBPM Deployment View

In some cases it would suffice to deploy just the processdefinition.xml, but in most cases you

will be deploying other type of artifacts as well, such as task forms. It is also possible to deploy

Java classes in a par, which means that they end up in the database where they will be stored

 JBossESB to jBPM

61

and versioned. However it is strongly discouraged to do this in the ESB environment as you will

risk running into class loading issues. Instead we recommend deploying your classes in the lib

directory of the server. You can deploy a process definition

1. straight from the eclipse plugin, by clicking on the “Test Connection..” button and, on success,

by clicking on the “Deploy Process Archive” button,

2. by saving the deployment to a par file and using the jBPM console to deploy the archive, see

Figure 4, or finally,

3. by using the DeployProcessToServer jBPM ant task.

Figure 5.4. jBPM Console - Uploading a New Process Definition

5.5. JBossESB to jBPM

JBossESB can make calls into jBPM using the BpmProcessor action. This action uses the jBPM

command API to make calls into jBPM. The following jBPM commands have been implemented:

Table 5.2. jBPM commands

Command Description

NewProcessInstanceCommand Start a new ProcessInstance given a process

definition that was already deployed to jBPM.

This command leaves the Process Instance in

the start state, which would be needed if there

is an task associated to the Start node (i.e.

some task on some actor's tasklist). In most

cases however you would like the new Process

Instance to move to the first node, which is

where the next command comes in.

StartProcessInstanceCommand Identical to the

NewProcessInstanceCommand, but

additionally the new Process Instance is

moved from the Start position into the first

Node.

GetProcessInstanceVariablesCommand The the root node variables for a process

instance, using the process instance ID.

Chapter 5. jBPM Integra...

62

Command Description

CancelProcessInstanceCommand Cancel a ProcessInstance. i.e. when an

event comes in which should result in the

cancellation of the entire ProcessInstance.

This action requires some jBPM context

variables to be set on the message, in

particular the ProcessInstance Id. Details on

that are discussed later.

The configuration for this action in the jboss-esb.xml looks like

<action name="create_new_process_instance"

 class="org.jboss.soa.esb.services.jbpm.actions.BpmProcessor">

 <property name="command" value="StartProcessInstanceCommand" />

 <property name="process-definition-name" value="processDefinition2"/>

 <property name="actor" value="FrankSinatra"/>

 <property name="esbToBpmVars">

 <!-- esb-name maps to getBody().get("eVar1") -->

 <mapping esb="eVar1" bpm="counter" default="45" />

 <mapping esb="BODY_CONTENT" bpm="theBody" />

 </property>

</action>

There are two required action attributes:

1. name

Required attribute. You are free to use any value for the name attribute as long as it is unique

in the action pipeline.

2. class

Required attribute. This attributes needs to be set to

“org.jboss.soa.esb.services.jbpm.actions.BpmProcessor”

Furthermore one can configure the following configuration properties:

Table 5.3. Configuration Properties

Property Description Required?

command Needs to be one of: NewProcessInstanceCommand,

StartProcessInstanceCommand,

Yes

 JBossESB to jBPM

63

Property Description Required?

GetProcessInstanceVariablesCommand or

CancelProcessInstanceCommand.

process-definition-name required property for the

NewProcessInstanceCommand and

StartProcessInstanceCommand if the process-

definition-id property is not used. The value of this

property should reference a process definition that is

already deployed to jBPM and of which you want to

create a new instance. This property does not apply

to the CancelProcessInstanceCommand.

Sometimes

process-definition-id required property for the

NewProcessInstanceCommand and

StartProcessInstanceCommand if the process-

definition-name property is not used. The value of

this property should reference a process definition

id in jBPM of which you want to create a new

instance. This property does not apply to the

CancelProcessInstanceCommand.

Sometimes

actor specifies the jBPM actor id, which applies

to the NewProcessInstanceCommand and

StartProcessInstanceCommand only.

No

key optional property to specify the value of the jBPM key.

For example one can pass a unique invoice id as the

value for this key. On the jBPM side this key is as

the “business” key id field. The key is a string based

business key property on the process instance. The

combination of business key + process definition

must be unique if a business key is supplied. The key

value can hold an MVEL expression to extract the

desired value from the EsbMessage. For example if

you have a named parameter called “businessKey”

in the body of your message you would use

“body.businessKey”. Note that this property is

used for the NewProcessInstanceCommand and

StartProcessInstanceCommand only.

No

transition-name This property only applies to the

StartProcessInstanceCommand, and is of use only

if there are more then one transition out of the

current node. If this property is not specified the

default transition out of the node is taken. The

default transition is the first transition in the list

No

Chapter 5. jBPM Integra...

64

Property Description Required?

of transition defined for that node in the jBPM

processdefinition.xml.

esbToBpmVars optional property for the

NewProcessInstanceCommand and

StartProcessInstanceCommand. This property

defines a list of variables that need to be extracted

from the EsbMessage and set into jBPM context for

the particular process instance. The list consists of

mapping elements. Each mapping element can have

the following attributes:

• esb

required attribute which can contain an MVEL

expression to extract a value anywhere from the

EsbMessage.

• bpm

optional attribute containing the name which be

used on the jBPM side. If omitted the esb name is

used.

• default

optional attribute which can hold a default value if

the esb MVEL expression does not find a value set

in the EsbMessage.

• bpmToEsbVars

structurally identical to the “esbToBpmVars”

property (above). Used with the

GetProcessInstanceVariablesCommand for

mapping jBPM process instance variables (root

token variables) onto the ESB message.

• reply-to-originator

Optional property for the

NewProcessInstanceCommand and

StartProcessInstanceCommand. If this property is

specified, with a value of true, then the creation

of the process instance will store the ReplyTo/

FaultTo EPRs of the invoking message within the

No

 Exception Handling JBossESB to jBPM

65

Property Description Required?

process instance. These values can then be used

within subsequent EsbNotifier/EsbActionHandler

invocations to deliver a message to the ReplyTo/

FaultTo addresses.

Finally some variables can be set on the body of the EsbMessage:

Table 5.4. Body Configuration Properties

Property Description Required?

jbpmProcessInstId required ESB message Body parameter that applies

to the GetProcessInstanceVariablesCommand and

CancelProcessInstanceCommand commands. It is

up to the user make sure this value is set as a named

parameter on the EsbMessage body.

Yes

5.5.1. Exception Handling JBossESB to jBPM

For ESB calls into jBPM an exception of the type JbpmException can be thrown from the jBPM

Command API. This exception is not handled by the integration and we let it propagate into

the ESB Action Pipeline code. The action pipeline will log the error, send the message to the

DeadLetterService (DLS), and send the an error message to the faultTo EPR, if a faultTo EPR

is set on the message.

5.6. jBPM to JBossESB

The JBossESB to jBPM maybe interesting but the other way around is probably far more

interesting jBPM to JBossESB communication provides us with the capability to use jBPM for

service orchestration. Service Orchestration itself will be discussed in more detail in the next

chapter and here we're focusing on the details of the integration first. The integration implements

two jBPM action handler classes. The classes are “EsbActionHandler” and “EsbNotifier”. The

EsbActionHandler is a request-reply type action, which drops a message on a Service and then

waits for a response while the EsbNotifier only drops a message on a Service and continues its

processing. The interaction with JBossESB is asynchronous in nature and does not block the

process instance while the Service executes. First we'll discuss the EsbNotifier as it implements

a subset of the configuration of EsbActionHandler class.

5.6.1. EsbNotifier

The EsbNotifier action should be attached to an outgoing transition. This way the jBPM processing

can move along while the request to the ESB service is processed in the background. In the jBPM

processdefinition.xml we would need attach the EsbNotifier to the outgoing transition. For example

the configuration for a “Ship It” node could look like:

Chapter 5. jBPM Integra...

66

<node name="ShipIt">

 <transition name="ProcessingComplete" to="end">

 <action name="ShipItAction"

 class="org.jboss.soa.esb.services.jbpm.actionhandlers.EsbNotifier">

 <esbCategoryName>BPM_Orchestration4</esbCategoryName>

 <esbServiceName>ShippingService</esbServiceName>

 <bpmToEsbVars>

 <mapping bpm="entireCustomerAsObject" esb="customer" />

 <mapping bpm="entireOrderAsObject" esb="orderHeader" />

 <mapping bpm="entireOrderAsXML" esb="entireOrderAsXML" />

 </bpmToEsbVars>

 </action>

 </transition>

</node>

The following attributes can be specified:

• name

required attribute. User specified name of the action

• class

required attribute. Required to be set to

org.jboss.soa.esb.services.jbpm.actionhandlers.EsbNotifier

The following subelements can be specified:

• esbCategoryName – The category name of the ESB service, required if not using the reply-to-

originator functionality.

• esbServiceName – The name of the ESB service, required if not using the reply-to-originator

functionality.

• replyToOriginator – Specify the 'reply' or 'fault' originator address previously stored in the

process instance on creation.

• globalProcessScope - optional element. This boolean valued parameter sets the default scope

in which the bpmToEsbVars are looked up. If the globalProcessScope is set to true the variables

are looked for up the token hierarchy (= process-instance scope). If set to false it retrieves the

variables in the scope of the token. If the given token does not have a variable for the given

name, the variable is searched for up the token hierarchy. If omitted the globalProcessScope

is set to false for retrieving variables.

• bpmToEsbVars – optional element. This element takes a list of mapping subelements to map

a jBPM context variable to a location in the EsbMessage. Each mapping element can have the

following attributes:

 EsbActionHandler

67

• bpm - required attribute. The name of the variable in jBPM context. The name can be MVEL

type expression so you can extract a specific field from a larger object. The MVEL root is set

to the jBPM “ContextInstance”, so for example you can use mapping like:

<mapping bpm="token.name" esb="TokenName" />

<mapping bpm="node.name" esb="NodeName" />

<mapping bpm="node.id" esb="esbNodeId" />

<mapping bpm="node.leavingTransitions[0].name" esb="transName" />

<mapping bpm="processInstance.id" esb="piId" />

<mapping bpm="processInstance.version" esb="piVersion" />

and one can reference jBPM context variable names directly.

• esb – optional attribute. The name of the variable on the EsbMessage. The name can be a

MVEL type expression. By default the variable is set as a named parameter on the body of

the EsbMessage. If you decide to omit the esb attribute, the value of the bpm attribute is used.

• default – optional attribute. If the variable is not found in jBPM context the value of this field

is taken instead.

• process-scope – optional attribute. This boolean valued parameter can override the setting

of the setting of the globalProcessScope for this mapping.

Important

When working on variable mapping configuration it is recommended to turn on

debug level logging.

5.6.2. EsbActionHandler

The EsbActionHandler is designed to work as a reply-response type call into JBossESB. The

EsbActionHandler should be attached to the node. When this node is entered this action will be

called. The EsbActionHandler executes and leaves the node waiting for a transition signal. The

signal can come from any other thread of execution, but under normal processing the signal will

be sent by the JBossESB callback Service. An example configuration for the EsbActionHandler

could look like:

<action name="create_new_process_instance"

 class="org.jboss.soa.esb.services.jbpm.actions.BpmProcessor">

 <property name="command" value="StartProcessInstanceCommand" />

 <property name="process-definition-name" value="processDefinition2"/>

Chapter 5. jBPM Integra...

68

 <property name="actor" value="FrankSinatra"/>

 <property name="esbToBpmVars">

 <!-- esb-name maps to getBody().get("eVar1") -->

 <mapping esb="eVar1" bpm="counter" default="45" />

 <mapping esb="BODY_CONTENT" bpm="theBody" />

 </property>

</action>

The configuration for the EsbActionHandler action extends the EsbNotifier configuration. The

extensions are the following subelements:

Table 5.5. Sub-Elements

Property Description Required?

esbToBpmVars This subelement is identical to the esbToBpmVars

property mention in the previous section

“JBossESB to jBPM” for the BpmProcessor

configuration. The element defines a list of

variables that need to be extracted from the

EsbMessage and set into jBPM context for the

particular process instance, however, it should be

noted that the effect of the globalProcessScope

value, if not specified, will default to true when

setting variables. The list consists of mapping

elements. Each mapping element can have the

following attributes:

• esb – required attribute which can contain an

MVEL expression to extract a value anywhere

from the EsbMessage.

• bpm – optional attribute containing the name

which be used on the jBPM side. If omitted the

esb name is used.

• default – optional attribute which can hold a

default value if the esb MVEL expression does

not find a value set in the EsbMessage.

• process-scope – optional attribute. This

boolean valued parameter can override the

setting of the setting of the globalProcessScope

for this mapping.

No

 Exception Handling jBPM -> JBossESB

69

Property Description Required?

exceptionTransition The name of the transition that should be taken if

an exception occurs while processing the Service.

This requires the current node to have more then

one outgoing transition where one of the transition

handles “exception processing”.

No

Optionally you may want to specify a timeout value for this action. For this you can use a jBPM

native Timer on the node. If for example you only want to wait 10 seconds for the Service to

complete you could add

<timer name='timeout' duedate='10 seconds' transition='time-out'/>

to the node element. Now if no signal is received within 10 seconds of entering this node, the

transition called “time-out” is taken.

5.6.3. Exception Handling jBPM -> JBossESB

There are two types of scenarios where exceptions can arise.

1. The first type of exception is a MessageDeliveryException which is thrown by the

ServiceInvoker. If this occurs it means that delivery of the message to the ESB failed. If this

happens things are pretty bad and you have probably misspelled the name of the Service you

are trying to reach. This type of exception can be thrown from both the EsbNotifier as well as the

EsbActionHandler. In the jBPM node one can add an http://docs.jboss.com/jbpm/v3/userguide/

processmodelling.html [TB-JBPM-USER] to handle this exception.

2. The second type of exception is when the Service received the request, but something goes

wrong during processing. Only if the call was made from the EsbActionHandler does it makes

sense to report back the exception to jBPM. If the call was made from the EsbNotifier jBPM

processing has already moved on, and it is of little value to notify the process instance of the

exception. This is why the exception-transition can only be specified for EsbAction-Handler.

To illustrate the type of error handling that is now possible using standard jBPM features we will

discuss some scenarios illustrated below:

5.6.4. Scenerio One: Time-out

When using the EsbActionHandler action and the node is waiting for a callback, it maybe that you

want to limit how long you want to wait for. For this scenario you can add a timer to the node. This

is how Service1 is setup in Figure 5. The timer can be set to a certain due date. In this case it is

set to 10 seconds. The process definition configuration would look like

<node name="Service1">

http://docs.jboss.com/jbpm/v3/userguide/processmodelling.html
http://docs.jboss.com/jbpm/v3/userguide/processmodelling.html

Chapter 5. jBPM Integra...

70

 <action class=

 "org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler">

 <esbCategoryName>MockCategory</esbCategoryName>

 <esbServiceName>MockService</esbServiceName>

 </action>

 <timer name='timeout' duedate='10 seconds'

 transition='time-out-transition'/>

 <transition name="ok" to="Service2"></transition>

 <transition name="time-out-transition" to="ExceptionHandling"/>

</node>

Node “Service1” has 2 outgoing transitions. The first one is called “ok” while the second one

is called “time-out-transition”. Under normal processing the call back would signal the default

transition, which is the “ok” transition since it is defined first. However if the execution of the service

takes more then 10 seconds the timer will fire. The transition attribute of the timer is set to “time-

out-transition”,so this transition will be taken on time-out. In Figure 5 this means that the processing

ends up in the “ExceptionHandling” node in which one can perform compensating work.

 Scenario Two: Exception Transition

71

Figure 5.5. Three Exception Handling Scenarios: Time-Out, Exception-

Transition and Exception-Decision.

5.6.5. Scenario Two: Exception Transition

To handle exception that may occur during processing of the Service, one can define an

exceptionTransition. When doing so the faultTo EPR is set on the message such that the ESB will

make a callback to this node, signaling it with the exceptionTransition. Service2 has two outgoing

transitions. Transition “ok” will be taken under normal processing, while the “exception” transition

will be taken when the Service processing throws an exception. The definition of Service2 looks

like

<node name="Service2">

 <action class=

 "org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler">

 <esbCategoryName>MockCategory</esbCategoryName>

Chapter 5. jBPM Integra...

72

 <esbServiceName>MockService</esbServiceName>

 <exceptionTransition>exception</exceptionTransition>

 </action>

 <transition name="ok" to="Service3"></transition>

 <transition name="exception" to="ExceptionHandling"/>

</node>

where in the action, the exceptionTransition is set to “exception”. In this scenario the process also

ends in the “ExceptionHandling” node.

5.6.6. Scenario Three: Exception Decision

Scenario 3 is illustrated in the configuration of Service3 and the “exceptionDecision” node that

follows it. The idea is that processing of Service3 completes normally and the default transition

out of node Service3 is taken. However, somewhere during the Service execution an errorCode

was set, and the “exceptionDecision” node checks if a variable called “errorCode” was set. The

configuration would look like

<node name="Service3">

 <action class=

 "org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler">

 <esbCategoryName>MockCategory</esbCategoryName>

 <esbServiceName>MockService</esbServiceName>

 <esbToBpmVars>

 <mapping esb="SomeExceptionCode" bpm="errorCode"/>

 </esbToBpmVars>

 </action>

 <transition name="ok" to="exceptionDecision"></transition>

</node>

<decision name="exceptionDecision">

 <transition name="ok" to="end"></transition>

 <transition name="exceptionCondition" to="ExceptionHandling">

 <condition>#{ errorCode!=void }</condition>

 </transition>

</decision>

where the esbToBpmVars mapping element extracts the errorCode called “Some-ExceptionCode”

from the EsbMessage body and sets in the jBPM context, if this “SomeExceptionCode” is set that

is. In the next node “exceptionDecision” the “ok” transition is taken under normal processing, but

if a variable called “errorCode” is found in the jBPM context, the “exceptionCondition” transition is

taken. This is using the decision node feature of jBPM where transition can nest a condition. Here

we check for the existence of the “errorCode” variable using the condition

 Scenario Three: Exception Decision

73

<condition>#{ errorCode!=void }</condition>

Note

For more details on conditional transitions please see the jBPM documentation

[TB-JBPM-USER].

74

Chapter 6.

75

Service Orchestration

6.1. Introduction

Service Orchestration is the arrangement of business processes. Traditionally BPEL is used to

execute SOAP based WebServices. If you want to orchestrate JBossESB regardless of their end

point type, then it makes more sense to use jBPM. This chapter explains how to use the integration

discussed earlier to do Service Orchestration using jBPM.

6.2. Orchestrating Web Services

JBossESB provides WS-BPEL support via its Web Service components. For details on these

components and how to configure and use them, see the Message Action Guide.

Note

JBoss and the JBoss Enterprise Service Bus team also have a special support

agreement with ActiveEndpoints [http://www.active-endpoints.com/] who built the

award-winning ActiveBPEL WS-BPEL Engine.

Note

JBoss and JBossESB also have a special support agreement with ActiveEndpoints

(http://www.active-endpoints.com/) for their award wining ActiveBPEL WS-BPEL

Engine. In support of this, JBossESB ships with a Quickstart dedicated to

demonstrating how JBossESB and ActiveBPEL can collaborate effectively to

provide a WS-BPEL based orchestration layer on top of a set of Services

that don't expose Webservice Interfaces (the “webservice_bpel” Quickstart).

JBossESB provides the Webservice Integration and ActiveBPEL provides the

Process Orchestration. A number of flash based walk-thrus of this Quickstart

are also available online: http://labs.jboss.com/jbossesb/resources/tutorials/bpel-

demos/bpel-demos.html.

Note

ActiveEndpoints WS-BPEL engine does not run on versions of JBossAS since

4.0.5. However, it can be deployed and run successfully on Tomcat as our

examples illustrate.

http://www.active-endpoints.com/
http://www.active-endpoints.com/
http://www.active-endpoints.com/
http://labs.jboss.com/jbossesb/resources/tutorials/bpel-demos/bpel-demos.html
http://labs.jboss.com/jbossesb/resources/tutorials/bpel-demos/bpel-demos.html

Chapter 6. S...

76

6.3. Orchestration Diagram

A key component of Service Orchestration is to use a flow-chart like design tool to design and

deploy processes. The jBPM IDE can be used for just this. Figure 6 shows an example of

such a flow-chart, which represents a simplified order process. This example is taken from the

bpm_orchestration4 quick start [JBESB-QS] which ships with JBossESB.

Figure 6.1. Orchestration diagram for the bpm_orchestration4 QuickStart

In the “Order Process” Diagram three of the nodes are JBossESB Services, the “Intake Order”,

“Calculate Discount” and the “Ship It” nodes. For these nodes the regular “Node” type was used,

which is why these are labeled with “<<Node>>”. Each of these nodes have the EsbActionHandler

attached to the node itself. This means that the jBPM node will send a request to the Service and

then it will remain in a wait state, waiting for the ESB to call back into the node with the response of

the Service. The response of the service can then be used within jBPM context. For example when

the Service of the “Intake Order” responds, the response is then used to populate the “Review

Order” form. The “Review Order” node is a “Task Node”. Task Nodes are designed for human

interaction. In this case someone is required to review the order before the Order Process can

process.

To create the diagram above, select File > New > Other, and from the Selection wizard select

“JBoss jBPM “Process Definition” as shown in below. The wizard will direct you to save the process

definition. From an organizational point of view it is recommended use one directory per process

definition, as you will typically end up with multiple files per process design.

 Orchestration Diagram

77

Figure 6.2. Select the New JBoss jBPM Process Definition

After creating a new process definition. You can drag and drop any item from menu, shown in

Figure 8, into the process design view. You can switch between the design and source modes if

needed to check the XML elements that are being added, or to add XML fragments that are needed

for the integration. Recently a new type of node was added called “ESB Service" [KA-BLOG].

Chapter 6. S...

78

Figure 6.3. jBPM IDE menu palette.

Before building the “Order Process” diagram of Figure 6, we'd need to create and test the three

Services. These services are 'ordinary' ESB services and are defined in the jboss-esb.xml. Check

the jboss-esb.xml of the bpm_orchestration4 quick start [JBESB-QS] if you want details on them,

but they only thing of importance to the Service Orchestration are the Services names and

categories as shown in the following jboss-esb.xml fragment:

 <services>

 <service category="BPM_orchestration4_Starter_Service"

 name="Starter_Service"

 description="BPM Orchestration Sample 4: Use this service to start a

process instance">

 <!-- -->

 </service>

 <service category="BPM_Orchestration4" name="IntakeService"

 description="IntakeService: transforms, massages, calculates priority">

 <!-- -->

 </service>

 <service category="BPM_Orchestration4" name="DiscountService"

 description="DiscountService">

 Orchestration Diagram

79

 </service>

 <service category="BPM_Orchestration4" name="ShippingService"

 description="ShippingService">

 <!-- -->

 </service>

</services>

These Service can be referenced using the EsbActionHandler or EsbNotifier Action Handlers as

discussed in Chapter 1. The EsbActionHandler is used when jBPM expects a response, while the

EsbNotifier can be used if no response back to jBPM is needed.

Now that the ESB services are known we drag the “Start” state node into the design view. A new

process instance will start a process at this node. Next we drag in a “Node” (or “ESB Service “if

available). Name this Node “Intake Order”. We can connect the Start and the Intake Order Node

by selecting “Transition” from the menu and by subsequently clicking on the Start and Intake Order

Node. You should now see an arrow connecting these two nodes, pointing to the Intake Order

Node.

Next we need to add the Service and Category names to the Intake Node. Select the “Source”

view. The “Intake Order Node should look like

<node name="Intake Order">

 <transition name="" to="Review Order"></transition>

</node>

and we add the EsbHandlerAction class reference and the subelement configuration for the

Service Category and Name, BPM_Orchestration4 and“IntakeService” respectively

<node name="Intake Order">

 <action name="esbAction" class=

 "org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler">

 <esbCategoryName>BPM_Orchestration4</esbCategoryName>

 <esbServiceName>IntakeService</esbServiceName>

 <!-- async call of IntakeService -->

 </action>

 <transition name="" to="Review Order"></transition>

</node>

Next we want to send the some jBPM context variables along with the Service call. In this example

we have a variable named “entireOrderAsXML” which we want to set in the default position on

the EsbMessage body. For this to happen we add

Chapter 6. S...

80

<bpmToEsbVars>

 <mapping bpm="entireOrderAsXML" esb="BODY_CONTENT" />

</bpmToEsbVars>

which will cause the XML content of the variable “entireOrderAsXML” to end up in the body of the

EsbMessage, so the IntakeService will have access to it, and the Service can work on it, by letting

it flow through each action in the Action Pipeline. When the last action is reached it the replyTo is

checked and the EsbMessage is send to the JBpmCallBack Service, which will make a call back

into jBPM signaling the “Intake Order” node to transition to the next node (“Review Order”). This

time we will want to send some variables from the EsbMessage to jBPM. Note that you can send

entire objects as long both contexts can load the object's class. For the mapping back to jBPM we

add an “esbToEsbVars” element. Putting it all together we end up with:

<node name="Intake Order">

<action name="esbAction" class=

 "org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler">

<esbCategoryName>BPM_Orchestration4</esbCategoryName>

<esbServiceName>IntakeService</esbServiceName>

<bpmToEsbVars>

<mapping bpm="entireOrderAsXML" esb="BODY_CONTENT" />

</bpmToEsbVars>

<esbToBpmVars>

<mapping esb="body.entireOrderAsXML" bpm="entireOrderAsXML"/>

<mapping esb="body.orderHeader" bpm="entireOrderAsObject" />

<mapping esb="body.customer" bpm="entireCustomerAsObject" />

<mapping esb="body.order_orderId" bpm="order_orderid" />

<mapping esb="body.order_totalAmount" bpm="order_totalamount" />

<mapping esb="body.order_orderPriority" bpm="order_priority" />

<mapping esb="body.customer_firstName" bpm="customer_firstName" />

<mapping esb="body.customer_lastName" bpm="customer_lastName" />

<mapping esb="body.customer_status" bpm="customer_status" />

</esbToBpmVars>

</action>

<transition name="" to="Review Order"></transition>

</node>

So after this Service returns we have the following variables in the jBPM context for this process:

entireOrderAsXML, entireOrderAsObject, entireCustomerAsObject, and for demo purposes

we also added some flattened variables: order_orderid, order_totalAmount, order_priority,

customer_firstName, customer_lastName and customer_status.

 Orchestration Diagram

81

Figure 6.4. The Order Process Has Reached the “Review Order” Node

In our Order process we require a human to review the order. We therefore add a “Task Node”

and add the task “Order Review”, which needs to be performed by someone with actor_id “user”.

The XML-fragment looks like

<task-node name="Review Order">

<task name="Order Review">

<assignment actor-id="user"></assignment>

 <controller>

<variable name="customer_firstName"

access="read,write,required"></variable>

<variable name="customer_lastName" access="read,write,required">

<variable name="customer_status" access="read"></variable>

<variable name="order_totalamount" access="read"></variable>

<variable name="order_priority" access="read"></variable>

<variable name="order_orderid" access="read"></variable>

<variable name="order_discount" access="read"></variable>

<variable name="entireOrderAsXML" access="read"></variable>

</controller>

</task>

<transition name="" to="Calculate Discount"></transition>

</task-node>

Chapter 6. S...

82

In order to display these variables in a form in the jbpm-console we need to create an xhtml

dataform (see the Review_Order.xhtml file in the bpm_orchestration4 quick start [JBESB-QS] and

tie this for this TaskNode using the forms.xml file:

<forms>

<form task="Order Review" form="Review_Order.xhtml"/>

<form task="Discount Review" form="Review_Order.xhtml"/>

</forms>

Note that in this case the same form is used in two task nodes. The variables are referenced in

the Review Order form like

<jbpm:datacell>

<f:facet name="header">

<h:outputText value="customer_firstName"/>

</f:facet>

<h:inputText value="#{var['customer_firstName']}" />

</jbpm:datacell>

which references the variables set in the jBPM context.

When the process reaches the “Review Node”, as shown in Figure 9. When the 'user' user logs

into the jbpm-console the user can click on 'Tasks” to see a list of tasks, as shown in below. The

user can 'examine' the task by clicking on it and the user will be presented with a form as shown

below. The user can update some of the values and click “Save and Close” to let the process

move to the next Node.

Figure 6.5. The Task List for User "User"

 Orchestration Diagram

83

Figure 6.6. The "Order Review" form

The next node is the “Calculate Discount” node. This is an ESB Service node again and the

configuration looks like

<node name="Calculate Discount">

<action name="esbAction" class="

org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler">

<esbCategoryName>BPM_Orchestration4</esbCategoryName>

<esbServiceName>DiscountService</esbServiceName>

<bpmToEsbVars>

<mapping bpm="entireCustomerAsObject" esb="customer" />

<mapping bpm="entireOrderAsObject" esb="orderHeader" />

<mapping bpm="entireOrderAsXML" esb="BODY_CONTENT" />

</bpmToEsbVars>

<esbToBpmVars>

<mapping esb="order"

bpm="entireOrderAsObject" />

<mapping esb="body.order_orderDiscount" bpm="order_discount" />

</esbToBpmVars>

</action>

<transition name="" to="Review Discount"></transition>

</node>

Chapter 6. S...

84

The Service receives the customer and orderHeader objects as well as the entireOrderAsXML,

and computes a discount. The response maps the body.order_orderDiscount value onto a jBPM

context variable called “order_-discount”, and the process is signaled to move to the “Review

Discount” task node.

Figure 6.7. The "Discount Review" Form

The user is asked to review the discount, which is set to 8.5. On “Save and Close” the process

moves to the “Ship It” node, which again is an ESB Service. If you don't want the Order process

to wait for the Ship It Service to be finished you can use the EsbNotifier action handler and attach

it to the outgoing transition:

<node name="ShipIt">

<transition name="ProcessingComplete" to="end">

<action name="ShipItAction" class=

"org.jboss.soa.esb.services.jbpm.actionhandlers.EsbNotifier">

<esbCategoryName>BPM_Orchestration4</esbCategoryName>

<esbServiceName>ShippingService</esbServiceName>

 <bpmToEsbVars>

<mapping bpm="entireCustomerAsObject" esb="customer" />

 <mapping bpm="entireOrderAsObject" esb="orderHeader" />

 <mapping bpm="entireOrderAsXML" esb="entireOrderAsXML" />

 </bpmToEsbVars>

 </action>

 Process Deployment and Instantiation

85

</transition>

</node>

After notifying the ShippingService the Order process moves to the 'end' state and terminates.

The ShippingService itself may still be finishing up. In bpm_orchestration4 [JBESB-QS] it uses

drools to determine whether this order should be shipped 'normal' or 'express'.

6.4. Process Deployment and Instantiation

In the previous paragraph we create the process definition and we quietly assumed we had an

instance of it to explain the process flow. But now that we have created the processdefinition.xml,

we can deploy it to jBPM using the IDE, ant or the jbpm-console (as explained in Chapter 1). In

this example we use the IDE and deployed the files: Review_Order.xhtml, forms.xml, gpd.xml,

processdefinition.xml and the processimage.jpg. On deployment the IDE creates a par achive and

deploys this to the jBPM database. We do not recommend deploying Java code in par archives as

it may cause class loading issues. Instead we recommend deploying classes in jar or esb archives.

Figure 6.8. Deployment of the Order Process

Chapter 6. S...

86

When the process definition is deployed a new process instance can be created. It is interesting

to note that we can use the 'StartProcessInstanceCommand” which allows us to create a process

instance with some initial values already set. Take a look at

<service category="BPM_orchestration4_Starter_Service"

name="Starter_Service"

description="BPM Orchestration Sample 4: Use this service to start a

 process instance">

<listeners>

</listeners>

<actions>

<action name="setup_key" class=

"org.jboss.soa.esb.actions.scripting.GroovyActionProcessor">

<property name="script"

value="/scripts/setup_key.groovy" />

</action>

<action name="start_a_new_order_process" class=

"org.jboss.soa.esb.services.jbpm.actions.BpmProcessor">

<property name="command"

value="StartProcessInstanceCommand" />

<property name="process-definition-name"

value="bpm4_ESBOrderProcess" />

<property name="key" value="body.businessKey" />

<property name="esbToBpmVars">

 <mapping esb="BODY_CONTENT" bpm="entireOrderAsXML" />

</property>

</action>

</actions>

</service>

where new process instance is invoked and using some groovy script, and the jBPM key is set

to the value of 'OrderId' from an incoming order XML, and the same XML is subsequently put in

jBPM context using the esbToBpmVars mapping. In the bpm_orchestration4 quickstart [JBESB-

QS] the XML came from the Seam DVD Store and the “SampleOrder.xml” looks like

<Order orderId="2" orderDate="Wed Nov 15 13:45:28 EST 2006" statusCode="0"

 netAmount="59.97" totalAmount="64.92" tax="4.95">

<Customer userName="user1" firstName="Rex" lastName="Myers" state="SD"/>

<OrderLines>

<OrderLine position="1" quantity="1">

<Product productId="364" title="Gandhi"

price="29.98"/>

 Conclusion

87

</OrderLine>

<OrderLine position="2" quantity="1">

<Product productId="299" title="Lost Horizon" price="29.99"/>

</OrderLine>

</OrderLines>

</Order>

Note

Both ESB as well as jBPM deployments are hot. An extra feature of jBPM is that

process deployments are versioned. Newly created process instances will use

the latest version while existing process instances will finish using the process

deployment on which they where started.

6.5. Conclusion

We have demonstrated how jBPM can be used to orchestrate Services as well as do Human Task

Management. Note that you are free to use any jBPM feature. For instance look at the quick start

bpm_orchestration2 [JBESB-QS] how to use the jBPM fork and join concepts.

88

Chapter 7.

89

The Message Store

7.1. Introduction

The message store mechanism in JBossESB is designed with audit tracking purposes in mind. As

with other ESB services, it is a pluggable service, which allows for you, the developer to plug in your

own persistence mechanism should you have special needs. The implementation supplied with

JBossESB is a database persistence mechanism. If you require say, a file persistence mechanism,

then it’s just a matter of you writing your own service to do this, and override the default behaviour

with a configuration change.

Note

One thing to point out with the Message Store – this is a base implementation. We

will be working with the community and partners to drive the feature functionality set

of the message store to support advanced audit and management requirements.

This is meant to be a starting point.

Important

In JBossESB 4.2 the Message Store is also used for storing messages that need

to be redelivered in the event of failures. See the Programmers Guide around the

ServiceInvoker for further details.

7.2. Message Store Interface

The org.jboss.soa.esb.services.persistence.MessageStore interface is defined as follows:

public interface MessageStore

{

 public MessageURIGenerator getMessageURIGenerator();

 public URI addMessage (Message message, String classification)

 throws MessageStoreException;

 public Message getMessage (URI uid)

 throws MessageStoreException;

 public void setUndelivered(URI uid)

 throws MessageStoreException;

 public void setDelivered(URI uid)

 throws MessageStoreException;

 public Map<URI, Message> getUndeliveredMessages(String classification)

Chapter 7. The Message ...

90

 throws MessageStoreException;

 public Map<URI, Message> getAllMessages(String classification)

 throws MessageStoreException;

 public Message getMessage (URI uid, String classification)

 throws MessageStoreException;

 public int removeMessage (URI uid, String classification)

 throws MessageStoreException;

}

The MessageStore is responsible for reading and writing Messages upon request. Each Message

must be uniquely identified within the context of the store and each MessageStore implementation

uses a URI to accomplish this identification. This URI is used as the “key” for that message in

the database.

Important

MessageStore implementations may use different formats for their URIs.

Messages can be stored within the store based upon classification using addMessage. If the

classification is not defined then it is up to the implementation of the MessageStore how it will store

the Message. Furthermore, the classification is only a hint: implementations are free to ignore this

field if necessary.

Note

It is implementation dependent as to whether or not the MessageStore imposes

any kind of concurrency control on individual Messages. As such, you should use

the removeMessage operation with care.

Warning

Because the current MessageStore interface is designed to support both audit trail

and redelivery scenarios, you should not use the setUndelivered/setDelivered and

associated operations unless they are applicable!

The default implementation of the MessageStore is provided by the

org.jboss.internal.soa.esb.persistence.format.db.DBMessageStoreImpl class. The methods in

this implementation make the required DB connections (using a pooled Database Manager

DBConnectionManager).

To override the MessageStore implementation you should look at the MessageActionGuide and

the MessagePersister Action.

 Transaction

91

Note

The MessageStore interface does not currently support transactions. Any use

of the MessageStore within the scope of a global transaction will, therefore, be

unco-ordinated. The implication of this is that each MessageStore update or read

will be undertaken separately and independently. However, future versions of the

software shall provide control over whether or not specific interactions are to be

conducted within the scope of an "enclosing" transactional context.

7.2.1. Transaction

The Message Store interface does not currently support transactions. As such, any use of the

store within the scope of a global transaction will not be coordinated within the scope of any global

transaction, i.e., each message store update or read will be done as a separate, independent,

transaction. Future versions of the Message Store will provide for control over whether or not

specific interactions should be conducted within the scope of any enclosing transactional context.

7.3. Configuring the Message Store

To configure your Message Store, you can change and override the default service implementation

through the following settings found in the jbossesb-properties.xml:

<properties name="dbstore">

 <!-- connection manager type -->

 <property name="org.jboss.soa.esb.persistence.db.conn.manager" value=

"org.jboss.internal.soa.esb.persistence.manager.StandaloneConnectionManager"/>

 <!-- this property is only used for the j2ee connection manager -->

 <property name="org.jboss.soa.esb.persistence.db.datasource.name"

 value="java:/JBossesbDS"/>

 <!-- standalone connection pooling settings -->

 <!-- mysql

 <property name="org.jboss.soa.esb.persistence.db.connection.url"

 value="jdbc:mysql://localhost/jbossesb"/>

 <property name="org.jboss.soa.esb.persistence.db.jdbc.driver"

 value="com.mysql.jdbc.Driver"/>

 <property name="org.jboss.soa.esb.persistence.db.user"

 value="kstam"/> -->

 <!-- postgres

 <property name="org.jboss.soa.esb.persistence.db.connection.url"

 value="jdbc:postgresql://localhost/jbossesb"/>

 <property name="org.jboss.soa.esb.persistence.db.jdbc.driver"

 value="org.postgresql.Driver"/>

 <property name="org.jboss.soa.esb.persistence.db.user"

Chapter 7. The Message ...

92

 value="postgres"/>

 <property name="org.jboss.soa.esb.persistence.db.pwd"

 value="postgres"/> -->

 <!-- hsqldb -->

 <property name="org.jboss.soa.esb.persistence.db.connection.url"

 value="jdbc:hsqldb:hsql://localhost:9001/jbossesb"/>

 <property name="org.jboss.soa.esb.persistence.db.jdbc.driver"

 value="org.hsqldb.jdbcDriver"/>

 <property name="org.jboss.soa.esb.persistence.db.user" value="sa"/>

 <property name="org.jboss.soa.esb.persistence.db.pwd" value=""/>

 <property name="org.jboss.soa.esb.persistence.db.pool.initial.size"

 value="2"/>

 <property name="org.jboss.soa.esb.persistence.db.pool.min.size"

 value="2"/>

 <property name="org.jboss.soa.esb.persistence.db.pool.max.size"

 value="5"/>

 <!--table managed by pool to test for valid connections

 created by pool automatically -->

 <property name="org.jboss.soa.esb.persistence.db.pool.test.table"

 value="pooltest"/>

 <property name="org.jboss.soa.esb.persistence.db.pool.timeout.millis"

 value="5000"/>

</properties>

The section in the property file called “dbstore” has all the settings required by the database

implementation of the message store. The standard settings, like URL, db user, password, pool

sizes can all be modified here.

The scripts for the required database schema, are again, very simple. They can be found under lib/

jbossesb.esb/message-store-sql/<db_type>/create_database.sql of your JBossESB installation.

The structure of the table can be seen from the sample SQL:

CREATE TABLE message

(

 uuid varchar(128) NOT NULL,

 type varchar(128) NOT NULL,

 message text(4000) NOT NULL,

 delivered varchar(10) NOT NULL,

 classification varchar(10),

 PRIMARY KEY (`uuid`)

);

 Configuring the Message Store

93

The uuid column is used to store a unique key for this message, in the format of a standard URI.

A key for a message would look like:

urn:jboss:esb:message:UID: + UUID.randomUUID()_

This logic uses the new UUID random number generator in jdk 1.5. the type will be the type of the

stored message. JBossESB ships with JBOSS_XML and JAVA_SERIALIZED currently.

The “message” column will contain the actual message content.

The supplied database message store implementation works by invoking a connection manager

to your configured database. Supplied with JBoss ESB is a standalone connection manager, and

another for using a JNDI datasource.

To configure the database connection manager, you need to provide the connection manager

implementation in the jbossesb-properties.xml. The properties that you would need to change are:

<!-- connection manager type -->

<property name="org.jboss.soa.esb.persistence.db.conn.manager"

 value="org.jboss.internal.soa.esb.persistence.format.db.Standalone

ConnectionManager"/>

<!-- property name="org.jboss.soa.esb.persistence.db.conn.manager"

value="org.jboss.soa.esb.persistence.manager.J2eeConnectionManager"/ -->

<!-- this property is only used for the j2ee connection manager -->

<property name="org.jboss.soa.esb.persistence.db.datasource.name"

 value="java:/JBossesbDS"/>

The two supplied connection managers for managing the database pool are

• org.jboss.soa.esb.persistence.manager.J2eeConnectionManager

• org.jboss.soa.esb.persistence.manager.StandaloneConnectionManager

The Standalone manager uses C3PO to manage the connection pooling logic, and the

J2eeConnectionManager uses a datasource to manage it's connection pool. This is intended for

use when deploying your ESB endpoints inside a container such as JBoss AS or Tomcat, etc.

You can plug in your own connection pool manager by implementing the interface:

• org.jboss.internal.soa.esb.persistence.manager.ConnectionManager

Once you have implemented this interface, you update the properties file with your new class, and

the connection manager factory will now use your implementation.

94

Chapter 8.

95

Security

8.1. Introduction

Services in JBossESB can be configured to be secure which means that the service will only be

executed if authentication succeeds and if the caller is authorized to execute the service.

A service can be invoked by using a gateway or by using the ServiceInvoker to directly invoke the

ESB service. When calling a service via a gateway, the gateway is responsible for extracting the

security information needed to authenticate the caller. It does this by extracting the information

from the transport that the gateway handles. Using this information the gateway creates an

authentication request that is encrypted and then passed to the ESB.

When using the ServiceInvoker a gateway is not involved and it is the responsibility of the client

to create the authentication request prior to invoking the service. Both of these situations will be

looked at in the following sections.

The default security implementation is JAAS based but this is a configurable feature. The following

sections describe the security components and how they can be configured.

8.2. Security Service Configuration

The Security Service is configured along with everything else in jbossesb-properties.xml:

<properties name="security">

<property name="org.jboss.soa.esb.services.security.implementationClass"

value="org.jboss.internal.soa.esb.services.security.JaasSecurityService"/>

<property name="org.jboss.soa.esb.services.security.callbackHandler"

value=

"org.jboss.internal.soa.esb.services.security.UserPassCallbackHandler"/>

<property name="org.jboss.soa.esb.services.security.sealAlgorithm"

value="TripleDES"/>

<property name="org.jboss.soa.esb.services.security.sealKeySize"

value="168"/>

<property name="org.jboss.soa.esb.services.security.contextTimeout"

value="30000"/>

<property name=

"org.jboss.soa.esb.services.security.contextPropagatorImplemtationClass"

value=

Chapter 8. Security

96

"org.jboss.internal.soa.esb.services.security.JBossASContextPropagator"/>

<property name="org.jboss.soa.esb.services.security.publicKeystore"

value="/publicKeyStore"/>

<property name="org.jboss.soa.esb.services.security.publicKeystorePassword"

value="testKeystorePassword"/>

<property name="org.jboss.soa.esb.services.security.publicKeyAlias"

value="testAlias"/>

<property name="org.jboss.soa.esb.services.security.publicKeyPassword"

value="testPassword"/>

<property name="org.jboss.soa.esb.services.security.publicKeyTransformation"

value="RSA/ECB/PKCS1Padding"/>

</properties>

Table 8.1. jbossesb-properties.xml Security Settings

Property Description Required?

org.jboss.soa.esb.services.security.implementationClassThis is the concrete

SecurityService

implementation that

should be used.

Required. Default is

JaasSecurityService.

Yes

org.jboss.soa.esb.services.security.callbackHandlerA default

CallbackHandler

implementation when

a JAAS based

SecurityService is

being used. See

“Customizing security”

for more information

about the

callbackHandler

property.

No

org.jboss.soa.esb.services.security.sealAlgorithm The algorithm to

use for sealing the

SecurityContext.

No

 Security Service Configuration

97

Property Description Required?

org.jboss.soa.esb.services.security.sealKeySize The size of the secret/

symmetric key used

to encrypt/decrypt the

SecurityContext.

No

org.jboss.soa.esb.services.security.contextTimeout The amount of time

in milliseconds that

a security context is

valid for. This is a

global setting that may

be overridden on a

per service basis by

specifying this same

property name on the

security element in

jboss-esb.xml.

No

org.jboss.soa.esb.services.security.contextPropagatorImplementationClassConfigures a global

SecurityContextPropagator.

For more details on the

SecurityContextPropagator

please refer to

the “Security Context

Propagation”.

No

org.jboss.soa.esb.services.security.publicKeystore Path to the keystore

that holds a keys

used for encrypting

and decrypting data

external to the

ESB. This is used

to encrypt the

AuthenticationRequest.

No

org.jboss.soa.esb.services.security.publicKeystorePasswordPassword to the public

keystore.

No

org.jboss.soa.esb.services.security.publicKeyAlias Alias to use. No

org.jboss.soa.esb.services.security.publicKeyPasswordPassword for the alias if

one was specified upon

creation.

No

org.jboss.soa.esb.services.security.publicKeyPasswordCipher transformation

in the format:

“algorithm/mode/

padding”. If not

specified this will

No

Chapter 8. Security

98

Property Description Required?

default to the keys

algorithm.

The JAAS login modules are configured in the way you would except using the login-config.xml

file located in the conf directory of your JBoss Application Server. So you can use the ones that

come pre-configured but also add your own login modules.

Warning

By default JBossESB ships with an example keystore which should not be used in

production. It is only provided as a sample to help users get security working “out

of the box”. The sample keystore can be updated with custom generate key pairs.

8.2.1. Configuring Security on Services

Security is configured per-service. A service in JBossESB can be declared as being secured

and that it requires authentication. Services are configured by adding a “security” element to the

service in jbossesb.xml:

<service category="Security" name="SimpleListenerSecured">

 <security moduleName="messaging" runAs="adminRole"

 rolesAllowed="adminRole, normalUsers"

 callbackHandler="org.jboss.internal.soa.esb.services.security.UserPassCallbackHandler">

 <property name="property1" value="value1"/>

 <property name="property2" value="value2"/>

 </security>

 ...

</service>

Table 8.2. Security Properties

Property Description Required?

moduleName A named module that exist in conf/login-

config.xml

No

runAs An optional runAs role. No

rolesAllowed An optional comma separated list of roles that

are allowed to execute the service. This is a

check that is performed after a caller has been

authenticated, to verfiy that the caller in a member

of the roles specified. The roles will have been

No

 Authentication

99

Property Description Required?

assigned after a successful authentication by the

underlying security mechanism.

callbackHandler An optional CallbackHandler that will override the

one defined in jbossesb-properties.xml.

No

property Optional properties can be defined which will

be made available to the CallbackHandler

implementation.

No

Table 8.3. Security Property Over-rides:

Property Description Required?

org.jboss.soa.esb.services.security.contextTimeoutOptional property that lets the

service override the global security

context timeout (ms) specified in

jbossesb-properties.xml.

No

org.jboss.soa.esb.services.security.contextPropagatorImplementationClassOptional property that lets the

service override the global

security context propagator

class implementation specified in

jbossesb-properties.xml.

No

Example of overriding global configuration settings:

<security moduleName="messaging"

 runAs="adminRole" rolesAllowed="adminRole">

<property

 name="org.jboss.soa.esb.services.security.contextTimeout"

 value="50000"/>

<property name=

"org.jboss.soa.esb.services.security.contextPropagatorImplementationClass"

 value="org.xyz.CustomSecurityContextPropagator" />

</security>

8.3. Authentication

To authenticate a caller, security information needs to be provided. If the call to the service

is coming through a gateway, then the gateway will extract the required information from the

Chapter 8. Security

100

transport that the gateway works with. For a web service call this would entail extracting either the

UsernameToken or the BinarySecurityToken from the security element in the SOAP header.

When a service needs to call another services and that service requires authentication, another

authentication process will be performed. So having a chain of services that are all configured for

authentication will cause multiple authentications to be performed. To minimize such overhead

the ESB will store an encrypted SecurityContext which will be propagated with the ESB Message

object between services. If the ESB detects that a Message has a SecurityContext, it checks

that the SecurityContext is still valid, and if so, re-authentication is not performed. Note that the

SecurityContext is only valid on a single ESB node. If the message is routed to a different ESB

node, re-authentication will be required.

8.3.1. Authentication Request

An AuthenticationRequest is intended to carry security information needed for authentication

between a gateway and a service, or between two services.

An instance of this class should be set on the message object before calling the service configured

for authentication:

byte[] encrypted = PublicCryptoUtil.INSTANCE.encrypt((Serializable)

 authRequest);

message.getContext.setContext(SecurityService.AUTH_REQUEST, encrypted);

Note

The authentication context is encrypted and then set in the message context. This

will be decrypted by the ESB to perform authentication. See the “SecurityService

Configuration” section for information on how to configure the public keystore for

this purpose.

The “security_basic” quickstart shows an example of using a external client and how to prepare the

Message before using the ServiceInvoker, see the SendEsbMessage class for more information.

This quickstart also shows how you can configure jbossesb-properties.xml for client usage.

8.4. JBossESB SecurityContext

A SecurityContext in JBossESB is an object that is local to a specific ESB node, or really to the JVM

of the node. The SecurityContext is created after a successful authentication has be performed

and it will be used locally in the ESB where it was created to save having to re-authenticate with

every call.

A timeout is specified for the context which is the time, in milliseconds, that the context is valid

for. This value can be specified globally in jbossesb-properties.xml of overridden per-service

 Security Context Propagation

101

by specifying the value in jboss-esb.xml. Please see “Configuring Secuirtyon a Service” and

“SecurityService Configuration” to see how this is done.

8.5. Security Context Propagation

Propagation, in this case, refers to propagating security context information in a way specific to

an external system. For example, you might want to have the credentials that were used to call

the ESB, be used as the credentials when calling an EJB method. This can be accomplished by

specifying a SecurityContextPropagator that will perform the security context propagation specific

to the destination environment.

A SecurityContextPropagator can be configured globally by specifying

the 'org.jboss.soa.esb.services.security.contextPropagatorImplementationClass' in jbossesb-

properties.xml, or per-service by specifying the same property in jboss-esb.xml. Please see

“Configuring Security on a Service” and “SecurityService Configuration” for examples of this.

Table 8.4. Implementations of SecurityContextPropagator

Class Description

Package: org.jboss.internal.soa.esb.services.security

Class: JBossASContextPropagator

This propagator will propagate security

credentials to a JBoss Application

Server(AS). If you need to write your

own implementation you only have

to write a class that implements

org.jboss.internal.soa.esb.services.security.SecurityContextPropagator

and then either specify

that implementation in jbossesb-

properties.xml or jboss-esb.xml as

noted above.

8.6. Customising security

The default security implementation in JBossESB is based on JAAS and named

JaasSecurityService. Custom login modules can be added in conf/login-config.xml of an JBoss

Application Server.

Since different login modules will require different information, the callback handler to be used can

be specified in the security configuration for that Service. This can be accomplished by specifying

the 'callbackHandler' attribute belonging to the security element defined on the service.

The callbackHandler should specify a fully qualified class name of a class that implements the

EsbCallbackHandler interface:

public interface EsbCallbackHandler extends CallbackHandler

{

Chapter 8. Security

102

 void setAuthenticationRequest(final AuthenticationRequest authRequest);

 void setSecurityConfig(final SecurityConfig config);

}

The AuthenticationRequest will contain the principal and credentials needed authenticate a caller.

The SecurityConfig will give access to the security configuration in jboss-esb.xml.

Both of these are made available to the CallbackHandler which it can use to populate the Callback

instances required by the login module.

8.7. Provided Login Modules

This section lists the login modules provided with JBossESB. Please note that all login modules

available with JBoss AS are available as well and custom login modules should be easy to add.

8.7.1. CertificateLoginModule

This login module performs authentication by verifiying that a certificate passed with the call to

the ESB, can be verified against a certificate in a local keystore.

Upon successful authentication the certificates Common Name(CN) will be used to create a

principal. If role mapping is in use then it is the CN that will be used in the role mapping. See “Role

Mapping” for details on the role mapping functionality.

<security moduleName="CertLogin" rolesAllowed="worker"

 callbackHandler="org.jboss.soa.esb.services.security.auth.loginUserPass

CallbackHandler">

 <property name="alias" value="certtest"/>

</security>

Table 8.5. Properties

Property Description

moduleName Identifies the JAAS Login module to

use. This module will be specified in

JBossAS login-config.xml.

rolesAllow Comma separated lite of roles that are

allowed to execute this service.

alias The alias to look up in the local keystore

which will be used to verify the callers

certificate.

Example of fragment from login-config.xml

 Role Mapping

103

<application-policy name="CertLogin">

<authentication>

 <login-module

code="org.jboss.soa.esb.services.security.auth.login.CertificateLoginModule"

flag = "required" >

 <module-option name="keyStoreURL">

 file://pathToKeyStore

 </module-option>

 <module-option name="keyStorePassword">storepassword</module-option>

 <module-option name="rolesPropertiesFile">

 file://pathToRolesFile

 </module-option>

 </login-module>

</authentication>

</application-policy>

Table 8.6. Properties

Property Description

keyStoreURL Path to the keystore that will be used

to verify the certificates. This can be a

file on the local file system or on the

classpath.

keyStorePassword Password for the above keystore.

rolesPropertiesFile Optional. Path to a file containing role

mappings. Please refer to the section

“Role Mapping” for more details on this.

8.7.2. Role Mapping

This file is can be optionally specified in login-config.xml by using the 'rolesPropertiesFile'. This

can point to a file on the local file system or to a file on the classpath. This file contains a mapping

of users to roles:

user=role1,role2,...

guest=guest

esbuser=esbrole

The current implementation will use the Common Name(CN) specified

for the certificate as the user name.

The unicode escape is needed only if your CN contains a space

Austin\u0020Powers=esbrole,worker

Chapter 8. Security

104

Note

For an example please look at the security_cert quickstart.

8.8. Password Encryption

Configuration files in JBossESB sometimes require passwords which up until now have been

specified in clear text in the configuration files. This is a security risk and something that should

be avoided. In JBossESB you have the ability to specify a path to a file that contains an encrypted

password wherever a password is required.

8.8.1. Creating an Encrypted Password File

This can be achived by performing the following steps:

1. Go to the conf directory of your jboss server instance (eg: default/conf)

2. java -cp ../lib/jbosssx.jar org.jboss.security.plugins.FilePassword

welcometojboss 13 testpass esb.password

Table 8.7. Encrypted Password Options

Option Description

Salt The salt used for the encryption. This is the “welcometojboss” string

in the example above.

Iteration The number of iterations. This is the number 13 in the example

above.

Clear Text Password The password you wish to encrypt. This is the string “testpass” in

the example above.

Password File Name The name of the file where the encrypted password will be saved.

This is the “esb.password” string in the example above.

8.8.1.1. Configuring Encrypted Password Files

Configuration is done by simply substituting the clear text password in your configuration file(s)

with the path to the encrypted password file.

8.8.2. SecurityService

The Security Service interface is the central component in JBossESB security. This interface is

shown below:

public interface SecurityService

 SecurityService

105

{

 void configure() throws ConfigurationException;

 void authenticate(

 final SecurityConfig securityConfig,

 final SecurityContext securityContext,

 final AuthenticationRequest authRequest)

 throws SecurityServiceException;

 boolean checkRolesAllowed(

 final List<String> rolesAllowed,

 final SecurityContext securityContext);

 boolean isCallerInRole(

 final Subject subject,

 final Principal role);

 void logout(final SecurityConfig securityConfig);

 void refreshSecurityConfig();

}

The default implementation is based on JAAS, but this can be customized by implementing the

above interface and configuring the custom SecurityService to be used in jbossesb-properties.xml.

For more details of the SecurityService interface methods, please refer to the javadocs.

106

Chapter 9.

107

References

• [JBESB-QS], JBossESB QuickStarts,

http://anonsvn.jboss.org/repos/labs/labs/jbossesb/tags/JBESB_4_4_GA/product/samples/

quickstarts

• [JBESB-QS], JBossESB QuickStarts,

http://anonsvn.jboss.org/repos/labs/labs/jbossesb/tags/JBESB_4_4_GA/product/samples/

quickstarts

• [KA-BLOG] ESB Service Node, Koen Aers,

http://koentsje.blogspot.com/2008/01/esb-service-node-in-jbpm-jpdl-gpd-312.html

• [KA-JBPM-GPD], JBoss jBPM Graphical Process Designer, Koen Aers,

http://docs.jboss.com/jbpm/v3/gpd/

• [TB-JBPM-USER] jBPM User Documentation, Tom Baaijens

http://docs.jboss.com/jbpm/v3/userguide/

• [TF-BPEL], Service Orchestration using ActiveBPEL, Tom Fennely,

http://anonsvn.jboss.org/repos/labs/labs/jbossesb/tags/JBESB_4_4_GA/product/docs/

ServicesGuide.pdf

http://anonsvn.jboss.org/repos/labs/labs/jbossesb/tags/JBESB_4_4_GA/product/samples/quickstarts
http://anonsvn.jboss.org/repos/labs/labs/jbossesb/tags/JBESB_4_4_GA/product/samples/quickstarts
http://anonsvn.jboss.org/repos/labs/labs/jbossesb/tags/JBESB_4_4_GA/product/samples/quickstarts
http://anonsvn.jboss.org/repos/labs/labs/jbossesb/tags/JBESB_4_4_GA/product/samples/quickstarts
http://koentsje.blogspot.com/2008/01/esb-service-node-in-jbpm-jpdl-gpd-312.html
http://docs.jboss.com/jbpm/v3/gpd/
http://docs.jboss.com/jbpm/v3/userguide/
http://anonsvn.jboss.org/repos/labs/labs/jbossesb/tags/JBESB_4_4_GA/product/docs/ServicesGuide.pdf
http://anonsvn.jboss.org/repos/labs/labs/jbossesb/tags/JBESB_4_4_GA/product/docs/ServicesGuide.pdf

108

109

Appendix A. GNU General Public

License
Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc.

Free Software Foundation, Inc.

 51 Franklin Street, Fifth Floor,

 Boston, MA 02110-1301

 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but

changing it is not allowed.

Version 2, June 1991

A.1. Preamble

The licenses for most software are designed to take away your freedom to share and change

it. By contrast, the GNU General Public License is intended to guarantee your freedom to share

and change free software - to make sure the software is free for all its users. This General Public

License applies to most of the Free Software Foundation's software and to any other program

whose authors commit to using it. (Some other Free Software Foundation software is covered by

the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public

Licenses are designed to make sure that you have the freedom to distribute copies of free software

(and charge for this service if you wish), that you receive source code or can get it if you want

it, that you can change the software or use pieces of it in new free programs; and that you know

you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights

or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you

if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give

the recipients all the rights that you have. You must make sure that they, too, receive or can get

the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps:

1. copyright the software, and

2. offer you this license which gives you legal permission to copy, distribute and/or modify the

software.

Appendix A. GNU General Publi...

110

Also, for each author's protection and ours, we want to make certain that everyone understands

that there is no warranty for this free software. If the software is modified by someone else and

passed on, we want its recipients to know that what they have is not the original, so that any

problems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the

danger that redistributors of a free program will individually obtain patent licenses, in effect making

the program proprietary. To prevent this, we have made it clear that any patent must be licensed

for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

A.2. TERMS AND CONDITIONS FOR COPYING,

DISTRIBUTION AND MODIFICATION

A.2.1. Section 0

This License applies to any program or other work which contains a notice placed by the copyright

holder saying it may be distributed under the terms of this General Public License. The “Program”,

below, refers to any such program or work, and a “work based on the Program” means either the

Program or any derivative work under copyright law: that is to say, a work containing the Program

or a portion of it, either verbatim or with modifications and/or translated into another language.

(Hereinafter, translation is included without limitation in the term “modification”.) Each licensee is

addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they

are outside its scope. The act of running the Program is not restricted, and the output from the

Program is covered only if its contents constitute a work based on the Program (independent of

having been made by running the Program). Whether that is true depends on what the Program

does.

A.2.2. Section 1

You may copy and distribute verbatim copies of the Program's source code as you receive it, in any

medium, provided that you conspicuously and appropriately publish on each copy an appropriate

copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License

and to the absence of any warranty; and give any other recipients of the Program a copy of this

License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer

warranty protection in exchange for a fee.

A.2.3. Section 2

You may modify your copy or copies of the Program or any portion of it, thus forming a work based

on the Program, and copy and distribute such modifications or work under the terms of Section 1

above, provided that you also meet all of these conditions:

Section 3

111

a. You must cause the modified files to carry prominent notices stating that you changed the files

and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part contains or is

derived from the Program or any part thereof, to be licensed as a whole at no charge to all third

parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must cause it,

when started running for such interactive use in the most ordinary way, to print or display an

announcement including an appropriate copyright notice and a notice that there is no warranty

(or else, saying that you provide a warranty) and that users may redistribute the program under

these conditions, and telling the user how to view a copy of this License. (Exception: If the

Program itself is interactive but does not normally print such an announcement, your work

based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work

are not derived from the Program, and can be reasonably considered independent and separate

works in themselves, then this License, and its terms, do not apply to those sections when you

distribute them as separate works. But when you distribute the same sections as part of a whole

which is a work based on the Program, the distribution of the whole must be on the terms of this

License, whose permissions for other licensees extend to the entire whole, and thus to each and

every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely

by you; rather, the intent is to exercise the right to control the distribution of derivative or collective

works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with

a work based on the Program) on a volume of a storage or distribution medium does not bring

the other work under the scope of this License.

A.2.4. Section 3

You may copy and distribute the Program (or a work based on it, under Section 2 in object code

or executable form under the terms of Sections 1 and 2 above provided that you also do one of

the following:

a. Accompany it with the complete corresponding machine-readable source code, which must

be distributed under the terms of Sections 1 and 2 above on a medium customarily used for

software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third party, for

a charge no more than your cost of physically performing source distribution, a complete

machine-readable copy of the corresponding source code, to be distributed under the terms of

Sections 1 and 2 above on a medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute corresponding

source code. (This alternative is allowed only for noncommercial distribution and only if you

Appendix A. GNU General Publi...

112

received the program in object code or executable form with such an offer, in accord with

Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to

it. For an executable work, complete source code means all the source code for all modules it

contains, plus any associated interface definition files, plus the scripts used to control compilation

and installation of the executable. However, as a special exception, the source code distributed

need not include anything that is normally distributed (in either source or binary form) with the

major components (compiler, kernel, and so on) of the operating system on which the executable

runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated

place, then offering equivalent access to copy the source code from the same place counts as

distribution of the source code, even though third parties are not compelled to copy the source

along with the object code.

A.2.5. Section 4

You may not copy, modify, sublicense, or distribute the Program except as expressly provided

under this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is

void, and will automatically terminate your rights under this License. However, parties who have

received copies, or rights, from you under this License will not have their licenses terminated so

long as such parties remain in full compliance.

A.2.6. Section 5

You are not required to accept this License, since you have not signed it. However, nothing else

grants you permission to modify or distribute the Program or its derivative works. These actions

are prohibited by law if you do not accept this License. Therefore, by modifying or distributing the

Program (or any work based on the Program), you indicate your acceptance of this License to do

so, and all its terms and conditions for copying, distributing or modifying the Program or works

based on it.

A.2.7. Section 6

Each time you redistribute the Program (or any work based on the Program), the recipient

automatically receives a license from the original licensor to copy, distribute or modify the Program

subject to these terms and conditions. You may not impose any further restrictions on the

recipients' exercise of the rights granted herein. You are not responsible for enforcing compliance

by third parties to this License.

A.2.8. Section 7

If, as a consequence of a court judgment or allegation of patent infringement or for any other

reason (not limited to patent issues), conditions are imposed on you (whether by court order,

agreement or otherwise) that contradict the conditions of this License, they do not excuse you

Section 8

113

from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your

obligations under this License and any other pertinent obligations, then as a consequence you

may not distribute the Program at all. For example, if a patent license would not permit royalty-

free redistribution of the Program by all those who receive copies directly or indirectly through

you, then the only way you could satisfy both it and this License would be to refrain entirely from

distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance,

the balance of the section is intended to apply and the section as a whole is intended to apply

in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right

claims or to contest validity of any such claims; this section has the sole purpose of protecting the

integrity of the free software distribution system, which is implemented by public license practices.

Many people have made generous contributions to the wide range of software distributed through

that system in reliance on consistent application of that system; it is up to the author/donor to

decide if he or she is willing to distribute software through any other system and a licensee cannot

impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the

rest of this License.

A.2.9. Section 8

If the distribution and/or use of the Program is restricted in certain countries either by patents

or by copyrighted interfaces, the original copyright holder who places the Program under this

License may add an explicit geographical distribution limitation excluding those countries, so that

distribution is permitted only in or among countries not thus excluded. In such case, this License

incorporates the limitation as if written in the body of this License.

A.2.10. Section 9

The Free Software Foundation may publish revised and/or new versions of the General Public

License from time to time. Such new versions will be similar in spirit to the present version, but

may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number

of this License which applies to it and “any later version”, you have the option of following the

terms and conditions either of that version or of any later version published by the Free Software

Foundation. If the Program does not specify a version number of this License, you may choose

any version ever published by the Free Software Foundation.

A.2.11. Section 10

If you wish to incorporate parts of the Program into other free programs whose distribution

conditions are different, write to the author to ask for permission. For software which is copyrighted

Appendix A. GNU General Publi...

114

by the Free Software Foundation, write to the Free Software Foundation; we sometimes make

exceptions for this. Our decision will be guided by the two goals of preserving the free status of

all derivatives of our free software and of promoting the sharing and reuse of software generally.

A.2.12. NO WARRANTY Section 11

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT

WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER

PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK

AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD

THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY

SERVICING, REPAIR OR CORRECTION.

A.2.13. Section 12

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/

OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR

DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL

DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING

BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR

LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO

OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

A.3. How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the

best way to achieve this is to make it free software which everyone can redistribute and change

under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each

source file to most effectively convey the exclusion of warranty; and each file should have at least

the “copyright” line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.> Copyright (C) <year>

<name of author>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU

General Public License as published by the Free Software Foundation; either version 2 of the

License, or (at your option) any later version.

How to Apply These Terms to Your New Programs

115

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;

without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;

if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA

02110-1301 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive

mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with

ABSOLUTELY NO WARRANTY; for details type “show w”. This is free software, and you are

welcome to redistribute it under certain conditions; type “show c” for details.

The hypothetical commands “show w” and “show c” should show the appropriate parts of the

General Public License. Of course, the commands you use may be called something other than

“show w” and “show c”; they could even be mouse-clicks or menu items--whatever suits your

program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a

“copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program “Gnomovision” (which

makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs.

If your program is a subroutine library, you may consider it more useful to permit linking proprietary

applications with the library. If this is what you want to do, use the GNU Library General Public

License instead of this License.

116

117

Appendix B. Revision History
Revision History

Revision 1 Fri Jul 16 2010 DavidLe

Sage<dlesage@redhat.com>,

DarrinMison<dmison@redhat.com>

Initial conversion from OpenOffice ODT files.

118

	Services Guide
	Table of Contents
	Chapter 1. The Registry
	1.1. What is the Registry?
	1.1.1. Introduction
	1.1.2. Why do I need it?
	1.1.3. How do I use it?
	1.1.4. Registry Vs Repository
	1.1.5. SOA components
	1.1.6. UDDI
	1.1.7. The Registry and JBossESB

	1.2. Configuring the Registry
	1.2.1. The Components Involved
	1.2.2. The Registry Implementation Class
	1.2.3. Using JAXR
	1.2.4. Using jUDDI Transports
	1.2.5. Using Scout and jUDDI
	1.2.6. Registry Interceptors

	1.3. Registry Configuration Examples
	1.3.1. Embedding
	1.3.2. RMI using the jbossesb.sar
	1.3.3. RMI using your own JNDI Registration of the RMI Service
	1.3.4. SOAP

	1.4. Registry Troubleshooting
	1.4.1. Scout and jUDDI pitfalls
	1.4.2. More Information

	Chapter 2. Rule Services
	2.1. What is a Rule Service?
	2.1.1. Introduction

	2.2. Rule Services using Drools
	2.2.1. Introduction
	2.2.2. Rule Set Creation
	2.2.3. Rule Service Consumers
	2.2.4. Configuration
	2.2.5. Object Paths
	2.2.6. Channels
	2.2.7. Deploying and Packaging

	Chapter 3. Content-Based Routing
	3.1. What is Content-Based Routing?
	3.1.1. Introduction
	3.1.2. Simple example

	3.2. Content-Based Routing using XPath
	3.2.1. Introduction
	3.2.2. Inline Rule Definitions
	3.2.3. External Rule Definitions
	3.2.4. Namespaces

	3.3. Content-Based Routing using Regex
	3.3.1. Introduction
	3.3.2. Inline Rule Definitions
	3.3.3. External Rule Definitions

	3.4. Content-Based Routing Using Drools
	3.4.1. Introduction
	3.4.2. Three Different Routing Action Classes
	3.4.3. Rule-Set Creation
	3.4.4. XPath Domain Specific Language
	3.4.4.1. XPath and namespaces
	3.4.4.2. Configuration
	3.4.4.3. Object Paths
	3.4.4.4. Stateful Rules
	3.4.4.5. KnowledgeAgent
	3.4.4.6. KnowledgeAgent and Business Rule Management System
	3.4.4.7. Executing Business Rules
	3.4.4.8. Changing RuleService implementations
	3.4.4.9. Deployment and Packaging

	3.5. Content-Based Routing Using Smooks
	3.5.1. Introduction

	Chapter 4. Message Transformation
	4.1. Overview
	4.2. Smooks
	4.2.1. Samples and Tutorials

	4.3. XSL Transformations

	Chapter 5. jBPM Integration
	5.1. Introduction
	5.2. Integration Configuration
	5.3. jBPM configuration
	5.4. Creation and Deployment of a Process Definition
	5.5. JBossESB to jBPM
	5.5.1. Exception Handling JBossESB to jBPM

	5.6. jBPM to JBossESB
	5.6.1. EsbNotifier
	5.6.2. EsbActionHandler
	5.6.3. Exception Handling jBPM -> JBossESB
	5.6.4. Scenerio One: Time-out
	5.6.5. Scenario Two: Exception Transition
	5.6.6. Scenario Three: Exception Decision

	Chapter 6. Service Orchestration
	6.1. Introduction
	6.2. Orchestrating Web Services
	6.3. Orchestration Diagram
	6.4. Process Deployment and Instantiation
	6.5. Conclusion

	Chapter 7. The Message Store
	7.1. Introduction
	7.2. Message Store Interface
	7.2.1. Transaction

	7.3. Configuring the Message Store

	Chapter 8. Security
	8.1. Introduction
	8.2. Security Service Configuration
	8.2.1. Configuring Security on Services

	8.3. Authentication
	8.3.1. Authentication Request

	8.4. JBossESB SecurityContext
	8.5. Security Context Propagation
	8.6. Customising security
	8.7. Provided Login Modules
	8.7.1. CertificateLoginModule
	8.7.2. Role Mapping

	8.8. Password Encryption
	8.8.1. Creating an Encrypted Password File
	8.8.1.1. Configuring Encrypted Password Files

	8.8.2. SecurityService

	Chapter 9. References
	Appendix A. GNU General Public License
	A.1. Preamble
	A.2. TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	A.2.1. Section 0
	A.2.2. Section 1
	A.2.3. Section 2
	A.2.4. Section 3
	A.2.5. Section 4
	A.2.6. Section 5
	A.2.7. Section 6
	A.2.8. Section 7
	A.2.9. Section 8
	A.2.10. Section 9
	A.2.11. Section 10
	A.2.12. NO WARRANTY Section 11
	A.2.13. Section 12

	A.3. How to Apply These Terms to Your New Programs

	Appendix B. Revision History

