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Overview
• SOA in a nutshell

– Degrees of coupling
– The component triad

• Relationship to WS-*
• The JBoss SOA Platform

– Registries and repositories
• BRMS

– Message delivery and transformation
– Service orchestration

• Futures
– Transaction processing in a SOA
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What is SOA?

• An SOA is a specific type of distributed system in
which the agents are "services"
(http://www.w3.org/TR/2003/WD-ws-arch-
20030808/#id2617708

• Adopting SOA is essential to delivering the business
agility and IT flexibility promised by Web Services.

• But SOA is not a technology and does not come in a
shrink-wrapped box
– It takes a different development methodology

– It’s not about exposing individual objects on the “bus”
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Services

• Services represent building blocks for
applications
– Allowing developers to organize their capabilities in ways

that are natural to the application and the environment in
which they operate.

• A Service provides information as well as
behaviour and it does not expose implementation
(back-end) choices to the user.
– Furthermore a service presents a relatively simple interface

to other services/users.
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Tightly coupled

• A distributed application consists of several distinct
components

• Traditional client and server technologies based on
RPC
– Hide distribution

– Make remote service invocation look the same as local
component invocation

• Unfortunately this tightly coupled applications
– Such applications can be brittle
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Loosely coupled

• SOA is an architectural style to achieve loose
coupling
– A service is a unit of work done by a service provider to

achieve desired end results for a consumer.

• SOA is deliberately not prescriptive about what
happens behind service endpoints
– We are only concerned with the transfer of structured

data between parties

• SOA turns business functions into services that can
be reused and accessed through standard interfaces.
– Should be accessible through different applications

over a variety of channels.
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But …

• There are degrees of coupling and you should
choose the level that is right for you

• At the one extreme
– Defining specific service interfaces, akin to IDL

• Easier to reason about the service
• Limits the amount of freedom in changing the implementation

• At the other extreme
– Single operation (e.g., doWork)

• More flexibility is changing the implementation
– Well, almost …

• More difficult to determine service functionality a priori
– Need more service metadata
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What about Web Services?

• Popular integration approach
– XML
– HTTP
– Pretty much universal acceptance (see bullets above!)

• Not specific to SOA
– Web Services began life as CORBA-over-HTTP
– XML-RPC

• Web Services+SOA gives benefits
– Loose coupling
– Interoperability
– Enterprise capabilities, e.g., security and transactions
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Relationship to WS-*
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Fortunately …

• SOA is technology agnostic
• WS-* offers the potential for interoperable SOA
• But it is just as easy to develop closely-coupled

applications in WS-*
• Most vendor WS-* tools are direct mappings of

distributed object tools
– SOA != distributed objects with angle brackets

• A SOA infrastructure should support and
encourage SOA principles
– Sometimes it is easier said than done
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The JBoss SOA Platform

• A Service Oriented Infrastructure
– Based on JBossESB, Drools, JBossWS, JBossTS, JBoss

Messaging and jBPM
– Can run stand-alone or be deployed into JBossAS

• JBossESB acts as the glue
– Supported protocols and capabilities make it more of an

Internet Service Bus
– Currently uses the “doWork” service definition approach

• Encourages an incremental approach to SOA
– You don’t need to be a domain expert to benefit from it
– Build up your knowledge in step with your requirements
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Relationship to JBossESB

• Messages and services are key to architecture
• Inherently asynchronous

– Correlated one-way messages for RPC
• Support for Web Services
• Support for task management
• Adapters

– JCA
– Gateways

• Flexible architecture
– Multi-implementation approach
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Where does it fit?
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SOA components

• The key components of a Service Oriented
Architecture are
– The messages that are exchanged
– The agents that act as service requesters and service

providers
– The shared transport mechanisms that allow the flow of

messages
• A description of a service that exists within an SOA is

essentially just a description of the message
exchange pattern between itself and its users
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Component triad
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Repository

• Service metadata, which is important for contract
definitions
– Functional and non-functional aspects

• Transactional, secure, QoS, …
• Policies

– MEPs
• One-way
• Request-response

– Message structure
• Where data resides

– Governance
• Service binaries
• Business rules
• Workflow tasks or process control information
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The BRMS
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Services and messages

• Within the SOA-P everything is a service
• All services are interacted with via messages

– Messages are part of the contract between client and
service

• Messages do not imply specific implementations
of carrier-protocol

• Services do not need to be bound to specific
implementations of carrier-protocol
– Email, S-FTP, JMS, File, etc.
– More can be added as required
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The Message envelope
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Message implementations

• On-the-wire representation may be tailored for
environment
– E.g., binary versus text

• Only the structure of the Message is mandated
• Two wire-formats provided

– Java Serialized
– XML

• Others can be added statically or dynamically
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Message delivery in the SOA-P

• Addressed via WS-Addressing Endpoint
References
– Transport agnostic

• Supports request-response as well as one-way
MEP

• Mandatory to define the recipient address
• Optional

– Reply address
– Message relationship information
– Fault address
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Gateway Services

• Need to allow legacy services to plug-in to the
bus

• Need to allow legacy clients to plug-in to the bus
• Neither have concept of Message or EPR
• Must bridge from ESB-aware to ESB-unaware

domains
– Gateways perform this role

• This allows the bus to be extended across the
enterprise without perturbing existing
infrastructure
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Service registration

• Services are identified by Service Name but
addressed by EPR
– Can be clustered for high availability and load balancing

• Registry associates <Service Name, EPRs>
• Service may be available on more than one EPR

– E.g., different qualities of service
• Services are expected to store EPR when

activated
• Senders look up EPR(s) using Service Name

– May select on other criteria
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Content based routing

• Intermediary services can redirect messages
based on content
– Hiding federating service implementations
– Business logic choices
– Fault tolerance

• Not a requirement for SOA
– But does help loose coupling and legacy integration

• SOA-P has a CBR Service
– Supports JBoss Rules and XPath expressions
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Web Service example
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SOA Platform example
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JBoss Rules

rule "Routing Rule - Serialized based message"

        when
                Message( type == MessageType.JAVA_SERIALIZED)
        then
                System.out.println("Serialized");
                destinationServices.add("test_category:Serialized_ServiceDestination");

end

rule "Routing Rule - XML based message"

        when
                Message( type == MessageType.JBOSS_XML)
        then
                System.out.println("JBoss_XML");
                destinationServices.add("test_category:JBOSS_XMLDestination");
end
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Message transformation

• Different services may communicate in different
vocabularies
– Particularly with dynamic service registration/updates

• Data may need to be restructured based on
recipient, time of day, etc.

• Several ways to do transformation
• Transformation Service

– Smooks
– XSLT
– Others can be plugged in
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Message store

• Messages can be durable recorded
• Useful for audit trail, debugging, replay etc.

– Sometimes mandated by local laws
• Separate service
• Flexible implementations possible

– Service API does not impose implementation restrictions
– Out-of-the-box uses JDBC
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Service orchestration

• Orchestration (e.g., BPM or workflow) is
important in many distributed environments
– More so as the scale and complexity increases

• Need to have intra service task orchestration
– Control the transition of the state of a service as it executes

tasks
• Need to have inter service orchestration

– Control the invocations of services as messages flow
through the infrastructure

• SOA-P supports both approaches
– jBPM
– WS-BPEL
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Orchestrating message flows

Order Process Orchestrator Check Stock Process

checkStock

sufficientStock

Payment Authorization

Process

paymentAuthorization

paymentAuthorized

Payment Capture Process

dispatch

dispatched

debitClientAccount

accountDebited

Dispatch Process
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Fault tolerance

• Machines and software fail
– Fundamental universal law (entropy increases)
– Things get better with each generation, but still

statistically significant
• Failures of centralized systems difficult to

handle
• Failures of distributed systems are much

more difficult
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Fault tolerance techniques

• Replication of resources
– Increase availability

• Probability is that a critical number of resources remain
operational

• “Guarantee” forward progress
– Tolerate programmer errors by heterogeneous

implementations
• Spheres of control

– “Guarantee” no partial completion of work in the presence of
failures
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What is a transaction?

• Mechanistic aid to achieving correctness
• Provides an “all-or-nothing” property to

work that is conducted within its scope
– Even in the presence of failures

• Ensures that shared resources are
protected from multiple users

• “Guarantees” the notion of shared global
consensus
– Different parties in different locales have the same view of

the transaction outcome
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SOA characteristics

• Business-to-business interactions may be
complex
– involving many parties
– spanning many different organisations
– potentially lasting for hours or days

• Cannot afford to lock resources on behalf of an
individual indefinitely

• May need to undo only a subset of work
• Need to relax ACID properties



 36                                                                                                  Red Hat

Transaction interoperability

• Web Services are as much about
interoperability as they are about the Web

• In the short term will be about
interoperability between existing TP
systems
– Achievable with JBossTS
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Transactions for SOA

• Relax isolation
– Internal isolation or resources should be a decision for the service

provider
• E.g., commit early and define compensation activities
• However, it does impact applications

– Some users may want to know a priori what isolation policies are used
– Undo can be whatever is required

• Relax atomicity
– Sometimes it may be desirable to cancel some work without

affecting the remainder
• E.g., prefer to get airline seat now even without travel insurance

– Similar to nested transactions
• Work performed within scope of a nested transaction is provisional
• Failure does not affect enclosing transaction
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Heisenberg’s Uncertainty
Principle

• Cannot accurately measure both position and
momentum of sub-atomic particles
– Can know one with certainty, but not the other
– Non-deterministic measurements

• Large-scale/loosely-coupled transactional
applications suffer the same effect
– Can know that all services will eventually see same state,

just not when
– Or at known time can determine state within

model/application specific degree of uncertainty
• Or another way of thinking about it …

– No such thing as simultaneity in data space as there isn't in
space-time

• “Data on the Outside vs. Data on the Inside”, by Pat Helland
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Conclusions

• SOA is an important design-time and use-time approach
– SOA is NOT a product
– Requires changes to organizational view of software components

(services)
• Web Services are important

– Interoperability
– Internet-scale computing
– But SOA applications are not inherent in WS-*

• JBoss SOA-P can bridge the divide
– A single infrastructure that provides SOA support

• Get involved
– Start by downloading JBossESB and give it a try

(http://labs.jboss.com/jbossesb)
– Lots of examples
– Contribute
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