
Service Oriented Architectures and the JBoss
SOA Platform

Dr Mark Little
Technical Development Manager, Red Hat

 2 Red Hat

Overview
• SOA in a nutshell

– Degrees of coupling
– The component triad

• Relationship to WS-*
• The JBoss SOA Platform

– Registries and repositories
• BRMS

– Message delivery and transformation
– Service orchestration

• Futures
– Transaction processing in a SOA

 3 Red Hat

What is SOA?

• An SOA is a specific type of distributed system in
which the agents are "services"
(http://www.w3.org/TR/2003/WD-ws-arch-
20030808/#id2617708

• Adopting SOA is essential to delivering the business
agility and IT flexibility promised by Web Services.

• But SOA is not a technology and does not come in a
shrink-wrapped box
– It takes a different development methodology

– It’s not about exposing individual objects on the “bus”

 4 Red Hat

Services

• Services represent building blocks for
applications
– Allowing developers to organize their capabilities in ways

that are natural to the application and the environment in
which they operate.

• A Service provides information as well as
behaviour and it does not expose implementation
(back-end) choices to the user.
– Furthermore a service presents a relatively simple interface

to other services/users.

 5 Red Hat

Tightly coupled

• A distributed application consists of several distinct
components

• Traditional client and server technologies based on
RPC
– Hide distribution

– Make remote service invocation look the same as local
component invocation

• Unfortunately this tightly coupled applications
– Such applications can be brittle

 6 Red Hat

Loosely coupled

• SOA is an architectural style to achieve loose
coupling
– A service is a unit of work done by a service provider to

achieve desired end results for a consumer.

• SOA is deliberately not prescriptive about what
happens behind service endpoints
– We are only concerned with the transfer of structured

data between parties

• SOA turns business functions into services that can
be reused and accessed through standard interfaces.
– Should be accessible through different applications

over a variety of channels.

 7 Red Hat

But …

• There are degrees of coupling and you should
choose the level that is right for you

• At the one extreme
– Defining specific service interfaces, akin to IDL

• Easier to reason about the service
• Limits the amount of freedom in changing the implementation

• At the other extreme
– Single operation (e.g., doWork)

• More flexibility is changing the implementation
– Well, almost …

• More difficult to determine service functionality a priori
– Need more service metadata

 8 Red Hat

What about Web Services?

• Popular integration approach
– XML
– HTTP
– Pretty much universal acceptance (see bullets above!)

• Not specific to SOA
– Web Services began life as CORBA-over-HTTP
– XML-RPC

• Web Services+SOA gives benefits
– Loose coupling
– Interoperability
– Enterprise capabilities, e.g., security and transactions

 9 Red Hat

Relationship to WS-*

 10 Red Hat

Fortunately …

• SOA is technology agnostic
• WS-* offers the potential for interoperable SOA
• But it is just as easy to develop closely-coupled

applications in WS-*
• Most vendor WS-* tools are direct mappings of

distributed object tools
– SOA != distributed objects with angle brackets

• A SOA infrastructure should support and
encourage SOA principles
– Sometimes it is easier said than done

 11 Red Hat

The JBoss SOA Platform

• A Service Oriented Infrastructure
– Based on JBossESB, Drools, JBossWS, JBossTS, JBoss

Messaging and jBPM
– Can run stand-alone or be deployed into JBossAS

• JBossESB acts as the glue
– Supported protocols and capabilities make it more of an

Internet Service Bus
– Currently uses the “doWork” service definition approach

• Encourages an incremental approach to SOA
– You don’t need to be a domain expert to benefit from it
– Build up your knowledge in step with your requirements

 12 Red Hat

Relationship to JBossESB

• Messages and services are key to architecture
• Inherently asynchronous

– Correlated one-way messages for RPC
• Support for Web Services
• Support for task management
• Adapters

– JCA
– Gateways

• Flexible architecture
– Multi-implementation approach

 13 Red Hat

Where does it fit?

 14 Red Hat

SOA components

• The key components of a Service Oriented
Architecture are
– The messages that are exchanged
– The agents that act as service requesters and service

providers
– The shared transport mechanisms that allow the flow of

messages
• A description of a service that exists within an SOA is

essentially just a description of the message
exchange pattern between itself and its users

 15 Red Hat

Component triad

 16 Red Hat

Repository

• Service metadata, which is important for contract
definitions
– Functional and non-functional aspects

• Transactional, secure, QoS, …
• Policies

– MEPs
• One-way
• Request-response

– Message structure
• Where data resides

– Governance
• Service binaries
• Business rules
• Workflow tasks or process control information

 17 Red Hat

The BRMS

 18 Red Hat

Services and messages

• Within the SOA-P everything is a service
• All services are interacted with via messages

– Messages are part of the contract between client and
service

• Messages do not imply specific implementations
of carrier-protocol

• Services do not need to be bound to specific
implementations of carrier-protocol
– Email, S-FTP, JMS, File, etc.
– More can be added as required

 19 Red Hat

The Message envelope

 20 Red Hat

Message implementations

• On-the-wire representation may be tailored for
environment
– E.g., binary versus text

• Only the structure of the Message is mandated
• Two wire-formats provided

– Java Serialized
– XML

• Others can be added statically or dynamically

 21 Red Hat

Message delivery in the SOA-P

• Addressed via WS-Addressing Endpoint
References
– Transport agnostic

• Supports request-response as well as one-way
MEP

• Mandatory to define the recipient address
• Optional

– Reply address
– Message relationship information
– Fault address

 22 Red Hat

Gateway Services

• Need to allow legacy services to plug-in to the
bus

• Need to allow legacy clients to plug-in to the bus
• Neither have concept of Message or EPR
• Must bridge from ESB-aware to ESB-unaware

domains
– Gateways perform this role

• This allows the bus to be extended across the
enterprise without perturbing existing
infrastructure

 23 Red Hat

Service registration

• Services are identified by Service Name but
addressed by EPR
– Can be clustered for high availability and load balancing

• Registry associates <Service Name, EPRs>
• Service may be available on more than one EPR

– E.g., different qualities of service
• Services are expected to store EPR when

activated
• Senders look up EPR(s) using Service Name

– May select on other criteria

 24 Red Hat

Content based routing

• Intermediary services can redirect messages
based on content
– Hiding federating service implementations
– Business logic choices
– Fault tolerance

• Not a requirement for SOA
– But does help loose coupling and legacy integration

• SOA-P has a CBR Service
– Supports JBoss Rules and XPath expressions

 25 Red Hat

Web Service example

 26 Red Hat

SOA Platform example

 27 Red Hat

JBoss Rules

rule "Routing Rule - Serialized based message"

 when
 Message(type == MessageType.JAVA_SERIALIZED)
 then
 System.out.println("Serialized");
 destinationServices.add("test_category:Serialized_ServiceDestination");

end

rule "Routing Rule - XML based message"

 when
 Message(type == MessageType.JBOSS_XML)
 then
 System.out.println("JBoss_XML");
 destinationServices.add("test_category:JBOSS_XMLDestination");
end

 28 Red Hat

Message transformation

• Different services may communicate in different
vocabularies
– Particularly with dynamic service registration/updates

• Data may need to be restructured based on
recipient, time of day, etc.

• Several ways to do transformation
• Transformation Service

– Smooks
– XSLT
– Others can be plugged in

 29 Red Hat

Message store

• Messages can be durable recorded
• Useful for audit trail, debugging, replay etc.

– Sometimes mandated by local laws
• Separate service
• Flexible implementations possible

– Service API does not impose implementation restrictions
– Out-of-the-box uses JDBC

 30 Red Hat

Service orchestration

• Orchestration (e.g., BPM or workflow) is
important in many distributed environments
– More so as the scale and complexity increases

• Need to have intra service task orchestration
– Control the transition of the state of a service as it executes

tasks
• Need to have inter service orchestration

– Control the invocations of services as messages flow
through the infrastructure

• SOA-P supports both approaches
– jBPM
– WS-BPEL

 31 Red Hat

Orchestrating message flows

Order Process Orchestrator Check Stock Process

checkStock

sufficientStock

Payment Authorization

Process

paymentAuthorization

paymentAuthorized

Payment Capture Process

dispatch

dispatched

debitClientAccount

accountDebited

Dispatch Process

 32 Red Hat

Fault tolerance

• Machines and software fail
– Fundamental universal law (entropy increases)
– Things get better with each generation, but still

statistically significant
• Failures of centralized systems difficult to

handle
• Failures of distributed systems are much

more difficult

 33 Red Hat

Fault tolerance techniques

• Replication of resources
– Increase availability

• Probability is that a critical number of resources remain
operational

• “Guarantee” forward progress
– Tolerate programmer errors by heterogeneous

implementations
• Spheres of control

– “Guarantee” no partial completion of work in the presence of
failures

 34 Red Hat

What is a transaction?

• Mechanistic aid to achieving correctness
• Provides an “all-or-nothing” property to

work that is conducted within its scope
– Even in the presence of failures

• Ensures that shared resources are
protected from multiple users

• “Guarantees” the notion of shared global
consensus
– Different parties in different locales have the same view of

the transaction outcome

 35 Red Hat

SOA characteristics

• Business-to-business interactions may be
complex
– involving many parties
– spanning many different organisations
– potentially lasting for hours or days

• Cannot afford to lock resources on behalf of an
individual indefinitely

• May need to undo only a subset of work
• Need to relax ACID properties

 36 Red Hat

Transaction interoperability

• Web Services are as much about
interoperability as they are about the Web

• In the short term will be about
interoperability between existing TP
systems
– Achievable with JBossTS

 37 Red Hat

Transactions for SOA

• Relax isolation
– Internal isolation or resources should be a decision for the service

provider
• E.g., commit early and define compensation activities
• However, it does impact applications

– Some users may want to know a priori what isolation policies are used
– Undo can be whatever is required

• Relax atomicity
– Sometimes it may be desirable to cancel some work without

affecting the remainder
• E.g., prefer to get airline seat now even without travel insurance

– Similar to nested transactions
• Work performed within scope of a nested transaction is provisional
• Failure does not affect enclosing transaction

 38 Red Hat

Heisenberg’s Uncertainty
Principle

• Cannot accurately measure both position and
momentum of sub-atomic particles
– Can know one with certainty, but not the other
– Non-deterministic measurements

• Large-scale/loosely-coupled transactional
applications suffer the same effect
– Can know that all services will eventually see same state,

just not when
– Or at known time can determine state within

model/application specific degree of uncertainty
• Or another way of thinking about it …

– No such thing as simultaneity in data space as there isn't in
space-time

• “Data on the Outside vs. Data on the Inside”, by Pat Helland

 39 Red Hat

Conclusions

• SOA is an important design-time and use-time approach
– SOA is NOT a product
– Requires changes to organizational view of software components

(services)
• Web Services are important

– Interoperability
– Internet-scale computing
– But SOA applications are not inherent in WS-*

• JBoss SOA-P can bridge the divide
– A single infrastructure that provides SOA support

• Get involved
– Start by downloading JBossESB and give it a try

(http://labs.jboss.com/jbossesb)
– Lots of examples
– Contribute

 40 Red Hat

