
Using REST and WS-* for SOA

Dr Mark Little
Technical Development Manager, Red Hat

 2 Red Hat

Background

• Research into fault-tolerant distributed systems
since 1986
– Arjuna, Argus, Isis/Horus, Emerald, Xerox, …
– DCE, DCOM, CORBA, JavaRMI, HTTP, Web Services, …

• Active in OMG, OASIS, W3C, JCP, GGF, OSGi and
others

• Involved with Web Services since 1999
– Co-author of a number of WS-* specifications and standards

• Involved with REST/HTTP since at least 2000
– W3Objects

• IBM, Arjuna Solutions, Bluestone, HP, Arjuna
Technologies, JBoss, Red Hat

• Newcastle University

 3 Red Hat

Overview

• SOA in a nutshell
• WS-* and REST
• Where should you start?

– Donʼt panic!
• One size does not fit all

– Donʼt believe everything you read
• Bridging the divide

– Can REST be used with WS-*?

 4 Red Hat

The debate

• Actually more about WS-* and RESTful HTTP
(REST/HTTP)
– REST is a valid approach to SOA

• No REST bashing
– REST is a valid architectural approach
– HTTP is one way of implementing it

• No WS-* bashing
– And specifically no WSDL bashing please

• These types of debate have raged throughout
history
– BetaMax vs VHS
– Blu-Ray vs HD-DVD

• Hybrid systems are the norm
– Very few places can afford to rip-n-replace

 5 Red Hat

SOA in a nutshell

• SOA is an architectural style to achieve loose
coupling
– A service is a unit of work done by a service provider to

achieve desired end results for a consumer

• SOA is deliberately not prescriptive about what
happens behind service endpoints
– We are only concerned with the transfer of structured

data between parties

• SOA turns business functions into services that can
be reused and accessed through standard interfaces.
– Should be accessible through different applications

over a variety of channels

 6 Red Hat

Achieving loose coupling

• SOA employs two architectural constraints
– A small set of simple and ubiquitous interfaces to all

participating software agents. Only generic semantics are
encoded at the interfaces. The interfaces should be
universally available for all providers and consumers

– Descriptive messages constrained by an extensible schema
delivered through the interfaces. No, or only minimal, system
behavior is prescribed by messages. A schema limits the
vocabulary and structure of messages. An extensible
schema allows new versions of services to be introduced
without breaking existing services

 7 Red Hat

Implementing SOA

• Many different possible approaches to SOA
– CORBA
– J(2)EE

• JMS

• Two most popular approaches are
– WS-*
– REST

• Actually an architecture in its own right (not tied to HTTP)
• Much more solidly defined than SOA

• Which is the right approach?
– Why should there be only one?

 8 Red Hat

The protocol stack

 9 Red Hat

Distributed Systems

• Same fundamental laws
– Develop “entity”

• Define the UOW it supports
– Search for “entity”

• Agree “entity” offers the desired capability or UOW
– Request “entity” to perform UOW

• Create a network-transferable message
• Send the message

– Maybe try to make the remote interaction appear local
– Maybe do some “enterprise” work as well

• Security, transactions, replication etc.
– Contextualization of messages

 10 Red Hat

The most popular (by demand)

• Client and server technologies based on RPC

– Hide distribution

– Make remote service invocation look the same as local
component invocation

– In use since the 1970’s

• Unfortunately this leads to tightly coupled applications

– Changes to the IDL require re-generation of stubs

• And dissemination of new code

• Or errors will occur during interactions

– Such applications can be brittle

• Hard to control the infrastructure as needed

• No quiescent period

 11 Red Hat

Degrees of coupling

• At the one extreme
– Defining specific service interfaces, akin to IDL

• Easier to reason about the service
• Limits the amount of freedom in changing the implementation

• At the other extreme
– Single operation (e.g., doWork)

• More flexibility is changing the implementation
– Well, almost …

• More difficult to determine service functionality a priori
– Need more service metadata

• There are degrees of coupling and you should
choose the level that is right for you
– Not specific to distributed systems

 12 Red Hat

Distributed Systems 101

• The same requirements are present throughout
the stack
– Split differently between the infrastructure and the

“application”
• Uniform interface allows for generic

infrastructural support
– Caching, extremely loose coupling
– Can push more requirements on to the “developer”
– Requires more from external contract meta-data

• Specific interface allows for more limited generic
support
– Targeted caching, application semantics
– Impacts less on the “developer” but may cost in terms of

flexibility

 13 Red Hat

So what do we need for SOA?

• An architectural approach that supports
– Loose coupling
– Enterprise capabilities

• Security, reliable messaging, fault tolerance
– Different invocation mechanisms

• UDP, TCP, HTTP, JMS, IIOP
– Integration with back-end “legacy” systems
– Standards based

• Things that would be nice (not architecture)
– Easy to use and administer
– Good tooling

 14 Red Hat

REST

• Defined by Roy Fielding in his PhD
– One of a range of approaches

• Core set of architectural principles
– Identify all resources/entities
– Link resource together

• Hypermedia as the engine of application state
– Use standard methods for interacting with resources
– Multiple resource representation
– Stateless communication

• Not tied to HTTP

 15 Red Hat

REST/HTTP in a nutshell

• RESTful HTTP
– Just because you use HTTP does not mean you are using REST

• Original HTTP specification talked about adding new
commands
– GET only in 0.9
– GET, HEAD, POST, extension-method in 1.0
– Now we have up to 8 different verbs

• Changes to “interface” occur but users aren’t affected
• Many good distributed systems characteristics

– OPTIONS
– Try-before-you-buy
– Caching
– Scalability

• HTTP is NOT a transport

 16 Red Hat

Human driven?

• Often stated that REST is only suitable for
hypertext
– “Because thatʼs the way the majority of the Web works”

• Weak argument
– Itʼs still a distributed system, just based on resources
– OK, humans fill in the “gaps” in contract definition
– Extra infrastructure support could help

• Anyone remember URN name servers (1994/1995)?
• But now we have Google!

• Not enough “application” standards
– Good point

• Lack of good tooling
– Well … JAX-RS, WCF, …

 17 Red Hat

Standards

• The Web is a series of standards
– URIs
– HTTP
– HTML

• Universal adoption has to count for something!
• REST/HTTP is ubiquitous

– Communication interoperability, which is a good start
• Also why WS-* standardized on HTTP

– But application semantic interoperability is not there (yet)
• Take a minimum of 5 years to do

 18 Red Hat

Enterprise ready?

• DʼOh!
– Take a look at the world!

• Enterprise capabilities
– Reliable messaging
– Some fault tolerance

• No transactions
• Workflow
• 404 rules!
• Stale links

• Components are there, just not necessarily used
• But … itʼs not that easy!

– Human interaction style can sometimes confuse

 19 Red Hat

Transactions

• REST transactions by HP in 2000
– Yes, customers want to coordinate business interactions

across multiple sites
• Even if only atomically

– Machine driven
• http://<machine>/transaction-coordinator

Performing a GET returns a list of all transactions
know to the coordinator (active and recovery)

• http://<machine>/transaction-
coordinator/begin?<ClientID>
Performing a PUT will start a new transaction and
return a URL /transaction-coordinator/<id>

 20 Red Hat

What about Web Services?

• Popular integration approach
– XML
– HTTP

• Other transport bindings are possible
• Developed with machine-to-machine interactions

in mind
• Not specific to SOA

– Web Services began life as CORBA-over-HTTP
– XML-RPC
– WS-RF and WS-Addressing

• Web Services+SOA gives benefits
– Loose coupling
– Interoperability
– Enterprise capabilities, e.g., security and transactions

 21 Red Hat

Enterprise realities

• Customers want interoperability of
heterogeneous systems

• They want guaranteed delivery of messages
– Even in the presence of failures such as network partitions

• They want transactions
– Not just ACID transactions!

• They need audit trails
– Sarbanes-Oxley anyone?

• They need bullet-proof security
– Sarbanes-Oxley

• They need machine-readable contracts with SLAs

 22 Red Hat

WS-* Architecture

 23 Red Hat

Fault tolerance

• WS-* has driven protocol interoperability
– More so than CORBA, DCE, Java

• Native data and protocol bridging
• Clearly defined semantics for transactions,

security, reliable messaging
– Not specific to HTTP

 24 Red Hat

WS-* backlash?

• “Itʼs too complex”
– Complicated problems often require complex solutions

• “Itʼs using HTTP as a transport!”
– Get over it! Mistakes happen.

• “It doesnʼt offer anything better than REST/HTTP”
– Short-sightedness works in both directions

• “It doesnʼt leverage the Web”
– Valid point for Web deployments
– Not so valid for every other type of deployment

 25 Red Hat

SOA: REST or WS-*?

• SOAP/HTTP
– WS-* vendors have spent a lot of time ensuring it integrates

with legacy systems
• How many people remember that WS-* is supposed to also be

about Internet scale computing?
– Thatʼs important for out-of-the-box and interoperable

deployments
– But REST as a general architectural approach has merits

• REST/HTTP has “simplicity” and (relative) ease of
use
– No vendor-lockin at the infrastructure level
– Is precisely for Internet scale computing as well
– Remember that a lot of cool Web applications arenʼt

RESTful

 26 Red Hat

What can REST learn from WS-*?

• Uniform interface isnʼt enough for complex
application requirements
– Standardize on the application protocol semantics
– Ad hoc does not scale and leads to interoperability

nightmares
• Use outside of the browser

– Yes, there are examples and implementations, but they are
the exception to the rule

• Just because the Web “works” is not sufficient
reason to assume itʼs right for everything
– HTTP versus IIOP?

 27 Red Hat

Industrial realities

• WS-* captured the mind-set
• REST is gaining momentum
• But …

– Large investment in WS-* and application-level standards
are important

– Probably too much effort to assume the same will happen in
REST/HTTP

• At least not with a big bang approach
– More customers persuaded by WS-*

• It’s familiar (JEE, .NET, DCOM, DCE)
• But they want future proof

• Combinations of WS-* and REST are beginning to
evolve
– May lead to standards

 28 Red Hat

What can WS-* learn from REST?

• Donʼt abuse transports, they donʼt like it!
• Adopt SOA principles

– No more WS-RF please!
– WS-Context in favour of WS-Addressing “extensions”

• Late binding is good
– But extremely late binding can be a burden

• Occams Razor
– Simple but no simpler

• Infrastructure support for common
services/resources simplifies development

• The Web uses HTTP

 29 Red Hat

What should you use?

• If it needs to be on the Web
– REST/HTTP

• If it needs to be interoperable with arbitrary
vendors
– WS-* for standards
– Or persuade vendors to work on standards for REST

• If you must use HTTP
– Consider REST before WS-*

• But understand all of the implications

• If integrating with back-end systems out-of-the-
box
– WS-* has a lot of out-of-the-box solutions

 30 Red Hat

The combination

• WS-* used within the firewall
– REST principles could still help
– SOAP is not fast and neither is HTTP

• REST/HTTP for between firewalls
– Improved application protocol standards

• Bridge between WS-* and REST/HTTP
– Leverage all of HTTP where possible
– Definitely not easy to do, but …

• WS-* between firewalls?
– Unlikely to see massive adoption

 31 Red Hat

Conclusions

• What have we learnt from the last 40 years?
– One size does not fit all!
– Use the right tool for the right job

• If all you’ve got is a hammer then of course everything looks like a nail!

• Just because you are using HTTP does not mean you are
using REST

• Just because you are using WS-* does not mean you are
developing with SOA

