
Extending JBossIDE

An introduction to extending eclipse and JBossIDE

1.0

Table of Contents
1. Introduction ..1

1.1. Document Purpose ...1
1.2. What is Eclipse? ...1
1.3. What can I extend in JBoss IDE? ..1
1.4. Technologies We Use ...2

1.4.1. JDT ..2
1.4.2. GEF ...2
1.4.3. EMF ...2
1.4.4. Webtools ..3
1.4.5. SWT ...3

1.5. Current JBoss IDE Projects ...3
1.5.1. JBoss AOP IDE ...3
1.5.2. EJB3 Tools ...3
1.5.3. jBPM Designer ..4
1.5.4. Hibernate Tools ...4
1.5.5. Others ...4

2. Example 1 - Getting Started ...5
2.1. Configuring your PDE ..5
2.2. Creating a New Plug-in Project ...5
2.3. Exploring the Code ..6

3. Adding Context Menus to Other Views ..8
3.1. Goal ..8
3.2. Create the Plugin ..8
3.3. Creating a popup with an ObjectContribution ...9

3.3.1. Creating the Extension ...9
3.3.2. Testing ...10
3.3.3. Results ..10

3.4. Creating a popup with a ViewerContribution ...10
3.4.1. Creation ..10
3.4.2. Testing this Extension ..11

3.5. Example Conclusions ...11
4. Dependencies ...12

4.1. Introduction ...12
4.2. Jar Dependencies ...12
4.3. Project Dependencies ...13
4.4. Conclusion ..13

5. A plug-in with views ...14
5.1. Adding a view ..14
5.2. Creating the control ..14
5.3. Content Providers ...15

5.3.1. Introduction ..15
5.3.2. TableViewer's Content Provider ...15
5.3.3. TreeViewer's ContentProvider ..15

5.4. Label Providers ..16

JBoss 1.0 ii

5.4.1. The Generic LabelProvider ..16
5.4.2. ITableLabelProvider ..16

5.5. Context Menus ...16
5.5.1. Creating a (mostly) static Context Menu ...16
5.5.2. A dynamic Context Menu ..17
5.5.3. Drilldown Adapters ...18

5.6. Conclusion ..18
6. Editors ...19

6.1. Introduction ...19
6.2. Custom Editor ..19
6.3. Multi-Page Editor ...21

7. Tracking Changes to Resources and Java Elements ...23
7.1. Dependencies ...23
7.2. Project Structure ..23
7.3. Resource Changes ..24
7.4. Element Changes ...24
7.5. View Notes ..25
7.6. Some JDT examples ...26

8. Preferences ...27
8.1. Preference Stores ...27

8.1.1. API ...27
8.2. Our Action ...28
8.3. The Extension Point ...28
8.4. The PreferencePage ..28
8.5. Testing ..29
8.6. Notes ...29

Extending JBossIDE

JBoss 1.0 iii

1
Introduction

1.1. Document Purpose

This document will give an introduction to extending eclipse and the JBoss IDE plug-ins with plug-ins of your
own. It will give an introduction into the main libraries the JBoss IDE plug-ins make use of (webtools, JDT, etc),
and a general overview of the structure of the JBoss IDE projects. All plug-ins to eclipse and JBoss IDE are written
in Java. It will detail how to use common extension points in eclipse.

This document will not teach you how to use eclipse, JBoss IDE, or program in Java. A familiarity with eclipse and
java in general will be assumed. For those who are not familiar with eclipse, a good guide on the software is avail-
able at http://www.eclipse.org/documentation/pdf/org.eclipse.platform.doc.user_3.0.1.pdf. Terminology from this
document (view, context menu, editor, perspective, etc) will be used throughout the document. If you've never used
eclipse to program in Java, the Java Development User Guide is available at ht-
tp://www.eclipse.org/documentation/pdf/org.eclipse.jdt.doc.user_3.0.1.pdf. Other resources are listed at the end of
the article.

1.2. What is Eclipse?

Aside from being an IDE, what exactly is eclipse? Eclipse in a programatic sense is simply a plug-in loader. It has a
small core codebase which is in charge of loading plug-ins, libraries, and other resources. Each plug-in is represen-
ted by an OSGi bundle when running.

Part of eclipse's success has been due to its extensible nature and the ease with which plugins can extend and en-
hance each other. Any plug-in can define their own extension points through which others may extend them. Any
plug-in, for example, can add a top level menu to the main menu bar of the application, because the plug-in in
charge of that menu has defined extension points through which to do so. If a plug-in defines no extension points
for others to use, then the plug-in is not extendable.

1.3. What can I extend in JBoss IDE?

JBoss IDE is a term that refers to a handfull of projects, specifically: JBoss Aop IDE, EJB3 tools, jBPM tools, Hi-
bernate Tools, and what is called the IDE Core. Each one of them may consist of multiple plug-ins themselves.
Aop IDE, for example, consists of two plugins: aop.core and aop.ui. Other projects consist of several plugin-ins as
well.

JBoss is currently growing, and is always taking on and integrating new projects. The IDE team, likewise, has also
taken on new contributers, and a refactoring may be necessary in the future. Historically the IDE has not had many
re-usable features separated, and hopefully this will change. Because of this, JBoss IDE currently does not define

JBoss 1.0 1

any extension points, but we encourage you to contact us with requests or ideas as to which views, context menus,
or other eclipse elements in our plug-ins you'd like to see extensible. Also, if you see some functionality (a dialog
box for example) that you think could be separated and put in some IDE-commons project for others to use, that
would also be helpful.

If you'd like to add additional functionality to the AOP AspectManager view's context menu, for example, and
would like us to define an extension point there so that your plug-in can do so, don't hesitate to ask. If you desired,
and your added features proved helpful to others, you could contribute your code back to JBoss IDE for integration.
Because JBoss IDE currently does not define any extension points, this document will focus primarily on using ec-
lipse's extension points.

1.4. Technologies We Use

You will not need to understand all of these technologies to extend eclipse, however each one has a purpose and if
your plugin intends to provide similar functionality, they should make use of these libraries whenever possible.
These libraries are currently used by some of our plug-ins, and so there will be example code to look at.

1.4.1. JDT

Java Development Tooling "allows users to write, compile, test, debug, and edit programs written in the Java pro-
gramming language." Through APIs they can create java source files, add methods, fields, or inner types. These
APIs are used throughout the JBoss IDE plug-ins. One example would be in the ejb3 plugin, adding a business or
home method via the j2ee context menu. Another example is reflection and using the JDT to check if a user's java
source file in an editor has a specific method. These are, of course, just two examples of many.

Eclipse provides a tutorial on JDT here: http://www.eclipse.org/documentation/pdf/org.eclipse.jdt.doc.isv_3.0.1.pdf

1.4.2. GEF

Gef is the Graphical Editing Framework. It "allows developers to create a rich graphical editor from an existing ap-
plication model." This library allows you to use graphical shapes, arrows, etc, to create flow charts, uml diagrams,
or other things. JBoss IDE primarily uses this library in JBoss jBPM's Graphical Process Designer.

Further information on GEF can be found at: http://www.eclipse.org/gef/

1.4.3. EMF

"EMF is a modeling framework and code generation facility for building tools and other applications based on a
structured data model. From a model specification described in XMI, EMF provides tools and runtime support to
produce a set of Java classes for the model, a set of adapter classes that enable viewing and command-based editing
of the model, and a basic editor. Models can be specified using annotated Java, XML documents, or modeling tools
like Rational Rose, then imported into EMF. Most important of all, EMF provides the foundation for interoperabil-
ity with other EMF-based tools and applications. "

More information can be found at: http://www.eclipse.org/emf/

Introduction

JBoss 1.0 2

http://www.eclipse.org/gef/
http://www.eclipse.org/emf/

1.4.4. Webtools

"The WTP project includes the following tools: source editors for HTML, Javascript, CSS, JSP, SQL, XML, DTD,
XSD, and WSDL; graphical editors for XSD and WSDL; J2EE project natures, builders, and models and a J2EE
navigator; a Web service wizard and explorer, and WS-I Test Tools; and database access and query tools and mod-
els."

More information can be found at http://www.eclipse.org/webtools/

1.4.5. SWT

SWT: Swt is a graphics widget toolkit that competes with Swing. It is used entirely throughout eclipse and is a ne-
cecssity for any and all gui plug-ins. JFace is a layer above SWT, and is also used extensively. SWT is implemen-
ted specifically for each hardware platform, unlike Swing which is coded platform independent. This should not af-
fect your coding, however, as SWT contains a consistant API across platforms. In eclipse, all SWT elements run as
one thread.

More information can be found at http://www.eclipse.org/swt/

1.5. Current JBoss IDE Projects

Following is a description of the current plugins in the IDE, as well as some information about their plug-in struc-
ture and what other parts of eclipse they extend. This information can be used later when looking for a concrete ex-
ample of some type of extension.

1.5.1. JBoss AOP IDE

Homepage: http://jboss.com/products/jbosside

This project is an IDE layer on top of the JBoss AOP libraries, used to make development of AOP projects easier.
(AOP IDE: , AOP: http://www.jboss.org/products/aop) It makes use of JDT throughout the application. It contains
two main views, the Aspect Manager and Advised Members views. It comprises two main plugins, a core and a ui.
The core has a model that allows the ui to graphically represent pointcuts, expressions, typedefs, advisors, and oth-
er information graphically through the views.

Each view has a context menu that changes depending upon what is currently selected. This plug-in also adds to the
other views' context menus via the org.eclipse.ui.popupMenus extension point. Other features include resource
listeners that update the model every time a file is changed, markers on the sides of editors to more easily show in-
formation, and MarkerResolutionGenerators (ctrl+1) which pops up advice to the user based on what markers are
present on the selected element. It also marginally extends the default editor.

1.5.2. EJB3 Tools

Homepage: http://jboss.com/products/jbosside

This a project centered around the simplification of development of EJB3 elements such as session beans, message
driven beans, and entity beans.

Introduction

JBoss 1.0 3

http://www.eclipse.org/webtools/
http://www.eclipse.org/swt/
http://jboss.com/products/jbosside
http://jboss.com/products/jbosside

1.5.3. jBPM Designer

Homepage: http://jbpm.org/gpd/

A graphical designer for jBPM. Automatically works on PARs as a mutli-tabbed editor with a graphical process
design editor and XML descriptor editor.

1.5.4. Hibernate Tools

Homepage: http://tools.hibernate.org

A fully featured hibernate toolset that includes reverse engineering (with ant integration and ejb3 source support),
context-sensitive auto complete on hibernate descriptors, HQL query editor and result set view, live entity property
viewing and editing, and more.

1.5.5. Others

Your Plug-in Here

Introduction

JBoss 1.0 4

http://jbpm.org/gpd/
http://tools.hibernate.org

2
Example 1 - Getting Started

This lab will help you set up the PDE (Plug-in Development Environment). It will also take you through the pro-
cess of generating the Hello World template, and explain the pieces of the code where applicable.

2.1. Configuring your PDE

Select the "Target Platform" page under Plug-in Developmeznt in the Window->Preferences dialog and verify the
location of your target platform. This step sets the run-time workbench instance path, which is where your plug-in
will be run when testing it. You don't need to change any values here, but look around to see what is available to be
changed should you need it.

2.2. Creating a New Plug-in Project

The first thing you should do is switch to the plug-in
development perspective. To do this, select
Window->Open Perspective->Other... and choose
Plug-in Development.

From here, the next step is to create a new plug-in
project. Select File->New->Project... and choose
Plug-in Project in the list of wizards shown at right.

You should call your plug-in Example1HelloWorld.
You can click next twice without making any
changes. From here, select the Hello World template.

JBoss 1.0 5

After expanding your project from the package man-
ager, it should look something like this.

So what has been created for us?

First we see Example1HelloWorldPlugin.java,
which is the actual plugin class first loaded by the ec-
lipse platform. We also see a SampleAction.java as
well. Finally, there is the MANIFEST.MF and plu-

gin.xml files.

If we look at the Example1HelloWorldPlugin class,
we notice that it has a singleton instance which is
used by the platform and can be used by you as well.
There's no reference anywhere to the SampleAction.
Most of the methods completed just complete behavi-
ors expected by the eclipse platform.

The SampleAction just pops up a dialog that says,
predictably, Hello World.

The MANIFEST.MF and plugin.xml files can both be modified using the same graphical editor, accessed by double-
clicking on either file in the package explorer view. The plugin.xml file contains information about your plugin,
how to load it, and what extensions it plans on using. You can also see the raw text for each file by clicking on their
respective tabs inside their editor.

You can declare your intention to use extension points through the gui interface, which will then automatically up-
date the MANIFEST.MF and plugin.xml files.

To run this plug-in, right click on its project, and se-
lect the run as->Eclipse Application menu item.
This will invoke the runtime environment used to test
your plug-in. When the new eclipse instance is
loaded, you'll notice a Sample Menu menu with a
Sample Action sub-menu.

2.3. Exploring the Code

The code that links your plug-in with the top-level menu is the extension points your plug-in are using. Looking at
your plug-in's plugin.xml file's Extensions tab shows you an extension to org.eclipse.ui.actionSets, which
directs execution to the example1HelloWorld.actions.SampleAction action.

Example 1 - Getting Started

JBoss 1.0 6

To the right is what we see when browsing the exten-
sions tab of the plugin. What it shows is that we have
one extension to the org.eclipse.ui.actionSets exten-
sion point. That extension defines a new menu, and
an action to be added to that menu. The action ele-
ment contains a class name field to help facilitate lazy
initialization.

The xml code for this is as follows:

<extension
point="org.eclipse.ui.actionSets">

<actionSet
label="Sample Action Set"
visible="true"
id="Example1HelloWorld.actionSet">

<menu
label="Sample &Menu"
id="sampleMenu">

<separator
name="sampleGroup">

</separator>
</menu>
<action

label="&Sample Action"
icon="icons/sample.gif"
class="example1HelloWorld.actions.SampleAction"
tooltip="Hello, Eclipse world"
menubarPath="sampleMenu/sampleGroup"
toolbarPath="sampleGroup"
id="example1HelloWorld.actions.SampleAction">

</action>
</actionSet>

</extension>

Example 1 - Getting Started

JBoss 1.0 7

3
Adding Context Menus to Other Views

3.1. Goal

Context menus in a view are generated from an array of places. The first place is the view itself, and what menu ac-
tions it wants to provide to its user. The second and third places are object contributions and viewer contributions,
which are how other plug-ins can contribute to a view's context menu.

When looking at the package explorer view, the view is displaying some underlying model. For this specific view,
it is trying to keep track of resources, and using JDT to provide further data other than that this is simply a file. The
view chooses how to present and display its data through content providers and label providers, and we'll look into
those more in later chapters. This is why if you expand the tree for a .java file, you'll see its constructors, its meth-
ods, and its inner classes. You won't see things such as that in the Resource View.

When you right click on an item in the Package Explorer view, you are generating the context menu for some ob-
ject that is being modeled by the view, exactly how it is modeled by the view. You may select a .java file and ex-
pect it to give you an IFile back, but this assumption would be incorrect. It is entirely dependent on how that view
models its data, and for the package explorer view, it would try to give you that object as a JDT element, such as
ICompilationUnit. Selecting a package would not give you a directory object, but rather an IPackageFragment ob-
ject. It is completely dependent on the view as to how they would like to present, model, and display their data.

The goal for this example is to add two different types of context menus. One menu will be added to a specific
view via a viewerContribution. The other will be added when certain types of objects inside a view are selected, via
an objectContribution.

3.2. Create the Plugin

Select File-> new->other... and Plug-in Project. Name this project Example2ContextMenus. We won't use any
template for this example, though the basic plugin class will still be generated for you.

Next, create a new package by right-clicking on the src directory and selecting New->Package. Name this package
example2ContextMenus.actions.

Create a new class by right-clicking on that package and selecting New->Class. Name this class ContextAc-

tion1.java and complete it as follows:

package example2ContextMenus.actions;

/* assorted import statements removed for brevity */

public class ContextAction1 implements IViewActionDelegate {

public void run(IAction action) {

JBoss 1.0 8

MessageDialog.openInformation(
new Shell(),
"Example2 Action 1",
"Hello, Eclipse world Action 1");

}

public void selectionChanged(IAction action, ISelection selection) {
}

public void dispose() {
}

public void init(IViewPart view) {
// Used for viewerContributions, not for objectContributions

}
}

The IActionDelegate interface provides a method selectionChanged, which allows the action to know what is se-
lected, or, in other words, what object this action is acting upon. Since we are just popping up a dialog box, the se-
lection does not matter at all, however if you were implementing an action that would delete some item from an un-
derlying model, you would need to keep a reference to that selection.

3.3. Creating a popup with an ObjectContribution

3.3.1. Creating the Extension

The next step is to add this information to a context menu somewhere, so that the action can actually be invoked.
This is done through the plugin.xml file or its gui editor. We will want our new menu to appear when right-clicking
on a file in any view, such as the resource view or the package explorer view. The class for this is IFile, and is loc-
ated in the org.eclipse.core.resources plug-in.

So, first go to the extensions tab for the gui editor to the plugin.xml file. Next, click add, and select
org.eclipse.ui.popupMenus from the list. We will NOT use template provided. Click finish.

In the gui editor, right click on the new extension and select new->objectContribution. On the right, set the id
field to Example2ContextMenus.popups.ifileContribution and the objectClass field to
org.eclipse.core.resources.IFile.

Under that, we'll make a menu and an action. To create the menu, right click on our objectContribution and select
new->menu set the id to Example2ContextMenus.menu1 and the label to IDE Extension Tutorial. Right click on the
new menu and select new->separator to create a separator in our menu. Set the name of this separator to group1.

Set the values as follows: id = Example2ContextMenus.action1, label = Action 1, menubarPath = Ex-
ample2ContextMenus.menu1/group1, class = example2ContextMenus.actions.ContextAction1

As you can see, the class is the same one we created
earlier, and the menubarPath matches the separator
we made just a few seconds ago.

When done, save the file. The extension tree should
now look like this.

Adding Context Menus to Other Views

JBoss 1.0 9

3.3.2. Testing

The first thing is to run the application much as you did in the last example. This menu won't appear until you
right-click on a file inside the runtime environment, though, so once the workbench is running, we'll need to create
a project and some files. First I created a simple text file (file-<new-<File). I also created a Test.java file and ad-
ded a few dummy methods via the following code:

public class Test {
private int myInt;
public Test() {

this.myInt = 1;
}
public int someInt() {

return myInt;
}
public static String someString() {

return "HelloWorld";
}

}

Once this code is added, your expanded package ex-
plorer view in the runtime environment should look
like the one to the right.

3.3.3. Results

Now, if we right click on Test.java, on someString(), myInt,Test(), or someInt() in the package explorer, our menu
will not be present. If we wanted our menus to appear there, our objectContribution would have needed to have an
objectClass of IResource for the Test.java element, IMember for a method or field, IField for just a field, IMethod
for just a method, etc. If you HAD used one of these class types for our object contribution, our menu element
would appear when right-clicking on an element of that type in ANY view. So if we had used IField, it would ap-
pear both in the package explorer and the outline views, when a member field is selected and its context-menu re-
quested.. If we instead right-click on test.file in the package explorer view, our menu addition DOES appear.

If we then load up the Navigator view (window->show view->Navigator), clicking on either test.file OR test.java
will result in our menu being shown. The reason for this is how that view keeps track of the objects in their model.
Navigator represents everything as IFiles, whereas the package explorer and the outline views represent elements
as members of JDT when possible (IMethod, IField, IType), and IFiles when JDT simply does not apply.

3.4. Creating a popup with a ViewerContribution

3.4.1. Creation

Right-click on our popupMenus extension and select new->viewerContribution. Set the id to Ex-

ample2ContextMenus.viewerContribution2 and the targetID to org.eclipse.ui.views.TaskList

.

Adding Context Menus to Other Views

JBoss 1.0 10

This targetID designates the id of the extension point that our extension matches. For this example, our menu will
appear in the task list, another view which keeps track of all of the TODO's in your java code.

To the viewerContribution, add a menu with an id of Example2ContextMenus.menu2, and a label of IDE Extension

viewerContrib. Give the menu, add a separator named group2.

To our viewer contribution, add an action. Give the action an id of Example2ContextMenus.action3, a label of
Viewer Contrib Action, a class of example2ContextMenus.actions.ContextAction1 (which is the same action
as in the objectContribution), and a menubarPath of Example2ContextMenus.menu2/group2.

Then save the file.

3.4.2. Testing this Extension

Run the program the same way as before, by right-clicking on the project and selecting Run As->Eclipse Applic-

ation. Once the runtime environment has loaded, open the Task List view by selecting Window->Show View-

>Tasks. Then try right-clicking inside the view. The menu option should appear, as shown below.

3.5. Example Conclusions

Object contributions to popup menus are easy to implement, but they require knowing how the plugin you're
adding a menu item to stores its data. As we saw earlier, the Navigator view stores a file as an IFile, whereas the
Package Explorer will try to convert a java file into a JDT-style model.

Viewer contributions, on the other hand, require you to know the id name of the viewer where you want your menu
to appear. This could involve digging through the code of that plug-in to discover the id of the viewer. You can also
find this id in the target plug-in's plugin.xml

One thing we did not do with the menus was visibility, which can be added to either an objectcontribution or a
viewercontribution. Visibility allows you to use some basic parameters (such as object class, object state, plugin
state, or system property) and some simple boolean conjunctions, to more finely tune which elements will show
your menu and which will not. I encourage you to play around with sub-elements to the popupMenu extension
point.

Adding Context Menus to Other Views

JBoss 1.0 11

4
Dependencies

4.1. Introduction

Your plug-in project can have two types of dependencies. One is to depend on another project. The other is to de-
pend on a .jar file or library.

4.2. Jar Dependencies

There are a few things to remember when depending on a library jar file. The first is that these .jar files must be in
your plug-in's directory structure, so that they can be included in the OSGi bundle of your plugin, and then ac-
cessed by your classes. They must then be added to your classpath, and designated as jars to search through.

This is all done very quickly and easily. So to begin, we first make a new plugin and name it Ex-
ample3Dependencies. We then put our .jar file into the top level directory of our plugin. (Just copy it in or paste it
in.)

The next step is to add the jar to our runtime tab in
our manifest editor. So we open the editor, click to
the runtime tab and look at the classpath box. Here,
we click "add", and select the jars we want to include.
Then we save the editor.

If we add the following code to the plugin class file, we'll notice it didn't work.

public void neverCalled() {
JavaDocBuilder builder = new JavaDocBuilder();

}

JBoss 1.0 12

Our classpath was NOT updated. It added the jar to the manifest file, or the plugin.xml, but it did not update the
classpath. To do that, right click on your project and select PDE Tools>Update Classpath. This usually fixes most
problems regarding packaging jars with your plugin.

And in this case, it did just that. (If your error didn't go away right away, try focussing on the editor of your plugin
and pressing ctrl+shift+o, which organizes your import statements and should import this item. Then save the
file) We won't run this application, as it doesn't actually do anything. This exercise was just demonstrative.

4.3. Project Dependencies

Most .ui plug-ins depend on a corresponding .core plugin. How do we fascilitate this?

First, make a new plug-in project, and call it Example3Z.

Next, let's try to get a reference to that plug-in's singleton object in a new method. Put the following method in the
example3Dependencies.Example3Dependencies.java .java file, right after our neverCalled() method.

public void neverCalled2() {
Example3ZPlugin plugin = Example3ZPlugin.getDefault();

}

Next, we have to add it to our dependencies, in the manifest gui editor for the Example3Dependencies project, on
the Dependencies tab. Click add and select Example3Z. Then save the file.

If we go back and look at our plugin .java file, example3Dependencies.Example3Dependencies.java, we'll see a
new error.

What we must do now to complete the dependency is have Example3Z open up its packages for extending or refer-
encing plug-ins to have access. To do this, open up the Example3Z's manifest gui editor, select the runtime tab, and
click Add... next to the Exported Packages list. Finally, select the example3Z package and save the file.

4.4. Conclusion

And that's how you depend on jars and other plug-in projects in eclipse plug-in development.

Dependencies

JBoss 1.0 13

5
A plug-in with views

5.1. Adding a view

Adding a view to a plug-in is as simple as using the org.eclipse.ui.views extension point, declaring a category
for it to be listed in, and then declaring your view with some parameters. If you're feeling really ambitious, you can
designate where this view should appear when loaded relative to other views, or even what perspective you want it
to appear in. You can do this through the gui editor for the plugin.xml file, or you can do it manually.

In the included example, Example4Views, I've declared a plug-in with two views. The main plug-in class contains
only the default information and nothing more. It contains only the boiler-plate code needed to allow the plug-in to
run.

Looking at the plug-in.xml, however, we'll notice exactly what is detailed above. Whether you use the gui or look
at the raw xml, what we have is an extension to org.eclipse.ui.views as well as one to
org.eclipse.ui.perspectiveExtensions. For completeness, the xml for one view is listed below.

<extension point="org.eclipse.ui.views">
<category name="Sample Category" id="Example4Views">
</category>
<view name="Table / List View"

icon="icons/sample.gif" category="Example4Views"
class="example4Views.views.TableView"
id="example4Views.views.TableView">

</view>
</extension>
<extension

point="org.eclipse.ui.perspectiveExtensions">
<perspectiveExtension

targetID="org.eclipse.ui.resourcePerspective">
<view

ratio="0.5"
relative="org.eclipse.ui.views.TaskList"
relationship="right"
id="example4Views.views.TableView">

</view>
</perspectiveExtension>

</extension>

5.2. Creating the control

Creating the control for the view involves any amount of SWT layout coding that you find desirable. For our first
two examples, TableView and TreeView the SWT is minimal. All we do there is create our JFace Viewer, which
helps us organize and display our data. For those two classes, the actual SWT code is as follows:

JBoss 1.0 14

// TreeView.java
viewer = new TreeViewer(parent, SWT.MULTI | SWT.H_SCROLL | SWT.V_SCROLL);

//TableView.java
viewer = new TableViewer(parent, SWT.MULTI | SWT.H_SCROLL | SWT.V_SCROLL);

The SWTView.java> has a much more SWT-oriented createPartControl method, and it may provide as a slight
jumping off point for investigating SWT code, but it is really just a few simple examples.

NOTE: Having Views with ample SWT controls is not customary, and is often frowned upon in view implementa-
tions. However, it is possible to do it and so it was included as an example.

5.3. Content Providers

5.3.1. Introduction

The content provider for a viewer helps organize the data from some underlying model and figure out how to dis-
play it in the viewer. The content provider is a JFace element and so rests a level above the actual list, table, or tree
lying underneath. It provides APIs that will quickly allow you to change the SWT element's data without dealing
with the annoyances of those underlying elements.

5.3.2. TableViewer's Content Provider

The TableViewer only requires an IStructuredContentProvider, which only requires three methods. I think the
code is rather self-explanatory here, and there's not much more I can say on it.

inputChanged is used to change the top level of the model, to designate a new model, etc. In the two examples
mentioned above, we use the viewSite as our input, but that's completely arbitrary amd just serves as an example.
For a real model (as opposed to the strings example), the root element might be something like an xml Document,
or whatever model your view intends to display data from.

For Completeness:

class ViewContentProvider implements IStructuredContentProvider {
public void inputChanged(Viewer v, Object oldInput, Object newInput) {
}
public void dispose() {
}
public Object[] getElements(Object parent) {

ArrayList list = new ArrayList();
list.addAll(Arrays.asList(new String[] {"One", "Two", "Three"}));
list.add(new Integer(5));
return list.toArray();

}
}

5.3.3. TreeViewer's ContentProvider

A plug-in with views

JBoss 1.0 15

The TreeViewer requires an ITreeContentProvider, and its associated methods. This implementation also uses the
viewSite as its root, however any calls requesting the children of the root are deferred to the proxy element, the in-

visibleroot. Then, from the children returned, further children can be found through the appropriate APIs.

The required methods for a complete ITreeContentProvider are listed below:

public void inputChanged(Viewer v, Object oldInput, Object newInput);
public void dispose();
public Object[] getElements(Object parent);
public Object getParent(Object child);
public Object [] getChildren(Object parent);
public boolean hasChildren(Object parent);

5.4. Label Providers

5.4.1. The Generic LabelProvider

The label provider is used to show the text and the image associated with a given object element. Because of how
simple the idea is, and also the implementation, it only requires two methods: getText and getImage, both taking
an object to evaluate.

NOTE: If you use a shared image in the eclipse platform, you do not need to create or destroy it. If you use your
own image, you are in charge of creating it AND destroying it. One good practice is to create shared images for
your entire plug-in during it's initialization, and then destroy those images when your plug-in shuts down. This way
you aren't creating and destroying images needlessly.

5.4.2. ITableLabelProvider

This label provider is different only in that the table gives to each element an entire row, and so given some object,
it can have multiple columns, each of which can have a text representation and an associated image.

5.5. Context Menus

Context menus for your own view are a lot easier to add, and can be added or removed, set enabled or disabled,
over a much wider range of criteria then those through the plugin.xml file.

5.5.1. Creating a (mostly) static Context Menu

If we look at the SWTView, we see that we register our menu during when our control is created in the createPart-

Control method call. We declare our actions right there, and register them with our menu manager. The menuMan-
ager can still be changed programatically, but that usually means the menu intends to stay relatively constant re-
gardless of what items are selected.

The menu manager is actually pretty robust. You can mark it as dirty, add or remove actions from it, as well as oth-
er things. In the SWTView example, we've specifically noted not to clear itself before showing each time. To clear

A plug-in with views

JBoss 1.0 16

before showing every time would be characteristic of a menu that is very sensitive to what elements are selected, as
we'll see in the other views. For the SWTView, we've created an unchanging menu that is not context sensitive at
all.

// creating the Menu and registering it
MenuManager menuMgr = new MenuManager("#PopupMenu");
menuMgr.setRemoveAllWhenShown(false);
Menu menu = menuMgr.createContextMenu(viewer.getControl());
viewer.getControl().setMenu(menu);
getSite().registerContextMenu(menuMgr, viewer);

// create our action
Action act1 = new Action() {

public void run() {
showMessage("Action1");

}
} ;
act1.setText("SWT Action 1");

// add it
menuMgr.add(act1) ;

// required, for extensions
menuMgr.add(new Separator(IWorkbenchActionConstants.MB_ADDITIONS));

5.5.2. A dynamic Context Menu

Looking at our TableView implementation, the first thing we do to start off the menu process is create our actions.
We give them titles, descriptions, tooltips, and run methods. The next step is to create the menu manager and hook
the actions into it.

The differing code is seen below:

menuMgr.setRemoveAllWhenShown(true);
menuMgr.addMenuListener(new IMenuListener() {

public void menuAboutToShow(IMenuManager manager) {
TableView.this.fillContextMenu(manager);

}
});

Here, we declare that we want to clear out the menu every time it's about to be shown. Then we add a listener,
where we can add actions to the menu in a much more fine-tuned manner.

If we go down to the fillContextMenu method, we get the selection from the viewer. I know it will return an IS-

tructuredSelection, but I've decided to add no actions if more than one element is selected. I add one action re-
gardless of what element is selected, but if a String is selected, I add the second action as well.

So when we run this example and open the List / Table View, if we right click on the integer element, we should
only see one action, and if we right-click on one of the other three, we should see two. Whether the object is a
String or an Integer goes back to the Content Providers, and what they have given us as their list of children. If we
look at the TableView's ViewContentProvider inner class and its getElements method, the code returns a list with
3 Strings and one Integer.

A plug-in with views

JBoss 1.0 17

public Object[] getElements(Object parent) {
ArrayList list = new ArrayList();
list.addAll(Arrays.asList(new String[] {"One", "Two", "Three"}));
list.add(new Integer(5));
return list.toArray();

}

5.5.3. Drilldown Adapters

Drilldown Adapters are a feature available for TreeViewers to help navigate through the data, instead of having to
deal with ever expanding trees. In this way you can essentially zoom in to view just one part of the tree, i.e., drill
down. Only two lines of code were added throughout the initialization of the viewer to invoke this feature in the
context menu. Only one line was needed to add them to the view's toolbar. They are shown below

// Create the Drill Down Adapter
drillDownAdapter = new DrillDownAdapter(viewer);

// Add the options to the context menu (IMenuManager)
drillDownAdapter.addNavigationActions(manager);

// Add the options to the view's toolbar (IToolBarManager)
drillDownAdapter.addNavigationActions(manager);

Without drilldown adapters, your tree's content provider could probably get away without completing the getPar-

ent method. If you do use drilldown adapters, however, this method will need to be completed so that the model
can navigate both up and down the trees.

5.6. Conclusion

Other features are able to be added to views as well. Viewers can have doubleclick actions, and I didn't get into the
specifics of adding the toolbar icons, but the code is all very short, concise, and in the examples. The ease with
which one can make a view should help make adding them to your plug-in as painless as possible.

One thing of note to anyone using a view to add, remove, or change data to some underlying model. By conven-
tion, any changes made to data in a view (such as right clicking on an element and selecting a delete action) should
be saved to the model right away, and to its underlying file resource if one exists. Editors, on the other hand, follow
the open, save, store, model, where changes must be specifically saved by the user. Views should not behave in this
manner. All changes should be live as soon as they are executed.

Finally, there will be many other code snippets for views in future examples, and occasional tips about specific
quirks found when using them.

A plug-in with views

JBoss 1.0 18

6
Editors

6.1. Introduction

Making your own editor involves extending current editor classes that are available to you, like TextEditor. The
project named Example5aCustomEditor is the eclipse template generated for you, with absolutely no modifications
at all by me to mark up or elaborate on the topic. It primarily parses and then colors xml documents.

Example5bMultiPageEditor is a two-page editor that has a text-style editor on one page, and a view on the other to
represent that data graphically. While crude in its implementation, it serves pretty well to demonstrate what goes
into making a multi-page editor.

6.2. Custom Editor

The basic TextEditor is a large text field centered inside your workbench, and provides columns for line numbers
and markers on the sides. Because of this, most editors you produce should probably inherit from TextEditor. The
steps to creating your editor are: declaring your dependencies, declaring your extension, and finally, making the ed-
itor.

In order to provide a custom editor, you will need to depend on org.eclipse.jface.text,
org.eclipse.ui.editors, and org.eclipse.ui.workbench.texteditor. Once you have these dependencies,
we're ready to declare our extension point.

To create our extension, we add org.eclipse.ui.editors as an extension point, right-click on it once added and
select new->editor. Our new editor needs an id, a name, preferably some extension denoting what types of files we
can be used to edit, a class for the editor, and a contributor class, which manages the context menus for editors.
(You are, of course, welcome to create your own contributer after studying some of the generalized ones, but that is
an exercise left up to the reader, should they care to do so. My example has used a common contributor class.)

The astute reader who is actively browsing the project code now will notice that the actual editor class itself is
rather tiny. For those who aren't reading along, the editor class looks as follows:

public class XMLEditor extends TextEditor {

private ColorManager colorManager;

public XMLEditor() {
super();
colorManager = new ColorManager();
setSourceViewerConfiguration(new XMLConfiguration(colorManager));
setDocumentProvider(new XMLDocumentProvider());

}
public void dispose() {

colorManager.dispose();

JBoss 1.0 19

super.dispose();
}

}

So apparently all this editor does is change our source view configuration and our document provider. Unfortu-
nately, I don't know much about either of these classes, so our only clues as to what they do are in the javadocs for
their respective classes.

By pressing ctrl and mousing over these classes, then clicking, we can browse to them and read their javadocs or
explore their code. For Document Providers, we find is that:

/**
* A document provider maps between domain elements and documents. A document provider has the
* following responsibilities:
*
* create an annotation model of a domain model element
* create and manage a textual representation, i.e., a document, of a domain model element
* create and save the content of domain model elements based on given documents
* update the documents this document provider manages for domain model elements to changes
* directly applied to those domain model elements
* notify all element state listeners about changes directly applied to domain model
* elements this document provider manages a document for, i.e. the document provider must
* know which changes of a domain model element are to be interpreted as element moves, deletes, etc.
*
* Text editors use document providers to bridge the gap between their input elements and the
* documents they work on. A single document provider may be shared between multiple editors;
* the methods take the editors' input elements as a parameter.
* <p>
* This interface may be implemented by clients; or subclass the standard abstract base class
* <code>AbstractDocumentProvider</code>.

For Source Viewer Configurations, we find:

/**
* This class bundles the configuration space of a source viewer. Instances of
* this class are passed to the configure method of
* <code>ISourceViewer</code>.
* Each method in this class get as argument the source viewer for which it
* should provide a particular configuration setting such as a presentation
* reconciler. Based on its specific knowledge about the returned object, the
* configuration might share such objects or compute them according to some
* rules.

To test how this editor looks, run the plug-in, and in the runtime workspace, create a new file (file->new->file)
with a .xml extension and open it. It should open by default into an editor of our example type, and as you type in
some xml, it should color it appropriately.

Unfortunately, that's all the information I can really provide on overriding a simple editor. As we just saw, it mostly
consists of declaring your dependencies, declaring your extension, and following through by creating an editor that
overrides some default functionality. The rest really involves using the classes provided as basepoints from which
to branch off and do your own thing as necessary.

Editors

JBoss 1.0 20

6.3. Multi-Page Editor

Multi-page editors are most often represented as some group of models that represent or display data from a raw or
source text file. In this example, I've simply used our simple editor from the last example as a base, and added a
second page that displays all top level elements under the <xml> tag.

Editors follow the open, save, close methodology, so any changes you make to some editor data via its gui interface
should change it's associated text editor immediately, but should NOT save the changes to the underlying resource
until the user requests it to do so.

A multi-page editor should extend the MultiPageEditorPart superclass. Our example will have two pages, one
with our xml editor, the other with a viewer. I've declared two private members for these elements.

The only method we MUST implement from the abstract superclass is the createPages method. Everything else is
done for us, though we're always welcome to override what we need to. In this example, we don't override much at
all.

We begin by creating each of our two pages, and then changing the title for the editor, which is simply a cosmetic
change. Because our editor page is the simplest to look at, I'll use it to demonstrate how to create a new page.

editor = new XMLEditor();
int index = addPage(editor, getEditorInput());
setPageText(index, "Source");

That's about all that's involved. If your editor is going to use a simple regular text editor, you can set editor to a new
TextEditor object instead. The next step is to then create our other page, the viewer page. The code for our viewer
page could actually be just as short:

viewer = new TableViewer(getContainer(), SWT.NONE);
int index = addPage(viewer.getControl());
setPageText(index, "Viewer");

The next thing we need to do here is set up the data model for the viewer. Remember, we want the viewer to match
the text document at every conceivable point, and since users can only look at one page in an editor at a time, a
good time to update the viewer is when the user switches tabs.

protected void pageChange(int newPage) {
if(newPage == 0) {

// make it refresh this
viewer.setInput(editor);

}
}

Next, our viewer needs a content provider and a label provider. How do we want our view to display the xml data
at hand? In this example, I just made it display the top level elements. The only really interesting code here that you
haven't seen is how to get the text from your editor.

Editors

JBoss 1.0 21

String editorText = editor.getDocumentProvider().
getDocument(editor.getEditorInput()).get();

Now this should work well to display the editor's data to the user, but there's very little point to having a multi-
paged editor with a gui interface unless you're going to provide actions for the user to make it easier to modify the
file. Because of this we've added our menu managers and a context menu with a REMOVE action. And, of course, we
need to change the text in the editor when we switch back to it.

editor.getDocumentProvider().getDocument(editor.getEditorInput()).set(newXML);
viewer.refresh();

Good luck making your tabbed text-editor

Editors

JBoss 1.0 22

7
Tracking Changes to Resources and Java Elements

Tracking changes in resoures is easy to implement but could be indespensible for your plug-in. The code that I
need to relate is short, but I figured it should be included here to be a more complete guide to common tasks for ec-
lipse plug-ins.

I've implemented a view who's input is a model that listens for changes in resources as well as changes in java ele-
ments, such as classes, compilation units, packages, methods, fields, etc. It then adds these change events to its
model, alerts the view, and displays them in the view. This example provides another example of a content provider
for a view, and a label provider.

7.1. Dependencies

As you can see by browsing the MANIFEST.MF, I've included the following plug-in dependencies:

Require-Bundle: org.eclipse.ui,
org.eclipse.core.runtime,
org.eclipse.core.resources,
org.eclipse.jdt,
org.eclipse.jdt.core,
org.eclipse.jdt.ui,
org.eclipse.ui.intro

The JDT packages are required to do any sort of processing regarding methods, fields, compilation units, and oth-
ers. The resource package is required to become a listener for changes in resources.

7.2. Project Structure

For this example, I've made a model class, Example6Model. It has an inner type ModelRoot which keeps track of
two arraylists, one containing change events for resources, the other containing change events for elements. I've set
the Example6Model up as a listener for both types of events.

I also added an interface called MyChangeListener, which the model will fire events to after receiving either type
of event. The view has been registered as a listener to the model.

So the general flow of execution is that a resource or java element will be changed and fire events to our model
who is a listener for them. Our model will update itself by adding this new event, then alert the view that the model
has changed and the viewer should refresh itself.

JBoss 1.0 23

7.3. Resource Changes

Resources are only marked as changed, and thus the events fired, when the resource is saved or resynced with the
underlying file representation. Simply typing in the editor will NOT triger a resource changed event to fire.

The following code is necessary:

/*
* To register as an IResourceChangeListener:
*/
IWorkspace workspace = ResourcesPlugin.getWorkspace();
workspace.addResourceChangeListener(this);

/*
* The interface must be implemented
*/
public void resourceChanged(IResourceChangeEvent event) {

root.addResourceChange(event);

/*
* Tell the view, and other listeners,
* the model has changed
*/
for(Iterator i = listeners.iterator(); i.hasNext();) {

((MyChangeListener)i.next()).fireMyChangeEvent();
}

}

The IResourceChangeEvent object and it's change delta are only valid for the duration of the resourceChanged

call. This call is made to a valid and registered listener when the platform notices changed resources.

Because in my implementation, the model is the listener, when the model receives an event, it adds it the event to
one of it's arraylists and alerts the view to refresh itself because the model has changed.

7.4. Element Changes

Element changes are fired as soon as a delta between the current file buffer and the most recent file buffer can be
calculated. This is usually within a few seconds of when you stop typing. As soon as the delta is calculated, it is
fired off to all available listeners.

JBoss AOP IDE makes use of these in calculating typedef matching, advisors, and other things that are dependent
upon the exact text of a java source file. Changing a method name from "someMethod" to "newMethod", will fire
off one event with two changed elements burried inside, one denoting the removal of "someMethod", and one de-
noting the addition of "newMethod".

The program code necessary to become an elementChangeListener is as follows:

/* Register yourself as a listener */
JavaCore.addElementChangedListener(this);

Tracking Changes to Resources and Java Elements

JBoss 1.0 24

/* fulfill the IElementChangedListener interface */
public void elementChanged(ElementChangedEvent event) {

root.addElementChange(event);

/*
* Tell the view, and other listeners,
* the model has changed
*/
for(Iterator i = listeners.iterator(); i.hasNext();) {

System.out.println("firing");
((MyChangeListener)i.next()).fireMyChangeEvent();

}
}

From here, the tree viewer should do all of the work.

7.5. View Notes

During the ElementChanged method call, the view and the viewer will not be updated, even if you specifically call
viewer.refresh() inside the view's class. The reason for this is that in eclipse, SWT is modeled as one single
thread, and these events must be fired while other threads are modifying the gui.

In order to force the viewer to update, you must do it via an asyncExec call on your display, which is a member of
the SWT thread. Seen below:

// Called from our model when *IT* receives a real event
public void fireMyChangeEvent() {

// event fired
System.out.println("fired");
final Example6Model model = Example6ResourceTrackingPlugin.getDefault().getModel();

if (!viewer.getControl().isDisposed())
{

Display display = viewer.getControl().getDisplay();

if (!display.isDisposed()) {
display.asyncExec(new Runnable() {

public void run() {
//make sure the tree still exists
if (viewer != null && viewer.getControl().isDisposed())

return;
viewer.refresh();

}
});

}
}

}

The asyncExec call makes sure that your viewer's refresh occurs as soon as possible without any side effects. There
are no events fired after such a gui update is complete to alert you that the viewer's update is complete.

Tracking Changes to Resources and Java Elements

JBoss 1.0 25

7.6. Some JDT examples

The ViewContentProvider internal class for our SampleView manages how to display the content, what objects
have children, and other things for our model. Because the entry point is our model, it's first children would be the
input object, the model. From there, we declare that it's 2 children are strings that represent which collection we
plan to display.

So the next time it tries to check for children, we return which ever collection it seeks, a collection of either Ele-
mentChangedEvents or ResourceChangeEvents, which contain deltas and then eventually elements that have been
changed.

The ElementChangedEvents have IJavaElementDeltas, which correspond to a change for one java element
(method, field, package fragment, type, etc).

Because this example focuses on deltas, we don't get into a lot of the JDT possibilities, but it works just as any heir-
archy you'd expect for java classes. Given some IType (class type), you can get a list of member variables, meth-
ods, inner types, its package, and other things.

One last thing I'd like to note in our example is the use of the JavaUILabelProvider to assist in providing images
and text if we had wanted it to. This is what has allowed members, types, folders, and others, to show icons in the
SampleView's tree. This class will be very helpful if you want to display icons and information about some JDT
elements that you'll be modeling, and it's listed here so that you may do so.

Tracking Changes to Resources and Java Elements

JBoss 1.0 26

8
Preferences

Every plug-in has a preference-store. It can be used practically for anything, however it does not take objects that
are not serialized in some way. The preference store can only hold low-level data types, such as numbers or
Strings, and not generic objects.

In this example, I've created a simple action that just tests to see if some preference is set or is null. I also create a
preference page that can be accessed via the Window->Preferences-> menu items. The preference page uses any
number of SWT controlls you desire, so long as you keep control of saving then as preferences when the user is
done and clicks apply or ok.

8.1. Preference Stores

Preference Stores demand Strings as keys for all preferences. They can store a default value for any preference, as
well as a current value. The values can be of type boolean, double, float, int, long, or String. This data is usually
held in the .metadata directory of the current workspace.

According to the javadoc:

* A property change event is reported whenever a preferences current
* value actually changes (whether through setValue,
* setToDefault, or other unspecified means). Note, however,
* that manipulating default values (with setDefault)
* does not cause such events to be reported.

8.1.1. API

The IPreferenceStore interface contains the following groups of methods. The character sequence TYPE will denote
any of the words boolean, int, double, float, long, String.

1. contains(String key)

2. getDefaultTYPE(String key)

3. getTYPE(String key)

4. setDefault(String key, TYPE value)

5. setValue(String key, TYPE value)

6. setToDefault(String key)

JBoss 1.0 27

7. isDefault(String key

8. putValue(String key, String value) [note: Does not fire a property change event.]

9. [add|remove]PropertyChangeListener(IPropertyChangeListener)

8.2. Our Action

We'll start just by looking at our action. It's an extremely simple action, and the only completed method is the fol-
lowing one:

public void run(IAction action) {
// Here we'll just get our preference store and see if it
// contains a preference by that name.
IPreferenceStore store = Example7PreferenceStorePlugin

.getDefault().getPreferenceStore();
boolean contains = store.contains(PreferencePage1.TARGET_PREFIX + "0");
System.out.println("Does store contain one target? " + contains);
if(contains) {

String s = store.getString(PreferencePage1.TARGET_PREFIX + "0");
PreferencePage1.NameUriPair pair = new PreferencePage1.NameUriPair(s);
System.out.println("name: " + pair.getName() + ", uri: " + pair.getUri());

}
}

Basically, we just get the string from the preferencestore, if it exists, and make a NameUriPair out of it. Then just
display the pair's parts. If the preference has been set in that workspace and is currently in the preference store, it
will display it.

8.3. The Extension Point

The extension point to extend is org.eclipse.ui.preferencePages and only takes a page element underneath it.
The page element only requires a name, id, and class. So it's a pretty simple extension point to use. From there,
the rest of the preference page is handled by your preference page class file and it's interaction with the plug-in's
preference store.

<extension
id="Example7PreferenceStore.preferencePage"
name="Example7PreferenceStore.preferencePage"
point="org.eclipse.ui.preferencePages">

<page
class="example7PreferenceStore.preferences.PreferencePage1"
id="Example7PreferenceStore.page1"
name="Example7PreferenceStore.page1"/>

</extension>

8.4. The PreferencePage

The preference page that I created extends the PreferencePage class, which an abstract class containing only one

Preferences

JBoss 1.0 28

abstract method: abstract Control createContents(Composite parent); You will also need to override the
performOk method, which is called from the superclass whenever either the apply or the ok buttons are pressed.
This is the method that should save the preferences selected by the user in the preference store.

Our createContents method should return a composite that we want to go in the main content area of the prefer-
ence page. Ideally, you should create any widgets using parent as the parent control, and then at the end of the
method, return your main composite to the superclass.

The superclass uses a grid-layout, but if you return your new composite, it will make sure it fills the entire area in
the middle of the preference page, both horizontally and vertically. If you don't return your composite, any controls
you add to the parent control will be added in the superclass's gridlayout fashion. In this example, I've created one
form layout composite, with sub-elements, and returned it to the superclass.

For loading the preferences, I just take each preference beginning with a prefix and ending with an integer, until I
find a null element. Then I insert each of those into their respective tables in the gui. For saving them, I do the same
but serialize them.

The file chooser list (top list) stores everything as a String, so no serialization is necessary to put it in the prefer-
ence store. The Target list (bottom) stores elements as a NameUriPair object, and they must be serialized with a
newline as the separator to be inserted into the preference store.

8.5. Testing

To test the example, run the plug-in in a runtime environment. From there, right click on any file in any prokect in
the runtime environment. (If one does not exist, you can create one. For my test, I created a file named test.file).
Right click on this element to see it's context menu and select our action named Our Test Action.

If we look at our console in our development instance of eclipse (not the runtime environment), we'll see that the
preference is not set or does not exist. If we then go to Window->Preferences and select the tab for our plug-in's
preferences, and fill in each table with some different data, apply the changes and click ok, we can try the action
again.

Trying the action again, if we added a target element to the bottom list in the preferences, we should see that the
preference is indeed set now.

8.6. Notes

The rest of the example just includes plenty of SWT and JFace controlls and examples of laying them out.

Preferences

JBoss 1.0 29

	Extending JBossIDE
	Table of Contents
	Chapter 1. Introduction
	1.1. Document Purpose
	1.2. What is Eclipse?
	1.3. What can I extend in JBoss IDE?
	1.4. Technologies We Use
	1.4.1. JDT
	1.4.2. GEF
	1.4.3. EMF
	1.4.4. Webtools
	1.4.5. SWT

	1.5. Current JBoss IDE Projects
	1.5.1. JBoss AOP IDE
	1.5.2. EJB3 Tools
	1.5.3. jBPM Designer
	1.5.4. Hibernate Tools
	1.5.5. Others

	Chapter 2. Example 1 - Getting Started
	2.1. Configuring your PDE
	2.2. Creating a New Plug-in Project
	2.3. Exploring the Code

	Chapter 3. Adding Context Menus to Other Views
	3.1. Goal
	3.2. Create the Plugin
	3.3. Creating a popup with an ObjectContribution
	3.3.1. Creating the Extension
	3.3.2. Testing
	3.3.3. Results

	3.4. Creating a popup with a ViewerContribution
	3.4.1. Creation
	3.4.2. Testing this Extension

	3.5. Example Conclusions

	Chapter 4. Dependencies
	4.1. Introduction
	4.2. Jar Dependencies
	4.3. Project Dependencies
	4.4. Conclusion

	Chapter 5. A plug-in with views
	5.1. Adding a view
	5.2. Creating the control
	5.3. Content Providers
	5.3.1. Introduction
	5.3.2. TableViewer's Content Provider
	5.3.3. TreeViewer's ContentProvider

	5.4. Label Providers
	5.4.1. The Generic LabelProvider
	5.4.2. ITableLabelProvider

	5.5. Context Menus
	5.5.1. Creating a (mostly) static Context Menu
	5.5.2. A dynamic Context Menu
	5.5.3. Drilldown Adapters

	5.6. Conclusion

	Chapter 6. Editors
	6.1. Introduction
	6.2. Custom Editor
	6.3. Multi-Page Editor

	Chapter 7. Tracking Changes to Resources and Java Elements
	7.1. Dependencies
	7.2. Project Structure
	7.3. Resource Changes
	7.4. Element Changes
	7.5. View Notes
	7.6. Some JDT examples

	Chapter 8. Preferences
	8.1. Preference Stores
	8.1.1. API

	8.2. Our Action
	8.3. The Extension Point
	8.4. The PreferencePage
	8.5. Testing
	8.6. Notes

