JBoss AS 6.0 Security Guide

Security with JBoss
Application Server 6

by Anil Saldhana, Marcus Moyses, and Stefan Guilhen

| SECUILY OVEIVIEW ...iitiiiii e et e e e et e e e e e e e e e e e e e e e e e et e e et e e et e e st eeaaneeatnaaes 1

1. J2EE Declarative SeCUrity OVEIVIEWociiiiiiieiiiiiiieeeei et 3
1.1. SeCUrity REFEIEINCEScovviiii e 3

1.2, SECUILY TENTILY ..eneiiiie e 5

1.3, SECUILY TOIES .uniieiii e e e e aeas 7

1.4. EJB mMethod PEIrMISSIONScccuuiiiiiiiiie ettt 8

1.5. Web Content Security CONSIIAINESoevvuiiiiieiiiieeie e e e 13

1.6. Enabling Declarative Security in JBOSScccouuiiiiiiiiiiiiiiiiece e 16

2. INtrodUCtioN 10 JAAS Lo 19
2.1. The JAAS COre ClaSSES ..euuuiiiuiiiiiiei ettt e e e e e e eenns 19
2.1.1. The Subject and Principal ClasSescccoeevuiiiviiiiiiiieeie e, 19

2.1.2. Authentication Of @ SUDJECTuuiiiiiiiiiii e 20

3. JBOSS SECUTItY MOAEI ...oviiiii e 25
3.1. Enabling Declarative Security in JBosS RevVisitedccoeviiiiiiinieiiinnnnen. 29

4. The JBoss Security Extension ArchiteCturecooooviiiiiiiciiiie i, 35
4.1. How the JaasSecurityManager USes JAAS ..ot 36

4.2. The JaasSecurityManagerService MBEaNccocvuvveviiiiiiiieeiii e, 39
4.2.1. The JNDIBasedSecurityManagement Beancccceviiiiiiiiinnnenn. 43

4.3. The JaasSecurityDomain BEaNccceuuiiiiiiiiiiiieiii e e e 43

[I. Security Domains and COMPONENTSiiiiuunieiiiii et e et e ettt e et e e e et e e eere e aees a7
5. Static SECUTity DOMAINS ...ciiiiiiii i e e e e e 49
6. Loading Static Security DOMAINSiiiiiiiieiiii e 53
7. Dynamic SeCUTNity DOMAINS ..cc.uiiiiiieiiieii e e e e e e e e e e e eeen 55
8. AULhOFIZAtion STACKS ..ocuiiiiiiie e 59
9. Deployment-level ROIe MapPing ..co.oiiiii i 75
10. JBOSS LOGIN MOAUIES ... e 77
10.1. USING MOAUIESiiiiiiiici ettt e e e e e e e e eaeeees 77
10.1.1. Password Stackingoooeeuuiiiiiiiiiiiiii e 77

10.1.2. Password Hashingccooouiiiiiiiii e 78

10.1.3. Unauthenticated 1dentitycoooveeiiiiiiiiiiii e 80

10.1.4. PrinCipal ClassSoiiiuuiiiiiiei et 80

10.1.5. UsersRolesLoginModuleccoouiiiiiiiiiiiii e 80

10.1.6. DatabaseServerLoginModuleccvveiiieiiiiieiiie e 82

10.1.7. LdapLoginModUIEuiiiiiiiee e 84

10.1.8. LAapEXtLOGINMOAUIEcoviiiiei e 89

10.1.9. BaseCertLoginMOdUIEoiiiiiiiiiiiii e 91

10.1.10. IdentityLoginMOdUIEoiviiieiiece e 94

10.1.11. RUNASLOGINMOGUIE ...couiiiiiiiii e 95

10.1.12. ClientLoginMOdUIEccouiiiiiiie e 96

10.2. CUSIOM MOAUIES ... e e e 96
10.2.1. Custom LoginModule EXamplecccccoviieiiiiiiiiiiiieec e, 98

1. ENCryption @Nnd SECUIILY ...couuuiiiiiiiiee ettt 103
11. Java SECUNItY MaANAGETuuiiiiiiiii it e e e e e et e e e e aaa s 105
12. Encrypting EJB connections with SSLccooiiiiiiiiii e, 111

JBoss AS 6.0 Security Guide

12.1. SSL ENCryption OVEIVIEWccvuiiiiiieiiieeie e e e e e e e e eaaae e 111
12.1.1. Key pairs and CertifiCatescccuiiiiiiiiiiiiiiiie e 111
12.2. Generate encryption keys and certificateccoocceiiiiiiiiiiiiiiiieeee 112
12.2.1. Generate a self-signed certificate with keytoolc.....oceeee. 112
12.2.2. Configure a client to accept a self-signed server certificate 114
12.3. EIB3 CONFIQUIALIONceiiiiieeiiiiee ettt 115
12.3.1. Create a secure remoting connector for EJB3cccoovvviiieinnnnns 115
12.3.2. Configure EJB3 Beans for SSL Transportcccccevveevevinneeiennnnnnn. 116
12.4. EIB2 CONfIQUIAtIONieiiiiii et e e e e e e e e aaa s 117
13. Masking Passwords in XML Configurationoccviiiiiiiiiiieiiiii e 119
13.1. Password Masking OVEIVIEWcccuviiuiieiiiieiiii e e e 119
13.2. Generate a key store and a masked passwordc..c.ocoiiiieiiiiinnenenn. 120
13.3. Encrypt the key Store passwordcc.ovevuiiiiiiiieiii i 120
13.4. Create password mMasksccoiiiiiiiiiiiiii e 122
13.5. Replace clear text passwords with their password masks 123
13.6. Changing the password masking defaultsccccoooeiiiiiiiiiinnnn. 124
14. Overriding SSL Configurationccccuiiiiiiiiiii e e 125
15. Encrypting Data SOUrce PasSWOIAScccuuuiiiiiiiiiieiiiiieeeeii e 127
15.1. SeCUred IAeNTILY ...cvvvniii e e e e e e e eaae s 127
15.1.1. Encrypt the data Source passwWordcccuiveeeeiiineeeiiineeeeiiinnnn 127
15.1.2. Create an application authentication policy with the encrypted
PASSWOIT ...ttt 128
15.1.3. Configure the data source to use the application authentication
POLICY et 129
15.2. Configured Identity with Password Based Encryptioncccoccevevinnnnns 130
16. Encrypting the Keystore Password in a Tomcat Connectorc.c.cceuueeenn.n. 137
16.1. Medium SeCUrity USECASEuuiviunieiiieiiie e e e 139
17. Using LdapExtLoginModule with JaasSecurityDomainccccccoveeevinneeennnn. 141
S T =TT 11 S PP 143
19. Secure Remote Password ProtOCOlc.oviiiiiiiiiiiiii e 145
19.1. Understanding the AIgorithmccooiiiiiiiii e, 150
19.2. Configure Secure Remote Password Informationccccooviiiieiiiin. 152
19.3. Secure Remote Password Examplecocooiveiiiiiiiiiiin e, 155
20. CoNSO0les anNd INVOKEIS ...t e e 159
20.1. IMX CONSOIE .ottt 159
20.2. ADMIN CONSOIEuiiiiiiei e e 159
20.3. HTTP INVOKEIS .ttt e e e 159
LR N Y) G 1Yo]] (T 159
20.5. Remote Access to Services, Detached INVOKErscoovveviiiiiiiiiiinnnnns 160
20.5.1. A Detached Invoker Example, the MBeanServer Invoker Adaptor
SBIVICE ittt 163

Part |I. Security Overview

Security is a fundamental part of any enterprise application. You need to be able to restrict who is
allowed to access your applications and control what operations application users may perform.

The Java Enterprise Edition (J2EE) specification defines a simple role-based security model for
Enterprise Java Beans (EJBs) and web components. The JBoss Security Extension (JBossSX)
framework handles platform security, and provides support for both the role-based declarative
J2EE security model and integration of custom security through a security proxy layer.

The default implementation of the declarative security model is based on Java Authentication and
Authorization Service (JAAS) login modules and subjects. The security proxy layer allows custom
security that cannot be described using the declarative model to be added to an EJB in a way that
is independent of the EJB business object.

Chapter 1.

J2EE Declarative Security Overview

Rather than embedding security into your business component, the J2EE security model is
declarative: you describe the security roles and permissions in a standard XML descriptor. This
isolates security from business-level code because security tends to be more a function of where
the component is deployed than an inherent aspect of the component's business logic.

For example, consider an Automatic Teller Machine (ATM) component used to access a
bank account. The security requirements, roles, and permissions of the component will vary
independently of how you access the bank account. How you access your account information
may also vary based on which bank is managing the account, or where the ATM is located.

Securing a Java EE application is based on the specification of the application security
requirements via the standard Java EE deployment descriptors. You secure access to EJBs and
web components in an enterprise application by using the ej b-j ar. xnl and web. xnl deployment
descriptors. The following sections look at the purpose and usage of the various security elements.

1.1. Security References

Both EJBs and servlets can declare one or more security-rol e-ref elements as shown in
Figure 1.1, “The security-role-ref element”. This element declares that a component is using
the rol e- name value as an argument to the i sCal | erl nRol e(Stri ng) method. By using the
i sCal | erl nRol e method, a component can verify whether the caller is in a role that has
been declared with a security-rol e-ref/rol e-nane element. The rol e- nane element value
must link to a security-rol e element through the rol e-1i nk element. The typical use of
i sCal | erl nRol e is to perform a security check that cannot be defined by using the role-based
met hod- per i ssi ons elements.

"
L "

@) * desmpﬁnn%

B descriptionType
+ security-role-refz_| + mle-name%
security-role-refType role-nameType
| . =i
L) role-link

role-nameType

Figure 1.1. The security-role-ref element

Example 1.1, “An ejb-jar.xml descriptor fragment that illustrates the security-role-ref element
usage.” shows the use of security-role-ref inanejb-jar.xn .

Chapter 1. J2EE Declarative S...

Example 1.1. An ejb-jar.xml descriptor fragment that illustrates the
security-role-ref element usage.

<l-- A sample ejb-jar.xml fragment -->
<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>ASessionBean</ejb-name>

<security-role-ref>
<role-name>TheRolelCheck</role-name>
<role-link>TheApplicationRole</role-link>
</security-role-ref>
</session>
</enterprise-beans>

</ejb-jar>

Example 1.2, “An example web.xml descriptor fragment that illustrates the security-role-ref
element usage.” shows the use of security-rol e-ref inaweb. xn .

Example 1.2. An example web.xml descriptor fragment that illustrates the
security-role-ref element usage.

<web-app>
<servlet>
<servlet-name>AServlet</servilet-name>

<security-role-ref>
<role-name>TheServletRole</role-name>
<role-link>TheApplicationRole</role-link>
</security-role-ref>
</servlet>

</web-app>

Security ldentity

1.2. Security ldentity

An EJB has the capability to specify what identity an EJB should use when it invokes methods
on other components using the securi ty-i denti ty element, shown in Figure 1.2, “The security-
identity element”

SHE ®idm

D ;
o+ desmpﬁnn%
descriptionType

* security-identityz : :
security-identityType o * USE'[E“ET'MEI'I'“WE
T EmptyType

“~__| * run-as E
runi-as Type

Figure 1.2. The security-identity element

The invocation identity can be that of the current caller, or it can be a specific role. The application
assembler uses the security-identity elementwith ause-call er-identity child elementto
indicate that the current caller's identity should be propagated as the security identity for method
invocations made by the EJB. Propagation of the caller's identity is the default used in the absence
of an explicit securi ty-i dentity element declaration.

Alternatively, the application assembler can use the r un- as/ r ol e- nane child element to specify
that a specific security role given by the r ol e- nane value should be used as the security identity
for method invocations made by the EJB. Note that this does not change the caller's identity as
seen by the EJBCont ext . get Cal | er Pri nci pal () method. Rather, the caller's security roles are
set to the single role specified by the run- as/ r ol e- name element value. One use case for the
run- as element is to prevent external clients from accessing internal EJBs. You accomplish this
by assigning the internal EJB net hod- per ni ssi on elements that restrict access to a role never
assigned to an external client. EJBs that need to use internal EJB are then configured with a
run-as/ rol e- nane equal to the restricted role. The following descriptor fragment that illustrates
security-identity element usage.

<!I-- A sample ejb-jar.xml fragment -->
<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>ASessionBean</ejb-name>
<l--..-->
<security-identity>
<use-caller-identity/>

Chapter 1. J2EE Declarative S...

</security-identity>
</session>
<session>
<ejb-name>RunAsBean</ejb-name>
<l -->
<security-identity>
<run-as>
<description>A private internal role</description>
<role-name>InternalRole</role-name>
</run-as>
</security-identity>
</session>
</enterprise-beans>
<l--..-->

</ejb-jar>

When you use run- as to assign a specific role to outgoing calls, JBoss associates a principal
named anonynous. If you want another principal to be associated with the call, you need to
associate a run-as-princi pal with the bean in the j boss. xm file. The following fragment
associates a principal named i nt er nal with RunAsBean from the prior example.

<session>
<ejb-name>RunAsBean</ejb-name>
<security-identity>
<run-as-principal>internal</run-as-principal>
</security-identity>
</session>

The r un- as element is also available in servlet definitions in aweb. xm file. The following example
shows how to assign the role I nt er nal Rol e to a servlet:

<servlet>
<servlet-name>AServlet</servlet-name>
<l-- . >
<run-as>
<role-name>InternalRole</role-name>
</run-as>
</servlet>

Security roles

Calls from this servlet will be associated with the anonymous pri nci pal . The r un- as- pri nci pal
element is available in the j boss-web. xnl file to assign a specific principal to go along with the
run- as role. The following fragment shows how to associate a principal named i nt er nal to the
servlet in the prior example.

<servlet>
<servlet-name>AServlet</servlet-name>
<run-as-principal>internal</run-as-principal>
</servlet>

1.3. Security roles

The security role name referenced by either the security-role-ref or security-identity
element needs to map to one of the application's declared roles. An application assembler defines
logical security roles by declaring security-rol e elements. The rol e- name value is a logical
application role name like Administrator, Architect, SalesManager, etc.

The J2EE specifications note that it is important to keep in mind that the security roles in the
deployment descriptor are used to define the logical security view of an application. Roles defined
in the J2EE deployment descriptors should not be confused with the user groups, users, principals,
and other concepts that exist in the target enterprise's operational environment. The deployment
descriptor roles are application constructs with application domain-specific names. For example,
a banking application might use role names such as BankManager, Teller, or Customer.

—{@eidg
D J

) * desmpﬁnn%
descriptionType

* security-rolez_ } 3

sECUurity-roleType frr,
» mle-name% (7 ® idm

L #
role-nameType D]

L= -

Figure 1.3. The security-role element

In JBoss, asecurity-rol e elementis only used to map security-rol e-ref/rol e- nane values
to the logical role that the component role references. The user's assigned roles are a dynamic
function of the application's security manager, as you will see when we discuss the JBossSX
implementation details. JBoss does not require the definition of securi t y-r ol e elements in order
to declare method permissions. However, the specification of security-rol e elements is still
a recommended practice to ensure portability across application servers and for deployment

Chapter 1. J2EE Declarative S...

descriptor maintenance. Example 1.3, “An ejb-jar.xml descriptor fragment that illustrates the
security-role element usage.” shows the usage of the security-rol einanejb-jar.xn file.

Example 1.3. An ejb-jar.xml descriptor fragment that illustrates the
security-role element usage.

<l-- A sample ejb-jar.xml fragment -->
<ejb-jar>
<l--..-->
<assembly-descriptor>
<security-role>
<description>The single application role</description>
<role-name>TheApplicationRole</role-name>
</security-role>
</assembly-descriptor>
</ejb-jar>

Example 1.4, “An example web.xml descriptor fragment that illustrates the security-role element
usage.” shows the usage of the security-rol e inan web. xnm file.

Example 1.4. An example web.xml descriptor fragment that illustrates the
security-role element usage.

<!I-- A sample web.xml fragment -->
<web-app>
<l--..-->
<security-role>
<description>The single application role</description>
<role-name>TheApplicationRole</role-name>
</security-role>
</web-app>

1.4. EJB method permissions

An application assembler can set the roles that are allowed to invoke an EJB's home and remote
interface methods through method-permission element declarations.

EJB method permissions

*+ method-permission z_

method-permissionType

" b

.-F.- 11
— @ty

LS -

_G)* desmpﬁnn%

descriptionType

@l mle-name%
- role-nameType
@<
.| * unchecked

emptyType

T mel:hm:IE
methodType

Figure 1.4. The method-permissions element

Each net hod- per ni ssi on element contains one or more role-name child elements that define the
logical roles that are allowed to access the EJB methods as identified by method child elements.
You can also specify an unchecked element instead of the r ol e- name element to declare that any
authenticated user can access the methods identified by method child elements. In addition, you
can declare that no one should have access to a method that has the excl ude- 1 i st element. If an
EJB has methods that have not been declared as accessible by a role using a net hod- per ni ssi on
element, the EJB methods default to being excluded from use. This is equivalent to defaulting the

methods into the excl ude-1i st .

Chapter 1. J2EE Declarative S...

+ method z

methodType

[h

S ide |
@2 ldg

10 J

b o

»

+ descriplinn%
descriptionType

+ Ejh-name%

ejb-nameType

+ method-intf,
method-intfType

+ mel:hnd-name%
method-nameType

*+ method-params

i b

' '# id -
@) M=

L= -

method-params Type

Figure 1.5. The method element

There are three supported styles of method element declarations.

= * memnd-param%
| java-typeType

The first is used for referring to all the home and component interface methods of the named

enterprise bean:

<method>

<ejb-name>EJBNAME</ejb-name>
<method-name>*</method-name>

</method>

The second style is used for referring to a specified method of the home or component interface
of the named enterprise bean:

<method>

<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>

</method>

10

EJB method permissions

If there are multiple methods with the same overloaded name, this style refers to all of the
overloaded methods.

The third style is used to refer to a specified method within a set of methods with an overloaded
name:

<method>
<ejb-name>EJBNAME</ejb-name>
<method-name>METHOD</method-name>
<method-params>
<method-param>PARAMETER _1</method-param>
<l .. >
<method-param>PARAMETER_N</method-param>
</method-params>
</method>

The method must be defined in the specified enterprise bean's home or remote interface. The
method-param element values are the fully qualified name of the corresponding method parameter
type. If there are multiple methods with the same overloaded signature, the permission applies to
all of the matching overloaded methods.

The optional et hod- i nt f element can be used to differentiate methods with the same name and
signature that are defined in both the home and remote interfaces of an enterprise bean.

Example 1.5, “An ejb-jar.xml descriptor fragment that illustrates the method-permission element
usage.” provides complete examples of the net hod- per i ssi on element usage.

Example 1.5. An ejb-jar.xml descriptor fragment that illustrates the
method-permission element usage.

<ejb-jar>
<assembly-descriptor>
<method-permission>
<description>The employee and temp-employee roles may access any
method of the EmployeeService bean </description>
<role-name>employee</role-name>
<role-name>temp-employee</role-name>
<method>
<ejb-name>EmployeeService</ejb-name>
<method-name>*</method-name>
</method>
</method-permission>
<method-permission>

11

Chapter 1. J2EE Declarative S...

<description>The employee role may access the findByPrimaryKey,
getEmployeelnfo, and the updateEmployeelnfo(String) method of
the AardvarkPayroll bean </description>
<role-name>employee</role-name>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>findByPrimaryKey</method-name>
</method>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>getEmployeelnfo</method-name>
</method>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>updateEmployeelnfo</method-name>
<method-params>
<method-param>java.lang.String</method-param>
</method-params>
</method>
</method-permission>
<method-permission>
<description>The admin role may access any method of the
EmployeeServiceAdmin bean </description>
<role-name>admin</role-name>
<method>
<ejb-name>EmployeeServiceAdmin</ejb-name>
<method-name>*</method-name>
</method>
</method-permission>
<method-permission>
<description>Any authenticated user may access any method of the
EmployeeServiceHelp bean</description>
<unchecked/>
<method>
<ejb-name>EmployeeServiceHelp</ejb-name>
<method-name>*</method-name>
</method>
</method-permission>
<exclude-list>
<description>No fireTheCTO methods of the EmployeeFiring bean may be
used in this deployment</description>
<method>
<ejb-name>EmployeeFiring</ejb-name>
<method-name>fireTheCTO</method-name>

12

Web Content Security Constraints

</method>
</exclude-list>
</assembly-descriptor>
</ejb-jar>

1.5. Web Content Security Constraints

In a web application, security is defined by the roles that are allowed access to content by a
URL pattern that identifies the protected content. This set of information is declared by using the
web. xm securi ty-constraint element.

13

Chapter 1. J2EE Declarative S...

SECUrity-constraintType

+ security-constraintz_

- -

Lo

-
|

."'-;,. [& id)
I.A'M:II-.“:'-' =,

ry

B

+ displav—name%

display-nameType

= e
' k*)u_u:- :

+ web-ri
string

= * descri

*+ web-resource—collectionz_

webh-resource-collectionType

description

+ aul:l'l-l:nnsu'aintE

auth-constraintType

L@

+ user-data-cnnsu'aintE
user-data-constraintType

Figure 1.6. The security-constraint element

" + url-pa
url-pattern
3 + http-n
http-methc

-

:u""-?.:-' id 1
.I\-:!'.JD =.-

| !

@ desmpﬁnn%

descriptionType

+ mle-name%
role-nameType

r -
— @5l
JAD J]

L o

= * descriptio
descriptionType
+ ransport-
transport=guar:

The content to be secured is declared using one or more web-r esour ce-col | ecti on elements.
Each web- r esour ce- col | ecti on element contains an optional series of ur| - pat t er n elements
followed by an optional series of http-nmethod elements. The url-pattern element value
specifies a URL pattern against which a request URL must match for the request to correspond to

14

Web Content Security Constraints

an attempt to access secured content. The ht t p- met hod element value specifies a type of HTTP
request to allow.

The optional user - dat a- const rai nt element specifies the requirements for the transport layer
of the client to server connection. The requirement may be for content integrity (preventing data
tampering in the communication process) or for confidentiality (preventing reading while in transit).
The transport-guarantee element value specifies the degree to which communication between the
client and server should be protected. Its values are NONE, | NTEGRAL, and CONFI DENTI AL. A value
of NONE means that the application does not require any transport guarantees. A value of | NTEGRAL
means that the application requires the data sent between the client and server to be sent in such
a way that it can't be changed in transit. A value of CONFI DENTI AL means that the application
requires the data to be transmitted in a fashion that prevents other entities from observing the
contents of the transmission. In most cases, the presence of the | NTEGRAL or CONFI DENTI AL flag
indicates that the use of SSL is required.

The optional | ogi n- confi g elementis used to configure the authentication method that should be
used, the realm name that should be used for rhw application, and the attributes that are needed
by the form login mechanism.

D J

b, -

7 + auth-method
auth-methodType

) * malm-name%
string

[|

*+ login-configz_ Negrm
login-configType — () o e

b, -

+ form-login-page

!

S vy

) * form-login-configz_. war-pathType

form-login-confiaType + form-error-page
war-pathType

:

Figure 1.7. The login-config element

The aut h- net hod child element specifies the authentication mechanism for the web application.
As a prerequisite to gaining access to any web resources that are protected by an authorization
constraint, a user must have authenticated using the configured mechanism. Legal aut h- net hod
values are BASI C, DI GEST, FORM and CLI ENT- CERT. The r eal m nane child element specifies the
realm name to use in HTTP basic and digest authorization. The f or m | ogi n- conf i g child element
specifies the log in as well as error pages that should be used in form-based login. If the aut h-
met hod value is not FORM then f or m | ogi n- confi g and its child elements are ignored.

15

Chapter 1. J2EE Declarative S...

As an example, the web. xnl descriptor fragment given in Example 1.6, “ A web.xml descriptor
fragment which illustrates the use of the security-constraint and related elements.” indicates that
any URL lying under the web application's / rest ri ct ed path requires an Aut hori zedUser role.
There is no required transport guarantee and the authentication method used for obtaining the
user identity is BASIC HTTP authentication.

Example 1.6. A web.xml descriptor fragment which illustrates the use of the
security-constraint and related elements.

<web-app>
<l-- ... >
<security-constraint>
<web-resource-collection>
<web-resource-name>Secure Content</web-resource-name>
<url-pattern>/restricted/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>AuthorizedUser</role-name>
</auth-constraint>
<user-data-constraint>
<transport-guarantee>NONE</transport-guarantee>
</user-data-constraint>
</security-constraint>
<l--..-->
<login-config>
<auth-method>BASIC</auth-method>
<realm-name>The Restricted Zone</realm-name>
</login-config>
S
<security-role>
<description>The role required to access restricted content </description>
<role-name>AuthorizedUser</role-name>
</security-role>
</web-app>

1.6. Enabling Declarative Security in JBoss

The J2EE security elements that have been covered so far describe the security requirements
only from the application's perspective. Because J2EE security elements declare logical roles,
the application deployer maps the roles from the application domain onto the deployment
environment. The J2EE specifications omit these application server-specific details. In JBoss,
mapping the application roles onto the deployment environment entails specifying a security

16

Enabling Declarative Security in JBoss

manager that implements the J2EE security model using JBoss server specific deployment
descriptors. The details behind the security configuration are discussed in Chapter 3, JBoss
Security Model.

17

18

Chapter 2.

Introduction to JAAS

The JBossSX framework is based on the JAAS API. It is important that you understand the basic
elements of the JAAS API to understand the implementation details of JBossSX. The following
sections provide an introduction to JAAS to prepare you for the JBossSX architecture discussion
later in this chapter.

The JAAS 1.0 API consists of a set of Java packages designed for user authentication and
authorization. It implements a Java version of the standard Pluggable Authentication Module
(PAM) framework and compatibly extends the Java 2 Platform's access control architecture to
support user-based authorization. JAAS was first released as an extension package for JDK 1.3
and is bundled with JDK 1.4+. Because the JBossSX framework uses only the authentication
capabilities of JAAS to implement the declarative role-based J2EE security model, this introduction
focuses on only that topic.

JAAS authentication is performed in a pluggable fashion. This permits Java applications to
remain independent from underlying authentication technologies and allows the JBossSX security
manager to work in different security infrastructures. Integration with a security infrastructure can
be achieved without changing the JBossSX security manager implementation. All that needs to
change is the configuration of the authentication stack that JAAS uses.

2.1. The JAAS Core Classes

The JAAS core classes can be broken down into three categories: common, authentication, and
authorization. The following list presents only the common and authentication classes because
these are the specific classes used to implement the functionality of JBossSX covered in this
chapter.

The are the common classes:

e Subj ect (j avax. security. aut h. Subj ect)

e Principal (java.security.Principal)

These are the authentication classes:

* Cal | back (j avax. security. aut h. cal | back. Cal | back)

e Cal | backHandl er (j avax. security. aut h. cal | back. Cal | backHand| er)
e Configuration (javax. security. auth. | ogin. Configuration)

e Logi nCont ext (j avax. security. auth. | ogin. Logi nCont ext)
e Logi nModul e (j avax. securi ty. aut h. spi . Logi nMbdul e)

2.1.1. The Subject and Principal Classes

To authorize access to resources, applications first need to authenticate the request's source. The
JAAS framework defines the term subject to represent a request's source. The Subj ect class is

19

Chapter 2. Introduction to JAAS

the central class in JAAS. A Subj ect represents information for a single entity, such as a person
or service. It encompasses the entity's principals, public credentials, and private credentials. The
JAAS APIs use the existing Java 2 j ava. securi ty. Princi pal interface to represent a principal,
which is essentially just a typed name.

During the authentication process, a subject is populated with associated identities, or principals.
A subject may have many principals. For example, a person may have a name principal (John
Doe), a social security number principal (123-45-6789), and a username principal (johnd), all of
which help distinguish the subject from other subjects. To retrieve the principals associated with
a subject, two methods are available:

public Set getPrincipals() {...}
public Set getPrincipals(Class c) {...}

The first method returns all principals contained in the subject. The second method returns only
those principals that are instances of class ¢ or one of its subclasses. An empty set is returned
if the subject has no matching principals. Note that the j ava. securi ty. acl . G oup interface is a
subinterface of j ava. security. Princi pal , SO an instance in the principals set may represent a
logical grouping of other principals or groups of principals.

2.1.2. Authentication of a Subject

Authentication of a subject requires a JAAS login. The login procedure consists of the following
steps:

1. An application instantiates a Logi nCont ext and passes in the name of the login configuration
and a Cal | backHandl er to populate the Cal | back objects, as required by the configuration
Logi nModul es.

2. The Logi nCont ext consults a Confi gurati on to load all the Logi nModul es included in the
named login configuration. If no such named configuration exists the ot her configuration is
used as a default.

3. The application invokes the Logi nCont ext . | ogi n method.

4. The login method invokes all the loaded Logi nMbdul es. As each Logi nMbdul e attempts to
authenticate the subject, it invokes the handle method on the associated Cal | backHandl er
to obtain the information required for the authentication process. The required information is
passed to the handle method in the form of an array of Cal | back objects. Upon success, the
Logi nMbdul es associate relevant principals and credentials with the subject.

5. The Logi nCont ext returns the authentication status to the application. Success is represented
by a return from the login method. Failure is represented through a LoginException being thrown
by the login method.

20

Authentication of a Subject

6. If authentication succeeds, the application retrieves the authenticated subject using the
Logi nCont ext . get Subj ect method.

7. After the scope of the subject authentication is complete, all principals and related
information associated with the subject by the login method can be removed by invoking the
Logi nCont ext . | ogout method.

The Logi nCont ext class provides the basic methods for authenticating subjects and offers a way
to develop an application that is independent of the underlying authentication technology. The
Logi nCont ext consults a Confi gur at i on to determine the authentication services configured for
a particular application. Logi nMbdul e classes represent the authentication services. Therefore,
you can plug different login modules into an application without changing the application itself.
The following code shows the steps required by an application to authenticate a subject.

CallbackHandler handler = new MyHandler();
LoginContext Ic = new LoginContext("some-config”, handler);

try {
Ic.login();
Subject subject = Ic.getSubject();

} catch(LoginException e) {
System.out.printin("authentication failed");
e.printStackTrace();

/I Perform work as authenticated Subject
I ...

/I Scope of work complete, logout to remove authentication info
try {

Ic.logout();
} catch(LoginException e) {

System.out.printin("logout failed");

e.printStackTrace();

/I A sample MyHandler class
class MyHandler implements CallbackHandler
{
public void handle(Callback[] callbacks) throws
IOException, UnsupportedCallbackException

for (inti = 0; i < callbacks.length; i++) {
if (callbacks]i] instanceof NameCallback) {
NameCallback nc = (NameCallback)callbacksi];

21

Chapter 2. Introduction to JAAS

nc.setName(username);

} else if (callbacks[i] instanceof PasswordCallback) {
PasswordCallback pc = (PasswordCallback)callbacks]i];
pc.setPassword(password);

}else {
throw new UnsupportedCallbackException(callbacksli],

"Unrecognized Callback");

Developers integrate with an authentication technology by creating an implementation of the
Logi nModul e interface. This allows an administrator to plug different authentication technologies
into an application. You can chain together multiple Logi nMbdul es to allow for more than
one authentication technology to participate in the authentication process. For example,
one Logi nMbdul e may perform username/password-based authentication, while another may
interface to hardware devices such as smart card readers or biometric authenticators.

The life cycle of a Logi nModul e is driven by the Logi nCont ext object against which the client
creates and issues the login method. The process consists of two phases. The steps of the process
are as follows:

» The Logi nCont ext creates each configured Logi nMbdul e using its public no-arg constructor.

« Each Logi nModul e is initialized with a call to its initialize method. The Subj ect argument
is guaranteed to be non-null. The signature of the initialize method is: public void
initialize(Subject subject, CallbackHandl er call backHandl er, Map sharedSt at e,
Map options).

e The | ogi n method is called to start the authentication process. For example, a method
implementation might prompt the user for a username and password and then verify the
information against data stored in a naming service such as NIS or LDAP. Alternative
implementations might interface to smart cards and biometric devices, or simply extract user
information from the underlying operating system. The validation of user identity by each
Logi nModul e is considered phase 1 of JAAS authentication. The signature of the | ogi n method
is bool ean | ogin() throws Logi nException. A Logi nExcepti on indicates failure. A return
value of true indicates that the method succeeded, whereas a return valueof false indicates that
the login module should be ignored.

« If the Logi nContext's overall authentication succeeds, conmmit is invoked on each
Logi nModul e. If phase 1 succeeds for a Logi nMbdul e, then the commit method continues with
phase 2 and associates the relevant principals, public credentials, and/or private credentials
with the subject. If phase 1 fails for a Logi nModul e, then conmi t removes any previously stored

22

Authentication of a Subject

authentication state, such as usernames or passwords. The signature of the commi t method
is: bool ean conmit() throws Logi nException. Failure to complete the commit phase is
indicated by throwing a Logi nExcept i on. A return of true indicates that the method succeeded,
whereas a return of false indicates that the login module should be ignored.

« If the Logi nCont ext 's overall authentication fails, then the abort method is invoked on each
Logi nMbdul e. The abort method removes or destroys any authentication state created by
the login or initialize methods. The signature of the abort method is bool ean abort ()
throws Logi nException. Failure to complete the abort phase is indicated by throwing a
Logi nExcepti on. A return of true indicates that the method succeeded, whereas a return of
false indicates that the login module should be ignored.

« To remove the authentication state after a successful login, the application invokes | ogout on
the Logi nCont ext . This in turn results in a | ogout method invocation on each Logi nMdul e.
The | ogout method removes the principals and credentials originally associated with the
subject during the conmi t operation. Credentials should be destroyed upon removal. The
signature of the | ogout method is: bool ean | ogout() throws LoginException. Failure
to complete the logout process is indicated by throwing a Logi nExcepti on. A return of true
indicates that the method succeeded, whereas a return of false indicates that the login module
should be ignored.

When a Logi nMbdul e must communicate with the user to obtain authentication information, it uses
a Cal | backHandl er object. Applications implement the Cal | backHandl er interface and pass it
to the LoginContext, which forwards it directly to the underlying login modules. Login modules use
the Cal | backHandl! er both to gather input from users, such as a password or smart card PIN, and
to supply information to users, such as status information. By allowing the application to specify
the Cal | backHandl er, underlying Logi nModul es remain independent from the different ways
applications interact with users. For example, a Cal | backHandl er's implementation for a GUI
application might display a window to solicit user input. On the other hand, a cal | backhandl er's
implementation for a non-GUI environment, such as an application server, might simply obtain
credential information by using an application server API. The cal | backhandl er interface has
one method to implement:

void handle(Callback]] callbacks) throws java.io.lIOException, UnsupportedCallbackException;

The Cal | back interface is the last authentication class we will look at. This is a tagging
interface for which several default implementations are provided, including the NanmeCal | back
and Passwor dCal | back used in an earlier example. A Logi nModul e uses a Cal | back to request
information required by the authentication mechanism. Logi nMbdul es pass an array of Cal | backs
directly to the Cal | backHandl er. handl e method during the authentication's login phase. If a
cal I backhandl er does not understand how to use a Cal | back object passed into the handle
method, it throws an Unsuppor t edCal | backExcept i on to abort the login call.

23

24

Chapter 3.

JBoss Security Model

Similar to the rest of the JBoss architecture, security at the lowest level is defined as a set of
interfaces for which alternate implementations may be provided. The following interfaces define
the JBoss server security layer:

» org.jboss.security.AuthenticationManager
e org.jboss.security.RealmMapping

» org.jboss.security.SecurityProxy

e org.jboss.security.AuthorizationManager
» org.jboss.security.AuditManager

« org.jboss.security.MappingManager

Figure 3.1, “The key security model interfaces and their relationship to the JBoss server EJB
container elements.” shows a class diagram of the security interfaces and their relationship to the
EJB container architecture.

25

Chapter 3. JBoss Security Model

Secun'tﬂﬁ

. #container: org.jboss.ejb.Conta:
nt): Set #securityManager: Authenticatior
#realmMapping: RealmMapping
#runAEIdentlty RunAs

-checkSecurityContext({mi: Invoca

1
SecurityHelperfF

— +getEJBAuthenticationHelper(sc:SecurityContex
+getEJBAuthorizationHelper(sc:SecurityContext

| .
= v

EJBAuthenticationHelper

+1sValid(principal:Principal,credential:0bject):
1

— . _ . . \1
Figure 3.1

JBoss geryer EJB container elements.Authentfcatfﬂnmanagel
[.

igr:Dhject}

+isValid(principal:Princi al,credential:ﬂ
Home:Class, p P P

+getActiveSubject(): Subject
.

The EJB Container layer is represented by the classes org.jboss. ejb. Container,
org.jboss.Securitylnterceptor and org.jboss. SecurityProxylnterceptor. The other
classes are interfaces and classes provided by the JBoss security subsystem.

The two interfaces required for the J2EE security model implementation are:

« org.jboss.security.AuthenticationManager
* org.jboss.security.AuthorizationManager

The roles of the security interfaces presented in Figure 3.1, “The key security model interfaces
and their relationship to the JBoss server EJB container elements.” are summarized below.

« AuthenticationManager: This interface is responsible for validating credentials associated with
Principals. Principals are identities, such as usernames, employee numbers, and social security
numbers. Credentials are proof of the identity, such as passwords, session keys, and digital
signatures. Thei sVal i d method is invoked to determine whether a user identity and associated
credentials as known in the operational environment are valid proof of the user's identity.

« AuthorizationManager: This interface is responsible for the access control mandated by the
J2EE specifications. The implementation of this interface provides the ability to stack a set of
Policy Providers useful for pluggable authorization.

e SecurityProxy: This interface describes the requirements for a custom
SecurityProxyl ntercept or plugin. A Securi t yPr oxy allows for the externalization of custom
security checks on a per-method basis for both the EJB home and remote interface methods.

« AuditManager: This interface is responsible for providing an audit trail of security events.

* MappingManager: This interface is responsible for providing mapping of Principal, Role,
and Attributes. The implementation of AuthorizationManager may internally call the mapping
manager to map roles before performing access control.

* RealMapping: This interface is responsible for principal mapping and role mapping. The
get Pri nci pal method takes an user identity as known in the operational environment and
returns the application domain identity. The doesUser HaveRol e method validates that the user
identity in the operation environment has been assigned the indicated role from the application
domain.

Note that the Aut henti cati onManager , Real mVappi ng and Securi t yPr oxy interfaces have no
association to JAAS related classes. Although the JBossSX framework is heavily dependent on
JAAS, the basic security interfaces required for implementation of the J2EE security model are
not. The JBossSX framework is simply an implementation of the basic security plugin interfaces
that are based on JAAS.

The component diagram in Figure 3.2, “The relationship between the JBossSX framework
implementation classes and the JBoss server EJB container layer.” illustrates this fact. The
implication of this plug-in architecture is that you are free to replace the JAAS-based JBossSX
implementation classes with your own non-JAAS custom security manager implementation. You'll

27

Chapter 3. JBoss Security Model

see how to do this when you look at the JBossSX MBeans available for JBossSX configuration
in Figure 3.2, “The relationship between the JBossSX framework implementation classes and the
JBoss server EJB container layer.”.

JBozs EJB Core

Contalner
--------- > O
securicy plug-in

Interceptor

SecurityInterceptor %Secu: ityProxvyInterceptor

s
I I I
[I I
t!l.—uut.hem:.i cation "'.!d’mﬂﬂ'-'-it!:' mapping \!_.tusmm security
AuthenvicationManager RealuMapping SecurityProxy
JEO3353X
Jaasfecuritytanager SubjecciecuricyProxy

Figure 3.2. The relationship between the JBossSX framework
implementation classes and the JBoss server EJB container layer.

28

Enabling Declarative Security in JBoss
Revisited

3.1. Enabling Declarative Security in JBoss Revisited

Earlier in this chapter, the discussion of the J2EE standard security model ended with a
requirement for the use of JBoss server-specific deployment descriptor to enable security. The
details of this configuration are presented here. Figure 3.3, “The security element subsets of the
JBoss server jboss.xml and jboss-web.xml deployment descriptors.” shows the JBoss-specific
EJB and web application deployment descriptor's security-related elements.

) * Security-domain

. 'jni'ié?j__ i

73| * Unauthenticated-principal

ol
| ¥ enterprise-beans .

| * session

[+ antity| 5, ¥ security-proxy '

L * massage-driven

.1/ * container-configurations -.:;.

= * containerconfiguration .

| * container-name

Foa * gecuriny-domain

jleess

+ jboss-weby, .+ security-domain

Figure 3.3. The security element subsets of the JBoss server jboss.xml and
jboss-web.xml deployment descriptors.

The value of a security-domai n element specifies the JNDI name of the security manager
interface implementation that JBoss uses for the EJB and web containers. This is an object that
implements both of the Aut hent i cati onManager and Real mvappi ng interfaces. When specified
as a top-level element it defines what security domain in effect for all EJBs in the deployment unit.

29

Chapter 3. JBoss Security Model

This is the typical usage because mixing security managers within a deployment unit complicates
inter-component operation and administration.

To specify the security domain for an individual EJB, you specify the security-donsin at the
container configuration level. This will override any top-level security-domain element.

The unaut hent i cat ed- pri nci pal element specifies the name to use for the Pri nci pal object
returned by the EJBCont ext . get User Pri nci pal method when an unauthenticated user invokes
an EJB. Note that this conveys no special permissions to an unauthenticated caller. Its primary
purpose is to allow unsecured servlets and JSP pages to invoke unsecured EJBs and allow the
target EJB to obtain a non-null Pri nci pal for the caller using the get User Pri nci pal method.
This is a J2EE specification requirement.

The security-proxy element identifies a custom security proxy implementation that allows
per-request security checks outside the scope of the EJB declarative security model without
embedding security logic into the EJB implementation. This may be an implementation of the
org.j boss.security. SecurityProxy interface, or just an object that implements methods in
the home, remote, local home or local interfaces of the EJB to secure without implementing
any common interface. If the given class does not implement the SecurityProxy interface,
the instance must be wrapped in a Securi t yProxy implementation that delegates the method
invocations to the object. The org.j boss. security. Subj ect SecurityProxy is an example
Securi t yProxy implementation used by the default JBossSX installation.

Take a look at a simple example of a custom Securi t yPr oxy in the context of a trivial stateless
session bean. The custom Secur i t yPr oxy validates that no one invokes the bean's echo method
with a four-letter word as its argument. This is a check that is not possible with role-based security;
you cannot define a Four Let t er Echol nvoker role because the security context is the method
argument, not a property of the caller. The code for the custom SecurityProxy is given in
Example 3.1, “The example 1 custom EchoSecurityProxy implementation that enforces the echo
argument-based security constraint.”.

Example 3.1. The example 1 custom EchoSecurityProxy implementation
that enforces the echo argument-based security constraint.
package org.jboss.book.security.ex1;

import java.lang.reflect.Method;
import javax.ejb.EJBContext;

import org.apache.log4j.Category;
import org.jboss.security.SecurityProxy;

/** A simple example of a custom SecurityProxy implementation
* that demonstrates method argument based security checks.

30

Enabling Declarative Security in JBoss

Revisited
* @author Scott.Stark@jboss.org

* @version $Revision: 1.4 $

*/

public class EchoSecurityProxy implements SecurityProxy

{
Category log = Category.getinstance(EchoSecurityProxy.class);
Method echo;

public void init(Class beanHome, Class beanRemote,
Object securityMgr)
throws InstantiationException

log.debug("init, beanHome="+beanHome
+ ", beanRemote="+beanRemote
+ ", securityMgr="+securityMgr);
/I Get the echo method for equality testing in invoke
try {
Class[] params = {String.class};
echo = beanRemote.getDeclaredMethod("echo"”, params);
} catch(Exception e) {
String msg = "Failed to finde an echo(String) method";
log.error(msg, €);
throw new InstantiationException(msg);

public void setEJBContext(EJBContext ctx)

{
log.debug("setEJBContext, ctx="+ctx);

public void invokeHome(Method m, Object[] args)
throws SecurityException

/I We don't validate access to home methods

public void invoke(Method m, Object[] args, Object bean)
throws SecurityException

log.debug"invoke, m="+m);
/I Check for the echo method
if (m.equals(echo)) {
/l Validate that the msg arg is not 4 letter word

31

Chapter 3. JBoss Security Model

String arg = (String) args|0];
if (arg == null || arg.length() == 4)
throw new SecurityException("No 4 letter words");

}

/[We are not responsible for doing the invoke

The EchoSecuri t yPr oxy checks that the method to be invoked on the bean instance corresponds
to the echo(St ri ng) method loaded the init method. If there is a match, the method argument is
obtained and its length compared against 4 or null. Either case results in a Securi t yExcepti on
being thrown. Certainly this is a contrived example, but only in its application. It is a common
requirement that applications must perform security checks based on the value of method
arguments. The point of the example is to demonstrate how custom security beyond the
scope of the standard declarative security model can be introduced independent of the bean
implementation. This allows the specification and coding of the security requirements to be
delegated to security experts. Since the security proxy layer can be done independent of the bean
implementation, security can be changed to match the deployment environment requirements.

The associated j boss. xm descriptor that installs the EchoSecuri t yPr oxy as the custom proxy
for the EchoBean is given in Example 3.2, “The jboss.xml descriptor, which configures the
EchoSecurityProxy as the custom security proxy for the EchoBean.”.

Example 3.2. The jboss.xml descriptor, which configures the
EchoSecurityProxy as the custom security proxy for the EchoBean.

<jboss>
<security-domain>other</security-domain>

<enterprise-beans>
<session>
<ejb-name>EchoBean</ejb-name>
<security-proxy>org.jboss.book.security.ex1.EchoSecurityProxy</security-proxy>
</session>
</enterprise-beans>
</jboss>

Now test the custom proxy by running a client that attempts to invoke the EchoBean. echo method
with the arguments Hel | o and Four as illustrated in this fragment:

32

Enabling Declarative Security in JBoss
Revisited

public class ExClient
{
public static void main(String args[])
throws Exception

Logger log = Logger.getLogger("ExClient");
log.info("Looking up EchoBean");

InitialContext iniCtx = new InitialContext();
Object ref = iniCtx.lookup("EchoBean");
EchoHome home = (EchoHome) ref;
Echo echo = home.create();

log.info("Created Echo");
log.info("Echo.echo('Hello") = "+echo.echo("Hello="));
log.info("Echo.echo('Four') = "+echo.echo("Four"));

The first call should succeed, while the second should fail due to the fact that Four is a four-letter
word. Run the client as follows using Ant from the examples directory:

[examples]$ ant -Dchap=security -Dex=1 run-example
run-examplel:

[echo] Waiting for 5 seconds for deploy...
[java] [INFO,ExClient] Looking up EchoBean
[java] [INFO,ExClient] Created Echo
[java] [INFO,ExClient] Echo.echo('Hello") = Hello
[[ava] Exception in thread "main" java.rmi.AccessException: SecurityException; nested
exception is:
[java] java.lang.SecurityException: No 4 letter words

[java] Caused by: java.lang.SecurityException: No 4 letter words

The result is that the echo(' Hel | o') method call succeeds as expected and the echo(' Four')
method call results in a rather messy looking exception, which is also expected. The above
output has been truncated to fit in the book. The key part to the exception is that the

33

Chapter 3. JBoss Security Model

SecurityException("No 4 letter words") generated by the EchoSecuri t yPr oxy was thrown
to abort the attempted method invocation as desired.

34

Chapter 4.

The JBoss Security Extension
Architecture

The preceding discussion of the general JBoss security layer has stated that the JBossSX security
extension framework is an implementation of the security layer interfaces. This is the primary
purpose of the JBossSX framework. The details of the implementation are interesting in that it
offers a great deal of customization for integration into existing security infrastructures. A security
infrastructure can be anything from a database or LDAP server to a sophisticated security software
suite. The integration flexibility is achieved using the pluggable authentication model available in
the JAAS framework.

The heart of the JBossSX framework is or g. j boss. securi ty. pl ugi ns. JaasSecur it yManager .
This is the default implementation of the Authenticati onManager and Real mivappi ng
interfaces. Figure 4.1, “The relationship between the security-domain component deployment
descriptor value, the component container and the JaasSecurityManager.” shows how the
JaasSecurit yManager integrates into the EJB and web container layers based on the securi t y-
domai n element of the corresponding component deployment descriptor.

weh . xoml

{ ejb-jar ol Y method and URL Roles

i jhos;.xm:ll } security-domain=jwdomain
jhoss-web

‘

webContainer

EWOPM =} LEWOP-Ag Lafood

4 EJBCorftainar

L

jedomain {
LoginModulal

000_
LoginModulen

&K . JAAS LoginConfi
JaasSecurityManager

principalsSet
[)@ Roles
- "]“; callerPrincipal

Figure 4.1. The relationship between the security-domain component
deployment descriptor value, the component container and the
JaasSecurityManager.

Figure 4.1, “The relationship between the security-domain component deployment descriptor
value, the component container and the JaasSecurityManager.” depicts an enterprise application

35

Chapter 4. The JBoss Security...

that contains both EJBs and web content secured under the security domain j wdonai n. The EJB
and web containers have a request interceptor architecture that includes a security interceptor,
which enforces the container security model. At deployment time, the securi t y- donai n element
value in the j boss. xm and j boss-web. xnl descriptors is used to obtain the security manager
instance associated with the container. The security interceptor then uses the security manager
to perform its role. When a secured component is requested, the security interceptor delegates
security checks to the security manager instance associated with the container.

The JBossSX JaasSecurit yManager implementation performs security checks based on the
information associated with the Subj ect instance that results from executing the JAAS login
modules configured under the name matching the securit y- domai n element value. We will drill
into the JaasSecuri t yManager implementation and its use of JAAS in the following section.

4.1. How the JaasSecurityManager Uses JAAS

The JaasSecuri t yManager usesthe JAAS packages to implement the Aut hent i cat i onManager
and Real mvappi ng interface behavior. In particular, its behavior derives from the execution
of the login module instances that are configured under the name that matches the security
domain to which the JaasSecuri t yManager has been assigned. The login modules implement
the security domain's principal authentication and role-mapping behavior. Thus, you can use the
JaasSecurit yManager across different security domains simply by plugging in different login
module configurations for the domains.

To illustrate the details of the JaasSecur i t yManager 's usage of the JAAS authentication process,
you will walk through a client invocation of an EJB home method invocation. The prerequisite
setting is that the EJB has been deployed in the JBoss server and its home interface methods have
been secured using met hod- per i ssi on elementsintheej b-j ar. xnl descriptor, and it has been
assigned a security domain named j wdonai n using the j boss. xm descriptor securi t y- domai n
element.

36

How the JaasSecurityManager Uses JAAS

Client
LoginContext lc{"other™, ...);
lc.login(); I
mh‘ér{
Bean ClientLoginModule
Home required:;
}

marshal method info,
principal and credentials

Security
Interceptor

JBoss Server
isValid|)
-

Jaas

)duesUserHaueHnle:]h Security

Manager

LoginContext kc("jwdomain”, ...);
le.laging);
Subject s = lc.getSubject()

jwdomain {

serverLoginModule

required;

Figure 4.2. An illustration of the steps involved in the authentication and
authorization of a secured EJB home method invocation.

37

Chapter 4. The JBoss Security...

Figure 4.2, “An illustration of the steps involved in the authentication and authorization of a secured
EJB home method invocation.” provides a view of the client to server communication we will
discuss. The numbered steps shown are:

1.

The client first has to perform a JAAS login to establish the principal and credentials
for authentication, and this is labeled Client Side Login in the figure. This is how clients
establish their login identities in JBoss. Support for presenting the login information via JNDI
I nitial Context properties is provided via an alternate configuration. A JAAS login entails
creating a Logi nCont ext instance and passing the name of the configuration to use. The
configuration name is ot her . This one-time login associates the login principal and credentials
with all subsequent EJB method invocations. Note that the process might not authenticate
the user. The nature of the client-side login depends on the login module configuration that
the client uses. In this example, the ot her client-side login configuration entry is set up to
use the C i ent Logi nMbdul e module (an org. j boss. security. dientLogi nMdul e). This
is the default client side module that simply binds the username and password to the JBoss
EJB invocation layer for later authentication on the server. The identity of the client is not
authenticated on the client.

. Later, the client obtains the EJB home interface and attempts to create a bean. This event is

labeled as Home Method Invocation. This results in a home interface method invocation being
sent to the JBoss server. The invocation includes the method arguments passed by the client
along with the user identity and credentials from the client-side JAAS login performed in step 1.

. On the server side, the security interceptor first requires authentication of the user invoking the

call, which, as on the client side, involves a JAAS login.

. The security domain under which the EJB is secured determines the choice of login

modules. The security domain name is used as the login configuration entry name passed
to the Logi nContext constructor. The EJB security domain is jwdomai n. If the JAAS
login authenticates the user, a JAAS Subj ect is created that contains the following in its
Princi pal sSet :

A java.security.Principal that corresponds to the client identity as known in the
deployment security environment.

« A java.security.acl.Goup named Roles that contains the role names
from the application domain to which the user has been assigned.
org.j boss. security. SinplePrincipal objects are used to represent the role names;
Si npl ePri nci pal is a simple string-based implementation of Princi pal . These roles
are used to validate the roles assigned to methods in ejb-jar.xm and the
EJBCont ext . i sCal | er I nRol e(String) method implementation.

e An optional j ava. securi ty. acl . G oup named Cal | er Pri nci pal , which contains a single
org.j boss. security. Sinpl ePrinci pal that corresponds to the identity of the application
domain's caller. The Cal | er Pri nci pal sole group member will be the value returned by
the EJBCont ext . get Cal | er Pri nci pal () method. The purpose of this mapping is to allow

38

The JaasSecurityManagerService MBean

a Principal as known in the operational security environment to map to a Pri nci pal
with a name known to the application. In the absence of a Cal | er Pri nci pal mapping the
deployment security environment principal is used as the get Cal | er Pri nci pal method
value. That is, the operational principal is the same as the application domain principal.

5. The final step of the security interceptor check is to verify that the authenticated user has
permission to invoke the requested method This is labeled as Server Side Authorization in
Figure 4.2, “An illustration of the steps involved in the authentication and authorization of a
secured EJB home method invocation.”. Performing the authorization this entails the following
steps:

« Obtain the names of the roles allowed to access the EJB method from the EJB container. The
role names are determined by ej b-j ar. xm descriptor role-name elements of all net hod-
per i ssi on elements containing the invoked method.

* Ifnoroles have been assigned, or the method is specified in an excl ude- 1 i st element, then
access to the method is denied. Otherwise, the doesUser HaveRol e method is invoked on the
security manager by the security interceptor to see if the caller has one of the assigned role
names. This method iterates through the role names and checks if the authenticated user's
Subject Rol es group contains a Si npl ePri nci pal with the assigned role name. Access is
allowed if any role name is a member of the Rol es group. Access is denied if none of the
role names are members.

- If the EJB was configured with a custom security proxy, the method invocation is
delegated to it. If the security proxy wants to deny access to the caller, it will throw a
java. |l ang. Securit yException. If no SecurityException is thrown, access to the EJB
method is allowed and the method invocation passes to the next container interceptor. Note
that the Securi t yProxyl nt er cept or handles this check and this interceptor is not shown.

Every secured EJB method invocation, or secured web content access, requires the authentication
and authorization of the caller because security information is handled as a stateless attribute
of the request that must be presented and validated on each request. This can be an
expensive operation if the JAAS login involves client-to-server communication. Because of
this, the JaasSecurit yManager supports the notion of an authentication cache that is used to
store principal and credential information from previous successful logins. You can specify the
authentication cache instance to use as part of the JaasSecuri t yManager configuration as you
will see when the associated MBean service is discussed in following section. In the absence of
any user-defined cache, a default cache that maintains credential information for a configurable
period of time is used.

4.2. The JaasSecurityManagerService MBean

The JaasSecurityManager Servi ce MBean service manages security managers. Although
its name begins with Jaas, the security managers it handles need not use JAAS in their
implementation. The name arose from the fact that the default security manager implementation
is the JaasSecurityManager. The primary role of the JaasSecurityManager Service is to

39

Chapter 4. The JBoss Security...

externalize the security manager implementation. You can change the security manager
implementation by providing an alternate implementation of the Aut henti cati onManager and
Real mvappi ng interfaces.

The second fundamental role of the JaasSecurityManager Service is to provide a JNDI
j avax. nami ng. spi . Obj ect Fact ory implementation to allow for simple code-free management
of the JNDI name to security manager implementation mapping. It has been mentioned that
security is enabled by specifying the JNDI name of the security manager implementation via
the security-domai n deployment descriptor element. When you specify a JNDI name, there
has to be an object-binding there to use. To simplify the setup of the JNDI name to security
manager bindings, the JaasSecurityManager Servi ce manages the association of security
manager instances to hames by binding a next naming system reference with itself as the JNDI
ObjectFactory under the name j ava: / j aas. This allows one to use a naming convention of the
formj ava: / j aas/ XYZ as the value for the securi t y- domai n element, and the security manager
instance for the XYZ security domain will be created as needed for you. The security manager for
the domain XYz is created on the first lookup against the j ava: / j aas/ XYZ binding by creating an
instance of the class specified by the Securi t yManager O assNane attribute using a constructor
that takes the name of the security domain. For example, consider the following container security
configuration snippet:

java:/jaas prefix is no longer mandatory

In previous versions of JBoss, the j ava: /j aas prefix in each securitydomai n
deployment descrptor element was required to correctly bind the JNDI name to the
security manager bindings. As of JBoss AS 6, it is possible to specify the name
of the securi t ydonai n only in j boss. xm and j boss-web. xm . The j ava: / j aas
prefix is still supported however, and remains for backwards compatibility.

<jboss>
<l-- Configure all containers to be secured under the "hades" security domain -->
<security-domain>hades</security-domain>
<l--..-->

</jboss>

Any lookup of the name hades will return a security manager instance that has been
associated with the security domain named hades. This security manager will implement the
AuthenticationManager and RealmMapping security interfaces and will be of the type specified
by the JaasSecuri t yManager Ser vi ce Securi t yManager C assNane attribute.

The JaasSecuri t yManager Ser vi ce MBean is configured by default for use in the standard JBoss
distribution, and you can often use the default configuration as is. The configurable attributes of
the JaasSecuri t yManager Ser vi ce include:

40

The JaasSecurityManagerService MBean

SecurityManagerClassName: The name of the «class that provides the
security manager implementation. The implementation must support both the
org.j boss.security. Authenticati onManager and org.jboss. security. Real nvappi ng
interfaces. If not specified this defaults to the JAAS-based
org.j boss. security. plugi ns. JaasSecurityManager.

CallbackHandlerClassName: The name of the class that provides
the javax. security. auth. cal | back. Cal | backHandl er implementation used
by the JaasSecurit yManager. You can override the handler
used by the JaasSecurit yManager if the default implementation

(org.jboss.security. auth. cal | back. SecurityAssoci at i onHandl er) does not meet your
needs. This is a rather deep configuration that generally should not be set unless you know
what you are doing.

SecurityProxyFactoryClassName: The name of the class that provides the
org.j boss. security. SecurityProxyFact ory implementation. If not specified this defaults to
org.j boss. security. Subj ect SecurityProxyFactory.

AuthenticationCacheJndiName: Specifies the location of the security credential cache policy.
This is first treated as an bj ect Fact or y location capable of returning CachePol i cy instances
on a per-security-domain basis. This is done by appending the name of the security domain to
this name when looking up the CachePol i cy for a domain. If this fails, the location is treated as
a single CachePol i cy for all security domains. As a default, a timed cache policy is used.

DefaultCacheTimeout: Specifies the default timed cache policy timeout in seconds. The
default value is 1800 seconds (30 minutes). The value you use for the timeout is a tradeoff
between frequent authentication operations and how long credential information may be out of
sync with respect to the security information store. If you want to disable caching of security
credentials, set this to 0 to force authentication to occur every time. This has no affect if the
Aut hent i cat i onCacheJndi Nane has been changed from the default value.

DefaultCacheResolution: Specifies the default timed cache policy resolution in seconds. This
controls the interval at which the cache current timestamp is updated and should be less than
the Def aul t CacheTi meout in order for the timeout to be meaningful. The default resolution
is 60 seconds(1 minute). This has no affect if the Aut henti cati onCacheJndi Name has been
changed from the default value.

DefaultUnauthenticatedPrincipal: Specifies the principal to use for unauthenticated users.
This setting makes it possible to set default permissions for users who have not been
authenticated.

DefaultCacheFlushPeriod: Specifies the default period of time in seconds that the
authentication cache will flush expired entries. Default value is 3600 or one hour.

The JaasSecurit yManager Ser vi ce also supports a number of useful operations. These include
flushing any security domain authentication cache at runtime, getting the list of active users in a

security domain authentication cache, and any of the security manager interface methods.

41

Chapter 4. The JBoss Security...

Flushing a security domain authentication cache can be used to drop all cached credentials when
the underlying store has been updated and you want the store state to be used immediately.
The MBean operation signature is: public void flushAuthenticationCache(String
securitybDomain) .

This can be invoked programmatically using the following code snippet:

MBeanServer server = ...;

String jaasMgrName = "jboss.security:service=JaasSecurityManager";
ObjectName jaasMgr = new ObjectName(jaasMgrName);

Object[] params = {domainName};

String[] signature = {"java.lang.String"};

server.invoke(jaasMgr, "flushAuthenticationCache", params, signature);

Getting the list of active users provides a snapshot of the Pri nci pal s keys in a security domain
authentication cache that are not expired. The MBean operation signature is: public List
get Aut hent i cati onCachePri nci pal s(String securityDomain).

This can be invoked programmatically using the following code snippet:

MBeanServer server = ...;

String jaasMgrName = "jboss.security:service=JaasSecurityManager";

ObjectName jaasMgr = new ObjectName(jaasMgrName);

Object[] params = {domainName};

String[] signature = {"java.lang.String"};

List users = (List) server.invoke(jaasMgr, "getAuthenticationCachePrincipals”,
params, signature);

The security manager has a few additional access methods.

public boolean isValid(String securityDomain, Principal principal, Object credential);
public Principal getPrincipal(String securityDomain, Principal principal);
public boolean doesUserHaveRole(String securityDomain, Principal principal,
Object credential, Set roles);
public Set getUserRoles(String securityDomain, Principal principal, Object credential);

They provide access to the corresponding Aut hent i cati onManager and Real mvappi ng interface
method of the associated security domain named by the securi t yDomai n argument.

42

The JNDIBasedSecurityManagement Bean

4.2.1. The JNDIBasedSecurityManagement Bean

In AS 6 most MBeans were replaced by Micro Container (MC) Beans.
JaasSecuri t yManager Ser vi ce was not removed to maintain compatibility with previous versions
but most of its functionalities are done by the JNDI BasedSecuri t yManagement MC Bean now.
This Bean is located in conf / boot st rap/ security. xm .

In Example 4.1, “Setting custom values for the JNDIBasedSecurityManagement Bean” an
example of how to set up the Aut hent i cat i onManager class, Cal | backHandl er class and default
values for the authentication cache is shown:

Example 4.1. Setting custom values for the INDIBasedSecurityManagement
Bean

<bean name="JNDIBasedSecurityManagement"
class="org.jboss.security.integration.JNDIBasedSecurityManagement">
<property name="authenticationMgrClass">org.example.MyAuthenticationManager</property>
<property name="defaultCacheTimeout">1800</property>
<property name="defaultCacheResolution">60</property>
<property name="defaultCacheFlushPeriod">3600</property>
<property name="callBackHandler"><inject bean="CallbackHandler"/></property>
</bean>

<bean name="CallbackHandler" class="org.example.MyCallbackHandler"/>

4.3. The JaasSecurityDomain Bean

The org.jboss.security.plugins. JaasSecurityDonmain is an extension of
JaasSecurityManager that adds the notion of a KeySt ore, a JSSE KeyManager Fact ory and
a Trust Manager Fact ory for supporting SSL and other cryptographic use cases. The additional
configurable attributes of the JaasSecuri t yDomai n include;

« keyStoreType: The type of the KeySt or e implementation. This is the type argument passed
to the j ava. security. KeyStore. get | nstance(String type) factory method. The default is
JKS.

« keyStoreURL: A URL to the location of the KeySt ore database. This is used to obtain an
I nput St r eamto initialize the KeySt or e. If the string is not a value URL, it is treated as a file.

» keyStorePass: The password associated with the KeyStore database contents. The
KeySt or ePass is also used in combination with the Salt and Iterati onCount attributes to
create a PBE secret key used with the encode/decode operations. The keySt or ePass attribute
value format is one of the following:

43

Chapter 4. The JBoss Security...

e The plaintext password for the KeySt ore. The t oChar Array() value of the string is used
without any manipulation.

» A command to execute to obtain the plaintext password. The format is { EXT}. .. where the

. is the exact command line that will be passed to the Runti me. exec(Stri ng) method to

execute a platform-specific command. The first line of the command output is used as the
password.

« A class to create to obtain the plaintext password. The format is
{CLASS} cl assnane[: ct orarg] where the [:ctorarg] is an optional string that will be
passed to the constructor when instantiating the cl assnane. The password is obtained from
classname by invoking at oChar Ar r ay() method if found, otherwise, thet oSt ri ng() method
is used.

keyStoreAlias: Alias of the KeySt or e containing the certificate to be used.
keyStoreProvider: Security Provi der of the KeySt or e.

keyStoreProviderArgument: Argument to be passed to the constructor of the KeyStore
security Pr ovi der .

keyManagerFactoryProvider: Security Provi der of the KeyManager Fact ory.
keyManagerFactoryAlgorithm: Algorithm of the KeyManager Fact ory.

salt: The PBEPar anet er Spec salt value.

iterationCount: The PBEPar anet er Spec iteration count value.

trustStoreType: The type of the Tr ust St or e implementation. This is the type argument passed
tothe j ava. security. KeyStore. getlnstance(String type) factory method. The default is
JKS.

trustStoreURL: A URL to the location of the Tr ust St or e database. This is used to obtain an
I nput St r eamto initialize the KeySt or e. If the string is not a value URL, it is treated as a file.

trustStorePass: The password associated with the trust store database contents. The
trust St or ePass has the same configuration options as the keySt or ePass.

trustStoreProvider: Security Provi der of the Trust Store.

trustStoreProviderArgument: Argument to be passed to the constructor of the Trust St ore
security Pr ovi der .

trustManagerFactoryProvider: Security Provi der of the Tr ust Manager Fact ory.

trustManagerFactoryAlgorithm: Algorithm of the Tr ust Manager Fact ory.

In Example 4.2, “JaasSecurityDomain example” an example JaasSecurityDomai n Bean is
shown:

44

The JaasSecurityDomain Bean

Example 4.2. JaasSecurityDomain example

<bean name="example" class="org.jboss.security.plugins.JaasSecurityDomain">
<constructor>
<parameter>example</parameter>

</constructor>

<property name="keyStorePass">changeit</property>

<property name="keyStoreURL">resource:localhost.keystore</property>

<!-- introduce a JMX annotation to export this bean as an MBean -->

<annotation>@org.jboss.aop.microcontainer.aspects.jmx.JMX
(name="jboss.security:service=JaasSecurityDomain,domain=example",
exposedInterface=org.jboss.security.plugins.JaasSecurityDomainMBean.class)

</annotation>

</bean>

JaasSecurityDomain can still be deployed as a MBean

To maintain compatibility with previous versions, JaasSecur i t yDomai n can still be
deployed as a MBean.

45

46

Part Il. Security Domains
and Components

Chapter 5.

Static Security Domains

The standard way of configuring security domains for authentication and authorization in JBoss
is to use the XML login configuration file. The login configuration policy defines a set of named
security domains that each define a stack of login modules that will be called upon to authenticate
and authorize users.

The XML configuration file conforms to the DTD given by Figure 5.1, “The XMLLoginConfig DTD".
This DTD can be found in docs/ dt d/ security_config. dtd.

| [nameé
Lstring J
* policy o + application-policyz_ * authentication g o * login-module,
flag = * _l:ndeg
Clenumeration ¢ L5tring ;
* login-modulez_ &) + mndule—npﬁnn% » nameé
ke Lstring]

Figure 5.1. The XMLLoginConfig DTD

Example 5.1.

This example describes a simple configuration named jmx-console that is backed by a single login
module. The login module is configured by a simple set of name/value configuration pairs that
have meaning to the login module in question. We'll see what these options mean later, for now
we'll just be concerned with the structure of the configuration file.

<application-policy name="example">
<authentication>
<login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule"
flag="required">
<module-option name="usersProperties">users.properties</module-option>
<module-option name="rolesProperties">roles.properties</module-option>
</login-module>
</authentication>
</application-policy>

49

Chapter 5. Static Security Do...

The nane attribute of the application-policy is the login configuration name. Applications policy
elements are bound by that name in JNDI under the the j ava: / j aas context. Applications will link
to security domains through this INDI name in their deployment descriptors. (See the <security-
domain> elements in j boss. xm , j boss-web. xm and j boss- servi ce. xm files for examples)

The code attribute of the login-module element specifies the class name of the login module
implementation. The requi red flag attribute controls the overall behavior of the authentication
stack. The allowed values and meanings are:

required
The login module is required to succeed for the authentication to be successful. If any required
module fails, the authentication will fail. The remaining login modules in the stack will be called
regardless of the outcome of the authentication.

requisite
The login module is required to succeed. If it succeeds, authentication continues down the
login stack. If it fails, control immediately returns to the application.

sufficient
The login module is not required to succeed. If it does succeed, control immediately returns
to the application. If it fails, authentication continues down the login stack.

optional
The login module is not required to succeed. Authentication still continues to proceed down
the login stack regardless of whether the login module succeeds or fails.

Example 5.2. Security Domain using Multiple Login Modules

This example shows the definition of a security domain that uses multiple login modules. Since
both modules are marked as sufficient, only one of them must succeed for login to proceed.

<application-policy name="todo">
<authentication>
<login-module code="org.jboss.security.auth.spi.LdapLoginModule"
flag="sufficient">
<!-- LDAP configuration -->
</login-module>
<login-module code="org.jboss.security.auth.spi.DatabaseServerLoginModule"
flag="sufficient">
<!-- database configuration -->
</login-module>
</authentication>
</application-policy>

50

Each login module has its own set of configuration options. These are set as name/value pairs
using the module-option elements. Module options are covered in more depth when we look at
the individual login modules available in JBoss AS.

51

52

Chapter 6.

Loading Static Security Domains

Authentication security domains are configured statically in the / ser ver / $PROFI LE/ conf / | ogi n-
confi g. xnl file, or deployed usingj boss- beans. xnl deployment descriptors. For static domains,
the XM_Logi nConf i g bean is responsible for loading security configurations specified in | ogi n-
config.xm . The bean definition is located in the /server/ $PROFI LE/ depl oy/ security/
security-jboss-beans. xn file. The bean is defined as shown below.

<bean name="XMLLoginConfig" class="org.jboss.security.auth.login.XMLLoginConfig">
<property name="configResource">login-config.xml</property>
</bean>

The bean supports the following attributes:

configURL
Specifies the URL of the XML login configuration file that should be loaded by this MBean on
startup. This must be a valid URL string representation.

configResource
Specifies the resource name of the XML login configuration file that should be loaded by this
MBean on startup. The name is treated as a classpath resource for which a URL is located
using the thread context class loader.

validateDTD
Specifies whether the XML configuration should be validated against its DTD. This defaults
to true.

The SecurityConfig bean is responsible for selecting the

javax. security. auth. | ogin. Configuration to be used. The default configuration simply
references the XM_Logi nConfi g bean.

<bean name="SecurityConfig" class="org.jboss.security.plugins.SecurityConfig">
<property name="mbeanServer"><inject bean="JMXKernel" property="mbeanServer"/></
property>
<property name="defaultLoginConfig"><inject bean="XMLLoginConfig"/></property>
</bean>

There is one configurable attribute:

53

Chapter 6. Loading Static Sec...

defaultLoginConfig

Specifies the bean name of the MC bean that provides the default
JAAS login configuration. When the SecurityConfig Iis started, this bean
is queried for its javax.security.auth.login.Configuration by calling
its get Configuration(Configuration current Confi g) operation. If the
def aul t Logi nConfi g attribute is not specified then the default Sun Configuration
implementation described in the Confi gur ati on class JavaDocs is used

54

Chapter 7.

Dynamic Security Domains

Historically, the Enterprise Application Platform used the static $JBOSS_HOVE/ ser ver / $PROFI LE/
conf/l ogi n-config.xm file to configure the security domain. Dynamic configuration was
provided with the introduction of the DynamicLoginConfig security service. This functionality
allowed you to specify a Java Authentication and Authorization Service (JAAS) as part of an
application deployment, rather than having to include the configuration information in | ogi n-
config.xm .

JBoss AS 6 now provides an additional, simplified mechanism to configure security domains.

In JBoss AS, the security domain configuration is important for the authentication, authorization,
auditing, and mapping functionality associated with Java EE components such a Web or EJBs.

The latest security implementation allows you to create a logically-named deployment descriptor
file and specify the security domains within the file. The deployment descriptor can be deployed
directly in the deploy folder, or packaged as part of the application JAR or WAR file.

Procedure 7.1. Security Domain Deployment Descriptor

Follow this procedure to configure a security domain deployment descriptor with two domains
named web-test and ejb-test.

1. Create deployment descriptor
You must create a deployment descriptor file to contain the security domain configuration.

The filename takes the format [domai n_nane] -j boss- beans. xni . The domai n_nane is
arbitrary, however you should choose a name that is meaningful to the application.

The file must contain the standard XML declaration, and a correctly configured <depl oynment >
element.

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

</deployment>

2. Define application policies

Within the <depl oynent > element, the individual application policies are defined. Each policy
specifies the login module to use, and any required options.

55

Chapter 7. Dynamic Security D...

In the example below, two application policies are specified. Each policy uses the same login
module, and module parameters.

Section 10.1, “Using Modules”

<?xml version="1.0" encoding="UTF-8"?>
<deployment xmlIns="urn:jboss:bean-deployer:2.0">

<application-policy xmIns="urn:jboss:security-beans:1.0" name="web-test">
<authentication>
<login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule"
flag="required">
<module-option name="unauthenticatedldentity">anonymous</module-option>
<module-option name="usersProperties">u.properties</module-option>
<module-option name="rolesProperties">r.properties</module-option>
</login-module>
</authentication>
</application-policy>

<application-policy xmlIns="urn:jboss:security-beans:1.0" name="ejb-test">
<authentication>
<login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule"
flag="required">
<module-option name="unauthenticatedldentity">anonymous</module-option>
<module-option name="usersProperties">u.properties</module-option>
<module-option name="rolesProperties">r.properties</module-option>
</login-module>
</authentication>
</application-policy>

</deployment>

56

Deploy or package the deployment descriptor

Move the deployment descriptor file to the depl oy directory of the required server profile in

your installation.

Alternatively, package the deployment descriptor in the META- | NF directory of the EJB Jar,
or the VEB- | NF directory of your web application (WAR).

57

58

Chapter 8.

Authorization Stacks

If a security domain does not define an authorization module, the default j boss- web- pol i cy and
j boss- ej b- pol i cy authorization configured in securi ty-pol i ci es-j boss-beans. xnl is used.
If you specify an authorization module, or create a custom deployment descriptor file with valid
authorization configuration, these settings override the default settings in securi ty-poli ci es-
j boss- beans. xn .

Overriding the default authorization for EJB or Web components is provided for JACC and
XACML, apart from the default modules that implement the specification behavior. Users can
provide authorization modules that implement custom behavior. Configuring this functionality
allows access control stacks to be pluggable for a particular component, overriding the default
authorization contained in j boss. xnl (for EJBs) and j boss-web. xm (for WAR).

Setting authorization for all EJB and WEB components. You can override authorization for
all EJBs and Web components, or for a particular component.

Procedure 8.1. Set authorization policies for all EJB and WAR components

This procedure describes how to define JACC Authorization control for all EJB and WAR
components. The example defines application policy modules for Web and EJB applications:
j boss-web-policy, and j boss- ej b-pol i cy.
1. Open the security policy bean

Navigate to $JBOSS_HOME/ ser ver / $PROFI LE/ depl oy/ security

Open the security-policies-jboss-beans. xn file.

By default, the security-policies-jpboss-beans.xml file contains the configuration in
Example 8.1, “security-policies default configuration”

Example 8.1. security-policies default configuration

<?xml version="1.0" encoding="UTF-8"?>
<deployment xmlns="urn:jboss:bean-deployer:2.0">

<application-policy xmlns="urn:jboss:security-beans:1.0" name="jboss-web-policy"
extends="other">
<authorization>
<policy-module
code="org.jboss.security.authorization.modules.DelegatingAuthorizationModule"
flag="required"/>

59

Chapter 8. Authorization Stacks

</authorization>
</application-policy>

<application-policy xmlIns="urn:jboss:security-beans:1.0" name="jboss-ejb-policy"
extends="other">
<authorization>
<policy-module
code="org.jboss.security.authorization.modules.DelegatingAuthorizationModule"
flag="required"/>
</authorization>
</application-policy>

</deployment>

2. Change the application-policy definitions

To set a single authorization policy for each component using JACC, amend each <pol i cy-
modul e> code attribute with the name of the JACC authorization module.

<?xml version="1.0" encoding="UTF-8"?>
<deployment xmIns="urn:jboss:bean-deployer:2.0">

<application-policy xmlIns="urn:jboss:security-beans:1.0" name="jboss-web-policy"
extends="other">
<authorization>
<policy-module

flag="required"/>
</authorization>
</application-policy>

<application-policy xmlns="urn:jboss:security-beans:1.0" name="jboss-ejb-policy"
extends="other">
<authorization>
<policy-module

flag="required"/>
</authorization>
</application-policy>

<application-policy ~ xmlIns="urn:jboss:security-beans:1.0" name="jacc-test"
extends="other">

60

<authorization>
<policy-module

flag="required"/>
</authorization>
</application-policy>

</deployment>

3. Restart server

You have now configured the security-policy-jboss-beans.xm file with JACC
authorization enabled for each application policy.

Restart the server to ensure the new security policy takes effect.

Setting authorization for specific EJB and WEB components. If applications require
more granular security policies, you can declare multiple authorization security policies for each
application policy. New security domains can inherit base settings from another application policy,
and override specific settings such as the authorization policy module.

Procedure 8.2. Set authorization policies for specific security domains

This procedure describes how to inherit settings from other application policy definitions, and
specify different authorization policies per security domain.

In this procedure, two security domains are defined. The t est - domai n security domain uses
the UsersRolesLoginModule login module and uses JACC authorization. The t est - domai n-
i nheri t ed security domain inherits the login module information fromt est - donai n, and specifies
XACML authorization must be used.

1. Open the security policy

You can specify the security domain settings in the | ogi n-confi g. xml file, or create a
deployment descriptor file containing the settings. Choose the deployment descriptor if you
want to package the security domain settings with your application.

« Locate and open login-config.xml

Navigate to the | ogi n- confi g. xnl file for the server profile you are using and open the
file for editing. For example:

$JBOSS_HOVE/ j boss- as/ server/ $PROFI LE/ conf /1 ogi n. confi g. xmi

61

Chapter 8. Authorization Stacks

e Create ajboss-beans.xml descriptor

Create a[prefix]-jboss-beans. xnl descriptor, replacing [pr ef i x] with a meaningful
name (for example, t est - war - j boss- beans. xm)

Save this file in the deploy directory of the server profile you are configuring. For example:
$JBOSS_HOVE/ j boss- as/ server/ $PROFI LE/ depl oy/ t est - war - j boss- beans. xmi
Specify the test-domain security domain

In the target file chosen in step 1, specify the t est - domai n security domain. This domain
contains the authentication information, including the <l ogi n- nodul e> definition, and the
JACC authorization policy module definition.

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmlns="urn:jboss:bean-deployer:2.0">

<application-policy xmIns="urn:jboss:security-beans:1.0" name="test-domain">
<authentication>
<login-module code = "org.jboss.security.auth.spi.UsersRolesLoginModule”
flag = "required">
<module-option name = "unauthenticatedldentity">anonymous</module-option>
<module-option name="usersProperties">u.properties</module-option>
<module-option name="rolesProperties">r.properties</module-option>
</login-module>
</authentication>
<authorization>
<policy-module

flag="required"/>
</authorization>
</application-policy>

</deployment>

Append the test-domain-inherited security domain

Append the test-domai n-i nherited application policy definition after the t est - domai n
application policy. Set the ext ends attribute to ot her, so the login module information is
inherited. Specify the XACML authorization module in the <pol i cy. nodul e> element.

62

<?xml version="1.0" encoding="UTF-8"?>

<deployment xmIns="urn:jboss:bean-deployer:2.0">

<application-policy xmIns="urn:jboss:security-beans:1.0" name="test-domain">
<authentication>
<login-module code = "org.jboss.security.auth.spi.UsersRolesLoginModule"
flag = "required">
<module-option name = "unauthenticatedldentity">anonymous</module-option>
<module-option name="usersProperties">u.properties</module-option>
<module-option name="rolesProperties">r.properties</module-option>
</login-module>
</authentication>
<authorization>
<policy-module

flag="required"/>
</authorization>
</application-policy>

<application-policy xmlIns="urn:jboss:security-beans:1.0" name="test-domain-inherited"
extends="other">
<authorization>
<policy-module

flag="required"/>
</authorization>
</application-policy>

</deployment>

Restart server

You have now configured the target file with two security domains that use different
authorization methods.

Restart the server to ensure the new security policy takes effect.

Setting authorization module delegates. Set authorization policies for all EJB and WAR
components and Set authorization policies for specific security domains describe simplistic
examples that show how authentication and authorization can be configured in security domains.

63

Chapter 8. Authorization Stacks

Because authorization relates to the type of component (not the layer) you want to protect, you
can use delegation within a deployment descriptor to specify different authorization policies to the
standard authentication in your implementation.

The delegates must be a subclass of Authorizati onModul eDel egate. Example 8.2,
“AuthorizationModuleDelegate class” describes the base Authorizati onMbdul eDel egate
interface.

Example 8.2. AuthorizationModuleDelegate class

package org.jboss.security.authorization.modules;
import javax.security.auth.Subject;

import org.jboss.logging.Logger;

import org.jboss.security.authorization.AuthorizationModule;
import org.jboss.security.authorization.PolicyRegistration;
import org.jboss.security.authorization.Resource;

import org.jboss.security.identity.RoleGroup;

11$1d$

/**

* Delegate for Authorization Module

& Anil Saldhana
* Jun 19, 2006

* $Revision$

*/

public abstract class AuthorizationModuleDelegate

{

protected static Logger log = Logger.getLogger(AuthorizationModuleDelegate.class);
protected boolean trace = false;

/**

* Policy Registration Manager Injected

*/

protected PolicyRegistration policyRegistration = null;

/**

* AuthorizationModule#authorize(Resource)
* resource

* subject Authenticated Subject

* role RoleGroup

64

*/
public abstract int authorize(Resource resource, Subject subject, RoleGroup role);

/**

* Set the PolicyRegistration manager
* Will be used to query for the policies
* authzManager
*/
public void setPolicyRegistrationManager(PolicyRegistration pm)
{
this.policyRegistration = pm;
}
}

Some examples of authorization delegation are included for reference. Example 8.3,
“EJBJACCPolicyModuleDelegate.java” describes an authorization module responsible for
authorization decisions for the EJB layer. Example 8.4, “WebJACCPolicyModuleDelegate.java”
describes a JACC-based authorization module helper that controls web layer authorization
decisions.

Example 8.3. EJBJACCPolicyModuleDelegate.java

package org.jboss.security.authorization.modules.ejb;

import java.lang.reflect. Method;
import java.security.CodeSource;
import java.security.Permission;
import java.security.Policy;

import java.security.Principal;

import java.security.ProtectionDomain;
import java.util. Map;

import javax.security.auth.Subject;
import javax.security.jacc.EJBMethodPermission;
import javax.security.jacc.EJBRoleRefPermission;

import org.jboss.logging.Logger;

import org.jboss.security.authorization.AuthorizationContext;
import org.jboss.security.authorization.PolicyRegistration;
import org.jboss.security.authorization.Resource;

import org.jboss.security.authorization.ResourceKeys;

65

Chapter 8. Authorization Stacks

import org.jboss.security.authorization.modules.AbstractJACCModuleDelegate;
import org.jboss.security.authorization.modules.AuthorizationModuleDelegate;
import org.jboss.security.authorization.resources.EJBResource;

import org.jboss.security.identity.Role;

import org.jboss.security.identity.RoleGroup;

11$1d$

/**

* Authorization Module delegate that deals with the authorization decisions
* for the EJB Layer

* Anil Saldhana

@ Jul 6, 2006

k3 $Revision$

&/l

public class EJBJACCPolicyModuleDelegate extends AbstractJACCModuleDelegate
{

private String ejpName = null;

private Method ejbMethod = null;

private String methodInterface = null;

private CodeSource ejbCS = null;

private String roleName = null;

private Boolean roleRefCheck = Boolean.FALSE;

public EJIBJACCPolicyModuleDelegate()
{
log = Logger.getLogger(getClass());
trace = log.isTraceEnabled();

}

/**

* AuthorizationModuleDelegate#authorize(Resource)

*/

public int authorize(Resource resource, Subject callerSubject, RoleGroup role)

{

if(resource instanceof EJBResource == false)
throw new lllegalArgumentException("resource is not an EJBResource");

EJBResource ejbResource = (EJBResource) resource;
//Get the context map

Map<String,Object> map = resource.getMap();
if(map == null)

66

throw new lllegalStateException("Map from the Resource is null");

this.policyRegistration = (PolicyRegistration)
map.get(ResourceKeys.POLICY_REGISTRATION);

this.ejbCS = ejbResource.getCodeSource();

this.ejpMethod = ejbResource.getEjbMethod();

this.ejpName = ejbResource.getEjbName();
this.methodInterface = ejbResource.getEjbMethodInterface();

/lisCallerinRole checks
this.roleName = (String)map.get(ResourceKeys.ROLENAME);

this.roleRefCheck = (Boolean)map.get(ResourceKeys.ROLEREF_PERM_CHECK);
if(this.roleRefCheck == Boolean.TRUE)

return checkRoleRef(callerSubject, role);
else

return process(callerSubject, role);

/IPrivate Methods

/**

* Process the request

* request

* sc

*

*/

private int process(Subject callerSubject, Role role)
{

EJBMethodPermission methodPerm =

new EJBMethodPermission(ejoName, methodinterface, ejpMethod);
boolean policyDecision = checkWithPolicy(methodPerm, callerSubject, role);
if(policyDecision == false)

{
String msg = "Denied: "+methodPerm+", caller=" + callerSubject+", role="+role;
if(trace)
log.trace("EJB Jacc Delegate:"+msg);
}

return policyDecision ? AuthorizationContext. PERMIT : AuthorizationContext.DENY;
}

private int checkRoleRef(Subject callerSubject, RoleGroup callerRoles)

{
/IThis has to be the EJBRoleRefPermission

67

Chapter 8. Authorization Stacks

EJBRoleRefPermission ejpRoleRefPerm = new EJBRoleRefPermission(ejoName,roleName);
boolean policyDecision = checkWithPolicy(ejbRoleRefPerm, callerSubject, callerRoles);
if(policyDecision == false)

{
String msg = "Denied: "+ejbRoleRefPerm+", caller=" + callerSubject;
if(trace)
log.trace("EJB Jacc Delegate:"+msg);
}

return policyDecision ? AuthorizationContext. PERMIT : AuthorizationContext.DENY;

private boolean checkWithPolicy(Permission ejpPerm, Subject subject, Role role)
{
Principal[] principals = this.getPrincipals(subject, role);
ProtectionDomain pd = new ProtectionDomain (ejbCS, null, null, principals);
return Policy.getPolicy().implies(pd, ejbPerm);
}

Example 8.4. WebJACCPolicyModuleDelegate.java

package org.jboss.security.authorization.modules.web;

import java.io.lOException;

import java.security.CodeSource;
import java.security.Permission;
import java.security.Policy;

import java.security.Principal;

import java.security.ProtectionDomain;
import java.util. Map;

import java.util.Set;

import javax.security.auth.Subject;

import javax.security.jacc.WebResourcePermission;
import javax.security.jacc.WebRoleRefPermission;
import javax.security.jacc.WebUserDataPermission;
import javax.servlet.http.HttpServletRequest;

import org.jboss.logging.Logger;
import org.jboss.security.authorization.AuthorizationContext;
import org.jboss.security.authorization.PolicyRegistration;

68

import org.jboss.security.authorization.Resource;

import org.jboss.security.authorization.ResourceKeys;

import org.jboss.security.authorization.modules.AbstractJACCModuleDelegate;
import org.jboss.security.authorization.modules.AuthorizationModuleDelegate;
import org.jboss.security.authorization.resources.WebResource;

import org.jboss.security.identity.Role;

import org.jboss.security.identity.RoleGroup;

11$1d: WebJACCPolicyModuleDelegate.java 62923 2007-05-09
anil.saldhana@jboss.com $

/**
* JACC based authorization module helper that deals with the web layer
* authorization decisions

S Anil Saldhana
* July 7, 2006

* $Revision: 62923 $

*/

03:08:147

public class WebJACCPolicyModuleDelegate extends AbstractJACCModuleDelegate

{
private Policy policy = Policy.getPolicy();
private HttpServletRequest request = null;
private CodeSource webCS = null;

private String canonicalRequestURI = null;

public WebJACCPolicyModuleDelegate()

{
log = Logger.getLogger(WebJACCPolicyModuleDelegate.class);

trace = log.isTraceEnabled();

}

/**

* AuthorizationModuleDelegate#authorize(Resource)

*/

@SuppressWarnings("unchecked")

public int authorize(Resource resource, Subject callerSubject, RoleGroup role)

{

if(resource instanceof WebResource == false)
throw new lllegalArgumentException("resource is not a WebResource");

WebResource webResource = (WebResource) resource;

69

Chapter 8. Authorization Stacks

/IGet the context map
Map<String,Object> map = resource.getMap();
if(map == null)
throw new lllegalStateException("Map from the Resource is null");

/IGet the Request Object
request = (HttpServietRequest) webResource.getServietRequest();

webCS = webResource.getCodeSource();
this.canonicalRequestURI = webResource.getCanonicalRequestURI();

String roleName = (String)map.get(ResourceKeys.ROLENAME);
Principal principal = (Principal)map.get(ResourceKeys.HASROLE_PRINCIPAL);
Set<Principal> roles = (Set<Principal>)map.get(ResourceKeys.PRINCIPAL_ROLES);
String servletName = webResource.getServlietName();
Boolean resourceCheck
checkBooleanValue((Boolean)map.get(ResourceKeys.RESOURCE_PERM_CHECK));
Boolean userDataCheck
checkBooleanValue((Boolean)map.get(ResourceKeys.USERDATA PERM_CHECK));
Boolean roleRefCheck
checkBooleanValue((Boolean)map.get(ResourceKeys.ROLEREF _PERM_CHECK));

validatePermissionChecks(resourceCheck,userDataCheck,roleRefCheck);

boolean decision = false;

try
{

if(resourceCheck)
decision = this.hasResourcePermission(callerSubject, role);
else
if(userDataCheck)
decision = this.hasUserDataPermission();
else
if(roleRefCheck)
decision = this.hasRole(principal, roleName, roles, servletName);
else
if(trace)
log.trace("Check is not for resourcePerm, userDataPerm or roleRefPerm.");
}
catch(IOException ioe)
{
if(trace)
log.trace("IOException:",ioe);

70

}

return decision ? AuthorizationContext.PERMIT : AuthorizationContext.DENY;

/**

* @see AuthorizationModuleDelegate#setPolicyRegistrationManager(PolicyRegistration)
*/

public void setPolicyRegistrationManager(PolicyRegistration authzM)

{
this.policyRegistration = authzM,;

}

//n * * * * * * * * * * * * * * *

/I PRIVATE METHODS

//n * * * * * * * * * * * * * * *

[** See if the given JACC permission is implied using the caller as
* obtained from either the
* PolicyContext.getContext(javax.security.auth.Subject.container) or
* the info associated with the requestPrincipal.
*
* @param perm - the JACC permission to check
* @param requestPrincpal - the http request getPrincipal
* @param caller the authenticated subject obtained by establishSubjectContext
* @return true if the permission is allowed, false otherwise
*/
private boolean checkPolicy(Permission perm, Principal requestPrincpal,
Subiject caller, Role role)
{
/I Get the caller principals, its null if there is no caller
Principal[] principals = getPrincipals(caller,role);

return checkPolicy(perm, principals);

}

[** See if the given permission is implied by the Policy. This calls

* Policy.implies(pd, perm) with the ProtectionDomain built from the

* active CodeSource set by the JaccContextValve, and the given

* principals.

*

* @param perm - the JACC permission to evaluate

* @param principals - the possibly null set of principals for the caller
* @return true if the permission is allowed, false otherwise

*/

71

Chapter 8. Authorization Stacks

private boolean checkPolicy(Permission perm, Principal[] principals)
{
ProtectionDomain pd = new ProtectionDomain(webCS, null, null, principals);
boolean allowed = policy.implies(pd, perm);
if(trace)
{
String msg = (allowed ? "Allowed: " : "Denied: ") +perm;
log.trace(msg);

}

return allowed;

/**
* Ensure that the bool is a valid value
* bool
* bool or Boolean.FALSE (when bool is null)
*/
private Boolean checkBooleanValue(Boolean bool)
{

if(bool == null)

return Boolean.FALSE;
return bool;

/**

* Perform hasResourcePermission Check

* request

* response

* securityConstraints
* context

* caller

*

* IOException

*/

private boolean hasResourcePermission(Subject caller, Role role)
throws IOException

{

Principal requestPrincipal = request.getUserPrincipal();

WebResourcePermission perm = new WebResourcePermission(this.canonicalRequestURI,

request.getMethod());
boolean allowed = checkPolicy(perm, requestPrincipal, caller, role);
if(trace)
log.trace("hasResourcePermission, perm="+perm+", allowed="+allowed);

72

return allowed;

/**

* Perform hasRole check

* principal
* role

* roles

*

*/

private boolean hasRole(Principal principal, String roleName,
Set<Principal> roles, String servletName)

if(servletName == null)
throw new lllegalArgumentException("servietName is null");

WebRoleRefPermission perm = new WebRoleRefPermission(servietName, roleName);
Principal[] principals = {principal};
if(roles !'= null)
{
principals = new Principal[roles.size()];
roles.toArray(principals);
}
boolean allowed = checkPolicy(perm, principals);
if(trace)
log.trace("hasRole, perm="+perm+", allowed="+allowed);
return allowed,;

/**

* Perform hasUserDataPermission check for the realm.
* If this module returns false, the base class (Realm) will
* make the decision as to whether a redirection to the ssl
* port needs to be done

* request
* response
* constraints
*
* IOException
*/
private boolean hasUserDataPermission() throws IOException
{
WebUserDataPermission perm = new WebUserDataPermission(this.canonicalRequestURI,

request.getMethod());

73

Chapter 8. Authorization Stacks

if(trace)
log.trace("hasUserDataPermission, p="+perm);
boolean ok = false;
try
{
Principal[] principals = null;
ok = checkPolicy(perm, principals);

}
catch(Exception e)
{
if(trace)
log.trace("Failed to checkSecurityAssociation”, e);
}
return ok;
}
/**

* Validate that the access check is made only for one of the

* following

* resourceCheck
* userDataCheck
* roleRefCheck
*/

private void validatePermissionChecks(Boolean resourceCheck,
Boolean userDataCheck, Boolean roleRefCheck)
{
if(trace)
log.trace("resourceCheck="+resourceCheck + " : userDataCheck="+ userDataCheck
+ " : roleRefCheck=" + roleRefCheck);
if((resourceCheck == Boolean. TRUE && userDataCheck == Boolean. TRUE && roleRefCheck
== Boolean.TRUE)
|| (resourceCheck == Boolean. TRUE && userDataCheck == Boolean. TRUE)
|| (userDataCheck == Boolean. TRUE && roleRefCheck == Boolean.TRUE))
throw new lllegalStateException("Permission checks must be different");

74

Chapter 9.

Deployment-level Role Mapping

In JBoss AS 6, it is possible to map additional roles at the deployment level from those derived
at the security domain level (such as at the EAR level). This is achieved by declaring the
org.j boss. security. mappi ng. provi ders. Depl oynent Rol esMappi ngProvi der class as the
value for the cl ass attribute in the <mappi ng- nodul e> element. Additionally, the t ype attribute
must be settorol e.

By configuring the mapping configuration element within the role-based parameter, you can force
additional role interpretation to the declared principals specified for the particular deployment (war,
ear, ejb-jar etc).

Important: <rolemapping> deprecated for <mapping>

In previous versions, the <rol emappi ng> element contained the <mappi ng-
modul e> element and class declaration. <rol emappi ng> has now been
deprecated, and replaced with the <mappi ng> element.

Example 9.1. <mapping-module> declaration

<application-policy name="some-sec-domain">
<authentication>

</authentication>
<mapping>
<mapping-module
code="org.jboss.security.mapping.providers.DeploymentRolesMappingProvider"
type="role"/>
</mapping>

</application-policy>

Once the security domain is configured correctly, you can append the <securi ty-r ol e> element
group as a child element of the <assenbl y-descri pt or > to the j boss. xni , or j boss-web. xni
files.

Example 9.2. <security-role> declaration

<assembly-descriptor>

75

Chapter 9. Deployment-level R...

<security-role>
<role-name>Support</role-name>
<principal-name>Mark</principal-name>
<principal-name>Tom</principal-name>
</security-role>

</assembly-descriptor>

In Example 9.2, “<security-role> declaration”, a security role relating to Support principals is
implemented in addition to the base security role information contained in j boss. xm or j boss-
web. xm .

76

Chapter 10.

JBoss Login Modules

10.1. Using Modules

JBoss AS includes several bundled login modules suitable for most user management needs.
JBoss AS can read user information from a relational database, a LDAP server or flat files. In
addition to these core login modules, JBoss provides several other login modules that provide user
information for very customized needs in JBoss. Before we explore the individual login modules,
let's take a look at a few login module configuration options that are common to multiple modules.

10.1.1. Password Stacking

Multiple login modules can be chained together in a stack, with each login module providing both
the authentication and authorization components. This works for many use cases, but sometimes
authentication and authorization are split across multiple user management stores.

Section 10.1.7, “LdapLoginModule’describes how to combine LDAP and a relational database,
allowing a user to be authenticated by either system. However, consider the case where users
are managed in a central LDAP server but application-specific roles are stored in the application's
relational database. The password-stacking module option captures this relationship.

To use password stacking, each login module should set the <module-option> passwor d-
st acki ng attribute to useFi r st Pass. If a previous module configured for password stacking has
authenticated the user, all the other stacking modules will consider the user authenticated and
only attempt to provide a set of roles for the authorization step.

When passwor d- st acki ng option is set to useFirstPass, this module first looks for a
shared username and password under the property names javax.security.auth.login.name and
javax.security.auth.login.password respectively in the login module shared state map.

If found, these properties are used as the principal name and password. If not found, the
principal name and password are set by this login module and stored under the property names
javax.security.auth.login.name and javax.security.auth.login.password respectively.

Note

When using password stacking, set all modules to be required. This ensures
that all modules are considered, and have the chance to contribute roles to the
authorization process.

Example 10.1. Password Stacking Sample

This example shows how password stacking could be used.

77

Chapter 10. JBoss Login Modules

<application-policy name="todo">
<authentication>
<login-module code="org.jboss.security.auth.spi.LdapLoginModule"
flag="required">
<!-- LDAP configuration -->
<module-option name="password-stacking">useFirstPass</module-option>
</login-module>
<login-module code="org.jboss.security.auth.spi.DatabaseServerLoginModule"
flag="required">
<I-- database configuration -->
<module-option name="password-stacking">useFirstPass</module-option>
</login-module>
</authentication>
</application-policy>

10.1.2. Password Hashing

Most login modules must compare a client-supplied password to a password stored in a user
management system. These modules generally work with plain text passwords, but can be
configured to support hashed passwords to prevent plain text passwords from being stored on
the server side.

Example 10.2. Password Hashing

The following is a login module configuration that assigns unauthenticated users the
principal name nobody and contains based64-encoded, MD5 hashes of the passwords in a
usersh64. properties file. The usersb64. properties file can be part of the deployment
classpath, or be saved in the / conf directory.

<policy>
<application-policy name="testUsersRoles">
<authentication>
<login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule"
flag="required">
<module-option name="usersProperties">usersb64.properties</module-option>
<module-option name="rolesProperties">test-users-roles.properties</module-option>
<module-option nhame="unauthenticatedldentity">nobody</module-option>
<module-option name="hashAlgorithm">MD5</module-option>
<module-option name="hashEncoding">base64</module-option>
</login-module>
</authentication>
</application-policy>

78

Password Hashing

</policy>

hashAlgorithm
Name ofthej ava. securi ty. MessageDi gest algorithm to use to hash the password. There is
no default so this option must be specified to enable hashing. Typical values are M5 and SHA.

hashEncoding
String that specifies one of three encoding types: base64, hex or rfc2617. The default is
base64.

hashCharset
Encoding character set used to convert the clear text password to a byte array. The platform
default encoding is the default.

hashUserPassword
Specifies the hashing algorithm must be applied to the password the user submits. The
hashed user password is compared against the value in the login module, which is expected
to be a hash of the password. The default is t r ue.

hashStorePassword
Specifies the hashing algorithm must be applied to the password stored on the server side.
This is used for digest authentication, where the user submits a hash of the user password
along with a request-specific tokens from the server to be compare. The hash algorithm (for
digest, this would be r f c2617) is utilized to compute a server-side hash, which should match
the hashed value sent from the client.

If you must generate passwords in code, t he org. j boss. security. Uil class provides a static
helper method that will hash a password using the specified encoding.

String hashedPassword = Util.createPasswordHash("MD5",
Uti.LBASE64_ENCODING,
null,
null,

"password");

OpenSSL provides an alternative way to quickly generate hashed passwords.

echo -n password | openssl dgst -md>5 -binary | openssl base64

79

Chapter 10. JBoss Login Modules

In both cases, the text password should hash to X03MOLgnzZdYdgyf eul LPnQ==. This value must
be stored in the user store.

10.1.3. Unauthenticated Identity

Not all requests are received in an authenticated format. unaut henti cated i dentity is alogin
module configuration option that assigns a specific identity (guest, for example) to requests that
are made with no associated authentication information. This can be used to allow unprotected
servlets to invoke methods on EJBs that do not require a specific role. Such a principal has
no associated roles and so can only access either unsecured EJBs or EJB methods that are
associated with the unchecked permission constraint.

« unauthenticatedldentity: This defines the principal name that should be assigned to requests
that contain no authentication information.

10.1.4. Principal Class

Sometimes the implementation of the Pri nci pal interface provided by JBoss is not enough for
the applications needs. In this case customers can use a custom implementation.

» principalClass: An option that specifies a Pri nci pal implementation class. This must support
a constructor taking a string argument for the principal name.

10.1.5. UsersRolesLoginModule

User sRol esLogi nhbdul e is a simple login module that supports multiple users and user
roles loaded from Java properties files. The username-to-password mapping file is called
users. properties and the username-to-roles mapping file is called r ol es. properti es.

The supported login module configuration options include the following:

usersProperties
Name of the properties resource (file) containing the username to password mappings. This
defaults to <f i | ename_prefi x>-users. properties.

rolesProperties
Name of the properties resource (file) containing the username to roles mappings. This
defaults to <f i | ename_prefi x>-rol es. properties.

This login module supports password stacking, password hashing, and unauthenticated identity.

The properties files are loaded during initialization using the initialize method thread context class
loader. This means that these files can be placed into the Java EE deployment JAR, the JBoss
configuration directory, or any directory on the JBoss server or system classpath. The primary

80

UsersRolesLoginModule

purpose of this login module is to easily test the security settings of multiple users and roles using
properties files deployed with the application.

Example 10.3. UserRolesLoginModule

<deployment xmlns="urn:jboss:bean-deployer:2.0">

<!-- ejb3 test application-policy definition -->
<application-policy xmIns="urn:jboss:security-beans:1.0" name="ejb3-sampleapp">
<authentication>
<login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule" flag="required">
<module-option name="usersProperties">ejb3-sampleapp-users.properties</module-
option>
<module-option name="rolesProperties">ejb3-sampleapp-roles.properties</module-
option>
</login-module>
</authentication>
</application-policy>

</deployment>

In Example 10.3, “UserRolesLoginModule”, the ej b3- sanpl eapp- users. properti es file uses a
user nanme=passwor d format with each user entry on a separate line:

usernamel=passwordl
username2=password?2

The ej b3- sanpl eapp-rol es. properties file referenced in Example 10.3,
“UserRolesLoginModule” uses the pattern user nane=r ol e1, r ol e2, with an optional group name
value. For example:

usernamel=rolel,role2,...
usernamel.RoleGroupl=role3,role4,...
username2=rolel,role3,...

The username.XXX property name pattern present in ej b3- sanpl eapp-rol es. properties
is used to assign the username roles to a particular named group of roles where the

81

Chapter 10. JBoss Login Modules

XXX portion of the property name is the group name. The username=... form is an
abbreviation for username.Roles=..., where the Rol es group name is the standard name the
JaasSecurit yManager expects to contain the roles which define the users permissions.

The following would be equivalent definitions for the j duke username:

jduke=TheDuke,AnimatedCharacter
jduke.Roles=TheDuke,AnimatedCharacter

10.1.6. DatabaseServerLoginModule

The Dat abaseSer ver Logi nMbdul e is a Java Database Connectivity-based (JDBC) login module
that supports authentication and role mapping. Use this login module if you have your username,
password and role information stored in a relational database.

Note

This module supports password stacking, password hashing and unauthenticated
identity.

The Dat abaseSer ver Logi nMbdul e is based on two logical tables:

Table Principals(PrincipallD text, Password text)
Table Roles(PrincipallD text, Role text, RoleGroup text)

The Princi pal s table associates the user Pri nci pal | D with the valid password and the Rol es
table associates the user Pri nci pal | D with its role sets. The roles used for user permissions
must be contained in rows with a Rol eG oup column value of Rol es.

The tables are logical in that you can specify the SQL query that the login module uses. The only
requirement is that the j ava. sql . Resul t Set has the same logical structure as the Pri nci pal s
and Rol es tables described previously. The actual names of the tables and columns are not
relevant as the results are accessed based on the column index.

To clarify this notion, consider a database with two tables, Pri nci pal s and Rol es, as already
declared. The following statements populate the tables with the following data:
e Principal | O ava with a Passwor d of echonan in the Pri nci pal s table

e Princi pal | Oj ava with a role named Echo in the Rol esRol eG oup in the Rol es table

82

DatabaseServerLoginModule

e Principal | Dj ava with a role named cal | er _j ava in the Cal | er Pri nci pal Rol eG oup in the
Rol es table

INSERT INTO Principals VALUES('java’, 'echoman’)
INSERT INTO Roles VALUES(java', 'Echo’, 'Roles")
INSERT INTO Roles VALUES(java', 'caller_java', 'CallerPrincipal’)

The supported login module configuration options include the following:

dsJndiName
The JNDI name for the Dat aSour ce of the database containing the logical Pri nci pal s and
Rol es tables. If not specified this defaults to j ava: / Def aul t DS.

principalsQuery
The prepared statement query equivalent to: sel ect Password from Principals where
Princi pal | D=2. If not specified this is the exact prepared statement that will be used.

rolesQuery
The prepared statement query equivalent to: sel ect Rol e, Rol eG oup from Rol es where
Pri nci pal | D=2. If not specified this is the exact prepared statement that will be used.

ignorePasswordCase
A boolean flag indicating if the password comparison should ignore case. This can be useful
for hashed password encoding where the case of the hashed password is not significant.

An example Dat abaseSer ver Logi nMbdul e configuration could be constructed as follows:

CREATE TABLE Users(username VARCHAR(64) PRIMARY KEY, passwd VARCHAR(64))
CREATE TABLE UserRoles(username VARCHAR(64), userRoles VARCHAR(32))

A corresponding | ogi n- confi g. xnl entry would be:

<policy>
<application-policy name="testDB">
<authentication>
<login-module code="org.jboss.security.auth.spi.DatabaseServerLoginModule"
flag="required">
<module-option name="dsJndiName">java:/MyDatabaseDS</module-option>
<module-option name="principalsQuery">
select passwd from Users username where username=?</module-option>

83

Chapter 10. JBoss Login Modules

<module-option name="rolesQuery">
select userRoles, 'Roles' from UserRoles where username=?</module-option>
</login-module>
</authentication>
</application-policy>
</policy>

10.1.7. LdapLoginModule

LdapLogi nMbdul e is a Logi nMbdul e implementation that authenticates against an LDAP server.
Use the LdapLogi nMbdul e if your username and credentials are stored in an LDAP server that
is accessible using a JNDI LDAP provider.

Note

This login module also supports unauthenticated identity and password stacking.

The LDAP connectivity information is provided as configuration options that are passed through
to the environment object used to create JNDI initial context. The standard LDAP JNDI properties
used include the following:

java.naming.factory.initial
I ni tial Context Fact ory implementation class name. This defaults to the Sun LDAP provider
implementation com sun. j ndi . | dap. LdapCt xFact ory.

java.naming.provider.url
LDAP URL for the LDAP server.

java.naming.security.authentication
Security level to use. This defaults to si npl e.

java.naming.security.protocol
Transport protocol to use for secure access, such as, SSL.

java.naming.security.principal
Principal for authenticating the caller to the service. This is built from other properties as
described below.

java.naming.security.credentials
Authentication scheme to use. For example, hashed password, clear-text password, key,
certificate, and so on.

The supported login module configuration options include the following:

84

LdapLoginModule

principalDNPrefix
Prefix added to the username to form the user distinguished name. See pri nci pal DNSuf f i x
for more info.

principalDNSuffix
Suffix added to the username when forming the user distinguished name. This is useful if
you prompt a user for a username and you don't want the user to have to enter the fully
distinguished name. Using this property and pri nci pal DNSuf f i x the user DN will be formed
as princi pal DNPrefix + username + principal DNSuffi x

useObjectCredential
Value that indicates the credential should be obtained as an opaque Object using the
org.j boss. security. auth. cal | back. Qbj ect Cal | back type of Cal | back rather than as a
char[] password using a JAAS Passwor dCal | back. This allows for passing non-char []
credential information to the LDAP server. The available values are t rue and f al se.

rolesCtxDN
Fixed, distinguished name to the context to search for user roles.

userRolesCtxDNAttributeName
Name of an attribute in the user object that contains the distinguished name to the context to
search for user roles. This differs from r ol esCt xDN in that the context to search for a user's
roles can be unique for each user.

roleAttributelD
Name of the attribute containing the user roles. If not specified, this defaults to r ol es.

roleAttributelsDN
Flag indicating whether the r ol eAt t ri but el D contains the fully distinguished name of a role
object, or the role name. The role name is taken from the value of the r ol eNameAt tri butel d
attribute of the context name by the distinguished name.

If true, the role attribute represents the distinguished name of a role object. If false, the role
name is taken from the value of rol eAt t ri but el D. The default is f al se.

Note

In certain directory schemas (e.g., MS ActiveDirectory), role attributes in the
user object are stored as DNs to role objects instead of simple names. For
implementations that use this schema type, roleAttributelsDN must be set to
true.

roleNameAttributelD
Name of the attribute of the context pointed to by the r ol eCt xDN distinguished name value
which contains the role name. If the r ol eAt t ri but el sDN property is set to true, this property
is used to find the role object's name attribute. The default is gr oup.

85

Chapter 10. JBoss Login Modules

uidAttributelD
Name of the attribute in the object containing the user roles that corresponds to the userid.
This is used to locate the user roles. If not specified this defaults to ui d.

matchOnUserDN
Flag that specifies whether the search for user roles should match on the user's fully
distinguished name. If true, the full user DN is used as the match value. If false, only the
username is used as the match value against the ui dAt t ri but eName attribute. The default
value is f al se.

allowEmptyPasswords
A flag indicating if empty (length 0) passwords should be passed to the LDAP server. An
empty password is treated as an anonymous login by some LDAP servers and this may not
be a desirable feature. To reject empty passwords, set thisto f al se. If settot r ue, the LDAP
server will validate the empty password. The default is t r ue.

User authentication is performed by connecting to the LDAP server, based on the login module
configuration options. Connecting to the LDAP server is done by creating an| ni ti al LdapCont ext
with an environment composed of the LDAP JNDI properties described previously in this
section. The Context.SECURITY_PRINCIPAL is set to the distinguished name of the user as
obtained by the callback handler in combination with the principalDNPrefix and principalDNSuffix
option values, and the Context. SECURITY_CREDENTIALS property is either set to the Stri ng
password or the Obj ect credential depending on the useObjectCredential option.

Once authentication has succeeded (1 ni ti al LdapCont ext instance is created), the user's roles
are queried by performing a search on the r ol esCt xDN location with search attributes set to the
roleAttributeName and uidAttributeName option values. The roles names are obtaining by invoking
the t oSt ri ng method on the role attributes in the search result set.

Example 10.4. login-config.xml Sample

The following is a sample | ogi n-confi g. xm entry.

<application-policy name="testLDAP">
<authentication>
<login-module code="org.jboss.security.auth.spi.LdapLoginModule
flag="required">

<module-option name="java.naming.factory.initial">
com.sun.jndi.ldap.LdapCtxFactory
</module-option>

<module-option name="java.naming.provider.url">
Idap://ldaphost.jboss.org:1389/

</module-option>

<module-option name="java.naming.security.authentication">
simple

86

LdapLoginModule

</module-option>

<module-option name="principalDNPrefix">uid=</module-option>

<module-option name="principalDNSuffix">
,ou=People,dc=jboss,dc=org

</module-option>

<module-option name="rolesCtxDN">
ou=Roles,dc=jboss,dc=org
</module-option>
<module-option name="uidAttributelD">member</module-option>
<module-option name="matchOnUserDN">true</module-option>

<module-option name="roleAttributelD">cn</module-option>
<module-option name="roleAttributelsSDN">false </module-option>

</login-module>
</authentication>
</application-policy>

An LDIF file representing the structure of the directory this data operates against is shown below.

Example 10.5. LDIF File Example

dn: dc=jboss,dc=org
objectclass: top
objectclass: dcObject
objectclass: organization

dc: jboss
0: JBoss

dn: ou=People,dc=jboss,dc=0rg
objectclass: top

objectclass: organizationalUnit
ou: People

dn: uid=jduke,ou=People,dc=jboss,dc=org
objectclass: top

objectclass: uidObject

objectclass: person

uid: jduke

cn: Java Duke

sn: Duke

userPassword: theduke

87

Chapter 10. JBoss Login Modules

dn: ou=Roles,dc=jboss,dc=org
objectclass: top

objectclass: organizationalUnit
ou: Roles

dn: cn=JBossAdmin,ou=Roles,dc=jboss,dc=org
objectclass: top

objectclass: groupOfNames

cn: JBossAdmin

member: uid=jduke,ou=People,dc=jboss,dc=org
description: the JBossAdmin group

Thejava. naming. factory.initial,java. nam ng.factory. url andjava. nan ng. security
options in the t est LDAP login module configuration indicate the following conditions:

e The Sun LDAP JNDI provider implementation will be used
« The LDAP server is located on host | daphost . j boss. or g on port 1389
» The LDAP simple authentication method will be use to connect to the LDAP server.

The login module attempts to connect to the LDAP server using a Distinguished Name
(DN) representing the user it is trying to authenticate. This DN is constructed from the
passed princi pal DNPrefix, the username of the user and the principal DNSuffix as
described above. In Example 10.5, “LDIF File Example”, the username j duke would map to
ui d=j duke, ou=Peopl e, dc=j boss, dc=or g.

Note

The example assumes the LDAP server authenticates users using the
user Passwor d attribute of the user's entry (theduke in this example). Most
LDAP servers operate in this manner, however if your LDAP server handles
authentication differently you must ensure LDAP is configured according to your
production environment requirements.

Once authentication succeeds, the roles on which authorization will be based are retrieved
by performing a subtree search of the rol esCt xDN for entries whose ui dAttri but el D match
the user. If mat chOnUser DN is true, the search will be based on the full DN of the user.
Otherwise the search will be based on the actual user name entered. In this example, the
search is under ou=Rol es, dc=j boss, dc=or g for any entries that have a nenber attribute equal to
ui d=j duke, ou=Peopl e, dc=j boss, dc=or g. The search would locate cn=JBossAdni n under the
roles entry.

88

LdapExtLoginModule

The search returns the attribute specified in the rol eAt t ri but el D option. In this example, the
attribute is cn. The value returned would be JBossAdni n, so the jduke user is assigned to the
JBossAdni n role.

A local LDAP server often provides identity and authentication services, but is unable to use
authorization services. This is because application roles don't always map well onto LDAP groups,
and LDAP administrators are often hesitant to allow external application-specific data in central
LDAP servers. For this reason, the LDAP authentication module is often paired with another login
module, such as the database login module, that can provide roles more suitable to the application
being developed.

10.1.8. LdapExtLoginModule

The org.jboss. security. auth. spi . LdapExt Logi nMbdul e is an alternate Idap login module
implementation that uses searches for locating both the user to bind as for authentication as
well as the associated roles. The roles query will recursively follow distinguished names (DNs) to
navigate a hierarchical role structure.

The Logi nModul e options include whatever options your LDAP JNDI provider supports. Examples
of standard property names are:

e Context.| N TI AL_CONTEXT_FACTORY = "“java.naming.factory.initial”

* Cont ext . SECURI TY_PROTOCOL = "java.naming.security.protocol”

e Cont ext . PROVI DER_URL = "java.naming.provider.url"

e Cont ext. SECURI TY_AUTHENTI CATI ON = "java.naming.security.authentication"
» Cont ext . REFERRAL = "java.naming.referral”

The authentication happens in 2 steps:

1. An initial bind to the Idap server is done using the bindDN and bindCredential options. The
bi ndDN is some user with the ability to search both the baseCt xDN and r ol esCt xDN trees for
the user and roles. The user DN to authenticate against is queried using the filter specified by
the baseFi | t er attribute (see the baseFi | t er option description for its syntax).

2. The resulting user DN is then authenticated by binding to Idap server using the
user DN as the Initial LdapContext environment Context.SECURI TY_PRI NCl PAL. The
Cont ext . SECURI TY_CREDENTI ALS property is either set to the String password obtained by the
callback handler.

If this is successful, the associated user roles are queried using the rol esCt xDN,
roleAttributel D, rol eAttributel sDN, rol eNaneAttri butel D, and rol eFil ter options.

The full module properties include:

89

Chapter 10. JBoss Login Modules

* baseCt xDN: The fixed DN of the context to start the user search from.

« bi ndDN: The DN used to bind against the Idap server for the user and roles queries. This is
some DN with read/search permissions on the baseCt xDN and r ol esCt xDN values.

e bindCredential: The password for the bindDN. This can be encrypted if the
j aasSecuri t yDonai n is specified.

e jaasSecurityDomain: The JMX ObjectName of the JaasSecurityDomain to use to
decrypt the java.nanming.security.principal. The encrypted form of the password
is that returned by the JaasSecurityDomain.encrypt64(byte[]) method. The
org.j boss. security. plugins. PBEUt i | s class can also be used to generate the encrypted
form.

» baseFi | ter: A search filter used to locate the context of the user to authenticate. The input
username/userDN as obtained from the login module callback will be substituted into the
filter anywhere a {0} expression is seen. This substitution behavior comes from the standard
Di r Cont ext . search(Name, String, Object[], SearchControls cons) method. Acommon
example for the search filter is (ui d={0}) .

* rol esCt xDN: The fixed DN of the context to search for user roles. Consider that this is not the
Distinguished Name of where the actual roles are; rather, this is the DN of where the objects
containing the user roles are (for example, for Active Directory, this is the DN where the user
account is).

* rol eFi | ter: Asearch filter used to locate the roles associated with the authenticated user. The
input username/userDN as obtained from the login module callback will be substituted into the
filter anywhere a { 0} expression is seen. The authenticated user DN will be substituted into the
filter anywhere a { 1} is seen. An example search filter that matches on the input username is:
(menmber ={ 0}) . An alternative that matches on the authenticated user DNis: (menber ={1}).

e roleAttributel sDN: A flag indicating whether the user's role attribute contains the fully
distinguished name of a role object, or the users's role attribute contains the role name. If
false, the role name is taken from the value of the user's role attribute. If true, the role attribute
represents the distinguished name of a role object. The role name is taken from the value of
the rol eNameAt t ri but el d attribute of the corresponding object. In certain directory schemas
(for example, Microsoft Active Directory), role (group)attributes in the user object are stored as
DNs to role objects instead of as simple names, in which case, this property should be set to
true. The default value of this property is false.

e rol eAttri but el D: The name of the role attribute of the context which corresponds to the name
of the role. If the rol eAttri but el sDN property is set to true, this property is the DN of the
context to query for the r ol eNameAt t ri but el Dattribute. If the rol eAt t ri but el sDN property is
set to false, this property is the attribute name of the role name.

* rol eNaneAt tri but el D: The name of the role attribute of the context which corresponds to the
name of the role. If the rol eAt t ri but el sDN property is set to true, this property is used to find

90

BaseCertLoginModule

the role object's name attribute. If the r ol eAt t ri but el sDN property is set to false, this property
is ignored.

 di stingui shedNaneAttri but e: The name of an attribute in the user entry that contains the
DN of the user. This may be necessary if the DN of the user itself contains special characters
(backslash for example) that may prevent correct user mapping. Defaults to distinguishedName.
If there is no such attribute, the entry's DN will be used.

* rol eRecursion : How deep the role search will go below a given matching context. Disable
with 0, which is the default.

e searchTi meLi m t : The timeout in milliseconds for the user/role searches. Defaults to 10000
(10 seconds).

* sear chScope: Sets the search scope to one of the strings. The default is SUBTREE_SCOPE.
» OBJECT_SCOPE: only search the named roles context.
* ONELEVEL_SCOPE: search directly under the named roles context.

* SUBTREE_SCOPE: If the roles context is not a DirContext, search only the object. If the roles
context is a DirContext, search the subtree rooted at the named object, including the named
object itself

« al | owEnpt yPasswor ds: A flag indicating if enpt y(| engt h==0) passwords should be passed to
the LDAP server. An empty password is treated as an anonymous login by some LDAP servers
and this may not be a desirable feature. Set this to false to reject empty passwords, true to have
the Idap server validate the empty password. The default is true.

10.1.9. BaseCertLoginModule

BaseCert Logi nModul e authenticates users based on X509 certificates. A typical use case for this
login module is CLI ENT- CERT authentication in the web tier.

This login module only performs authentication: you must combine it with another login
module capable of acquiring authorization roles to completely define access to a secured
web or EJB component. Two subclasses of this login module, Cert Rol esLogi nMbdul e and
Dat abaseCer t Logi nMbdul e extend the behavior to obtain the authorization roles from either a
properties file or database.

The BaseCert Logi nMbdul e needs a Key St or e to perform user validation. This is obtained through
a org.jboss.security. SecurityDomai n implementation. Typically, the SecurityDomain
implementation is configured using the org.j boss. security. pl ugi ns. JaasSecuri t yDonai n
MBean as shown in this j boss- servi ce. xm configuration fragment:

<mbean code="org.jboss.security.plugins.JaasSecurityDomain"
name="jboss.ch8:service=SecurityDomain">
<constructor>

91

Chapter 10. JBoss Login Modules

<arg type="java.lang.String" value="jmx-console"/>
</constructor>
<attribute name="KeyStoreURL">resource:localhost.keystore</attribute>
<attribute name="KeyStorePass">unit-tests-server</attribute>
</mbean>

The configuration creates a security domain with the name j nx- consol e, with a Securi t yDomai n
implementation available through JNDI under the name j ava: / j aas/ j nx- consol e. The security
domain follows the JBossSX security domain naming pattern.

Procedure 10.1. Secure Web Applications with Certificates and Role-based
Authorization

This procedure describes how to secure a web application, such as the j nx- consol e. war, using
client certificates and role-based authorization.

1. Declare Resources and Roles

Modify web. xm to declare the resources to be secured along with the allowed roles and
security domain to be used for authentication and authorization.

<?xml version="1.0"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/
javaee/web-app 2 5.xsd">

<!I-- A security constraint that restricts access to the HTML JMX console
to users with the role JBossAdmin. Edit the roles to what you want and
uncomment the WEB-INF/jboss-web.xml/security-domain element to enable
secured access to the HTML JMX console.
==
<security-constraint>
<web-resource-collection>
<web-resource-name>HtmlAdaptor</web-resource-name>
<description>An example security config that only allows users with the
role JBossAdmin to access the HTML JMX console web application
</description>
<url-pattern>/*</url-pattern>
</web-resource-collection>
<auth-constraint>

92

BaseCertLoginModule

<role-name>JBossAdmin</role-name>
</auth-constraint>
</security-constraint>

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>JBoss JMX Console</realm-name>
</login-config>

<security-role>
<role-name>JBossAdmin</role-name>
</security-role>
</web-app>

Specify the JBoss Security Domain

In the j boss-web. xn file, specify the required security domain.

<jboss-web>
<security-domain>jmx-console</security-domain>
</jboss-web>

Specify Login Module Configuration

Define the login module configuration for the jmx-console security domain you just specified.
This is done in the conf/ | ogi n-confi g. xm file.

<application-policy name="jmx-console">
<authentication>
<login-module code="org.jboss.security.auth.spi.BaseCertLoginModule"
flag="required">
<module-option name="password-stacking">useFirstPass</module-option>
<module-option name="securityDomain">jmx-console</module-option>
</login-module>
<login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule"
flag="required">
<module-option name="password-stacking">useFirstPass</module-option>
<module-option name="usersProperties">jmx-console-users.properties</module-
option>
<module-option name="rolesProperties">jmx-console-roles.properties</module-
option>

93

Chapter 10. JBoss Login Modules

</login-module>
</authentication>
</application-policy>

Secure Web Applications with Certificates and Role-based Authorizationshows the
BaseCertLogi nModule is used for authentication of the client cert, and the
User sRol esLogi nMbdule is only used for authorization due to the password-
st acki ng=useFi rst Pass option. Both the | ocal host. keystore and the jnx-consol e-
rol es. properti es require an entry that maps to the principal associated with the client cert.

By default, the principal is created using the client certificate distinguished name, such as the DN
specified in Example 10.6, “Certificate Example”.

Example 10.6. Certificate Example

The | ocal host . keyst ore would need the certificate in Example 10.6, “Certificate Example”
stored with an alias of CN=unit-tests-client, QU=JBoss Inc., O=JBoss Inc.,
ST=Washi ngt on, C=US. The j nx- consol e-rol es. properties would also need an entry for the
same entry. Since the DN contains characters that are normally treated as delimiters, you must
escape the problem characters using a backslash (\ ") as illustrated below.

10.1.10. IdentityLoginModule

I dentityLogi nModul e is a simple login module that associates a hard-coded user name to any
subject authenticated against the module. It creates a Si npl ePri nci pal instance using the name
specified by the pri nci pal option.

RunAsLoginModule

Note

This module supports password stacking.

This login module is useful when you need to provide a fixed identity to a service, and in
development environments when you want to test the security associated with a given principal
and associated roles.

The supported login module configuration options include:

principal
This is the name to use for the Si npl ePri nci pal all users are authenticated as. The principal
name defaults to guest if no principal option is specified.

roles
This is a comma-delimited list of roles that will be assigned to the user.

A sample XMLLoginConfig configuration entry is described below. The entry authenticates all
users as the principal named j duke and assign role names of TheDuke, and Ani mat edChar act er:

<policy>
<application-policy name="testldentity">
<authentication>
<login-module code="org.jboss.security.auth.spi.ldentityLoginModule"
flag="required">
<module-option hame="principal">jduke</module-option>
<module-option name="roles">TheDuke,AnimatedCharacter</module-option>
</login-module>
</authentication>
</application-policy>
</policy>

10.1.11. RunAsLoginModule

RunAsLogi nMbdul e (org. j boss. security. aut h. spi . RunAsLogi nMbdul e) is a helper module
that pushes a run as role onto the stack for the duration of the login phase of authentication, and
pops the run as role in either the commit or abort phase.

The purpose of this login module is to provide a role for other login modules that must access
secured resources in order to perform their authentication (for example, a login module that
accesses a secured EJB). RunAsLogi nMbdul e must be configured ahead of the login modules
that require a run as role established.

95

Chapter 10. JBoss Login Modules

The only login module configuration option is:

roleName
Name of the role to use as the run as role during login phase. If not specified a default of
nobody is used.

10.1.12. ClientLoginModule

CientLogi nModul e (org.jboss.security. dientlLogi nModul e) is an implementation of
Logi nMbdul e for use by JBoss clients for establishing caller identity and credentials. This simply
sets the principal to the value of the NameCal | back filled in by the cal | backhandl er, and the
credential to the value of the Passwor dCal | back filled in by the cal | backhandl er in the security
context.

d i ent Logi nModul e is the only supported mechanism for a client to establish the current thread's
caller. Both stand-alone client applications, and server environments (acting as JBoss EJB clients
where the security environment has not been configured to use JBossSX transparently) must use
Cl i ent Logi nModul e.

Note that this login module does not perform any authentication. It merely copies the login
information provided to it into the JBoss server EJB invocation layer for subsequent authentication
on the server. If you need to perform client-side authentication of users you would need to
configure another login module in addition to the d i ent Logi nModul e.

The supported login module configuration options include the following:

multi-threaded
Value that specifies the way login threads connect to principal and credential storage sources.
When set to true, each login thread has its own principal and credential storage and each
separate thread must perform its own login. This is useful in client environments where
multiple user identities are active in separate threads. When set to false the login identity and
credentials are global variables that apply to all threads in the VM. The default setting is f al se.

restore-login-identity
Value that specifies whether the Securi t yAssoci at i on principal and credential seen on entry
to the | ogi n() method are saved and restored on either abort or logout. This is necessary
if you must change identities and then restore the original caller identity. If set to t r ue, the
principal and credential information is saved and restored on abort or logout. If set to f al se,
abort and logout clear the Securi t yAssoci ati on. The default value is f al se.

10.2. Custom Modules

If the login modules bundled with the JBossSX framework do not work with your
security environment, you can write your own custom login module implementation. The
JaasSecurit yManager requires a particular usage pattern of the Subj ect principals set. You
must understand the JAAS Subject class's information storage features and the expected usage
of these features to write a login module that works with the JaasSecuri t yManager .

96

Custom Modules

This section examines this requirement and introduces two abstract base Logi nMbdul e
implementations that can help you implement custom login modules.

You can obtain security information associated with a Subj ect by using the following methods:

java.util.Set getPrincipals()

java.util.Set getPrincipals(java.lang.Class c)
java.util.Set getPrivateCredentials()

java.util.Set getPrivateCredentials(java.lang.Class c)
java.util.Set getPublicCredentials()

java.util.Set getPublicCredentials(java.lang.Class c)

For Subj ect identities and roles, JBossSX has selected the most logical choice: the principals
sets obtained via get Pri nci pal s() and get Pri nci pal s(j ava. | ang. d ass) . The usage pattern
is as follows:

e User identities (for example; username, social security number, employee ID) are
stored as java.security.Principal objects in the Subject Principals set. The
Princi pal implementation that represents the user identity must base comparisons and
equality on the name of the principal. A suitable implementation is available as the
org.j boss. security. Sinpl ePrinci pal class. Other Pri nci pal instances may be added to
the Subj ect Pri nci pal s set as needed.

» Assigned user roles are also stored in the Pri nci pal s set, and are grouped in named role

sets using j ava. security. acl . G oup instances. The G oup interface defines a collection of
Pri nci pal s and/or G oups, and is a subinterface of j ava. security. Pri nci pal .

» Any number of role sets can be assigned to a Subj ect .

The JBossSX framework uses two well-known role sets with the names Rol es and
Cal | erPrinci pal .

» The Rol es group is the collection of Princi pal s for the named roles as known in the
application domain under which the Subj ect has been authenticated. This role set is used
by methods like the EJBCont ext. i sCal | erl nRol e(String), which EJBs can use to see if
the current caller belongs to the named application domain role. The security interceptor logic
that performs method permission checks also uses this role set.

» The Cal l er Princi pal G oup consists of the single Pri nci pal identity assigned to the
user in the application domain. The EJBCont ext . get Cal | er Pri nci pal () method uses the
Cal | er Pri nci pal to allow the application domain to map from the operation environment
identity to a user identity suitable for the application. If a Subj ect does not have a
Cal | er Pri nci pal G oup, the application identity is the same used for login.

97

Chapter 10. JBoss Login Modules

10.2.1. Custom LoginModule Example

The following information will help you to create a custom Login Module example that extends
the User nanePasswor dLogi nMbdul e and obtains a user's password and role names from a JNDI
lookup.

At the end of this section you will have created a custom JNDI context login module that will return
a user's password if you perform a lookup on the context using a name of the form passwor d/
<user nanme> (where <user name> is the current user being authenticated). Similarly, a lookup of
the form r ol es/ <user name> returns the requested user's roles.

Example 10.7, “ JndiUserAndPass Custom Login Module” shows the source code for the
Jndi User AndPass custom login module.

Note that because this extends the JBoss User nanePasswor dLogi nMbdul e, all Indi User AndPass
does is obtain the user's password and roles from the JNDI store. The Jndi User AndPass does
not interact with the JAAS Logi nMbdul e operations.

Example 10.7. JndiUserAndPass Custom Login Module

package org.jboss.book.security.ex2;

import java.security.acl.Group;

import java.util.Map;

import javax.naming.InitialContext;

import javax.naming.NamingException;

import javax.security.auth.Subject;

import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.login.LoginException;

import org.jboss.security.SimpleGroup;
import org.jboss.security.SimplePrincipal;
import org.jboss.security.auth.spi.UsernamePasswordLoginModule;

/**

* An example custom login module that obtains passwords and roles
* for a user from a JNDI lookup.

*

* Scott.Stark .org
* $Revision: 1.4 $
*/

public class JndiUserAndPass
extends UsernamePasswordLoginModule

[** The JNDI name to the context that handles the password/username lookup */

98

Custom LoginModule Example

private String userPathPrefix;

[** The JNDI name to the context that handles the roles/ username lookup */

private String rolesPathPrefix;

/**
* Override to obtain the userPathPrefix and rolesPathPrefix options.
*/

public void initialize(Subject subject, CallbackHandler callbackHandler,

Map sharedState, Map options)

super.initialize(subject, callbackHandler, sharedState, options);
userPathPrefix = (String) options.get("userPathPrefix");
rolesPathPrefix = (String) options.get("rolesPathPrefix");

/**

* Get the roles the current user belongs to by querying the
* rolesPathPrefix + '/' + super.getUsername() JNDI location.
*/

protected Group[] getRoleSets() throws LoginException

{

try {
InitialContext ctx = new InitialContext();

String rolesPath = rolesPathPrefix + /' + super.getUsername();

String[] roles = (String[]) ctx.lookup(rolesPath);

Group[] groups = {new SimpleGroup("Roles")};

log.info("Getting roles for user="+super.getUsername());

for(int r = 0; r < roles.length; r ++) {
SimplePrincipal role = new SimplePrincipal(roles[r]);
log.info("Found role="+roles]r]);
groups[0].addMember(role);

}

return groups;

} catch(NamingException e) {
log.error("Failed to obtain groups for
user="+super.getUsername(), e);
throw new LoginException(e.toString(true));

/**

* Get the password of the current user by querying the
* userPathPrefix + /' + super.getUsername() JNDI location.

99

Chapter 10. JBoss Login Modules

*/
protected String getUsersPassword()
throws LoginException

try {
InitialContext ctx = new InitialContext();

String userPath = userPathPrefix + '/' + super.getUsername();
log.info("Getting password for user="+super.getUsername());
String passwd = (String) ctx.lookup(userPath);
log.info("Found password="+passwd);
return passwd;

} catch(NamingException e) {
log.error("Failed to obtain password for

user="+super.getUsername(), e);

throw new LoginException(e.toString(true));

The details of the JNDI store are found in the
org.j boss. book. security.ex2.service.Jndi Store MBean. This service binds an
bj ect Fact or y thatreturns aj avax. nanmi ng. Cont ext proxy into JNDI. The proxy handles lookup
operations done against it by checking the prefix of the lookup name against passwor d andr ol es.

When the name begins with passwor d, a user's password is being requested. When the name
begins with r ol es the user's roles are being requested. The example implementation always
returns a password of t heduke and an array of roles names equal to {" TheDuke", "Echo"}
regardless of what the username is. You can experiment with other implementations as you wish.

The example code includes a simple session bean for testing the custom login module. To build,
deploy and run the example, execute the following command in the examples directory.

The choice of using the Jndi User AndPass custom login module for the server side authentication
of the user is determined by the login configuration for the example security domain. The EJB JAR
META- | NF/ j boss. xml descriptor sets the security domain.

100

Custom LoginModule Example

<?xml version="1.0"?>

<jboss>
<security-domain>security-ex2</security-domain>

</jboss>

The SAR META- I NF/ | ogi n-confi g. xnl descriptor defines the login module configuration.

<application-policy name = "security-ex2">
<authentication>
<login-module code="org.jboss.book.security.ex2.JndiUserAndPass"
flag="required">
<module-option name = "userPathPrefix">/security/store/password</module-option>
<module-option name = "rolesPathPrefix">/security/store/roles</module-option>
</login-module>
</authentication>
</application-policy>

101

102

Part Ill. Encryption and Security

Chapter 11.

Java Security Manager

To restrict code privileges using Java permissions, you must configure the JBoss server to run
under a security manager. This is done by configuring the Java VM options in the r un. conf in the
JBoss server distribution bin directory. The two required VM options are as follows:

java.security.manager
Used without any value to specify that the default security manager should be used. This is the
preferred security manager. You can also pass avalue to the j ava. securi ty. manager option
to specify a custom security manager implementation. The value must be the fully qualified
class name of a subclass of j ava. | ang. Secur i t yManager . This form specifies that the policy
file should augment the default security policy as configured by the VM installation.

java.security.policy
Used to specify the policy file that will augment the default security policy information
for the VM. This option takes two forms: j ava. security. policy=policyFileURL and
java.security. policy==policyFil eURL. The first form specifies that the policy file should
augment the default security policy as configured by the VM installation. The second form
specifies that only the indicated policy file should be used. The pol i cyFi | eURL value can be
any URL for which a protocol handler exists, or a file path specification.

Both the run. bat and r un. sh start scripts reference a JAVA_OPTS variable specified in r un. conf
(Linux) or run. conf. bat (Windows) that sets the required security manager properties.

The next element of Java security is establishing the allowed permissions. If you look at the
$IBOSS_HOME/ bi n/ server . pol i cy. cert file that is contained in the default configuration file set
you will notice it contains the following grant statement:

grant signedBy "jboss" {
permission java.security.AllPermission;

k

This statement declares that all code signed by JBoss is trusted. To import the public key to your
keystore, follow Activate Java Security Manager

Important

Carefully consider what permissions you grant. Be particularly cautious about
granting j ava. security. Al | Permi ssi on: you can potentially allow changes to
the system binary, including the JVM runtime environment.

The current set of JBoss specific j ava. | ang. Runt i nePer ni ssi ons are described below.

105

Chapter 11. Java Security Manager

org.j boss. security. SecurityAssoci ation. getPrincipallnfo
Provides accessto the org. j boss. security. SecurityAssoci ati on getPrincipal () and
get Credenti al () methods. The risk involved with using this runtime permission is the ability
to see the current thread caller and credentials.

org.j boss. security. SecurityAssoci ati on. get Subj ect
Provides access to the org.jboss.security. SecurityAssociation getSubject()
method.

org.j boss. security. SecurityAssoci ation.setPrincipallnfo
Provides access to the org.j boss. security. SecurityAssociation setPrincipal(),
set Credential (), setSubject(), pushSubjectContext(), and popSubj ect Cont ext ()
methods. The risk involved with using this runtime permission is the ability to set the current
thread caller and credentials.

org.j boss. security. SecurityAssoci ation. set Server
Provides access to the org. j boss. security. SecurityAssoci ati on set Server method.
The risk involved with using this runtime permission is the ability to enable or disable
multithread storage of the caller principal and credential.

org.j boss. security. SecurityAssoci ati on. set RunAsRol e
Provides access to the org. j boss. security. SecurityAssoci ati on pushRunAsRol e and
popRunAsRol e, pushRunAsl dent i t y and popRunAs| dent i t y methods. The risk involved with
using this runtime permission is the ability to change the current caller run-as role principal.

org.j boss. security. SecurityAssoci ati on. accessContextlnfo
Provides accesstothe or g. j boss. security. SecurityAssoci ati on accessCont ext | nf o,
"Get" and accessCont ext I nfo, "Set" methods, allowing you to both set and get the current
security context info.

org.j boss. nam ng. Jndi Perni ssi on
Provides special permissions to files and directories in a specified JNDI tree path, or
recursively to all files and subdirectories. A JndiPermission consists of a pathname and a set
of valid permissions related to the file or directory.

The available permissions include: bi nd, rebi nd, unbi nd, | ookup, Iist, |istBindings,
creat eSubcont ext, and al | .

Pathnames ending in / * indicate the specified permissions apply to all files and directories
of the pathname. Pathnames ending in /- indicate recursive permissions to all files
and subdirectories of the pathname. Pathnames consisting of the special token <<ALL
BI NDI NGS>> matches any file in any directory.

org.j boss. security.srp. SRPPerm ssion
A custom permission class for protecting access to sensitive SRP information like the
private session key and private key. This permission doesn't have any actions defined. The
getSessionKey target provides access to the private session key resulting from the SRP

106

negotiation. Access to this key will allow you to encrypt and decrypt messages that have been
encrypted with the session key.

or g. hi bernat e. secure. Hi ber nat ePer m ssi on
This permission class provides basic permissions to secure Hibernate sessions. The target
for this property is the entity name. The available actions include: insert, delete, update, read,
* (all).

org.j boss. nmet adat a. spi . st ack. Met abDat aSt ackPer mi ssi on
Provides a custom permission class for controlling how callers interact with the metadata
stack. The available permissions are: nodi fy (push/pop onto the stack), peek (peek onto the
stack), and * (all).

org.j boss. config.spi.ConfigurationPerm ssion
Secures setting of configuration properties. Defines only permission target names, and no
actions. The targets for this property include: <property name> - property which code has
permission to set; * - all properties.

org. j boss. ker nel . Ker nel Per nmi ssi on
Secures access to the kernel configuration. Defines only permission target names and no
actions. The targets for this property include: access - access the kernel configuration;
configure - configure the kernel (access is implied); * - all of the above.

org.j boss. kernel . pl ugi ns. util.Kernel Locat or Per m ssi on
Secures access to the kernel. Defines only permission target names and no actions. The
targets for this property include: kernel - access the kernel; * - access all areas.

Procedure 11.1. Activate Java Security Manager

Follow this procedure to correctly configure the JSM for secure, production-ready operation. This
procedure is only required while configuring your server for the first time. In this procedure,
$JAVA_HOME refers to the installation directory of the JRE.

1. Import public key to keystore

Execute the following command:

Linux.

Windows.

107

Chapter 11. Java Security Manager

2. Verify key signature

Execute the following command in the terminal.

Note

The default JVM Keystore password is changei t .

3. Specify additional JAVA_OPTS

Linux. Ensure the following block is present in the $JBOSS_HOVE/ ser ver/ $PROFI LE/
run. conf file.

Specify the Security Manager options

JAVA_OPTS="$JAVA_OPTS -Djava.security.manager -Djava.security.policy==$DIRNAME/
server.policy.cert

-Djava.protocol.handler.pkgs=org.jboss.handlers.stub

-Djava.security.debug=access:failure

-Djboss.home.dir=$DIRNAME/../

-Djboss.server.home.dir=$DIRNAME/../server/default/"

Note

Placing r un. conf into the target profile directory will mean the file overrides
any other r un. conf files outside server profiles.

Windows. Ensure the following block is present in the $JBOSS_HOME\ bi n\ r un. conf . bat
file.

108

rem # Specify the Security Manager options

set "JAVA_OPTS=%JAVA_ OPTS% -Djava.security.manager
-Djava.security.policy==%DIRNAME%\server.policy.cert
-Djava.protocol.handler.pkgs=org.jboss.handlers.stub
-Djava.security.debug=access:failure
-Djboss.home.dir=%DIRNAME%/../
-Djboss.server.home.dir=%DIRNAME%/../server/default/"

4, Start the server

Start JBoss using the run. sh or run. bat (Windows) script.

A number of Java debugging flags are available to assist you in determining how the security
manager is using your security policy file, and what policy files are contributing permissions.
Running the VM as follows shows the possible debugging flag settings:

109

Chapter 11. Java Security Manager

Running with - Dj ava. security. debug=al | provides the most output, but the output volume is
acutely verbose. This might be a good place to start if you don't understand a given security
failure at all. For less verbose output that will still assist with debugging permission failures, use
- Dj ava. security. debug=access, fail ure.

110

Chapter 12.

Encrypting EJB connections with
SSL

JBoss Application Server uses a socket-based invoker layer for Remote Method Invocation (RMI)
of EJB2 and EJB3 Beans. This network traffic is not encrypted by default. Follow the instructions
in this chapter to use Secure Sockets Layer (SSL) to encrypt this network traffic.

Procedure 12.1. Configure SSL for EJB3 Overview

1. Generate encryption keys and certificate
2. Configure a secure remote connector

3. Annotate EJB3 beans that will use the secure connector

Procedure 12.2. Configure SSL for EJB2 Overview

1. Generate encryption keys and certificate

2. Configure Unified Invoker for SSL
12.1. SSL Encryption overview

12.1.1. Key pairs and Certificates

Secure Sockets Layer (SSL) encrypts network traffic between two systems. Traffic between the
two systems is encrypted using a two-way key, generated during the handshake phase of the
connection and known only by those two systems.

For secure exchange of the two-way encryption key, SSL makes use of Public Key Infrastructure
(PKI), a method of encryption that utilizes a key pair. A key pair consists of two separate but
matching cryptographic keys - a public key and a private key. The public key is shared with others
and is used to encrypt data, and the private key is kept secret and is used to decrypt data that has
been encrypted using the public key. When a client requests a secure connection a handshake
phase takes place before secure communication can begin. During the SSL handshake the
server passes its public key to the client in the form of a certificate. The certificate contains the
identity of the server (its URL), the public key of the server, and a digital signature that validates
the certificate. The client then validates the certificate and makes a decision about whether the
certificate is trusted or not. If the certificate is trusted, the client generates the two-way encryption
key for the SSL connection, encrypts it using the public key of the server, and sends it back to
the server. The server decrypts the two-way encryption key, using its private key, and further
communication between the two machines over this connection is encrypted using the two-way
encryption key.

111

Chapter 12. Encrypting E...

On the server, public/private key pairs are stored in a key store, an encrypted file that stores key
pairs and trusted certificates. Each key pair within the key store is identified by an alias - a unique
name that is used when storing or requesting a key pair from the key store. The public key is
distributed to clients in the form of a certificate, a digital signature which binds together a public
key and an identity. On the client, certificates of known validity are kept in the default key store
known as a trust store.

CA-signed and self-signed certificates. Public Key Infrastructure relies on a chain of trust to
establish the credentials of unknown machines. The use of public keys not only encrypts traffic
between machines, but also functions to establish the identity of the machine at the other end of
a network connection. A "Web of Trust" is used to verify the identity of servers. A server may be
unknown to you, but if its public key is sighed by someone that you trust, you extend that trust
to the server. Certificate Authorities are commercial entities who verify the identity of customers
and issue them signed certificates. The JDK includes a cacer t s file with the certificates of several
trusted Certificate Authorities (CAs). Any keys signed by these CAs will be automatically trusted.
Large organizations may have their own internal Certificate Authority, for example using Red Hat
Certificate System. In this case the signing certificate of the internal Certificate Authority is typically
installed on clients as part of a Corporate Standard Build, and then all certificates signed with that
certificate are trusted. CA-signed certificates are best practice for production scenarios.

During development and testing, or for small-scale or internal-only production scenarios, you may
use a self-signed certificate. This is certificate that is not signed by a Certificate Authority, but
rather with a locally generated certificate. Since a locally generated certificate is notin the cacert s
file of clients, you need to export a certificate for that key on the server, and import that certificate
on any client that will connect via SSL.

The JDK includes keyt ool , a command line tool for generating key pairs and certificates. The
certificates generated by keyt ool can be sent for signing by a CA or can be distributed to clients
as a self-signed certificate.

« Generating a self-signed certificate for development use and importing that certificate to a client
is described in Section 12.2.1, “Generate a self-signed certificate with keytool”.

» Generating a certificate and having it signed by a CA for production use is beyond the scope of
this edition. Refer to the manpage for keytool for further information on performing this task.

12.2. Generate encryption keys and certificate

12.2.1. Generate a self-signed certificate with keytool

12.2.1.1. Generate a keypair

The keytool command, part of the JDK, is used to generate a new key pair. Keytool can either
add the new key pair to an existing key store, or create a new key store at the same time as the
key pair.

112

Generate a self-signed certificate with keytool

This key pair will be used to negotiate SSL encryption between the server and remote clients. The
following procedure generates a key pair and stores it in a key store called | ocal host . keyst or e.
You will need to make this key store available to the EJB3 invoker on the server. The key pair in
our example will be saved in the key store under the alias 'ejb-ssl'. We will need this key alias,
and the key pair password you supply (if any), when configuring the EJB3 Remoting connector in
Section 12.3.1, “Create a secure remoting connector for EJB3".

Procedure 12.3. Generate a new key pair and add it to the key store
"localhost.keystore™

1. Inyour home directory, issue the following command, substituting a new password for EJB-
SSL_KEYPAI R_PASSWORD:

2. Enter the key store password, if this key store already exists; otherwise enter and re-enter a
password for a new key store that will be created.

3. Issue the command:

Result: You should now see the file | ocal host . keyst or e.

Note

Key store files should be stored on a secure file system, and should be readable
only by the owner of the JBoss Application Server process.

Note that if no key store is specified on the command line, keyt ool will add the key pair to a
new key store called keyst or e in the current user's home directory. This key store file will be a
hidden file.

12.2.1.2. Export a self-signed certificate

Once a key pair has been generated for the server to use, a certificate must be created.
Export a certificate details the steps to export the ej b-ssl key from the key store named

| ocal host . keyst ore.

Procedure 12.4. Export a certificate

1. Issue the following command:

113

Chapter 12. Encrypting E...

2. Enter the key store password

Result: A certificate will be exported to the file nycert. cer.

12.2.2. Configure a client to accept a self-signed server
certificate

Any client machine that will make remote method invocations over SSL needs to trust the
certificate of the server. Since the certificate we generated is self-signed, and has no chain of trust
to a known certificate authority, the client must be explicitly configured to trust the certificate or
the connection will fail. Configuring a client to trust a self-signed certificate requires importing the
self-signed server certificate to a trust store on the client.

A trust store is a key store that contains trusted certificates. Certificates that are in the local trust
store will be accepted as valid. If your server uses a self-signed certificate then any clients that will
make remote method calls over SSL must have that certificate in their trust store. You must export
your public key as a certificate, and then import that certificate to the trust store on those clients.

The certificate created in Section 12.2.1.2, “Export a self-signed certificate” must be copied
to the client in order to perform the steps detailed in Import the certificate to the trust store
"localhost.truststore".

Procedure 12.5. Import the certificate to the trust store
"localhost.truststore”

1. Issue the following command on the client:

2. Enter the password for this trust store if it already exists; otherwise enter and re-enter the
password for the trust store that will be created.

3. Verify the details of the certificate, and if it is the correct one, type 'yes' to import it to the
trust store.

Result: The certificate will be imported to the trust store, and you will be able to establish
a secure connection with a server that uses this certificate.

As with the key store, if the trust store specified does not already exist, it will be created. However,
in contrast with the key store, there is no default trust store, and one must be specified.

114

EJB3 Configuration

Configure Client to use localhost.truststore. Now that you have imported the self-
signed server certificate to a trust store on the client, you must instruct the client to
use this trust store. This is done by passing the | ocal host.truststore location to the
application using the javax.net.ssl.trustStore property, and the trust store password
using the javax.net.ssl.trustStorePassword property. Example 12.1, “Invoking the
com.acme.Runclient application with a specific trust store” is an example commandline that would
be used to invoke the application com.acme.RunClient, which will make remote method calls to
an EJB on a JBoss Application Server.

Example 12.1. Invoking the com.acme.Runclient application with a specific
trust store

12.3. EJB3 Configuration

12.3.1. Create a secure remoting connector for EJB3

The file ej b3- connect or s-j boss- beans. xnl in a JBoss Application Server profile's depl oy
directory contains JBoss Remoting connector definitions for EJB3 remote method invocation.
Example 12.2, “Sample Secure EJB3 Connector” is a sample configuration that defines a secure
connector for EJB3 using the key pair created in Generate a new key pair and add it to the key
store "localhost.keystore". The keyPasswor d property in the sample configuration is the key pair
password that was specified when the key pair was created.

Example 12.2. Sample Secure EJB3 Connector

115

Chapter 12. Encrypting E...

The sample configuration will create a connector that listens for SSL connections on port 3843.
This port will need to be opened on the server firewall for access by clients.

12.3.2. Configure EJB3 Beans for SSL Transport

All EJB3 beans use the unsecured RMI connector by default. In order to
enabled a bean to be invoked via SSL, the bean needs to be annotated with
@r g. j boss. annot ati on. ej b. Renot eBi ndi ng.

The annotation in Example 12.3, “EJB3 bean annotation to enable secure remote invocation” will
bind an EJB3 bean to the JNDI name St at ef ul SSL. The proxy implementing the remote interface,
returned to a client when the bean is requested from JNDI, will communicate with the server via
SSL.

Example 12.3. EJB3 bean annotation to enable secure remote invocation

Note

In the
IP address is specified as 0.0.0.0, meaning "all interfaces". This should be changed
in practice to the value of the ${jboss.bind.address} system property.

Enabling both secure and insecure invocation of an EJB3 bean. You can enable both
secure and insecure remote method invocation of the same EJB3 bean. Example 12.4, “EJB3
Bean annotation for both secure and insecure remote invocation” demonstrates the annotations
to do this.

EJB2 Configuration

Example 12.4. EJB3 Bean annotation for both secure and insecure remote
invocation

If a client requests Stateful Normal from JNDI, the returned proxy implementing the
remote interface will communicate with the server via the unencrypted socket protocol;
and if Stateful SSL is requested, the returned proxy implementing the remote interface will
communicate with the server via SSL.

12.4. EJB2 Configuration

EJB2 remote invocation uses a single unified invoker, which runs by default on port 4446. The
configuration of the unified invoker used for EJB2 remote method invocation is defined in the
depl oy/ renot i ng-j boss- beans. xnl file of a JBoss Application Server profile. Add the following
SSL Socket Factory bean and an SSL Domain bean in this file.

Example 12.5. SSL Server Factory for EJB2

117

Chapter 12. Encrypting E...

Configure SSL Transport for Beans. In the depl oy/ r enot i ng-j boss- beans. xnl file in the
JBoss Application Server profile, update the code to reflect the information below:

Example 12.6. SSL Transport for Beans

s servi ce=Conn
ectly=true)

118

Chapter 13.

Masking Passwords in XML
Configuration

Follow the instructions in this chapter to increase the security of your JBoss AS Installation by
masking passwords that would otherwise be stored on the file system as clear text.

13.1. Password Masking Overview

Passwords are secret authentication tokens that are used to limit access to resources to
authorised parties only. In order for JBoss services to access password protected resources, the
password must be made available to the JBoss service. This can be done by means of command
line arguments passed to the JBoss Application Server on start up, however this is not practical in
a production environment. In production environments, typically, passwords are made available
to JBoss services by their inclusion in configuration files.

All JBoss configuration files should be stored on secure file systems, and should be readable
by the JBoss Application Server process owner only. Additionally, you can mask the password
in the configuration file for an added level of security. Follow the instructions in this chapter to
replace a clear text password in a Microcontainer bean configuration with a password mask.
Refer to Chapter 15, Encrypting Data Source Passwords for instructions on encrypting Data
Source passwords; to Chapter 16, Encrypting the Keystore Password in a Tomcat Connector
for instructions on encrypting the key store password in Tomcat; and to Chapter 17, Using
LdapExtLoginModule with JaasSecurityDomain for instructions on encrypting the password for
LdapExtLoginModule.

Note

There is no such thing as impenetrable security. All good security measures merely
increase the cost involved in unauthorised access of a system. Masking passwords
is no exception - it is not impenetrable, but does defeat casual inspection of
configuration files, and increases the amount of effort that will be required to extract
the password in clear text.

Procedure 13.1. Masking a clear text password overview

1. Generate a key pair to use to encrypt passwords.
2. Encrypt the key store password.
3. Create password masks.

4. Replace clear text passwords with their password masks.

119

Chapter 13. Masking Passwords...

13.2. Generate a key store and a masked password

Generate a key store. Password masking uses a public/private key pair to encrypt passwords.
You need to generate a key pair for use in password masking. By default JBoss Enterprise
Application Platform 5 expects a key pair with the alias j boss in a key store at j boss- as/ bi n/
passwor d/ passwor d. keyst or e. The following procedures follow this default configuration. If you
wish to change the key store location or key alias you will need to change the default configuration,
and should refer to Section 13.6, “Changing the password masking defaults” for instructions.

Procedure 13.2. Generate a key pair and key store for password masking

1. Atthe command line, change directory to the j boss- as/ bi n/ passwor d directory.

2. Use keyt ool to generate the key pair with the following command:

Important: You must specify the same password for the key store and key pair

3. Optional: Make the resulting password.keystore readable by the JBoss Application Server
process owner only.

On Unix-based systems this is accomplished by using the chown command to
change ownership to the JBoss Application Server process owner, and chnod 600
passwor d. keyst or e to make the file readable only by the owner.

This step is recommended to increase the security of your server.

Note: the JBoss Application Server process owner should not have interactive console login
access. In that case you will be performing these operations as another user. Creating
masked passwords requires read access to the key store, so you may wish to complete
configuration of masked passwords before restricting the key store file permissions.

For more on key stores and the keyt ool command, refer to Section 12.1, “SSL Encryption
overview”.

13.3. Encrypt the key store password

With password masking, passwords needed by Jboss services are not stored in clear text in xml
configuration files. Instead they are stored in a file that is encrypted using a key pair that you
provide.

In order to decrypt this file and access the masked passwords at run time, JBoss Application
Server needs to be able to use the key pair you created. You provide the key store password to
JBoss Application Server by means of the JBoss Password Tool, passwor d_t ool . This tool will
encrypt and store your key store password. Your key store password will then be available to the

120

Encrypt the key store password

JBoss Password Tool for masking passwords, and to the JBoss Application Server for decrypting
them at run time.

Procedure 13.3. Encrypt the key store password

1. Atthe command line, change to the j boss- as/ bi n directory.

2. Run the password tool, using the command . / passwor d_t ool . sh for Unix-based systems,
or passwor d_t ool . bat for Windows-based systems.

Result: The JBoss Password Tool will start, and will report 'Keystore is null. Please

speci fy keystore bel ow '
3. Select'0: Encrypt Keystore Password' by pressing O, then Enter.
Result: The password tool responds with 'Ent er keystore password'.

4. Enter the key store password you specified in Generate a key pair and key store for password
masking.

Result: The password tool responds with 'Enter Salt (String should be at |east
8 characters)'.

5. Enter a random string of characters to aid with encryption strength.
Result: The password tool responds with 'Enter Iterator Count (integer value)'.
6. Enter a whole number to aid with encryption strength.

Result: The password tool responds with: 'Keystore Password encrypted into
passwor d/ j boss_keyst or e_pass. dat .

7. Select's: Exit'to exit.

Result: The password tool will exit with the message: 'Keystore is null. Cannot
store.'. Thisis normal.

8. Optional: Make the resulting file passwor d/ j boss_keyst ore_pass. dat readable by the
JBoss Application Server process owner only.

On Unix-based systems this is accomplished by using the chown command to change
ownership to the JBoss Application Server process owner, and chnod 600 jboss-
keyst or e_pass. dat to make the file readable only by the owner.

This step is recommended to increase the security of your server. Be aware that if this
encrypted key is compromised, the security offered by password masking is significantly
reduced. This file should be stored on a secure file system.

Note: the JBoss Application Server process owner should not have interactive console login
access. In this case you will be performing these operations as another user. Creating masked

121

Chapter 13. Masking Passwords...

passwords requires read access to the key store, so you may wish to complete configuration
of masked passwords before restricting the key store file permissions.

Note: You should only perform this key store password encryption procedure once. If you make

a mistake entering the keystore password, or you change the key store at a later date, you should
delete the j boss- keyst or e_pass. dat file and repeat the procedure. Be aware that if you change
the key store any masked passwords that were previously generated will no longer function.

13.4. Create password masks

The JBoss Password Tool maintains an encrypted password file j boss-as/ bi n/ passwor d/
j boss_passwor d_enc. dat . Thisfile is encrypted using a key pair you provide to the password tool,
and it contains the passwords that will be masked in configuration files. Passwords are stored and
retrieved from this file by ‘domain’, an arbitrary unique identifier that you specify to the Password
Tool when storing the password, and that you specify as part of the annotation that replaces that
clear text password in configuration files. This allows the JBoss Application Server to retrieve the
correct password from the file at run time.

Note: If you previously made the key store and encrypted key store password file readable
only by the JBoss Application Server process owner, then you need to perform the following
procedure as the JBoss Application Server process owner, or else make the keystore (j boss-
as/ bi n/ passwor d/ passwor d. keyst or e) and encrypted key store password file (j boss- as/ bi n/
passwor d/ j boss_keyst ore_pass. dat) readable by your user, and the encrypted passwords
file j boss- as/ bi n/ passwor d/ j boss_passwor d_enc. dat (if it already exists) read and writeable,
while you perform this operation.

Procedure 13.4. Create password masks

Prerequisites:

¢ Generate a key pair and key store for password masking.

* Encrypt the key store password.

1. Atthe command line, change to the j boss- as/ bi n directory.

2. Run the password tool, using the command . / passwor d_t ool . sh for Unix-based systems,
or passwor d_t ool . bat for Windows-based systems.

Result: The JBoss Password Tool will start, and will report 'Keystore is null. Please
speci fy keystore bel ow '

3. Select'l: Specify KeyStore'by pressing 1 then Enter.

Result: The password tool responds with 'Enter Keystore |ocation including the
file name'.

122

Replace clear text passwords with their
password masks
4. Enter the path to the key store you created in Generate a key pair and key store for password

masking. You can specify an absolute path, or the path relative to j boss- as/ bi n. This should
be passwor d/ passwor d. keyst or e, unless you have performed an advanced installation and
changed the defaults as per Section 13.6, “Changing the password masking defaults”.

Result: The password tool responds with 'Ent er Keystore alias'.

5. Enter the key alias. This should be j boss, unless you have performed an advanced
installation and changed the defaults as per Section 13.6, “Changing the password masking
defaults”.

Result: If the key store and key alias are accessible, the password tool will respond with
some log4j WARNING messages, then the line 'Loadi ng donai ns [, followed by any existing
password masks, and the main menu.

6. Select'2: Create Password' by pressing 2, then Enter
Result: The password tool responds with: 'Enter security domain:".

7. Enter a name for the password mask. This is an arbitrary unique name that you will use to
identify the password mask in configuration files.

Result: The password tool responds with: 'Ent er passwd: ".
8. Enter the password that you wish to mask.
Result: The password tool responds with: 'Password created for donai n: mask nang'

9. Repeat the password mask creation process to create masks for all passwords you wish to
mask.

10. Exit the program by choosing '5: Exi t '

13.5. Replace clear text passwords with their password
masks

Clear text passwords in xml configuration files can be replaced with password masks by changing
the property assignment for an annotation. Generate password masks for any clear text password
that you wish to mask in Microcontainer bean configuration files by following Create password
masks. Then replace the configuration occurrence of each clear text password with an annotation
referencing its mask.

The general form of the annotation is:
Example 13.1. General form of password mask annotation

SK_NAME, net ho

123

Chapter 13. Masking Passwords...

13.6. Changing the password masking defaults

JBoss Enterprise Application Platform 5 ships with server profiles preconfigured for password
masking. By default the server profiles are configured to use the keystore j boss- as/ bi n/
passwor d/ passwor d. keystore, and the key alias j boss. If you store the key pair used for
password masking elsewhere, or under a different alias, you will need to update the server profiles
with the new location or key alias.

The password masking key store location and key alias is specified in the file depl oy/ securi ty/
security-jboss-beans. xm under each of the included JBoss Application Server server profiles.

Example 13.2. Preconfigured Password Masking defaults in
security-jboss-beans.xml

124

Chapter 14.

Overriding SSL Configuration

Many services in JBoss allow usage of SSL for secure communication. To configure
SSL, these services require a KeyStore for the certificate and private key and possibly
a TrustStore with the trusted client certificates. Those attributes can be configured using
the JDK system properties (j avax. net.ssl.keyStore, javax. net.ssl.keyStorePassword,
javax. net.ssl.trustStore,javax. net.ssl.trustStorePassword)orby aservice specific set
of attributes.

There can be situations when the AS as a whole should be using just one keystore and
truststore for all the services, essentially ignoring all the system properties and service's specific
configurations.

Starting in JBoss AS 6 there is a new service that can be installed at bootstrap that can override
all the configuration for the KeyStore and TrustStore, provided that the service uses the default
algorithm for the KeyManager Fact ory (SunX509 for Sun, JRockit and OpenJDK and | bnX509 for
IBM) and Tr ust Manager Fact ory (PKI X for Sun, JRockit, OpenJDK and IBM).

Here is an example configuration for the service in conf/ boot st rap/ security. xm :

<?xml version="1.0" encoding="UTF-8"?>
<l--

Security bootstrap configuration
-->

<deployment xmlns="urn:jboss:bean-deployer:2.0">

<bean name="JBossSSLConfiguration" class="org.jboss.security.ssl.JBossSSLConfiguration">
<property name="keyStoreURL">my.keystore</property>
<property name="keyStorePassword">changeit</property>
</bean>
</deployment>

With this service in place, the keyst or eFi | e and keyst or ePass attributes of a HTTPS connector
in depl oy/ j bossweb. sar/ server. xm would be overridden for example.

These are the properties the JBossSSLConfiguration bean accepts:

* keyStoreURL

* keySt orePassword

125

Chapter 14. Overriding SSL Co...

* keyStoreAlias

* keySt oreProvi der

* keySt or eProvi der Ar gunent

e trustStoreURL

e trust StorePassword

e trust StoreProvider

e trust StoreProvi der Ar gunent

These properties are the same as the ones in the JaasSecurit yDonai n bean. See Section 4.3,
“The JaasSecurityDomain Bean” for a detailed description.

The keyStorePassword can be masked using the same methods described for the
keySt or ePass.

Chapter 13,

Masking Passwords in XML Configuration

126

Chapter 15.

Encrypting Data Source Passwords

Database connections for the JBoss AS are defined in *-ds. xnl data source files. These
database connection details include clear text passwords. You can increase the security of your
server by replacing clear text passwords in datasource files with encrypted passwords.

This chapter presents two different methods for encrypting data source passwords. The first is
Secured Identity. The second is Configured Identity with Password Based Encryption (PBE).

15.1. Secured ldentity

The class org. j boss. resource. security. Securel dentityLogi nMdul e can be used to both
encrypt database passwords and to provide a decrypted version of the password when the data
source configuration is required by the server. The Secur el denti t yLogi nMbdul e uses a hard-
coded password to encrypt/decrypt the data source password.

Procedure 15.1. Overview: Using SecureldentityLoginModule to encrypt a
datasource password

1. Encrypt the data source password.
2. Create an application authentication policy with the encrypted password.
3. Configure the data source to use the application authentication policy.

15.1.1. Encrypt the data source password

The data source password is encrypted using the Secur el dent i t yLogi nMbdul e main method by
passing in the clear text password. The SecureldentityLoginModule is provided by j bosssx. j ar.

Procedure 15.2. Encrypt a datasource password

This procedure is for JBoss Enterprise Application Platform versions 5.1 and later

1. Change directory to the j boss- as directory

2. Linux command.

Windows command:

127

Chapter 15. Encrypting Data S...

Result: The command will return an encrypted password.

15.1.2. Create an application authentication policy with the
encrypted password

Each JBoss Application Server server profile has a conf/login-config.xm file, where
application authentication policies are defined for that profile. To create a an application
authentication policy for your encrypted password, add a new <application-policy> element to the
<policy> element.

Example 15.1, “Example application authentication policy with encrypted data source password”
is a fragment of a | ogi n- confi g. xm file showing an application authentication policy of name
"EncryptDBPassword".

Example 15.1. Example application authentication policy with encrypted
data source password

<policy>

<!-- Example usage of the SecureldentityLoginModule -->
<application-policy name="EncryptDBPassword">
<authentication>
<login-module code="org.jboss.resource.security.Secureldentityl oginModule"
flag="required">
<module-option hame="username">admin</module-option>
<module-option nhame="password">5dfc52b51bd35553df8592078de921bc</module-
option>

module-option>
</login-module>
</authentication>
</application-policy>
</policy>

SecureldentityLoginModule module options

username
Specify the user name to use when establishing a connection to the database.

128

<module

Configure the data source to use the application
authentication policy

password
Provide the encrypted password generated in Section 15.1.1, “Encrypt the data source
password”.

managedConnectionFactoryName

jboss.jca:name
Nominate a Java Naming and Directory Interface (JNDI) name for this datasource.

jboss.jca:service
Specify the transaction type

Transaction types

NoTxCM
No transaction support

LocalTxCM
Single resource transaction support

TXCM
Single resource or distributed transaction support

XATXCM
Distributed transaction support

15.1.3. Configure the data source to use the application
authentication policy

The data source is configured in a *-ds. xnl file. Remove the <user-name> and <password>
elements from this file, and replace them with a <security-domain> element. This element will
contain the application authentication policy name specified following Section 15.1.2, “Create an
application authentication policy with the encrypted password”.

Using the example name from Section 15.1.2, “Create an application authentication policy with the
encrypted password”, "EncryptDBPassword", will result in a data source file that looks something
like Example 15.2, “Example data source file using secured identity”.

Example 15.2. Example data source file using secured identity

<?xml version="1.0" encoding="UTF-8"?>
<datasources>
<local-tx-datasource>
<jndi-name>PostgresDS</jndi-name>
<connection-url>jdbc:postgresql://127.0.0.1:5432/test?protocolVersion=2</connection-url>
<driver-class>org.postgresql.Driver</driver-class>

129

Chapter 15. Encrypting Data S...

<min-pool-size>1</min-pool-size>
<max-pool-size>20</max-pool-size>

<!-- REPLACED WITH security-domain BELOW
<user-name>admin</user-name>
<password>password</password>

-->

<security-domain>EncryptDBPassword</security-domain>

<metadata>
<type-mapping>PostgreSQL 8.0</type-mapping>
</metadata>
</local-tx-datasource>
</datasources>

15.2. Configured Identity with Password Based
Encryption

The org.jboss.resource. security.JaasSecurityDomai nldentitylLogi nModul e is a login
module for statically defining a data source using an encrypted password. that has been encrypted
by a JaasSecurityDomain. The base64 format of the data source password may be generated
using the PBEUtils command:

The commands for PBEULils arguments are:

SALT
The Salt attribute from the JaasSecurityDomain (Must only be eight characters long).

ITERATION COUNT
The IterationCount attribute from the JaasSecurity domain.

DOMAIN-PASSWORD
The plaintext password that maps to the KeyStorePass attribute from the
JaasSecurityDomain.

DATASOURCE-PASSWORD
The plaintext password for the data source that should be encrypted with the
JaasSecurityDomain password.

Example 15.3, “PBEUtils command example” provides an example of the command.

130

Configured Identity with Password Based
Encryption

Example 15.3. PBEUtils command example

Add the following application policy to the $JBOSS HOVE/ server/ $PROFI LE/ conf /| ogi n-
config.xn file.

<application-policy name = "EncryptedHsglDbRealm">
<authentication>
<login-module code = "org.jboss.resource.security.JaasSecurityDomainldentityLoginModule™
flag = "required">
<module-option hame = "username">sa</module-option>
<module-option name = "password">E5gtGMKcXPP</module-option>
<module-option name
= "managedConnectionFactoryName">jboss.jca:service=LocalTxCM,name=DefaultDS</
module-option>

<module-option name =
module-option>
</login-module>
</authentication>
</application-policy>
The $JBOSS_HOME/ ser ver / $PROFI LE/ docs/ exanpl es/ j cal/ hsql db- encrypt ed- ds. xm

illustrates that data source configuration along with the JaasSecurityDomain configuration for the
keystore:

<?xml version="1.0" encoding="UTF-8"?>
<!-- The Hypersonic embedded database JCA connection factory config
that illustrates the use of the JaasSecurityDomainldentityLoginModule

to use encrypted password in the data source configuration.

$ld: hsgldb-encrypted-ds.xml,v 1.1.2.1 2004/06/04 02:20:52 starksm Exp $ -->

131

Chapter 15. Encrypting Data S...

<datasources>
<local-tx-datasource>

<!-- The jndi name of the DataSource, it is prefixed with java:/ -->
<I-- Datasources are not available outside the virtual machine -->
<jndi-name>DefaultDS</jndi-name>

<!-- for tcp connection, allowing other processes to use the hsgldb
database. This requires the org.jboss.jdbc.HypersonicDatabase mbean.
<connection-url>jdbc:hsqldb:hsql://localhost:1701</connection-url>

-->

<l-- for totally in-memory db, not saved when jboss stops.

The org.jboss.jdbc.HypersonicDatabase mbean necessary
<connection-url>jdbc:hsqgldb:.</connection-url>

-->

<l-- for in-process persistent db, saved when jboss stops. The
org.jboss.jdbc.HypersonicDatabase mbean is necessary for properly db shutdown
-->

<connection-url>jdbc:hsqgldb:${jboss.server.data.dir}${/}hypersonic${/}ocalDB</connection-

url>

be

<!-- The driver class -->
<driver-class>org.hsqldb.jdbcDriver</driver-class>

<l--example of how to specify class that determines if exception means connection should
destroyed-->
<!--exception-sorter-class-

name>org.jboss.resource.adapter.jdbc.vendor.DummyExceptionSorter</exception-sorter-class-
name-->

<!-- this will be run before a managed connection is removed from the pool for use by a client-->

tim

<l--<check-valid-connection-sql>select * from something</check-valid-connection-sql> -->

<!-- The minimum connections in a pool/sub-pool. Pools are lazily constructed on first use -->
<min-pool-size>5</min-pool-size>

<!-- The maximum connections in a pool/sub-pool -->
<max-pool-size>20</max-pool-size>

<!-- The time before an unused connection is destroyed -->

<l-- NOTE: This is the check period. It will be destroyed somewhere between 1x and 2x this
eout after last use -->

<l-- TEMPORARY FIX! - Disable idle connection removal, HSQLDB has a problem with not

reaping threads on closed connections -->

132

Configured Identity with Password Based
Encryption
<idle-timeout-minutes>0</idle-timeout-minutes>

<!-- sql to call when connection is created
<new-connection-sql>some arbitrary sql</new-connection-sql>
-->

<!-- sgl to call on an existing pooled connection when it is obtained from pool
<check-valid-connection-sql>some arbitrary sql</check-valid-connection-sql>
-->

<!-- example of how to specify a class that determines a connection is valid before it is handed
out from the pool
<valid-connection-checker-class-
name>org.jboss.resource.adapter.jdbc.vendor.DummyValidConnectionChecker</valid-
connection-checker-class-name>
-->

<!-- Whether to check all statements are closed when the connection is returned to the pool,
this is a debugging feature that should be turned off in production -->
<track-statements></track-statements>

<!-- Use the getConnection(user, pw) for logins
<application-managed-security></application-managed-security>
-->

<l-- Use the security domain defined in conf/login-config.xml -->
<security-domain>EncryptedHsqlDbRealm</security-domain>

<!-- This mbean can be used when using in process persistent hypersonic -->
<depends>jboss:service=Hypersonic,database=localDB</depends>

<!-- The datasource must depend on the mbean -->
<depends>jboss.security:service=JaasSecurityDomain,domain=ServerMasterPassword</
depends>
</local-tx-datasource>

<!-- The JaasSecurityDomain used for encryption. Use the name
"jboss.security:service=JaasSecurityDomain,domain=ServerMasterPassword"
as the value of the JaasSecurityDomainldentityLoginModule
jaasSecurityDomain login module option in the EncryptedHsglDbRealm
login-config.xml section. Typically this service config should be in

the conf/jboss-service.xml descriptor.

The opaque master.password file could be created using:

133

Chapter 15. Encrypting Data S...

java -cp jbosssx.jar org.jboss.security.plugins.FilePassword 12345678 17 master
server.password

The corresponding login-config.xml would look like:
<application-policy name = "EncryptedHsglDbRealm">
<authentication>
<login-module code =
"org.jboss.resource.security.JaasSecurityDomainldentityLoginModule”
flag = "required">
<module-option name = "username">sa</module-option>
<module-option name = "password">E5gtGMKcXPP</module-option>
<module-option
name = "managedConnectionFactoryName">jboss.jca:service=LocalTxCM,name=DefaultDS</

module-option>
<module-

option name =

module-option>
</login-module>
</authentication>
</application-policy>
where the encrypted password was generated using:
java -cp jbosssx.jar org.jboss.security.plugins.PBEUtils abcdefgh 13 master "
Encoded password: ESgtGMKcXPP
-->
<mbean code="org.jboss.security.plugins.JaasSecurityDomain"
name="jboss.security:service=JaasSecurityDomain,domain=ServerMasterPassword">
<constructor>
<arg type="java.lang.String" value="ServerMasterPassword"></arg>
</constructor>
<!-- The opaque master password file used to decrypt the encrypted

database password key -->
<attribute

conf/server.password</attribute>
<attribute name="Salt">abcdefgh</attribute>
<attribute name="IterationCount">13</attribute>
</mbean>

<!-- This mbean can be used when using in process persistent db -->
<mbean code="org.jboss.jdbc.HypersonicDatabase"
name="jboss:service=Hypersonic,database=localDB">
<attribute name="Database">localDB</attribute>
<attribute name="InProcessMode">true</attribute>

134

Configured Identity with Password Based

Encryption
</mbean>

</datasources>

Warning

Remember to use the same Salt and IterationCount in the MBean that was used
during the password generation step.

Note

You may see the following error while starting a service that depends on the
encrypted data source:

Caused by: java.security.InvalidAlgorithmParameterException: Parameters
missing
at com.sun.crypto.provider.SunJCE_af.a(DashoA12275)
at
com.sun.crypto.provider.PBEWithMD5AndDESCipher.enginelnit(DashoA12275)
at javax.crypto.Cipher.a(DashoA12275)
at javax.crypto.Cipher.a(DashoA12275)
at javax.crypto.Cipher.init(DashoA12275)
at javax.crypto.Cipher.init(DashoA12275)
at
org.jboss.security.plugins.JaasSecurityDomain.decode(JaasSecurityDomain.java:325)
at
org.jboss.security.plugins.JaasSecurityDomain.decode64(JaasSecurityDomain.java:351)
at sun.reflect.NativeMethodAccessorlmpl.invokeO(Native Method)
at
sun.reflect.NativeMethodAccessorimpl.invoke(NativeMethodAccessorimpl.java:39)
at
sun.reflect.DelegatingMethodAccessorimpl.invoke(DelegatingMethodAccessorimpl.java:25)
at java.lang.reflect.Method.invoke(Method.java:585)
at
org.jboss.mx.interceptor.ReflectedDispatcher.invoke(ReflectedDispatcher.java:155)
... 139 more

The error most likely means that the following MBean is not yet started as a service:

135

Chapter 15. Encrypting Data S...

(jboss.security:service=JaasSecurityDomain,domain=ServerMasterPassword)

<depends>jboss.security:service=JaasSecurityDomain,domain=ServerMasterPassword</
depends>

136

Chapter 16.

Encrypting the Keystore Password
INn a Tomcat Connector

SSL with Tomcat requires a secure connector. This means that the keystore/truststore password
cannot be passed as an attribute in the connector element of Tomcat's server. xm .

A working understanding of the JaasSecurityDomain that supports keystores, truststores, and
password based encryption is advised. Please see Chapter 19, Secure Remote Password
Protocol for more information.

The first step is to add a connector element in server. xm in $JBOSS_HOVE/ ser ver / $PROFI LE/

depl oy/j bossweb. sar.

<I-- SSL/TLS Connector with encrypted keystore password configuration -->
<Connector protocol="HTTP/1.1" SSLEnabled="true"
port="8443" address="${jboss.bind.address}"
scheme="https" secure="true" clientAuth="false"
ss|Protocol="TLS"
securityDomain="encrypt-keystore-password"
SSLImplementation="org.jboss.net.ssl.JBossimplementation”/>

You now need to provide the definition for the JaasSecurityDomain in a *-servi ce. xnl or in
*-j boss-beans. xnm in the deploy directory. Here is a MBean example:

<mbean code="org.jboss.security.plugins.JaasSecurityDomain"
name="jboss.security:service=PBESecurityDomain">
<constructor>
<arg type="java.lang.String" value="encrypt-keystore-password"></arg>
</constructor>
<attribute name="KeyStoreURL">resource:localhost.keystore</attribute>
<attribute

conf/keystore.password</attribute>
<attribute name="Salt">abcdefgh</attribute>
<attribute name="lterationCount">13</attribute>
</mbean>

137

Chapter 16. Encrypting the Ke...

The Salt and IterationCount are the variables that define the strength of your encrypted password,
S0 you can vary it from what is shown. Just remember to use the changed value when generating
the encrypted password.

Note

The Salt must be eight characters long.

Your keystore is the localhost.keystore which will be in your conf directory. The keystore.password
is your encrypted password that will reside in the conf directory and will be generated in the next
step.

You now need to go to the conf directory of your JBoss AS instance (def aul t / conf , for example).

java -cp ../lib/jbosssx.jar org.jboss.security.plugins.FilePassword abcdefgh 13 unit-tests-server
keystore.password

Run this on a single line. In the above example, "abcdefgh” is the Salt and 13 is the iteration count;
'unit-tests-server' is the password of the keystore that you are protecting; and keystore.password
is the file in which the encrypted password will be stored.

You can then update the Tomcat service MBean to depend on your JaasSecurityDomain MBean
because Tomcat has to start after j boss. security: servi ce=PBESecur i t yDomai n.

Navigate to $JBOSS_HOVE/ ser ver / $PROFI LE/ depl oy/ j bossweb. sar/ META- | NF. Open j boss-
servi ce. xnl and add the following <depends> tag towards the end.

<depends>jboss.security:service=PBESecurityDomain</depends>
</mbean>
</server>

138

Medium Security Usecase

<!I-- SSL/TLS Connector with encrypted keystore password configuration -->
<Connector protocol="HTTP/1.1" SSLEnabled="true"
port="8443" address="${jboss.bind.address}"
scheme="https" secure="true" clientAuth="false"
SSLPassword="KAaxoMQCJH30GZWhb96Mov"
securityDomain="encrypt-keystore-password"
SSL CertificateFile="server.crt"
SSLCertificateKeyFile="server.pem" SSLProtocol="TLSv1" />

Please see Chapter 15, Encrypting Data Source Passwords for related information.

16.1. Medium Security Usecase

A user does not want to encrypt the keystore password but wants to externalize it (outside of
server. xnm) or wants to make use of a predefined JaasSecurityDomain.

Procedure 16.1. Predefined JaasSecurityDomain

1. Update j boss-service.xnl to add a connector

<mbean code="org.jboss.security.plugins.JaasSecurityDomain"
name="jboss.security:service=SecurityDomain">
<constructor>
<arg type="java.lang.String" value="jbosstest-ssl"></arg>
</constructor>
<attribute name="KeyStoreURL">resource:localhost.keystore</attribute>

139

Chapter 16. Encrypting the Ke...

<attribute name="KeyStorePass">unit-tests-server</attribute>
</mbean>

2. Add a <depends>tag to the Tomcat service

Navigate to $JBOSS_HOVE/ server/ $PROFI LE/ depl oy/ j bossweb. sar. Open server. xm
and add the following <depends> element towards the end:

<depends>jboss.security:service=SecurityDomain</depends>
</mbean>
</server>

3. Define the JaasSecurityDomain MBean in a - servi ce. xnl file

security-service.xm inthe deploy directory, for example.

<mbean code="org.jboss.security.plugins.JaasSecurityDomain"
name="jboss.security:service=SecurityDomain">
<constructor>
<arg type="java.lang.String" value="jbosstest-ss|"></arg>
</constructor>
<attribute name="KeyStoreURL">resource:localhost.keystore</attribute>
<attribute name="KeyStorePass">unit-tests-server</attribute>
</mbean>

140

Chapter 17.

Using LdapExtLoginModule with
JaasSecurityDomain

This chapter provides guidance on how the LdapExtLoginModule can be used with an
encrypted password to be decrypted by a JaasSecurityDomain. This chapter assumes that the
LdapExtLoginModule is already running correctly with a non-encrypted password.

The first step is to define the JaasSecurityDomain MBean that is going to be used to decrypt
the encrypted version of the password. This can then be added to the $JBOSS_HOME/ ser ver/
$PROFI LE/ conf/j boss-service.xm or can be added to a *-service. xm descriptor in the
deploy folder.

<mbean code="org.jboss.security.plugins.JaasSecurityDomain"
name="jboss.security:service=JaasSecurityDomain,domain=jmx-console">
<constructor>
<arg type="java.lang.String" value="jmx-console"></arg>
</constructor>
<attribute name="KeyStorePass">some_password</attribute>
<attribute name="Salt">abcdefgh</attribute>
<attribute name="lterationCount">66</attribute>
</mbean>

This is a simple configuration where the required password, Salt and Iteration Count used for the
encryption or decryption are contained within the MBean definition.

It should be noted that the default cipher algorithm used by the JaasSecurityDomain
implementation is "PBEwithMD5andDES". This can be modified using the "CipherAlgorithm"
attribute.

Ensure that you change the KeyStorePass, Salt, and IterationCount values for your own
deployment.

After this MBean has been defined, start the JBoss Enterprise Application Platform.
Navigate to the JMX Console (http://localhost:8080/jmx-console/ by default) and select the
org.j boss. security. plugins. JaasSecurityDonmai n MBean.

On the org.jboss.security.plugins.JaasSecurityDomain page, look for the
encode64(Stri ng passwor d) method. Pass the plain text version of the passwor d being used by
the LdapExtLoginModule to this method, and invoke it. The return value should be the encrypted
version of the password encoded as Base64.

141

http://localhost:8080/jmx-console/

Chapter 17. Using LdapExtLogi...

Within the login module configuration, the following module-options should be set:

<module-option

console</module-option>
<module-option name="bindCredential">2gx7gcAxcDuaHaJMgO5AVo</module-option>

The first option is a new option to specify that the JaasSecurityDomain used previously should
be used to decrypt the password.

The bindCredential is then replaced with the encrypted form as Base64.

142

Chapter 18.

Firewalls

JBoss AS ships with many socket-based services that require open firewall ports. Table 18.1, “The
ports found in the default configuration” lists services that listen on ports that must be activated
when accessing JBoss behind a firewall. Table 18.2, “Additional ports in the all configuration” lists
additional ports that exist in the all profile.

Table 18.1. The ports found in the default configuration

Port Type Service

1098 TCP org. j boss. nami ng. Nanmi ngSer vi ce

1099 TCP org.j boss. nani ng. Nanmi ngServi ce

4444 TCP org.jboss.invocation.jrnp.server.JRVI nvoker
4445 TCP org. j boss.invocation. pool ed. server . Pool edl nvoker
8009 TCP org.j boss. web. tontat .t c4. EnbeddedTontat Servi ce
8080 TCP org.jboss. web. tontat.tc4. EnbeddedTontat Ser vi ce
8083 TCP org.j boss. web. WebSer vi ce

8093 TCP org.jboss.ng.il.uil2.U LServerlLService

Table 18.2. Additional ports in the all configuration

Port Type Service

1100 TCP org.j boss. ha. j ndi . HANani ngSer vi ce

1101 TCP org.jboss. ha.jndi . HANani ngSer vi ce

1102 UDP org.j boss. ha. jndi . HANam ngServi ce

1161 UDP org. j boss. j nx. adapt or. snnp. agent . SnnpAgent Ser vi ce
1162 UDP org.j boss.jnx.adaptor.snnp. trapd. TrapdService
1389 TCP | daphost . j boss. or g. LdapLogi nMbdul e

38432 TCP org. j boss. ej b3. SSLRenpt i ngConnect or

3528 TCP org.jboss.invocation.iiop.IIOPlnvoker

3873 TCP org.j boss. ej b3. Renot i ngConnect ors

4447 TCP org.jboss.invocation.jrnp. server.JRVPI nvoker HA
10099 RMI org.jboss. security. srp. SRPRenot eServerl nterface
45566° UDP org.j boss. ha. framewor k. server. ClusterPartition

#Necessary only if SSL transport is configured for EJB3

® Plus two additional anonymous UDP ports, one can be set using the r cv_por t , and the other cannot be set.

143

144

Chapter 19.

Secure Remote Password Protocol

The Secure Remote Password (SRP) protocol is an implementation of a public key
exchange handshake described in the Internet standards working group request for comments
2945(RFC2945). The RFC2945 abstract states:

This document describes a cryptographically strong network authentication
mechanism known as the Secure Remote Password (SRP) protocol. This
mechanism is suitable for negotiating secure connections using a user-supplied
password, while eliminating the security problems traditionally associated with
reusable passwords. This system also performs a secure key exchange in
the process of authentication, allowing security layers (privacy and/or integrity
protection) to be enabled during the session. Trusted key servers and certificate
infrastructures are not required, and clients are not required to store or manage
any long-term keys. SRP offers both security and deployment advantages over
existing challenge-response techniques, making it an ideal drop-in replacement
where secure password authentication is needed.

The complete RFC2945 specification can be obtained from http://www.rfc-editor.org/rfc.html.
Additional information on the SRP algorithm and its history can be found at http://www-cs-
students.stanford.edu/~tjw/srp/.

Algorithms like Diffie-Hellman and RSA are known as public key exchange algorithms. The
concept of public key algorithms is that you have two keys, one public that is available to everyone,
and one that s private and known only to you. When someone wants to send encrypted information
to you, then encrypt the information using your public key. Only you are able to decrypt the
information using your private key. Contrast this with the more traditional shared password based
encryption schemes that require the sender and receiver to know the shared password. Public
key algorithms eliminate the need to share passwords.

The JBossSX framework includes an implementation of SRP that consists of the following
elements:

« An implementation of the SRP handshake protocol that is independent of any particular client/
server protocol

* An RMI implementation of the handshake protocol as the default client/server SRP
implementation

« A client side JAAS Logi nMbdul e implementation that uses the RMI implementation for use in
authenticating clients in a secure fashion

* A JMX MBean for managing the RMI server implementation. The MBean allows the RMI server
implementation to be plugged into a JMX framework and externalizes the configuration of the
verification information store. It also establishes an authentication cache that is bound into the
JBoss server JNDI namespace.

145

http://www.rfc-editor.org/rfc.html
http://www-cs-students.stanford.edu/~tjw/srp/
http://www-cs-students.stanford.edu/~tjw/srp/

Chapter 19. Secure Remote Pas...

« A server side JAAS Logi nMbdul e implementation that uses the authentication cache managed
by the SRP JMX MBean.

Figure 19.1, “The JBossSX components of the SRP client-server framework.” describes the key
components involved in the JBossSX implementation of the SRP client/server framework.

Cliens

O QO

SRPServerInterface SEPVerifierStoreServicalBaan

JBoz= Sarysy

O SEPVerifierStoreSecvice
—_————

e 41 E

,.-a"# tRMVeczifiecitore

“|SRFRenotederver |
'ﬁ: _______________ T,
] auchentication fir= 5z
| | e ifi o SRPSerwice
VL EL
ﬂ']IE&d.: o 15 BANATES I {

‘J‘.auﬂa session

& |
L
e = O SR Hepwis
sesgioh WYL]

SkEServerlistensc

SRPjermreciession -:E- TimedCache "'!'II
agasion caches Frovm——— O

CachaPolicy

Figure 19.1. The JBossSX components of the SRP client-server framework.

146

On the client side, SRP shows wup as a custom JAAS Logi nMbdul e
implementation that communicates with the authentication server through an
org.jboss.security.srp. SRPServerinterface proxy. A client enables authentication
using SRP by creating a login configuration entry that includes the
org.jboss.security.srp.jaas. SRPLogi nMbdul e. This module supports the following
configuration options:

principalClassName
Constant value, setto org. j boss. security. srp.jaas. SRPPrinci pal .

srpServerJndiName
JNDI name of the SRPServerlnterface object used to communicate with the SRP
authentication server. If both srpServerJndi Nane and srpServerRmi Ul options are
specified, sr pSer ver IJndi Nane takes priority over srpSer ver Rni Ur | .

srpServerRmiUrl
RMI protocol URL string for the location of the SRPServerl|nterface proxy used to
communicate with the SRP authentication server.

externalRandomA
Flag that specifies whether the random component of the client public key "A" should come
from the user callback. This can be used to input a strong cryptographic random number
coming from a hardware token. If set to t r ue, the feature is activated.

hasAuxChallenge
Flag that specifies whether a string will be sent to the server as an additional challenge for
the server to validate. If the client session supports an encryption cipher then a temporary
cipher will be created using the session private key and the challenge object sent as a
j avax. crypt o. Seal edObj ect . If set to t r ue, the feature is activated.

multipleSessions
Flag that specifies whether a given client may have multiple SRP login sessions active. If set
to t r ue, the feature is activated.

Any other passed options that do not match one of the previously named options are treated as
a JNDI property to use for the environment passed to the I ni ti al Cont ext constructor. This is
useful if the SRP server interface is not available from the default I ni ti al Cont ext .

The SRPLogi nMbdul e and the standard C i ent Logi nMbdul e must be configured to allow SRP
authentication credentials to be used for access validation to security Java EE components. An
example login configuration is described in Example 19.1, “Login Configuration Entry”.

Example 19.1. Login Configuration Entry

srp {

147

Chapter 19. Secure Remote Pas...

org.jboss.security.srp.jaas.SRPLoginModule required
srpServerJndiName="SRPServerinterface"

3

org.jboss.security.ClientLoginModule required
password-stacking="useFirstPass"

%

On the JBoss server side, there are two MBeans that manage the objects that collectively make
up the SRP server. The primary service is the org. j boss. security. srp. SRPServi ce MBean.
The other MBean isor g. j boss. security. srp. SRPVeri fier StoreService.

org.j boss. security.srp. SRPSer vi ce is responsible for exposing an RMI accessible version of
the SRPServerinterface as well as updating the SRP authentication session cache.

The configurable SRPService MBean attributes include the following:

JndiName
Specifies the name from which the SRPServerinterface proxy should be available. This
is the location where the SRPService binds the serializable dynamic proxy to the
SRPSer ver | nt er f ace. The default value is sr p/ SRPSer ver | nt er f ace.

VerifierSourceJndiName
Specifies the name of the SRPVeri fi er Sour ce implementation the SRPSer vi ce must use.
The source JNDI name defaults to sr p/ Def aul t Veri fi er Sour ce.

AuthenticationCacheJndiName
Specifies the name under which the org.jboss.util.CachePolicy authentication
implementation used for caching authentication information is bound. The SRP session cache
is made available for use through this binding. The authentication JNDI cache defaults to
srp/ Aut henti cati onCache.

ServerPort
RMI port for the SRPRenot eSer ver | nt er f ace. The default value is 10099.

ClientSocketFactory
Optional custom java.rni.server.RM CientSocket Factory implementation class
name used during the export of the SRPServerinterface. The default value is
RM Cl i ent Socket Fact ory.

ServerSocketFactory
Optional custom java.rni.server.RM Server Socket Factory implementation class
name used during the export of the SRPServerinterface. The default value is
RM Ser ver Socket Fact ory.

148

AuthenticationCacheTimeout
Cache policy timeout (in seconds). The default value is 1800 (30 minutes).

AuthenticationCacheResolution
Specifies the timed cache policy resolution (in seconds). This controls the interval between
checks for timeouts. The default value is 60 (1 minute).

RequireAuxChallenge
Set if the client must supply an auxiliary challenge as part of the verify phase. This gives
control over whether the SRPLogi nMbdul e configuration used by the client must have the
useAuxChal | enge option enabled.

OverwriteSessions
Specifies whether a successful user authentication for an existing session should overwrite the
current session. This controls the behavior of the server SRP session cache when clients have
not enabled the multiple session per user mode. If settof al se, the second user authentication
attempt will succeed, however the resulting SRP session will not overwrite the previous SRP
session state. The default value is f al se.

VerifierStoreJndiName
Specifies the location of the SRP password information store implementation that must be
provided and made available through JNDI.

org.j boss.security.srp. SRPVerifierStoreService is an example MBean service that binds
an implementation of the SRPVeri fi er St or e interface that uses a file of serialized objects as the
persistent store. Although not realistic for a production environment, it does allow for testing of the
SRP protocol and provides an example of the requirements for an SRPVeri fi er St or e service.

The configurable SRPVeri fi er St or eSer vi ce MBean attributes include the following:

JndiName
JNDI name from which the SRPVeri fi er St or e implementation should be available. If not
specified it defaults to srp/ Def aul t Veri fi er Sour ce.

StoreFile
Location of the user password verifier serialized object store file. This can be either a
URL or a resource name to be found in the classpath. If not specified it defaults to
SRPVerifierStore. ser.

The SRPVerifierStoreService MBean also supports addUser and del User operations for
addition and deletion of users. The signatures are:

public void addUser(String username, String password) throws I0Exception;
public void delUser(String username) throws IOException;

An example configuration of these services is presented in Example 19.2, “The SRPVerifierStore
interface”.

149

Chapter 19. Secure Remote Pas...

19.1. Understanding the Algorithm

The appeal of the SRP algorithm is that is allows for mutual authentication of client and server
using simple text passwords without a secure communication channel.

Note

Additional information on the SRP algorithm and its history can be found at

There are six steps that are performed to complete authentication:

1. The client side SRPLogi nModul e retrieves from the naming service the SRPServerinterface
instance for the remote authentication server.

2. The client side SRPLogi nMbdul e next requests the SRP parameters associated with the
username attempting the login. There are a number of parameters involved in the SRP
algorithm that must be chosen when the user password is first transformed into the verifier form
used by the SRP algorithm. Rather than hard-coding the parameters (which could be done with
minimal security risk), the JBossSX implementation allows a user to retrieve this information
as part of the exchange protocol. The get SRPPar anet er s(user nane) call retrieves the SRP
parameters for the given username.

3. The client side SRPLogi nMbdul e begins an SRP session by creating an SRPd i ent Sessi on
object using the login username, clear-text password, and SRP parameters obtained from
step 2. The client then creates a random number A that will be used to build the private SRP
session key. The client then initializes the server side of the SRP session by invoking the
SRPServer I nterface. i nit method and passes in the username and client generated random
number A. The server returns its own random number B. This step corresponds to the exchange
of public keys.

4. The client side SRPLogi nMbdul e obtains the private SRP session key that has been generated
as a result of the previous messages exchanges. This is saved as a private credential in
the login Subj ect. The server challenge response M2 from step 4 is verified by invoking
the SRPC i ent Sessi on. veri fy method. If this succeeds, mutual authentication of the client
to server, and server to client have been completed. The client side SRPLogi nMbdul e next
creates a challenge ML to the server by invoking SRPC i ent Sessi on. r esponse method passing
the server random number B as an argument. This challenge is sent to the server via
the SRPSer ver I nterface. verify method and server's response is saved as M2. This step
corresponds to an exchange of challenges. At this point the server has verified that the user
is who they say they are.

5. The client side SRPLogi nMbdul e saves the login username and ML challenge into the
Logi nMbdul e sharedState map. This is used as the Principal name and credentials by the

150

http://srp.stanford.edu/
http://srp.stanford.edu/

Understanding the Algorithm

standard JBoss d i ent Logi nMbdul e. The ML challenge is used in place of the password as
proof of identity on any method invocations on Java EE components. The ML challenge is a
cryptographically strong hash associated with the SRP session. Its interception via a third partly
cannot be used to obtain the user's password.

6. At the end of this authentication protocol, the SRPServerSession has been placed into the
SRPService authentication cache for subsequent use by the SRPCachelLogi nMbdul e.

Although SRP has many interesting properties, it is still an evolving component in the JBossSX
framework and has some limitations of which you should be aware. Issues of note include the
following:

« Where authentication is performed, the way in which JBoss detaches the method transport
protocol from the component container could allow a user to snoop the SRP ML challenge
and effectively use the challenge to make requests as the associated username. Custom
interceptors can be used to prevent the issue, by encrypting the challenge using the SRP
session key.

« The SRPService maintains a cache of SRP sessions that time out after a configurable period.
Once they time out, any subsequent Java EE component access will fail because there is
currently no mechanism for transparently renegotiating the SRP authentication credentials. You
must either set the authentication cache timeout quite high, or handle re-authentication in your
code on failure.

Note

The SRPService supports timeout durations up to 2,147,483,647 seconds, or
approximately 68 years.

» There can only be one SRP session for a given username by default. The session is classed
as stateful, because the negotiated SRP session produces a private session key that can be
used for encryption and decryption between the client and server. JBoss supports multiple SRP
sessions per user, however it is not possible to encrypt data with one session key, and decrypt
it with another.

To use end-to-end SRP authentication for Java EE component calls, you must
configure the security domain under which the components are secured to use
the org.jboss. security.srp.jaas. SRPCachelLogi nModul e. The SRPCachelLogi nMbdul e has
a single configuration option named cacheJndi Nane that sets the JNDI location
of the SRP authentication CachePolicy instance. This must correspond to the
Aut hent i cati onCacheJndi Nane attribute value of the SRPSer vi ce MBean.

The SRPCacheLogi nMbdul e authenticates user credentials by obtaining the client challenge from
the SRPSer ver Sessi on object in the authentication cache and comparing this to the challenge

151

Chapter 19. Secure Remote Pas...

passed as the user credentials. Figure 19.2, “SRPCachelLoginModule with SRP Session Cache”
illustrates the operation of the SRPCachelLoginModule.login method implementation.

LoghinModul e Aut hCache cacheCre
j SsEPCachelogintModule CachePolicy SJEPaerve

it r

izValid:=logini():bhoole
By

I
I
I
I
*E___grPrincipal, clientchallehge:=gEtUserInfD(]:vnid
JNDI lookup (cachedndilName |

cachEErEdential:=getiuser££=ncipal]:ﬂhject

|
" jengt— I

iaValid:=validateCache [cachfCredential) :hoolean

challenge:=gEtElientRE3pDns%I]:hyte[]

= gl

iaValid = Arravz.edqualsichihllenge, clientChallenge)
|

Figure 19.2. SRPCacheLoginModule with SRP Session Cache

19.2. Configure Secure Remote Password Information

You must create a MBean service that provides an implementation of the SRPVeri fierStore
interface that integrates with your existing security information stores. The SRPVerifierStore
interface is shown in Example 19.2, “The SRPVerifierStore interface”.

152

Configure Secure Remote Password
Information

Note

The default implementation of the SRPVerifierStore interface is not
recommended for a production security environment because it requires all
password hash information to be available as a file of serialized objects.

Example 19.2. The SRPVerifierStore interface

package org.jboss.security.srp;

import java.io.lOException;
import java.io.Serializable;
import java.security.KeyException;

public interface SRPVerifierStore
{

public static class Verifierinfo implements Serializable

{

public String username;

public byte[] salt;
public byte[] g;
public byte[] N;

public Verifierinfo getUserVerifier(String username)
throws KeyException, IOException;

public void setUserVerifier(String username, VerifierInfo info)
throws IOException;

public void verifyUserChallenge(String username, Object auxChallenge)
throws SecurityException;

The primary function of a SRPVerifierStore implementation is to provide
access to the SRPVerifierStore.Verifierlnfo object for a given username. The
get User Verifier(String) method is called by the SRPService at that start of a user

153

Chapter 19. Secure Remote Pas...

SRP session to obtain the parameters needed by the SRP algorithm. The elements of the
Veri fi erl nf o objects are:

username
The user's name or id used to login.

verifier
One-way hash of the password or PIN the user enters as proof of identity. The
org.jboss.security. Uil class has a cal cul ateVerifier method that performs that
password hashing algorithm. The output password takes the form H(salt | H(usernane |
| password)), where His the SHA secure hash function as defined by RFC2945. The
username is converted from a string to a byt e[] using UTF-8 encoding.

salt
Random number used to increase the difficulty of a brute force dictionary attack on the verifier
password database in the event that the database is compromised. The value should be
generated from a cryptographically strong random number algorithm when the user's existing
clear-text password is hashed.

g
SRP algorithm primitive generator. This can be a well known fixed parameter rather than a per-
user setting. The or g. j boss. securi ty. srp. SRPConf utility class provides several settings
for g, including a suitable default obtained via SRPConf . get Def aul t Parans(). g() .

N

SRP algorithm safe-prime modulus. This can be a well known fixed parameter
rather than a per-user setting. The org.jboss. security.srp. SRPConf utility class
provides several settings for N including a good default which can obtained via
SRPConf . get Def aul t Parans(). N() .

Procedure 19.1. Integrate Existing Password Store

Read this procedure to understand the steps involved to integrate your existing password store.

1. Create Hashed Password Information Store

If your passwords are already stored in an irreversible hashed form, then this can only be
done on a per-user basis (for example, as part of an upgrade procedure).

You can implement set User Verifier(String, Verifierlnfo) as a noOp method, or a
method that throws an exception stating that the store is read-only.

2. Create SRPVerifierStore Interface

You must create a custom SRPVeri fi er St or e interface implementation that understands
how to obtain the Veri fi er I nf o from the store you created.

The veri fyUser Chal | enge(String, Object) can be used to integrate existing hardware
token based schemes like SafeWord or Radius into the SRP algorithm. This interface method

154

Secure Remote Password Example

is called only when the client SRPLogi nMbdul e configuration specifies the hasAuxChal | enge
option.

3. Create JNDI MBean

You must create a MBean that exposes the SRPVeri fi er St or e interface available to JNDI,
and exposes any configurable parameters required.

The default org.jboss.security.srp. SRPVerifierStoreService wil allow you to
implement this, however you can also implement the MBean using a Java properties file
implementation of SRPVerifierStore (refer to Section 19.3, “Secure Remote Password
Example”).

19.3. Secure Remote Password Example

The example presented in this section demonstrates client side authentication of the user via SRP
as well as subsequent secured access to a simple EJB using the SRP session challenge as the
user credential. The test code deploys an EJB JAR that includes a SAR for the configuration of
the server side login module configuration and SRP services.

The server side login module configuration is dynamically installed using the SecurityConfig
MBean. A custom implementation of the SRPVeri fi er St or e interface is also used in the example.
The interface uses an in-memory store that is seeded from a Java properties file, rather than a
serialized object store as used by the SRPVeri fi er St or eSer vi ce.

This custom service is or g. j boss. book. security. ex3. service. PropertiesVerifierStore.
The following shows the contents of the JAR that contains the example EJB and SRP services.

The key SRP related items in this example are the SRP MBean services configuration, and the
SRP login module configurations. The j boss- servi ce. xm descriptor of the securi t y- ex3. sar
is described in Example 19.3, “The security-ex3.sar jboss-service.xml Descriptor”.

The example client side and server side login module configurations are described in
Example 19.4, “The client side standard JAAS configuration” and Example 19.5, “The server side
XMLLoginConfig configuration” give .

155

Chapter 19. Secure Remote Pas...

Example 19.3. The security-ex3.sar jboss-service.xml Descriptor

<server>
<!I-- The custom JAAS login configuration that installs
a Configuration capable of dynamically updating the
config settings -->

<mbean code="org.jboss.book.security.service.SecurityConfig"
name="jboss.docs.security:service=LoginConfig-EX3">
<attribute name="AuthConfig">META-INF/login-config.xml</attribute>
<attribute name="SecurityConfigName">jboss.security:name=SecurityConfig</attribute>
</mbean>

<!I-- The SRP service that provides the SRP RMI server and server side
authentication cache -->
<mbean code="org.jboss.security.srp.SRPService"
name="jboss.docs.security:service=SRPService">
<attribute name="VerifierSourceJndiName">srp-test/security-ex3</attribute>
<attribute name="JndiName">srp-test/SRPServerinterface</attribute>
<attribute name="AuthenticationCacheJndiName">srp-test/AuthenticationCache</attribute>
<attribute name="ServerPort">0</attribute>
<depends>jboss.docs.security:service=PropertiesVerifierStore</depends>
</mbean>

<!l-- The SRP store handler service that provides the user password verifier
information -->
<mbean code="org.jboss.security.ex3.service.PropertiesVerifierStore"
name="jboss.docs.security:service=PropertiesVerifierStore">
<attribute name="JndiName">srp-test/security-ex3</attribute>
</mbean>
</server>

The example services are the ServiceConfig and the PropertiesVerifierStore and
SRPServi ce MBeans. Note that the Jndi Nane attribute of the PropertiesVerifierStore is
equal to the Veri fi er Sour ceJndi Nane attribute of the SRPSer vi ce, and that the SRPSer vi ce
depends on the PropertiesVerifierStore. This is required because the SRPSer vi ce needs
an implementation of the SRPVeri fi er St or e interface for accessing user password verification
information.

Example 19.4. The client side standard JAAS configuration

srp {

156

Secure Remote Password Example

org.jboss.security.srp.jaas.SRPLoginModule required
srpServerJndiName="srp-test/SRPServerinterface"

3

org.jboss.security.ClientLoginModule required
password-stacking="useFirstPass"

%

The client side login module configuration makes use of the SRPLogi nMbdul e with a
srpSer ver Jndi Name option value that corresponds to the JBoss server component SRPSer vi ce
JndiName attribute value(sr p- t est / SRPSer ver I nt er f ace). The d i ent Logi nMbdul e must also
be configured with the password-stacki ng="useFirstPass" value to propagate the user
authentication credentials generated by the SRPLogi nMbdul e to the EJB invocation layer.

Example 19.5. The server side XMLLoginConfig configuration

<application-policy name="security-ex3">
<authentication>
<login-module code="org.jboss.security.srp.jaas.SRPCachelLoginModule"
flag = "required">
<module-option name="cacheJndiName">srp-test/AuthenticationCache</module-option>
</login-module>
<login-module code="org.jboss.security.auth.spi.UsersRolesLoginModule"
flag = "required">
<module-option name="password-stacking">useFirstPass</module-option>
</login-module>
</authentication>
</application-policy>

There are two issues to note about the server side login module configuration:

1. The cacheJdndi Name=srp-test/Aut henticationCache configuration option tells the
SRPCachelLogi nMbdul e the location of the CachePol i cy that contains the SRPSer ver Sessi on
for users who have authenticated against the SRPServi ce. This value corresponds to the
SRPSer vi ceAut hent i cat i onCacheJndi Nane attribute value.

2. The configuration includes a UsersRol esLogi nModule with the password-
st acki ng=useFi r st Pass configuration option. You must use a second login module with
the SRPCachelogi nModul e because SRP is only an authentication technology. To set the
principal's roles that in turn determine the associated permissions, a second login module must
be configured to accept the authentication credentials validated by the SRPCachelLogi nvodul e .

157

Chapter 19. Secure Remote Pas...

The User sRol esLogi nModul e is augmenting the SRP authentication with properties file based
authorization. The user's roles are obtained from the r ol es. properti es file included in the EJB
JAR.

Run the example 3 client by executing the following command from the book examples directory:

In the exanpl es/ | ogs directory, the ex3-trace. | og file contains a detailed trace of the client
side of the SRP algorithm. The traces show step-by-step the construction of the public keys,
challenges, session key and verification.

Observe that the client takes a long time to run, relative to the other simple examples. The
reason for this is the construction of the client's public key. This involves the creation of a
cryptographically strong random number, and this process takes longer when it first executes.
Subsequent authentication attempts within the same VM are much faster.

Note that Echo. echo()#2 fails with an authentication exception. The client code sleeps for
15 seconds after making the first call to demonstrate the behavior of the SRPServi ce cache
expiration. The SRPSer vi ce cache policy timeout has been set to 10 seconds to force this issue. As
discussed in Section 19.3, “Secure Remote Password Example” you must set the cache timeout
correctly, or handle re-authentication on failure.

158

Chapter 20.

Consoles and Invokers

JBoss AS ships with several administrative access points that must be secured or removed to
prevent unauthorized access to administrative functions in a deployment. This chapter discusses
the various administration services and how to secure them.

20.1. JIMX Console

The j mx-consol e. war found in the depl oy directory provides an HTML view into the JMX
Microkernel. As such, it provides access to administrative actions like shutting down the server,
stopping services, deploying new services, etc. It should either be secured like any other web
application, or removed.

20.2. Admin Console

The Admin Console replaces the Web Console, and uses JBoss Operations Network security
elements to secure the console. For more information, refer to the JBoss Admin Console Quick
Start User Guide.

20.3. HTTP Invokers

The http-invoker.sar found in the depl oy directory is a service that provides RMI/HTTP
access for EJBs and the JNDI Naming service. This includes a servlet that processes
posts of marshaled org.jboss.invocation. | nvocation objects that represent invocations
that should be dispatched onto the MBeanServer . Effectively this allows access to MBeans
that support the detached invoker operation via HTTP POST requests. Securing this access
point involves securing the JMXI nvoker Servl et servlet found in the http-invoker.sar/
i nvoker. war/ WEB- | NF/ web. xm descriptor. There is a secure mapping defined for the /
restricted/ JMXI nvoker Servl et path by default. Remove the other paths and configure the
ht t p-i nvoker security domain setup in the ht t p-i nvoker. sar/i nvoker. war/ WEB- | NF/ j boss-
web. xnml deployment descriptor.

Note

See the Admin Console Quick Start Guide for in-depth information on securing the
HTTP invoker.

20.4. IMX Invoker

The j nx-invoker-service.xnl is a configuration file that exposes the JMX MBeanServer
interface via an RMI compatible interface using the RMI/JJRMP detached invoker service.

159

Chapter 20. Consoles and Invokers

20.5. Remote Access to Services, Detached Invokers

In addition to the MBean services notion that allows for the ability to integrate arbitrary functionality,
JBoss also has a detached invoker concept that allows MBean services to expose functional
interfaces via arbitrary protocols for remote access by clients. The notion of a detached invoker
is that remoting and the protocol by which a service is accessed is a functional aspect or service
independent of the component. Therefore, you can make a naming service available for use via
RMI/JJRMP, RMI/HTTP, RMI/SOAP, or any arbitrary custom transport.

The discussion of the detached invoker architecture will begin with an overview of the components
involved. The main components in the detached invoker architecture are shown in Figure 20.1,
“The main components in the detached invoker architecture”.

160

Remote Access to Services, Detached Invokers

Proxy Factory

Client Proxy] Detached | Invoker

EMI / JEMP
« >
i invoke (Invocation)

Exposed Interface

Invoker Interceptor : JMX

MBeanServer

- Target MBean

JHXK

{ sl

invoke{Invocation)

* Exposed Interface

Figure 20.1. The main components in the detached invoker architecture

On the client side, there exists a client proxy which exposes the interface(s) of the MBean service.
This is the same smart, compile-less dynamic proxy that is used for EJB home and remote
interfaces. The only difference between the proxy for an arbitrary service and the EJB is the set
of interfaces exposed as well as the client side interceptors found inside the proxy. The client
interceptors are represented by the rectangles found inside of the client proxy. An interceptor is an
assembly line type of pattern that allows for transformation of a method invocation and/or return
values. A client obtains a proxy through some lookup mechanism, typically JNDI. Although RMI
is indicated in Figure 20.1, “The main components in the detached invoker architecture”, the only
real requirement on the exposed interface and its types is that they are serializable between the
client server over JNDI as well as the transport layer.

161

Chapter 20. Consoles and Invokers

The choice of the transport layer is determined by the last interceptor in the client proxy, which
is referred to as the Invoker Interceptor in Figure 20.1, “The main components in the detached
invoker architecture”. The invoker interceptor contains a reference to the transport specific stub
of the server side Detached Invoker MBean service. The invoker interceptor also handles the
optimization of calls that occur within the same VM as the target MBean. When the invoker
interceptor detects that this is the case the call is passed to a call-by-reference invoker that simply
passes the invocation along to the target MBean.

The detached invoker service is responsible for making a generic invoke operation available via
the transport the detached invoker handles. The I nvoker interface illustrates the generic invoke
operation.

package org.jboss.invocation;

import java.rmi.Remote;
import org.jboss.proxy.Interceptor;
import org.jboss.util.id.GUID;

public interface Invoker
extends Remote

GUID ID = new GUID();

String getServerHostName() throws Exception;

Object invoke(Invocation invocation) throws Exception;

The Invoker interface extends Renot e to be compatible with RMI, but this does not mean that an
invoker must expose an RMI service stub. The detached invoker service simply acts as a transport
gateway that accepts invocations represented asthe or g. j boss. i nvocati on. I nvocat i on object
over its specific transport, unmarshalls the invocation, forwards the invocation onto the destination
MBean service, represented by the Target MBean in Figure 20.1, “The main components in the
detached invoker architecture”, and marshalls the return value or exception resulting from the
forwarded call back to the client.

The I nvocat i on object is just a representation of a method invocation context. This includes the
target MBean name, the method, the method arguments, a context of information associated with
the proxy by the proxy factory, and an arbitrary map of data associated with the invocation by the
client proxy interceptors.

162

A Detached Invoker Example, the

MBeanServer Invoker Adaptor Service

The configuration of the client proxy is done by the server side proxy factory MBean service,

indicated by the Proxy Factory component in Figure 20.1, “The main components in the detached
invoker architecture”. The proxy factory performs the following tasks:

Create a dynamic proxy that implements the interface the target MBean wishes to expose.
» Associate the client proxy interceptors with the dynamic proxy handler.

» Associate the invocation context with the dynamic proxy. This includes the target MBean,
detached invoker stub and the proxy JNDI name.

« Make the proxy available to clients by binding the proxy into JNDI.

The last component in Figure 20.1, “The main components in the detached invoker architecture”
is the Target MBean service that wishes to expose an interface for invocations to remote clients.
The steps required for an MBean service to be accessible through a given interface are:

« Define a JMX operation matching the signature: public Qbj ect

i nvoke(org.jboss.invocation.lnvocation) throws Exception

e Create a HashMap<Long, Met hod> mapping from the exposed interface
java.lang.reflect. Methods to the long hash representation using the

org.j boss.invocation. Marshal | edl nvocati on. cal cul at eHash method.

e Implement the i nvoke(lnvocation) JMX operation and use the interface method hash
mapping to transform from the long hash representation of the invoked method to the
java. | ang. ref | ect. Met hod of the exposed interface. Reflection is used to perform the actual
invocation on the object associated with the MBean service that actually implements the
exposed interface.

20.5.1. A Detached Invoker Example, the MBeanServer Invoker
Adaptor Service
This section presents the org. j boss. j nx. connect or. i nvoker. | nvoker Adapt or Ser vi ce and

its configuration for access via RMI/JRMP as an example of the steps required to provide remote
access to an MBean service.

Example 20.1. The InvokerAdaptorService MBean

The I nvoker Adapt or Ser vi ce is a simple MBean service that exists to fulfill the target MBean
role in the detached invoker pattern.

package org.jboss.jmx.connector.invoker;
public interface InvokerAdaptorServiceMBean
extends org.jboss.system.ServiceMBean

Class getExportedinterface();
void setExportedinterface(Class exportedinterface);

163

Chapter 20. Consoles and Invokers

Object invoke(org.jboss.invocation.Invocation invocation)
throws Exception;

package org.jboss.jmx.connector.invoker;

import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;

import java.lang.reflect.UndeclaredThrowableException;
import java.util.Collections;

import java.util. HashMap;

import java.util.Map;

import javax.management.MBeanServer;
import javax.management.ObjectName;

import org.jboss.invocation.Invocation;

import org.jboss.invocation.Marshalledinvocation;
import org.jboss.mx.server.ServerConstants;
import org.jboss.system.ServiceMBeanSupport;
import org.jboss.system.Registry;

public class InvokerAdaptorService
extends ServiceMBeanSupport
implements InvokerAdaptorServiceMBean, ServerConstants

private static ObjectName mbeanRegistry;

static {

try {
mbeanRegistry = new ObjectName(MBEAN_REGISTRY);

} catch (Exception e) {
throw new RuntimeException(e.toString());

private Map marshalledinvocationMapping = new HashMap();
private Class exportedinterface;

public Class getExportedinterface()
{

return exportedinterface;

164

A Detached Invoker Example, the
MBeanServer Invoker Adaptor Service

public void setExportedinterface(Class exportedinterface)

{

this.exportedinterface = exportedinterface;

protected void startService()
throws Exception

/[Build the interface method map

Method[] methods = exportedinterface.getMethods();

HashMap tmpMap = new HashMap(methods.length);

for (int m = 0; m < methods.length; m ++) {
Method method = methods[m];
Long hash = new Long(Marshalledinvocation.calculateHash(method));
tmpMap.put(hash, method);

marshalledinvocationMapping = Collections.unmodifiableMap(tmpMap);
/I Place our ObjectName hash into the Registry so invokers can

I resolve it

Registry.bind(new Integer(serviceName.hashCode()), serviceName);

protected void stopService()
throws Exception

Registry.unbind(new Integer(serviceName.hashCode()));

public Object invoke(Invocation invocation)
throws Exception

/l Make sure we have the correct classloader before unmarshalling
Thread thread = Thread.currentThread();
ClassLoader oldCL = thread.getContextClassLoader();

/I Get the MBean this operation applies to

ClasslLoader newCL = null;

ObjectName objectName = (ObjectName)
invocation.getValue("JMX_OBJECT_NAME");

if (objectName != null) {
/I Obtain the ClassLoader associated with the MBean deployment

165

Chapter 20. Consoles and Invokers

newCL = (ClassLoader)
server.invoke(mbeanRegistry, "getValue",
new Object[] { objectName, CLASSLOADER },
new String[] { ObjectName.class.getName(),
"java.lang.String" });

if (newCL != null && newCL != oldCL) {
thread.setContextClassLoader(newCL);

try {
/I Set the method hash to Method mapping

if (invocation instanceof Marshalledinvocation) {
Marshalledinvocation mi = (Marshalledinvocation) invocation;
mi.setMethodMap(marshalledinvocationMapping);

/I Invoke the MBeanServer method via reflection
Method method = invocation.getMethod();
Object[] args = invocation.getArguments();
Object value = null;
try {
String name = method.getName();
Class[] sig = method.getParameterTypes();
Method mbeanServerMethod =
MBeanServer.class.getMethod(name, sig);
value = mbeanServerMethod.invoke(server, args);
} catch(InvocationTargetException e) {
Throwable t = e.getTargetException();
if (t instanceof Exception) {
throw (Exception) t;
}else {
throw new UndeclaredThrowableException(t, method.toString());

return value;
} finally {
if (newCL != null && newCL != oldCL) {
thread.setContextClassLoader(oldCL);

166

A Detached Invoker Example, the
MBeanServer Invoker Adaptor Service

To help understand the components that make up the | nvoker Adapt or Ser vi ceMBean, the code
has been split into logical blocks, with commentary about how each block interoperates.

Example 20.2. Block One

package org.jboss.jmx.connector.invoker;
public interface InvokerAdaptorServiceMBean
extends org.jboss.system.ServiceMBean

Class getExportedinterface();
void setExportedinterface(Class exportedinterface);

Object invoke(org.jboss.invocation.Invocation invocation)
throws Exception;

package org.jboss.jmx.connector.invoker;

import java.lang.reflect.InvocationTargetException;
import java.lang.reflect.Method;

import java.lang.reflect.UndeclaredThrowableException;
import java.util.Collections;

import java.util. HashMap;

import java.util.Map;

import javax.management.MBeanServer;
import javax.management.ObjectName;

import org.jboss.invocation.Invocation;

import org.jboss.invocation.MarshalledInvocation;
import org.jboss.mx.server.ServerConstants;
import org.jboss.system.ServiceMBeanSupport;
import org.jboss.system.Registry;

public class InvokerAdaptorService
extends ServiceMBeanSupport
implements InvokerAdaptorServiceMBean, ServerConstants

private static ObjectName mbeanRegistry;

static {

167

Chapter 20. Consoles and Invokers

try {
mbeanRegistry = new ObjectName(MBEAN_REGISTRY);

} catch (Exception e) {
throw new RuntimeException(e.toString());

private Map marshalledinvocationMapping = new HashMap();
private Class exportedinterface;

public Class getExportedinterface()
{

return exportedinterface;

public void setExportedinterface(Class exportedinterface)

{

this.exportedinterface = exportedinterface;

The | nvoker Adapt or Ser vi ceMBean Standard MBean interface of the | nvoker Adapt or Ser vi ce
has a single Expor t edl nt er f ace attribute and a single i nvoke(| nvocati on) operation.

Exportedl nterface
The attribute allows customization of the type of interface the service exposes to clients. This
must be compatible with the MBeanSer ver class in terms of method name and signature.

i nvoke(l nvocati on)
The operation is the required entry point that target MBean services must expose to participate
in the detached invoker pattern. This operation is invoked by the detached invoker services
that have been configured to provide access to the | nvoker Adapt or Ser vi ce.

Example 20.3. Block Two

protected void startService()
throws Exception

/[Build the interface method map
Method[] methods = exportedinterface.getMethods();
HashMap tmpMap = new HashMap(methods.length);
for (int m = 0; m &It; methods.length; m ++) {
Method method = methods[m];
Long hash = new Long(Marshalledinvocation.calculateHash(method));

168

A Detached Invoker Example, the

MBeanServer Invoker Adaptor Service
tmpMap.put(hash, method);

marshalledinvocationMapping = Collections.unmodifiableMap(tmpMap);
/I Place our ObjectName hash into the Registry so invokers can
/I resolve it
Registry.bind(new Integer(serviceName.hashCode()), serviceName);
}
protected void stopService()
throws Exception

Registry.unbind(new Integer(serviceName.hashCode()));

This code block builds the HashMap<Long, Method> of the expor t edl nt er f ace Class using the
org.j boss.invocation. Marshal | edl nvocati on. cal cul at eHash(Met hod) utility method.

Because j ava. | ang. ref | ect . Met hod instances are not serializable, a Mar shal | edl nvocati on
version of the non-serializable | nvocati on class is used to marshall the invocation between
the client and server. The Marshal | edl nvocati on replaces the Method instances with their
corresponding hash representation. On the server side, the Mar shal | edl nvocat i on must be told
what the hash to Method mapping is.

This code block creates a mapping between the I nvoker Adapt or Ser vi ce service name and its
hash code representation. This is used by detached invokers to determine what the target MBean
Obj ect Nane of an | nvocat i on is.

When the target MBean name is stored in the I nvocat i on, its store as its hashCode because
(Obj ect Nanes are relatively expensive objects to create. The or g. j boss. system Regi stry is a
global map like construct that invokers use to store the hash code to Obj ect Nanme mappings in.

Example 20.4. Block Three

public Object invoke(Invocation invocation)
throws Exception

/l Make sure we have the correct classloader before unmarshalling
Thread thread = Thread.currentThread();
ClassLoader oldCL = thread.getContextClassLoader();

/I Get the MBean this operation applies to

ClassLoader newCL = null;

ObjectName objectName = (ObjectName)
invocation.getValue("JMX_OBJECT NAME");

169

Chapter 20. Consoles and Invokers

if (objectName != null) {
/I Obtain the ClassLoader associated with the MBean deployment
newCL = (ClassLoader)
server.invoke(mbeanRegistry, "getValue",
new Object[] { objectName, CLASSLOADER },
new String[] { ObjectName.class.getName(),
"java.lang.String" });

if (newCL != null && newCL != oldCL) {
thread.setContextClassLoader(newCL);

This code block obtains the name of the MBean on which the MBeanServer operation is being
performed, and then looks up the class loader associated with the MBean's SAR deployment.
This information is available via the or g. j boss. nx. server. regi stry. Basi cMBeanRegi stry, a
JBoss JMX implementation-specific class.

It is generally necessary for an MBean to establish the correct class loading context because the
detached invoker protocol layer may not have access to the class loaders needed to unmarshall
the types associated with an invocation.

Example 20.5. Block Four

try {
/I Set the method hash to Method mapping

if (invocation instanceof Marshalledinvocation) {
Marshalledinvocation mi = (MarshalledInvocation) invocation;
mi.setMethodMap(marshalledinvocationMapping);

This code block installs the Exposed! nt er f ace class method hash to method mapping if the
invocation argument is of type Marshal | edl nvocati on. The method mapping calculated in
Example 20.3, “Block Two"is used here.

A second mapping is performed from the Exposedl nt er f ace method to the matching method of
the MBeanServer class. The I nvoker Ser vi ceAdapt or decouples the Exposedl nt er f ace from
the MBeanServer class in that it allows an arbitrary interface. This is required because the
standard j ava. | ang. refl ect . Proxy class can only proxy interfaces. It also allows you to only
expose a subset of the MBeanServer methods and add transport specific exceptions such as
java. rm . Renot eExcepti on to the Exposedl nt er f ace method signatures.

170

A Detached Invoker Example, the
MBeanServer Invoker Adaptor Service

Example 20.6. Block Five

/I Invoke the MBeanServer method via reflection
Method method = invocation.getMethod();
Object[] args = invocation.getArguments();
Object value = null;
try {
String name = method.getName();
Class[] sig = method.getParameterTypes();
Method mbeanServerMethod =
MBeanServer.class.getMethod(name, sig);
value = mbeanServerMethod.invoke(server, args);
} catch(InvocationTargetException e) {
Throwable t = e.getTargetException();
if (t instanceof Exception) {
throw (Exception) t;
}else {
throw new UndeclaredThrowableException(t, method.toString());

return value;
} finally {
if (newCL != null && newCL != oldCL) {
thread.setContextClassLoader(oldCL);

The code block dispatches the MBeanServer method invocation to the | nvoker Adapt or Ser vi ce
MBeanServer instance to which the was deployed. The server instance variable is inherited from
the Ser vi ceMBeanSupport superclass.

Any exceptions that result from the reflective invocation are handled, including unwrapping any
declared exceptions thrown by the invocation. The MBean code completes with the return of the
successful MBeanServer method invocation result.

171

Chapter 20. Consoles and Invokers

Note

The | nvoker Adapt or Ser vi ce MBean does not deal directly with any transport
specific details. There is the calculation of the method hash to Method mapping,
but this is a transport independent detail.

Now take a look at how the I nvoker Adapt or Servi ce may be used to expose the same
org.j boss.jnx.adaptor.rn.RM Adapt or interface via RMI/JJRMP as seen in Connecting to
JMX Using RMI.

We start by presenting the proxy factory and | nvoker Adapt or Ser vi ce configurations found in the
default setup in the j nx-i nvoker - adapt or - ser vi ce. sar deployment. Example 20.7, “Default
jmx-invoker-adaptor-server.sar deployment descriptor” shows the j boss- ser vi ce. xm descriptor
for this deployment.

Example 20.7. Default jmx-invoker-adaptor-server.sar deployment
descriptor

<server>
<!I-- The JRMP invoker proxy configuration for the InvokerAdaptorService -->
<mbean code="org.jboss.invocation.jrmp.server.JRMPProxyFactory"
name="jboss.jmx:type=adaptor,name=Invoker,protocol=jrmp,service=proxyFactory">
<l-- Use the standard JRMPInvoker from conf/jboss-service.xml| -->
<attribute name="InvokerName">jboss:service=invoker,type=jrmp</attribute>
<!-- The target MBean is the InvokerAdaptorService configured below -->
<attribute name="TargetName">jboss.jmx:type=adaptor,name=Invoker</attribute>
<!l-- Where to bind the RMIAdaptor proxy -->
<attribute name="JndiName">jmx/invoker/RMIAdaptor</attribute>
<l-- The RMI compatible MBeanServer interface -->
<attribute name="Exportedinterface">org.jboss.jmx.adaptor.rmi.RMIAdaptor</attribute>
<attribute name="ClientInterceptors">
<iterceptors>
<interceptor>org.jboss.proxy.ClientMethodInterceptor</interceptor>
<interceptor>
org.jboss.jmx.connector.invoker.client.InvokerAdaptorClientinterceptor
</interceptor>
<interceptor>org.jboss.invocation.Invokerinterceptor</interceptor>
</iterceptors>
</attribute>
<depends>jboss:service=invoker,type=jrmp</depends>
</mbean>
<!I-- This is the service that handles the RMIAdaptor invocations by routing
them to the MBeanServer the service is deployed under. -->

172

A Detached Invoker Example, the
MBeanServer Invoker Adaptor Service
<mbean code="org.jboss.jmx.connector.invoker.InvokerAdaptorService"

name="jboss.jmx:type=adaptor,name=Invoker">
<attribute name="ExportedInterface">org.jboss.jmx.adaptor.rmi.RMIAdaptor</attribute>
</mbean>
</server>

The first MBean, org.jboss.invocation.jrnp.server.JRVPProxyFactory, is the proxy
factory MBean service that creates proxies for the RMI/JJRMP protocol. The configuration of
this service as shown in Example 20.7, “Default jmx-invoker-adaptor-server.sar deployment
descriptor” states that the JRMPInvoker will be used as the detached invoker, the
I nvoker Adapt or Servi ce is the target mbean to which requests will be forwarded, that
the proxy will expose the RM Adaptor interface, the proxy will be bound into JNDI
under the name jnx/invoker/RM Adaptor, and the proxy will contain 3 interceptors:
C i ent Met hodl nt ercept or, | nvoker Adaptor Cl i ent | nterceptor, | nvoker | nterceptor. The
configuration of the | nvoker Adapt or Servi ce simply sets the RMIAdaptor interface that the
service is exposing.

The last piece of the configuration for exposing the I nvoker Adapt or Servi ce via RMI/JJRMP
is the detached invoker. The detached invoker we will use is the standard RMI/JRMP
invoker used by the EJB containers for home and remote invocations, and this is the
org.j boss.invocation.jrnp.server.JRWI nvoker MBean service configured in the conf/
j boss-service. xnl descriptor. That we can use the same service instance emphasizes the
detached nature of the invokers. The JRMPInvoker simply acts as the RMI/JJRMP endpoint for
all RMI/JJRMP proxies regardless of the interface(s) the proxies expose or the service the proxies
utilize.

173

174

	JBoss AS 6.0 Security Guide
	Table of Contents
	Part I. Security Overview
	Chapter 1. J2EE Declarative Security Overview
	1.1. Security References
	1.2. Security Identity
	1.3. Security roles
	1.4. EJB method permissions
	1.5. Web Content Security Constraints
	1.6. Enabling Declarative Security in JBoss

	Chapter 2. Introduction to JAAS
	2.1. The JAAS Core Classes
	2.1.1. The Subject and Principal Classes
	2.1.2. Authentication of a Subject

	Chapter 3. JBoss Security Model
	3.1. Enabling Declarative Security in JBoss Revisited

	Chapter 4. The JBoss Security Extension Architecture
	4.1. How the JaasSecurityManager Uses JAAS
	4.2. The JaasSecurityManagerService MBean
	4.2.1. The JNDIBasedSecurityManagement Bean

	4.3. The JaasSecurityDomain Bean

	Part II. Security Domains and Components
	Chapter 5. Static Security Domains
	Chapter 6. Loading Static Security Domains
	Chapter 7. Dynamic Security Domains
	Chapter 8. Authorization Stacks
	Chapter 9. Deployment-level Role Mapping
	Chapter 10. JBoss Login Modules
	10.1. Using Modules
	10.1.1. Password Stacking
	10.1.2. Password Hashing
	10.1.3. Unauthenticated Identity
	10.1.4. Principal Class
	10.1.5. UsersRolesLoginModule
	10.1.6. DatabaseServerLoginModule
	10.1.7. LdapLoginModule
	10.1.8. LdapExtLoginModule
	10.1.9. BaseCertLoginModule
	10.1.10. IdentityLoginModule
	10.1.11. RunAsLoginModule
	10.1.12. ClientLoginModule

	10.2. Custom Modules
	10.2.1. Custom LoginModule Example

	Part III. Encryption and Security
	Chapter 11. Java Security Manager
	Chapter 12. Encrypting EJB connections with SSL
	12.1. SSL Encryption overview
	12.1.1. Key pairs and Certificates

	12.2. Generate encryption keys and certificate
	12.2.1. Generate a self-signed certificate with keytool
	12.2.1.1. Generate a keypair
	12.2.1.2. Export a self-signed certificate

	12.2.2. Configure a client to accept a self-signed server certificate

	12.3. EJB3 Configuration
	12.3.1. Create a secure remoting connector for EJB3
	12.3.2. Configure EJB3 Beans for SSL Transport

	12.4. EJB2 Configuration

	Chapter 13. Masking Passwords in XML Configuration
	13.1. Password Masking Overview
	13.2. Generate a key store and a masked password
	13.3. Encrypt the key store password
	13.4. Create password masks
	13.5. Replace clear text passwords with their password masks
	13.6. Changing the password masking defaults

	Chapter 14. Overriding SSL Configuration
	Chapter 15. Encrypting Data Source Passwords
	15.1. Secured Identity
	15.1.1. Encrypt the data source password
	15.1.2. Create an application authentication policy with the encrypted password
	15.1.3. Configure the data source to use the application authentication policy

	15.2. Configured Identity with Password Based Encryption

	Chapter 16. Encrypting the Keystore Password in a Tomcat Connector
	16.1. Medium Security Usecase

	Chapter 17. Using LdapExtLoginModule with JaasSecurityDomain
	Chapter 18. Firewalls
	Chapter 19. Secure Remote Password Protocol
	19.1. Understanding the Algorithm
	19.2. Configure Secure Remote Password Information
	19.3. Secure Remote Password Example

	Chapter 20. Consoles and Invokers
	20.1. JMX Console
	20.2. Admin Console
	20.3. HTTP Invokers
	20.4. JMX Invoker
	20.5. Remote Access to Services, Detached Invokers
	20.5.1. A Detached Invoker Example, the MBeanServer Invoker Adaptor Service

