The Process Virtual Machine

A library for building executable state machines. It can can
serve as the foundation for any form of BPM, workflow and or-
chestration.
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Introduction

1.1. Scope and target audience

Thisisatutorial that introduces the Process Virtual Machine library to Java devel opers.

1.2. Processes and executions

With thislibrary you can build executable process graphs. The key features of thislibrary are

e Create executable processes that are based on a diagram structure

» Runtime behaviour of the nodes can be provided as Activity implementations
» Activities can be wait states

» There are no constraints on the process graph structure

*  Processes diagrams can be based on composition (aka block structured)

e Processes diagrams can be amix of graph based and composition

« During wait states, the runtime state of a process execution can be persisted

e Persistenceis optional

Process definitions are static and define an execution analogue to a Java class. Many executions can be run against
the same process definition. One execution is aso known as a process instance and that is analogue to a Java ob-
ject. An execution maintains the current state for one execution of the process, including a pointer to the current
node.

1.3. Overview

1.3.1. Part One

The first part of this manual gives a thorough introduction on how to implement Activity's. This means creating the
runtime implementation for the process constructs (aka activity types) that are defined in the process languages.

Chapter 2 explains how to create process graphs, how process graphs are executed and how Activities can be build
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that implement the runtime behaviour of nodes in the process graph.

Chapter 3 uses the basic graph execution techniques to show how concrete activities are implemented in meaning-
full setting.

Chapter 4 explains the more fine grained details of graph execution like the relation to threads, looping, sub pro-
cesses and so on.

Chapter 5 are Java classes that are used as part of the process execution, but are not part of the pvm library.

Chapter 6 captures contextual information related to a process execution. Think of it as a Map<String, bject>
that is associated with a process execution.

Chapter 7 shows the infrastructure for generating auditable events from the process. This is the information that
will be fed into the history database that can be queried for statistical information about process execution (aka
Business Intelligence).

1.3.2. Part Two

The second part explains the embeddabl e infrastructure. That infrastructure makes it possible to use multiple trans-
actional resources inside the process execution and configure them to operate correctly in standard and enterprise
Java

Chapter 8 isthe core abstraction layer for the specific Java environment in which the process operates. Transaction-
al resources can be fetched from the environment. The environment will take care of the lazy initialization of the
transactional resources based on the configuration.

Chapter 9 shows how process definitions and process executions can be stored in arelational database. It is also ex-
plained how hibernate is integrated into the environment and how concurrency is handled.

Chapter 10 are the session facades that are exposed to programmatic clients using the PVM functionality. They are
based on commands and use the environment infrastructure.

1.3.3. Part Three

Part three explains two PVM infrastructure features that are based on transactional resources and require the execu-
tion in separate a thread. The job executor that is part of the PVM can execute jobs in a standard Java environment.
Alternatively, there are implementations for messaging and timers that can be bound to IMS and EJB Timers re-
spectively in an enterprise environment.

Chapter 11 are declarative transaction demarcations in a process. This functionality depends on an asynchronous
messaging service.

Chapter 12 can fire pieces of user code, related to an execution in the future.

1.3.4. Part Four

In pPart four, Chapter 13 describes the main steps involved in building a complete process language implementa-
tion.
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1.4. IVM version

jbpm-pvm.jar requiresa VM version 5 or higher.

1.5. Library dependencies

For building and executing processes the jbpm-pvm.jar does not have any other dependencies then on the VM. If
you're using DB persistence, then there is a dependency on hibernate and it's dependencies. More information about
the optional depedencies can be found in the lib directory [../../lib/optional -dependencies.htmil].

1.6. Logging

All jBPM modules use standard java logging
[http://java.sun.com/j2se/1.4.2/docs/guide/util/logging/overview.html]. If you don't like the verbosity of the 2-line
default logging output, Here's how you can configure a single line logging format in the code without using the -
Dj ava. util .l oggi ng. config.file=... command line parameter:

I nput Stream stream = Your C ass. cl ass
. get C assLoader ()
. get Resour ceAsSt rean( "l oggi ng. properties");

try {
LogManager . get LogManager () . readConfi gurati on(strean);

} finally {
stream cl ose();

}

Typically such code would be put in a static block in one of the first classes that is loaded in your application. Then
put alogging.propertiesfile in the root of the classpath that looks like this:

handl ers = java. util .l oggi ng. Consol eHandl er
java. util .l oggi ng. Consol eHandl er. | evel = FI NEST
java. util .l oggi ng. Consol eHandl er.formatter = org.jbpmutil.JbpnfFornmatter

# For exanple, set the comxyz.foo |ogger to only | og SEVERE nessages:
# com xyz. foo. |l evel = SEVERE

.l evel = SEVERE

org.j bpm I evel =FI NEST
org.j bpmtx. | evel =FI NE
org.jbpmwi re. |l evel =FI NE

1.7. Debugging persistence

When testing the persistence, following logging configurations can be valuable. sQu shows the SQL statement that
is executed and t ype shows the values of the parameters that are set in the queries.

org. hi bernate. SQL. | evel =FI NEST
org. hi bernate. type. | evel =FI NEST
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And in case you get afailed batch as a cause in a hibernate exception, you might want to set the batch size to O like
thisin the hibernate properties:

hi bernat e. j dbc. batch_size = 0

Also in the hibernate properties, the following properties allow for detailed logs of the SQL that hibernate spits out:

hi ber nat e. show_sql = true
hi bernate. format _sql = true
hi ber nat e. use_sql _conments = true
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2.1. Activity

The PVM library doesn't have afixed set of process constructs. Instead, runtime behaviour of anode is delegated to
an Acti vity. In other words, Acti vi ty isan interface to implement the runtime behaviour of process constructsin
plain Java. Also, Acti vi t y implementations can be subscrribed as listeners to process events.

public interface Activity extends Serializable {
voi d execut e( Executi on execution) throws Exception;

}

Acti vity's can be used as node behaviour and as listeners to process events. When an activity is used as the node
behaviour, it isin full control of the further propagation of the execution. In other words, a node behaviour can de-
cide what the execution should do next. For example, it can take a transition with executi on. t ake( Transi ti on),
go into a wait state with execut i on. wai t For Si gnal () . Or the node behaviour can not invoke any of the above, in
that case the Process Virtual Machine will just proceed the execution in a default way.

Events are only fired during process execution. Since during an event the execution is aready 'in motion', event
listeners can not control the propagation of execution. Therefore, Activity implementations can only be used as
event listenersiif they don't invoke any of the execution propagation methods.

This way, it is very easy to implement automatic activities that can be used as node behaviour as well as event
listeners. Examples of automatic activities are sending an email, doing a database update, generating a pdf, calcu-
lating an average, etc. All of these can be executed by the process system and they can be used both as node beha-
viour as well as event listeners. In case they are used as node behaviour they can rely on the default proceed beha
viour.

2.2. Activity example

Welll start with avery origina hello world example. A Display activity will print a message to the console:

public class Display inplenents Activity {
String nmessage;

public Display(String nmessage) {
thi s. nressage = nessage;
}

public void execute(Execution execution) ({
System out. pri ntl n( nessage) ;
}
}
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Let' build our first process definition with this activity:

Figure 2.1. Activty example process

ProcessDefinition processDefinition = ProcessFactory. build()
.node("a").initial().behaviour(new Di splay("hello"))
.transition().to("b")
. node("b"). behavi our (new Di spl ay("worl d"))
.done();

Now we can execute this process as follows:

Executi on execution = processDefinition.startExecution();

Theinvocation of st art Execut i on will print hello world to the console;

hell o
wor | d

One thing already worth noticing is that activities can be configured with properties. In the Display example, you
can see that the message property is configured differently in the two usages. With configuration properties it be-
comes possible to write reusable activities. They can then be configured differently each time they are used in a
process. That is an essential part of how process languages can be build on top of the Process Virtual Machine.

2.3. ExternalActivity

External activities are activities for which the responsibility for proceeding the execution is transferred externaly,
meaning outside the process system. This means that for the system that is executing the process, it's a wait state.
The execution will wait until an external trigger is given.

For dealing with external triggers, Ext er nal Act i vi ty adds two methodsto the Acti vity:

public interface External Activity extends Activity {
voi d signal (Execution execution,
String signal,
Map<String, Ooject> paraneters) throws Exception;

Set <Si gnal Defini ti on> get Si gnal s(Executi on execution) throws Exception;

Just like with plain activities, when an execution arrives in a node, the execut e-method of the node behaviour isin-
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voked. In external activities, the execute method typically does something to transfer the responsibility to another
system and then enters a wait state by invoking execut i on. wai t For Si gnal () . For example in the execute method,
responsibility could be transferred to a person by creating a task entry in a task management system and then wait
until the person compl etes the task.

In case a node behaves as a wait state, then the execution will wait in that node until the execution's si gnal method
isinvoked. The execution will delegate that signal to the behaviour Activity of the current node.

So the Activity's si gnal -method is invoked when the execution receives an external trigger during the wait state.
With the signal method, responsibility is transferred back to the process execution. For example, when a person
compl etes atask, the task management system calls the signal method on the execution.

A signa can optionally have a signal name and a map of parameters. Most common way on how node behaviours
interprete the signal and parameters is that the signal relates to the outgoing transition that needs to be taken and
that the parameters are set as variables on the execution. But those are just examples, it is up to the activity to use
the signal and the parameters asit pleases.

The get Si gnal s-method is optional and if a value is returned, it is the set of signals that this node accepts. The
meaning and usage is analogue to how in Java reflection, it's possible to inspect all methods and method signatures
of aJavaclass.

2.4. External Activity example

Here's afirst example of asimple wait state implementation:

public class WaitState inplenments External Activity {

public void execute(Execution execution) {
execut i on. wai t For Si gnal () ;

}

public void signal (Executi on execution,
String signal,
Map<String, oject> paraneters) {
execution. take(signal);

}

publ i c Set <Si gnal Definition> get Si gnal s(Executi on execution) {
return null;

}
}

The execut e-method calls execut i on. wai t For Si gnal (). This call is necessary to prevent automatic propagation
of the execution. By calling execut i on. wai t For Si gnal (), the node will behave as await state.

si gnal -method takes the transition with the signal parameter as the transition name. So when an execution receives
an external trigger, the signal name is interpreted as the name of an outgoing transition and the execution will be
propagated over that transition.

The get Si gnal s-method is for introspection. Since it's optional, it is not implemented in this example, by returning
null. So with this implementation, tools cannot inspect the possible signals that can be given for this node beha
viour. The proper implementation that would match this node's signal method is to return alist of SignalDefini-
tion's that correspond to the names of the outgoing transitions.
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Here's the same simple process that has a transition from ato b. This time, the behaviour of the two nodes will be
WaitState's.

e

Figure 2.2. Process diagram

ProcessDefinition processDefinition = ProcessFactory. buil d()
.node("a").initial().behaviour(new WaitState())
.transition().to("b")
.node("b"). behavi our (new Vit State())
.done();

Executi on execution = processDefinition.startExecution();

execution.signal ();

2.5. Basic process execution

In this next example, we'll combine automatic activities and wait states. This example is a simplified version of a
loan approval process. Graphically, it looks like this:

accept loan regquest

" reject
loan evaluation !

approve

wire the money

end _—

Figure 2.3. Thefirst graph process
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Building process graphs in Java code can be tedious because you have to keep track of all the references in local
variables. To resolve that, the Process Virtual Machine comes with a ProcessFactory. The ProcessFactory is a kind
of domain specific language (DSL) that is embedded in Java and eases the construction of process graphs. This pat-
tern is also known as a fluent interface [http://martinfowler.com/bliki/Fluentl nterface.html].

ProcessDefinition processDefinition = ProcessFactory. buil d()

.node("accept loan request").initial().behaviour(new VitState())
.transition().to("l oan eval uation")

.node("l oan eval uati on"). behavi our (new Wit State())
.transition("approve").to("wire the noney")
.transition("reject").to("end")

.node("wire the nobney").behavi our (new Di spl ay("automati c paynment"))
.transition().to("end")

. node("end") . behavi our (new Wit State())

.done();

For more details about the ProcessFactory, see the javadocs. An alternative for the ProcessFactory would be to cre-
ate an XML language and an XML parser for expressing processes. The XML parser can then instantiate the
classes of packageorg. j bpm pvm i npl directly. That approach is typically taken by process languages.

The node wi re the noney is an automatic node. The bDi spl ay implementation uses the Java API's to just print a
message to the console. But the witty reader can imagine an aternative Act i vi t y implementation that uses the Java
APl of apayment processing library to make areal automatic payment. All the other nodes are wait states.

A new execution for the process above can be started like this

Executi on execution = processDefinition.startExecution();

Starting a new execution implies that the initial node is executed. Since in this case it's a wait state, the new execu-
tion will be positioned in the node "accept |oan request’ when the st ar t Execut i on-method returns.

- accept loan request
|euecut|un I node .

loan evaluation

reject

approve

wire the money

end O ——

Figure 2.4. Execution positioned in 'accept loan request’

Now we can give this execution an external trigger with the si gnal - method on the execution. Invoking the signal
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method will take the execution to the next wait state.

execution.signal ();

m accept loan reguest

nocde reject

loan evaluation

approve

wire the money

end A

Figure 2.5. Execution positioned in 'loan evaluation’

Now, the execution is at an interesting point. There are two transitions out of the state 'loan evaluation'. One trans-
ition is called ‘approve’ and one transition is called 'reject’. As we explained above in the WaitState implementation,
the transition taken corresponds to the signal that is given. Let's feed in the ‘approve signal like this:

executi on. si gnal ("approve");

The "approve’ signal will cause the execution to take the ‘approve’ transition and it will arrive in the node ‘wire the
money'.

Inwire the noney, the message will be printed to the console. Since, the Di spl ay activity didn't invoke the exe-
cuti on. wai t For Si gnal (), nor any of the other execution propagation methods, the default behaviour will be to
just proceed.

Proceeding in this case means that the default outgoing transition is taken and the execution will arrive in the end
node, which isawait state.

So only when the end wait state is reached, the si gnal ("approve") returns. That is because all of the things that
needed to be done between the original state and this new state could be executed by the process system. Executing
till the next wait state is the default behaviour and that behaviour can be changed with

TODO: add link to async continuations

asynchronous continuations in case transactions should not include all calculations till the next wait state. For more
about this, see Section 4.4.

Another signal invocation will bring it eventually in the end state.

10
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- accept loan reguest
| EXecution | .

nocle
loan evaluation reject
approve
wire the money
- end o

Figure 2.6. Execution positioned in 'end'

2.6. Motivation

There are basically two forms of process languages: graph based and composite process languages. First of al, this
design supports both. Even graph based execution and node composition can be used in combination to implement
something like UML super states.

In this design, control flow activity implementations will have to be aware of whether they are dependent on trans-
itions (graph based) or whether they are using the composite node structure. The goal of this design is that all non-
control flow activities can be implemented in the same way so that you can use them in graph based process lan-
guages as well asin composite process languages.

2.7. Events

Events are points in the process definition to which alist of activities can be subscribed as listeners. The motivation
for eventsisto allow for developers to add programming logic to a process without changing the process diagram.
Thisis avery valuable instrument in facilitating the collaboration between business analysts and developers. Busi-
ness analysts are responsible for expressing the requirements. When they use a process graph to document those re-
quirements, devel opers can take this diagram and make it executable. Events can be a very handy to insert technical
detailsinto a process (like e.g. some database insert) in which the business analyst is not interested.

Most common events are fired by the execution automatically:

e Transition. EVENT_TRANSI TI ON_TAKE = "transition-take" : fired on transitions when transitions are taken.

* Node. EVENT_NCDE_ENTER = "node-enter" : fired on the node when execution enters that node. This happens
when execution takes a transition to that node, when a child node is being executed with execu-
tion. execut e( Node) or when atransition is taken from a node outside that nhode to a contained node. The |atter

11
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refers to super states in state machines.

* Node. EVENT_NODE_LEAVE = "node-| eave" : fired on the node when a transition is taken out of that node or
when a child node execution is finished and the execution is propagated to the parent node.

e ProcessDefinition. EVENT_PROCESS START = "process-start" : fired on a process when a new process is
started.

e ProcessDefinition. EVENT_PROCESS END = "process-end" : fired on a process when a new process is ended.
This might include a executions that are ended with a cancelled or error state.

Events are identified by the combination of a process element and an event name. Users and process languages can
also fire events programmatically with the fire method on the Execution:

public interface Execution extends Serializable {

void fire(String event Nane, ProcessEl enent event Source);

A list of Acti vi tys can be associated to an event. But activities on events can not influence the control flow of the
execution since they are merely listeners to an execution wich is already in progress. This is different from activit-
ies that serve as the behaviour for nodes. Node behaviour activities are responsible for propagating the execution.
So if an activity in an event invokes any of the following methods, then it will result in an exception.

* waitForSignal ()
e take(Transition)
* end(*)

e execut e( Node)

WEe'l reuse the Di spl ay activity from above in a simple process: two nodes connected by a transition. The Display
listener will be subscribed to the transition event.

F e

Figure 2.7. The processto which a listener activity will be associated

ProcessDefinition processDefinition = ProcessFactory. build()
.node("a").initial().behaviour(new WaitState())
.event ("node-| eave")
.listener(new Display("leaving a"))
.l'i stener(new Di spl ay("second nessage while | eaving a"))
.transition().to("b")

12
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.l'istener(new Di splay("taking transition"))
.node("b"). behavi our (new Wit State())
.event ("node-enter")
.listener(new Display("entering b"))
.done();

The first event shows how to register multiple listeners to the same event. They will be notified in the order as they
are specified.

Then, on the transition, there is only one type of event. So in that case, the event type must not be specified and the
listeners can be added directly on the transition.

A listeners will be called each time an execution fires the event to which the listener is subscribed. The execution
will be provided in the activity interface as a parameter and can be used by listeners except for the methods that
control the propagation of execution.

2.8. Event propagation

Events are by default propagated to enclosing process elements. The motivation isto alow for listeners on process
definitions or composite nodes that get executed for all events that occur within that process element. For example
this feature allows to register alistener on a process definition or a composite node on node- | eave events. Such ac-
tion will be executed if that node is left. And if that listener is registered on a composite node, it will also be ex-
ecuted for all nodes that are left within that composite node.

To show this clearly, we'll create a bi spl aySour ce activity that will print the message | eavi ng and the source of
the event to the console.

public class DisplaySource inplenments Activity {

public void execute(Execution execution) ({
System out. println("leaving "+execution. get Event Source());

}
}

Note that the purpose of event listenersis not to be visible, that's why the activity itself should not be displayed in
the diagram. A bi spl aySour ce activity will be added as alistener to the event node- | eave on the composite node.

The next process shows how the Di spl aySour ce activity is registered as a listener to to the 'node-leave’ event on
the conposi t e node:

composite

—

b | A

Figure 2.8. A process with an invisible activity on a node-leave event on a composite node.
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ProcessDefinition processDefinition = ProcessFactory. buil d("propagate")
. conposi t eNode( " conposite")
. event ( Node. EVENT_NCODE_LEAVE)
.listener(new Di spl aySource())
.node("a").initial().behaviour(new WiitState())
.transition().to("b")
. node("b"). behavi our (new Wait State())
.transition().to("c")
. conposi t eEnd()
.node("c"). behavi our(new Vit State())
.done();

Next we'll start an execution.

Execution execution = processDefinition.startExecution();

After starting a new execution, the execution will bein node a asthat is the initial node. No nodes have been left so
no message islogged. Next asignal will be given to the execution, causing it to take the transition from a to b.

execution.signal ();

When the signal method returns, the execution will have taken the transition and the node-leave event will be fired
on node a. That event will be propagated to the composite node and to the process definition. Since our propagation
logger is placed on node composite it will receive the event and print the following message:

| eavi ng node( a)

Another

execution. signal ();

will take the transition from b to c. That will fire two node-leave events. One on node b and one on node compos-
ite. So the following lines will be appended to the console output:

| eavi ng node(b)
| eavi ng node( conposite)

Event propagation is build on the hierarchical composition structure of the process definition. The top level element
is always the process definition. The process definition contains a list of nodes. Each node can be a leaf node or it
can be a composite node, which means that it contains a list of nested nodes. Nested nodes can be used for e.g. su-
per states or composite activities in nested process languages like BPEL.

So the even model also works similarly for composite nodes as it did for the process definition above. Suppose that
'Phase one' models a super state as in state machines. Then event propagation allows to subscribe to all events with-
in that super state. The idea is that the hierarchical composition corresponds to diagram representation. If an ele-
ment '€ is drawn inside another element 'p', then p is the parent of e. A process definition has a set of top level
nodes. Every node can have a set of nested nodes. The parent of a transition is considered as the first common par-
ent for it's source and destination.

If an event listener is not interested in propagated events, propagation can be disabled with propagati onbi s-
abl ed() . The next process is the same process as above except that propagated events will be disabled on the event
listener. The graph diagram remains the same.
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composite

—

b = C

Figure2.9. A processwith a listener to 'node-leave’ eventswith propagation disabled.

Building the process with the process factory:

ProcessDefinition processDefinition = ProcessFactory. buil d("propagate")
. conposi t eNode( " conposite")
. event ( Node. EVENT_NODE_LEAVE)
.listener(new Di spl aySource())
. propagati onDi sabl ed()
.node("a").initial().behaviour(new Wi tState())
.transition().to("b")
.node("b"). behavi our (new Wi t State())
.transition().to("c")
. nodesEnd()
.node("c").behavi our(new Vit State())
.done();

So when the first signal is given for this process, again the node-leave event will be fired on node a, but now the
listener on the composite node will not be executed cause propagated events have been disabled. Disabling
propagation is a property on the listener and doesn't influence the other listeners. The event will always be fired and
propagated over the whole parent hierarchy.

Execution execution = processDefinition.startExecution();
execution.signal ();

Next, the second signal will take the transition from b to c.

execution. signal ()

Again two node-leave events are fired just like above on nodes b and composite respectively. The first event is the
node-leave event on node b. That will be propagated to the composite node. So the listener will not be executed for
this event cause it has propagation disabled. But the listener will be executed for the node-leave event on the com-
posite node. That is not propagated, but fired directly on the composite node. So the listener will now be executed
only once for the composite node as shown in the following console output:

| eavi ng node(conposite)

2.9. Process structure

Above we aready touched briefly on the two main process constructs: Nodes, transitions and node composition.
This section will elaborate on all the basic combination possibilities.
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CompositeElement

-outgoing Transitions

-
*
5 -nodes
ProcessDefinition Hode
—E0LFCE
-clestination

Figure 2.10. UML class diagram of the basic process structure

Figure 2.11. Any two nodes can be connected with a transition.

—

*
-incomingTransitions

*

Transition

| source | destination |

Figure2.12. A self transition.

composite

Figure 2.13. Composite nodeisalist of nested nodes.
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5
"'j

composite

Figure 2.14. Transition to a node inside a composite.

composite

g,
'\-Q

Figure 2.15. Transition from a node inside a composite to a node outside the composite.

composite

—
"'Q

e
— )

Figure 2.16. Transition of composite nodes are inherited. The node inside can take the transition of the
composite node.

outer composite

inner composite

o )

.
|

Figure 2.17. Transition from a node to an outer composite.
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outer composite

inner composite

-\-J.-—-\.
=1, a |

Figure 2.18. Transition from a composite node to an inner composed naode.

composite

initizl

A

Figure 2.19. An initial node inside a composite node.
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3.1. Graph based control flow activities

3.1.1. Automatic decision

This example shows how to implement automatic conditional branching. This is mostly called a decision or an or-
split. It selects one path of execution from many alternatives. A decision node should have multiple outgoing trans-
itions.

In adecision, information is collected from somewhere. Usually that is the process variables. But it can also collect
information from a database, a file, any other form of input or a combination of these. In this example, a variable
credit Rat e IS used. It contains an integer. The higher the integer, the better the credit rating. Let's ook at the ex-
ample implementation:

Then based on the obtained information, in our case that is the cr edi t Rat e, an outgoing transition has to be selec-
ted. In the example, transition good will be selected when the creditRate is above 5, transition bad will be selected
when creditRate is below -5 and otherwise transition aver age will be selected.

Once the selection is done, the transition is taken with execution.take(String) or the execu-
tion. take(Transition) method.

public class AutomaticCreditRating inplenents Activity {
public void execute(Executi on execution) {
int creditRate = (Integer) execution.getVariable("creditRate");

if (creditRate > 5) {
execution. t ake("good");

} else if (creditRate < -5) {
execution.take("bad");

} else {
execution. take("average");

Well demonstrate the Aut omat i cCr edi t Rat i ng in the following process:
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goodd bad
creditRate ?

dverage

Figure 3.1. The decision process

ProcessDefinition processDefinition = ProcessFactory. build()

.node("initial").initial().behaviour(new WitState())
.transition().to("creditRate?")

.node("creditRate?"). behavi our (new Aut omati cCreditRating())
.transition("good").to("a")
.transition("average").to("b")
.transition("bad").to("c")

.node("a"). behavi our(new Wit State())

.node("b"). behavi our (new Wai t State())

.node("c").behavi our(new Vit State())

.done();

Executing this process goes like this:

Execution execution = processDefinition.startExecution();

start Execution() Will bring the execution into thei ni ti al node. That's await state so the execution will point to
that node when the st art Execut i on() returns.

Then we have a chance to set the cr edi t Rat e to aspecific value like e.g. 13.

execution.setVariabl e("creditRate", 13);

Next, we provide a signal so that the execution takes the default transition to the cr edi t Rat e? node. Since process
variable credi t Rat e 1S Set to 13, the Aut omat i cCr edi t Rat i ng activity will take transition good to node a. Node a is
await state so them the invocation of si gnal will return.

Similarly, a decision can be implemented making use of the transition's guard condition. For each outgoing trans-
ition, the guard condition expression can be evaluated. The first transition for which its guard condition evaluates to
true istaken.

This example showed automatic conditional branching. Meaning that all information is available when the execu-
tion arrives in the decision node, even if it may have to be collected from different sources. In the next example, we
show how a decision isimplemented for which an external entity needs to supply the information, which results in-
to await state.
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3.1.2. External decision

This example shows an activity that again selects one path of execution out of many alternatives. But this time, the
information on which the decision is based is not yet available when the execution arrives at the decision. In other
words, the execution will have to wait in the decision until the information is provided from externally.

public class External Sel ection inplements External Activity {

public void execute(Execution execution) ({
executi on. wai t For Si gnal ();
}

public void signal (Executi on execution, String signal Nane, Map<String, bject> paraneters) throws Excer
executi on. t ake(si gnal Nane) ;
}

publ i c Set <Si gnal Definition> get Si gnal s(Executi on execution) throws Exception {
return null;
}

}

The diagram for this external decision will be the same as for the automatic decision:

& (ulule! bad
creditRate ?

average

Figure 3.2. A decision

ProcessDefinition processDefinition = ProcessFactory. build()

.node("initial").initial().behaviour(new WaitState())
.transition().to("creditRate?")

.node("creditRate?"). behavi our (new External Sel ection())
.transition("good").to("a")
.transition("average").to("b")
.transition("bad").to("c")

.node("a").behavi our (new Vit State())

.node("b"). behavi our(new Wait State())

.node("c"). behavi our (new Wi t State())

.done();

The execution starts the same as in the automatic example. After starting a new execution, it will be pointing to the
initial wait state.

Executi on execution = processDefinition.startExecution();
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But the next signal will cause the execution to take the default transition out of thei niti al node and arrive in the
credi t Rat e? node. Then the Ext er nal Sel ecti on is executed, which will result into a wait state. So when the in-
vocation of signal () returns, the execution will be pointing to the credi t Rat e? node and it expects an external
trigger.

Next welll give an external trigger with good as the signalName. So supplying the external trigger is done together
with feeding the information needed by the decision.

execution. si gnal ("good");

That external trigger will be trandated by the Ext er nal Sel ecti on activity into taking the transition with name
good. That way the execution will have arrived in node a when si gnal (" good") returns.

Note that both parameters si gnal Nane and par anet er s can be used by external activities as they want. In the ex-
ample here, we used the signalName to specify the result. But another variation might expect an integer value un-
der thecr edi t Rat e key of the parameters.

But leveraging the execution API like that is not done very often in practice. The reason is that for most external
functions, typically activity instances are created. Think about Task as an instance of a TaskActi vity (see later) or
analogue, a Servi cel nvocation could be imagined as an instance of a Servi cel nvocati onActivity. In those
cases, those activity instances make the link between the external activity and the execution. And these instances
also can make sure that an execution is not signalled inappropriately. Inappropriate signalling could happen when
for instance a service response message would arrive twice. If in such a scenario, the message receiver would just
signal the execution, it would not notice that the second time, the execution is not positioned in the service invoca
tion node any more.

3.2. Composite based control flow activities

3.2.1. Composite sequence

Block structured languages like BPEL are completely based on composite hodes. Such languages don't have trans-
itions. The composite node structure of the Process Virtual Machine allows to build a process with a structure that
exactly matches the block structured languages. There is no need for a conversion to a transition based model. We
have aready discussed some examples of composite nodes. The following example will show howw to implement
a sequence, one of the most common composite node types.

A sequence has alist of nested activities that need to be executed in sequence.
Thisis how a sequence can be implemented:

public class Sequence inplenents External Activity {

public void execute(Execution execution) ({
Li st <Node> nodes = executi on. get Node(). get Nodes();
executi on. execut e(nodes. get (0));

}

public void signal (Execution execution, String signal, Mp<String, Object> paraneters) ({
Node previ ous = executi on. get Previ ousNode() ;
Li st <Node> nodes = executi on. get Node(). get Nodes();
i nt previouslndex = nodes.indexX (previous);
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int nextlndex = previouslndex+1;

i f (nextlndex < nodes.size()) {
Node next = nodes. get (nextl| ndex);
executi on. execut e( next);

} else {
executi on. proceed();

}

}

publ i ¢ Set <Si gnal Definition> get Si gnal s(Executi on execution) {
return null;
}

}

When an execution arrives in this sequence, the execute method will execute the first node in the list of child nodes
(aka composite nodes or nested nodes). The sequence assumes that the child node's behaviour doesn't have outgo-
ing transitions and will end with an execut i on. proceed() . That proceed will cause the execution to be propagated
back to the parent (the sequence) with asignal.

The signal method will ook up the previous node from the execution, determine itsindex in the list of child nodes
and increments it. If there is a next node in the list it is executed. If the previous node was the last one in the list,
the proceed is called, which will propagate the execution to the parent of the sequence in case there are no outgoing
trangitions.

To optimize persistence of executions, the previous node of an execution is normally not maintained and will be to
null. If a node requires the previous node or the previous transition like in this Sequence, the property i sPr evi ous-
Needed must be set on the node.

Let'slook at how that translates to a process and an execution:;

Sequence

one
wait

two

Figure 3.3. A sequence.

ProcessDefinition processDefinition = ProcessFactory. buil d("sequence")
. conposi t eNode("sequence").initial().behaviour(new Sequence())
. needsPrevi ous()
. node("one"). behavi our (new Di spl ay("one"))
.node("wai t") . behavi our (new Wit State())
.node("two"). behavi our (new Di splay("two"))
. conposi t eEnd()
.done();

The three numbered nodes will now be executed in sequence. Nodes 1 and 2 are automatic Di spl ay activities,
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while nodewai t isawait state.

Execution execution = processDefinition.startExecution();

The st art Execut i on Will execute the Sequence activity. The execut e method of the sequence will immediately
execute node 1, which will print message one on the console. Then the execution is automatically proceeded back
to the sequence. The sequence will have access to the previous node. It will look up the index and execute the next.
That will bring the execution to node wai t , which is await state. At that point, the st art Executi on() will return.
A new external trigger is needed to complete the wait state.

execution.signal ();

That signal will delegate to the wai t St at e's signal method. That method is empty so the execution will proceed in a
default way. Since there are no outgoing transitions, the execution will be propagated back to the sequence node,
which will be signalled. Then node 2 is executed. When the execution comes back into the sequence it will detect
that the previously executed node was the last child node, therefore, no propagation method will be invoked, caus-
ing the default proceed to end the execution. The console will show:

one
two

3.2.2. Composite decision

In a composite model, the node behaviour can use the executi on. execut e( Node) method to execute one of the
child nodes.

creditRate ?
good
Average

bad

Figure 3.4. A decision based on node composition

ProcessDefinition processDefinition = ProcessFactory. build()
.conposi teNode("credi tRate?").initial ().behavi our( new ConpositeCreditRating())
. node("good"). behavi our (new Ext ernal Sel ection())
. node("aver age") . behavi our (new Ext er nal Sel ection())
. node("bad") . behavi our (new Ext ernal Sel ection())
. conposi t eEnd()
.done();

The Conposi t eCr edi t Rat i ng iS an automatic decision, implemented like this:
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public class ConpositeCreditRating inplements Activity {

public void execute(Executi on execution) {
int creditRate = (Integer) execution.getVariable("creditRate");

if (creditRate > 5) {
executi on. execut e("good");

} else if (creditRate < -5) {
executi on. execut e("bad");

} else {
executi on. execut e("average");

So when we start a new execution with

Map<String, Cbject> variables = new HashMap<String, Cbject>();
vari abl es. put ("creditRate", 13);
Executi on execution = processDefinition.startExecution(variables);

The execution will execute the Conposit eCredit Rati ng. The Conposit eCreditRating will execute node good
cause the process variable cr edi t Rat e is 13. When the st ar t Execut i on() returns, the execution will be positioned
in the good state. The other scenarios are very similar.

3.3. Human tasks

This section will demonstrate how support for human tasks can be build on top of the Process Virtual Machine.

Asweindicated in Section 4.4, for each step in the process the most important characteristic is whether responsibil-
ity for an activity lies within the process system or outside. In case of a human task, it should be clear that the re-
sponsibility is outside of the process system. This means that for the process, a human task is a wait state. The exe-
cution will have to wait until the person provides the external trigger that the task is completed or submitted.

1. Create task
m someone’'s |TASKS
tasldist

[ task ]Mﬂ

‘L .
2. User task

completion
triggers execution

Figure 3.5. Overview of thelink between processes and tasks.
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In the picture above, the typical link between process execution and tasks is represented. When an execution arrives
in atask node, atask is created in atask component. Typically such atask will end up in atask table somewhere in
the task component's database. Then users can look at their task lists. A task list isthen afilter on the complete task
list based on the task's assigned user column. When the user completes the task, the execution is signalled and typ-
ically leaves the node in the process.

A task management component keeps track of tasks for people. To integrate human tasks into a process, we need
an API to create new tasks and to get notifications of task completions. The following example might have only a
rudimentary integration between between process execution and the task management component, but the goal isto
show the interactions as clearly as possible. Real process languages like jPDL have a much better integration
between process execution and tasks, resulting in more complexity.

For this example we'll first define a simplest task component with classes Task and TaskConponent ;

public class Task {
public String userld;
public String taskNane;
publ i c Execution execution;

public Task(String userld, String taskName, Execution execution) {
this.userld = userld;
this.taskNane = taskNane;
this. executi on = execution;

}

public void conplete() {
execution.signal ();
}

}

This task has public fields to avoid the getters and setters. The taskName property is the short description of the
task. The userld is areference to the user that is assigned to this task. And the execution is a reference to the execu-
tion to which this task relates. When atask completes it signals the execution.

The next task component manages a set of tasks.

public class TaskConponent {
static List<Task> tasks = new ArraylLi st <Task>();

public static void createTask(String taskName, Execution execution) {
String userld = assign(taskNane, execution);
t asks. add(new Task(userld, taskName, execution));

}

private static String assign(String taskName, Execution execution) {
return "johndoe";

}

public static List<Task> get TaskList(String userld) {
Li st <Task> taskLi st = new ArrayLi st <Task>();
for (Task task : tasks) ({
if (task.userld.equal s(userld)) {
taskLi st. add(t ask);
}
}
return taskList;
}
}
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To keep this example short, this task component is to be accessed through static methods. The assigning tasks is
done hard coded to "johndoe". Tasks can be created and tasklists can be extracted by userld. Next we can look at
the node behaviour implementation of a TaskActivity.

public class TaskActivity inplenents External Activity {

public void execute(Execution execution) ({
/1 let's use the node nane as the task id
String taskNane = execution. get Node(). get Name();
TaskComponent . cr eat eTask(t askNane, execution);

}

public void signal (Executi on execution, String signal, Mp<String, Ooject> paraneters) {
execution. t akeDef aul t Transition();
}

publ i c Set <Si gnal Definition> get Si gnal s(Executi on execution) {
return null;
}

}

The task node works as follows. When an execution arrives in atask node, the execute method of the TaskActivity
isinvoked. The execute method will then take the node name and use it as the task name. Alternatively, ‘taskName'
could be a configuration property on the TaskActivity class. The task name is then used to create a task in the task
component. Once the task is created, the execution is not propagated which means that the execution will wait in
this node till asignal comesin.

When the task is completed with the Task.complete() method, it will signal the execution. The TaskActivity's sig-
nal implementation will take the default transition.

Thisis how a process can be build with atask node:

ProcessDefinition processDefinition = ProcessFactory. buil d("task")
.node("initial").initial().behaviour(new Automati cActivity())
.transition().to("shred evi dence")
.node("shred evi dence"). behavi our (new TaskActivity())
.transition().to("next")
.node("next"). behavi our (new Wai t State())
.done();

When a new execution is started, the initial node is an automatic activity. So it will immediately propagate to the
task node the task will be created and the execution will stop in the 'shred evidence' node.

Executi on execution = processDefinition.startExecution();
assert Equal s("shred evi dence", execution.get Node().getNanme());
Task task = TaskConponent. get TaskLi st ("j ohndoe"). get (0);
Next, time can elapse until the human user is ready to complete the task. In other words, the thread of control is

now with 'johndoe’. When John completes his task e.g. through a web Ul, then this should result into an invocation
of the complete method on the task.

task. conpl ete();

assert Equal s("next", execution. get Node().get Nane());
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The invocation of the complete method cause the execution to take the default transition to the 'next' node.
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4.1. Loops

L oops can be based on transitions or on node composition. Loops can contain wait states.

To support high numbers of automatic loop executions, the Process Virtual Machine tranformed the propagation of
execution from tail recursion to awhile loop. This means that all the methods in the Execut i on class that propagate
the execution like t ake or execut e will not be executed when you call them. Instead, the method invocations will
be appended to alist. Thefirst invocation of such a method will start aloop that will execute al invocationstill that
list is empty. These invocations are called atomic operations.

4.2. Sub processes

TODO: sub processes

4.3. Default proceed behaviour

When an Act i vi ty isused as node behaviour, it can explicitely propagate the execution with following methods:

* waitForSignal ()
e take(Transition)
* end(*)

* execut e(Node)

* createExecution(*)

When Activity implementations used for node behviour don't call any of the following execution propagation
methods, then, after the activity is executed, the execution will just proceed.

By default proceeding will perform the first action that applies in the following list:

« If the current node has a default outgoing transition, take it.

e If the current node has a parent node, move back to the parent node.
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* Otherwise, end this execution.

Process languages can overwrite the default proceed behaviour by overriding the pr oceed method in Executi onl m
pl .

4.4. Execution and threads

This section explains how the Process Virtual Machine boroughs the thread from the client to bring an execution
from one wait state to another.

When a client invokes a method (like e.g. the signal method) on an execution, by default, the Process Virtual Ma-
chine will use that thread to progress the execution until it reached a wait state. Once the next wait state has been
reached, the method returns and the client gets the thread back. Thisis the default way for the Process Virtual Ma-
chine to operate. Two more levels of asynchonous execution complement this default behaviour: Asynchronous
continuations and the asynchronous command service.

The next process will show the basics concretely. It has three wait states and four automatic nodes.

st

?

automatic 1

L

wait 2

L

automatic 2

L

automatic 3

L

automatic 4

L

wait 3
Figure4.1. Process with many sequential automatic activities.

Here's how to build the process:

ProcessDefinition processDefinition = ProcessFactory. buil d("autonmatic")
.node("wait 1").initial().behaviour(new WaitState())
.transition().to("automatic 1")
.node("automatic 1").behavi our (new Di spl ay("one"))
.transition().to("wait 2")
.node("wait 2").behaviour(new WaitState())
.transition().to("automatic 2")
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.node("automatic 2").behavi our(new Di splay("two"))
.transition().to("automatic 3")

.node("automatic 3").behavi our(new Di splay("three"))
.transition().to("automatic 4")

. node("automatic 4").behavi our (new Di splay("four"))
.transition().to("wait 3")

.node("wait 3").behaviour(new VWi tState())

.done();

Let'swalk you through one execution of this process.

Executi on execution = processDefinition.startExecution();

Starting a new execution means that the initial node is executed. So if an automatic activity would be configured as
the behaviour in the initial node, the process will start executing immediatly in the startExecution. In this case
however, the initial node is a wait state. So the startExecution method returns immediately and the execution will
be positioned in the initial node ‘wait 1'.

it

?

autonmatic 1

L

wait 2

L

autonmatic 2

L

automatic 3

L

automatic 4

L

wait 3

Figure4.2. A new execution will be positioned in 'wait 1'.

Then an external trigger is given with the signal method.

execution. signal ();

As explained above when introducing the WaitState, that signal will cause the default transition to be taken. The
transition will move the execution to node aut omat i ¢ 1 and execute it. The execute method of the Di spl ay activity
inautomatic 1 print alineto the console and it will not call executi on. wai t For Si gnal () . Therefore, the execu-
tion will proceed by taking the default transition out of aut omati ¢ 1. The signal method is still blocking cause this
action and the transitions are taken by that same thread. Then the execution arrives in wai t 2 and executes the
Wi t St at e activity. That method will invoke the execut i on. wai t For Si gnal (), which will cause the signal method
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to return. That is when the thread is given back to the client that invoked the signal method.

So when the signal method returns, the execution is positioned inwai t 2.

it

?

| automatic 1 |
it

—-_— -
!

| automatic 2 |

Il

| automatic 3 |

I

| automatic 4 |

!

| wait 3 |

Figure 4.3. Onesignal brought the execution from 'initial’' to 'wait 2'.

Then the execution is now waiting for an external trigger just as an object (more precisely an object graph) in
memory until the next external trigger is given with the signal method.

execution.signal ();

This second invocation of signal will take the execution similarly al theway towai t 3 beforeit returns.
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it

?

autonmatic 1

L

wait 2
it

l

automatic 3

L

automatic 4

L

— wait 3

Figure 4.4. The second signal brought the execution all the way to 'wait 3'.

To make executable processes, developers need to know exactly what the automatic activities, what the wait states
are and which threads will be allocated to the process execution. For business analysts that draw the analysis pro-
cess, things are a bit simpler. For the activities they draw, they usually know whether it's a human or a system that
isresponsible. But they typically don't not how this translates to threads and transactions.

So for the developer, the first job is to analyse what needs to be executed within the thread of control of the process
and what is outside. Looking for the external triggers can be a good start to find the wait states in a process, just
like verbs and nouns can be the rule of thumb in building UML class diagrams.

4.5. Process concurrency

To model process concurrency, there is a parent-child tree structure on the execution. Theideais that the main path
of execution isthe root of that tree. Thisimplies that on the level of the Process Virtual Machine, there is no differ-
entiation between complete process instances and paths of execution within a process instance. One of the main
motivations for this design is that the API actualy is not made more complex then necessary for simple processes
with only one single path of execution.
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|:| *

Execution _parent Hode
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Figure4.5. UML classdiagram of the basic execution structure

To extablish multiple concurrent paths of execution, child executions can be created. Only leaf executions can be
active. Non-leave executions should be inactive. This tree structure of executions doesn't enforce a particular type
of concurrency or join behaviour. It's up to the forks or and-splits and to the joins or and-merges to use the execu-
tion tree structure in any way they want to define the wanted concurrency behaviour. Here you see an example of
concurrent executions.

main

! !

ship bill

( J

Figure 4.6. Concurrent paths of execution

There is a billing and a shipping path of execution. In this case, the flat bar nodes represent nodes that fork and
join. The execution shows a three executions. The main path of execution is inactive (represented as gray) and the
billing and shipping paths of execution are active and point to the nodebi I I and shi p respectively.

It's up to the node behaviour implementations how they want to use this execution structure. Suppose that multiple
tasks have to be completed before the execution is to proceed. The node behaviour can spawn a series of child exe-
cutions for this. Or alternatively, the task component could support task groups that are associated to one single ex-
ecution. In that case, the task component becomes responsible for synchronizing the tasks, thereby moving this re-
sponsihility outside the scope of the execution tree structure.
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4.6. Exception handlers

In all the code that is associated to a process like Activity's, Actions and Conditions, it's possible to include try-
catch blocks in the method implementations to handle exceptions. But in order to build more reusable building
blocks for both the delegation classes and the exception handling logic, exception handlers are added to the core
process model.

An exception handler can be associated to any process element. When an exception occurs in a delegation class, a
matching exception handler will be searched for. If such an exception handler is found, it will get a chance to
handle the exception.

If an exception handler completes without problems, then the exception is considered handled and the execution re-
sumes right after the delegation code that was called. For example, a transition has three actions and the second ac-
tion throws an exception that is handled by an exception handler, then

Writing automatic activities that are exception handler aware is easy. The default isto proceed anyway. No method
needs to be called on the execution. So if an automatic activity throws an exception that is handled by an exception
handler, the execution will just proceed after that activity. It becomes a big more difficult for control flow activit-
ies. They might have to include try-finally blocks to invoke the proper methods on the execution before an excep-
tion handler gets a chance to handle the exception. For example, if an activity is a wait state and an exception oc-
curs, then there is arisk that the thread jumps over the invocation of execut i on. wai t For Si gnal (), causing the ex-
ecution to proceed after the activity.

TODO: exceptionhandler.isRethrowMasked
TODO: transactional exception handlers

TODO: we never catch errors

4.7. Process modifications

TODO: process modifications

4.8. Locking and execution state

The state of an execution is either active or locked. An active execution is either executing or waiting for an extern-
al trigger. If an executionisnot in STATE_ACTIVE, theniit islocked. A locked execution isread only.

When a new execution is created, it isin STATE_ACTIVE. To change the state to alocked state, use lock(String).
Some STATE_* constants are provided that represent the most commonly used locked states. But the state '..." in
the picture indicates that any string can be provided as the state in the lock method.
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Figure4.7. States of an execution

If an execution is locked, methods that change the execution will throw a PvmException and the message will ref-
erence the actual locking state. Firing events, updating variables, updating priority and adding comments are not
considered to change an execution. Also creation and removal of child executions are unchecked, which means that
those methods can be invoked by external API clients and node behaviour methods, even while the execution isin
alocked state.

Make sure that comparisons between getState() and the STATE_* constants are done with .equals and not with '=="
because if executions are loaded from persistent storage, a new string is created instead of the constants.

An execution implementation will be locked:

* Whenitisended
Whenitis suspended
» During asynchronous continuations

Furthermore, locking can be used by Activity implementations to make executions read only during wait states hen
responsibility for the execution is transferred to an external entity such as:

¢ A human task
e A serviceinvocation
* A wait state that ends when a scanner detects that afile appears

In these situations the strategy is that the external entity should get full control over the execution because it wants
to control what is allowed and what not. To get that control, they lock the execution so that al interactions have to
go through the external entity.
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One of the main reasons to create external entitiesisthat they can live on after the execution has already proceeded.
For example, in case of a service invocation, atimer could cause the execution to take the timeout transition. When
the response arrives after the timeout, the service invocation entity should make sure it doesn't signal the execution.
So the service invocation can be seen as a hode instance (aka activity instance) and is unique for every execution of
the node.

External entities themselves are responsible for managing the execution lock. If the timers and client applications
are consequent in addressing the external entities instead of the execution directly, then locking is in theory unne-
cessary. It's up to the node behaviour implementations whether they want to take the overhead of locking and un-
locking.
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5.1. What are delegation classes

Delegation classes are the classes that implement Act i vi ty or Condi ti on. From the Process Virtual Machine's per-
spective, these are external classes that provide programming logic that is inserted into the PV M's graph execution.
Delegation classes can be provided by the process languages as well as by the end users.

5.2. Configuration of delegation classes

Delegation classes can be made configurable. Member fields can contain configuration parameters so that a delega

tion class can be configured differently each time it is used. For example, in the Di spl ay activity, the message that
isto be printed to the console is a configuration parameter.

Delegation classes should be statel ess. This means that executing the interface methods should not change values of
the member fields. Changing member field values of delegation classes during execution methods is actually chan-
ging the process while it's executing. That is not threadsafe and usually leads to unexpected results. As an excep-
tion, getters and setters might be made available to inject the configuration cause they are used before the delega
tion object is actually used in the process execution.

5.3. Object references

TODO

5.4. Design time versus runtime

TODO: the node behaviour allows for design time as well as runtime behaviour.

5.5. UserCodelnterceptor

TODO: UserCodel nterceptor

5.6. Member field configurations versus properties

TODO: document field configurations versus properties

38



&

Variables
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7.1. Process logs

7.2. Business Intelligence (Bl)

7.3. Business Activity Monitoring (BAM)

History
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8.1. Introduction

The environment component together with the wire context is a kind of Inversion of Control (1oC) container. It
reads configuration information that describes how objects should be instantiated, configured and wired together.

The environment is used to retrieve resources and services needed by Acti vi ty implementations and the Process
Virtual Machine itself. The main purpose is to make various aspects of the Process Virtua Machine configurable
so that the PVM and the languages that run on top can work in a standard Java environment as well as an enterprise
Java environment.

The environment is partitioned into a set of contexts. Each context can have its own lifecycle. For instance, the ap-
plication context will strech over the full lifetime of the application. The block context only for the duration of a
try-finally block. Typically a block context represents a database transaction. Each context exposes a list of key-
value pairs.

8.2. EnvironmentFactory

To start working with an environment, you need an EnvironmentFactory. One single environment factory object
can be used throughout the complete lifetime of the application. So typically this is kept in a static member field.
The EnvironmentFactory itself isthe application context.

An Envi ronnent Fact ory istypically obtained by parsing a configuration file like this:

static Environment Factory environnent Factory =
Envi ronnent Fact ory. par se( new Resour ceSt r eanSour ce("pvm cfg. xm ") ;

See javadocs package org.jbpm.stream for more types of stream sources.

There is adefault parser in the environment factory that will create Def aul t Envi r onment Fact oryS. Theideais that
we'll also support spring as an 10C container. But that is still TODO. Feel free to help us out :-). The parser can be
configured with the static setter method Envi r onnent Fact ory. set Par ser ( Par ser)

8.3. Environment block

An environment exists for the duration of atry-finally block. Thisis how an environment block looks like:

Envi ronnent envi ronnment = envi ronnment Fact ory. openEnvi ronnent () ;
try {
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} finally {
envi ronnent . cl ose();
}

The environment block defines another lifespan: the bl ock context. A transaction would be a typical example of an
object that is defined in the block context.

Inside such a block, objects can be looked up from the environment by name or by type. If objects can looked up
from the environment with method envi r onmrent . get (String name) Or <T> T envi ronnent . get (O ass<T>).

when an environment is created, it hasaappl i cat i on context and abl ock context.

In the default implementation, the appl i cati on context and the bl ock context are W r eCont ext S. A W r eCont ext
contains a description of how its objects are created and wired together to form object graphs.

8.4. Example

To start with asimple example, we'll need aBook:

public class Book {
publ i ¢ Book() {}
}

Then let's create an environment factory that knows how to create book

static Environment Factory environnent Factory = Environnent Factory. parse(new Stri ngStreanSour ce(
"<envi ronment >" +
<application>" +
<obj ect nane=' book' class='org.jbpm exanpl es. ch09. Book' />" +
</ application>" +
"</ envi ronnent >"

)

Now well create an environment block with this environment factory and well look up the book in the environ-
ment. First the lookup is done by type and secondly by name.

Envi ronnent envi ronnment = envi ronnment Fact ory. openEnvi ronnent () ;
try {

Book book = environnent. get (Book. cl ass);
assert Not Nul | (book) ;

assert Sane(book, environnent. get("book"));

} finally {
envi ronnent . cl ose();
}

To prevent that you have to pass the environment as a parameter in all methods, the current environment is main-
tained in athreadlocal stack:
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Envi ronnent environment = Environnment.getCurrent();

8.5. Context

Contexts can be added and removed dynamically. Anything can be exposed as a Cont ext .

public interface Context {

Cbj ect get(String key);
<T> T get (Cl ass<T> type);
Set <String> keys();

i

When doing a lookup on the environment, there is a default search order in which the contexts will be scanned for
the requested object. The default order is the inverse of the sequence in which the contexts were added. E.g. if an
object is defined in both the application context and in the block context, the block context is considered more ap-
plicable and that will be scanned first. Alternatively, an explicit search order can be passed in with the get lookups
as an optional parameter.
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9.1. Standard environment configuration

This section describes how the environment can be configured to use hibernate in a standard Java environment.

01 <envi r onment >

02

03 <appl i cati on>

04 <hi ber nat e- sessi on-factory />

05 <hi ber nat e- confi gurati on>

06 <properties resource="hi bernate. properties" />

07 <mappi ngs resources="org/j bpm pvm hi ber nat e. mappi ngs. xm " />
08 <cache- configuration

09 resource="org/j bpm pvm definition.cache. xm "

10 usage="nonstrict-read-wite" />

I
I
I
I
I
I
I
I
I
I
11 | </ hi ber nat e- conf i gur ati on>
I
I
I
I
I
I
I
I
I

12 </ appl i cati on>

13

14 <bl ock>

15 <st andard-transaction />
16 <hi ber nat e- sessi on />

17 <pvm db- session />

18 </ bl ock>

19

20 </ envi r onnent >

l'i ne 04 specifies a hibernate session factory in the application context. This means that a hibernate session factory
islazy created when it isfirst needed and cached in the Envi r onnent Fact ory.

A hibernate session factory is build calling the method bui | dSessi onFact ory() on a hibernate configuration. By
default, the hibernate configuration will be looked up by type.

l'i ne 05 specifies a hibernate configuration.
l'i ne 06 specifiesthe that the resource file hi ber nat e. properti es should be loaded into the configuration.

l'ine 07 (note the plural form of mappings) specifies that resources or g/ j bpnt pvm hi ber nat e. mappi ngs. xm con-
tain references to hibernate mapping files or resources that should be included into the configuration. Also note the
plural form of resour ces. This means that not one, but all the resource files on the whole classpath will be found.
This way new library components containing a or g/ j bpni pvm hi ber nat e. mappi ngs. xni resource can plug auto-
matically into the same hibernate session by just being added to the classpath.

Alternatively, individual hibernate mapping files can be referenced with the singular mappi ng €lement.

line 08 - 10 provide a single place to specify the hibernate caching strategy for all the PVM classes and collec-
tions.
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l'ine 15 specifies a standard transaction. Thisis avery simple global transaction strategy without recovery that can
be used in standard environments to get all-or-nothing semantics over multiple transactional resources.

l'i ne 16 specifiesthe hibernate session that will automatically register itself with the standard transaction.

line 17 specifiesaPvnDbSessi on. That isa class that adds methods that bind to specific queries to be executed on
the hibernate session.

9.2. Standard hibernate configuration

Hereisaset of default properties to configure hibernate with hsgldb in a standard Java environment.

hi ber nat e. di al ect org. hi bernate. di al ect. HSQLD al ect
hi ber nat e. connecti on. driver_cl ass org. hsql db. j dbcDri ver

hi ber nat e. connecti on. url j dbc: hsql db: mem .

hi ber nat e. connecti on. user nane sa

hi ber nat e. connecti on. passwor d
hi ber nat e. cache. use_second_| evel cache true
hi ber nat e. cache. provi der _cl ass or g. hi ber nat e. cache. Hasht abl eCachePr ovi der

Optionally in development the schema export can be used to create the schema when the session factory is created
and drop the schema when the session factory is closed.

hi ber nat e. hbn2ddl| . aut o create-drop

For more information about hibernate configurations, see the hibernate reference manual.

9.3. Standard transaction

By default, the <hi ber nat e-session /> will start a hibernate transaction with sessi on. begi nTransaction().
Then the hibernate transaction is wrapped in aor g. j bpm hi ber nat e. Hi ber nat eTr ansact i onResour ce and that re-
source is enlisted with the <st andar d-t ransacti on /> (org. j bpm t x. St andar dTr ansact i on)

Inside of the environment block, the transaction is available through envi r onnent . get Transacti on() . So inside an
environment block, the transaction can be rolled back with envi r onrmrent . get Transacti on() . set Rol | backOnl y()

When created, the standard transaction will register itself to be notified on the close of the environment. So in side
the close, the standard transaction will commit or rollback depending on whether set Rol | backOnl y() was called.

So in the configuration shown above, each environment block will be a separate transaction. At least, if the hibern-
ate session is used.

9.4. Basics of process persistence

In the next example, we'll show how this hibernate persistence is used with a concrete example. The "persistent pro-
cess isasimple three-step process:
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one

two

three

Figure 9.1. The persistent process

The activities in the three nodes will be wait states just like in Section 2.4

To make sure we can persist this class, we create the hibernate mapping for it and add it to the configuration like
this:

<hi ber nat e- confi gurati on>
<properties resource="hi bernate.properties" />
<mappi ngs resour ces="org/j bpm pvm hi ber nat e. mappi ngs. xm " />
<mappi ng resour ce="or g/ j bpnl exanpl es/ ch09/ st ate. hbm xm " />
<cache-configuration
resource="org/j bpmi pvm definition.cache. xm"
usage="nonstrict-read-wite" />

The next code pieces show the contents of one unit test method. The method will first create the environment fact-
ory. Then, in afirst transaction, a process definition will be created and saved into the database. Then the next
transaction will create a new execution of that process. And the following two transactions will provide external
triggers to the execution.

Envi ronnent Fact ory envi ronnment Fact ory = Envi ronnment Fact ory. par se(new Resour ceSt r eanSour ce(
"org/jbpm exanmpl es/ ch09/ envi ronment . cfg. xm "

)

Then in afirst transaction, aprocessis created and saved in the database. Thisistypically referred to as deploying a
process and it only needs to be done once.

Envi ronnent environment = environnment Fact ory. openEnvi ronnment () ;

try {
PvnDbSessi on pvnDbSessi on = envi ronnent . get (PvnDbSessi on. cl ass) ;

ProcessDefinition processDefinition = ProcessFactory. buil d("persisted process")
.node("one").initial().behaviour(new State())
.transition().to("two")
.node("two"). behavi our (new State())
.transition().to("three")
.node("three"). behavi our(new State())

.done();

pvnDbSessi on. save( processDefinition);
} finally {

envi ronnment . cl ose();
}
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In the previous transaction, the process definition, the nodes and transitions will be inserted into the database
tables.

Next we'll show how a new process execution can be started for this process definition. Note that in this case, we
provide a business key called first'. This will make it easy for us to retrieve the same execution from the database
in subsequent transactions. After starting the new process execution, it will wait in node 'one' cause the behaviour is
await state.

envi ronment = envi ronnment Fact ory. openEnvi ronnent () ;

try {
PvnDbSessi on pvnDbSessi on = envi ronnent . get (PvnDbSessi on. cl ass) ;

ProcessDefinition processDefinition = pvnDbSessi on. fi ndProcessDefinition("persisted process");
assert Not Nul | (processDefinition);

Execution execution = processDefinition.startExecution("first");
assert Equal s("one", execution. get Node().getNane());
pvnDbSessi on. save(executi on);

} finally {
envi ronnent . cl ose();

In the previous transaction, a new execution record will be inserted into the database.

Next we feed in an external trigger into this existing process execution. We load the execution, provide asignal and
just save it back into the database.

envi ronment = environnent Fact ory. openEnvi ronnent () ;

try {
PvnDbSessi on pvnDbSessi on = envi ronnent . get (PvnDbSessi on. cl ass) ;

Executi on execution = pvnDbSessi on. fi ndExecuti on("persisted process", "first");
assert Not Nul | (execution);
assert Equal s("one", execution. get Node().getNane());

/1 external trigger that will cause the execution to execute unti
/1 it reaches the next wait state
execution.signal ();

assert Equal s("two", execution. get Node().getNane());

pvnDbSessi on. save( executi on);

} finally {
envi ronnent . cl ose();

The previous transaction will result in an update of the existing execution, reassigning the foreign key to reference
another record in the node table.

UPDATE JBPM EXECUTI ON
SET

NODE_=?,

DBVERSI ON_=?,

VWHERE DBI D_=?
AND DBVERSI ON_=?
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The version in this SQL shows the automatic optimistic locking that is baked into the PVM persistence so that pro-
cess persistence can easily scale to multiple JVM's or multiple machines.

In the example code, there is one more transaction that is completely similar to the previous which takes the execu-
tion from node 'two' to node 'three’.

All of this shows that the PVM can move from one wait state to another wait state transactionally. Each transaction
correcponds to a state transition.

Note that in case of automatic activities, multiple activities will be executed before the execution reaches a wait
state. Typically that is desired behaviour. In case the automatic activities take too long or you don't want to block
the original transaction to wait for the completion of those automatic activities, check out Chapter 11 to learn about
how it's possible to demarcate transactions in the process definition, which can also be seen as safe-points during
process execution.

9.5. Business key

TODO

TODO: Generd persistence architecture

TODO: Object references

TODO: Threads, concurrency with respect to forks and joins
TODO: Caching

TODO: Processinstance migration
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Services

10.1. Introduction

All session facades are called services in the PVM and it's related projects. A serviceis the front door of the API. It
has a number of methods that expose the functionality of the component. The service takes care of getting or set-
ting up an environment for each operation that isinvoked.

10.2. PvmService

The class org.jbpm.PvmService is the main way to access functionality from the PVM.

10.3. Architecture

Service methods are implemented through command classes. Each method creates a command object and the com-
mand is executed with the execut e method of the CommandSer vi ce. The CommandSer vi ce is responsible for setting
up the environment.

There are three command executors:

* standard- command- ser vi ce Will just execute the command and pass in the current environment.

* (UNTESTED) async- command- servi ce Will send an asynchronous message. So right after that in a separate
transaction, the message is consumed and the command is executed.

e (TODO) cnt - command- ser vi ce Will delegate execution of the command to a local SLSB that has transaction
attribute r equi r ed.

e (TODO) r envt e- conmand- ser vi ce Will delegate execution of the command to aremote SLSB.

Each of the command services can be configured with a list of interceptors that span around the command execu-
tion. Following interceptors are available:

e environnent-interceptor: Will execute the command within an environment block.

e (UNTESTED) aut hori zati on-i nt er cept or : Will perform an authrorization check before the command is ex-
ecuted. The authorization interceptor will look up the AuthorizationSession from the environment to delegate
the actual authorization check to.
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execute the command for a configurable number of times

it in case an exception comes out of the command execution.

Following configuration can be used in default standard persistence situations:

<envi ronnent >
<appl i cati on>

<pvm service />

<st andar d- conmmand- ser vi ce>
<retry-interceptor />
<envi ronnent-interceptor />

<transaction-interceptor />
</ st andar d- conmand- ser vi ce>

</ application>

</ envi r onnent >

retry-interceptor: Will catch hibernate's optmistic locking exceptions (StaleStateException) and retries to

transaction-intercept or : Will get the transaction from the current context and invoke setRollbackOnly() on

50



11

Asynchronous continuations
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Timers
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Process languages

TODO: xml parser infrastructure

TODO: inherit from ProcessDefinitionl mpl, Executionlmpl
TODO: overriding the default proceed()

TODO: node type implementations

TODO: persistence

TODO: compensation: languages like bpel and bpnm define that as a normal contination that fits within the process
structures available in the pvm (taking a transition and executing a nested node).
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