JBossOverlord CDL 1.0-M1

User Guide

by Gary Brown and Jeff Yu

O Y1 V=Y 1

Rt O T2 1 5 S 1
O oo - 2
1.3. SOA LifeCyCle GOVEIMAINCEiiiiiiiieiiiiii ettt e ettt e et e e e et e e eebeaeaees 2
1.3.1. DeSIgN TimME GOVEINBNCEuueiiteiiieeeiieeeteeete e et e e st e e et e eat s e et e e st e eaneeanaees 2
1.3.2. RUNEIME GOVEINANCE ...eevteiiieeii et e e et e e e e e e e et e e et s e e e e e anneeeaeeennaaes 3
O T = S (= o N 4
2. Conversation Validation WIith CDLcouuiiiiiiii e e e e e e e een s 5
2.1, Conversation Validationcoeeuuiiiiiii e e 5
25 R T © V= 4= PP 5
2.2. Configuration of Conversation Validationc.coiiiiiiiiiiiiiii e 5
2.2.1. Central Configuraionccuuieiiiiiiieeiii e 5
2.2.2. Local Configuration using ValidationACtioncccoveviiieiiiniiiii e, 7
2.3. Generating the Validator Configuration from a Choreographyccccuiieiiiiinieieiiinnenens 7
2.3.1. Defining the ESB Service endpointScouviiiiiiiiiiicii e e e e 7
2.3.2. Generating the validator-config.Xmlc.oiiiiiiiiiiiiiii e 10
2.4. Monitoring the Choreography DeSCriptionc.uuiiiiiiiiieiiie e e e 10
3. CoNVErSation AWAIrE ESBuiiiiiiiiiie et e e e e e e e e aeae 13
3.1. Conversation based CONfOMMANCEcoiviuiieiiiiie e 13
000 It R @ V= Y= 13
3.1.2. CDL Conformance Checkingcc.uveiuiieiiiiiiii e e e e e e 13
3.2. JBossESB "Conversation Aware" ESB ACHONSocuviiiiiiiieie e 14
T R O = 4V 1= P 14
3.2.2. CONVErSationNal SEIVICEuiieeiiii et e e e 14
3.2.3. Establishing Correspondance between ESB Configuration and Choreography 16
3.2.4. MANAGING SESSIONStueiiitiieeeeti e ettt e ettt e et et e e ettt e e e e et e e e eebt e e e eebeaeaene 17
G ST 141 (= ' 11 1o [P 19
3.2.6. Managing INfOrmationoouuieiiiiiiiiii e 22
22 A @ a1 (o) 1 a o T = o 24
3.3. Generating a JBossESB Configuration from CDLcooeiiiiiiiiiiiiiieiiieeeei e 28
R N @ V= 4V 1= PP 28
3.3.2. Generating the JBOSSESB Configurationcooevevunieiiiiinieiiiiieeeci e 28
3.4. Dealing with ConfOrmanCe [SSUESccuuiiiiieiiii e e e 29
Tt I © V= Y= 29
3.4.2. Show referenced desCriptioncccuiiiiiiiiiie e e 30
3.4.3. Error: Expecting additional activities as defined in referenced description 30
3.4.4. Error: Type mismatch with referenced description, was expecting 30
3.4.5. Error: Behaviour not present in referenced descriptioncoovvveviieiiiiineeennnnn. 30
3.4.6. Error: Additional unmatched paths in modelcccocoiiiiiiiiiiii e, 31
3.4.7. Error: Additional unmatched paths in referenced descriptionc.ccooeevvvinieeens 31

Chapter 1.

Overview

The CDL component of the Overlord SOA governance project aims to leverage the concept of a
choreography (or conversation) description to provide design-time and run-time governance of an SOA.

A Choreography provides the means to describe the service interactions between multiple parties from a
global (or service neutral) perspective. This means that it is possible for an organisation to define how
an end-to-end business process should function, regardless of whether orchestrated or peer-to-peer service
collaboration will be used.

Although in simple situations, a BPEL process description can provide a description of the interactions
between multiple services, this only works where a single orchestrating process is in control. The benefit
of the choreography description isthat it can be used to provide a global view of a process across multiple
orchestrated service domains.

This document will outline how the Choreography Description is being used as part of Project Overlord to
provide SOA governance capabilities for each phase of the SOA lifecycle.

When a validated design has been approved by the users, it can be used to generate an initial skeleton of
theimplementation for each service. The current version of Overlord enables a skeleton implementation to
be generated as a JBossESB service configuration file, using 'conversation aware’ ESB actions. For more
information on these, please see the “ Conversational ESB User Guide”.

1.1. WSCDL

WS-CDL, or Web Service Choreography Description Language, isacandidate recommendation from W3C.
Although associated with W3C and Web Services, it isimportant to begin by stating that the Choreography
Description Language (CDL) is not web service specific.

The purpose of CDL isto enabletheinteractions between acollection of peer to peer servicesto be described
from aneutral (or global) perspective. Thisis different to other standards, such as WS-BPEL, that describe
interactions from a service specific viewpoint.

In essence a choreography description declares roles which will pass messages between each other, called
interactions. The interactions are ordered based on a number of structuring mechanism which enables
loops, conditional, choices and parallelism to be described. In CDL variables used for messages and for
conditionals are all situated at roles. Thereis no shared state rather there is a precise description of the state
at each role and a precise description of how these roles interact in order to reach some notion of common
state in which information is exchanged and processed between them.

In CDL we use interactions and these structuring mechanisms to describe the observable behaviour, the
messages exchanges and the rules for those exchanges and any supporting observable state on which they
depend, of asystem.

pidsoa

1.2. pi4soa

pidsoa is an open source project established to demonstrate the potential benefits that a global model (as
described using CDL) can provide when building an SOA. The open source project is managed by the Pi4
Technologies Foundation, which is a collaboration between industry and academia.

Building complex distributed systems, without introducing unintended consequences, is area challenge.
Although the Choreography Description Language provides a means of describing complex systems at a
higher level, and therefore help to reduce such complexity, it does not necessarily guarantee that erronous
situations cannot occur due to inappropriately specified interactions. The research, being carried out by
members of the Pi4 Technologies Foundation, into the global model and endpoint projection is targeted
at identifying potential unintended consequences, to ensure that a global description of a system can be
reliably executed and can be free from unintended consequences.

Thetool suite currently offers the ability to:

 Define achoreography description

 Export the description to arange of other formats, such as BPMN, UML activity/state/sequence models,
and HTML

« Define scenarios (equival ent to sequence diagrams), with exampl e messages, which can then be simulated
against an associated choreography

» Generate template endpoint implementations:
» WS-BPEL for deployment in ActiveBPEL

 Java stubs for execution with the pi4soa state machine, with deployment options for Apache Axis,
J2EE (JBoss, Glassfish) and JBoss ESB

1.3. SOA Lifecycle Governance

1.3.1. Design Time Gover nance

Design-time governance is concerned with ensuring that the resulting system correctly implements
reguirements (whether functional or non-functional). A choreography description can be used to ensure that
the implemented system meets the behavioural requirements.

The behavioural requirements can be captured as a collection of scenarios (e.g. sequence diagrams) with
associated example messages. This enables an unambiguous representation of the business requirementsto
be stored in a machine processable form, which can subsequently be used to validate other phases of the
SOA lifecycle.

Once the choreography description for the SOA has been defined, it can be validated against the scenarios,
to ensure that the choreography correctly handles all of the business requirements.

Runtime Governance

Once the service enters the implementation phase, it is important to ensure that it continues to adhere to
the design and therefore meets the business requirements. Currently this is achieved through the use of
techniques such as continuous testing. However thisis only as reliable as the quality of the unit tests that
have been written.

When a 'structured’ implementation language has been used, such as WS-BPEL, jPDL or the new
‘conversation aware’ ESB actions, it will be possible to infer the behaviour of the service being
implemented, to compare it against the choreography description. Currently this has been implemented
for the “conversation aware” ESB actions, and is demonstrated using the samples in this Overlord-CDL
distribution.

Detecting incorrectly implemented behaviour at the earliest possible time saves on downstream costs
associated with finding and fixing errors. By using static validation against the original design, it ensures
that the implemented service will deliver its expected behaviour first time. This is important in building
large scale SOAs where different services may be implemented in different locations.

There are two other areas where a choreography description can be used as part of design-time governance,
that are not currently implemented in Overlord:

 Service lookup — the choreography description can be used to determine if a service already existsin the
Service Repository that meets the appropriate behavioural requirements.

 Service unit testing - this can be achieved using the scenarios originally specified to document the
behavioural requirements. Rather than develop an independent source of test data, the scenarios can be
used to validate the sequence of messages sent to, and received from, a service, aswell as validating the
contents of the messages returned from the service under test.

1.3.2. Runtime Governance

Runtime governance ensures that the SOA executes as expected according to predefined policies. In this
context, a choreography description can be used in two ways.

1.3.2.1. Servicevalidator

The choreography description represents the interactions between multiple services to deliver a business
goal. To validate the behaviour of each individua service, within the choreography description, the
behaviour of each service can be derived from the choreography.

The derived behaviour (or “endpoint projection”) of a service can be used within a 'service validator'
to monitor the inbound and outbound messages for the service, to ensure they conform to the expected
behaviour. If an invalid message is detected, it would be possible to block it, to prevent it from causing
subsequent problems in downstream systems. The error can aso be reported to a central management
capability.

The CDL component of Overlord provides the ability to configure service validators to monitor the
behaviour of individual services. An enhanced version of the JBossESB trailblazer example has been
included, with the appropriate validator configuration, to demonstrate this mechanism.

First Steps

1.3.2.2. Process correlation

Validating each servicelocally can enable errorsto be detected quickly, and the effects of the error prevented
from contaminating other systems by blocking the erroneous messages.

However local service specific validation may not be adequate to identify errors that would affect the end-
to-end business process. Therefore the message activity at each service validator can be reported to acentral
'process correlation engine' which can reconstitute aglobal view of the business transaction, and determine
if it matches the expected behaviour as defined in the choreography description.

Thebenefit of acorrelated global view of thedistributed businesstransactionisthat it can befurther analysed
to ensure other governance polices have been followed —e.g. SLAs.

The pidsoatool suiteincludesasimple GUI based monitoring tool to display the information obtained from
correlating message events associated with individual services. The trailblazer example has been written to
cause out of sequence messages under certain circumstances. Seethe” Samples Guide” for moreinformation
on how to run this example.

1.4. First Steps

Thefirst step will be to follow the instructions in the Getting Started Guide to install Overlord.

Onceinstalled, the next step should beto try out the exampl esin the samplesfolder. The examples consistent
of:

» Service Validation related examples
The samplesfolder contains an enhanced version of the trailblazer example from the JBossESB, with the
addition of a File Based Bank, and message content including a conversation id to enable the messages
to be correlated with a specific session.

» Conversation aware ESB actions, with conformance checking against Choreography
Two examples have been included, one simple example (purchasing) and the other more advanced
(brokerage). Both relate to the business process of purchasing items. The second exampl e introduces the
concept of abroker to act on behalf of the customer, interacting with multiple potential suppliers.

These examples show how a service implementation (built using “conversation aware ESB actions’ in
this case), can be continuously checked for conformance against a choreography description.

Thefinal step should beto review all of the documentsin the docs folder to understand more about each
capability, and then try using the techniques on your own project.

Chapter 2.

Conversation Validation with CDL

2.1. Conversation Validation

2.1.1. Overview

Conversation validation isaform of runtime governance concerned with the dynamic behaviour of asystem.

When coupled with a choreography description model of a system, this means having the ability to ensure
that the way a collection of servicesinteract correctly adheresto a description of the business process being
enacted.

This sectionintroduces the choreography description language (CDL) defined by W3C, and the pi4soa open
source project which provides an editor for creating choreography descriptions, as well as utilizing these
descriptions for runtime validation and execution purposes.

2.2. Configuration of Conversation Validation

2.2.1. Central Configuration

The principle mechanism used for validating conversationswithin an ESB isthrough the use of aglobal filter
registered with the jbossesb-properties.xml. This file is located in the $IBossESB/ser ver/default/depl oy/
jbossesh.sar folder.

<properties name="filters">

<property nanme="org.j boss. soa.esb.filter. 10"
val ue="or g. pi 4soa. j bossesb. val i dator. Val i datorFilter"/>
</ properties>

Thisfilter isinstalled as part of the installation process for the Overlord-CDL distribution.

Theinformation concerning what destinationswill be validated, and to which choreography/participant they
relate, are contained within the validator-config.xml file, contained within the overlord-cdl-validator.esb
bundle.

An example of the contents of thisfile, as used by the TrailBlazer example, is:

<val idator active="true" >
<service cdnFi | ePat h="nodel s/ Trai | Bl azer. cdnf
partici pant Type="LoanBr oker Parti ci pant" >
<out put epr="j ns: queue/ esh-tb-credi t AgencyQueue" />
<i nput epr="jns: queue/ esh-tb-credit AgencyQueue_reply" />

Central Configuration

<out put epr="j ms: queue/ esbh-t b-j neBankRequest Queue" />
<out put epr="j ms: queue/ esh-tb-fil eBankRequest Queue" />
<i nput epr="j ms: queue/ esh-tb-j nsBankResponseQueue" />
<out put epr="jns: queue/ esb-tb-customerNotifier" />
<i nput epr="jns: queue/ esh-tb-fil eBankResponseQueue" />
</ service>
<service cdnFi | ePat h="nodel s/ Trai | Bl azer. cdnf
partici pant Type="Credi t AgencyPartici pant" >
<i nput epr="jns: queue/ esh-tb-credi t AgencyQueue" />
<out put epr="j ms: queue/ esh-tb-credi t AgencyQueue_reply" />
</ service>
<servi ce cdnfFil ePat h="nodel s/ Trai | Bl azer. cdnf
partici pant Type="BankPartici pant" >
<i nput epr="jns: queue/ esh-tb-j nsBankRequest Queue" />
<input epr="jns: queue/ esh-tb-fil eBankRequest Queue" />
<out put epr="j ms: queue/ esh-t b-j neBankResponseQueue" />
<out put epr="j ms: queue/ esh-tb-fil eBankResponseQueue" />
</ service>
<servi ce cdnFi| ePat h="nodel s/ Trai | Bl azer. cdnf
partici pant Type="NotifierParticipant" >
<i nput epr="jns: queue/ esh-tb-customerNotifier" />
</ service>
</val i dat or >

The 'validator' element has a single boolean attribute called 'active', which determines whether active or
passive validation is used. Active validation means that any erronous messages, that conflict with the
behaviour as described in the choreography, should be prevented from being received or sent. Passive
validation means that the message will continue to be received or sent, and errors will only be reported for
information purposes.

@ Note

It isimportant to note that if ‘active' validation is used, then the validation mechanism will
be an integral part of the message flow. This may have a slight performance impact on the
delivery of messages between services.

Within the 'validator' element isalist of 'service' elements, one per service being validated. The behaviour
of the service being validated is identified by specifying the choreography model and the participant type
within the choreography model. Therefore, within the above configuration, thefirst set of destinations (eprs)
are associated with the LoanBroker Participant defined within the choreography description model found in
thefilenodel / Trai | Bl azer . cdm whichwill belocated within the overlord-cdl-validator.esb bundle.

The elements contained within the 'service' element define the input and output eprs (Endpoint References)
that are associated with the service. The input eprs are the destinations on which messages will be received
and the output eprs are the destinations on which messages will be sent by the service.

The format of the 'epr" attribute will be specific to the type of transport used for the ESB aware destination.
Currently only IMS is supported, and can be identified by the protocol prefix jms:".

Local Configuration using ValidationAction

2.2.2. Local Configuration using ValidationAction

Although it is preferrable to validate an .esb bundle using the central configuration, there are times when
it is not possible to know the specific destination used to send a message to or from a service. In these
situations, it will be necessary to explicitly insert an action into a service descriptor's action pipeline, to
observe the message.

This can be achieved using the org.pi4soa.jbossesh.validator.ValidationAction, which can be configured
with the following properties:

<action name="LoanBroker Val i dat or Acti onl"
cl ass="org. pi 4soa. j bossesbh. val i dat or. Val i dat i onActi on"
process="processMessage" >
<property nanme="cdnFil ePath" val ue="nodel s/ Trail Bl azer. cdni />
<property name="partici pant Type" val ue="LoanBrokerParticipant" />
<property nanme="inbound" val ue="true" />
<property name="request" val ue="true" />
</ action>

The cdmFilePath references the choreography description model, which will usually be a relative path
within the overlord-cdl-validator.esb bundle. The participantType property defines which participant the
validator action isrepresenting. The optional inbound property indicates whether the message on the action
pipeline is being received (true) or sent (false). The optiona request property can be used to determine
whether the message on the action pipeline represents arequest (true) or response/notification (false).

2.3. Generating the Validator Configuration from a
Choreography

2.3.1. Defining the ESB Service endpoints

Thefirst step to configuring the validator isto associate the endpoint references (EPRS) against the relevant
choreography interactions. Thisisachieved by defining an annotation for each ‘exchange details component
(i.e. each request and response/notification).

Defining the ESB Service endpoints

[
5, CreditCh ec_I<>

|E—> CreditCherkRe

{JCrediChel <°PY
I ¥ Delete
%, [CreditChech —

I4— CreditCH Run As ’ | Generate Image...

&{ICred'rtCha Debug As 4

I Profile As 4
Validate

SRRl DR

When the annotation editor is displayed for the relevant 'exchange details component, the jbossesb
annotation should be added. Thisis achieved by selecting the popup menu associated with the background
of the lefthand panel and selecting the Add Defined Annotation menu item.

f Edit Annotations [CreditCheckRequestExchange] |:||E|g|

Parameters | Annotation

Add Defined Annotation

Add Freeform Annotation

When the list of defined annotationsis displayed, select the jbossesb annotation.

Defining the ESB Service endpoints

£~ Selection Needed ‘:JEHZ‘

Predefined Annotation
jbossesb

| selectal || Deselectal |
@ | ok] [Cancel I

After pressing the Ok button, the annotation editor will configure the righthand panel with the parameters
associated with this annotation.

=~ Edit Annotations [CreditCheckRequestExchange]

Parameters | Annotation
Destination | jms:queue/esb-th-creditAgencyQueue| |
Temporary L

To specify the EPR for a particular message exchange, enter the EPR into the Destination field. If however
a temporary destination is used for a message exchange (usually when dealing with responses), then the
temporary checkbox should be selected.

Generating the validator-config.xml

Once the annotation has been defined, then press the Save button to save the annotation against the
interaction's exchange details.

2.3.2. Generating the validator-config.xml

To generate the validator configuration details from a choreography description into the format used by
the central configuration mechanism (described previoudly), select the Overlord->JBossESB->Generate
Validator menu item associated with the popup menu for the choreography description.

=52 traiblazer-mode

_ Team *

= .setlings Compare With *
bin

& Replace With ¥

3

i lord JBossESB ¢ Generate Validator
[¥] .classpath S5E. nerate Validator

[.project Generate Generate ESB Services

[2 LoanReques

Properties
i TraiBlazer.cc P P

When the dialog box is displayed, either enter the pathtotheval i dat or - conf i g. xm inthetext field,
or use the Browse button to locate the file3

-

®~ Generate Validator for TrailBlazer

File path: ‘ server/default/deploy/overlord-cd-validator.esb/validator-config.xm’ |

Browse

If the selected file does not exist, then when the Ok button is pressed, it will be created with the validator
configuration associated with the choreography description.

If the selected file already exists, then any 'service' entries associated with the choreography file will be
updated with the new information from the choreography description. All other entries in the selected
validator configuration file will be retained.

@ Note
If the validator-config.xml file within the JBoss server environment is directly updated,
then the server will need to be restarted before the new configuration will take effect. Tools
to support hot reconfiguration of thisfile will be provided in the future.

2.4. Monitoring the Choreography Description

Oncethe JBossESB environment has been configured, to perform service validation of aset of ESB services
against a choreography description, and the server has been started, then the next step is to launch a tool

10

Monitoring the Choreography Description

to view the correlated information from the service validators - and determine if the transactions are being
correctly executed.

Within an Eclipse Java project, that contains the choreography description to be monitored, aconfiguration
file called pidsoa.xml needs to be defined on the project's classpath. This file provides details of the IMS
configuration parameters required to subscribe for the information generated by the service validators. The
contents of thisfileis:

<pi 4soa>
<tracker>
<j ndi >
<initial ContextFactory>org.jnp.interfaces. Nam ngCont ext Factory</initial ContextFactory>
<provi der URL>j np: / /| ocal host : 1099</ pr ovi der URL>
<fact or yURLPackages>or g. j boss. nani ng: org. j np. i nt erfaces</fact or yURLPackages>
</j ndi >
<j n>
<connect i onFact or y>Connect i onFact or y</ connect i onFact ory>
<connect i onFact or yAl t er nat e>Connect i onFact or y</ connect i onFact or yAl t er nat e>
<desti nati on>t opi c/tracker </ destinati on>
</j s>
</tracker>
</ pi 4soa>

The destination defined in this file must match the one configured in the pidsoa.sar/pid4soa.xml file within
the server.

The next step is to launch the monitoring tool. This is located on the popup menu, for the choreography
description (i.e. .cdm) file, by selecting the Choreography->Monitor menu item. Once the tool has been
launched, it will load the choreography description, subscribe to the relevant event destination, and then
indicate via a message in the bottom status line that it is ready to monitor.

11

Monitoring the Choreography Description

. Choreography Monitor

’ BankChanne|Type

' MaotifierChannelType

File Help
- |ssues Seseion d Frarm To hisg Status
. Ur 123452 (SSN), b2 (QuoteRef) LoanBroker Motifier notifwguote) el
123452 {SSN), b2 (QuoteRef) Bank LoanBroker requeston
® crors :1123452 (SSN), b1 (QuoteRef) LoanBroker Motifier nhotify{guote) Completed
J Warmings 123452 (SSN), b1 (QuoteRel) Bank LoanBroker requestQs
:|123452 (SSN), b2 (QuoteRel) LoanBroker Bank requestos Redquest) I
= Sessions :|123452 (S5N), b1 (QuoteRel) LoanBroker Bank requeston Request)
fﬁ 173451 (S5H) :|123452 (SSN) CreditAgency LoanBroker checkCredit{creditCheckResult) i
:[123452 (SSN) LoanBroker CreditAgency checkCrediticreditCheck) =
1?]' 123452 (351 1123451 (SSN) LoanBroker Motifier otifyi i redit)
- Channels 123451 {SSN) CreditAgency LoanBroker checkCredit{creditCheckResult)
123451 (SSN) LoanBroker CreditAgency checkCrediticreditCheck) Completed -

4]]

E uate xmins="httpfwn sericedescription orgisenicefracker=
’ CreditAgencyChannelTy - d P 4 g

=intarastRate=
8.60
=finterestRate=
=guoteld=
JMEBasedBank-2
=/guoteld=
=ref>
bl
=lref=
=efrorCodes
1}
=lerrarCodes
=customerlJID=
123452
=fcustomertiD=
=custarnerErmail=
joe@iliketos pendit cam
=lcustarmnerEmail=

[1l

<uote=

(1|

Monitoring TrailBlazer

When the information is received, from the service validators representing the different participants
(services), it is correlated to show the global status of the business transaction. The list of correlated
interactionsis show in reversetime order in theimage, so in thisexample aLoanBroker sendsacreditCheck
message to a CreditAgency, followed by a creditCheckResult being returned.

If any out of sequence or other error situations arise, these are displayed in red.

12

Chapter 3.

Conversation Aware ESB

3.1. Conversation based Confor mance

Warning

The conversation aware ESB actions mechanism should be considered an apha version
only, and subject to change in future releases. Its inclusion within this release is intended
to enable the community to experiment with the approach and hopefully provide feedback
that can be used to guide the direction of this capability.

3.1.1. Overview

The term "conversation” represents a structured set of interactions (or message exchanges) between one or
more peer to peer services, to conduct a business transaction. The "conversation” is defined from a service
neutral (i.e. global) perspective.

This document explains how such a"conversation™ description can be used to ensure conformance of one or
more service implementations, within an ESB, during the design and implementation phase of the system.

This section introduces the choreography description language (CDL) defined by W3C, whichisastandard
notation for defining conversations from a global perspective, and the pi4soa open source project which
provides an editor for creating choreography descriptions, as well as utilizing these descriptions for
conformance checking, monitoring and execution purposes.

Finally the section will provideabrief discussion of how CDL can be used to provide conformance checking
of an ESB, through the use of 'conversation aware' ESB actions.

3.1.2. CDL Conformance Checking

In general, conformance checking is the procedure for ensuring that a component has been correctly built
according to some specification or standard. In terms of CDL, it more specifically ensures that one or more
services perform their responsibilities correctly in accordance with the choreography description.

The pidsoa tools suite provide the mechanism for producing service endpoint descriptions for each
service within a choreography description. The relevant service descriptions can then be compared (for
conformance) against their ESB service implementations.

However, to make this possible, it is necessary to be able to derive the communication 'type' structure from
the ESB implementation, i.e. where messages (of particular types) are sent and received, where decision
points are, where actions are performed concurrently, etc.

This is why a specific set of 'conversation aware ESB actions have been defined (discussed in a
later section), to make it possible to derive the communication ‘type' structure from an ESB service
implementation.

13

JBOsSESB "Conversation Aware" ESB Actions

Once the communication 'type' structure has been obtained from the ESB implementation, it can be
compared against the relevant service endpoint description projected from the choreography description, to
determineif there are any differences. These can then be reported to the ESB service devel oper, so that they
can fix the problems, before the service is deployed to the runtime environment.

This ensures that all of the services will interaction correctly, as they will all have been validated against
the choreography, and therefore work together by design.

3.2. JBossESB " Conversation Aware' ESB Actions

3.2.1. Overview

This section outlines the various "conversation aware" ESB actions that can be used to make the
communication behaviour of a service implementation explicit, thus enabling it to be compared for
conformance against a description of the expected behaviour.

3.2.2. Conver sational Service

The top level component is the Service, which will have a single endpoint reference (i.e. service category
and name) that will be used by external clients (or other services) that interact with this service.

However the service behaviour is stateful, and therefore will need a means of routing the inbound request
to the appropriate service descriptor that is (a) capable of handling the request, and (b) the service instance
isin an appropriate state where the service descriptor can be executed.

3.2.2.1. Message Router Action

The action used to perform routing of the inbound requestsis called MessageRouter Action, for example:

<service category="ESBBroker. BrokerParticipant" name="ESBBrokerProcess" description="">
<l isteners>
<j ms-|istener name="Broker Serviceli stener"
busi dr ef =" Br oker Servi ce"
maxThreads="1"/>
</listeners>
<actions nmep="OneWay">
<action class="org.jboss. soa.overlord.jbossesb. acti ons. MessageRout er Acti on"
process="process" nane="s0-1">
<property name="paths">
<route service-category="ESBBroker.BrokerParticipant"
servi ce- nane="ESBBr oker Pr ocess. mai n"
initiate="true">
<nessage type="enquiry">
<identity type="primry" >
<t oken nanme="id" locator="//@d" />
</identity>
</ nessage>
</route>
<route service-category="ESBBroker.BrokerParticipant"

14

Conversationa Service

servi ce- name="ESBBr oker Pr ocess. nai n. 5"
<nmessage type="buy">
<identity type="primary" >
<t oken nanme="id" locator="//@d" />
</identity>
</ nessage>
<nessage type="cancel ">
<identity type="primry" >
<t oken nanme="id" locator="//@d" />
</identity>
</ message>

</route>
</ property>
</ action>
</ actions>
</ service>

>

In this example, the 'service’ endpoint reference will be associated with the service category
"ESBBroker.BrokerParticipant” and name"ESBBrokerProcess’. All inbound requests to an instance of this

service will be routed viathis service descriptor.

This service descriptor therefore only has a single action, which represents the message routing capability.
The action class is org.jboss.soa.overlord.jbossesh.actions.MessageRouter Action. This action only defines
asingle property 'path’ which defines one or more 'route’ elements. The attributes associated with this 'route’

element are;

* service-category and service-name, together identify the service descriptor that should be invoked if this

route is selected

« an optiona 'initiate’ boolean attribute. If the attribute is specified, and its value is 'tru€’, then the route
can only be selected if the service instance relevant for the inbound message does not yet exist, and this
message will result in a CreateSessionAction being invoked to create the service instance. If the attribute
valueis 'false, or not specified, then a service instance must already exist that is capable of handling

the inbound message.

The 'route’ element will contain one or more 'identity’ elements, and one or more 'messageType' elements.

The'identity’ element is used to extract information from the inbound message that can be used to identify
the appropriate service instance. The only attribute on the 'identity' element is the type of identity, which

can be:

e primary

the primary identity field, used to associate a message with the session

 dternate
an alternative primary identity

* association

15

Establishing Correspondance between ESB

Configuration and Choreography

link the message to a session based on an identity previously associated with the session (or parent

session). However this identity will not be associated with the current session, it is usually only used to
link a child session to a parent session

* derived
the extracted identity will be placed in reserve for use as the primary identity for a subsequent session.
It is not directly associated with the session in which it is discovered

The one or more 'token’ definitions contained within the 'identity’ element provide the details regarding
the structure of the identity. The token has 'name’ and 'locator' attributes, the locator being used to provide
an expression that locates the identity information within the inbound message. If more than one token is
defined, it provides a composite identity (i.e. made up of multiple parts).

The one or more 'messageType' elements, contained within the 'route’ element, defines the message type(s)
that should be routed to the service descriptor associated with the 'route’ element.

@ Note
If arouteismarked asinitiate="true', with the correct message typefor aninbound message,
but aserviceinstance already existsfor theidentity information extracted from the message,
then the route will not be selected. The converseis also true.

@ Note
Similarly, even if a message type match is found, if the service instance is not in an
appropriate state to invoke the target service descriptor, then the route will not be selected.

If no routes are found for a particular inbound message, then an exception will be reported.

3.2.3. Establishing Correspondance between ESB Configuration and
Choreography

All actions (and therefore service descriptors) for aparticular serviceimplementation must be defined within
the same ESB configuration file. Thisis a current requirement, to ensure that all of the inter-related service
descriptors are available to support the static validation (e.g. conformance checking).

The j boss-esb. xnl file must be defined within either the same Eclipse project as the pidsoa
choreography description (.cdm file), or in a project that has a 'project reference’ to the project containing
the choreography description.

To establish the link between the choreography description and the j boss- esb. xm , both must
'implement’ a common conversation type.

16

Managing Sessions

<action class="org.jboss. soa.overlord.jbossesb. acti ons. Cr eat eSessi onActi on"
process="process" nanme="...">

<property name="conversationType"
val ue="overl ord. cdl . sanpl es. LoanBr oker @r oker" />

</ action>

The conversation type is specified in the CreateSessionAction ESB action, described later in this section,
and is associated as a semantic annotation against the relevant Participant Type or Participant Instance
within the choreography description.

To associate the conversation type with either the Participant Type or Instance, open the choreography
description in the pidsoa choreography designer. Then select the " Choreography->Edit Annotations' menu
item from the popup menu associated with the Participant Type or Instance. In the lefthand panel, select
"Add Freeform Annotation" from the popup menu, then specify "conversationType" as the annotation type
and press 'Ok’. Then select the 'Annotation’ tab in the righthand panel, and enter the conversation type, e.g.
"overlord.cdl.samples.LoanBroker@Broker". Note the'@' isimportant, asthe following word indicatesthe
'rol€' associated with the conversation type which precedes the'@' symbol.

zer.cdm n 63

«ct P Name Spaces

ypes ¢ E- B> Participant Types

meSpace Broker

rticipant Buyer

pe

Je Type £~ Edit Annotations [Broker]

lationshig .

pe Parameters | Annotation

‘ormatiol overlord.cdl.samples.LoanBroker@Broker

iannel
pe

3.2.4. Managing Sessions

A "session" represents aspecific instantiation of aservicedefinition that isinvolved in abusinesstransaction
(or conversation). The "session” will be distinguished based on unique identity information relevant to the
business transaction, that is derived from specific properties within the messages being exchanged by the
interacting services.

The service description can be composed from other reusable sub-service descriptions, although the service
can only define asingle 'root’ (i.e. top level) definition.

3.2.4.1. Business State and L ogic

Each top level or sub-service description will be associated with a business state 'pojo’ class that contains
its business relevant information and logic (i.e. methods). This classisidentified by the property 'session’,
which will be associated with the initial conversation based ESB actions in a service (or sub-service)
description, or in any subsequent conversation based ESB actions that require the information to determine
the session instance.

17

Managing Sessions

As well as representing the business state and logic for a session (or sub-session), the pojo
can define an annotation that provides information about the session. The annotation type is
org.j boss. soa. overlord. j bossesb. acti ons. Servi ce.

package org.jboss. soa.overl ord. sanpl es. j bossesb. | oan. br oker;
i nport org.jboss.soa.overlord.jbossesb. acti ons. Servi ce;

@er vi ce(nanme="{http://ww. j boss. org/overl ord/| oanBr oker } Br oker",
conver sati onType="overl ord. cdl . sanpl es. LoanBr oker @r oker ",
root =t rue)
public class BrokerMin {

}

The'name' attribute represents a name associ ated with the compl ete service description, encompassing both
top level and composed sub-session behaviour. The 'root' attribute indicates whether this pojo is related to
the top level session, or a sub-session.

For pojos that represent the 'root’, or top level session, for a service description, they should also specify
the optional 'conversationType' attribute. This expresses the type that will be checked for conformance,
and is comprised of two parts separated by the '@' symbol. The first part is a fully qualified name of the
conversation type. The second part represents the role being played within the conversation type.

If the Service annotation is not defined on the pojo, then the information (service description name, root
and optional conversation type) must be explicitly defined in the relevant conversation based ESB actions.

3.2.4.2. Instantiating top level and child sessions

A session, whether top level or achild sub-session, will be instantiated by defining a service descriptor that
starts with a CreateSessionAction. For example,

<action class="org.|boss. soa. overlord.jbossesb. acti ons. Cr eat eSessi onActi on"
process="process" name="...">
<property nanme="session"
val ue="org. j boss. soa. over| ord. sanpl es. j bossesb. | oan. br oker. Broker Mai n" />
</ action>

where the 'session’ property references the pojo defined previously. What distingui shes whether the session
isatop level or child sub-session isthe value of the 'root" attribute on the pojo annotation (or property on the
CreateSessionAction if no annotation is defined on the pojo), i.e. if root is true, then the service descriptor
will represent the top level session.

Only asingletop level (root) session can be defined per service description.

18

Interacting

3.2.4.3. Retrieving an existing session

Certain service descriptors, and actions within those service descriptors, will need to be able to access the
session in which they are executing. In many situations the session will automatically be available due
to prior activities that may have occurred, causing the session reference to be cached and retrieved when
required.

However, in some situations (such as receiving a response message from another service) there may not be
enough context information to understand which session should be retrieved from the database to handle
the incoming message.

The solution to this problem is to ensure that the first "conversation aware" ESB action in the receiving
service descriptor has the additional information required to resolve the context. This information will
include:

» Message identities
Message identities refer to the extraction of information from the message content to be used to uniquely
identify asessioninstance. Thisinformation can be associated with any " conversation aware" ESB action,
and has the following format:

<property name="identities" >
<identity type="prinmry" >
<t oken nane="<nanme>" | ocat or="<xpath expression>" />
</identity>
</ property>

Multiple identities can be derived from an incoming message. Each identity will have a type, either
primary, alternate, derived or association.

Each identity can have one or more tokens defined. If more than one is defined, then it will represent
acomposite identity.

The name of the token is not relevant, just used for information purposes. The main purpose of the token
isto locate a value from the message content.

e Session pojo
The session pojo class can be used to narrow down the specific sub-session, within a service instance,
that the message should be routed to.

* Service description name (which may be available on a Service annotation on the Session pojo).

3.2.5. Interacting

Services interact by sending and receiving messages, whether synchronously or asynchronously.

19

Interacting

JBosSESB is designed to anonymously handle inbound messages (possibly requests), without explicitly
defining restrictions on message type, and then optionally returning responses (again without explicitly
defining the response message type).

Although this is sufficient for a runtime mechanism, where issues related to unexpected message types
can be handled with suitable exceptions/faults, it does not enable the communication type structure to be
understood by examination of the JBossESB configuration.

Therefore, the set of "conversation aware" ESB actionsinclude actions for sending and receiving messages.
Although these actions are not strictly necessary for the ESB to process messages, they make the
communication behaviour of the ESB service explicit, which enables it to be statically checked (validated)
against a description of the expected behaviour.

3.2.5.1. Sending a message

When sending a message, the first thing to consider is the type of the message. This can be declared as
a property on the SendMessageAction. If dealing with RPC style interactions, then we may also want to
optionally specify an operation name.

<action class="org.jboss. soa. overl ord.jbossesb. acti ons. SendMessageActi on"
process="process" nanme="...">
<property nanme="operation" val ue="get Quote" />
<property name="nmessageType" val ue="request For Quote" />

</ action>

In this example, the message type has no 'namespace’. If a namespace is appropriate, it can be defined
inside {} curly braces (e.g. "{http://www.jboss.org/examples} requestForQuote" for an XML type, or
"{javaorg.jboss.example} Quote" for a Javatype).

The next important aspect isto define the destination of the message. Thiswill be dependent upon whether
the message being sent is arequest or a response/natification.

» Sending arequest
When sending arequest, we need to identify the destination service category/name. Thisisdone by either
specifying the category and name explicitly, using the serviceCategory and serviceName properties:

<action class="org.jboss. soa. overlord.jbossesb. acti ons. SendMessageActi on"
process="process" name="...">

<property nanme="servi ceName" val ue="Request For Quote. main" />
<property nane="serviceCat egory" val ue="ESBBroker. SupplierParticipant" />

20

Interacting

</ action>

or based on expressions using the serviceCategoryExpression and serviceNameExpression properties:

<action class="org.jboss. soa. overl ord. jbossesb. acti ons. SendMessageActi on"
process="process" name="...">

<property name="servi ceNameExpressi on" val ue="supplier.servi ceNane" />
<property name="servi ceCat egor yExpressi on" val ue="supplier. servi ceCategory" />

</ action>

The second approach enables the category/name details to be obtained from the session pojo, using an
expression (see later for details of specifying expressions).

If a response is expected from the request, then the optiona responseServiceName and
responseServiceCategory can be used to specify the service descriptor that should receive the response
message.

e Sending aresponse

<action class="org.j boss. soa. overl ord.jbossesb. acti ons. SendMessageAct i on"
process="process" name="...">

<property nane="client EPR' val ue="buyer" />

</ action>

When sending a response, the destination will not be directly available. The destination would
have been received as a 'reply to' EPR (Endpoint Reference) in a previously received request (see
RecelveMessageAction for details of how to store the 'reply to' EPR).

Therefore, to indicate which EPR to respond to, a property called 'clientEPR' is specified with the name
of the stored EPR. Thismust match up to apreviously stored EPR name within a ReceiveMessageAction.

The final part of the SendMessageAction is the identity declaration. See discussion on Message |dentities
early in this chapter.

<action class="org.jboss. soa.overl ord.]bossesb. acti ons. SendMessageActi on"

21

Managing Information

process="process" nanme="...">

<property name="identities" >
<identity type="primry" >
<t oken nanme="id" locator="//@d" />
<t oken nane="supplierld" locator="//@upplierld" />
</identity>
</ property>
</ acti on>

The identity information extracts values from the message content being sent, and determines whether it
correlates with the identity already associated with the session (or sub-session). If the message is correctly
correlated to the session, then it will be sent. Otherwise an exception will be generated.

It is possible that multiple identities can be defined, associating new ‘alternate’ or 'derived' identities with
the session (or sub-session). These can be used to link subsequent messages (send or received) to the same
session.

3.2.5.2. Receiving a message

<action class="org.|boss. soa.overl ord.jbossesb. acti ons. Recei veMessageActi on"
process="process" nanme="s1-2">
<property nanme="operation" val ue="nakeEnquiry" />
<property nanme="nessageType" val ue="enquiry" />
<property nanme="client EPR' val ue="buyer" />
<property name="identities" >
<identity type="primary" >
<t oken nanme="id" locator="//@d" />
</identity>
</ property>
</ acti on>

The ReceiveMessageAction is used to explicitly define the message type that should be received. If an RPC
style has been used, then the optional operation name can also be defined.

Unlike the SendMessageAction, which will actually send a message to the specified service category/name,
the ReceiveMessageAction primarily serves to provide explicit details about the expected message and to
perform any relevant validation of the message content, including conforming that the extracted identity
details correlate correctly with the session (or sub-session). If an incorrect message type is received, or an
appropriate session cannot be located, then an error will be logged.

The optional 'clientEPR' property is used to store any specific "reply to" EPR (associated with the message)
against the specified name. This makes the EPR accessible to any subsequent SendMessageAction activities
that need to return a response or send a notification.

3.2.6. Managing I nformation

22

Managing Information

3.2.6.1. Manipulating State I nformation

As previously mentioned, each session or sub-session is associated with a business state pojo which
contains the information required by the session. The relevant class is identified by the 'session’ property
on appropriate "conversation aware" ESB actions.

When an action needsto access (read) information defined on thisbusiness state pojo, it will simply definean
expression that can access (and navigate) the properties and invoke methods on the object where appropriate.

However we also need to have the ability to modify the state information. This is achieved using the
SetSateAction. For example,

<action class="org.jboss. soa.overlord.jbossesb. acti ons. Set St at eActi on" nane="...">
<property nanme="vari abl e" val ue="supplierlndex" />
<property nanme="st at eExpressi on" val ue="next Supplier()" />

</ acti on>

With this action, it is possible to specify atarget 'variable' on the pojo business object, associated with the
session (or sub-session), and have the value associated with an expression assigned to that variable.

In the example above, the expression is defined using the 'stateExpression’ property. This expression will
be applied to the pojo business object associated with the session (or sub-session), to extract information
from variables, or invoke methods on the object.

The other type of expression that can be used is defined in the 'messageExpression’ property. Thiswill apply
the expression to the content of the current message on the ESB action pipeline.

3.2.6.2. Manipulating M essage I nfor mation

The other action that can be used to manipulate information is SetMessageAction. This action can be used
to set the contents or a header property of the message on the ESB action pipeline. For example,

<action class="org.|boss. soa.overl ord.jbossesb. acti ons. Set MessageActi on"
process="process" name="...">
<property name="header Property" val ue="quoteList" />
<property nanme="st at eExpressi on" val ue="quotes" />
</ action>

This example shows how information from the session's associated business pojo state can be placed in a
header property of the current message passing through the action pipeline.

If the 'headerProperty’ property is not specified, then the value extracted from the state object will be placed
in the default entry within the message contents, replacing any existing value.

23

Controlling Flow

3.2.7. Controlling Flow

This section describes the various control flow mechanisms that are supported by the "conversation aware"
ESB actions.

The default control flow, supported natively by the ESB action pipeline design, is a sequence. Asthe name
implies, the actions are performed one at a time in the order they defined in the action pipeline, i.e. in a
sequence.

3.2.7.1. Selecting paths based on a decision

The action associated with the 'selection of a path based on a decision' is the IfAction. An example of this
congtruct is:

<action class="org.jboss.soa.overlord.jbossesb.actions.|fAction" process="process"
name="...">
<property nanme="paths">
<if expression="isCreditHistoryAvailable()"
servi ce- cat egor y="ESBBr oker . Cr edi t Agency"
servi ce-name="Cr edi t Agency. deci si on1"
i medi ate="true" />
<el sei f expression="isBadCreditH story()"
servi ce- cat egor y="ESBBr oker . Cr edi t Agency"
servi ce- name="Cr edi t Agency. deci si on2"
i medi ate="true" />
<el se service-cat egor y="ESBBr oker. Credi t Agency"
servi ce- nane="Cr edi t Agency. deci si on3"
i medi ate="true" />
</ property>
</ action>

This construct definesa'path’ property with one or more elements, representing theif, elseif and el se aspects
of the traditional if/else construct. Only the if element is mandatory, and can be followed by zero or more
elseif elements before ending with the optional else element.

Theif and elseif elements can define an ‘expression’ attribute to be evaluated at runtime, to determine if the
associated 'service-category' and 'service-name' should be invoked.

If the 'immediate’ boolean attribute is defined as true on any of the elements, it means that the associated
service category/name should be invoked immediately (i.e. it represents a control link). However, if this
attributeisfalse, or not specified, then the associated service category/nameis expected to betriggered upon
the receipt of a message from an external source.

3.2.7.2. Selecting paths based on the type of a received message

The action used to select paths based on areceived message type is SwitchAction. For example,

24

Controlling Flow

<action class="org.|boss. soa.overl ord.jbossesb. acti ons. Swi t chActi on"
process="process" nanme="...">
<property name="pat hs">
<case servi ce-category="ESBBroker. Broker Partici pant"
servi ce- nanme="ESBBr oker Process. nai n. 7" >
<nessage type="buy" />
</ case>
<case service-category="ESBBroker. BrokerPartici pant"
servi ce- name="ESBBr oker Process. nai n. 6" >
<nessage type="cancel" />
</ case>
</ property>
</ action>

The 'paths property defines one or more 'case’ elements. These elements identify a service category and
name that should be invoked upon receipt of one or more message types, as specified by 'message’ elements
contained within the 'case’ elements.

The 'type' attribute on the 'message’ element defines the type of message that can be routed to the specified
service category/name. |n the example above, the message types have no namespace. However if they have
anamespace, this can be defined in curly braces, e.g. "{ http://www.jboss.org/samples} buy".

Once a path has been selected, the associated service category/name will be invoked immediately. If none
of the paths specified within this action are relevant to the received message, then a runtime exception will
be thrown.

3.2.7.3. Executing multiple paths concurrently

<action class="org.|boss. soa.overlord.jbossesb. acti ons. Paral | el Action"
process="process" nanme="...">
<property name="pat hs">
<pat h servi ce-cat egory="ESBBr oker . Broker Parti ci pant"
servi ce- nanme="ESBBr oker Pr ocess. mai n. 2"
i medi ate="true" />
<pat h servi ce-cat egory="ESBBroker. BrokerPartici pant"
servi ce- nanme="ESBBr oker Pr ocess. mai n. 3"
i medi ate="true" />
<j oi n service-category="ESBBroker. BrokerPartici pant"
servi ce- name="ESBBr oker Process. mai n. 4" />
</ property>
</ action>

The ParallelAction is used to initiate multiple concurrent threads of activity. These are represented by the
'path’ elements within the 'paths' property. Each path identifies its service category/name and also whether
it should be invoked immediately (i.e. 'immediate’ attribute set to 'true’), or will be triggered by a message
from an external source.

25

Controlling Flow

The other element contained within the 'paths' property is the 'join' element, which represents the service
category/name that acts as a convergence point across al of the concurrent threads. When al of theinitiated
threads have completed, the service category/name associated with the ‘join' element will be invoked.

3.2.7.4. Repetition

The mechanism for performing repetition is through the use of two actions, WhileAction and
ScheduleStateAction. The WhileAction defines the condition to be evaluated, and the two relevant paths,
i.e. one that enters the loop body and one that represents the activities that occur after the while loop, when
the conditions have not been met. The ScheduleStateAction is used within the loop body to return back to
the service descriptor containing the WhileAction, to cause the loop to be re-evaluated.

For example,

<action class="org.jboss. soa.overl ord.jbossesb. acti ons. Wil eActi on"
process="process" name="...">
<property name="pat hs">
<whi | e expressi on="hasNext Supplier()"
servi ce- cat egor y="ESBBr oker . Br oker Parti ci pant"
servi ce- nanme="ESBBr oker Pr ocess. mai n. 2"
i medi ate="true" />
<exit service-category="ESBBroker. BrokerParticipant"
servi ce- nanme=" ESBBr oker Process. mai n. 3"
i medi ate="true" />
</ property>
</action>

TheWhileAction definesa'paths' property which containstwo elements, a'while' and an 'exit' element. Both
elements define the service category and name they will invoke, and whether the service descriptors will
be triggered immediately or based on an incoming message from an external source.

Additionally, the ‘while' path defines the condition that will decide whether to enter or skip the loop.

Then at some point in the activities directly or indirectly associated with the service descriptor
"ESBBroker.BrokerParticipant/ESBBrokerProcess.main.2", there would be,

<action class="org.jboss. soa. overlord.jbossesb. acti ons. Schedul eSt at eActi on"
process="process" nanme="...">
<property nanme="servi ceCat egory" val ue="ESBBroker.BrokerParticipant" />
<property nanme="servi ceNane" val ue="ESBBroker Process. main.1" />
<property nanme="i nedi ate" val ue="true" />
</action>

26

Controlling Flow

while results in the service descriptor associated with the WhileAction being re-evaluated (i.e. executed
again). The ScheduleStateAction will define the service category and nameto invoke, and whether to invoke
them immediately, or whether the service descriptor will be triggered via an incoming message from an
external source.

3.2.7.5. Blocking awaiting a decision

The WhenAction is used to block one or more awaiting paths, until an expression associated with one of
the paths becomes true.

For example,

<action class="org.|boss. soa.overl ord.jbossesb. acti ons. WienActi on"
process="process" nanme="s4-1">
<property nane="session"
val ue="org.j boss. soa. over | ord. sanpl es. j bossesb. | oan. br oker . Br oker Mai n" />
<property nanme="paths">
<when expressi on="recei vedAl | Quotes()"
servi ce- cat egor y="ESBBr oker . Br oker Parti ci pant"
servi ce- nane="ESBBr oker Process. nai n. 4" />
</ property>
</ action>

In this example, there is only one path defined, which will block until the receivedAllQuotes() expression
becomes true. When this expression evaluates to true, the service category and name defined for the when
element will be scheduled.

3.2.7.6. Composing reusable sub-conversionsinto a higher level conversation

The ability to compose reusable modulesinto higher level functionsis a useful capability in any language.
This mechanism is also supported in the "conversation aware" ESB actions, using the PerformAction to
invoke a sub-session. For example,

<actions nmep="OneWay">
<action class="org.jboss. soa. overl ord.jbossesb. acti ons. PerformActi on"
process="process" name="...">
<property nanme="servi ceCat egory" val ue="ESBBroker.BrokerParticipant" />
<property nanme="servi ceNane" val ue="Request For Quote. mai n" />
<property nanme="returnServi ceCat egory" val ue="ESBBr oker . BrokerParticipant" />
<property nanme="returnServi ceNane" val ue="ESBBroker Process. mai n. 9" />
<property nanme="bi ndDetails" >
<bi nd from expressi on="get Current Supplier()"
to-variabl e="supplier" />

</ property>
<property nanme="parent Ref erence" val ue="parent" />

</ action>

27

Generating a JBossESB Configuration from CDL

</ actions>

The 'serviceCategory' and 'serviceName' properties define the service descriptor that will be invoked (i.e.
that represents the sub-session). This service descriptor must begin with a CreateSessionAction, to indicate
that it represents the start of a sub-session.

The optional 'returnServiceCategory' and 'returnServiceName' represent the service descriptor that will be
invoked once the sub-session has completed, to enable the parent session to continue. If these properties
are not defined, then it means that sub-session is being performed asynchronously, and therefore the parent
session will not wait for it to complete.

The optional 'bindDetails provides the means for the parent session to assign specific information from its
state to the newly created pojo associated with the child session.

@ Note
Currently the bound details from the parent will be copied into the child pojo, and therefore
modifications will not be reflected back into the parent pojo.

The optional 'parentReference’ is used to set areference, on the child session's pojo, to the parent session's
pojo. The value of the 'parentReference’ identifies the property on the child session's pojo that will be used
to reference the parent pojo.

3.3. Generating a JBossESB Configuration from CDL

3.3.1. Overview

This section explains how to generate atemplate JBossESB configuration file from a pi4soa choreography
description (.cdm) file.

3.3.2. Generating the JBossESB Configuration

When the choreography description has been completed, and has no errors, the user should select the
"Overlord->JBossESB->Generate ESB Services' menu item from the popup menu associated with the
choreography description (.cdm) file.

LA]] ST IELRL

X| CreditCheckQ Replace With *

i Cred'rtcheckR JBossESB * Generate Validator
InvalidPurcha Generate ESB Services

Properties
.i@ dSELDO TS p

|2 successfulPurchase.scn

When the dialog window is displayed, it will contain the list of services that can be generated, along with
the project names that will be created. The user can unselect the services they do not wish to generate (also
using the 'Check All' or 'Clear All' buttons).

28

Dealing with Conformance I ssues

¢ X

Service Role Project Name

Buyer PurchaseGoodsProcess-Buyer

Broker PurchaseGoodsProcess-Broker
CreditAgency PurchaseGoodsProcess-CreditAgency
| checkal || clearal Buid: | Ant v

[OK l [Cancel

The user can also select their preferred build system, which will create the relevant build structure and script
in the generated Java project, to enable the JBossESB service to be deployed.

If there is a problem with the name of the project select, such asinvalid characters used in the name, or the
project name already exists, then it will be displayed in red.

=4 PurchaseGoodsProcess-Broker * The accessor method for wvariable 'buy'.
= JRE System Library [jdk1.5.0_09] */
- srcfjava e public org.w3c.dom.Element getBuy () {
= H3 org.pi4soa.purchase.purchasegoods.broke: return m_buy;
[3] PurchaseGoodsProcess.java }
B src
=& conf /x*
¥ deployment.xml * The modifier method for variable 'buy'.
[¥] jbmg-queue-service.xml */
%] jboss-esb.xml © public veoid setBuy(org.w3c.dom.Element value) {
=lb m_buy = value;

&1 buid.xml }

In the above image, on the left it shows the generated project structure for the Broker service role. On the
right it shows a portion of a generated session class, with the accessor and modifier for one of the variables
associated with that session.

Although aninitial build script will be created, depending on the build system selected, the user may need to
edit the script to set certain properties, or change the way the build occurs. For example, with the Ant build,
the deploy target (which isthe default) will attempt to place the deployed .esb fileinto alocation defined by
the${ org.j boss. esh. server. depl oy. di r}. If thisvariable has not been defined, then a folder
caled ${ or g. j boss. esb. server. depl oy. di r} will be created in the root folder of the project,
containing the .esb file.

3.4. Dealing with Confor mance | ssues

3.4.1. Overview

Conformance checking can be used to determine whether an ESB configuration, containing "conversation
aware" ESB actions, matches the expected behaviour as defined within a choreography description (.cdm
file). The Eclipse environment will report any conformance issues as errorsin the Problems view.

This section will explain the types of conformance errors that may be reported and how to deal with
them. Not all errors, associated with an ESB configuration, will be discussed in this section. Many errors
may be detected that will indicate problems associated with the way that behaviour has been specified

29

Show referenced description

in the configuration file (e.g. conversation type has not been defined). These are not directly related to
conformance.

3.4.2. Show referenced description

When an error occurs, related to conformance between the ESB configuration file and a choreography
description, it will have an associated quick fix resolution that can be used to display the relevant activity
being referred to within the choreography description.

3.4.3. Error: Expecting additional activities as defined in referenced
description

This error message indicates that the reference description contains activities that were not found in the
ESB configuration.

Thiserror hasan associated qui ck fix to enabl e the missing activitiesto beinserted in the appropriate | ocation
within the ESB configuration.

3.4.4. Error: Type mismatch with referenced description, was
expecting '..."
This error occurs when an activity contains a type that does not match with the equivalent activity in the

choreography description. A common example would be an interaction, where the message types are not
compatible.

This error has an associated quick fix to enable the type to be updated in the relevant activity within the
ESB configuration.

3.4.5. Error: Behaviour not present in referenced description

This error occurs when there are extra activities within the ESB configuration that do not appear within the
choreography description.

Error: Additional unmatched paths in model

This error has an associated quick fix to enable the unwanted activities to be removed from the ESB
configuration.

3.4.6. Error: Additional unmatched pathsin model

This error indicates that a grouping contruct (e.g. ParallelAction, IfAction or SnitchAction) in the ESB
configuration has additional paths that do not match the equivalent grouping construct in the choreography
description.

3.4.7. Error: Additional unmatched pathsin referenced description

This error indicates that a grouping contruct (e.g. Choice or Parallel) in the choreography description has
additional paths that do not match the equivalent grouping construct in the ESB configuration.

31

	JBoss Overlord CDL 1.0-M1
	Table of Contents
	Chapter 1. Overview
	1.1. WS-CDL
	1.2. pi4soa
	1.3. SOA Lifecycle Governance
	1.3.1. Design Time Governance
	1.3.2. Runtime Governance
	1.3.2.1. Service validator
	1.3.2.2. Process correlation

	1.4. First Steps

	Chapter 2. Conversation Validation with CDL
	2.1. Conversation Validation
	2.1.1. Overview

	2.2. Configuration of Conversation Validation
	2.2.1. Central Configuration
	2.2.2. Local Configuration using ValidationAction

	2.3. Generating the Validator Configuration from a Choreography
	2.3.1. Defining the ESB Service endpoints
	2.3.2. Generating the validator-config.xml

	2.4. Monitoring the Choreography Description

	Chapter 3. Conversation Aware ESB
	3.1. Conversation based Conformance
	3.1.1. Overview
	3.1.2. CDL Conformance Checking

	3.2. JBossESB "Conversation Aware" ESB Actions
	3.2.1. Overview
	3.2.2. Conversational Service
	3.2.2.1. Message Router Action

	3.2.3. Establishing Correspondance between ESB Configuration and Choreography
	3.2.4. Managing Sessions
	3.2.4.1. Business State and Logic
	3.2.4.2. Instantiating top level and child sessions
	3.2.4.3. Retrieving an existing session

	3.2.5. Interacting
	3.2.5.1. Sending a message
	3.2.5.2. Receiving a message

	3.2.6. Managing Information
	3.2.6.1. Manipulating State Information
	3.2.6.2. Manipulating Message Information

	3.2.7. Controlling Flow
	3.2.7.1. Selecting paths based on a decision
	3.2.7.2. Selecting paths based on the type of a received message
	3.2.7.3. Executing multiple paths concurrently
	3.2.7.4. Repetition
	3.2.7.5. Blocking awaiting a decision
	3.2.7.6. Composing reusable sub-conversions into a higher level conversation

	3.3. Generating a JBossESB Configuration from CDL
	3.3.1. Overview
	3.3.2. Generating the JBossESB Configuration

	3.4. Dealing with Conformance Issues
	3.4.1. Overview
	3.4.2. Show referenced description
	3.4.3. Error: Expecting additional activities as defined in referenced description
	3.4.4. Error: Type mismatch with referenced description, was expecting '...'
	3.4.5. Error: Behaviour not present in referenced description
	3.4.6. Error: Additional unmatched paths in model
	3.4.7. Error: Additional unmatched paths in referenced description

