Runtime Governance:
Developer Guide

O N o] =T oA (T A= O AV 2= VA T= L 1

0 O 1 o o U1 i o T o SRR 1
1.2. Collection and REPOMING ...ccouvuiiiiiie e 1
2 I @0 | 1= o i oo PSPPSRI 2
O =T oo 1] oo [PSP UPPP 3
e Y (0] - T [PP RPN 3
2 o)1 ToT= 1o o PP 3

1.3. Event ProcessiNg/ANAIYSISoiiiiiiiii e 3
1.4, ACHIVE COlIECHIONS ...eeeiiiii et e e e e e e et e e e e anaeaes 5
2. REPOIMING ACTIVITY oiiiiiiiii e e e e e e e e e e e e e et e et e raaaea 7
2.1 ACHVIEY MOEI ...t 7
2,10, ACHIVIEY UNIE L. e e 7

A N ©] o [o ISP PP TPPPRT 7
N G T O] (=) APPSR 7

2. 1.4, ACHVILY TYPE oottt ettt e ettt e e e e e e e eee 8

b A Xox 111 A ©o] | {1 (o] SN 10
2.2.1. Finding the Activity COllECIOrccovviiiiiiiii e 10
2.2.2. Pre-Processing Activity Informationccooooviiiiiiiiiinn e 11
2.2.3. Validating the ACHIVItY EVENtiiiiiiiiieiii e 11
2.2.4. Managing the ACHIVItY SCOPE ...c.uiiiiieiii e 11
2.2.5. Reporting an ACHVIY TYPE ...oeieeiiiiii et e 12
2.2.6. Configuring an Activity Unit LOGQErc.uviiiiiiiiiieiiieeci e 13
2.2.7. Configuring a Collector CONEXLuiviiiiiiieiiii e 15
2.2.8. Simplified Activity Reporter for use by application components 15

2.3 ACHIVITY SEIVEL ..ottt et e e e 16
2.3.1. Recording ACtiVItY UNItScouiiiiiiii e 16
2.3.2. Retrieve an ACHVItY UNItoiiiiiiiii e 18
2.3.3. Retrieve a list of ACtivity EVENLSooiiiiiiiiiiciiececcceee e 20

3. EVENT PrOCESSING ittt ettt ettt ettt e e e et e e 23
N I O U1 (o] ¢ T = To [T L (PSSP 23
3.2. CUSIOM EVENE PrOCESSON ...viiiiiiie ittt e e ees 23
R B O U1 (o] 1 IS T= T AV o] PP 24
34 PACKAGING .ttt 24
A, ACLIVE COlBCHIONS oiiiiiiiii ettt e e e e et e e e aaa e e eaeen s 25
4.1, Active COlIECHION SOUICEcveeiiiiiieiei et e e e e e e e eanns 25
4.2, ACtive Change LISTENEISciuuiiii it e s 27
4.2.1. Active Change LIStENETccouuiiiiiiii e 27
4.2.2. Abstract IMplementationc.coveiiiieiiii e 28

4.3. Accessing ACIVE COIIECHIONScoouvuiiiiiii e 28
4.3.1. Retrieve an Active COIIECHIONcoevuieiiiiiiieee e 28
4.3.2. Create a Derived Active COolleCtioncccouviiiiiiiiiiiiiiceee e, 30
4.3.3. Register for Active Change Notificationsccccceveiiiiiiii i 31

Chapter 1.

Chapter 1. Architecture Overview

This section will outline the architecture of the Runtime Governance architecture, prior to going
into further details in the following sections.

1.1. Introduction

The main goal of this architecture is provide a modular and loose coupled solution for processing
business activity information in real-time.

The architecture is comprised of the following four areas:

Activity Collector - collect activity events as efficiently as possible
 Activity Server (and Store) - central activity event store and query

« Event Processor Network - generic event analysis, used to process the activity events

Active Collections - active information management, used to post-process and cache
information for end-user applications

The only mandatory part of this architecture could be considered the Activity Server, as it provides
the central hub for storing and querying activity events. This means that the way in which events
are processed, or presented to end users/applications could be replaced with other possibly more
appropriate technology for a particular target environment.

Equally, the Event Processor Network and Active Collection mechanisms are information agnostic,
so can be used to process and/or manage the presentation of any type of information.

1.2. Collection and Reporting

The first stage of the architecture performs the functions illustrated in this diagram:

Chapter 1. Architecture Overview

Activity Execution Environment

External

Collector Activity Source

[Embedded Activity]

JMS, REST,
etc

Activity Server

Activity Notifier] Activity Store

Activity
Motification to other components for Database
further processing of activity information

Figure 1.1.

1.2.1. Collection

The "Activity Collector" is an optional part of the architecture that is responsible for collecting
information from the execution infrastructure as efficiently as possible.

The activity events associated with a particular thread are collected as a group, contained within
an Activity Unit, to provide an implicit correlation of the activities that are associated with the same
business transaction. Where relevant, the activity events may also be pre-processed to extract
relevant context and property information prior to it being reported to the server.

Activity Units are then batched into further groups, and reported to the Activity Server at regular
time intervals or if the batch gets too large.

Where the Activity Collector and Activity Server are co-located within the same execution
environment, the Activity Units will be reported directly. Where the Activity Server is running
remotely, then suitable connectors will be used to report the information. Current implementations
exist for REST.

Reporting

1.2.2. Reporting

The Activity Server provides a public API for reporting a list of Activity Units. This API can either
be accessed directly (e.g. as a CDI component), or remotely via REST or JMS.

The Activity Server has three main responsibilities: * Ensure Ids are set and consistent * Store the
events in a repository * Notify other interested modules

The last two responsibilities are discussed in the following sections.

1.2.3. Storage

This component simply records the activity events in a persistent store. A variety of
implementations may be provided, including JPA, NoSQL variants, etc.

1.2.4. Notification

This component is simply an API used by other modules that are interested in being notified when
activity events are reported.

1.3. Event Processing/Analysis

The following diagram illustrates how a node within an Event Processor Network functions to
process the inbound event information.

Chapter 1. Architecture Overview

Submit events for
processing

EPN Network
Container

Event Processor Node

Optional notifications
regarding processed
events

Optional Event
Predicate Processor

Processed events distributed
to other Event Processor
Nodes and/or Networks for
further processing

Figure 1.2.

The Event Processor Network (EPN) is a graph based mechanism for processing a series of
events. In the context of the infrastructure, one or more networks can be registered to receive
the activity information (as notifications) from the Activity Server and process it (filter, transform,
analyse, etc) using whatever means is appropriate.

Each network defines a graph of nodes connected by links that transfer the results from the
source node to the target node. The graphs can subscribe to event subjects, to identify the
information they are interested in, and nominate the node(s) within the network that will process
the information received on that subject. The nodes can also publish their results to event subjects,
for other networks to further process - so this provides a decoupled way for networks to exchange
information.

Each node defines an optional predicate, that can be used to determine whether the event is of
interest, and an event processor to perform the actual task. An example of an "out of the box"
event processor is one used to trigger rules (using Drools) to process the events.

The Event Processor Network (EPN) can be versioned, so that when a new version of a network
is deployed, any events that are being processed by the old version will continue to be processed

Active Collections

using that network, while new events being dispatched to the network will be handled by the newer
version. This overcomes any potential issues where the structure of the network changes between
versions.

The nodes can also be configured to generate different levels of notification, which can be used by
other applications/components to observe the information being processed through the network
(e.g. events that passed the predicate evaluation, results from the event processor, etc.). These
notifications are distributed to named "notification subjects”, enabling observing components to
remain decoupled from the details of which (or how many) networks/nodes are producing results
for that subject.

1.4. Active Collections

The Active Collection mechanism provides a capability for storing processed events (and derived
analysis information) in a manner that can be accessed by end users, as well as enable those
end users/applications to be actively notified when any changes occur.

Active Query

Manager Event Source

e 2

Active Collection (e.g.

Active Collection (e.g.

A SLA Alerts and
Service Performance) Wamings)
Cd
#
P 4
s d ﬁ’o Events distributed subject to
4 predicate evaluation
Y
Active Collection (e.g.
'OrderManager’
Service Performance)

N

Active Change
Listener

Figure 1.3.

Chapter 1. Architecture Overview

The Active Collection mechanism is a variation on the standard collection concept, where
interested parties can register interest in changes that occur to the contents of a collection (e.g.
list, map, etc). This is one of the mechanisms that will be used to maintain information that is to
be presented to users (e.g. via the Gadget Server).

The information within a particular Active Collection is managed by an Active Collection Source,
which effectively acts as an adapter between the actual source of the information and the Active
Collection. For example, an "out of the box" implementation of an Active Collection Source is
provided to observe different types of information produced by an Event Processor Network.

The generic Active Collection Source implementation includes the ability to aggregate information
which is then stored as a summary within the Active Collection, perform routine maintenance tasks
and tidy up collection entries based on configured criteria (e.g. max size of the collection, max
duration an item should exist in the collection, etc).

As well as creating these top level active collections, associated with configured Active Collection
Sources, it is also possible to create derived (child) collections from these top level collections.
These derived collections have a predicate that determines whether an entry in the parent
collection is relevant to the child collection. This can be used to manage specific sub-sets, and
essentially provides an active query mechanism, enabling interested clients to observe changes
to that child collection.

Chapter 2.

Chapter 2. Reporting Activity

2.1. Activity Model

The section provides an overview of the Activity Model. This model defines the set of events (or
situations) that can be reported to identify what is happening during the execution of a business
transaction.

2.1.1. Activity Unit

The main (top level) model component is the Activity Unit. This component is a grouping capability
to aggregate a set of activities (or situations) that relate to a particular transaction.

The Activity Unit has the following parts:

« id - this uniquely identifies the activity unit for historical retrieval purposes
« origin - this information identifies the environment in which the activities were recorded

» aset of contexts - provides contextual information to help relate the activities with other activities
recorded in other units

» a group of activity types - the actual activities (or situations) that occurred

With the exception of the id field, these parts will be discussed in more detail below.

2.1.2. Origin

The Origin represents information about the source of the activities associated with the Activity
Unit.

The information currently stored includes:

* principal - the user associated with the activities being performed, if available
« thread - can be useful in diagnostic situations in conjunction with the host information
* host - the host name

» node - the node name, for when the server is part of a cluster

2.1.3. Context

The context items represent information that can be used to correlate the activities within the unit
against other Activity Units, as well as identify information information that may be useful when
attempting to retrieve the unit.

Chapter 2. Reporting Activity

The context has the following three pieces of information:

« type - the context type, explained below
« value - the value of the context information

« timeframe - optional value used with a Link context type, to identify the time period in which
the context is valid

The different context types that can be defined are:

Type Constant Description

Context.Type.Conversation The conversation id, which can be used to
correlate activities across service boundaries
and is unique to a particular business
transaction instance.

Context.Type.Endpoint The endpoint id, which can be used to
correlate activities within a service boundary
(e.g. BPM process instance id), and which
is also unigue to a particular business
transaction instance.

Context.Type.Message The unique id for a message being sent and/
or received. The message id may only be
valid within the scope of an endpoint, as its
value may not be carried with the message
contents to the recipient. A common usage
will be to correlate a response against the
originating request within the same endpoint.

Context.Type.Link This type represents a correlation between
two activity events based on identify
information that is only valid (i.e. unique) for a
limited time period.

2.1.4. Activity Type

All activity events are derived from an Activity Type superclass. This class has the following
information:

* activity unit id

* activity unit index

* timestamp

* principal

Activity Type

 a set of contexts
 a set of properties

The only piece of information that needs to be provided by the reporting component is the
timestamp, and optionally some activity type specific contexts. The other information will be
initialized by the infrastructure prior to persisting the Activity Unit, as a way to enable the specific
Activity Type instance to be located. This may be required during the analysis of Activity Units.

2.1.4.1. BPM

The BPM (Business Process Management) specific activity events are used to record the lifecycle
and state transitions that occur when a business process (associated with a description language
such as BPMN2 or WS-BPEL) is executed within a runtime engine, in support of a business
transaction.

These business processes tend to be "long running”, in that they handle multiple requests and
responses over a period of time, all being correlated to the same process instance. This means
that activities generated as a result of this execution must also be correlated to \(i) the specific XA
transaction in which they are performed, (ii) the process instance that holds their state information
in the BPM engine, and (iii) the conversation associated with the particular business transaction.

This does not mean that all Activity Units the contain activity information from the BPM engine
need to have all three types of correlation information. For example, the initial Activity Unit for a
business process instance may identify (i) and (ii), which will establish a unique process instance
id. A subsequent Activity Unit may then define the same process id for (i), as well as a conversation
id (iii) that can then be used to tie any Activity Unit relates with the process instance id to that
conversation - i.e. all Activity Units with the same process instance id become directly or indirectly
correlated to the conversation id that may only be declared in some of the Activity Units.

Activity Type Description

ProcessStarted This activity type will be recorded when a
process instance is initially started.

Attributes include: process type, instance id
and version

ProcessCompleted This activity type will be recorded when a
process instance completes.

Attributes include: process type, instance id
and status (either success or fail)

ProcessVariableSet This activity type will be recorded when a
process variable’s value is set or modified.

Attributes include: process type, instance id
and variable name/type/value

Chapter 2. Reporting Activity

2.1.4.2. SOA
Activity Type Description
RequestReceived and RequestSent This activity type will be recorded when a
service invocation (request) is received or
sent.
message type, content and message id
ResponseReceived and ResponseSent This activity type will be recorded when a

service invocation returns.

message type, content, message id and
replyTo id (used to correlate the response to
the original request)

2.2. Activity Collector

The Activity Collector is an embedded component that can be used to accumulate activity
information from the infrastructure used in the execution of a business transaction. The activity
information is then reported to the Activity Server (described in the following section) implicitly,
using an appropriate Activity Logger implementation. The default Activity Logger implementation
operates efficiently by providing a batching capability to send activity information to the server
based either on a regular time interval, or a maximum number of activity units, whichever occurs
first.

2.2.1. Finding the Activity Collector

Locating the Activity Collector will be dependent upon the environment. This section outlines the
different approaches that may be used.

2.2.1.1. JEE Environment

In a JEE environment, the Activity Collector is obtained using the following code:

i mport org.overlord.rtgov.activity.collector.ActivityCollector;
i mport org.overlord.rtgov.activity.collector. ActivityColl ectorAccessor;

ActivityCol |l ector activityCollector =
ActivityCol | ect or Accessor. get ActivityCol | ector();

The accessor is initialized with an instance of the ActivityCollector when it is instantiated by the
system (e.g. CDI). If an instance has not been initialized when this method is invoked, then the
client will be blocked for a short period of time, waiting for the instance. If the instance has not
been initialized after this period, then a null will be returned.

10

Pre-Processing Activity Information

2.2.2. Pre-Processing Activity Information

The ActivityCollector API provides a method to enable information associated with the activity
event to be pre-processed, using configured information processors (see User Guide), to extract
relevant properties that can be associated with the activity event.

These extracted properties can subsequently be used in further event analysis, to correlate the
events and enable business relevant queries to be performed. The signature for this method is,

public String processlnformati on(String processor, String type,
Ooj ect info, java.util.Mp<String, Object> headers,
ActivityType act Type);

The processor parameter is an optional value that can be used to explicitly name the information
processor to be used. If not specified, then all registered information processors will be checked
to determine if they are relevant for the supplied information type.

The type parameter represents the information type. This can be in any form, as long as it matches
the registered type defined in the information processor configuration.

The info parameter represents the actual information that will be processed.

The headers parameter represents any header information that may have accompanied the
information (e.qg. if the information was a message exchanged between two interacting parties).

The actType parameter represents the activity event that any extracted properties should be
recorded against.

2.2.3. Validating the Activity Event

The activity collector provides a val i dat e method that can be used to pre-process the activity
event, using configured Activity Validators (see User Guide), before it is submitted to the activity
server.

This mechanism can be used to process activity events in the execution environment, prior to it
being distributed to the activity server which may be located on a separate server. It can also be
used to identify invalid situations, resulting in an exception being thrown, which can be handled by
the execution environment and used to block the business transaction associated with the activity
event. An example of this usecase can be found in the "policy sync" quickstart.

2.2.4. Managing the Activity Scope

An Activity Scope is a way of grouping a range of different activity types, that will be reported to
the activity server, into a single logical unit. It should generally represent the same scope as a XA
transaction, to emcompass all of the work that was achieved within that transaction - and equally
be discarded if the transaction is rolled back.

11

Chapter 2. Reporting Activity

When the first activity is reported within the scope of a XA transaction, then the scope will
automatically be started. When that transaction subsequently commits, the Activity Unit (i.e. the
collection of activities accumulated during that scope) will be reported to the Activity Server.

However if activities are performed outside the scope of a XA transaction, then the component
reporting the activity information can either explicitly start a scope, or just report the activity
information.

If no scope exists, and an activity type is reported, then it will simply be reported to the activity
server as a single event. The disadvantage of this approach is that it is less efficient, both in terms
of reporting due to the duplication of certain header information, and for subsequent analysis.
Having multiple activity events defined in a single unit, related to the transaction, provides added
value to inter-relating the different events - providing some implied correlation that would not exist
if the events were independently reported to the Activity Server.

2.2.4.1. Starting the Scope

To start the scope, simply invoke the st art Scope method on the Activity Collector:

activityColl ector. startScope();

If the application does not know whether a scope has already been started, and only wishes to start
a single scope (i.e. as nested scopes are not supported), then the following guard can be used:

bool ean started=fal se;

if (lactivityCollector.isScopeActive()) {
activityColl ector. startScope();
started = true;

The i sScopeAct i ve method returns a boolean value to indicate whether the scope was previously
started. If true is returned, then this component is also responsible for stopping the scope. If false is
returned, then it means the scope has already been started, and therefore the component should
NOT invoke the endScope method.

2.2.4.2. Ending the Scope

To stop the scope, simply invoke the endScope method on the Activity Collector:

if (started) {
activityCol | ector. endScope();

2.2.5. Reporting an Activity Type

As described above, activity information is reported to the server as an Activity Unit, containing
one or more actual activity events. The activity event is generically known as an Activity Type.

12

Configuring an Activity Unit Logger

The Activity Collector mechanism removes the need for each component to report general
information associated with the Activity Unit, and instead is only responsible for reporting the
specific details associated with the situation that has occurred.

The set of different Activity Types that may be reported is outside the scope of this section of
the documentation, and so for the purpose of illustration we will only be using a subset of the
SOA related activity events. For more informaton on the available event types, please refer to
the javadocs.

To report an event, simply create the specific Activity Type and invoke the r ecor d method:

org.overlord.rtgov. activity. nodel . Request Sent sent req=new
org.overlord.rtgov. activity. nodel . soa. Request Sent () ;

sentreq. set Servi ceType(servi ceType);
sentreq. set Oper ati on(opNane) ;
sentreq. set Cont ent (content);
sentreq. set MessageType(nesgType) ;
sentreq. set Messagel d(nessagel d) ;

activityColl ector.record(sentreq);

For certain types of event, it may also be appropriate to invoke an information processor(s) to
extract relevant context and property information, that can then be associated with the activity
event. This is achieved using the following:

oj ect nodi fi edContent=_activityColl ector.processlnformation(null,
mesgType, content, headers, sentreq);

sentreq. set Cont ent (nodi fi edCont ent) ;

The activity collector can be used to process relevant information, supplying the activity type to
enable context and property information to be defined. The result of processing the information
may be a modified version of the content, suitably obsfucated to hide any potentially sensitive
information from being distributed by the governance infrastructure.

The first parameter to the processinformation() method is an optional information processor name
- which can be used to more efficiently locate the relevant processor if the name is known.

2.2.6. Configuring an Activity Unit Logger

The Activity Unit Logger is the component responsible for logging the activity unit that is generated
when the endScope method is invoked on the collector (either explicitly or implicitly by the XA
resource manager).

This interface has three methods:

* init - this method initializes the activity unit logger implementation

13

Chapter 2. Reporting Activity

* log - supplied the Activity Unit to be logged

« close - this method closes the activity unit logger implementation
2.2.6.1. Batched Activity Unit Logger (Abstract)

The Batched Activity Unit Logger is an abstract base class implementing the Activity Unit Logger
interface. It provides the functionality to batch Activity Unit instances, and then forwarding them
based on two properties:

* Maximum Time Interval - If the time interval expires, then the set of Activity Units will be sent.

e Maximum Unit Count - if the number of Activity Units reaches this max value, then the batch
will be sent.

This implementation can be explicitly initialized when used in an embedded environment. If used
within a JEE environment, then the Post Const ruct and Pr eDest r oy annotations enable it to be
implicit initialized and tidied up when the concrete component’s lifecycle is managed.

2.2.6.2. Activity Server Logger

This implementation of the Activity Unit Logger interface is derived from the Batched Activity Unit
Logger, and therefore will send activity information in a batch periodically based on the configured
properties. When the batch of Activity Units are sent, this implementation forwards them to an
implementation of the Activity Server interface, injected explicitly or implicitly into the logger.

The Activity Server will be discussed in a subsequent section of this document. However, this can
be used to either send the events directly to the Activity Server component, if co-located within
the same server, or via a remote binding. For example,

i mport org.overlord.rtgov.activity.collector.ActivityCollector;

i mpor t
org.overlord.rtgov.activity.collector.activity.server.ActivityServerlLogger;
inport org.overlord.rtgov.activity.server.rest.client.RESTActivityServer;

RESTAct i vi tyServer restc=new RESTActi vityServer();
restc. set Server URL(_acti vityServer URL) ;

Acti vityServerLogger activityUnitLogger=new ActivityServerlLogger();
activityUnitlLogger.setActivityServer(restc);

activityUnitLogger.init();

_collector.setActivityUnitLogger(activityUnitLogger);

14

Configuring a Collector Context

This shows a situation where an embedded Activity Collector is being initialized with an Activity
Server Logger, which uses the REST Activity Server client implementation.

2.2.7. Configuring a Collector Context

The final component within the Collector architecture is the Collector Context. This interface
provides the Activity Collector with information about the environment (e.g. principal, host, node,
port), which can be used to complete the Origin information within an Activity Unit, as well as
providing access to capabilities required from the environment (e.g. the Transaction Manager).

Each type of environment in which the collector may be used will provide an implementation of this
interface. Depending upon the environment, this will either be implicitly injected into the Activity
Collector, or be set explicitly using the setter method.

2.2.8. Simplified Activity Reporter for use by application
components

Although the general Activity Collector mechanism can be used, as described in the previous
sections, an injectable ActivityRecorder component is provided to enable applications to perform
simple activity reporting tasks. Where injection is not possible, then a default implementation of
the interface can be instantiated.

For example, the sample SwitchYard order management application uses this approach:

@ser vi ce(l nvent oryServi ce. cl ass)
public class InventoryServiceBean inplenents |InventoryService {

private final Map<String, Iten> _inventory = new HashMap<Stri ng,
Item>();

private org.overlord.rtgov.client.ActivityReporter _reporter=
new org.overlord.rtgov.client.DefaultActivityReporter();

public I nventoryServiceBean() {

}
@verride
public Item | ookuplten(String item d) throws |tenmNot FoundException {

Itemitem= _inventory.get(itemd);
if (item==null) {
if (_reporter !'=null) {

_reporter.logError("No itemfound for id '"+itemd+""");

t hrow new |t emNot FoundException("W don't got any " + itemd);

15

Chapter 2. Reporting Activity

return item

The ActivityReporter enables the application to perform the following tasks:

Method Description

logInfo(String mesg) Log some information
logWarning(String meg) Log a warning
logError(String mesg) Log an error

report(String type, Map<String,String> props) | Record a custom activity with a particular type
and associated properties

report(ActivityType activity) Record an activity

However this API cannot be used to control the scope of an ActivityUnit. It is expected that this
would be handled by other parts of the infrastructure, so this API is purely intended to simplify the
approach used for reporting additional incidental activities from within an application.

The maven dependency required to access the ActivityReporter is:

<dependency>
<gr oupl d>org. over | ord. rtgov. i ntegration</groupld>
<artifactld>rtgov-client</artifactld>
<versi on>${rtgov. versi on} </ ver si on>

</ dependency>

2.3. Activity Server

The Activity Server is responsible for:

* Recording Activity Units describing the activities that occur during the execution of business
transactions in a distributed environment.

* Query suport to retrieve previously recorded Activity Units

2.3.1. Recording Activity Units

The Activity Server can be used to record a list of Activity Units generated from activity that occurs
durig the execution of a business transaction. The Activity Units represent the logical grouping of
individual situations that occur within a transaction (e.g. XA) boundary.

16

Recording Activity Units

This section will show the different ways this information can be recorded, using a variety of
bindings.

Tip

Where possible, the Activity Collector mechanism described in the previous section
should be used to aggregate and record the activity information, as this is more
efficient that each system individually reporting events to the server.

2.3.1.1. Direct Injection

The simpliest approach is to leverage CDI or OSGi (blueprint) to directly inject the Activity Server
implementation.

i mport org.overlord.rtgov.activity.server. ActivityServer;

@ nj ect
private ActivityServer _activityServer=null;

Once the reference to the Activity Server has been obtained, then call the st or e method to record
a list of Activity Units.

i mport org.overlord.rtgov.activity.nodel .soa. Request Sent ;
import org.overlord.rtgov.activity.nodel.ActivityUnit;

java.util.List<ActivityUnit> list=new ;

Request Sent act =new Request Sent () ;
act . set Servi ceType(...);

list.add(act);

_activityServer.store(list);
2.3.1.2. REST Service
The Activity Server can be accessed as RESTful service, e.g.

i mport org. codehaus. j ackson. map. Obj ect Mapper ;
i mport org.overlord.rtgov.activity.nodel.ActivityUnit;

17

Chapter 2. Reporting Activity

java.util.List<ActivityUnit> activities=........
java.net.URL storeU|l = new java.net.URL(....); /'l <host >/
overlord-rtgov/activity/store

java. net . Ht t pURLConnecti on connection = (java.net.HttpURLConnecti on)
storeUr| . openConnection();

String userPassword = usernane + ":" + password;
String encoding =
or g. apache. conmons. codec. bi nary. Base64. encodeBase64St ri ng(user Passwor d. get Byt es());

connecti on. set Request Property("Aut hori zation", "Basic " + encoding);

connecti on. set Request Met hod(" POST") ;

connecti on. set DoQut put (true);

connecti on. set Dol nput (true);

connecti on. set UseCaches(fal se);

connection. set Al | owUser I nteracti on(fal se);

connecti on. set Request Property("Cont ent - Type", "application/json");

j ava.i o. Qut put St ream os=connect i on. get Qut put Strean() ;
Obj ect Mapper nmapper =new Obj ect Mapper () ; /] Use jackson to
serialize the activity units

mapper. witeVal ue(os, activities);

os. flush();
os. cl ose();

java.io. |l nputStreamis=connection. getl nputStrean();
byte[] result=new byte[is.available()];

is.read(result);
is.close();

See the REST API information in the docs folder of the distribution.

2.3.2. Retrieve an Activity Unit

The Activity Server can be used to retrieve a specific Activity Unit from the Activity Server. The
Activity Unit represents a grouping of Activity Events that occurred within the same business
transaction scope. This section will show the different ways this information can be queried, using
a variety of bindings.

18

Retrieve an Activity Unit

2.3.2.1. Direct Injection

The simpliest approach is to leverage CDI or OSGi (blueprint) to obtain a reference to the
Activity Server. Once the reference to the Activity Server has been obtained, then invoke the
get Acti vi t yUni t method to retrieve the required information.

i mport org.overlord.rtgov.activity.nodel.ActivityUnit;

String id="....";

ActivityUnit au=_activityServer.getActivityUnit(id);

2.3.2.2. REST Service

The Activity Server can be accessed as RESTful service, e.g.

i mport org. codehaus. j ackson. map. Obj ect Mapper ;
i mport org.codehaus. j ackson. type. TypeRef er ence;
i mport org.overlord.rtgov.activity.nodel.ActivityUnit;

java.net.URL queryUrl = new java.net.URL(....); /'l <host>/
overlord-rtgov/activity/unit?i d=<id>

java. net . Ht t pURLConnecti on connection = (java.net.HttpURLConnecti on)
queryUr| . openConnection();

String userPassword = usernane + ":" + password;
String encoding =
or g. apache. conmons. codec. bi nary. Base64. encodeBase64St ri ng(user Passwor d. get Byt es());

connecti on. set Request Property("Aut hori zation", "Basic " + encoding);
connecti on. set Request Met hod(" CET") ;

connect i on. set DoCQut put (true);

connecti on. set Dol nput (true);

connecti on. set UseCaches(fal se);

connection. set Al | owUser | nteracti on(fal se);

connecti on. set Request Property(" Cont ent - Type", "application/json");
java.io. |l nputStreamis=connection. getl nputStrean();

ActivityUnit au = mapper.readValue(is, ActivityUnit.class);

is.close();

19

Chapter 2. Reporting Activity

See the REST API documentation in the docs folder of the distribution.

2.3.3. Retrieve a list of Activity Events

The Activity Server can be used to query a list of Activity Type (events) from the Activity Server.
This section will show the different ways this information can be queried, using a variety of
bindings.

2.3.3.1. Direct Injection

The simpliest approach is to leverage CDI or OSGi (blueprint) to obtain a reference to the Activity
Server. Once the reference to the Activity Server has been obtained, then the get Acti vi t yTypes
method can be invoked to obtain the list of events.

i mport org.overlord.rtgov.activity.nodel.ActivityUnit;
i mport org.overlord.rtgov. activity.nodel. Context;

String value="...."; // Conversation id

Cont ext cont ext =new Cont ext (Cont ext . Type. Conver sati on, val ue);

java. util.List<ActivityType> |ist=_activityServer.getActivityTypes(context);
/1 or, if wanting to define a tine range

long startTinme=...;
| ong endTi ne=...;

java. util.List<ActivityType> list=_activityServer.getActivityTypes(context,
startTi me, endTi ne);

2.3.3.2. REST Service

The Activity Server can be accessed as RESTful service, e.g.

i mport org. codehaus. j ackson. map. Obj ect Mapper ;
i mport org.codehaus. j ackson. type. TypeRef er ence;
i mport org.overlord.rtgov. activity.nodel.ActivityType;

java.net.URL queryUl = new java.net.URL(....); /'l <host >/
overlord-rtgov/activity/events?type=<type>&val ue=<val ue>

/1 Note: add optional query paraneters
&f r ome<f r onili nest anp>&t o=<t oTi nest anp> to define a time frane

java. net. Ht t pURLConnecti on connection = (java. net.HttpURLConnecti on)
queryUr| . openConnection();

20

Retrieve a list of Activity Events

String userPassword = usernanme + ":" + password;
String encoding =
or g. apache. conmons. codec. bi nary. Base64. encodeBase64St ri ng(user Passwor d. get Byt es());

connecti on. set Request Property("Aut hori zation", "Basic " + encoding);
connecti on. set Request Met hod(" CET") ;

connecti on. set DoQut put (true);

connecti on. set Dol nput (true);

connecti on. set UseCaches(fal se);

connection. set Al | owUser | nt eracti on(fal se);

connecti on. set Request Property(" Cont ent - Type", "application/json");

java.io. |l nputStreamis=connection. getl nput Strean();

java. util.List<ActivityType> activities = napper.readValue(is, new
TypeRef erence<j ava. util.List<ActivityType>>() {});

is.close();

See the REST API documentation in the docs folder of the distribution.

21

22

Chapter 3.

Chapter 3. Event Processing

The EventProcessor, and supporting components, can be used either directly within the Activity
Collection mechanism or from nodes within an Event Processor Network. This section of the
Developer Guide will discuss how custom Predicates and Event Processors are defined.

3.1. Custom Predicate

The org. overl ord. rtgov. ep. Predi cat e abstract class is responsible for determining whether
an event is suitable to be processed by a particular node within the Event Processor Network.

To create a custom implementation simply derive a class from the Predicate abstract class. This
class provides the following methods:

Method Description

void init() This method is called when the predicate is
first initialized as part of the Event Processor
Network. A custom implementation does not
need to override this method if not required.

boolean evaluate(Object event) This method determines whether the supplied
event should be processed by the node.

3.2. Custom Event Processor

The org. overl ord. rtgov. ep. Event Processor abstract class is responsible for processing an
event routed to a particular node within the Event Processor Network.

To create a custom implementation simply derive a class from the EventProcessor abstract class.
This class provides the following methods:

Method Description

java.util.Map<String,Service> services This method returns the map of services
getServices() available to the Event Processor.

void This method sets the map of services
setServices(java.util. Map<String,Service> available to the Event Processor.
services)

void init() This method is called when the event

processor is first initialized as part of

the Event Processor Network. A custom
implementation does not need to override this
method if not required.

Serializable process(String source, This method processes the supplied event,
Serializable event, int retriesLeft) throws indicating the source of the event and how
Exception many retries are left (so that suitable error

Chapter 3. Event Processing

Method Description

handling can be performed in no more retries

remain.
The org. overl ord. rt gov. conmon. ser vi ce. Ser vi ce abstract class is used to provide services
for use by event processors, e.g. CacheManager.

3.3. Custom Services

To create a custom implementation simply derive a class from the Service abstract class. This
class provides the following methods:

Description

void init() This method is called when the service is first
initialized. A custom implementation does not
need to override this method if not required.

3.4. Packaging

The custom predicate and/or event processor implementations must be available to
the classloader when an Event Processor Network or Activity Validator referencing the
implementations is loaded. This can either be achieved by packaging the implementations with
the Event Processor Network or Activity Validator configuration, or by installing them in a common
location used by the container in which the Event Processor Network/Activity Validator is being
loaded.

24

Chapter 4.

Chapter 4. Active Collections

The Active Collection mechanism provides a means of actively managing a collection of
information. For a more details explanation of the mechanism, see the User Guide.

This section explains how to:

e implement an Active Collection Source, which can be used to subscribe to a source of
information which can result in data being inserted, updated and removed from an associated
active collection.

« implement an Active Change Listener that can associated with an Active Collection Source, and
automatically notified of changes to an associated Active Collection

» write a custom application for accessing Active Collections

4.1. Active Collection Source

The Active Collection Source can be considered the adapter between the actual source of events/
information and the Active Collection. The Active Collection Source is responsible for managing
the insertion, update and deletion of the objects within the associated Active Collection, based on
situations that occur in the source.

An example of a derived Active Collection Source implementation, that is packaged with the
infrastructure, can be used to listen for events produced by nodes in an Event Processor Network
and insert these events in the Active Collection.

To create a new type of Active Collection Source, simply derive a class from the
org.overlord.rtgov. active. col | ection. ActiveCol | ecti onSource class and implement
the following methods:

Method Description

void init() This method is invoked when the Active
Collection Source is registered, and should be
used to create the subscription to the relevant
source of information. The implementation of
this method MUST call the init() method on
the super class first.

void close() This method is invoked when the Active
Collection Source is unregistered, and should
be used to unsubscribe from the source

of information. The implementation of this
method MUST call the close() method on the
super class first.

25

Chapter 4. Active Collections

When a situation occurs on the source, that requires a change in the associated Active Collection,
then the derived implementation can call one of the follow methods on the Active Collection
Source:

Method Description

public void insert(Object key, Object value) This method is called to insert a new
element into the collection. The value is

the information to be inserted. The key is
potentially optional, depending on the nature
of the active collection:

List - the key is optional. If specified, then it
MUST be an integer representing the index
where the value should be inserted.

Map - the key represents the map key to be
associated with the value, and is therefore not
optional.

public void update(Object key, Object value) | This method is called to update an existing
element within the collection. The value is
the information to be updated. The key is
potentially optional, depending on the nature
of the active collection:

List - the key is optional. If specified, then it
MUST be an integer representing the index
of the value to be updated. If not specified,
then the value will be used to locate the index
within the list.

Map - the key represents the map key
associated with the value, and is therefore not
optional.

public void remove(Object key, Object value) | This method is called to remove an

element from the collection. The value is

the information to be updated. The key is
potentially optional, depending on the nature
of the active collection:

List - the key is optional. If specified, then it
MUST be an integer representing the index
of the value to be removed. If not specified,
then the value will be used to locate the index
within the list.

26

Active Change Listeners

Method Description

Map - the key represents the map key
associated with the value, and is therefore not
optional. However in this situation the value is
optional.

4.2. Active Change Listeners

This section explains how to implement a listener to deal with changes that occur within an Active
Collection.

The first sub-section details with general implementations of this interface, that may be used within
custom applications. The second sub-section will deal with a specific type of listener that can be
configured with an Active Change Source (discussed in the previous section), and automatically
initialized when the Active Change Source is registered.

4.2.1. Active Change Listener

The org.overlord.rtgov. active. col | ection. Acti veChangeLi stener interface can be
implemented by any component that is interested in being informed when a change occurs to
an associated Active Collection. The Active Collection API supports add and remove methods to
register and unregister these active change listeners.

The methods that need to be implemented for an active change listener are:

Method Description

void inserted(Object key, Object value) Called when a new value is inserted into the
collection, with the key being dependent upon
the type of collection:

List - the key will be the index

Map - the key will be the key information used
in the map’s key/value pair

void updated(Object key, Object value) Called when an existing value is updated
within the collection, with the key being
dependent upon the type of collection:

List - the key will be the index
Map - the key will be the key information used

in the map’s key/value pair

void removed(Object key, Object value) Called when an existing value is removed
from the collection, with the key being
dependent upon the type of collection:

List - the key will be the index

27

Chapter 4. Active Collections

Method Description

Map - the key will be the key information used

in the map’s key/value pair

4.2.2. Abstract Implementation

If the active change listener implementation is derived from the
org.overlord.rtgov. active.col |l ection. Abstract ActiveChangeLi stener abstract class
then it can be registered with the Active Collection Source configuration, and automatically
initialized when the source is registered.

The benefit of this approach is that it does not require the user to write custom code to register
the Active Collection Listener against the Active Collection.

An example of this type of implementation is the
org.overlord.rtgov. active. col | ection.jnmk. JMXNotifier which automatically generates
JMX notifications when an object is added to the associated active collection.

The implementations derived from this abstract active change listener implementation are no
different from order active change listener implementations, with the exception that they can be
serialized as part of the Active Collection Source configuration, and they support lifecycle methods
for initialization and closing:

Method Description

void init() This method can be overridden to initialize
the active change listener implementation.
The super class init() method MUST be called
first.

void close() This method can be overridden to close the
active change listener implementation. The
super class close() method MUST be called
first.

4.3. Accessing Active Collections

This section explains how to:

* retrieve an existing active collection
* create a derived active collection
* register for active change notifications

4.3.1. Retrieve an Active Collection

There are two ways to retrieve an active collection.

28

Retrieve an Active Collection

4.3.1.1. Directly accessing the ActiveCollectionManager

As discussed in a previous section, Active Collections are created as a bi-product of registering
an Active Collection Source. The Active Collection Source is registered with an Active Collection
Manager, which creates the collection to be updated from the source. This Active Collection then
becomes available for applications to retrieve from the manager, for example:

i mport org.overlord.rtgov. active. coll ection. ActiveCol | ecti onManager;
i mport org.overlord.rtgov. active.collection. ActiveCol | ecti onManager Accessor ;
i mport org.overlord.rtgov. active. col |l ection. ActivelLi st;

Acti veCol | ecti onManager
acmvanager =Act i veCol | ecti onManager Accessor . get Acti veCol | ecti onManager () ;

ActivelList list = (ActivelList)
acmivanager . get Act i veCol | ecti on(l i st Nane) ;

This is the approach used to retrieve what can be considered "top level" active collections. These
are the collections directly maintained by the Active Collection Manager, each with an associated
Active Collection Source defining the origin of the collection changes. The following section shows
how further active collections can be derived from these "top level" collections, to refine the
information.

The maven dependency required to access the ActiveCollectionManager and active collections is:

<dependency>

<gr oupl d>or g. overl ord. rtgov. acti ve- queri es</ groupl d>
<artifactld>active-collection</artifactld>

<ver si on>${rtgov. versi on} </ versi on>
<scope>pr ovi ded</ scope>

</ dependency>

4.3.1.2. Injectable Collection Manager

The other approach is aimed at simplifying the use of active collections from within a client
application. It offers a simple API, and associated default implementation, that can be injected
using CDI. Under the covers, it simply performs the same tasks as described in the previous
section.

@ nj ect
private org.overlord.rtgov.client.Col|ectionManager
_col | ecti onvanager =nul |

private org.overlord.rtgov. active. coll ection. Acti veMap _pri nci pal s=nul |

29

Chapter 4. Active Collections

protected void init() {

if (_collectionManager != null) {
_principals = _collecti onManager . get Map(PRI NCI PALS)

If injection is not possible (e.g. when using SwitchYard Auditors), then
a default implementation can be directly instantiated with the class

org.overlord.rtgov.client. DefaultCollectionManager.

The maven dependencies required to access the CollectionManager, and the subsequent active
collections, are:

<dependency>

<gr oupl d>org. over | ord. rtgov. i ntegrati on</groupl d>
<artifactld>rtgov-client</artifactld>

<versi on>${rtgov. versi on} </ ver si on>

</ dependency>

<dependency>

<gr oupl d>org. over |l ord. rt gov. acti ve- queri es</ gr oupl d>
<artifactld>active-collection</artifactld>

<versi on>${rtgov. versi on} </ versi on>
<scope>provi ded</ scope>

</ dependency>

4.3.2. Create a Derived Active Collection

The "top level" active collections defined in the previous section reflect the information changes as
identified by their associated Active Collection Source. However in some situations, only a subset
of the information is of interest to an application. For these situations, it is possible to derive a
child active collection by specifying:

 parent - the parent collection from which the child may be derived. Although this will generally
be the name of a "top level" collection, it is possible to derive a collection from another child
collection, enabling a tree to be formed.

 predicate - a predicate is specified to determine whether information in a parent collection (and
subsequently its changes), are relevant to the child collection.

 properties - used to initialize the derived collection.
Currently the only property that can be set is a boolean named active, which defaults to true.

If the active property is true, then when a child collection is initially created, the predicate will be
used to filter the contents of the parent collection to identify the initial subset of values that are

30

Register for Active Change Notifications

relevant for the child collection. Once initialized, the child collection effectively subscribes to the
change notifications of the parent collection, and uses the predicate to determine whether the
change is applicable, and if so, applies the change to the child collection.

If the active property is false, then whenever the derived collection is queried, the predicate will
be applied to the parent collection to obtain the current set of results. This configuration should
only be used where the predicate is based on volatile information, and therefore the results in the
derived collection would be changing independently of changes applied to the parent collection.

i mport org.overlord.rtgov. active. coll ection. predicate. Predi cate;
i mport org.overlord.rtgov. active. coll ection. ActiveCol | ecti onManager;
i mport org.overlord.rtgov. active. collection. ActivelLi st;

Predi cate predicate=..... ;
Activeli st parent = (Activelist)acmvanager. getActi veCol | ecti on(parent Nane) ;

if (parent !'= null) {
java. util.Mp<String, Obj ect> properties=..... ;

alist = (ActivelList)acmvanager. creat e(chil dNane,
parent, predicate, properties);

4.3.3. Register for Active Change Notifications

Once an Active Collection has been retrieved (or created in the case of a child collection), then
the information can be accessed using methods appropriate to the collection type, e.g. list or map.

However being active collections, an important source of information is the change notifications,
to enable the application to understand what changes are occuring and when.

To receive change notifications, the application needs to register an Active Change Listener
(discussed in the previous sections). This can be achieved using the addAct i veChangelLi st ener
method on the collection, and simularly use the renopveActi veChangelLi st ener method to
unregister for change notifications.

For example,

import org.overlord.rtgov. active. collection. ActivelLi st;
i mport org.overlord.rtgov. active. coll ection. ActiveChangelLi st ener;

31

Chapter 4. Active Collections

|'i st.addActi veChangeLi st ener (new Acti veChangelLi stener () {
public void inserted(Object key, bject value) {

}
public void updated(Obj ect key, Onject value) {

}
public void removed(Obj ect key, Object value) {

1)

32

	Runtime Governance: Developer Guide
	Table of Contents
	Chapter 1. Architecture Overview
	1.1. Introduction
	1.2. Collection and Reporting
	1.2.1. Collection
	1.2.2. Reporting
	1.2.3. Storage
	1.2.4. Notification

	1.3. Event Processing/Analysis
	1.4. Active Collections

	Chapter 2. Reporting Activity
	2.1. Activity Model
	2.1.1. Activity Unit
	2.1.2. Origin
	2.1.3. Context
	2.1.4. Activity Type
	2.1.4.1. BPM
	2.1.4.2. SOA

	2.2. Activity Collector
	2.2.1. Finding the Activity Collector
	2.2.1.1. JEE Environment

	2.2.2. Pre-Processing Activity Information
	2.2.3. Validating the Activity Event
	2.2.4. Managing the Activity Scope
	2.2.4.1. Starting the Scope
	2.2.4.2. Ending the Scope

	2.2.5. Reporting an Activity Type
	2.2.6. Configuring an Activity Unit Logger
	2.2.6.1. Batched Activity Unit Logger (Abstract)
	2.2.6.2. Activity Server Logger

	2.2.7. Configuring a Collector Context
	2.2.8. Simplified Activity Reporter for use by application components

	2.3. Activity Server
	2.3.1. Recording Activity Units
	2.3.1.1. Direct Injection
	2.3.1.2. REST Service

	2.3.2. Retrieve an Activity Unit
	2.3.2.1. Direct Injection
	2.3.2.2. REST Service

	2.3.3. Retrieve a list of Activity Events
	2.3.3.1. Direct Injection
	2.3.3.2. REST Service

	Chapter 3. Event Processing
	3.1. Custom Predicate
	3.2. Custom Event Processor
	3.3. Custom Services
	3.4. Packaging

	Chapter 4. Active Collections
	4.1. Active Collection Source
	4.2. Active Change Listeners
	4.2.1. Active Change Listener
	4.2.2. Abstract Implementation

	4.3. Accessing Active Collections
	4.3.1. Retrieve an Active Collection
	4.3.1.1. Directly accessing the ActiveCollectionManager
	4.3.1.2. Injectable Collection Manager

	4.3.2. Create a Derived Active Collection
	4.3.3. Register for Active Change Notifications

