
Runtime Governance:

Developer Guide

iii

1. Architecture Overview ... 1

1.1. Introduction .. 1

1.2. Collection and Reporting ... 1

1.2.1. Collection .. 2

1.2.2. Reporting ... 3

1.2.3. Storage ... 3

1.2.4. Notification ... 3

1.3. Event Processing/Analysis ... 3

1.4. Active Collections ... 5

2. Reporting Activity .. 7

2.1. Activity Model ... 7

2.1.1. Activity Unit ... 7

2.1.2. Origin .. 7

2.1.3. Context .. 7

2.1.4. Activity Type .. 8

2.2. Activity Collector ... 10

2.2.1. Finding the Activity Collector ... 10

2.2.2. Pre-Processing Activity Information ... 11

2.2.3. Validating the Activity Event .. 11

2.2.4. Managing the Activity Scope ... 11

2.2.5. Reporting an Activity Type .. 12

2.2.6. Configuring an Activity Unit Logger .. 13

2.2.7. Configuring a Collector Context ... 15

2.2.8. Simplified Activity Reporter for use by application components 15

2.3. Activity Server .. 16

2.3.1. Recording Activity Units .. 16

2.3.2. Retrieve an Activity Unit ... 18

2.3.3. Retrieve a list of Activity Events .. 20

3. Event Processing ... 23

3.1. Custom Predicate ... 23

3.2. Custom Event Processor ... 23

3.3. Custom Services ... 24

3.4. Packaging .. 24

4. Active Collections .. 25

4.1. Active Collection Source .. 25

4.2. Active Change Listeners .. 27

4.2.1. Active Change Listener .. 27

4.2.2. Abstract Implementation ... 28

4.3. Accessing Active Collections ... 28

4.3.1. Retrieve an Active Collection .. 28

4.3.2. Create a Derived Active Collection .. 30

4.3.3. Register for Active Change Notifications .. 31

iv

Chapter 1.

1

Chapter 1. Architecture Overview
This section will outline the architecture of the Runtime Governance architecture, prior to going

into further details in the following sections.

1.1. Introduction

The main goal of this architecture is provide a modular and loose coupled solution for processing

business activity information in real-time.

The architecture is comprised of the following four areas:

• Activity Collector - collect activity events as efficiently as possible

• Activity Server (and Store) - central activity event store and query

• Event Processor Network - generic event analysis, used to process the activity events

• Active Collections - active information management, used to post-process and cache

information for end-user applications

The only mandatory part of this architecture could be considered the Activity Server, as it provides

the central hub for storing and querying activity events. This means that the way in which events

are processed, or presented to end users/applications could be replaced with other possibly more

appropriate technology for a particular target environment.

Equally, the Event Processor Network and Active Collection mechanisms are information agnostic,

so can be used to process and/or manage the presentation of any type of information.

1.2. Collection and Reporting

The first stage of the architecture performs the functions illustrated in this diagram:

Chapter 1. Architecture Overview

2

Figure 1.1.

1.2.1. Collection

The "Activity Collector" is an optional part of the architecture that is responsible for collecting

information from the execution infrastructure as efficiently as possible.

The activity events associated with a particular thread are collected as a group, contained within

an Activity Unit, to provide an implicit correlation of the activities that are associated with the same

business transaction. Where relevant, the activity events may also be pre-processed to extract

relevant context and property information prior to it being reported to the server.

Activity Units are then batched into further groups, and reported to the Activity Server at regular

time intervals or if the batch gets too large.

Where the Activity Collector and Activity Server are co-located within the same execution

environment, the Activity Units will be reported directly. Where the Activity Server is running

remotely, then suitable connectors will be used to report the information. Current implementations

exist for REST.

Reporting

3

1.2.2. Reporting

The Activity Server provides a public API for reporting a list of Activity Units. This API can either

be accessed directly (e.g. as a CDI component), or remotely via REST or JMS.

The Activity Server has three main responsibilities: * Ensure Ids are set and consistent * Store the

events in a repository * Notify other interested modules

The last two responsibilities are discussed in the following sections.

1.2.3. Storage

This component simply records the activity events in a persistent store. A variety of

implementations may be provided, including JPA, NoSQL variants, etc.

1.2.4. Notification

This component is simply an API used by other modules that are interested in being notified when

activity events are reported.

1.3. Event Processing/Analysis

The following diagram illustrates how a node within an Event Processor Network functions to

process the inbound event information.

Chapter 1. Architecture Overview

4

Figure 1.2.

The Event Processor Network (EPN) is a graph based mechanism for processing a series of

events. In the context of the infrastructure, one or more networks can be registered to receive

the activity information (as notifications) from the Activity Server and process it (filter, transform,

analyse, etc) using whatever means is appropriate.

Each network defines a graph of nodes connected by links that transfer the results from the

source node to the target node. The graphs can subscribe to event subjects, to identify the

information they are interested in, and nominate the node(s) within the network that will process

the information received on that subject. The nodes can also publish their results to event subjects,

for other networks to further process - so this provides a decoupled way for networks to exchange

information.

Each node defines an optional predicate, that can be used to determine whether the event is of

interest, and an event processor to perform the actual task. An example of an "out of the box"

event processor is one used to trigger rules (using Drools) to process the events.

The Event Processor Network (EPN) can be versioned, so that when a new version of a network

is deployed, any events that are being processed by the old version will continue to be processed

Active Collections

5

using that network, while new events being dispatched to the network will be handled by the newer

version. This overcomes any potential issues where the structure of the network changes between

versions.

The nodes can also be configured to generate different levels of notification, which can be used by

other applications/components to observe the information being processed through the network

(e.g. events that passed the predicate evaluation, results from the event processor, etc.). These

notifications are distributed to named "notification subjects", enabling observing components to

remain decoupled from the details of which (or how many) networks/nodes are producing results

for that subject.

1.4. Active Collections

The Active Collection mechanism provides a capability for storing processed events (and derived

analysis information) in a manner that can be accessed by end users, as well as enable those

end users/applications to be actively notified when any changes occur.

Figure 1.3.

Chapter 1. Architecture Overview

6

The Active Collection mechanism is a variation on the standard collection concept, where

interested parties can register interest in changes that occur to the contents of a collection (e.g.

list, map, etc). This is one of the mechanisms that will be used to maintain information that is to

be presented to users (e.g. via the Gadget Server).

The information within a particular Active Collection is managed by an Active Collection Source,

which effectively acts as an adapter between the actual source of the information and the Active

Collection. For example, an "out of the box" implementation of an Active Collection Source is

provided to observe different types of information produced by an Event Processor Network.

The generic Active Collection Source implementation includes the ability to aggregate information

which is then stored as a summary within the Active Collection, perform routine maintenance tasks

and tidy up collection entries based on configured criteria (e.g. max size of the collection, max

duration an item should exist in the collection, etc).

As well as creating these top level active collections, associated with configured Active Collection

Sources, it is also possible to create derived (child) collections from these top level collections.

These derived collections have a predicate that determines whether an entry in the parent

collection is relevant to the child collection. This can be used to manage specific sub-sets, and

essentially provides an active query mechanism, enabling interested clients to observe changes

to that child collection.

Chapter 2.

7

Chapter 2. Reporting Activity

2.1. Activity Model

The section provides an overview of the Activity Model. This model defines the set of events (or

situations) that can be reported to identify what is happening during the execution of a business

transaction.

2.1.1. Activity Unit

The main (top level) model component is the Activity Unit. This component is a grouping capability

to aggregate a set of activities (or situations) that relate to a particular transaction.

The Activity Unit has the following parts:

• id - this uniquely identifies the activity unit for historical retrieval purposes

• origin - this information identifies the environment in which the activities were recorded

• a set of contexts - provides contextual information to help relate the activities with other activities

recorded in other units

• a group of activity types - the actual activities (or situations) that occurred

With the exception of the id field, these parts will be discussed in more detail below.

2.1.2. Origin

The Origin represents information about the source of the activities associated with the Activity

Unit.

The information currently stored includes:

• principal - the user associated with the activities being performed, if available

• thread - can be useful in diagnostic situations in conjunction with the host information

• host - the host name

• node - the node name, for when the server is part of a cluster

2.1.3. Context

The context items represent information that can be used to correlate the activities within the unit

against other Activity Units, as well as identify information information that may be useful when

attempting to retrieve the unit.

Chapter 2. Reporting Activity

8

The context has the following three pieces of information:

• type - the context type, explained below

• value - the value of the context information

• timeframe - optional value used with a Link context type, to identify the time period in which

the context is valid

The different context types that can be defined are:

Type Constant Description

Context.Type.Conversation The conversation id, which can be used to

correlate activities across service boundaries

and is unique to a particular business

transaction instance.

Context.Type.Endpoint The endpoint id, which can be used to

correlate activities within a service boundary

(e.g. BPM process instance id), and which

is also unique to a particular business

transaction instance.

Context.Type.Message The unique id for a message being sent and/

or received. The message id may only be

valid within the scope of an endpoint, as its

value may not be carried with the message

contents to the recipient. A common usage

will be to correlate a response against the

originating request within the same endpoint.

Context.Type.Link This type represents a correlation between

two activity events based on identify

information that is only valid (i.e. unique) for a

limited time period.

2.1.4. Activity Type

All activity events are derived from an Activity Type superclass. This class has the following

information:

• activity unit id

• activity unit index

• timestamp

• principal

Activity Type

9

• a set of contexts

• a set of properties

The only piece of information that needs to be provided by the reporting component is the

timestamp, and optionally some activity type specific contexts. The other information will be

initialized by the infrastructure prior to persisting the Activity Unit, as a way to enable the specific

Activity Type instance to be located. This may be required during the analysis of Activity Units.

2.1.4.1. BPM

The BPM (Business Process Management) specific activity events are used to record the lifecycle

and state transitions that occur when a business process (associated with a description language

such as BPMN2 or WS-BPEL) is executed within a runtime engine, in support of a business

transaction.

These business processes tend to be "long running", in that they handle multiple requests and

responses over a period of time, all being correlated to the same process instance. This means

that activities generated as a result of this execution must also be correlated to \(i) the specific XA

transaction in which they are performed, (ii) the process instance that holds their state information

in the BPM engine, and (iii) the conversation associated with the particular business transaction.

This does not mean that all Activity Units the contain activity information from the BPM engine

need to have all three types of correlation information. For example, the initial Activity Unit for a

business process instance may identify (i) and (ii), which will establish a unique process instance

id. A subsequent Activity Unit may then define the same process id for (ii), as well as a conversation

id (iii) that can then be used to tie any Activity Unit relates with the process instance id to that

conversation - i.e. all Activity Units with the same process instance id become directly or indirectly

correlated to the conversation id that may only be declared in some of the Activity Units.

Activity Type Description

ProcessStarted This activity type will be recorded when a

process instance is initially started.

Attributes include: process type, instance id

and version

ProcessCompleted This activity type will be recorded when a

process instance completes.

Attributes include: process type, instance id

and status (either success or fail)

ProcessVariableSet This activity type will be recorded when a

process variable’s value is set or modified.

Attributes include: process type, instance id

and variable name/type/value

Chapter 2. Reporting Activity

10

2.1.4.2. SOA

Activity Type Description

RequestReceived and RequestSent This activity type will be recorded when a

service invocation (request) is received or

sent.

message type, content and message id

ResponseReceived and ResponseSent This activity type will be recorded when a

service invocation returns.

message type, content, message id and

replyTo id (used to correlate the response to

the original request)

2.2. Activity Collector

The Activity Collector is an embedded component that can be used to accumulate activity

information from the infrastructure used in the execution of a business transaction. The activity

information is then reported to the Activity Server (described in the following section) implicitly,

using an appropriate Activity Logger implementation. The default Activity Logger implementation

operates efficiently by providing a batching capability to send activity information to the server

based either on a regular time interval, or a maximum number of activity units, whichever occurs

first.

2.2.1. Finding the Activity Collector

Locating the Activity Collector will be dependent upon the environment. This section outlines the

different approaches that may be used.

2.2.1.1. JEE Environment

In a JEE environment, the Activity Collector is obtained using the following code:

import org.overlord.rtgov.activity.collector.ActivityCollector;

import org.overlord.rtgov.activity.collector.ActivityCollectorAccessor;

....

ActivityCollector activityCollector =

 ActivityCollectorAccessor.getActivityCollector();

The accessor is initialized with an instance of the ActivityCollector when it is instantiated by the

system (e.g. CDI). If an instance has not been initialized when this method is invoked, then the

client will be blocked for a short period of time, waiting for the instance. If the instance has not

been initialized after this period, then a null will be returned.

Pre-Processing Activity Information

11

2.2.2. Pre-Processing Activity Information

The ActivityCollector API provides a method to enable information associated with the activity

event to be pre-processed, using configured information processors (see User Guide), to extract

relevant properties that can be associated with the activity event.

These extracted properties can subsequently be used in further event analysis, to correlate the

events and enable business relevant queries to be performed. The signature for this method is,

public String processInformation(String processor, String type,

 Object info, java.util.Map<String, Object> headers,

 ActivityType actType);

The processor parameter is an optional value that can be used to explicitly name the information

processor to be used. If not specified, then all registered information processors will be checked

to determine if they are relevant for the supplied information type.

The type parameter represents the information type. This can be in any form, as long as it matches

the registered type defined in the information processor configuration.

The info parameter represents the actual information that will be processed.

The headers parameter represents any header information that may have accompanied the

information (e.g. if the information was a message exchanged between two interacting parties).

The actType parameter represents the activity event that any extracted properties should be

recorded against.

2.2.3. Validating the Activity Event

The activity collector provides a validate method that can be used to pre-process the activity

event, using configured Activity Validators (see User Guide), before it is submitted to the activity

server.

This mechanism can be used to process activity events in the execution environment, prior to it

being distributed to the activity server which may be located on a separate server. It can also be

used to identify invalid situations, resulting in an exception being thrown, which can be handled by

the execution environment and used to block the business transaction associated with the activity

event. An example of this usecase can be found in the "policy sync" quickstart.

2.2.4. Managing the Activity Scope

An Activity Scope is a way of grouping a range of different activity types, that will be reported to

the activity server, into a single logical unit. It should generally represent the same scope as a XA

transaction, to emcompass all of the work that was achieved within that transaction - and equally

be discarded if the transaction is rolled back.

Chapter 2. Reporting Activity

12

When the first activity is reported within the scope of a XA transaction, then the scope will

automatically be started. When that transaction subsequently commits, the Activity Unit (i.e. the

collection of activities accumulated during that scope) will be reported to the Activity Server.

However if activities are performed outside the scope of a XA transaction, then the component

reporting the activity information can either explicitly start a scope, or just report the activity

information.

If no scope exists, and an activity type is reported, then it will simply be reported to the activity

server as a single event. The disadvantage of this approach is that it is less efficient, both in terms

of reporting due to the duplication of certain header information, and for subsequent analysis.

Having multiple activity events defined in a single unit, related to the transaction, provides added

value to inter-relating the different events - providing some implied correlation that would not exist

if the events were independently reported to the Activity Server.

2.2.4.1. Starting the Scope

To start the scope, simply invoke the startScope method on the Activity Collector:

activityCollector.startScope();

If the application does not know whether a scope has already been started, and only wishes to start

a single scope (i.e. as nested scopes are not supported), then the following guard can be used:

boolean started=false;

if (!activityCollector.isScopeActive()) {

 activityCollector.startScope();

 started = true;

}

The isScopeActive method returns a boolean value to indicate whether the scope was previously

started. If true is returned, then this component is also responsible for stopping the scope. If false is

returned, then it means the scope has already been started, and therefore the component should

NOT invoke the endScope method.

2.2.4.2. Ending the Scope

To stop the scope, simply invoke the endScope method on the Activity Collector:

if (started) {

 activityCollector.endScope();

}

2.2.5. Reporting an Activity Type

As described above, activity information is reported to the server as an Activity Unit, containing

one or more actual activity events. The activity event is generically known as an Activity Type.

Configuring an Activity Unit Logger

13

The Activity Collector mechanism removes the need for each component to report general

information associated with the Activity Unit, and instead is only responsible for reporting the

specific details associated with the situation that has occurred.

The set of different Activity Types that may be reported is outside the scope of this section of

the documentation, and so for the purpose of illustration we will only be using a subset of the

SOA related activity events. For more informaton on the available event types, please refer to

the javadocs.

To report an event, simply create the specific Activity Type and invoke the record method:

org.overlord.rtgov.activity.model.RequestSent sentreq=new

 org.overlord.rtgov.activity.model.soa.RequestSent();

sentreq.setServiceType(serviceType);

sentreq.setOperation(opName);

sentreq.setContent(content);

sentreq.setMessageType(mesgType);

sentreq.setMessageId(messageId);

activityCollector.record(sentreq);

For certain types of event, it may also be appropriate to invoke an information processor(s) to

extract relevant context and property information, that can then be associated with the activity

event. This is achieved using the following:

Object modifiedContent=_activityCollector.processInformation(null,

 mesgType, content, headers, sentreq);

sentreq.setContent(modifiedContent);

The activity collector can be used to process relevant information, supplying the activity type to

enable context and property information to be defined. The result of processing the information

may be a modified version of the content, suitably obsfucated to hide any potentially sensitive

information from being distributed by the governance infrastructure.

The first parameter to the processInformation() method is an optional information processor name

- which can be used to more efficiently locate the relevant processor if the name is known.

2.2.6. Configuring an Activity Unit Logger

The Activity Unit Logger is the component responsible for logging the activity unit that is generated

when the endScope method is invoked on the collector (either explicitly or implicitly by the XA

resource manager).

This interface has three methods:

• init - this method initializes the activity unit logger implementation

Chapter 2. Reporting Activity

14

• log - supplied the Activity Unit to be logged

• close - this method closes the activity unit logger implementation

2.2.6.1. Batched Activity Unit Logger (Abstract)

The Batched Activity Unit Logger is an abstract base class implementing the Activity Unit Logger

interface. It provides the functionality to batch Activity Unit instances, and then forwarding them

based on two properties:

• Maximum Time Interval - If the time interval expires, then the set of Activity Units will be sent.

• Maximum Unit Count - if the number of Activity Units reaches this max value, then the batch

will be sent.

This implementation can be explicitly initialized when used in an embedded environment. If used

within a JEE environment, then the PostConstruct and PreDestroy annotations enable it to be

implicit initialized and tidied up when the concrete component’s lifecycle is managed.

2.2.6.2. Activity Server Logger

This implementation of the Activity Unit Logger interface is derived from the Batched Activity Unit

Logger, and therefore will send activity information in a batch periodically based on the configured

properties. When the batch of Activity Units are sent, this implementation forwards them to an

implementation of the Activity Server interface, injected explicitly or implicitly into the logger.

The Activity Server will be discussed in a subsequent section of this document. However, this can

be used to either send the events directly to the Activity Server component, if co-located within

the same server, or via a remote binding. For example,

import org.overlord.rtgov.activity.collector.ActivityCollector;

import

 org.overlord.rtgov.activity.collector.activity.server.ActivityServerLogger;

import org.overlord.rtgov.activity.server.rest.client.RESTActivityServer;

.....

 RESTActivityServer restc=new RESTActivityServer();

 restc.setServerURL(_activityServerURL);

 ActivityServerLogger activityUnitLogger=new ActivityServerLogger();

 activityUnitLogger.setActivityServer(restc);

 activityUnitLogger.init();

 _collector.setActivityUnitLogger(activityUnitLogger);

Configuring a Collector Context

15

This shows a situation where an embedded Activity Collector is being initialized with an Activity

Server Logger, which uses the REST Activity Server client implementation.

2.2.7. Configuring a Collector Context

The final component within the Collector architecture is the Collector Context. This interface

provides the Activity Collector with information about the environment (e.g. principal, host, node,

port), which can be used to complete the Origin information within an Activity Unit, as well as

providing access to capabilities required from the environment (e.g. the Transaction Manager).

Each type of environment in which the collector may be used will provide an implementation of this

interface. Depending upon the environment, this will either be implicitly injected into the Activity

Collector, or be set explicitly using the setter method.

2.2.8. Simplified Activity Reporter for use by application

components

Although the general Activity Collector mechanism can be used, as described in the previous

sections, an injectable ActivityRecorder component is provided to enable applications to perform

simple activity reporting tasks. Where injection is not possible, then a default implementation of

the interface can be instantiated.

For example, the sample SwitchYard order management application uses this approach:

@Service(InventoryService.class)

public class InventoryServiceBean implements InventoryService {

 private final Map<String, Item> _inventory = new HashMap<String,

 Item>();

 private org.overlord.rtgov.client.ActivityReporter _reporter=

 new org.overlord.rtgov.client.DefaultActivityReporter();

 public InventoryServiceBean() {

 }

 @Override

 public Item lookupItem(String itemId) throws ItemNotFoundException {

 Item item = _inventory.get(itemId);

 if (item == null) {

 if (_reporter != null) {

 _reporter.logError("No item found for id '"+itemId+"'");

 }

 throw new ItemNotFoundException("We don't got any " + itemId);

Chapter 2. Reporting Activity

16

 }

 return item;

 }

}

The ActivityReporter enables the application to perform the following tasks:

Method Description

logInfo(String mesg) Log some information

logWarning(String meg) Log a warning

logError(String mesg) Log an error

report(String type, Map<String,String> props) Record a custom activity with a particular type

and associated properties

report(ActivityType activity) Record an activity

However this API cannot be used to control the scope of an ActivityUnit. It is expected that this

would be handled by other parts of the infrastructure, so this API is purely intended to simplify the

approach used for reporting additional incidental activities from within an application.

The maven dependency required to access the ActivityReporter is:

 <dependency>

 <groupId>org.overlord.rtgov.integration</groupId>

 <artifactId>rtgov-client</artifactId>

 <version>${rtgov.version}</version>

 </dependency>

2.3. Activity Server

The Activity Server is responsible for:

• Recording Activity Units describing the activities that occur during the execution of business

transactions in a distributed environment.

• Query suport to retrieve previously recorded Activity Units

2.3.1. Recording Activity Units

The Activity Server can be used to record a list of Activity Units generated from activity that occurs

durig the execution of a business transaction. The Activity Units represent the logical grouping of

individual situations that occur within a transaction (e.g. XA) boundary.

Recording Activity Units

17

This section will show the different ways this information can be recorded, using a variety of

bindings.

Tip

Where possible, the Activity Collector mechanism described in the previous section

should be used to aggregate and record the activity information, as this is more

efficient that each system individually reporting events to the server.

2.3.1.1. Direct Injection

The simpliest approach is to leverage CDI or OSGi (blueprint) to directly inject the Activity Server

implementation.

import org.overlord.rtgov.activity.server.ActivityServer;

....

@Inject

private ActivityServer _activityServer=null;

Once the reference to the Activity Server has been obtained, then call the store method to record

a list of Activity Units.

import org.overlord.rtgov.activity.model.soa.RequestSent;

import org.overlord.rtgov.activity.model.ActivityUnit;

....

java.util.List<ActivityUnit> list=new;

RequestSent act=new RequestSent();

act.setServiceType(...);

...

list.add(act);

_activityServer.store(list);

2.3.1.2. REST Service

The Activity Server can be accessed as RESTful service, e.g.

import org.codehaus.jackson.map.ObjectMapper;

import org.overlord.rtgov.activity.model.ActivityUnit;

Chapter 2. Reporting Activity

18

.....

 java.util.List<ActivityUnit> activities=........

 java.net.URL storeUrl = new java.net.URL(....); // <host>/

overlord-rtgov/activity/store

 java.net.HttpURLConnection connection = (java.net.HttpURLConnection)

 storeUrl.openConnection();

 String userPassword = username + ":" + password;

 String encoding =

 org.apache.commons.codec.binary.Base64.encodeBase64String(userPassword.getBytes());

 connection.setRequestProperty("Authorization", "Basic " + encoding);

 connection.setRequestMethod("POST");

 connection.setDoOutput(true);

 connection.setDoInput(true);

 connection.setUseCaches(false);

 connection.setAllowUserInteraction(false);

 connection.setRequestProperty("Content-Type", "application/json");

 java.io.OutputStream os=connection.getOutputStream();

 ObjectMapper mapper=new ObjectMapper(); // Use jackson to

 serialize the activity units

 mapper.writeValue(os, activities);

 os.flush();

 os.close();

 java.io.InputStream is=connection.getInputStream();

 byte[] result=new byte[is.available()];

 is.read(result);

 is.close();

See the REST API information in the docs folder of the distribution.

2.3.2. Retrieve an Activity Unit

The Activity Server can be used to retrieve a specific Activity Unit from the Activity Server. The

Activity Unit represents a grouping of Activity Events that occurred within the same business

transaction scope. This section will show the different ways this information can be queried, using

a variety of bindings.

Retrieve an Activity Unit

19

2.3.2.1. Direct Injection

The simpliest approach is to leverage CDI or OSGi (blueprint) to obtain a reference to the

Activity Server. Once the reference to the Activity Server has been obtained, then invoke the

getActivityUnit method to retrieve the required information.

import org.overlord.rtgov.activity.model.ActivityUnit;

....

String id="....";

ActivityUnit au=_activityServer.getActivityUnit(id);

2.3.2.2. REST Service

The Activity Server can be accessed as RESTful service, e.g.

import org.codehaus.jackson.map.ObjectMapper;

import org.codehaus.jackson.type.TypeReference;

import org.overlord.rtgov.activity.model.ActivityUnit;

.....

 java.net.URL queryUrl = new java.net.URL(....); // <host>/

overlord-rtgov/activity/unit?id=<id>

 java.net.HttpURLConnection connection = (java.net.HttpURLConnection)

 queryUrl.openConnection();

 String userPassword = username + ":" + password;

 String encoding =

 org.apache.commons.codec.binary.Base64.encodeBase64String(userPassword.getBytes());

 connection.setRequestProperty("Authorization", "Basic " + encoding);

 connection.setRequestMethod("GET");

 connection.setDoOutput(true);

 connection.setDoInput(true);

 connection.setUseCaches(false);

 connection.setAllowUserInteraction(false);

 connection.setRequestProperty("Content-Type", "application/json");

 java.io.InputStream is=connection.getInputStream();

 ActivityUnit au = mapper.readValue(is, ActivityUnit.class);

 is.close();

Chapter 2. Reporting Activity

20

See the REST API documentation in the docs folder of the distribution.

2.3.3. Retrieve a list of Activity Events

The Activity Server can be used to query a list of Activity Type (events) from the Activity Server.

This section will show the different ways this information can be queried, using a variety of

bindings.

2.3.3.1. Direct Injection

The simpliest approach is to leverage CDI or OSGi (blueprint) to obtain a reference to the Activity

Server. Once the reference to the Activity Server has been obtained, then the getActivityTypes

method can be invoked to obtain the list of events.

import org.overlord.rtgov.activity.model.ActivityUnit;

import org.overlord.rtgov.activity.model.Context;

....

String value="...."; // Conversation id

Context context=new Context(Context.Type.Conversation, value);

java.util.List<ActivityType> list=_activityServer.getActivityTypes(context);

// or, if wanting to define a time range

long startTime=...;

long endTime=...;

java.util.List<ActivityType> list=_activityServer.getActivityTypes(context,

 startTime, endTime);

2.3.3.2. REST Service

The Activity Server can be accessed as RESTful service, e.g.

import org.codehaus.jackson.map.ObjectMapper;

import org.codehaus.jackson.type.TypeReference;

import org.overlord.rtgov.activity.model.ActivityType;

.....

 java.net.URL queryUrl = new java.net.URL(....); // <host>/

overlord-rtgov/activity/events?type=<type>&value=<value>

 // Note: add optional query parameters

 &from=<fromTimestamp>&to=<toTimestamp> to define a time frame

 java.net.HttpURLConnection connection = (java.net.HttpURLConnection)

 queryUrl.openConnection();

Retrieve a list of Activity Events

21

 String userPassword = username + ":" + password;

 String encoding =

 org.apache.commons.codec.binary.Base64.encodeBase64String(userPassword.getBytes());

 connection.setRequestProperty("Authorization", "Basic " + encoding);

 connection.setRequestMethod("GET");

 connection.setDoOutput(true);

 connection.setDoInput(true);

 connection.setUseCaches(false);

 connection.setAllowUserInteraction(false);

 connection.setRequestProperty("Content-Type", "application/json");

 java.io.InputStream is=connection.getInputStream();

 java.util.List<ActivityType> activities = mapper.readValue(is, new

 TypeReference<java.util.List<ActivityType>>() {});

 is.close();

See the REST API documentation in the docs folder of the distribution.

22

Chapter 3.

23

Chapter 3. Event Processing
The EventProcessor, and supporting components, can be used either directly within the Activity

Collection mechanism or from nodes within an Event Processor Network. This section of the

Developer Guide will discuss how custom Predicates and Event Processors are defined.

3.1. Custom Predicate

The org.overlord.rtgov.ep.Predicate abstract class is responsible for determining whether

an event is suitable to be processed by a particular node within the Event Processor Network.

To create a custom implementation simply derive a class from the Predicate abstract class. This

class provides the following methods:

Method Description

void init() This method is called when the predicate is

first initialized as part of the Event Processor

Network. A custom implementation does not

need to override this method if not required.

boolean evaluate(Object event) This method determines whether the supplied

event should be processed by the node.

3.2. Custom Event Processor

The org.overlord.rtgov.ep.EventProcessor abstract class is responsible for processing an

event routed to a particular node within the Event Processor Network.

To create a custom implementation simply derive a class from the EventProcessor abstract class.

This class provides the following methods:

Method Description

java.util.Map<String,Service> services

getServices()

This method returns the map of services

available to the Event Processor.

void

setServices(java.util.Map<String,Service>

services)

This method sets the map of services

available to the Event Processor.

void init() This method is called when the event

processor is first initialized as part of

the Event Processor Network. A custom

implementation does not need to override this

method if not required.

Serializable process(String source,

Serializable event, int retriesLeft) throws

Exception

This method processes the supplied event,

indicating the source of the event and how

many retries are left (so that suitable error

Chapter 3. Event Processing

24

Method Description

handling can be performed in no more retries

remain.

3.3. Custom Services

The org.overlord.rtgov.common.service.Service abstract class is used to provide services

for use by event processors, e.g. CacheManager.

To create a custom implementation simply derive a class from the Service abstract class. This

class provides the following methods:

Method Description

void init() This method is called when the service is first

initialized. A custom implementation does not

need to override this method if not required.

3.4. Packaging

The custom predicate and/or event processor implementations must be available to

the classloader when an Event Processor Network or Activity Validator referencing the

implementations is loaded. This can either be achieved by packaging the implementations with

the Event Processor Network or Activity Validator configuration, or by installing them in a common

location used by the container in which the Event Processor Network/Activity Validator is being

loaded.

Chapter 4.

25

Chapter 4. Active Collections
The Active Collection mechanism provides a means of actively managing a collection of

information. For a more details explanation of the mechanism, see the User Guide.

This section explains how to:

• implement an Active Collection Source, which can be used to subscribe to a source of

information which can result in data being inserted, updated and removed from an associated

active collection.

• implement an Active Change Listener that can associated with an Active Collection Source, and

automatically notified of changes to an associated Active Collection

• write a custom application for accessing Active Collections

4.1. Active Collection Source

The Active Collection Source can be considered the adapter between the actual source of events/

information and the Active Collection. The Active Collection Source is responsible for managing

the insertion, update and deletion of the objects within the associated Active Collection, based on

situations that occur in the source.

An example of a derived Active Collection Source implementation, that is packaged with the

infrastructure, can be used to listen for events produced by nodes in an Event Processor Network

and insert these events in the Active Collection.

To create a new type of Active Collection Source, simply derive a class from the

org.overlord.rtgov.active.collection.ActiveCollectionSource class and implement

the following methods:

Method Description

void init() This method is invoked when the Active

Collection Source is registered, and should be

used to create the subscription to the relevant

source of information. The implementation of

this method MUST call the init() method on

the super class first.

void close() This method is invoked when the Active

Collection Source is unregistered, and should

be used to unsubscribe from the source

of information. The implementation of this

method MUST call the close() method on the

super class first.

Chapter 4. Active Collections

26

When a situation occurs on the source, that requires a change in the associated Active Collection,

then the derived implementation can call one of the follow methods on the Active Collection

Source:

Method Description

public void insert(Object key, Object value) This method is called to insert a new

element into the collection. The value is

the information to be inserted. The key is

potentially optional, depending on the nature

of the active collection:

List - the key is optional. If specified, then it

MUST be an integer representing the index

where the value should be inserted.

Map - the key represents the map key to be

associated with the value, and is therefore not

optional.

public void update(Object key, Object value) This method is called to update an existing

element within the collection. The value is

the information to be updated. The key is

potentially optional, depending on the nature

of the active collection:

List - the key is optional. If specified, then it

MUST be an integer representing the index

of the value to be updated. If not specified,

then the value will be used to locate the index

within the list.

Map - the key represents the map key

associated with the value, and is therefore not

optional.

public void remove(Object key, Object value) This method is called to remove an

element from the collection. The value is

the information to be updated. The key is

potentially optional, depending on the nature

of the active collection:

List - the key is optional. If specified, then it

MUST be an integer representing the index

of the value to be removed. If not specified,

then the value will be used to locate the index

within the list.

Active Change Listeners

27

Method Description

Map - the key represents the map key

associated with the value, and is therefore not

optional. However in this situation the value is

optional.

4.2. Active Change Listeners

This section explains how to implement a listener to deal with changes that occur within an Active

Collection.

The first sub-section details with general implementations of this interface, that may be used within

custom applications. The second sub-section will deal with a specific type of listener that can be

configured with an Active Change Source (discussed in the previous section), and automatically

initialized when the Active Change Source is registered.

4.2.1. Active Change Listener

The org.overlord.rtgov.active.collection.ActiveChangeListener interface can be

implemented by any component that is interested in being informed when a change occurs to

an associated Active Collection. The Active Collection API supports add and remove methods to

register and unregister these active change listeners.

The methods that need to be implemented for an active change listener are:

Method Description

void inserted(Object key, Object value) Called when a new value is inserted into the

collection, with the key being dependent upon

the type of collection:

List - the key will be the index

Map - the key will be the key information used

in the map’s key/value pair

void updated(Object key, Object value) Called when an existing value is updated

within the collection, with the key being

dependent upon the type of collection:

List - the key will be the index

Map - the key will be the key information used

in the map’s key/value pair

void removed(Object key, Object value) Called when an existing value is removed

from the collection, with the key being

dependent upon the type of collection:

List - the key will be the index

Chapter 4. Active Collections

28

Method Description

Map - the key will be the key information used

in the map’s key/value pair

4.2.2. Abstract Implementation

If the active change listener implementation is derived from the

org.overlord.rtgov.active.collection.AbstractActiveChangeListener abstract class

then it can be registered with the Active Collection Source configuration, and automatically

initialized when the source is registered.

The benefit of this approach is that it does not require the user to write custom code to register

the Active Collection Listener against the Active Collection.

An example of this type of implementation is the

org.overlord.rtgov.active.collection.jmx.JMXNotifier which automatically generates

JMX notifications when an object is added to the associated active collection.

The implementations derived from this abstract active change listener implementation are no

different from order active change listener implementations, with the exception that they can be

serialized as part of the Active Collection Source configuration, and they support lifecycle methods

for initialization and closing:

Method Description

void init() This method can be overridden to initialize

the active change listener implementation.

The super class init() method MUST be called

first.

void close() This method can be overridden to close the

active change listener implementation. The

super class close() method MUST be called

first.

4.3. Accessing Active Collections

This section explains how to:

• retrieve an existing active collection

• create a derived active collection

• register for active change notifications

4.3.1. Retrieve an Active Collection

There are two ways to retrieve an active collection.

Retrieve an Active Collection

29

4.3.1.1. Directly accessing the ActiveCollectionManager

As discussed in a previous section, Active Collections are created as a bi-product of registering

an Active Collection Source. The Active Collection Source is registered with an Active Collection

Manager, which creates the collection to be updated from the source. This Active Collection then

becomes available for applications to retrieve from the manager, for example:

import org.overlord.rtgov.active.collection.ActiveCollectionManager;

import org.overlord.rtgov.active.collection.ActiveCollectionManagerAccessor;

import org.overlord.rtgov.active.collection.ActiveList;

.....

ActiveCollectionManager

 acmManager=ActiveCollectionManagerAccessor.getActiveCollectionManager();

ActiveList list = (ActiveList)

 acmManager.getActiveCollection(listName);

This is the approach used to retrieve what can be considered "top level" active collections. These

are the collections directly maintained by the Active Collection Manager, each with an associated

Active Collection Source defining the origin of the collection changes. The following section shows

how further active collections can be derived from these "top level" collections, to refine the

information.

The maven dependency required to access the ActiveCollectionManager and active collections is:

 <dependency>

 <groupId>org.overlord.rtgov.active-queries</groupId>

 <artifactId>active-collection</artifactId>

 <version>${rtgov.version}</version>

 <scope>provided</scope>

 </dependency>

4.3.1.2. Injectable Collection Manager

The other approach is aimed at simplifying the use of active collections from within a client

application. It offers a simple API, and associated default implementation, that can be injected

using CDI. Under the covers, it simply performs the same tasks as described in the previous

section.

 @Inject

 private org.overlord.rtgov.client.CollectionManager

 _collectionManager=null;

 private org.overlord.rtgov.active.collection.ActiveMap _principals=null;

Chapter 4. Active Collections

30

 protected void init() {

 if (_collectionManager != null) {

 _principals = _collectionManager.getMap(PRINCIPALS);

 }

 }

If injection is not possible (e.g. when using SwitchYard Auditors), then

a default implementation can be directly instantiated with the class

org.overlord.rtgov.client.DefaultCollectionManager.

The maven dependencies required to access the CollectionManager, and the subsequent active

collections, are:

 <dependency>

 <groupId>org.overlord.rtgov.integration</groupId>

 <artifactId>rtgov-client</artifactId>

 <version>${rtgov.version}</version>

 </dependency>

 <dependency>

 <groupId>org.overlord.rtgov.active-queries</groupId>

 <artifactId>active-collection</artifactId>

 <version>${rtgov.version}</version>

 <scope>provided</scope>

 </dependency>

4.3.2. Create a Derived Active Collection

The "top level" active collections defined in the previous section reflect the information changes as

identified by their associated Active Collection Source. However in some situations, only a subset

of the information is of interest to an application. For these situations, it is possible to derive a

child active collection by specifying:

• parent - the parent collection from which the child may be derived. Although this will generally

be the name of a "top level" collection, it is possible to derive a collection from another child

collection, enabling a tree to be formed.

• predicate - a predicate is specified to determine whether information in a parent collection (and

subsequently its changes), are relevant to the child collection.

• properties - used to initialize the derived collection.

Currently the only property that can be set is a boolean named active, which defaults to true.

If the active property is true, then when a child collection is initially created, the predicate will be

used to filter the contents of the parent collection to identify the initial subset of values that are

Register for Active Change Notifications

31

relevant for the child collection. Once initialized, the child collection effectively subscribes to the

change notifications of the parent collection, and uses the predicate to determine whether the

change is applicable, and if so, applies the change to the child collection.

If the active property is false, then whenever the derived collection is queried, the predicate will

be applied to the parent collection to obtain the current set of results. This configuration should

only be used where the predicate is based on volatile information, and therefore the results in the

derived collection would be changing independently of changes applied to the parent collection.

import org.overlord.rtgov.active.collection.predicate.Predicate;

import org.overlord.rtgov.active.collection.ActiveCollectionManager;

import org.overlord.rtgov.active.collection.ActiveList;

.....

Predicate predicate=.....;

ActiveList parent = (ActiveList)acmManager.getActiveCollection(parentName);

if (parent != null) {

 java.util.Map<String,Object> properties=.....;

 alist = (ActiveList)acmManager.create(childName,

 parent, predicate, properties);

}

4.3.3. Register for Active Change Notifications

Once an Active Collection has been retrieved (or created in the case of a child collection), then

the information can be accessed using methods appropriate to the collection type, e.g. list or map.

However being active collections, an important source of information is the change notifications,

to enable the application to understand what changes are occuring and when.

To receive change notifications, the application needs to register an Active Change Listener

(discussed in the previous sections). This can be achieved using the addActiveChangeListener

method on the collection, and simularly use the removeActiveChangeListener method to

unregister for change notifications.

For example,

import org.overlord.rtgov.active.collection.ActiveList;

import org.overlord.rtgov.active.collection.ActiveChangeListener;

.....

ActiveList list=.....;

Chapter 4. Active Collections

32

list.addActiveChangeListener(new ActiveChangeListener() {

 public void inserted(Object key, Object value) {

 }

 public void updated(Object key, Object value) {

 }

 public void removed(Object key, Object value) {

 }

});

	Runtime Governance: Developer Guide
	Table of Contents
	Chapter 1. Architecture Overview
	1.1. Introduction
	1.2. Collection and Reporting
	1.2.1. Collection
	1.2.2. Reporting
	1.2.3. Storage
	1.2.4. Notification

	1.3. Event Processing/Analysis
	1.4. Active Collections

	Chapter 2. Reporting Activity
	2.1. Activity Model
	2.1.1. Activity Unit
	2.1.2. Origin
	2.1.3. Context
	2.1.4. Activity Type
	2.1.4.1. BPM
	2.1.4.2. SOA

	2.2. Activity Collector
	2.2.1. Finding the Activity Collector
	2.2.1.1. JEE Environment

	2.2.2. Pre-Processing Activity Information
	2.2.3. Validating the Activity Event
	2.2.4. Managing the Activity Scope
	2.2.4.1. Starting the Scope
	2.2.4.2. Ending the Scope

	2.2.5. Reporting an Activity Type
	2.2.6. Configuring an Activity Unit Logger
	2.2.6.1. Batched Activity Unit Logger (Abstract)
	2.2.6.2. Activity Server Logger

	2.2.7. Configuring a Collector Context
	2.2.8. Simplified Activity Reporter for use by application components

	2.3. Activity Server
	2.3.1. Recording Activity Units
	2.3.1.1. Direct Injection
	2.3.1.2. REST Service

	2.3.2. Retrieve an Activity Unit
	2.3.2.1. Direct Injection
	2.3.2.2. REST Service

	2.3.3. Retrieve a list of Activity Events
	2.3.3.1. Direct Injection
	2.3.3.2. REST Service

	Chapter 3. Event Processing
	3.1. Custom Predicate
	3.2. Custom Event Processor
	3.3. Custom Services
	3.4. Packaging

	Chapter 4. Active Collections
	4.1. Active Collection Source
	4.2. Active Change Listeners
	4.2.1. Active Change Listener
	4.2.2. Abstract Implementation

	4.3. Accessing Active Collections
	4.3.1. Retrieve an Active Collection
	4.3.1.1. Directly accessing the ActiveCollectionManager
	4.3.1.2. Injectable Collection Manager

	4.3.2. Create a Derived Active Collection
	4.3.3. Register for Active Change Notifications

