Runtime Governance:
User Guide

T O V7= VAT 1

b [1S3 = 11 - A o o PP 3
2.1. JBoss Application Server (0r JBOSS EAP)coouuiiiiiiiiiie e 3

b 0 N 1 - 1 PSP 3

2.1.2. CONFIQUIALION ..eettieiiiti ettt e s 4

2,130 UNINSTAIL coeene e 8

3. Reporting Activity INTOrMationcoouuiiiiiiii e 11
3.1. Integrated Activity CollECIONccovniiii e 11
3.1.1. Supported ENVIFONMENTSoiiiiiiiiiiii ettt 11

3.1.2. INfOrmM@ation PrOCESSONcvvviiiiiiiiiiie ettt 11

3.1.3. ActiVity Validationoveieiuiiiiiiii e 21

3.2. Reporting and Querying Activity Events via RESTcccoociiiiiiiiiininceeen, 24
3.2.1. Reporting Activity INfOrmationcoooeiiiiiiiiiiii e 24

3.2.2. Querying Activity Events using an EXPressioncccovvvvieeviinneeineeineenn 25

3.2.3. Retrieving an ACHIVItY UNItoviiiiiiiii e 26

3.2.4. Retrieve Activity Events associated with a Context Value 26

4. ANAIYZING EVENTS ..oiiiiiiii ittt et 27
4.1. Configuring an Event Processor NetWOTKccccuuieiiiiiiiiiieiii e 27
4.1.1. Defining the NEetWOIKuiiiiiii e 27

4.1.2. Registering the NetWOrkcociiiiiiiiiii e 32

4.1.3. Supporting MUltiple VErSIONSocoouuiiiiiiiiiieie e 34

4.2, EVENE PrOCESSOIS ..ottt ettt et e e e e e an s 34
4.2.1. Drools EVENt PrOCESSON ...uoviiiiiiie ettt e e e e 34

4.2.2. JPA EVENE PrOCESSONcvniiiiiiieiieie ettt e et e e e e e 36

4.2.3. Malil EVENE PrOCESSON ...uiiviiiii et e et et e e e e et e e e e eeeen 36

4.2.4. MVEL EVENE PrOCESSOI ...cunieiiiiieiieiiee e e e e e e ees 37

4.2.5. SUPPOITING SEIVICES ...uuiiiiiiieieiii ettt ettt ettt e e e e b 37

G T o =T o= (= PP 38
4.3.1. MVEL PrediCatecc.uiiiiiiiiiiei et e e e e et e e e e 38

5. Accessing Derived INfOrmationcoooiiiiiiiiiii e 41
5.1. Configuring Active COolIECIONSooiiiiiiiiiiii e 41
5.1.1. Defining the SOUICEcoviiiiiii e e 41

5.1.2. Registering the SOUICEc..uiiiiiiiiii i 49

5.2. Presenting Results from an Event Processor Networkccceeeveiiiiiiiiieeinneennnn. 50

5.3. Publishing Active Collection Contents as JMX Notificationsccc.cccevevivnennn... 52

5.4. Querying Active Collections via RESTc.ccciiiiiiiiiii e 54

5.5. Pre-Defined Active COlIECHIONSovvuniiiiieii e e 55
5.5.1. ServiceRESPONSETIMESuiiiiiieiiieii e e e e e e e e e eans 55

5.5.2. SIUALIONS .. e e 55

5.5.3. ServiceDefiNItIONSccoviuiiiiiii e 56

B5.5.4. PIINCIPAIS ..uiiiii e 58

6. AVAIIADIE SEIVICES ..uuiiiiiiii i 59
L0 O | I = Vo - PP 59

6.2, REPOI GBIV ittt 59

Runtime Governance: User Guide

6.2.1. Creating and deploying a report definitioncoooiniiiiiiiiin i, 59
6.2.2. Generating an instance of the reportccooooviv i, 62
6.2.3. Providing a custom Business Calendarcooiviieiiiiinieiiiiinieceeeee 62

6.3. SErViCe DEPENUENCYuiiiiiiiiii e e e e e e e et e e aaas 62
6.3.1. How to customize the severity IeVelscooiiiiiiiiiii e, 63

6.4, SItUALION IMANAGETcivi it e e e e e e e e et e et e e e e eaens 64
6.4.1. Ignoring situations related to @ SUDJECTovviiiiiiiii i 64
6.4.2. Observing situations related to a SUbJECtcooevviiiiiiiiiii e, 65

7. Visualising the Runtime Governance Informationcc.ccoooiiiiiiiiiii e 67
7.1. Accessing the Runtime Governance Ulcccooiiiiiiiiiicii e e 67
7.2. RESPONSE TIME ettt ettt e ettt e e e e e e b s 67
A T ST (0= 110] o = PP 68
A O | B I - Vo - PP 68
7.5, SEIVICE OVEIVIEW ...uiiiiiieeeiii ettt e e e et e et s e e et e e e et e e e et e e e e bt e e e et e eeeran s 69
8. Managing The INfrasStrUCTUIe ... e 71
8.1. Managing the ACtiVity COIECIONoiviiiiii e 71
8.1.1. ACLIVItY COIECION ..ottt 71
ST A 11V Y2 e To o = 71

8.2. Managing the Event Processor NEtWOrKScccuuiiiiiiiiniiiiiieeci e 72
8.2.1. Event Processor Network Managercocvuuviviiiieiiieeiiiiecieeeiine e e e 72
8.2.2. Event Processor NEtWOIKSoovuuiiiiiiiii it e e 73

8.3. Managing the Active COIlECIONScccouiiiiiiiii e 74
8.3.1. Active ColleCtion MaNAGETccuuuiiiiiiiieeiiii e e eaeens 74
8.3.2. ACLIVE COlIECLIONSvuiiiiiiiie e 74

Chapter 1.

Chapter 1. Overview

This section provides an overview of the Runtime Governance architecture.

The architecture is separated into four distinct areas, with components that bridge between these
areas:

 Activity Collector - this component is optional, and can be embedded within an executing
environment to manage the collection of information

« Activity Server - this component provides a store and query API for activity information. If not
using the Activity Collector, then activity information can be reported directly to the server via
a suitable binding (e.g. REST).

« Event Processor Network - this component can be used to analyse the activity information.
Each network can be configured with a set of event processing nodes, to filter, transform and
analyse the events, to produce relevant rules.

» Active Collection - this component is responsible for maintaining an active representation of
information being collected. Ul components can then access this information via REST services
to present the information to users (e.g. via gadgets)

This document will explain how a user can configure these components to work together to build
a Runtime Governance solution to realtime monitoring of executing business transactions.

Chapter 2.

Chapter 2. Installation

This section will describe how to install Overlord Runtime Governance in different environments.

2.1. JBoss Application Server (or JBoss EAP)

This section describes how to install Overlord Runtime Governance into the JBoss Application
Server.

2.1.1. Install

1. Download the JBoss EAP [http://www.jboss.org/jbossas/downloads/] distribution (version
6.1.0.Final or higher), and unpack it in a suitable location.

2. The next step is to download SwitchYard [http://www.jboss.org/switchyard/downloads] (version
1.0.0.Final or higher) and install it into the JBoss AS/EAP environment. We recommend using
the switchyard installer, which can be unpacked in a temporary location, and run ant in the root
folder to be prompted for the location of the JBoss AS/EAP environment.

3. Download the latest release from the Overlord Runtime Governance website [http:/
www.jboss.org/overlord/downloads/rtgov], selecting the distribution specific to JBoss AS/EAP.
Then unpack the distribution into a suitable location.

4. Make sure that the JBOSS_HOME environment variable is set to the root folder of the JBoss
AS/EAP environment.

5. The final step is to perform the installation of Overlord Runtime Governance using maven. (You
will need maven 3.0.4 or higher, and can be downloaded from here: http://maven.apache.org/
download.html). To do the installation, use the following command from the root folder of the
installation:

mvn install [-Ditype=<installation-type>]

The installation-type value can be:

Value Description

server This will result in the full server configuration
being installed into the server, including
activity collector (for obtaining activities
generated within that server), activity server
(for receiving activity information whether
from a remote client or internal activity
collector), event processor network (to

http://www.jboss.org/jbossas/downloads/
http://www.jboss.org/jbossas/downloads/
http://www.jboss.org/switchyard/downloads
http://www.jboss.org/switchyard/downloads
http://www.jboss.org/overlord/downloads/rtgov
http://www.jboss.org/overlord/downloads/rtgov
http://www.jboss.org/overlord/downloads/rtgov
http://maven.apache.org/download.html
http://maven.apache.org/download.html

Chapter 2. Installation

Value Description

analyse the events), active collections (to
maintain result information) and a collection
of REST services to support remote access to
the information. This is the default value.

client This will result in only the activity collector
functionality being installed, using a RESTful
client to communicate with a remote Runtime
Governance server.

2.1.2. Configuration

2.1.2.1. Users

The usernames and passwords are defined within the file $JBOSS HOME/ st andal one/
configuration/overlord-idp-users. properties.

The default user for the Runtime Governance Ul, and direct access to any of the REST services,
is admi n with password over| or d.

2.1.2.2. Properties

The configuration properties for the Runtime Governance capability within a JBoss AS/EAP
environment can be found in the file $JBOSS_HOME/ st andal one/ confi gur ati on/ over | ord-
rt gov. properti es. Although there will be some properties that are independent of the installation
type, some will be specific and therefore are listed in separate sections below.

Common

The common properties available across all installation types are:

Property Description

collectionEnabled This property will determine whether activity
information is collected when the server is
initially started. This value can be changed
at runtime using the ActivityCollector
MBean (see the chapter on Managing the
Infrastructure).

ActivityServerLogger.maxThreads This property is an integer that represents the
maximum number of threads that should be
used to report activity events to the server
(whether remote or embedded).

Server

Configuration

Property Description

MVELSeverityAnalyzer.scriptLocation Optional location of a MVEL script used to
determine severity levels for nodes and links
within the service overview diagram.

When installing the full Runtime Governance server, modification to the configuration will generally
only be necessary if running in a clustered environment and/or wishing to use a particular database
(described below).

However, specific technologies used in the Activity Server, Event Processor Network or Active
Collection modules may need to use different configuration properties to work correctly within a
clustered environment. More details will be provided in sections discussing those technologies,
however here we will present the common changes that may be required.

Client

This installation type is used to configure an execution environment that will be sending its activity
information to a remote Runtime Governance server using REST. The relevant properties are:

Property Description

RESTActivityServer.serverURL This is the URL of the activity server
collecting the activity events.

RESTActivityServer.serverUsername The username used to access the REST
service.

RESTActivityServer.serverPassword The password used to access the REST
service.

2.1.2.3. Database

The database is defined by the datasource configuration located here: $JBOSS HOVE/
st andal one/ depl oyment / over | ord-rt gov/rtgov-ds. xnl as part of the server installation type.

The default "out of the box" H2 file based database is created during the installation of the server
type.

E] Note
The following sections discuss changes to the standal one-full.xni
configuration file. If using a clustered environment, then these changes should be
applied to the st andal one-ful | - ha. xnl instead.

MySQL

 Create the folder $JBossAS/ nodul es/ nysql / nai n.

Chapter 2. Installation

» Put the MySQL driver jar in the $JBossAS/ nodul es/ nmysql / mai n folder, e.g. mysgl-connector-
java-5.1.12 jar.

* Create a module.xml file, within the $JBossAS/ nodul es/ nysql / mai n folder, with the contents:

<nmodul e xm ns="urn: j boss: nodul e: 1. 1" nanme="nysql ">
<resour ces>
<resource-root path="nysql-connector-java-5.1.12.jar"/>
</ resources>
<dependenci es>
<nodul e nane="j avax. api "/ >
<nodul e nane="j avax. transaction. api"/>
</ dependenci es>
</ modul e>

« Edit the $JBossAS/ st andal one/ confi gurati on/ st andal one-ful |l .xm file to include the
MySQL driver:

<subsystem xm ns="urn:j boss: donai n: dat asour ces: 1. 0" >
<dat asour ces>

<drivers>

<driver nanme="nysql" nodul e="nysql ">
<xa- dat asour ce-
cl ass>com nysql . j dbc. j dbc2. opti onal . Mysql XADat aSour ce</ xa- dat asour ce- cl ass>
</driver>
</drivers>
</ dat asour ces>
</ subsyst enp

e Update the rtgov datasource file, $JBossAS/ st andal one/ depl oynment s/ over| ord-rt gov/
rtgov-ds. xni , the contents should be:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<dat asour ces>
<dat asource | ndi-nanme="java:j boss/ dat asource/ Overl or dRTGov" pool -
name="COver | or dRTGov" enabl ed="true" use-java-context="true">
<connection-url >jdbc: nysqgl://Iocal host: 3306/ rtgov</connection-url>
<driver>nysql </ driver>
<security>
<user - nane>r oot </ user - nane>
<passwor d></ passwor d>
</security>

Configuration

</ dat asour ce>
</ dat asour ces>

Postgres

» Create the $JBossAS/ nodul es/ or g/ post gr esql / nai n folder.

» Put the postgresql driver jar in the $JBossAS/ nodul es/ or g/ post gr esql / mai n folder, e.qg.
postgresql-9.1-902.jdbc4.jar.

» Create a module.xml file, within the $JBossAS/ nodul es/ or g/ post gr esql / mai n folder, with the
contents:

<modul e xm ns="urn:j boss: nodul e: 1. 1" name="org. post gresql ">
<resour ces>
<resource-root path="postgresql-9.1-902.jdbc4.jar"/>
</resour ces>
<dependenci es>
<nmodul e name="j avax. api "/ >
<nmodul e nane="j avax. transaction. api"/>
</ dependenci es>
</ nodul e>

« Edit the $JBossAS/ st andal one/ confi gurati on/ st andal one-ful | .xm file to include the
PostgresSQL driver:

<subsystem xm ns="urn:j boss: donmai n: dat asour ces: 1. 0" >
<dat asour ces>

<drivers>

<driver name="postgresql" nodul e="org. postgresqgl">
<xa- dat asour ce- cl ass>or g. post gresql . xa. PGXADat aSour ce</ xa-
dat asour ce- cl ass>
</driver>
</drivers>
</ dat asour ces>
</ subsyst en®

e Update the rtgov datasource file, $JBossAS/ st andal one/ depl oynment s/ over | ord-rtgov/
rtgov-ds. xni , the contents should be:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<dat asour ces>

Chapter 2. Installation

<dat asource jndi-nanme="j ava:j boss/ datasource/ Over| or dRTGov" pool -
nane="Over | or dRTGov" enabl ed="true" use-java-context="true">
<connection-url >j dbc: postgresql ://| ocal host: 5432/ rt gov</connection-
url >
<driver>postgresql </driver>
<security>
<user - nane>. . .. </ user - nane>
<passwor d>. ... </ password>
</security>
</ dat asour ce>
</ dat asour ces>

2.1.2.4. Caching

The EPN and Active Collection mechanisms both have the ability to make use of caching
provided by infinispan. When running the server in clustered mode (i.e. with st andal one-ful | -
ha. xm), the server provides a default clustered cache container, which is referenced in the
infinispan.container property in the overl ord-rtgov. properties file. Simply uncomment this
property to enable the EPN and Active Collection Source configurations that do not explicitly
provide a container JNDI name, to make use of this default clustered cache container.

However, to make sure the individual named caches are clustered correctly, it is necessary to
add an entry for each cache into the st andal one-f ul | - ha. xn1 file. As an example, the following
cache entry for the "Principals" cache has been defined, for use with the Policy Enforcement
example:

<cache-cont ai ner nane="cluster" aliases="ha-partition" default-
cache="defaul t">
<transport | ock-ti meout="60000"/>
<replicat ed- cache nane="defaul t" nopde="SYNC'
bat chi ng="true">
<l ocki ng i sol ati on=" REPEATABLE READ'/ >
</replicated-cache>

<l-- Configuration for Runtine CGovernance caches -->

<replicat ed- cache nane="Princi pal s" node="SYNC' >
<l ocki ng i sol ati on=" REPEATABLE READ'/ >
<transacti on node="FULL_XA" | ocki ng="PESSI M STI C"/ >
</replicated-cache>
</ cache- cont ai ner >

2.1.3. Uninstall

To uninstall, simply perform the following command in the root folder of the installation, ensuring
that the JBOSS_HOME environment variable refers to the root location of the JBoss AS/EAP
environment:

Uninstall

mvn cl ean

10

Chapter 3.

Chapter 3. Reporting Activity
Information

There are two ways in which activity information can be collected for further processing by the
Runtime Governance server.

1. Integrating an activity collector into the execution environment. This will intercept activities and
automatically report them to the Runtime Governance server.

2. Manually report the activity information to the Runtime Governance server through a publicly
available API (e.g. REST service)

This section will explain how to use both approaches.

3.1. Integrated Activity Collector

This section will discuss how an integrated activity collector can be used to automatically collect,
pre-process and optionally validate activity events before finally reporting them to the server.

3.1.1. Supported Environments

The current version of Runtime Governance only supports the SwitchYard open source SOA
platform. To collect activity events from this environment, simply install either the full server (if
the execution and governance server are running co-located) or the client installation profile (if
reporting events to another server).

3.1.2. Information Processor

To enable the Runtime Governance infrastructure, and the user policies/rules that are defined
within it, to make the most effective use of the activities that are reported, it is necessary to process
certain events to extract relevant information for use in:

 correlating activity events to a particular business transaction instance
« highlighting important properties that may need to be used in business policies

It is also important to control what information is distributed with the actvity events, for both size
(i.e. performance) and security reasons. By default information content should not be distributed,
unless an information processor has been defined to explicitly indicate how that information should
be represented (if at all) within the activity event.

This section explains how information processors can be configured and deployed along side the
business applications they are monitoring.

11

Chapter 3. Reporting Activity...

3.1.2.1. Defining the Information Processors

The Information Processor can be defined as an object model or specified as a JSON
representation for packaging in a suitable form, and subsequently de-serialized when deployed
to the governed execution environment.

The following is an example of the JSON representation of a list of Information Processors. This
particular example accompanies the Order Management sample:

[{

"name": " Or der Managenent | P",
"version":"1",
"typeProcessors": {
"{urn:sw tchyard-qui ckstart-deno: orders: 1. 0} submi t Order": {
"contexts":[{
"type":"Conversation",
"eval uator": {
"type":"xpath",
"expression":"order/orderld"

.

"properties":[{
"nane": "custoner",
"eval uat or": {

"type":"xpath",
"expression":"order/custoner"
}
A
"nane":"itent,
"eval uator": {
"type":"xpath",
"expression":"order/item d"
}
}H

b
"{urn:sw tchyard-qui ckstart -
deno: orders: 1. 0} submi t O der Response": {
"contexts":[{
"type":"Conversation",
"eval uat or": {
"type":"xpath",
"expression": "orderAck/ orderl d"

H,
"properties":[{
"name": "cust omer ",
"eval uat or": {
"type":"xpath",
"expressi on": "order Ack/ cust omer"

12

Information Processor

}
oA
"nane":"total ",
"eval uat or": {
"type":"xpath",
"expression":"orderAck/total "
}
}H

iE
"java: org.sw tchyard. qui ckstarts. denps. orders. Order": {
"contexts":[({
"type":"Conversation",
"eval uator": {
"type":"nvel ",
"expression":"orderld"

.
"properties":[{
"nane": "custoner",
"eval uator": {
"type":"nmvel ",

"expression": "custoner"

}
oA
"nane":"item d",
"eval uator": {
"type":"nmvel ",
"expression":"item d"
}
}H

},
"java:org.sw tchyard. qui ckstarts. denps. orders. O der Ack": {
"contexts":[{
"type": " Conversation",
"eval uat or": {
"type":"nvel ",
"expression":"orderld"

}
H
"properties":[{
"nanme":"custoner",
"eval uator": {
"type":"nvel ",
"expression":"custoner"
}
oA
"nane":"total ",

"eval uat or": {
"type" : n m/el " ,

13

Chapter 3. Reporting Activity...

"expression":"total "

}H
iE
"{urn:sw tchyard-qui ckstart-denp: orders: 1. 0} nekePaynent " : {
"properties":[{
"nane": "custoner",
"eval uat or": {
"type":"xpath",
"expression":"paynent/cust oner"

}
oA
"nanme": "anmount ",
"eval uator": {
"type":"xpath",
"expression":"paynment/anount"
}
}H

},
"{urn:sw tchyard-qui ckstart-
deno: orders: 1. 0} makePaynment Response" : {
"properties":[{
"nane": "custoner",
"eval uator": {
"type":"xpath",
"expression":"recei pt/custoner"

}
oA
"nanme": "anmount ",
"eval uator": {
"type":"xpath",
"expression":"recei pt/anount"
}
}H

H
"java:org.sw tchyard. qui ckstarts. denps. orders. Recei pt": {
"properties":[{
"name": "cust onmer ",
"eval uat or": {
"type":"nvel ",
"expression":"custoner"

}
oA
"nane": "anmount ",
"eval uator": {
"type":"nvel ",
"expression”:"anount"
}
}H

14

Information Processor

H

"java:org.sw tchyard. qui ckstarts. denps. orders. |t enNot FoundExcepti on": {
"script":{
"type":"nvel ",
"expression':"activity.fault =
\ "1t emNot Found\ " "

}H

This example illustrates the configuration of a single Information Processor with the top level
elements:

Field Description

name The name of the Information Processor.

version The version of the Information Processor.

If multiple versions of the same named
Information Processor are installed, only the
newest version will be used. Versions can be
expressed using three schemes:

Numeric - i.e. simply define the version as a
number

Dot Format - i.e. 1.5.1.Final

Any alpha, numeric and symbols.

typeProcesors The map of type processors - one per type,
with the type name being the map key.

When comparing versions, for example when determining whether a newly deployed Information
Processor has a higher version than an existing one with the same name, then initially the versions
will be compared as numeric values. If either are not numeric, then they will be compared using
dot format, with each field being compared first as numeric values, and if not based on lexical
comparison. If both fields don’t have a dot, then they will just be compared lexically.

Type Processor

The type processor element is associated with a particular information type (i.e. as its key). The
fields associated with this component are:

Description
contexts The list of context evaluators.
properties The list of property evaluators.

15

Chapter 3. Reporting Activity...

Field Description

script An optional script evaluator that is used to do
any other processing that may be required,
such as setting additional properties in the
activity event that are not necessarily derived
from message content information.

transformer An optional transformer that determines how
this information type will be represented
within an activity event.

Context Evaluator
The fields associated with the Context Evaluator component are:

Field Description

type The context type, e.g. Conversation,
Endpoint, Message or Link. These types are
explained below.

timeframe The number of milliseconds associated with
a Link context type. If not specified, then
the context is assumed to represent the
destination of the link, so the source of the
link must define the timeframe.

header The optional header name. If not defined,
then the expression will be applied to the
information content to obtain the context

value.

expression The expression evaluator used to derived the
context value. See further down for details.

The context types represent different ways in which the activity events can be related to each other
or to a logical grouping (e.g. business transaction). Not all activity events need to be associated
directly with a global business transaction id. They can be indirectly associated based on transitive
correlation - e.g. activity 1 is associated with the global business transaction id, activity 2 is
associated with activity 1 by a message context type, and activity 3 is associated with activity 2
based on an endpoint correlation id. All three activity events will be collectively correlated to the
business transaction id.

An explanation of the different context types is,

Context Type Explanation

Conversation A conversation identifier can be used to
correlate activity events to a business

16

Information Processor

Context Type Explanation

Endpoint

transaction associated with a globally unique
identifer (e.g. an order id).

A globally unique identifier associated with
one endpoint in a business transaction. For
example, a process instance id associated
with the business process executing within
a service playing a particular role in the
business transaction.

Message

The globally unique identify of a message
being sent from one party to another.

Link

A temporal link between a source and
destination activity. The temporal nature of
the association is intended to enable non-
globally unique details to be used to correlate
activities, where the id is considered unique
within the defined timeframe.

Property Evaluator

The fields associated with the Property Evaluator component are:

Field Description

name

header

expression

Expression Evaluator

The property hame being initialized.

The optional header name. If not defined,
then the expression will be applied to the
information content to obtain the property
value.

The expression evaluator used to derive the
property value. See further down for details.

In the context and property evaluator components, they reference an expression evaluator that is
used to derive their value. The expression evaluator has the following fields:

Field Description

type The type of expression evaluator to use.
Currently only support mvel or xpath.

expression The expression to evaluate.

optional Optional field that indicates whether the value
being extracted by the expression is optional.
The default is false. If a value is not optional,

Chapter 3. Reporting Activity...

Field Description

but the expression fails to locate a value, then

an error will be reported
These expressions operate on the information being processed, to return a string value to be
applied to the appropriate context or property.

Script

The script field of the Type Processor has the following fields:

Field Description

type The type of script evaluator to use. Currently
only support mvel.

expression The expression to evaluate.

The MVEL script evaluator is supplied two variables for its use:

« information - The information being processed
* activity - The activity event

An example of how this script can be used is shown in the example above, associated with the
ItemNotFoundException. In this case, the message on the wire does not carry the fault name, so
the information processor is used to set the fault field on the activity event.

Transformer

The transformer field of the Type Processor has the following fields:

Description

type The type of transformer to use. Currently
support serialize and mvel.

The serialize transformer does not take any other properties. It simply attempts to convert the
representation of the information into a textual form for inclusion in the activity event. So this
transformer type can be used where the complete information content is required.

The mvel transformer takes the following additional fields:

The MVEL transformer script is supplied the following variable for its use:

Description

expression The mvel expression to transform the
supplied information.

The MVEL transformer is supplied the following variable for its use:

18

Information Processor

« information - The information being processed

For example, to include the content of the submitOrder message:

"typeProcessors": {
"{urn:sw tchyard- qui ckstart-deno: orders: 1. 0} submi t Order": {

"transformer": {
"type":"serialize"

H

3.1.2.2. Registering the Information Processors

JEE Container

The Information Processors are deployed within the JEE container as a WAR file with the following
structure:

| -cl asses

| | -ip.json

| | - <cust om cl asses/resour ces>
I

I

-lib
| -i p-1oader-jee.jar
| -<addi tional |ibraries>

The i p. j son file contains the JSON representation of the Information Processor configuration.
The i p-1 oader - j ee. j ar acts as a bootstrapper to load and register the Information Processors.

If custom classes are defined, then the associated classes and resources can be defined in the
VEB- | NF/ cl asses folder or within additional libraries located in the WEB- | NF/ | i b folder.

A maven pom.xml that will create this structure is:

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http://
www. W3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0.0 http://
maven. apache. or g/ maven-v4_0_0. xsd" >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>
<groupld>....</groupld>

19

Chapter 3. Reporting Activity...

<artifactld>. ...</artifactld>
<version>....</version>
<packagi ng>war </ packagi ng>
<nane>. ... </ nane>

<properties>
<rtgov.version>....</rtgov.version>
</ properties>

<dependenci es>
<dependency>
<groupl d>or g. overl ord. rtgov. acti vi t y- managenment </

gr oupl d>
<artifactld>activity</artifactld>
<versi on>${rtgov. version}</version>
<scope>pr ovi ded</ scope>
</ dependency>
<dependency>
<groupl d>or g. overl ord. rtgov. acti vi t y- managenent </
groupl d>

<artifactld>i p-1oader-jee</artifactld>
<versi on>${rtgov. versi on}</versi on>
</ dependency>

</ dependenci es>

</ pr oj ect >

If deploying in JBoss Application Server, then the following fragment also needs to be included,
to define the dependency on the core Overlord Runtime Governance modules:

<bui | d>
<final Name>. ... </fi nal Nane>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-war-pl ugi n</artifactld>
<confi gurati on>
<f ai | OnM ssi ng\WebXni >f al se</
fail OnM ssi ngWebXm >
<ar chi ve>
<mani f est Entri es>

<Dependenci es>depl oynent . over| or d-rt gov. war </ Dependenci es>
</ mani fest Entri es>
</ ar chi ve>
</ confi guration>
</ pl ugi n>
</ pl ugi ns>

20

Activity Validation

</ bui | d>

3.1.3. Activity Validation

The Activity Validator mechanism provides the means to install event processing capabilities within
the activity collection environment (i.e. co-located with the execution of the business transaction).

The main reason for performing analysis of the activity events at this stage in the runtime
governance lifecycle is to enable the analysis to potential block the business transaction. For an
example of such a case, please see the synchronous policy sample.

In some execution environments these validators can be implicitly called as part of collecting the
activity events. However in some environments these validators need to be explicitly invoked,
as they impact the execution behaviour. The SwitchYard environment is an example of this later
environment, where an auditor needs to be explicitly included within the SwitchYard application,
which is responsible for invoking the validation capability and reacting to any issues it detects. To
see how to configure such an auditor, please see the synchronous policy sample.

3.1.3.1. Defining the Activity Validators

The Activity Validator can be defined as an object model or specified as a JSON representation
for packaging in a suitable form, and subsequently de-serialized when deployed to the governed
execution environment.

The following is an example of the JSON representation of a list of Activity Validators. This
particular example is from the synchronous policy sample:

[{
"nanme" "RestrictUsage",
"version" : "1",
"predicate" : {
"@l ass" : "org.overlord.rtgov. ep. nvel . WELPr edi cat e",
"expression" : "event instanceof

org.overlord.rtgov. activity. nodel . soa. Request Recei ved && event. servi ceType
== \"{urn:sw tchyard-qui ckstart-deno: orders: 0. 1. 0} Or der Service\""

H

"event Processor" : {
"@l ass" : "org.overlord.rtgov. ep. nvel . WELEvent Processor",
"script" : "VerifylLastUsage. nmvel ",
"services" : {
"CacheManager" : {
"@l ass"
"org.overlord. rtgov. common. i nfini span. servi ce. | nfi ni spanCacheManager"
}
}

1

21

Chapter 3. Reporting Activity...

This example illustrates the configuration of a single Activity Validator with the top level elements:

Field Description

name The name of the Activity Validator.

version The version of the Activity Validator. If
multiple versions of the same named Activity
Validator are installed, only the newest
version will be used. Versions can be
expressed using three schemes:

Numeric - i.e. simply define the version as a
number

Dot Format - i.e. 1.5.1.Final

Any alpha, numeric and symbols.

predicate The optional implementation of the
org.overlord.rtgov. ep. Predi cate
interface, used to determine if the activity
event is relevant and therefore should be
supplied to the event processor

eventProcessor The implementation of the
org.overlord.rtgov. ep. Event Processor
interface, that is used to analyse the activity
event

When comparing versions, for example when determining whether a newly deployed Activity
Validator has a higher version than an existing one with the same name, then initially the versions
will be compared as numeric values. If either are not numeric, then they will be compared using
dot format, with each field being compared first as numeric values, and if not based on lexical
comparison. If both fields don't have a dot, then they will just be compared lexically.

3.1.3.2. Registering the Activity Validators

JEE Container

The Activity Validators are deployed within the JEE container as a WAR file with the following
structure:

22

Activity Validation

[| -av.json

| | - <cust om cl asses/ r esour ces>
I

I

| -av-1 oader-jee.jar
| -<addi tional |ibraries>

The av. j son file contains the JSON representation of the Activity Validator configuration.
The av- | oader -j ee. j ar acts as a bootstrapper to load and register the Activity Validators.

If custom classes are defined, then the associated classes and resources can be defined in the
WEB- | NF/ cl asses folder or within additional libraries located in the WEB- | NF/ | i b folder.

A maven pom.xml that will create this structure is:

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xml ns: xsi ="http://
www. W3. or g/ 2001/ XMLSchema- i nst ance"

xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0.0 http://
maven. apache. or g/ maven-v4_0_0. xsd" >

<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<groupl d>....</groupld>

<artifactld>. ...</artifactld>

<versijon>....</version>

<packagi ng>war </ packagi ng>

<nane>. ... </ nanme>

<properties>
<rtgov.version>....</rtgov.version>
</ properties>

<dependenci es>
<dependency>
<groupl d>or g. overl ord. rtgov. acti vi t y- managenment </

gr oupl d>
<artifactld>activity</artifactld>
<versi on>${rtgov. versi on} </ versi on>
<scope>pr ovi ded</ scope>
</ dependency>
<dependency>
<gr oupl d>org. overl ord. rtgov. acti vi t y- managenent </
groupl d>

<artifactld>av-|oader-jee</artifactld>
<versi on>${rtgov. versi on}</versi on>
</ dependency>

</ dependenci es>

</ proj ect >

23

Chapter 3. Reporting Activity...

If deploying in JBoss Application Server, then the following fragment also needs to be included,
to define the dependency on the core Overlord Runtime Governance modules:

<bui | d>
<final Name>. . .. </ fi nal Name>
<pl ugi ns>
<pl ugi n>

<artifactld>maven-war-pl ugi n</artifactld>
<confi gurati on>
<fai |l OnM ssi ngWebXm >f al se</
fail OnM ssi ng\WebXm >
<ar chi ve>
<mani f est Entri es>

<Dependenci es>depl oynent . over| ord-rt gov. war </ Dependenci es>
</ mani fest Entri es>
</ ar chi ve>
</ configuration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

3.2. Reporting and Querying Activity Events via REST

This section explains how activity information can be reported to, and queried from, the Activity
Server via a RESTful service.

3.2.1. Reporting Activity Information

POST request to URL: <host >/ overl ord-rtgov/activity/store
The service uses basic authentication, with the default username adni n and password over | or d.

The request contains the list of ActivityUnit objects encoded in JSON. (See
org.overlord.rtgov.activity.nodel.ActivityUnit class within the APl documentation, as
the root component of this configuration). For example,

[{
"id":"Testldl",

"activityTypes":[{
"type": " Request Sent ",
"context":[{

"val ue": " 12345"
A

"val ue":"abc123",

"type": " Endpoint"
A

24

Querying Activity Events using an Expression

"val ue": " ABC123",
"type":"Message"
H
"content":"....",
"serviceType":"{http://service}OderService",
"operation":"buy",
"fault":"M/Faul t",
"messageType": "{http://nmessage} O der Request ",
"tinestanp": 1347028592880
A
"type": " ResponseRecei ved",
"context":[{
"val ue": "12345"
A
"val ue": " ABCl124",
"type": " Message"
H
“content":"....",
"serviceType":"{http://service}O derService",
"operation":"buy",
"fault": " Qut OF St ock",
"messageType": "{http://nessage} Qut O St ock",
"repl yTol d": " ABC123",
"timestanp": 1347028593010
H
"origin":{
"host": " Sat urn",
"principal":"Fred",
"node": " Saturnl",
"thread": " Thread- 1"

3.2.2. Querying Activity Events using an Expression

POST request to URL: <host >/ over | ord-rtgov/activity/query
The service uses basic authentication, with the default username adni n and password over | or d.

The request contains the JSON encoding of the Query Specification (see API documentation for
+org.overlord.rtgov.activity.server.QuerySpec+) which has the following properties:

Property Description

fromTimestamp Optionally specifies the start date/time for the
activity units required. If not specified, then
the query will apply to activity units from the
first one recorded.

25

Chapter 3. Reporting Activity...

Property Description

toTimestamp Optionally specifies the end date/time for the
activity units required. If not specified, then
the query will relate up to the most recently
recorded activity units.

expression An optional expression that can be used to
specify the activity events of interest.

format Optionally specifies the format of the
expression. The value must be supported
by the configured activity store. The only
supported format currently is "jpgl" (Java
Persistence Query Language).

The response contains a list of ActivityType objects encoded in JISON, which would be similar in
form to the example shown above when recording a list of activity units. (See APl documentation
fororg. overlord.rtgov. activity. model . Acti vityType).

3.2.3. Retrieving an Activity Unit

GET request to URL: <host >/ overl ord-rtgov/activity/unit?id=<unitld>
The service uses basic authentication, with the default username adni n and password over | or d.

The <unitld> represents the identifier ~ associated with the ActivityUnit
that is being retrieved encoded in JSON. (See APl documentation for

org.overlord.rtgov.activity. nodel . ActivityUnit).

3.2.4. Retrieve Activity Events associated with a Context Value

GET request to URL: <host >/ overl ord-rtgov/activity/events?
t ype=<cont ext Type>&val ue=<i dentifier>

The service uses basic authentication, with the default username adni n and password over | or d.

The <contextType> represents the context type, e.g. Conversation, Endpoint, Message or
Link. This is explained in the Information Processor section of this chapter, or see the API
documentation for or g. over |l ord. rtgov. acti vity. nodel . Cont ext . Type.

The <identifier> represents the correlation value associated with the ActivityType(s) that are being
retrieved.

Two additional optional query parameters can be provided, st art being the start timestamp, and
end for the end timestamp. These parameters can be used to scope the time period of the query.

The response is a list of Activity Type objects (see
org.overlord.rtgov. activity. nodel . ActivityType in the APl documentation) encoded in
JSON.

26

Chapter 4.

Chapter 4. Analyzing Events

4.1. Configuring an Event Processor Network

An Event Processor Network is a mechanism for processing a stream of events through a network
of linked nodes established to perform specific filtering, transformation and/or analysis tasks.

4.1.1. Defining the Network

The network can be defined as an object model or specified as a JSON representation for
packaging in a suitable form, and subsequently de-serialized when deployed to the runtime
governance server.

The following is an example of the JSON representation of an Event Processor Network. This
particular example defines the "out of the box" EPN installed with the distribution:

"nane" : "Overl ord- RTGov- EPN',

"version" : "1.0.0.Final",

"subscriptions" : [{
"nodeNane" : "SOAEvents",
"subject" : "ActivityUnits"

"nodeNane" : "ServiceDefinitions",
"subject" : "ActivityUnits"

"nodeNane" : "SituationsStore",
"subj ect" : "Situations"

Pl
"nodes" : [
{
"nane" : "SOAEvents",
"sourceNodes" : [1,
"destinationSubjects" : ["SOAEvents"],
"maxRetries" : 3,
"retrylnterval" : O,
"event Processor" : {
"@l ass"
"org.overlord. rtgov. content.epn. SOAActi vi tyTypeEvent Splitter"
b
"predicate" : null,
"notifications" : []
oA
"nane" : "ServiceDefinitions",
"sourceNodes" : [1,

27

Chapter 4. Analyzing Events

"destinationSubjects" : [1,
"maxRetries" : 3,
"retrylnterval" : O
"event Processor" : {
"@l ass"
"org.overlord. rtgov. content.epn. Servi ceDefinitionProcessor"
b
"predicate" : null,
"notifications" : [{
"type" : "Results",
"subject” : "ServiceDefinitions"
bl
oA
"nane" : "Servi ceResponseTi nes",
"sour ceNodes" : ["ServiceDefinitions"],
"destinationSubjects" : ["ServiceResponseTi nes"],
"maxRetries" : 3,
"retrylnterval" : O,
"event Processor” : {
"@l ass"
"org.overlord. rtgov. content.epn. Servi ceResponseTi neProcessor"
H
"predicate" : null,
"notifications" : [{
"type" : "Results",
"subj ect" : "Servi ceResponseTi nes"
bl
oA
"nane" "SituationsStore",
"maxRetries" : 3,
"retrylnterval" : O
"event Processor" : {
"@l ass" : "org.overlord.rtgov. ep.|pa. JPAEvent Processor",
"entityManager" : "overlord-rtgov-epn-non-jta"
}

Another example of a network, used within one of the quickstarts is:

{

"name" : "AssessCreditPolicyEPN',

"version" : "1",

"subscriptions" : [{
"nodeNane" : "AssessCredit",
"subj ect” : "SOAEvents"

Pl

"nodes" : [

28

Defining the Network

{

"name" : "AssessCredit"”,

"sour ceNodes" : [],

"destinationSubjects" : [],

"maxRetries" : 3,

"retrylnterval" : O,

"predicate" : {
"@l ass" : "org.overlord.rtgov.ep. mvel . WELPr edi cat e",
"expression" : "event.serviceProvider &% !event.request

&& event. serviceType == \"{urn: sw tchyard-qui ckstart -
deno: orders: 0. 1. 0} Order Service\""

iE

"event Processor" : {
"@lass" : "org.overlord.rtgov.ep.nvel . WELEvent Processor",
"script" : "AssessCredit.nmvel",
"services" : {

"CacheManager" : {
"@l ass"
"org.overlord. rtgov. common. i nfi ni span. servi ce. | nfi ni spanCacheManager"
}

}

}

}

This example illustrates the configuration of a service associate with the event processor, as well
as a predicate.

The top level elements of this descriptior are:

Field Description

name The name of the network.

subscriptions The list of subscriptions associated with the
network, discussed below.

nodes The nodes that form the connected graph
within the network, discussed below.

version The version of the network. Versions can be
expressed using three schemes:

Numeric - i.e. simply define the version as a
number

Dot Format - i.e. 1.5.1.Final Any alpha,
numeric and symbols

When comparing versions, for example when determining whether a newly deployed EPN has
a higher version than an existing network with the same name, then initially the versions will

29

Chapter 4. Analyzing Events

be compared as numeric values. If either are not numeric, then they will be compared using
dot format, with each field being compared first as numeric values, and if not based on lexical
comparison. If both fields don’t have a dot, then they will just be compared lexically.

4.1.1.1. Subscription

The subscription element is used to define a subject that the network is interested in, and the
name of the node to which the events from that subject should be routed.

This decoupled subscription approach enables multiple networks to register their interest in events
from the same subject. Equally multiple nodes within the same network could subscribe to the

same subject.
The fields associated with this component are:

Field

Description

Subject

The subject to subscribe to.

nodeName

The name of the node within the network to
route the events to.

Reserved subjects

This is a list of the subjects that are reserved for Overlord’s use:

Subject Purpose
ActivityUnits This subject is used to
publish events of the type
org.overlord.rtgov. activity. nodel . Acti v
produced when activity information is
recorded with the Activity Server.
4.1.1.2. Node

This element is used to define a particular node in the graph that forms the network, and has the

following fields:

Field

Description

name

The name of the node.

sourceNodes

A list of node names that represent the
source nodes, within the same network, that
this node receives its events from. Therefore,
if this list is empty, it means that the node

is a root hode and should be the target of a
subscription.

destinationSubjects

A list of inter-EPN subjects to publish any
resulting events to. Note: these subjects are
only of relevance to other networks.

ityUnit,

Defining the Network

Field Description

maxRetries

retryinterval

eventProcessor

The maximum number of times an event
should be retried, following a failure, before
giving up on the event.

The delay that should occur between retry
attempts - may only be supported in some
environments.

Defines the details for the event processor
implementation being used. At a minimum,
the value for this field should define a @class
property to specify the Java class name for
the event process implementation to use.
Another general field that can be configured
is the map of services that can be used

by the event processor. Depending upon
which implementation is selected, the other
fields within the value will apply to the event
processor implementation.

predicate

This field is optional, but if specified will
define a predicate implementation. As with
the event processor, it must at a minimum
define a @class field that specifies the Java
class name for the implementation, with
any additional fields be used to initialize the
predicate implementation.

notifications

A list of notifications. A notification entry

will define its type (explained below) and

the notification subject upon which the
information should be published. Unlike the
destinationSubjects described above, which
are subjects for inter-EPN communication,
these notification subjects are the mechanism
for distribution information out of the EPN
capability, for presentation to end-users
through various means.

Notify Types

The notify types field defines what type of notifications should be emitted from a node when
processing an event. The notifications are the mechanism used by potentially interested
applications to observe what information each node is processing, and the results they produce.

The possible values for this field are:

31

Chapter 4. Analyzing Events

Field Description

Processed This type indicates that a notification should
be created when an event is considered
suitable for processing by the node. An event
is suitable either if no predicate is defined, or
if the predicate indicates the event is valid.

Results This type indicates that a notification should
be created for any information produced as
the result of the event processor processing
the event.

Tip

Notifications are the mechanism for making information processed by the Event
Processor Network accessible by interested parties. If a notity type(s) is not defined
for a node, then it will only be used for internal processing, potentially supplying
the processed event to other nodes in the network (or other networks if destination
subject(s) are specified).

4.1.2. Registering the Network

4.1.2.1. JEE Container

The Event Processor Network is deployed within the JEE container as a WAR file with the following
structure:

warfile

META- | NF
| - beans. xmn

VEB- | NF
| -cl asses
| | -epn.json
| | - <cust om cl asses/ r esour ces>
I
I

-lib
| -epn- | oader-j ee.jar
| -<additional libraries>

The epn. j son file contains the JSON representation of the EPN configuration.

The epn-1oader-jee.jar acts as a bootstrapper to load and register the Event Processor
Network.

32

Registering the Network

If custom predicates and/or event processors are defined, then the associated classes and
resources can be defined in the WEB- | NF/ cl asses folder or within additional libraries located in
the VEB- | NF/ | i b folder.

A maven pom.xml that will create this structure is:

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http://
www. W3. or g/ 2001/ XMLSchema- i nst ance"

xsi : schemaLocati on="http:// maven. apache. org/ POM 4. 0.0 http://
maven. apache. or g/ maven-v4_0_0. xsd" >

<nodel Ver si on>4. 0. 0</ nodel Ver si on>

<groupl d>....</groupld>

<artifactld>. ...</artifactld>

<version>....</version>

<packagi ng>war </ packagi ng>

<nane>. ... </ name>

<properties>
<rtgov.version>....</rtgov.version>
</ properties>

<dependenci es>
<dependency>
<groupl d>or g. overl ord. rt gov. event - pr ocessor -
net wor k</ gr oupl d>
<artifactld>epn-core</artifactld>
<versi on>${rtgov. versi on}</versi on>
<scope>pr ovi ded</ scope>
</ dependency>
<dependency>
<gr oupl d>or g. overl ord. rt gov. event - processor -
net wor k</ gr oupl d>
<artifactld>epn-|oader-jee</artifactld>
<versi on>${rt gov. versi on} </ ver si on>
</ dependency>

</ dependenci es>
</ pr oj ect >

If deploying in JBoss Application Server, then the following fragment also needs to be included,
to define the dependency on the core Overlord Runtime Governance modules:

<bui | d>
<fi nal Nanme>sl| anoni t or - epn</ f i nal Nane>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-war-pl ugi n</artifactld>

33

Chapter 4. Analyzing Events

<confi gurati on>
<fai |l OnM ssi ngWebXm >f al se</
fail OnM ssi ngWebXm >
<ar chi ve>
<mani f est Entri es>

<Dependenci es>depl oynent . over| or d-rt gov. war </ Dependenci es>
</ mani fest Entri es>
</ ar chi ve>
</ confi guration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

4.1.3. Supporting Multiple Versions

Event Processor Networks define a version number that can be used to keep track of the evolution
of changes in a network.

When a network is deployed to a container, and used to process events, a newer version of
the network can be deployed along side the existing version to ensure there is continuity in the
processing of the event stream. New events presented to the network will be processed by the
most recent version, while events still being processed by a particular version of the network, will
continue to be processed by the same version - thus ensuring that changes to the internal structure
of the network do not impact events that are mid-way through being processed by the network.

The management features, discussed later in the User Guide, can be used to determine when an
older version of the network last processed an event - and therefore when an older version has
been inactive for a suitable amount of time, it can be unregistered.

4.2. Event Processors

Although custom event processors can be defined, there are some "out of the box"
implementations. These are discussed in the following sub-sections.

4.2.1. Drools Event Processor

The Drools Event Processor implementation
(org. overlord. rtgov. ep. drool s. Drool sEvent Processor) enables events to be processed by
a Complex Event Processing (CEP) rule. This implementation defines the following additional
fields:

Description

ruleName The name of the rule, used to locate the rule
definition in a file called "<ruleName>.drl".

An example of such a rule is:

34

Drools Event Processor

i mport org.overlord.rtgov. activity.nodel.soa. Request Recei ved
import org.overlord.rtgov. activity.nodel.soa. ResponseSent

gl obal org.overlord.rtgov. ep. EPCont ext epc

decl are Request Recei ved
@ol e(event)

@i nmestanp(tinestanp)

@xpi res(2n20s)
end

decl are ResponseSent
@ol e(event)

@i mestanp(tinestanp)

@xpi res(2n20s)
end

rule "correl ate request and response"

when

$req : Request Received($id :

nmessageld) from entry-point "Purchasing"

$resp : ResponseSent(replyTold == $id, this after[0,2n20s] $req) from

entry-poi nt "Purchasing"
t hen

epc. | ogl nf o(" REQUEST: "

+$r eq+" RESPONSE:

"+$r esp) ;

java. util.Properties props=new java.util.Properties();
$req. get Messagel d());
$resp. get Messagel d()) ;

props. put ("request|d",
props. put ("responsel d*,

| ong responseTi ne=$r esp. get Ti nest anp() - $r eq. get Ti nest anp() ;

epc. | ogDebug(" CORRELATI

ONon id "'"+$id+""

props. put ("responseTi ne", responseTi ne);

epc. handl e(props) ;

end

response tine "+responseTi ne);

This is an example of a rule used to correlate request and response events. When a correlation is
found, then a ResponseTime object is created and "forwarded" to the Event Processor Network
for further processing using the handle method.

The source of the events into the rule are named entry points, where the name relates to the
source node or subject that supplies the events.

The rule has access to external capabilities through the EPContext, which is defined in the
statements:

35

Chapter 4. Analyzing Events

gl obal org. overlord.rtgov. ep. EPCont ext epc

which is used at the end of the above example to handle the result of the event processing (i.e.
to forward a derived event back into the network).

If an error occurs, that requires the event to be retried (within the Event Processor Network), or
the business transaction blocked (when used as a synchronous policy), then the rule can either
throw an exception or return the exception as the result using the handle() method.

*

4.2.2. JPA Event Processor

A JPA based Event Processor implementation
(org.overlord. rtgov. ep.jpa. JPAEvent Processor) enables events to be persisted. This
implementation defines the following additional fields:

Description

entityManager The name of the entity manager to be used.

4.2.3. Mail Event Processor

A malil based Event Processor implementation
(org.overlord. rtgov. ep. mai | . Mai | Event Processor) enables events to be transformed and
sent as an email. This implementation defines the following additional fields:

Field Description

from The from email address.
to The list of to email addresses.
subjectScript The location of the MVEL script, which may

be relative to the classpath, used to define the
email subject.

contentScript The location of the MVEL script, which may
be relative to the classpath, used to define the
email content.

contentType The optional type of the email content. By
default it will be "text/plain”.

36

MVEL Event Processor

Field Description

jndiName The optional JNDI name locating the JavaMalil
session.

4.2.4. MVEL Event Processor

A MVEL based Event Processor implementation
(org. overlord. rtgov. ep. nvel . WELEvent Processor) enables events to be processed by a
MVEL script. This implementation defines the following additional fields:

Description

script The location of the MVEL script, which may
be relative to the classpath.

The script will have access to the following variables:

Variable Description

source The name of the source node or subject upon
which the event was received.

event The event to be processed.
retriesLeft The number of retries remaining.
epc The EP context

(org. overlord. rtgov. ep. EPCont ext),
providing some utility functions for use by
the script, including the handle method for
pushing the result back into the network.

If an error occurs, that requires the event to be retried (within the Event Processor Network), or
the business transaction blocked (when used as a synchronous policy), then the script can return
the exception as the result using the handle() method.

4.2.5. Supporting Services

This section describes a set of supporting services available to some of the Event Processor
implementations. See the documentation for the specific Event Processor implementations for
information on how to access these services.

4.2.5.1. Cache Manager

Description

The purpose of the Cache Manager service is to enable event processors to store and retrieve
information in named caches.

API

37

Chapter 4. Analyzing Events

Method Description

<K,V> Map<K,V> getCache(String name) This method returns the cache associated
with the supplied name. If the cache does not
exist, then a null will be returned.

boolean lock(String cacheName, Object key) | This method locks the item, associated with
the supplied key, in the named cache.

Implementations

Infinispan

Class name: or g. over | ord. rt gov. common. i nfi ni span. servi ce. I nfi ni spanCacheManager
This class provides an implementation based on Infinispan. The properties for this class are:

Property Description

container The optional JNDI name for the infinspan
container defined in the st andal one-
full.xnl orstandal one-full-ha. xni file.

The container will be obtained in three possible ways.
(a) if the container is explicitly defined, then it will be used

(b) if the container is not defined, then a default container will be obtained from the $JB0SS_HOVE/
st andal one/ confi guration/overlord-rtgov. properties file for the infinispan.container

property.

(c) if no default container is defined, then a default cache manager will be created.

4.3. Predicates

Although custom predicates can be defined, there are some "out of the box" implementations:

4.3.1. MVEL Predicate

A MVEL based Predicate implementation (org. overlord.rtgov. ep. nvel . WELPr edi cat e)
enables events to be evaluated by a MVEL expression or script. This implementation defines the
following additional fields:

Field Description

expression The MVEL expression used to evaluate the
event.

script The location of the MVEL script, which may
be relative to the classpath.

MVEL Predicate

*

The expression or script will have access to the following variables:

Variable Description

event The event to be processed.

39

40

Chapter 5.

Chapter 5. Accessing Derived
Information

5.1. Configuring Active Collections

An Active Collection is similar to a standard collection, but with the ability to report change
notifications when items are inserted, updated or removed. The other main difference is that they
cannot be directly updated - their contents is managed by an Active Collection Source which acts
as an adapter between the collection and the originating source of the information.

This section will explain how to define an Active Collection Source and register it to indirectly
create an Active Collection.

5.1.1. Defining the Source

The source can be defined as an object model or specified as a JSON representation for packaging
in a suitable form, and subsequently de-serialized when deployed to the runtime governance
server.

The following is an example of the JSON representation that defines a list of Active Collection
Sources - so more than one source can be specified with a single configuration:

{

"@l ass"
"org.overlord. rtgov. active. col | ection. epn. EPNActi veCol | ecti onSour ce",

"nane" : "Servi ceResponseTi nes",
"type" : "List",
"itemExpiration" : O,
"maxltens" : 100,
"subj ect" : "Servi ceResponseTi nes",
"aggregationbDuration" : 1000,
"groupBy" : "serviceType + \":\" + operation + \":\" + fault",
"aggregationScript" : "AggregateServi ceResponseTi ne. nvel "

A
"@l ass"

"org.overlord.rtgov. active. col | ection. epn. EPNActi veCol | ecti onSour ce",

name "Servi ceDefinitions",
“type" : "Map",
"itemExpiration" : O,
"maxl tenms" : 100,
"subj ect" : "ServiceDefinitions",
"schedul edScript" : "TidyServiceDefinitions.nvel",
"schedul edl nterval " : 60000,
"properties" : {

"maxSnapshots" : 5

41

Chapter 5. Accessing Derived ...

iE
"mai nt enanceScri pt" : "MintainServiceDefinitions. nnel"
oA
"@l ass"
"org.overlord. rtgov. active. col | ecti on. epn. EPNActi veCol | ecti onSour ce",
"nane" : "Situations",
"type" : "List",
"itemExpiration" : 40000,
"maxltens" : O,
"subject" : "Situations",
"activeChangelLi steners” : [{
"@lass" : "org.overlord.rtgov.active.collection.jm. JMXNotifier",
"obj ect Nane" : "overlord.rtgov.services: nane=Si t uati ons",
"descriptionScript" : "SituationDescription.nvel",
"insert TypeScript" : "SituationType. nvel "
P
"derived": [{
"nane": "FilteredSituations",
"predicate": ({
"type": "MVEL",
"expression": "map =

cont ext . get Map(\ "1 gnor edSi tuati onSubj ects\"); if (map == null) { return
fal se; } return ! map. contai nsKey(subject);"
iE
"properties" : {
"active" : false

bl
A
"@l ass"
"org.overlord.rtgov. acti ve. col | ecti on. Acti veCol | ecti onSour ce",

name "l gnoredSi tuati onSubj ects",

“type" : "Map",

"l azy" : true,

"factory" : {
"@l ass"

"org.overlord. rtgov. active. col |l ection.infinispan.I|nfinispanActiveCollectionFactory",

"cache" : "lgnoredSituationSubjects"

}

A
"@l ass"

"org.overlord.rtgov. active. col |l ection. Acti veCol | ecti onSource",

nane "Principal s",
“type" : "Map",
"lazy" : true,
"visibility" : "Private",
"factory" : {
"@l ass"

"org.overlord. rtgov. active. col |l ection.infinispan.I|nfinispanActiveCollectionFactory",

42

Defining the Source

"cache"

"Principal s"

This configuration shows the definition of multiple Active Collection Sources. The top level
elements for a source, that are common to all active collection sources, are:

Field Description

@class

name

type

visibility

This attribute defines the Java
class implementing the Active
Collection Source. This class must
be directly or indirectly derived from

org.overlord.rtgov. active. col | ection. Ac

The name of the Active Collection that will be
created and associated with this source.

The type of active collection. The currently
supported values (as defined in the

org.overlord.rtgov. active. col | ection. Ac
enum are:

List (default)

Map

The visibility of active collection, i.e.
whether accessible via the remote access
mechanisms such as REST. The currently
supported values (as defined in the
org.overlord.rtgov. active. col |l ection. Ac
enum are:

Public (default)

Private

lazy

itemExpiration

maxltems

Whether active collection should be created
on startup, or lazily instantiated upon first use.
The default is false.

If not zero, then defines the number of
milliseconds until an item in the collection
should expire (i.e. be removed).

If not zero, defines the maximum number of
items that the collection should hold. If an
insertion causes the size of the collection to

43

tiveColl ectionS

tiveColl ectionT

tiveColl ectionVi

Chapter 5. Accessing Derived ...

Field Description

aggregationDuration

increase above this value, then the oldest
item should be removed.

The duration (in milliseconds) over which the
information will be aggregated.

groupBy

An expression defining the key to be used to
categorize the information being aggregated.
The expression can use properties associated
with the information being aggregated.

aggregationScript

The MVEL script to be used to aggregate the
information. An example will be shown in a
following sub-section.

scheduledInterval

scheduledScript

maintenanceScript

properties

derived

activeChangelListeners

The interval (in milliseconds) between the
invocation of the scheduled script.

The MVEL script invoked at a fixed interval to
perform routine tasks on the collection.

By default, events received by the active
collection source will be inserted into the
associated active collection. If a MVEL
maintenance script is specified, then it will
be invoked to manage the way in which the
received information will be applied to the
active collection.

A set of properties that can be access by the
various scripts.

An optional list of definitions for derived
collections that will be created with the

top level active collection, and retained
regardless of whether any users are currently
accessing them. (Normally when a derived
collection is created dynamically on demand,
once it has served its purpose, it will be
cleaned up). The definition will be explained
below.

The list of active change listeners that
should be instantiated and automatically
registered with the Active Collection. The
listeners must be derived from the Java class

org.overlord.rtgov. active. col | ection. Ab

44

stract Acti veChat

Defining the Source

Field Description

factory The optional factory for creating the
active collection, derived from the class
org.overlord. rtgov. active. col |l ection. ActiveCol | ecti onF:

The additional attributes associated with the EPNAct i veCol | ecti onSour ce implementation will
be discussed in a later section.

5.1.1.1. Scripts
Aggregation

The aggregation script is used to (as the name suggests) aggregate information being provided
by the source, before being applied to the collection. The values available to the MVEL script are:

Variable Description

events ‘ The list of events to be aggregated.

The aggregated result will be returned from the script.
Scheduled

The scheduled script is used to perform regular tasks on the active collection, independent of any
information being applied to the collection. The values available to the MVEL script are:

Variable Description
acs The active collection source.
acs.properties The properties configured for the active

collection source.

variables A map associated with the active collection
source that can be used by the scripts to
cache information.

Maintenance

The maintenance script is used to manage how new information presented to the source is applied
to the active collection. If no script is defined, then the information will be inserted by default. The
values available to the MVEL script are:

Variable Description
‘ acs ‘ The active collection source. ‘
acs.properties The properties configured for the active

collection source.

Chapter 5. Accessing Derived ...

Variable Description

key The key for the information being inserted.
May be null.

value The value for the information being inserted.

variables A map associated with the active collection
source that can be used by the scripts to
cache information.

An example script, showing how these variables can be used is:
i nt maxSnapshot s=acs. properti es. get (" maxSnapshots");
snapshots = vari abl es. get ("snapshots");

if (snapshots == null) {
snapshots = new java.util.ArrayList();
vari abl es. put ("snapshots", snapshots);

/'l Update the current snapshot
current Snapshot = vari abl es. get ("current Snapshot");

if (currentSnapshot == null) {
current Snapshot = new java. util.HashMap();

snapshot s. add(new j ava. util . HashMap(current Shapshot));
current Snapshot . cl ear ();

/'l Remove any snapshots above the nunber configured
whil e (snapshots. size() > naxSnapshots) {
snapshot = snapshots. renove(0);

/'l Merge snapshots
nmerged =
org.overlord.rtgov. anal ytics.util.ServiceDefinitionUil.nergeSnapshots(snapshots);

/1 Update existing, and renove definitions no |onger relevant
foreach (entry : acs.activeCollection) {
org.overlord.rtgov. anal ytics. servi ce. Servi ceDefinition sd=nul |

i f (nerged. contai nsKey(entry. key)) ({

acs. update(entry. key, nerged. get(entry. key));
} else {

acs.renmove(entry. key, entry.val ue);

46

Defining the Source

nmer ged. renove(entry. key) ;

/1 Add new definitions
for (key : nerged. keySet()) {
acs.insert (key, nerged.get(key));

This example shows the script accessing the Active Collection Source and its properties, as well
as accessing (and updating) the variables cache associated with the source.

5.1.1.2. Derived Active Collections

The derived element defines a list of derived active collection definitions that will be instantiated
with the active collection.

The fields associated with this component are:

Field Description

name The derived active collection’s name.

predicate The predicate that will determine what subset
of entries from the parent collection should be
available within the derived collection.

properties Properties that will be passed to the derived
active collection.

The following properties can be defined:

Property Description

active This optional property indicates whether

the derived collection should be actively
maintained (i.e. active = true), which is the
default, or whether the contents should be
determined when a query is performed. The
main reason for setting this property to false
is due to the predicate being based on volatile
information, and therefore the contents needs
to be evaluated at the time it is requested.

5.1.1.3. Active Change Listeners

The activeChangelListeners element defines a list of Active Change Listener implementations that
will be instantiated and registered with the active collection.

47

Chapter 5. Accessing Derived ...

The fields associated with this component are:

Field Description

@class The Java class that provides the
listener implementation and is
directly or indirectly derived from
org.overlord. rtgov. active. col | ection. AbstractActi veChat

The remaining attributes in the example above will be discussed in a subsequent section related
to reporting results via JMX notifications.

5.1.1.4. Factory

The factory element defines an Active Collection Factory implementation that will be used to create
the active collection.

The fields associated with this component are:

Description

@class The Java class that provides the
factory implementation and is
directly or indirectly derived from
org.overlord.rtgov. acti ve. col |l ection. Agti veCol | ecti onFe

The current list of factory implementations are defined below.
Infinispan

The fields associated with the
org.overlord.rtgov. active. col |l ection.infinispan.|nfinispanActiveCollectionFactory
component are:

Field Description

cache The name of the cache to be presented as an
Active Map.
container The optional JINDI name used to obtain the

cache container. If not defined, then the
default container will be obtained from the
infinispan.container property from over | or d-
rtgov. properties file in the $JB0OSS_HOVE/
st andal one/ confi gur ati on folder. If the
default container is not defined, then a default
cache manager will be instantiated.

48

Registering the Source

5.1.2. Registering the Source

5.1.2.1. JEE Container

The Active Collection Source is deployed within the JEE container as a WAR file with the following

structure:

| -cl asses

[| -acs.json

[| - <cust om cl asses/resour ces>
I

I

-lib
| -acs- 1| oader-jee.jar
| -<additional |ibraries>

The acs. j son file contains the JSON representation of the Active Collection Source configuration.

The acs-|oader-jee.jar acts as a bootstrapper to load and register the Active Collection

Source.

If custom active collection source and/or active change listeners are defined, then the associated
classes and resources can be defined in the VEB- | NF/ cl asses folder or within additional libraries

located in the WEB- | NF/ | i b folder.

A maven pom.xml that will create this structure is:

<proj ect xm ns="http://mven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http://

www. W3. or g/ 2001/ XMLSchema- i nst ance"

xsi : schemaLocati on="http:// maven. apache. org/ POM 4. 0.0 http://

maven. apache. or g/ maven-v4_0_0. xsd" >
<nmodel Ver si on>4. 0. 0</ nodel Ver si on>
<groupld>....</groupld>
<artifactld>. ...</artifactld>
<version>....</version>
<packagi ng>war </ packagi ng>
<nane>. ... </ name>

<properties>
<rtgov.version>....</rtgov.version>

</ properties>

<dependenci es>

49

Chapter 5. Accessing Derived ...

<dependency>
<groupl d>org. overlord. rtgov. acti ve-queri es</ groupl d>
<artifactld>active-collection</artifactld>
<versi on>${rt gov. versi on} </ ver si on>
<scope>pr ovi ded</ scope>

</ dependency>

<dependency>
<groupl d>or g. overl ord. rtgov. acti ve- queri es</ groupl d>
<artifactld>acs-|oader-jee</artifactld>
<versi on>${rtgov. versi on}</versi on>

</ dependency>

</ dependenci es>

</ pr oj ect >

If deploying in JBoss Application Server, then the following fragment also needs to be included,
to define the dependency on the core Overlord rtgov modules:

<bui | d>
<final Name>. . .. </ fi nal Name>
<pl ugi ns>
<pl ugi n>

<artifact!| d>naven-war - pl ugi n</artifactl d>
<confi gurati on>
<fai | OnM ssi ng\WebXni >f al se</
fail OnM ssi ngWebXm >
<ar chi ve>
<mani f est Entri es>

<Dependenci es>depl oynent . over| or d-rt gov. war </ Dependenci es>
</ mani fest Entri es>
</ ar chi ve>
</ confi guration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

5.2. Presenting Results from an Event Processor
Network

As discussed in the preceding section, an Active Collection Source can be configured to obtain
information from an Event Processor Network, which is then placed in the associated Active
Collection. This section will explain in more detail how this can be done using the specific Active
Collection Source implementation.

50

Presenting Results from an Event Processor Network

[
{
"@l ass"
"org.overlord. rtgov. active. col | ection. epn. EPNAct i veCol | ecti onSour ce",
"nane" : "Situations",
"type" : "List",
"itenmExpiration" : 40000,
"maxltens" : O,
"subject” : "Situations",
"activeChangelisteners" : [{
"@lass" : "org.overlord.rtgov.active.collection.jm. JMXNotifier",
"obj ect Nane" : "overlord.rtgov. services: nane=Si t uati ons",
"descriptionScript" : "SituationDescription.nvel",
"insert TypeScript" : "SituationType. nvel"
P
"derived": [{
"nane": "FilteredSituations",
"predicate": {
"type": "MVEL",
"expression": "map = context.get Map(\" I gnoredSituati onSubjects
\"); if (map == null) { return false; } return ! mp.contai nsKey(subject);"
iE
"properties" : {
"active" : false
}
bl
}
]

This configuration shows an example of an Active Collection Source
using the org.overlord.rtgov. active.collection.epn. EPNActiveCol | ecti onSource
implementation. The additional fields associated with this implementation are:

Description

subject The EPN subject upon which the information
has been published.

An example Event Processor Network configuration that will publish information on the subject
(e.g. Situations) specified in the Active Collection Source configuration above is:

"nane" : " SLAMbnNi t or EPN',
"subscriptions" : [{

"nodeNane" : "SLAViol ati ons",

"subj ect" : "Servi ceResponseTi nes"
P

"nodes" : |

{

51

Chapter 5. Accessing Derived ...

name" : "SLAViol ati ons",
"sourceNodes" : [],
"destinationSubjects" : [],
"maxRetries" : 3,
"retrylnterval" : 0,
"event Processor" : {
"@lass" : "org.overlord.rtgov. ep.drools. Drool sEvent Processor ",
"rul eName" : "SLAVi ol ati on"
iE
"predicate" : null,
"notifications" : [{
"type" : "Processed",
"subject" : "SituationsProcessed"
A
"type" : "Results",
"subject” : "Situations"
bl
}
1.

"version" : "1"

5.3. Publishing Active Collection Contents as JMX
Notifications

[
{
"activeChangelLi steners" : [{
"@lass" : "org.overlord.rtgov.active.collection.jm. JMXNotifier",
"obj ect Nane" : "overl ord. sanpl e. sl anoni t or: nane=SLAVi ol ati ons",
"insert Type" : "SLAViol ation"
F1
}
]

This configuration shows the use of the JIMXNotifier active change listener implementation. This
implementation has the following additional fields:

Description

objectName The MBean (JMX) object name to be used to
report the notification.

descriptionScript The MVEL script that can be used to derive
the description field on the notification. If

52

Publishing Active Collection Contents as JMX Notifications

Field Description

insertType

not defined, then the information’s toString()
value will be used.

The type field for the notification when
performing an insert.

insertTypeScript

An optional MVEL script that can be used to
derive the type field for an insert.

updateType

updateTypeScript

The optional type field for the natification
when performing an update.

An optional MVEL script that can be used to
derive the type field for an update.

removeType

The optional type field for the notification
when performing a removal.

removeTypeScript

An optional MVEL script that can be used to
derive the type field for a remove.

The following JConsole snapshot shows this IMXNoatifier in action, reporting SLA violations from
the associated active collection:

Connection Window Help

Overview| Memory | Threads CLassesl VM Summary| MBeans |

P IMImplementation
com.sun.manadement

P java lang

P java.nio

P java.util logaing

P iboss.as
iboss as.expr

P iboss.isr77

P jboss jta

P iboss modules

P jboss.msc

P iboss.remoting.handler
iboss.ws

P net sf.ehcache

P ora.apache.camel

P ora.infinispan

P ora.switchyard.admin

P overlord rtgov.collections
overlord.rtgov.collector

P overlord rtgov.networks

~ overlord rtaov services
b @ SituationManaqer
= @ Situations

> Attributes

Notification buffer

I[Event][Sour.]

[TimeStamp I[Type][SeqNum][Messaqe
17:55:45:519 |SLA Violation | |2 |OrderService.fInventorvService exceeded maximum respons |iavax |overl
17:55:45:503 |SLA Violation | |1 |OrderService exceeded maximum response time of 400 ms |iavax ...|OverL. .

&l B

[gubscribe] [gnsubscribel

|£] pid: 6664 jboss-medules jar -mp /home/gbrown/testing/overlord/release/jbo...]

53

Chapter 5. Accessing Derived ...

5.4. Querying Active Collections via REST

The Active Collections configured within the runtime governance server can be accessed via a
REST service, by POSTing the JSON representation of a query specification to the URL: <host >/
over | ord-rtgov/acnf query

This service used basic authentication, with a default username adni n and password over | or d.

The Query Specification (see or g. overl ord. rtgov. acti ve. col | ecti on. Quer ySpec in the API
documentation) is comprised of the following information:

Attribute Description

collection The active collection name.

predicate Optional. If defined with the parent name,
then can be used to derive a child collection
that filters its parent’s content (and
notifications) based on the predicate.

parent Optional. If deriving a child collection, this
field defines the parent active collection from
which it will be derived.

maxltems Defines the maximum number of items
that should be returned in the result, or O if
unrestricted.

truncate If a maximum number of items is specified,
then this field can be used to indicate whether
the Start or End of the collection should be
truncated.

style Allows control over how the results are
returned. The value Normal means as

it appears in the collection. The value
Reversed means the order of the contents
should be reversed.

properties Map of key/value pairs, used when creating a
derived collection. Currently the only relevant
property is a boolean called active, defaults
to true, which can be used to force queries on
the derived collection to be evaluated when
information requested, in situations where the
predicate is based on volatile information.

The collection field defines the name of the collection - either an existing collection name, or if
defining the predicate and parent fields, then this field defines the name of the derived collection
to be created.

54

Pre-Defined Active Collections

The predicate field refers to a component that implements a predicate interface - the
implementation is defined based on the type field. Currently only a MVEL based implementation
exists, with a single field expression defining the predicate as a string.

For example,
{
"parent" : "ServiceResponseTi ne",
"max| tenms" : 5000,
"collection" : "OrderService",
"predicate" : {
"type" : "MEL",
"expression" : "serviceType == \"{urn: sw tchyard-qui ckstart -
deno: orders: 0.1. 0} Order Service\" && operation == \"submtOrder\""
¥
"truncate" : "End",
"style" : "Reversed"
}

If the Active Collection Manager (ACM) does not have a collection named OrderService, then it
will use the supplied defaults to create the derived collection. If the collection already exists, then
the contents will simply be returned, allowing multiple users to share the same collection.

The list of objects returned by the query will be represented in JSON.

5.5. Pre-Defined Active Collections

This section describes the list of Active Collections that are provided "out of the box".

5.5.1. ServiceResponseTimes

This active collection is a i st of org. overlord. rtgov. anal ytics. servi ce. ResponseTi ne
objects.

The response times represent an aggregation of the metrics for a particular service, operation and
response/fault, over a configured period. For more details please see the API documentation.

5.5.2. Situations

This active collection is a i st of org.overlord. rtgov. anal ytics. situation. Situation
objects.

The Situation object represents a situation of interest that has been detected within the Event
Processor Network, and needs to be highlighted to end users. For more information on this class,
please see the APl documentation.

This active collection configuration also publishes it contents via a JMX noatifier, based on the
following configuration details:

55

Chapter 5. Accessing Derived ...

[
{
A
"@l ass"
"org.overlord.rtgov. active. col | ecti on. epn. EPNActi veCol | ecti onSour ce",
"nane" "Si tuations",
"type" : "List",
"itemExpiration” : 40000,
"maxltenms" : O,
"subj ect" : "Situations",
"acti veChangelLi steners" : [{
"@lass" : "org.overlord.rtgov.active.collection.jm. JMXNotifier",
"obj ect Name" : "overlord.rtgov: nane=Si tuations",
"descriptionScript" : "SituationDescription.nvel",
"insert TypeScript" : "SituationType. nvel "
Pl
}
]

5.5.3. ServiceDefinitions

This active collection is a map of Service Type name to
org.overlord.rtgov. anal ytics. servi ce. Servi ceDefi ni ti on objects. More details on this
class can be found in the APl documentation.

An example of a service definition, represented in JSON is:

"serviceType":"{http://ww. jboss. or g/ exanpl es} Or der Ser vi ce",
"operations":[{
"nanme": "buy",
"metrics":{
"count ": 30,
"average": 1666,
"m n":500,
"max": 2500

H
"request Response": {
"metrics":{
"count": 10,
"average": 1000,
"m n": 500,
"max": 1500
H

"invocations":[{

56

ServiceDefinitions

"serviceType": "{http://ww.jboss. org/
exanpl es} Credi t AgencyServi ce",
"metrics":{
"count": 10,
"average": 500,
“mn": 250,
"max": 750
1
"operation":"checkCredit"
}H
}
"request Faul t s": [{
"faul t":" UnknownCust omer",
"metrics":{
"count": 20,
"average": 2000
"m n": 1500,
"max": 2500

}H

M

"metrics":{
"count": 30,
"average": 1666,
"m n": 500,
"max": 2500

The list of service definitions returned from this active collection, and the information they represent
(e.g. consumed services), represents a near term view of the service activity based on the
configuration details defined in the collection’s active collection source. Therefore, if (for example)
a service has not invoked one of its consumed services within the time period of interest, then its
details will not show in the service definition.

This information is simply intended to show the service activity that has occurred in the recent
history, as a means of monitoring the real-time situation to deal with emerging problems.

The duration over which the information is retained is determined by two properties in the
ServiceDefinitions active collection source configuration - the "scheduledinterval” (in milliseconds)
which dictates how often a snapshot of the current service definition information is stored, and the
"maxSnapshots” property which defines the maximum number of snapshots that should be used.
So the duration of information retained can be calculated as the scheduled interval multiplied by
the maximum number of snapshots.

57

Chapter 5. Accessing Derived ...

5.5.4. Principals

This active collection is a map of Principal name to a map of named properties. This information
is used to convey details captured (or derived) regarding a principal. A principal can represent a
user, group or organization.

58

Chapter 6.

Chapter 6. Available Services

This section describes the "out of the box" additional services that are provided.

6.1. Call Trace

The "Call Trace" service is used to return a tree structure tracing the path of a business transaction
(as a call/invocation stack) through a Service Oriented Architecture.

The URL for the service’'s REST GET request is: <host>/overlord-rtgov/call/trace/

i nst ance?t ype=<t ype>&val ue=<val ue>
The service uses basic authentication, with a default username adni n and password over | or d.

This service has the following query parameters:

Parameter Description

type The type of the identify value, e.g.
Conversation, Endpoint, Message or Link

value The identifier value, e.qg. if type is
Conversation, then the value would be a
globally unique identifier for the business
transaction

The call trace is returned as a JSON representation of the call trace object model. The top level
class is org. overlord.rtgov. cal |l .trace. nodel . Cal | Tr ace, details can be found in the API
documentation.

6.2. Report Server

The "Report Server" service is used to generate instances of a report whose definition has
previously been deployed to the server. This section will explain how to configure and deploy a
report definition, and then how to generate the report instances.

6.2.1. Creating and deploying a report definition

The first step is to specify a JSON representation of the
org.overlord.rtgov.reports. Report Definition class (see APl documentation for details).

{
"nanme" : "SLAReport",
"generator" : {
"@lass" : "org.overlord.rtgov.reports. WELReport Generator",
"scriptlLocation" : "SLAReport.nvel"
}

59

Chapter 6. Available Services

The report definition only contains the nane of the report, and the definition of the gener at or .
In this case, the org. overlord. rtgov. reports. MELReport Gener at or implementation of the
report generator has been used, which also includes a property to define the location of the report
script (e.g. SLAReport. nvel). This MVEL SLA report script can be found in the sanpl es/ sl a/
report folder.

6.2.1.1. Registering the Report
JEE Container

The Report Definition is deployed within the JEE container as a WAR file with the following
structure:

| -cl asses

[| -reports.json

| | - <cust om cl asses/ r esour ces>
I

I

-lib
| -reports-1loader-jee.jar
| -<addi tional |ibraries>

As described above, the reports.json file contains the JSON representation of the report
definition configuration.

The reports-1 oader-jee.jar acts as a bootstrapper to load and register the Report Definition.

If custom report generators or scripts are defined, then the associated classes and resources can
be defined in the WEB- I NF/ cl asses folder or within additional libraries located in the WEB- | NF/
l'i b folder.

A maven pom.xml that will create this structure is:

<proj ect xm ns="http://maven. apache. org/ POM 4. 0. 0" xm ns: xsi ="http://
www. W3. or g/ 2001/ XMLSchema- i nst ance"
xsi : schemalLocati on="http:// maven. apache. org/ POM 4. 0.0 http://
maven. apache. or g/ maven-v4_0_0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<groupl d>....</groupld>
<artifactld>. ...</artifactld>

60

Creating and deploying a report definition

<version>....</version>
<packagi ng>war </ packagi ng>
<nane>. ... </ nane>

<properties>
<rtgov.version>....</rtgov.version>
</ properties>

<dependenci es>
<dependency>
<groupl d>org. overlord. rtgov. acti vi ty-anal ysi s</

groupl d>
<artifactld>reports-|oader-jee</artifactld>
<versi on>${ proj ect . versi on} </ ver si on>
</ dependency>
<dependency>
<gr oupl d>org. overl ord. rtgov. acti vi ty-anal ysi s</
groupl d>

<artifactld>reports</artifactld>
<ver si on>${ proj ect . ver si on} </ ver si on>
<scope>t est </ scope>

</ dependency>

</ dependenci es>

</ pr oj ect >

If deploying in JBoss Application Server, then the following fragment also needs to be included,
to define the dependency on the core Overlord Runtime Governance modules:

<bui | d>
<fi nal Name>s| anoni t or - epn</ f i nal Nane>
<pl ugi ns>
<pl ugi n>
<artifactld>maven-war-pl ugi n</artifactld>
<confi gurati on>
<fai |l OnM ssi ngWebXm >f al se</
fail OnM ssi ngWebXm >
<ar chi ve>
<mani f est Entri es>

<Dependenci es>depl oynent . over| or d-rt gov. war </ Dependenci es>
</ mani fest Entri es>
</ ar chi ve>
</ confi guration>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

61

Chapter 6. Available Services

6.2.2. Generating an instance of the report

The URL for the service’'s REST GET request is: <host >/ over| ord-rt gov/report/generat e?
<par anet er s>

The service uses basic authentication, with a default username adni n and password over| or d.

This service has the following query parameters:

Parameter Description

report The name of the report to be generated. This
must match the previously deployed report
definition name.

startDay/Month/Year The optional start date for the report. If not
defined, then the report will use all activities
stored up until the end date.

endDay/Month/Year The optional end date for the report. If not
defined, then the report will use all activities
up until the current date.

timezone The optional timezone.

calendar The optional business calendar name. A
default called exists called Default which
represents a working week of Monday to
Friday, 9am to 5pm, excluding Christmas
Day.

All other query parameters that may be provided will be specific to the report definition being
generated.

The operation returns a JSON representation of the
org.overlord.rtgov.reports. nodel . Report class. See the API documentation for further
details of the object model.

6.2.3. Providing a custom Business Calendar

A custom Business Calendar can be defined as a JSON representation of the
org.overlord.rtgov.reports. node. Cal endar class (see APl documentation for details).
This should be stored in a file whose location is referenced using a property called
"calendar.<CalendarName>" in the over | ord-rt gov. properti es file.

6.3. Service Dependency

The "Service Dependency" service is used to return a service dependency graph as a SVG image.
The graph represents the invocation and usage links between services (and their operations),

62

How to customize the severity levels

and provides a color-coded indication of areas that require attention. Where situations have been
detected against services or their operations, this will be flagged on the service dependency graph
with an appropriate colour reflecting their severity.

The URL for the service's REST GET request is: <host>/overlord-rtgov/service/
dependency/ over vi ew?wi dt h=<val ue>

The service uses basic authentication, with a default username adni n and password over| ord.

This service has the following query parameters:

Parameter Description

width Represents the optional image width. If the
width is below a certain threshold, then a
summary version of the dependency graph
will be provided without text or tooltips (used
to display metrics).

6.3.1. How to customize the severity levels

The severity levels used for the graph nodes and links can be customized by creating a MVEL
script. A default script is provided within the overl ord-rtgov. war, which can be used as a
template. The script is called SeverityAnal yzer.nvel and is located within the /WEB- | NF/
cl asses folder of the over| ord-rt gov. war archive.

An example of the contents of this script is:

Severity severity=Severity. Nornal ;

if (summary !'= null && latest != null && sunmary. get Average() > 0) {
doubl e change=I at est. get Aver age()/sumrary. get Aver age() ;

if (change > 0) {

if (change > 3.0) {
severity = Severity.Critical;
} else if (change > 2.2) {
severity = Severity. Serious;
} else if (change > 1.8) {
severity = Severity. Error;
} else if (change > 1.4) {
severity = Severity.Wrning;
} else if (change > 1.2) {
severity = Severity. M nor;

return (severity);

63

Chapter 6. Available Services

The script returns a value of type
org.overlord. rtgov. servi ce. dependency. present ati on. Severity, which is automatically
available as an imported class for use by the script.

The script takes four variables:

Variable Description

summary The summary metric to be evaluated.

history The list of recent metrics, merged to produce
the summary metric.

latest The latest metric.

component The service definition component associated
with the metric. This variable is not used
within the example script above.

If a customized script is created, then its location can be specified in the
MVELSeveri tyAnal yzer. scriptLocation property in the overlord-rtgov.properties
configuration file.

6.4. Situation Manager

The "Situation Manager" service is used to determine whether situations associated with a
particular subject (i.e. service) should be displayed to users via the Situations gadget. The service
supports two operations.

The service uses basic authentication, with a default username adni n and password over | or d.

6.4.1. Ignoring situations related to a subject

The i gnor e operation is used to indicate that situations for a particular subject (i.e. generally a
service type) should not be presented to users via the REST service (and therefore the Situations
gadget).

The URL for the i gnor e operation’s POST request is: <host >/ overl ord-rtgov/situation/

manager /i gnore

This request supplies a JSON representation of the
org.overlord. rtgov. anal ytics. situation.|gnoreSubject class. See the API
documentation for more information.

The operation responds with a status message indicating whether the operation was successful.

@ Note
Currently wildcards are not supported for subjects.

64

Observing situations related to a subject

6.4.2. Observing situations related to a subject

The obser ve operation is used to essentially reverse the actions performed by a previous i gnor e
operation, to make situations for a particular subject (i.e. generally a service type) visible again to
users via the REST service (and therefore the Situations gadget).

The URL for the obser ve operation’s POST request is: <host >/ over| ord-rtgov/situation/

manager / observe

This request supplies a JSON representation of the
org.overlord.rtgov. anal ytics. situation.|gnoreSubject class. See the API
documentation for more information.

The operation responds with a status message indicating whether the operation was successful.

65

66

Chapter 7.

Chapter 7. Visualising the Runtime
Governance Information

This section describes the gadgets available for displaying runtime governance information.

7.1. Accessing the Runtime Governance Ul

Overlord RTGov uses a gadget server to display runtime governance information via a set of
configurable gadgets. These gadgets will be described in the following sections.

To access the gadget server, when the server has been started, using the url: <host >/ gadget - web

Once displayed, it will request the username and password. A default user is provided called
admin with password overlord.

When the gadget Ul is displayed the first time for a user, they will need to add a new page (by
pressing the + button) before going to the Gadget Store to select the gadgets they wish to view.

7.2. Response Time

The Response Time gadget shows average, minimum and maximum summary metrics from the
service operations invoked over a period of time.

* Response Time Lo -
@ Average OMin @ Wax

200

400

300

200

100

Fesponse Time (sec)

.ﬂ_..--'--...‘.ﬂ...-l-...b_.

10

Humber

67

Chapter 7. Visualising the Ru...

The gadget configuration can be used to select a particular service to display. It is also possible to
customize the gadget further to display only the metrics from a particular operation on that service.

7.3. Situations

The Situations gadget displays "situations of interest" that have been raised during the processing
of the activity events.

* Situation Tl - 3

Lpdated Time ; 2013-6-11 10:38:19

Type Severity Description Time Details
SLA Critical Ordersenvice exceeded maximum 2013-6-11

Violation response time of 400 ms 10:37:54

SLA Critical InventorySemnvice exceeded maximum 2013-6-11

Violation response time of 400 ms 10:37:54

SLA Hiakh Ordersenice exceeded response fime of 2013-6-11

Violation d 320ms 10:37:43

In this particular case, the situations are highlighting Service Level Agreement violations, but event
processors can create situations to reflect any area of concern that needs to be bought to the
attention of users.

The details column provides a button to expand the row to show the details regarding a situation.

7.4. Call Trace

The Call Trace gadget provides the means to display the invocation flow of a particular business
transaction instance.

68

Service Overview

~ Call Trace

Call Trace
Tree

= @ submitOrder:{urn:switchya...[47 ms](100%)
= (@ lookupltem:{urn:switchyar...[L0ms](55%)
- [Information: Found the it.. [4ms]{100%)

Details

dO R

=8 &2 deliver:{urn:switchyard-g...[8ms](44%)

[Information: Delivering t.. [3ms](100%)

The business transaction is identifed by entering its globally unique identifier in the gadget's

configuration.

7.5. Service Overview

The Service Overview gadget provides a graphical representation of the dependencies
(invocation/usage) between services. When displayed as part of a group of gadgets, the
representation does not contain any text - simply showing the status of each service (and link)
as a color (green being normal).

69

Chapter 7. Visualising the Ru...

* Service Overview - ‘

If the gadget is enlarged, further details are included, such as the service and operation names,
aswell as metrics being available by hovering over the item of interest.

* Service Overview

Generated: Fri Jun 07 09:12:49 BEST 2013

lookupltem
Count 14

Aug 7O
Iin &
Max 518

When a situation is reported against a particular service or operation, a red dot will be displayed
on that component which can be used to view some of the situations (if multiple - for a full list,
the user should see the Situations gadget).

70

Chapter 8.

Chapter 8. Managing The
Infrastructure

8.1. Managing the Activity Collector

The Activity Collector mechanism is responsible for collecting activity event information from within
a particular execution environment and reporting it as efficiently as possible to the Activity Server.

This section explains how different Activity Collector implementations may be administered.

8.1.1. Activity Collector

Object Name: overlord.rtgov.collector:name=ActivityCollector

The activity collector has the following configuration properties:

Property Description

CollectionEnabled A boolean property that can be used to
enable or disable activity collection within the
server.

8.1.2. Activity Logger

Object Name: overlord.rtgov.collector:name=ActivityLogger

This component uses a batching capability to enable the information to be sent to the Activity
Server as efficiently as possible. This mechanism has the following configuration properties:

Property Description

MaxUnitCount The maximum number of activity units that
should be batched before sending the group
to the Activity Server.

MaxTimelnterval The maximum amount of time (in
milliseconds) before sending the batch of
events to the server.

The maximum number of items takes precedence, so if it is reached before the defined interval,
then the events will be sent to the server.

If the collector is running within a JEE environment, then these properties can be set via a IMX,
e.g. using the JConsole:

71

Chapter 8. Managing The Infra...

Connection Window Help

Overview| Memory | Threads Classesl VM Summary| |MBean5‘| =l=

P IMImplementation Attribute values

b com.sun.management [Name][VaLue]
iava lana

P iava nio MaxTimelnterval 500

P iava util loaaina MaxUnitCount 1000
jboss.as PendingActivitylnits [v]

P iboss.as.expr

b iboss isr77

P iboss jta

P iboss modules
P iboss.msc
iboss . remoting.handler
P iboss.ws
P net.sf.ehcache
P ora.apache.camel
P ora.switchyard.admin
~ overlord rtaov.collections
@ CollectionManager
P @ Service Definitions
P @ serviceResponseTim
b @ Situations
~ overlord rtqov.collector
= @ Activity Collector
P Attributes

v @ ActivityLogger
- E—

P overlord rtgov.networks

~ overlord rtaov.services
b @ situationManaqer
P @ Situations

(e D)

[Iﬁl pid: 6664 jboss-modules jar -mp /home/gbrown/testing/overlord/release/jbo l

The component also provides a read-only property:

Property Description

PendingActivityUnits This value indicates how many logger
messages are waiting to be sent to the
server. This can be used to guage how busy
the collector is, and whether it is getting
backed up.

8.2. Managing the Event Processor Networks

There are two aspects to managing the Event Processor Network mechanism, the manager
component and the networks themselves. This section will outline the management capabilities
associated with both.

8.2.1. Event Processor Network Manager

Object Name: overlord.rtgov.networks:name=EPNManager

The Event Processor Network Manager is the component responsible for registering and
initializing the Event Processor Networks within a containing environment.

If supported, the manager’s attributes and notifications can be exposed via JMX. Currently the
attributes that are available:

72

Event Processor Networks

Attribute Description

NumberOfNetworks This attribute defines the number of networks
registered in the manager.

8.2.2. Event Processor Networks

Object Name: overlord.rtgov.networks:name=<name>,version=<version>

When a network is registered, if within a JEE environment, it will also be registered as a managed
bean, and therefore available via JIMX. Each network provides the following attributes:

Attribute Description

LastAccessed When the network was last used to process
an event. This can be used to determine
when it is safe to remove/unregister a

network.
Name The name of the network.
Version The version of the network.

For example, using the JConsole:

Connection Window Help

Overview| Memory | Threads CLaSSESl VM Sumrnary| MBeans | ==

P IMImplementation rAttribute values

b com.sun.management [Name][VaLue]
java lang

P java nio LastAccessed ThuJan 01 01:00:00 GMT 1970

P iava util logaing Name SLAMonitorEPN
jboss .as Version 1

P iboss.as.expr

P iboss isr77

P iboss jta

P iboss modules
P iboss.msc
iboss remoting.handler
P iboss.ws
P net.sf.ehcache
P ora.apache.camel
P ora switchyard admin
P overlord rtgov.collections
P overlord rtaov.collector
~ overlord rtaov.networks
P AssessCreditPolicvEPN
b @ EPNManager
P Overlord-RTGov-EPN

¥ SLAMonitorEPN
v @ q

P overlord.rtaov.services

(el [

[Iél pid: 6664 jboss-modules jar -mp /home/gbrown/testing/overlord/release/jbo ... l

73

Chapter 8. Managing The Infra...

8.3. Managing the Active Collections

There are two aspects to managing the Active Collections mechanism, the manager component
and the collections themselves. This section will outline the management capabilities associated
with both.

8.3.1. Active Collection Manager

Object Name: overlord.rtgov.collections:name=CollectionManager

The Active Collection Manager is the component responsible for registering and initializing the
Active Collection Sources within a containing environment.

If supported, the manager’s attributes and notifications can be exposed via JMX. Currently the
attributes that are available:

Attribute Description

HouseKeepinginterval The number of milliseconds between each
house keeping cycle. The house keeping
refers to removing items from collections

if they are either expired, or the maximum
number of elements in the collection has been
reached.

8.3.2. Active Collections

Object Name: overlord.rtgov.collections:name=<ActiveCollectionSourceName>

When a source is registered resulting in an Active Collection being created, if within a JEE
environment, the Active Collection will also be registered as a managed bean, and therefore
available via JMX. Each collection provides the following attributes:

Attribute Description

HighWaterMark If the number of items in the collection
reaches this value, then a warning will be
issued. If zero, then does not apply.

ItemExpiration The number of milliseconds before an item
in the collection should be removed. If zero,
then does not apply.

Maxltems The maximum number of items that should be
in the collection. If zero, then does not apply.

Name The name of the Active Collection.

Size The number of items in the collection.

For example, using the JConsole:

Active Collections

Connection Window Help

Overviewl Memory I Threads Classesl VM Summary MBeans =
P IMImplementation rAttribute values
com.sun.management [Name][VaLue]
P java lana -
b java.nio HighWaterMark [+]
P java.util loaaing ItemExpiration 40000
iboss.as Max ltems 0
P iboss.as.expr Name Situations
P iboss.isr77 Size 0
P iboss jta

P iboss modules
P iboss.msc
iboss . remoting.handler
P iboss.ws
P net.sf.ehcache
P ora.apache.camel
P ora.switchyard.admin
~ overlord rtaov.collections
¥ @ CollectionManaaer |-
b Attributes
P Notifications
¥ @ Service Definitions
P Attributes
¥ @ ServiceResponseTim
P Attributes
¥ @ Situations
P Attributes
P overlord rtgov.collector
P overlord.rtaov.networks
P overlord rtgov.services

[@ pid: 6664 jboss-modules jar -mp /home/gbrown/testing/overlord/release/jbo

75

76

	Runtime Governance: User Guide
	Table of Contents
	Chapter 1. Overview
	Chapter 2. Installation
	2.1. JBoss Application Server (or JBoss EAP)
	2.1.1. Install
	2.1.2. Configuration
	2.1.2.1. Users
	2.1.2.2. Properties
	2.1.2.3. Database
	2.1.2.4. Caching

	2.1.3. Uninstall

	Chapter 3. Reporting Activity Information
	3.1. Integrated Activity Collector
	3.1.1. Supported Environments
	3.1.2. Information Processor
	3.1.2.1. Defining the Information Processors
	3.1.2.2. Registering the Information Processors

	3.1.3. Activity Validation
	3.1.3.1. Defining the Activity Validators
	3.1.3.2. Registering the Activity Validators

	3.2. Reporting and Querying Activity Events via REST
	3.2.1. Reporting Activity Information
	3.2.2. Querying Activity Events using an Expression
	3.2.3. Retrieving an Activity Unit
	3.2.4. Retrieve Activity Events associated with a Context Value

	Chapter 4. Analyzing Events
	4.1. Configuring an Event Processor Network
	4.1.1. Defining the Network
	4.1.1.1. Subscription
	4.1.1.2. Node

	4.1.2. Registering the Network
	4.1.2.1. JEE Container

	4.1.3. Supporting Multiple Versions

	4.2. Event Processors
	4.2.1. Drools Event Processor
	4.2.2. JPA Event Processor
	4.2.3. Mail Event Processor
	4.2.4. MVEL Event Processor
	4.2.5. Supporting Services
	4.2.5.1. Cache Manager

	4.3. Predicates
	4.3.1. MVEL Predicate

	Chapter 5. Accessing Derived Information
	5.1. Configuring Active Collections
	5.1.1. Defining the Source
	5.1.1.1. Scripts
	5.1.1.2. Derived Active Collections
	5.1.1.3. Active Change Listeners
	5.1.1.4. Factory

	5.1.2. Registering the Source
	5.1.2.1. JEE Container

	5.2. Presenting Results from an Event Processor Network
	5.3. Publishing Active Collection Contents as JMX Notifications
	5.4. Querying Active Collections via REST
	5.5. Pre-Defined Active Collections
	5.5.1. ServiceResponseTimes
	5.5.2. Situations
	5.5.3. ServiceDefinitions
	5.5.4. Principals

	Chapter 6. Available Services
	6.1. Call Trace
	6.2. Report Server
	6.2.1. Creating and deploying a report definition
	6.2.1.1. Registering the Report

	6.2.2. Generating an instance of the report
	6.2.3. Providing a custom Business Calendar

	6.3. Service Dependency
	6.3.1. How to customize the severity levels

	6.4. Situation Manager
	6.4.1. Ignoring situations related to a subject
	6.4.2. Observing situations related to a subject

	Chapter 7. Visualising the Runtime Governance Information
	7.1. Accessing the Runtime Governance UI
	7.2. Response Time
	7.3. Situations
	7.4. Call Trace
	7.5. Service Overview

	Chapter 8. Managing The Infrastructure
	8.1. Managing the Activity Collector
	8.1.1. Activity Collector
	8.1.2. Activity Logger

	8.2. Managing the Event Processor Networks
	8.2.1. Event Processor Network Manager
	8.2.2. Event Processor Networks

	8.3. Managing the Active Collections
	8.3.1. Active Collection Manager
	8.3.2. Active Collections

