JBoss Development Process Guide

2004, Ivelin lvanov, Ryan Campbell, Pushkala lyer, Clebert Suconic, Mark Little, Andrig
Miller, Alex Pinkin

Table of Contents

(= =0 2RSSR Vii
L OVEBIVIBW oeeiiie ettt e ettt e e e e e e ettt et e e e e e s s st et eeeeeaee e e e e snttteeeeaeeeeaantaaeeeeeaeeeeaannraaeeeeaeeeeannnrrres 1
I S =0t (o | (0 o PP PP PPPRPP 1

1.2. JEMSiINtegration MIlESIONESceciiieiiiiiiiiiei e e e e s e e e e e e e et e e e e e e e s e e eatraaeeeeeas 2

2. Productizing Stepsin the Overall REIEESE PrOCESSccuviiiiiiiiiiieiiiiee et 4
P2 I R = T o o | (01U o [PPSR 6
2.2.11. Turning aProject into @PrOQUCTccuueiiiiiiiie e 6
2.2.1. |. Product Road Map Creation and MaintenanCecccceeeeeeeeeee e, 10

2.2.1.1. Questions for Constructing the Road Mapccoviiciiiiiiiieee e 11

2.2.1.2. Project road map CheCKIiS:cuviiiiiiiee e 12

2.2.2. 1. Reference DOCUMENEELIONuvieeiiiiiieeeiiiieeesiiiee e siieee e s st e e e s nneee e e s snbeeeessnsaeeeeans 12

2.2.2.1. Project reference documentation Checklist:ccoveiiiiiiiiiiiiiec e 13

2.2.3. 1. ON-liNE EAUCALTIONeiiiiiiiiieiiiiiie ettt e ee e e e e e st e e e s e e e anneeeesnnsaeeeeans 14

2.2.3.1. Project on-line education Checklist:coooiiiieiiiiiiicie e 14

224 1V. Traning MaterialSccooeeeeieii 15

2.2.4.1. Training materials Checklist:ooooiiiiiiiii e 15

R T PR SUPRRSRRRRR 16

2.2.6. V. QUEAIITY ASSUIAINCE ...eeeieeeiiiiiiiiee et e e e s e ettt e e e e e e e ettt e e e e e e e s s et b b eeeeeaeessasnsnrareeeaaeesaans 17

2.2.6.1. Quality assurance CNECKIIS:oveiiiiiiie e 17

2.2.7. V1. Development and Management TOOIINGccooeeeeiiiiiii e, 19

2.2.7.1. Development to0ling CheCKIiSt:ooiiiiiiiiiie e 20

2.2.8. VIl. Releasethe stable or final rel@aseoooviiiiiiiii e 20

2.2.8.1. REIEASE ChECKITSE: ...ttt 21

2.3 APPENAIX A ot e e e e e e e e e R e e e e e R e e e e e s e e e nannreeeaas 22
2.3.1. Key Contacts for the Productizing PrOCESSccceeiiiiiiiiiieiiee ettt 22

3. IBOSS ISSUE TTACKINGeeeeeeeieeee ettt e et e e e st e e et e e e st e e e e anbnn e e e ennnee s 24
I I @ = 11 o = W 1= Y ()= o 24

3.2. Creating REIEASE NOLESccoiiiiiiieiiiii ettt e et e e s b e e e et e e e s nnbneeeeans 24
3.2.1. Adding 1SSUES O REIEESE NOLESeeeiiiiieieiiciieiee et e e e e eeeeeeeeeas 24

3.2.2. Generating REIEASE NOLES ... e 25

TG T £ 1= PP 25

G T 0t I I/ o= PP 25

0 T2]] 1= PR 25

3.3.3. EStimateS and DUE DELEScoo ittt e e e e eeeeeas 26

3.3.4. AffECtS ChECKIIOXESeeiiieei it e e e r e e e e e e 26

3.4. Managing ContaiNer PrOJECESuuieiiiiie ettt e e e e et e e e e e e e e s e e e e e e e e e e ennnneees 26

3.5. Project Source Repository and BUIldScceuviiiiiie et 27

0T I L= (= RSER 27

3.7. Dependency Tracking With JIRAveiiiiie e e e e e e e e e s e e anreees 27
TN] o [= = = RS 28
@Y= VL= VLY=o [O] 0= o £ 28

4.2. COMPONENE BUIT ... e et e e e e e s 28
4.2.1. Component Info ElementS REFEIENCEoeviiiiiiiiiiei e 28

4.2.2. Component Definition Elements REFEFENCEcooveeiiiiiiiiiiiiiiee e 29

JBoss 2004, Ivelin Ivanov, Ryan

JBoss Development Process Guide

B.2.2. 8. e et e b et e e e e R et e e e e nb et e e e ar e e e e e nnrreeas 29

4.3. How to Synchronize @and BUIldoeieiiiiiiiiiiiiee e 30

4.4. Tutorial: Anatomy of aComponent BUildooovvviiiiiiiiiiiiiieceeeeeeeeeeeeeeeee e 30
441 TOP LEVE BUITA ...ttt e e as 30

4.4.2. Component LEVEl BUITAooiiiieeiiie e 32

4.4.2.1. DEfiNiNG @an ArtifaClcoiiiiiii e 36

4.4.3. Placing an Artifact INthe REIGESEccooiiiiiiii e 37

4.5. How to Add a Component t0 the REPOSITONYeveiiieeiiiiiiiiieiie et 37

5. CVS ACCESS FOr JBOSS SOUICES ...uuvvvvrerieeeeiiiaititeeeteeesssassttteeesseeessasasstsseeeeaeesssassssssserasesssassssnnneeeeessanns 40
5.1.Understanding CVSo 40

5.2. OBtAINING 8 CV S CIENTeiiiiiiiiii ettt e e s b e e e anbe e e e s anbreeeeans 40

5.3. ANONYMOUS CV S ACCESS ... oiiiieiee e e e e e e e e e e e e e e e 40

5.4. Committer ACCESSTO CVS AN JIRA ..ot 42

O OV S X o 0T TR = o] o SO PPRERR 44
6.1. Creating and Managing REI€ase BranChescvvvii oo 44
6.1.1. REl@aSe NUMIDEINGeeeiieiiiiiii et e e e e 44

6.1.2. Example REI€ASe SCENANOUSccooeeeieei e, 45

6.2. Creating aNew Binary REIEaSE BranChccoocuiiiiiiiiiiiiiie e 46

6.3. Checking Code into the MATN TrUNKccuiiieieie e e e 47

6.4. Checking in aPatch on aRel€ase Branchcoooiiiiiiiiiiiiiiie e 48

6.5. Checking in a Patch on aNon-JBoss CVS Module Release Branchoooovvcciiiieiiieeeniineee, 49

7. SVN ACCESS FOIr JBOSS SOUITESuvtveetiieeeiiiittiieetaaeessaaattbeeeeeeeesasababeseeeaaesssaasnbbbeeeeeaeesaansbbneeeeaaessaans 51
7.1.UNAErstanding SVIN ettt e e e e 51
7.2.0btaining an SYN CHent ... 51

7.3. ANONYIMOUS CV S ACCESS ...ceeiiiiuttiieeteee e e ettt e e e e e e s s et b bt e e e e e e e s s s bbb b e et eeeeeeaanbbbereeeaeeessannnenes 51

7.4. Committer ACCESSTO SVN AN JIRA .o e e e e e e e e 52

8. SVIN AQMINISITBLION ...eeiiiiiitiieeiiiiie ettt e e e et e e e st e e e e e aabb e e e e e sabe e e e abbb e e e e anbbe e e e s snbbeeeeannneeas 53
8.1. Creating and Managing REI€aSE BranCheseeviiiiiiiiiii e 53
8.1.1. RAIEASE NUMDBEIING ..veieiiiiiiii e e e e e e e e e e e e e 53

8.1.2. EXample REIEESE SCENAMOUScciuvveieiiiiiiee ettt e e e e nnbaeee e 54

8.2. Creating aNew Binary Release Branch ... 55

8.3. Checking Code into the MAIN TrUNKcccuuiiiiiiee e e e e 56

8.4. Creating @SErVICE PAICIcoiiiiiee ettt 56

9. COUING CONVENTIONSuuveiiieeeeeiiiiieie e e e e e e s s et e e e e e e e s saia b aeeeeeeeessaasateseeeeaeessaaasbbaseeaaeesaaansstneneeaaeesaans 59
0.1, TEIMPIELES ...ttt ek et e ookt e e e s b et e e e h et e e e e b et e e e e r e e e e e e e e e e e eans 59
9.1.1. Importing Templates into the EClIPSE IDEooooiiiiiieeee e 60

9.2. Some MOore general QUITEIINESooouuiiieiieie e 60

RGN "= (V7= Lo Lo (= or] 0 01101=: 00 = 1 o 1S3 61

10. LOGUING CONVENTIONSeeieiiiiiiiiieeiee e e e e e e ettt e e e e e e e s ettt eeeeee e e s asatabeeeeaaeessassstaaeeeeaeessaasnsssnneeeaeesaaans 65
10.1. OBLAINING BLOGGENeeeeieiiitiie ettt e e e e r e e s s e e e s anr e e e e s anrneeeens 65

0 T2 T o] g o = Y= PRSP 65

10.3. LOGA] CONFIGUIBLTIONeveieeiiiiiie ettt ettt e ettt e e et e e e st e e e s e e e e s annbr e e e s nnbneeeeans 66
10.3.1. Separating APPliCATION LOGSuuuuuuuuiuiiiiiiiiiinnnnnnnnanannnnnannnnnnsnnnnnsnsnsasnsnnnnnnnnnnns 66

10.3.2. Specifying appenders and fIlTErSoouiiii i 67

10.3.3. LOQQIiNG tO 8 SEPEIatE SEIVES ...ooeeeeiiiieiiieieee e ettt e e e e e e e et e e e e e e e e e s eeeeeaa e e e eennneees 67

10.3.4. Key JB0SS SUDSYStEM Cat@QONESuvviveiieeeeiiiiiiiieeee e e e e s eestee e e e e e e e s sinrare e e e e e e e e annnnees 69

10.3.5. Redirecting Category OULPULccoiiurrreeiiiieieesiireeeessireeessssseeeessseeeeessnreee s snnneeeeans 70

10.3.6. Using your own logdj.xml file - classloader SCopiNgcccovveevieeeiiiiciiiieieee e 70

10.3.7. Using your own logdj.propertiesfile - classloader SCoOPingcvvveevviicviiiiieeeeesiiiennee, 70

JBoss 2004, Ivelin Ivanov, Ryan

JBoss Development Process Guide

10.3.8. Using your own logdj.xml file - Log4j RepositorySelectorccceeevivciviieeeeeeeeiecnnee, 72
10.4. IDK JAVAULI.IOGOING ...eeeeieiiiiiieeiitee ettt e et e e s e e e s e e e anrne e e 74
T 0T 11 o 75
11.1. Relevant Logging FrameWOrkcooiiueiioiiiiiie ittt 76
I 0 I @ = VT Y o oo 7 76
11.1.1.1. Categories, Appenders, and LayOuLccooieiiiieiiieeeeiiiicirieeeee e e s ceviveeeee e 76

11.1.1.2. Category HIErarChYc.eeiiiiiiiiie ettt 76

11.2.2.3. Appenders and [QYOULScceeeeiiiiiiiiiiee et e s e e 78

11114, CONFIQUIBLION ..eeiiiiiiee ittt et e e e s e e e e e 78

11.1.2. HP LOQQiNg MECNANISIMuuiii s snnnsnnnnnnnnnnns 79
111,20 LOg HANAIEE ..ottt 79

I 2 oo [= T S 80

T e T oo Y £ PRSP 80

11.0.2.4. LOG FOIMELLENS ...coiieeiiiiiiiiee ettt e e e e e e s s e e e as 80

11.1.2.5. Log Levelsand ThresholdSooocviiiiiiie e 80

I 2 ST 1 1 = = o o RSP 81

2 = = o B 0 PSRRI 81
11.2.1. The Java Internationalization APlooiiiiiiiiiiiiiee e 82
11.2.2. Java Interfaces for INnternationaliZationcccueeiiiieeiiiiiiiiiiie e 82
11.2.3. SELENE LOCAIE ...eeieeiiieiee ettt et a e e b e e e nnbae e e 82
11.2.4. 1S0l8te YOUr LOCAIE DELAccceiiuriieiiiiiiiee ettt e e 83
R ST o 1] o Y SERPRR 84
11.2.6. Creating RESOUrCE BUNTIESoeiiiiiiiiiie et 85
10.2.7. EXAMPIE OF USE ..uiiiiiiii s nnnnnnnnnnnnnnnnnnnnnnnn 86

11.3. The Common Logging FrameWOTKcooiiiieieiiiiiiee i e e 87
11.3.1. Package Overview: com.arjuna.common.util.1oggingccccoevereeiiiiieee e 88
11.3.1.1. INerfate SUMIMEIYcccuiiiiiiee e e s e e e e e e e e e e e e s s e e raaeeeeas 88

11.3.1.2. ClESS SUMIMAIYeeteiieiiiiiie et e et e ettt e et e e e st e e et e e e s asn e e e e annneeeeennes 88

I Tt O I o | = o o Y P 89

11.3.1.4. Setup Of LOG SUDSYSIEM ...ooiiiiiiiieiiteiee ettt 89

11.3.2. GEING SEAMEA ...eeeeieeiiie ettt e e e e e e et e e e sne e e e e annneaeeeansaeeeeans 90

11.4. Default File LEVE LOGUING ...vvvreririeeiiiiiiiiiiee e e e e e s e ettt e e e e e e s sttt e e e e e e e s s snntaaeeaaaeesssnnnssrnneeaens 91
S (U o RS OUPRRSRRPRI 91

11.5. FINE-GraiNed LOGGING ...ccooiiviiieeieee e e e ettt e e e e e s s et e e e e e e s e sttt e e e e e e e e e s ssnbarereeaeesssanntrraneeaeas 91
TS = V= PR 91
L1152, USBOE ..uveiiieeiiiiie ettt e ittt e e ettt e e e ettt e e e ettt e e e e na e e e e s te e e e e e nn e e e e e annre e e e e nnraeeeeans 92

12, JBOSS TESE SUITE ...uuetiiiiiieee e s i ettt et e e e e e e ettt ettt e e e e e s ettt e e e e e e e e s e sataeaeeeeaaeesaansntaaneeeaeeesannssnnnnnaaaeenanns 9
12.1. HOW TO RUN the JBOSS TESESUITEceiiieeiieiieieeeee et e e e e e e e sttt ee e e e e e e st e e e e e e e e e e enneneeeeeeeas 9
1211 BUIIA JBOSS ...ttt ettt ettt e e ettt e e s sttt e e e et e e e e nnbaeeeean 9
12.1.2. Build and RUNThE TESESUITEceeeeeeiiiiiieie e e e e e 94
12.1.3. RUNNING ONE TESE AL A TIME ..eeiiieeeiiciiiiee e e e e e e e e st e e e e e e e e e nanneees 95
12.1.4. Clustering TeStS CONFIQUIBLIONccoiiuuriieiiiiiiees ittt e e e snrnee e 95
12.1.5. VIiewing the RESUILSuui s nnnnnnnnnnes 95

12.2. TESISUITE CRANGES ...t e ettt ettt e sttt e e e et e e ek et e e e abb e e e e s e nbbe e e e s nnbneeeeans 96
2t T 1= o 1 £ 96
12.2.2. FHlBS ittt b e e e b e e e abae e e e 96
G T ¥ o = R = RS 97
12.3.1. Integration With TESISUITEciiieiiiiiiiiei e e anees 97

12.4. Adding atest requiring acustom JB0OSS CONfiguIalionccueeeeiriirieenniieeeesiieeessineee e 101

JBoss 2004, Ivelin Ivanov, Ryan

JBoss Development Process Guide

12.5. Testsrequiring Deployment ArtifaCtScoeiiiiiiiiiiiiiiie e 102
12.6. JUnit for different test CONfIQUIaLIONScoiuiriiiiiiiiee et 103

12.7. EXCIUdING BAO TESES ... nsnnnnnsnnnsnnnnnnnnnnns 104

13. Support and PatCh ManagemeNtooiuieieiiiiiie et e e e et e e nneeeas 105
G 50 T 1 o [o o o PSP 105

13. 1.1, CUMUIBEIVE PEICHveiiiiiiiiie ettt e e s ee e 105

13.2.2. ONE-OFf PAICH ...eeeiiiiiee et e e e e e e e e e e e e e et nraeeeeeaeeeans 105

13.2. SUPPOIE WOTKFIOW ...eeiiieiiiiieee e e e e e s s et e e e e e e s e arrraeeeeeas 106

13.3. CUMUIALIVE PaICH PIOCESSiiiiiiieeiiiciiee ettt e e e e s e e e e e e s s nsnraneeeeas 106
13.3.1. DevelOpment PRESecccciiiiiiiii e nnnnana 106

13.3.2. QA PhaSE .ottt e e e e e e e e e e e e e e et a e e e e arraaaaaas 109

13.3.3. BN PhESE ..ttt ettt e e e e et e e e e e e anae e e e e anraeeeans 109

13.4. ONE-OFf PACN PrOCESScciuiiiiieiiiiiee ettt ettt e sttt e e s e e e e anbe e e e e snbneeeean 109
13.4.1. DevelOPMENt PhESEcoocuiiiiiiiiiie et 109

13.4.2. QA PRESE .ottt ettt e e e e e be e e e e nnreeeeaas 111

13.4.3. IBN PhaSE ... s s e e s aaaaannaannnnannnnnnannnnnnnnnnnas 112

13.5. Support Patch INStructionS TEMPIALEuuin e anannnns 112

13.6. How To QA aOne-Off SUPPOIt PatChcoiiiiiiiiiiiiee e 113

13.7. How To QA aCumulative PatChl ... nnnnnnns 114

14, WEEKIY SEALIUS REPOIS ...oeeiiiiiiiiieiie e e e e ettt e e e e s e e e e e e e et e e e e e e e s s s tn bbb e e eeaeessaannsnbenneeaeeesaans 115
15. Documentation and the DOCUMENEELiON PIOCESSc.vuviiiiiiiiieiiiiee et 116
15.1. JBOSS DOCUMENTALIONeiiiiiiiieeiiiiiee e sttt e e ettt e e sttt e e e st e e e s st e e e s snbre e e e snsabeeeeannbeeeesnnsneeeeans 116

15.2. Producing and Maintaining Quality DOCUMENEALIONuvveeiiirrieeiiiieee e e 116
15.2.1. RESPONSIDIHITIESuueiiic s s nnnnnnnnnnnnnnnnnnns 116

15.2.1.1. TR PrOAUCE TEAMeeiieiiiiiie ettt et e et e e 116

15.2.1.2. The documentation tEAIMooiiciiiiiieeee e e e e e e e e e e e e e e eeeneeeeeeeas 117

15.2.2. Product dOCUMENTALION FEVIBWceeiiiiiieeiiiiiieeiiiee e e et ee et e st ee e s e e s s snaneeeean 117

15.2.3. Keep the documentation UP-tO-0aLEoocuerieeiiiiiie e 117

15.2.4. ArticleS @NA DOOKScoeiiiiiiieiiiiiie ettt et e e e e e e e e ee e e snnneeeean 119

15.2.5. Authoring JBoss Documentation using DOCBOOKeeeeiiiiiiieiiiiiieeiiieee s 119

TN 2 10T @ = o T o /=SS 120
16.1. QUICK SEAIT GUITE .. .uuuiiiiiiiiei bbb s s s a s s asasssnsasasssnsasnnnsssnsnnnsnnns 120

16.2. LA SELUD -eveeeeiiuiiiieeeitiiie e e ettt e e e ettt e e e ettt e e e estee e e e s se e e e e e nste e e e e s be e e e e annteeeeannnaeaeeannaeeeennnneeeeans 120
20 T I o o oo | P UOPPRPPR 120

16.2.2. FI@ SYSIEIM ..ottt et e et e e e e st e e e e ste e e e e e st e e e e e neeaeeennnneeaeans 120

16.2.3. DBIADASESccvveeee ettt n e e e e e b e e e et e e e e anre e e e e anreeeeaas 121

I S Y 121

16.3. QA LA FAQ ittt ettt e e e ettt e e et e e e e e e e e nt et e e e e nr e e e e annnaeeeeannaeeeennnneeeeans 123

17. PrOjeCt REIEESE PrOCEAUIESuvveiiieiei ittt ettt e e e e e et e e e e e e e s s san bbb e e e e e e e s s asntnbaneeeaeeesans 124
17.1. TagQiNG SEANOAITSeeeeeiiiiiieeiiie ettt e e et e e s et e e e e e e e e annn e e e s annneeeen 124

17.2. IBOSSVErsioning CONVENTIONSccccuriiiiiieeeeiiciiiieee e e e e e e ss sttt re e e e e e e s s ssntr e e eeaeesssanssraeeeeeas 124
17.2.1. Current Qualifier Conventions (Post 2006-03-01)ccuveeriiirreeeiiireeeenieeeessieeeeens 124

17.2.2. PraCliCES ..eeeeiiuiiiieeeeiiiee ettt et e ettt e e e ettt e e ettt e e e e st e e e e ante e e e e e nsneeeeannbeeeeeannneeeeans 125

17.2.3. Legacy Qualifier Conventions (Pre 2006-03-01)ccccuvreeriiuireeeiiireeeeniiieeessieeeeens 125

17.3. IBOSS NaMIiNG CONVENLIONSuuuuiiiiiiii s aaaaannnsasnsnnannsnsnsasnsnnnsnsnsnnnssnnnnsnsnnns 126
17.3.1. Naming of BUild AFtIfaCtSooviiiiiiiiieec e 126

17.3.2. Jar ManifeSt HEAOEN'Scvvveieiiiiiie ettt e e e e e e e snnaaeeeans 126

17.4. Pre-ReEI@ASE ChECKIISEeiiiiiiie ettt e e e e e n 127

17.5. QA REIEESE PrOCESScce ittt it e ettt e e e e e ettt e e e e e e s s st eeaaeeesesasntsteeeeaeeessanssraneeeens 127

Campbell, Pushkala lyer, Clebert Su-

JBoss Development Process Guide

17.6. REIEASE NOLESveiiiiiiiiiee ettt ettt e sttt e e sttt e e e st e e e st e e e s nbbe e e e snnbaeeesnnnneeeeans 128

18, SEITAIIZALION ..ottt e e e e e e e e e e e e e et b et e ae e e e e ettt araaaeeeeannnrrarrraaeeeaaans 129
18.1. Performance Consideration - Use EXternalizationccccooiuiiiiiiiee i 129

18.2. Version COMPELIDITITYoueeieiiiiiie e 130
18.2.1. In Externalizable ODJECLS ... e 130

18.2.2. Regular SErialiZationuuviiiiiie it e e e s e e e e e e 131

18.2.3. Compatible and Incompatible Changescoocieiiiiiiiiie e 131

19. How to Update the DevelOpmMENt GUITEceiiieiiiiiiiiieiee e et e e e e e e e st e e e e e e e e 132
19.1. Checking Out The GUIJE AS A PrOJECEccoiiiiiieiiiiie ettt 132

19.2. BUIlAING THE MOAUIESueii s nnsnnnsnnnnnnnnnnns 132

19.3. Request Development GUide UPUELEcoccueiiiiiiiiiieiiiiie et 133

Campbell, Pushkala lyer, Clebert Su-

Preface

JBoss does not follow to the letter any of the established development methodologies. JBoss borrows ideas, learns
from experience and continuously evolves and adapts its process to the dynamics of a largely distributed, highly
motivated, and talented team.

This document explains the background and walks through the tools and procedures that are currently used by
JBoss for project management and quality assurance.

JBoss 2004, Ivelin Ivanov, Ryan Vii

Overview

1.1. Background

The JBoss devel opment process reflects the company core values,which incorporate the spirit of open source, indi-
viduality, creativity, hard work and dedication. The commitment to technology and innovation comes first, after
which decisions can be based on business, then competition.

A typical JBoss project enjoys active support by the open source community. The ongoing collaboration within the
community, naturally validates the viability of the project and promotes practical innovation. This process leads to
awide grassroots adoption of the technology in enterprise Java applications.

While community support is the key factor for the widespread adoption of JBoss technology, there are other factors
that lead to its successful commercialization, such as return on investment (ROI) and total cost of ownership
(TOC). They require JBoss to offer products with strong brand, long term viability, and low maintenance costs.
Companies that rely on JBoss products should be able to easily hire expertise on demand or educate existing engin-
eering resources. They should also feel comfortable that the market share and lifespan of these products will protect
their investments in the long run.

The dilemma posed to the JBoss development process is how to enable a sound business model around sustainable
and supportable products, without disrupting the fast pased technology innovation. The traditional process of gath-
ering requirements from top customers, analysing, architecting, scheduling and building software does not work in
the JBoss realm. It ignores the community element and conflicts with the principle that technology comes first.

On the other hand great technology does not necessarily lend itself to commercialization directly. Professional mar-
keting research is needed to effectively determine the best shape and form to position a technology. It is frequently
placed as a building block of a broader offering targeted at identified market segments. Ideally it should be possible
to "package" technology into products on demand.

To allow harmony between business and technology, JBoss defines a simple and effective interface between the
two. Theinterface isintroduced in the form of integration milestones. At certain points of time, pre-announced well
in advance, stable versions of JBoss projects are selected, integrated, tested and benchmarked in a coordinated ef-
fort. The result is an integrated Middleware stack that is referred to as the JBoss Enterprise Middleware System
(JEMS). JEMSis not asingle product but atechnology stack that can be used for packaging marketable products.

While core JBoss projects evolve and release versions at their own pace, stable versions are regularly merged into
JEMS to fuel its continuous growth as a comprehensive platform. Mgjor JEMS versions are spaced out at about 12
months with intermediate milestones on a quarterly basis. This allows sufficient time for the industry to absorb the
new features and build a self-supporting ecosystem.

For example the JEM S 5.0 milestones were announced in December of 2004. The first milestone - JEMS 5.0 Alpha
istargeted for Q1Y 05. It will introduce a standards based POJO Container, which allows a simplified programming

JBoss 2004, Ivelin Ivanov, Ryan 1

Overview

model based on the new EJB 3 standard APIs. JBoss Cache will be one of the projects integrated in JEMS 5 Alpha.
JBossCache has three pulblic releases planned in the same timeframe - 1.2.1, 1.2.2 and 1.3. Only one of them will
be picked for integration in JEMS 5 Alpha.

The second milestone - JEMS 5.0 Beta is targeted for Q2Y 05 and will be the first attempt at a complete integration
of core JBoss projects on top of a new JBoss MicroContainer. The JEMS 5.0 Final milestone in Q3Y 05 will com-
plete the development cycle by presenting an enterprise grade middleware stack, which is certified and fully sup-
ported by JBoss and its authorized partners. Any subset of JEMS 5 could be extracted and deployed in production
environment, because its components will have been thoroughly tested to work together and perform well.

1.2. JEMS integration milestones

The JEM S milestones have minimal impact on the progress of the individual JBoss projects. Their purpose isto set
expectations for the timing of the integration phases. The process itself is controlled and executed by the QA team
in collaboration with each project development team. There are several phases in the development cycle between
JEM S milestones.

1. Feature planning. Thisis the first phase in a JEMS integration cycle and normally lasts a few weeks. It is an
open planning excersize between QA and project leads about the features that should be available in the next
JEMS version (e.g. JEMS 5.0 Alpha). During this phase each project lead proposes the version of their project
(e.g. JBoss Remoting 1.0) that should be integrated in JEM S and announces its key features. QA will have
minimal input on the feature planning, but will have a say whether or not an implementation has acceptable
quality when it is released. Cross project dependencies are identified throughout the discussion and they can
result in additional feature requests for a given project version. Idedlly the discussion ends with a commonly
agreed matrix of projects versions, features and interdependencies. Differences are normally mitigated by the
QA team but issues could escalate higher in the management chain. The QA team also sets the acceptance cri-
teria for each project version and the latest date by which the targeted project version should be handed over
for integration. If a project version is not released by this date or it does not meet the acceptance criteria, QA
has the option to drop the project version and use an older version or find another alternative to minimize the
negative impact on JEMS overall.

2. Scheduling. Based on the project release dates and interdependencies, the QA team prepares estimates for the
amount of work required for testing, benchmarking and documenting the integration between participating
projects. Next, the QA team builds out a task schedule that validates whether the planned JEMS release date
from phase one is redligtic. Individual tasks in the schedule are sized 2-4 days to alow enough level of detail
that would reveal ommissions made during the first phase. If adjustments need to be made the QA team opens
a brief discussion with the project leads to decide whether some features need to be dropped or the deadlines
can be moved out within reason.

3. Accepting project versions for integration. At this stage all agreed upon project versions are handed over to
QA for verification. Each one is examined to verify if it passes the acceptance criteria set forth early in the it-
eration. The process can take up to 2 weeks to allow for minor fixes. Acceptance criteriawill vary depending
on how close the JEMS milestone is to a production release. Earlier milestones will have less stringent re-
quirements on documentation and training material. Projects that cannot pass the verification are removed
from the JEM S milestone. In this case the QA team will find a fallback solution, which potentially includes
using an older certified version of the project in question. Dependent projects will have to readjust accord-

ingly.

JBoss 2004, Ivelin Ivanov, Ryan 2

Overview

4. Writing integration test plans. For the stack of project versions that passed the acceptance criteria, QA devel-
ops a more comrehensive suite of integration tests. It covers complex scenarios across multiple projects that
closely resemble redlistic usage patterns. Tests that fail are addressed either by the corresponding project de-
velopers or QA. It is preferable for project teams to be available on a short notice for fixing bugs and quickly
releasing minor incremental versions to be merged back in the JEMS stack. Versions contributed to JEMS at
this phase should only include fixes to issues raised or confirmed by QA. These versions should NOT be
based on the latest development code branch. In cases when bug fixes are not provided in a timely manner or
there are risks of missing the JEM S deadlines, QA has the option to find an alternative solution. This includes
reverting back to an earlier certified project version.

5. Benchmarking. After the functionality of the projectsin JEMS is confirmed, QA executes a number of bench-
marking plans. They are used to compare the performance of the new version to the previous one and also es-
tablish baseline metrics for new features that will be tested again in future versions. Limited code modification
and configuration changes can be made to tune the JEM S stack for better performance and reliability.

6. Documenting. Basic end user documentation should already be available with each project at the time its
handed over to QA. However additional documentation can be added such as integration blueprints, configur-
ation scenarios, tuning tips, performance metrics and others.

7. Caertification. When all testsuites pass and the best performance numbers are achieved within the time con-
straints, QA certifies an internal JEMS release for several main platforms (e.g. Linux/Intel, Windows/Intel).
This internal release becomes available for a limited time to interested JBoss partners who are interested to
certify on their specific platforms (e.g. HP/UX, Solaris/Sparc). Finally QA cuts off and publishes a matrix of
platforms where the JEMS versions is certified by JBoss or an authorized partner. Other certified platforms
can be added at a later point. This concludes the JEMS iteration and from this point on, various products can
be packaged and marketed based on the certified JEM S components.

JBoss 2004, Ivelin Ivanov, Ryan 3

Productizing Steps in the Overall Release Process

Title

Author

Creation Date

Status

Revision

Filename

Date Revision

February 9, 2006 0.1

February 20, 2006 0.2

February 21,2006 0.3

February 22,2006 0.4

February 28,2006 0.6

Status

Draft

Draft

Draft

Draft

Draft

Productizing Process for EMS

Andrig (Andy) Miller

February 9, 2006

Final

101

Productizing Process for EMS

Author Description

Andrig (Andy) Initia version.
Miller

Andrig (Andy) | Incorporated feed-
Miller back from Pierre
Fricke.

Andrig (Andy) | Incorporated feed-
Miller back from Shaun
Connolly.

Andrig (Andy) | Incorporated feed-
Miller back from Ryan
Campbell.

Andrig (Andy) Incorporated feed-
Miller back from Scott
Stark.

JBoss 2004, Ivelin Ivanov, Ryan

Productizing Stepsin the Overall Release Process

Date Revision Status Author Description
February 28,2006 0.8 Draft Andrig (Andy) | Incorporated feed-
Miller back from Sacha
Labourey.
March 7, 2006 0.9 Draft Andrig (Andy) | Incorporated feed-
Miller back from Ivelin
Ivanov.
March 7, 2006 0.9.1 Draft Andrig (Andy) | Incorporated feed-
Miller back from Pierre
Fricke.
March 20, 2006 0.9.9 Release Candidate Andrig (Andy) | Incorporated feed-
Miller back from Adrian
Brock, Andrew
Oliver, Manik Sur-
tani, Ben Wang, and
Ben Sabrin.
March 24,2006 1.00 Final Andrig (Andy) | Incorporated feed-
Miller back from Andy
Oliver, Rich Fried-
man, Sacha La
bourey, and Scott
Stark.
April 11, 2006 101 Final Andrig (Andy) | Incorporated
Miller Pierre's and Shaun's

web related check-
list for releasing
projects, that came
from our lessons
learned discussion
with JBoss Mes

saging.

JBoss 2004, Ivelin Ivanov, Ryan

Productizing Stepsin the Overall Release Process

2.1. 1. Background

This document will define the process to turn a release of an open source project into a revenue generating product
for JBoss, Inc. It is NOT an all encompassing document in that regard though. This document focuses only on
those aspects that are led by the development/engineering organization. It does not delve into what product man-
agement and services processes are for productizing a JBoss project. However, there are tasks described in this doc-
ument that do involve product management and services as contributors to the development process in regards to
productizing our projects.

This document will not try to dictate process within the development life-cycle of each project, but instead concen-
trate on the steps that are not directly related to development, but to product.

2.2. 1l. Turning a Project into a Product

Below is an illustration of the development life-cycle of our projects:

JBoss 2004, Ivelin Ivanov, Ryan 6

Productizing Stepsin the Overall Release Process

Code,
Test, Doc

Community
Release

Community
Feedback

Community
Testing

The above illustration is just one way to visualize the development life-cycle of a project. Certainly, it is not atrue
spiral or circle, since al of the tasks above can and do happen in parallel.

At agiven point in time, this life-cycle above stops to release something that is considered more than just a work
in-progress, but something that contains a feature set, and a level of quality that the lead developer(s) are happy
with. This is considered the “stable” release. This release is the one that we will focus on in terms of becoming a
product.

Campbell, Pushkala lyer, Clebert Su-

Productizing Stepsin the Overall Release Process

Q)

Community
Release
Community
Feedback

Community
Testing

Code,
Test,
Doc

Stable
Release!

The above illustration shows that point-in-time when a “stable” release is dropped. Normally, thisis solely decided
by the lead developer(s) based on the feature set and quality that they deem fit for the label of “stable” release. In
this transition from developing code, testing, community testing and feedback, to a stable release the process for
turning thisinto a product for JBoss, Inc. must run in parallel.

Productize

Community Release [I | Stable Release

Community & Customer Ready

In this transition from community releases to a stable release, or afina release, that isready for customer consump-
tion, the developer cannot make the decision in isolation about when that stable or final release will be. This must
be done in conjunction with al of the stakeholders identified in the following sections. If the productizing steps
have not been compl eted, yet the software is ready, it will not be officially released. We can call it arelease candid-
ate, but not stable or final until al the productizing steps, that have been agreed to, are complete.

Campbell, Pushkala lyer, Clebert Su-

Productizing Stepsin the Overall Release Process

There are seven main areas that | would like to focus on in regards to taking software that is being developed in this
life-cycle, and getting it to a point where it is ready to be released as a product.

1. Product Road Map Creation and Maintenance

a Features

b. Productizing Tasks

c. Known Bugs

d. Improvementsto Existing Features

2. Reference documentation

a APl Reference
b. Administration Guide
c. User Guide

3. On-line education

a Tralblazers
b. Demonstrations

4. Training materias

a. Internal training materias

i. Support organization
ii. System Engineers
iii. Consultants

b. Externa training materias

i. Customers

ii. Partners

5. Quality Assurance

a. Performancetesting

conic, Mark Little, Andrig Miller,

Productizing Stepsin the Overall Release Process

b. Scalability testing
c. Soak testing

d. Integration testing
e. Availability testing
f. Certification testing

6. Development Tooling

a. JBossIDE support for developers

7. Releasethe stableor final release

a Community announcements

In the following sections, the “Who Does It?" column describes roles that are played. This is not meant to dictate
that those tasks are done by non-development resources. The exception to thisis product management and services.
All other roles can be performed by the project devel opers, whether the are JBoss employees or outside contribut-
ors, if they so choose to do so. We would like the project to perform their work in as flexible a manner as possible.
What we care about is delivering a high-quality product as quickly as possible, not who specifically does the work.

2.2.1. 1. Product Road Map Creation and Maintenance

A product road map should be developed and maintained for each release of the project. It should contain at least
the following:

1. Listof planned new features for the release
2. The productizing tasks that are needed for the release
3. Addressthe high priority know bugs or issues with the previous rel ease(s)

4. Improvementsto existing features

The list of planned new features for the release should be discussed in the forums, and with developers from de-
pendent projects and with product management. The interdependencies of many of our projects makes this critical.
Feedback from our customers, in the form of surveys, support cases that are feature requests, feature requests from
the forums, etc., should all be incorporated to come up with thislist. The finalized road map should be in sync with
product management’ s product plans.

The productizing tasks that are discussed throughout this document should be incorporated into the road map. For
example, let's say that you don’t currently have a soak test, and that needs to be devel oped, tested, and executed to

conic, Mark Little, Andrig Miller,

Productizing Stepsin the Overall Release Process

complete the productizing tasks for the next release. Then you would add that to the road map, and that would turn
into JRA tasks.

Where the known bugs and issues are concerned any fixes from previous releases that have to be reconciled due to
overlapping development needs to be addressed. The road map shouldn’t necessarily address each one of those in-
dividually, but just make sure that the overall task is taken into account in the plan. Also, some of these issues may
not be bugs, but merely that code needs to be re-factored or that performance enhancements have been identified in
particular areas from either customers or our own testing, etc.

Improvements to existing features can take many forms, depending on the project. It may involve making a particu-
lar feature easier to use, it may involve making a feature easier to manage, etc.
A good example of a product road map is the following from the Portal project:

Portal 2.4 Road Map [http://wiki.jboss.org/wiki/Wiki.jsp?page=Portal_2_4Roadmap]

Some guestions that are good to ask yourself as you prepare the road map are:

2.2.1.1. Questions for Constructing the Road Map

1. What do you plan to do for this rel ease?

2. Haveyou prioritized the work?

3. Isthework specified?

4. Haveyou discussed it with others to validate the ideas?

5. Have you used feedback from your users?

6. What do you need from other projects?

7. Who uses your project? How will they be affected?

8. What do other projects want from you?

9. Doyou havetasksfor all the productizing that needs to be done?

10. Have you scheduled time for the productizing work, i.e. taken it into account, when estimating, what can be
done for arelease?

Other potential issues:

1. What do you plan to deprecate?
2. What do you plan to remove or retire?

3. Should you really be doing that in your project?

Alex Pinkin

http://wiki.jboss.org/wiki/Wiki.jsp?page=Portal_2_4Roadmap

Productizing Stepsin the Overall Release Process

4. Isthework already done elsewhere? Don't fall into the "Not Invented Here'" trap.

5. What third-party dependencies do you plan to introduce?

6. How will that third-party software be supported?

7. What isthelicense for that third-party software?

One thing that | would like to stress, is that we want to create releases of reasonable size. The product road map
shouldn’t contain every possible feature, fix, issue, etc. Use your best judgment in what can be delivered in areas-
onable amount of time and prioritize accordingly. Remember, release early and often is the goal. There are no rules

of thumb for how often releases should be made, because that is highly dependent on the project, its maturity, and
the market demands.

2.2.1.2. Project road map checklist:

Task Description Who Does It? When Is It Delivered?

Road map cresation. Define the features, fixes, Development with feed- Delivered before work
issues, productizing tasks, back from other projects, startson the release.
and improvements to be the community, custom-
made for a given release ers and product manage-

of the project. ment.
Publish road map. Post the road map on the Development. Delivered before work
jboss.org website (jboss starts on the release.

wiki is a good tool for
this), and create the JIRA
release with associated
tasks.

2.2.2. ll. Reference Documentation

Reference documentation is produced in paralel with developing the code, and should evolve through the com-
munity releases, such as Alpha, Beta and Release Candidate releases. Reference documentation is an area that we
do quite well, asillustrated by the examples below:

The JBoss 4 Application Server Guide [http://docs.jboss.com/jbossas/jbossAguide/r4/html/]

HIBERNATE - Relational Persistence for Idiomatic Java
[http://www.hibernate.org/hib_docs/v3/reference/en/html/]

JBoss Portal 2.2 Reference Guide [http://docs.jboss.com/jbportal /v2.2/reference-guide/en/htmi/]

Alex Pinkin

http://docs.jboss.com/jbossas/jboss4guide/r4/html/
http://www.hibernate.org/hib_docs/v3/reference/en/html/
http://docs.jboss.com/jbportal/v2.2/reference-guide/en/html/

Productizing Stepsin the Overall Release Process

JBoss jBPM 3.1 Workflow and BPM made practical [http://docs.jboss.com/jbpm/v3/userguide/]

TreeCache: a Tree Structured Replicated Transactional Cache
[http://docs.jboss.com/jbcache/1.2.4/TreeCache/htmi/]

JBoss Microcontainer Reference [http://docs.jboss.org/nightly/microkernel/docs/reference/en/html/]

SEAM - Contextual Components A Framework for Java EE 5
[http://docs.jboss.com/seam/reference/en/html/index.html]

JBoss EJB 3.0 Reference Documentation
[http://docs.jboss.org/e b3/app-server/reference/buil d/reference/en/html/index.html]

These examples, all go over the public API of the software at a minimum. Installation, configuration and on-going
administration, if applicable should also be covered. They are aimost al published on the docs.jboss.org site, and
they should all be accessible from there, even if they are not directly hosted there. Hibernate and Apache Tomcat
documents are examples of this. The documents should be published in HTML, for easy on-line viewing, PDF for
printing purposes, and if there are any examples, then the source code for those examples should be provided in an
archive format such as zip.

Each project will certainly have different levels of documentation that is needed, but a plan for what the minimum
for each project should be put together in conjunction with product management. Also, the documentation team,
should be involved in creating the documentation, to make it navigable, presentable, and published in the two dif-
ferent formats required. A recommended set of documentation would be:

1. API Reference

a. The APl reference should contain a definition of the public API. This public API will be backward com-
patible between minor releases. Private APIs can change between all releases, with the exception that
they need to preserve binary compatibility. Thereis a more complete statement on API stability and com-
patibility between releases in the JBoss Product Versioning Wiki.

2. Administration Guide

3. User Guides

a. The user guide should contain, if applicable, alist of unsupported or experimental features that may be
present, but are not recommended for production use.

2.2.2.1. Project reference documentation checklist:

Task Description Who Does It? When Is It Delivered?

Minimum Content Defin- Define the minimum doc- Product management and Delivered prior to the
ition. umentation set that development. first alpharelease®

JBoss 2004, Ivelin Ivanov, Ryan 13

http://docs.jboss.com/jbpm/v3/userguide/
http://docs.jboss.com/jbcache/1.2.4/TreeCache/html/
http://docs.jboss.org/nightly/microkernel/docs/reference/en/html/
http://docs.jboss.com/seam/reference/en/html/index.html
http://docs.jboss.org/ejb3/app-server/reference/build/reference/en/html/index.html

Productizing Stepsin the Overall Release Process

Task Description Who Does It? When Is It Delivered?

should be produced for
the project (e.g. API ref-
erence, administration
guide, user guide).

Documentation Creation. Creste the minimum Development and the Delivered with each re-
defined documentation documentation team. lease, and iteratively up-
set for the project. dated as the project pro-

gresses through aphas,
betas, release candidates
through to a stable re-
lease.

8This may only be applicable to new projects that haven't had a stable release yet. Of course, a project may go through a significant structural
change to warrant a change in the content definition.

Note: The definition for alpha, beta, and release candidate are in the JBoss Product Versioning Wiki page. It isun-
der the heading, “ Current Qualifier Conventions (Post 2006-03-01)". Here isthe link:

JBoss Product Versioning [http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossProductV ersioning]

2.2.3. lll. On-line Education

On-line education primarily consists of two elements. Trailblazers and demonstrations. The Trailblazers and
demonstrations should be produced in parallel with the code and should evolve through the community releases,
such as Alpha, Beta and Release Candidate releases. Examples of these are as follows:

EJB 3.0 Trailblazer [http://trailblazer.demo.jboss.com/EJB3Trail/]

JBoss Seam DVD Store Demonstration
[http://dvdstore.demo.jboss.com/home.faces;jsessionid=C1B94FC67E91765EFFBFC1DE3831E9A 8]

Overall page for Trailblazers and Demonstrations [http://www.jboss.com/docs/demos]

2.2.3.1. Project on-line education checklist:

Task Description Who Does It? When Is it Delivered?

Needs assessment for Determine whether trail- Product management and Delivered prior to the
trailblazer and demon- blazers and demos are development. first alpha release®.
stration. needed to help market the

JBoss 2004, Ivelin Ivanov, Ryan 14

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossProductVersioning
http://trailblazer.demo.jboss.com/EJB3Trail/
http://dvdstore.demo.jboss.com/home.faces;jsessionid=C1B94FC67E91765EFFBFC1DE3831E9A8
http://www.jboss.com/docs/demos

Productizing Stepsin the Overall Release Process

Task Description Who Does It? When Is It Delivered?

project, and to help with

adoption.

Trailblazer Creation. Create the minimum Development and the Delivered with each re-
defined documentation documentation team. lease, and iteratively up-
set for the project. dated as the project pro-

gresses through alphas,
betas, release candidates
through to a stable re-
lease.

Demonstration Creation. | Write an application or Development and the Delivered with each re-

record a demo of the us- documentation team. lease, and iteratively up-
age of the project, dated as the project pro-
whichever is appropriate. gresses through alphas,

betas, release candidates
through to a stable re-
lease.

8This may only be applicable to new projects that haven't had a stable release yet. Of course, a project may go through a significant structural
change to warrant a change in the content definition.

2.2.4. V. Training Materials

There are five distinct audiences for training materials. First, and foremost is our customers. This training targets
the developers and administrators that will be using our technology to develop applications and support applica-
tions respectively. Second, is the support organization. In order for them to be able to be as self-sufficient as pos-
sible, they need training. This training needs to be detailed enough that it helps them be able to troubleshoot issues
that customers have. Third is our consultants. They need the same level of training as support, in that they will not
only be helping to develop solutions in concert with our customers, but they will be the first line of support in solv-
ing development related issues (troubleshooting ability is key). Fourth is our system engineers. They need training
similar to the consultants, in that they will be in front of prospective customers, and may have to delve into technic-
al details during pre-sales activities. And fifth, is our partners. The training for our customers is what is, and will
still be, used for their training.

The training materials for developers, can certainly fill part of the training needs for support, consulting and our
partners. It will need to be augmented with training that is helpful for troubleshooting customer problems. This
training material should have instructions on where errors are logged, and typical reasons that exceptions are
thrown, etc.

2.2.4.1. Training materials checklist:

Campbell, Pushkala lyer, Clebert Su-

Productizing Stepsin the Overall Release Process

Task

Description

Who Does |t?

When Islt Delivered?

Define structure of train-
ing materials for custom-
ers.

Define the number and
types of classes that the
training materials need to
support (e.g. Beginner,
advanced, etc.).

Development with input
from services.

The definition should be
defined prior the first beta
release®

Needs assessment for
support, consulting and
sales engineers.

Develop training materi-
als.

Do a troubleshooting as-
sessment for support/
consulting, so that addi-
tional training materials,
or training sessions de-
termined. At a minimum
this should contain a
triage list for first line
support that identifies
what information needs to
be collected for problem
resolution.

Develop the identified
training materials for cus-
tomers and from the
needs assessment for sup-
port.

Development and product
management with ser-
vices.

Development and docu-
mentation team.

The needs assessment
should be complete prior
to the first release candid-
ate.

The training materials
should be deivered for
testing purposes at the
same time as the first re-
|ease candidate’.

Test training materials.

8This may only be applicable to new projects that haven't had a stable release yet. Of course, a project may go through a significant structural

Test the training materials
inarea classroom setting
to make sure that the
training materials are ac-
curate, and that the labs
actually work.

change to warrant a change in the current structure.

Brhis may have exceptions for newer technology or projects that we don’t anticipate will have significant uptake in the market on their initial

Services with feedback to
development®.

stable release. These exceptions will be made on a case-by-case basis by product management.
“The feedback should take the form of JIRA issue for the project, that would be defined as a blocking issue for a stable release.

Note: The definition for alpha, beta, and release candidate are in the JBoss Product Versioning Wiki page. It is un-

Testing of training mater-
ials should be done at the
time of the first release
candidate.

der the heading, “Current Qualifier Conventions (Post 2006-03-01)". Here isthe link:

JBoss Product V ersioning [http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossProductV ersioning]

2.2.5.

Campbell, Pushkala lyer, Clebert Su-

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossProductVersioning

Productizing Stepsin the Overall Release Process

2.2.6. V. Quality Assurance

All JEMS projects should be going through a standard quality assurance procwsl. There are five areas that need to
addressed for projects where quality assurance is concerned.

The first area is performance testing. Every JEMS product should have a performance test that measures straight
line performance of the product (single virtual user/client). The second area is scalability testing. Every JEMS
product should have a scalability test that measures performance under high concurrent usage scenarios (many vir-
tual users, clients, nodes, etc). This will be different depending on the JEMS product you are considering, but we
should be able to sustain straight line performance levels (or at least not degrade very much) with high concur-
rency. The third areais soak testing. Every JEMS product should have a soak test that demonstrates sustained high
performance with high concurrency over a long duration of time (catch issues like unintended object retention,
leaked file descriptors, garbage collection issues, etc.). This test will run for a minimum of 24 hours. The fourth
areais integration testing. All of the JEMS components that can be used in conjunction with each other for an ap-
plication that our customers may develop or deploy, should be tested under scenarios that have them work together.
The fifth areais availability testing. In this test, we should use our scalability scenarios and create fault conditions,
so that we have a system under high concurrent usage, and are able to measure the ability to have failures and con-
tinue running.

These are all important quality aspects that our customers will expect to have nailed with each and every release of
JEMS products. The testing described above is not meant to replace the existing unit test suites that each project
already executes through their build process, or is it meant to replace any performance testing that each project may
already havein place. What is described could very well leverage existing tests that projects already have.

2.2.6.1. Quality assurance checklist:

Task Description Who Does It? When Is It Delivered?

Define performance test For each JEMS project, QA and development. Complete prior to the first
scenarios. there should be a per- release candidate®.

formance test(s) scenarios

defined with a goal for

what the straight line per-

formance should be (this

could be relative to a

baseline release, or relat-

ive to a competitors num-

ber, etc.)

Define scalability test For each JEMS project, QA and development. Complete prior to the first
scenarios. there should defined what release candidate®.
constitutes high concur-
rency for that given
project, and what levels

The probable exception to thisrule is JBoss IDE, asit is adevelopment tool, and really doesn't fit the profile for these types of tests. Of course,
JBoss | DE should do some form of performance testing around Ul responsiveness and memory footprint.

conic, Mark Little, Andrig Miller,

Productizing Stepsin the Overall Release Process

Task Description Who Does It? When Is It Delivered?
of concurrency should be
the goal .
Define integration test For JEMS as a whole, QA and development. Complete prior to the first
scenarios. scenarios should be release candidate of the

Define availability test
scenarios.

Build performance test.

Build scalability test.

defined that cross all of
the integration points of
the JEMS (e.g. Applica
tion that has a web tier
that uses JSF/Seam, it has
a middle tier that uses
Stateless and Stateful ses-
sion beans, and imple-
ments a workflow
through jBPM, persists
through EJB3/Hibernate,
etc.)

For each project, and for
JEMS as a whole, test
scenarios that inject fail-
ures in a high-availability
configuration should be
defined. Fault injection
can be done through
many techniques. Some
as simple as unplug the
network cable from a sys-
tem, to some as sophistic-
ated as having an aspect
that is deployed that in-
ject exceptions into the
running application.

Develop the appropriate
test scripts to automate
the performance test.

Develop the appropriate
test scripts to automate
the scal ability test.

QA and development.

QA and development.

QA and development.

application server (this is
where most of the integ-
ration comes into play)C.

Complete prior to the first
rel ease candidate”.

Complete and ready to
execute by the time we
offer silver support.

Complete and ready to
execute by the time we
offer silver support.

Build integration test.

Develop the appropriate

QA and development.

Complete and ready to

conic, Mark Little, Andrig Miller,

Productizing Stepsin the Overall Release Process

Task Description Who Does It? When Is It Delivered?
test scripts to automate execute by the time we
the integration test. offer silver support.

Build availability test. Develop the appropriate QA and development. Complete and ready to

test scripts to automate execute by the time we
the availability tests®. offer silver support.
Execute performance test. Run the test. QA and development. Should be complete prior

to moving project to sup-
port levels above silver.

Execute scalability test. Run thetest. QA and development. Should be complete prior
to moving project to sup-
port levels above silver.

Execute soak test. Run the test. QA and development. Should be complete prior
to moving project to sup-
port levels above silver.

Execute integrationtest. | Run the test. QA and development. Should be complete prior
to moving project to sup-
port levels above silver.

Execute availability test. | Run the test. QA and development. Should be complete prior
to moving project to sup-
port levels above silver.

8This may not be needed for each and every release, as once they are developed the scenarios may not change. However, the goals of the
runtime may change with each release. Therefore, at a minimum we should evaluate the goals with each release.
Same as seven.
“Thiswill probably only have to be done when there is a new JEM S component, once it is done the first time.
dsame as seven.
®This may be manual, unlessit is identified that aspects are needed to be developed that will inject exceptions into the running application.

Note: The definition for alpha, beta, and release candidate are in the JBoss Product Versioning Wiki page. It is un-
der the heading, “ Current Qualifier Conventions (Post 2006-03-01)". Here is the link:

JBoss Product Versioning [http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossProductV ersioning]

2.2.7. V1. Development and Management Tooling

Many of the JEMS projects have development and management tooling requirements. Developersin our target cus-

Alex Pinkin

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossProductVersioning

Productizing Stepsin the Overall Release Process

tomer base, are typically not the highest skilled developersz, and certainly administrators need information and
tools to make them more productive, especialy in large deployments. Therefore, there is a need to make our plat-
form as accessible to developers and administrators as possible through appropriate tooling.

2.2.7.1. Development tooling checklist:

Task Description Who Does It? When Islt Delivered?

Define development tool | Define what developers Product management and Complete by the first al-

needs. need to be productive de- development. pharelease.
veloping against a specif-
iC project.

Develop tools. Build the tools that have Development. Complete by the time the
been defined for de- release is considered
velopers, stable?

Define management | Define what administrat- Product management and Complete by the first al-

needs. ors need to be productive development. pharelease.
managing a production
deployment.
Develop management | Build the tools, and the Development. Complete by the time the
tools. features within the project moves to support
product to expose man- levels above silver.
agement information for
administrators.

8This may or may not be a hard requirement depending on the project, and the market adoption rate. Exceptions to this should be approved by
product management.

Note: The definition for alpha, beta, and release candidate are in the JBoss Product Versioning Wiki page. It is un-
der the heading, “Current Qualifier Conventions (Post 2006-03-01)". Here is the link:

JBoss Product V ersioning [http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossProductV ersioning]

2.2.8. VIl. Release the stable or final release

Again, to reiterate what has been said already. The designation of the final release should never be done in a vacu-
um. This should be coordinated through product management. No one within JBoss should read about a release of
our software without knowing about it in advance. This allows us to coordinate al public relations activities, as

2f you have every heard the presentation given by Dave Thomas of The Pragmatic Programmers’ titled “Herding Race Horses, and Racing
Sheep” you have seen empirical evidence of the fact that most developers are either Novices or Advanced Beginners, and they are NOT compet-
ent.

Alex Pinkin

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossProductVersioning

Productizing Stepsin the Overall Release Process

well as do afinal check on whether sales and services are truly ready to go.

2.2.8.1. Release checklist:

Task

Review release content
and timing.

Review product data

sheet.

Review pressrelease.

Verify that agreed to pro-
ductizing steps are com-
plete.

Verify license conform-
ance for distribution.

Create/Update JBoss.org
product pages.

Description

Review the plan for what
will be released, in terms
of web site content, and
exactly what the timing
will be.

Review the product data
sheet with product man-
agement, to make sure
that it is accurate.

Review the press release
with product management
for accuracy of informa-
tion.

Make sure that al the
agreed and applicable
productizing steps from
sections one through five
have been compl eted.

Verify that the fina dis-
tribution conforms to the
license that it uses, and
that third-party libraries
licenses are being com-
plied to. A statement of
al licenses involved in
the distribution and what
they apply to. This should
included a source code
header check for all the
files.

Create or update the
Jooss.org product pages,
documentation, and
downloads with new re-

Who Does [t?

Product management
with development.

Product management
with development.

Development with

product management.

QA led with project man-

agement and develop-
ment.

QA led with
devel opmenta.
Development.

When Islt Delivered?

Approximately four
weeks prior to fina re-
lease.

Approximately one to
two weeks in advance of
thefinal release.

Approximately one week
in advance of the fina re-
lease.

Just before final release.

Just before final release.

On release day.

JBoss 2004, Ivelin Ivanov, Ryan

21

Productizing Stepsin the Overall Release Process

Task Description Who Does It? When Is It Delivered?
lease.
Test links on website. Test dl of the links from Development. On release day.

the new release informa-
tion, downloads, etc., to
make sure that everything
isfunctional.

Internal communication. Development informs QA Development. Onrelease day.
that the release is com-
plete, and tags the source

repository appropriately.

Announcement. Certification of the re- Development and QA Onrelease day.
lease, and communication with review from product
is made to internal stake- managementb.
holders and community

forums.
Official corporate an- Marketing collateral, PR, Product management. Determined by product
nouncement. JBoss ON, etc. management.

8This could be generated by the build process, and not necessarily have to be done manually.
Bitis important that rel ease announcements are reviewed by product management to make sure that our messaging is in sync across all commu-
nication channels.

Note: The verify license conformance task is a part of producing the final build and distribution, and is not intended
to be the time where al license issues are addressed. Issues around whether the licenses are compatible, whether
we can use the code within our projects, etc., are a part of due diligence before productizing processes begin. There
isaformal license policy in development, that will be linked to here, when it is complete.

2.3. Appendix A.

2.3.1. Key Contacts for the Productizing Process

JBoss 2004, Ivelin Ivanov, Ryan 22

Productizing Stepsin the Overall Release Process

E-Mail Address Related Mailing List

Contact Name Role

Andrig (Andy) Miller Process owner.

Ivelin Ivanov Development
ment.

Shaun Connolly Product management.

Ryan Campbell Quiality Assurance.

Norman Richards Documentation.

Damon Sicore JBoss.org website.

manage-

andy.miller@jboss.com
[mailto:Andy%20Miller
%20%3Candy.miller@jb
0SS.cOM%3E]

ivelin@jboss.com
[mailto:1velin%20lvanov
%20%3Civelin@jboss.co
m%3E]

shaun.connolly @jboss.co
m

[mailto: Shaun%20Connol
1y%20%3Cshaun.connal|
y@jboss.com%3E]

ry- ga@jboss.com
an.campbel|@jboss.com [mailto:ga@jboss.com]
[mailto:Ryan%20Campbe
119620%3Cryan.campbel|

@jboss.com%3E]

nor-
man.richards@jboss.com
[mailto:Norman.richards
@jboss.com]

damon.sicore@jboss.com
[mailto:damon.sicore@jb
0Ss.com]

Campbell, Pushkala lyer, Clebert Su-

mailto:Andy%20Miller%20%3Candy.miller@jboss.com%3E
mailto:Ivelin%20Ivanov%20%3Civelin@jboss.com%3E
mailto:Shaun%20Connolly%20%3Cshaun.connolly@jboss.com%3E
mailto:Shaun%20Connolly%20%3Cshaun.connolly@jboss.com%3E
mailto:Ryan%20Campbell%20%3Cryan.campbell@jboss.com%3E
mailto:Ryan%20Campbell%20%3Cryan.campbell@jboss.com%3E
mailto:qa@jboss.com
mailto:Norman.richards@jboss.com
mailto:Norman.richards@jboss.com
mailto:damon.sicore@jboss.com

JBoss Issue Tracking

JBoss utilizes JIRA for product lifecycle tracking. It is used during the requirements gathering, task scheduling, QA
and maintenance stages of a product lifespan.

JRA isan overall excellent issue tracking system. However as of version 3.0 Enterprise it does not offer sophistic-
ated project planning and tracking functionality such as calculating critical path, reflecting task dependencies,
resolving scheduling conflicts, and resource calendar. These shortcoming can be partially mitigated by splitting de-
velopment into short iterations (1-2 months) in order to reactively manage diviations from the base line schedule.

3.1. Creating a new Project

To begin the development of a new JBoss project, it needs to be registered in the project management system -
JRA. To do that you need to contact a JJRA Administrator [http://jira.jboss.com/jira/secure/Administrators.jspal .

Once the project is created, you will need to create a version label for the first (or next) production release. Under
this release there will be several "blocking" tasks such as requirements gathering, coding, documentation, training
material and QA. Asabest practice issues should be only closed by their original reporter.

In addition to the production release there you will need to create versions for the intermediate releases at the end
of each iteration. See the project named "README 1st - JBoss Project Template” for a starting point.

3.2. Creating Release Notes

The Release Notes for a product version are generated automatically by the Project Management System (JIRA)
and additionally edited manually when necessary.

To mazimize the value of the automatically generated Release Notes and minimize the manual work, the following
giudelines are in place:

1. Useconcise but descriptive issue names

2. Opentheright kind of issue.

3.2.1. Adding Issues to Release Notes

In order for an issue to appear in the release notes for a given version it needs to haveitsfield "Fix Version/s' set to
the given version. Usually an issue affects only one particular version and it is fixed within that version. Sometimes
however an issue affects multiple versions and it is addressed for each one of them. In the latter case the "Fix Ver-
sion/s" fields comes handy.

JBoss 2004, Ivelin Ivanov, Ryan 24

http://jira.jboss.com/jira/secure/Administrators.jspa

JBoss I ssue Tracking

3.2.2. Generating Release Notes

1. Goto the project home page. For example the Portal project [http://jirajboss.com/jira/browse/JBTPL].
2. Click on Release Notes
3. Pick theversion you are intereted in the Please Select Version: drop down menu.

4. Select whether you want HTML or Plain Text format in the Please Select Style: menu. The HTML version
provides links next to each issue in the release notes report that can be followed for more details. The Text
version places theissue ID (e.g. JBTPL-11) next to the release note, which can be also used to obtain issue de-
tails.

5. Click Create.

6. You should see something similar to this
[http://jirajboss.com/jira/secure/Rel easeNote.jspa?version=10014& styleName=Html & proj ectld=10010& Crea
te=Create].

3.3. Issues

3.3.1. Types

1. Feature Request - A new feature of the product, which has yet to be developed. Feature requests appear near
the top of release notes. Blocker and Critical priorities mark the features that are appropriate to advertise in
marketing material such as datasheets and sales presentations.

2. Patch - can be used for performance enhancements, code refactoring and other optimization related tasks for
existing functionality.

3. Bug - aproblem which impairs or prevents the functions of the product.

4. Task - should be used if none of the other categories seem appropriate.

3.3.2. Priorities

JRA offers voting mechanism that helps determine the number of people asking for a task as well as who these
people are. JBoss Project Leads consult these votes in order to schedule tasks. All other developers in a project co-
ordinate their time and tasks with the project lead. A select number of stakeholders have overriding power for task
priorities. The JBoss CTO has the highest authority on development task priorities. When there is ambiguity on
task priorities, contact your project lead or devel opment manager.

Possible priorities are:

* Blocker - An issue (bug, feature, task) that blocks development and/or testing work, production could not run.
An upcoming version that is affected by thisissue cannot be released until it's addressed.

JBoss 2004, Ivelin Ivanov, Ryan 25

http://jira.jboss.com/jira/browse/JBTPL
http://jira.jboss.com/jira/secure/ReleaseNote.jspa?version=10014&styleName=Html&projectId=10010&Create=Create

JBoss I ssue Tracking

e Critical - An upcoming version that is affected by this issue cannot be released until it's addressed. A critical
bug is one that crashes the application, causes loss of data or severe memory leak.

e Major - A request that should be considered serioudly but is not a show stopper.
e Minor - Minor loss of function, or other problem where easy workaround is present.
e Optional - The request should be considered desirable but is not an immediate necessity.

e Trivial - Cosmetic problem like misspelt words or misaligned text.

3.3.3. Estimates and Due Dates

Due dates are normally used for scheduling project versions. When entering issues, time estimates should be pre-
ferred to due dates. Issue due dates limit the project management software capability to level resources and optim-
ize scheduling.

3.3.4. Affects Checkboxes

To support the updating of release notes and documentation, the Affects field offers several flags when creating or
editing an issue.

« Documentation - This flag indicates that project documentation (e.g., a reference guide or user guide, etc) re-
quires changes resulting from this issue.
« Interactive Demo/Tutorial - Indicates an interactive demo or tutoria requires changes resulting from this issue.

« Compatibility/Configuration - Indicates that issue may affect compatibility or configuration with previous re-
leases so they can be highlighted in the rel ease notes overview section.

3.4. Managing Container Projects

Projects such as JBoss Application Server package components from several other projects such as JBoss Cache,
Tomcat, JGroups, and Hibernate. To manage the development cycles between these projects the following
guidelines apply:

1. A projects that ships as a standalone product has its own entry as a JJRA Project. Examples include JBoss
Cache, Hibernate, JBoss jBPM, etc. These projects have independent release cycles.

2. A container project such as JBoss AS that packages other projects has a IRA component for each one of
them. For example the JBoss AS project includes the following components: JTA, JCA, Web Services, Hi-
bernate service, JBoss Cache service, JBoss Web(Tomcat) service. There are two kinds of components:

a. Components for composing projects that are developed within the container and have release cycles
aligned with it (e.g. JTA, JCA)

b. Components for embedded projects that are integrated within the container, but are also offered stan-

JBoss 2004, Ivelin Ivanov, Ryan 26

JBoss I ssue Tracking

dalone (e.g. Tomcat, Hibernate). These components track the integration tasks for the embedded service
(e.g. Tomcat). Typically a release of the container is integrated with a stable version of the standalone
project. For example JBoss 4.0.1 embeds Tomcat 5.0.16.

3.5. Project Source Repository and Builds

The source code repository of a container project includes the full source for all composing components. For integ-
rated components, the source repository includes integration source code and stable binaries of the related stan-
dalone projects. Building a container from source, compiles the source code for its composing parts as well asin-
tegration code, but it does not pull in the source for standal one projects.

3.6. Testsuites

A container testsuite includes the tests for all composing components as well as the integration tests for embedded
compoenents. It does not include the tests that are part of the standal one testsuite for an integrated component. For
example JBoss AS testsuite covers the HAR deployer, but it does not include tests from the standalone Hibernate
project.

3.7. Dependency Tracking with JIRA

Container projects such as JBAS consist of components, some of which are integral to the container (such as CMP,
I10OP) and others are based on external projects (MicroContainer, JBossCache).

For each container version and each component based on external project, there should be an integration tasks cre-
ated in the container project. The task should specify which version of the external project the container component
depends on (e.g. JB AS 4.0.1 depends on JBoss Cache 1.2). Both project leads need to be aware and agree on the
dependency at the time the integration task is created.

When new issues are created against the dependent project version (JB Cache 1.2) related to the development of the
container project version (JB AS 4.0.1), they should be linked to from the integration task. Example: ht-
tp:/ljirajboss.com/jiralbrowse/ IBAS-56

If the dependent project version is released before the container project is (JB Cache released on Dec 10, while JB
AS 4.0.1isnot released until Dec 22), there should be a flexible mechanism to accomodate intermediary patches.
One option is for the dependent project to maintain a separate branch (JBCache 1 2 JBAS 4 0 1) for the contain-
er integration. Another option is for the dependent project to apply patches against its main branch and release
minor increments (JB Cache 1.2.0b).

Campbell, Pushkala lyer, Clebert Su-

Build Reference

This reference guide covers how to use the JBossBuild system.

4.1. Overview and Concepts

JBossBuild is a declarative build system. Instead of having to define each step in the build process, JBossBuild al-
lows a devel oper to declare the inputs and outputs of a build. JBossBuild then uses these definitions to dynamically
generate the Ant targets needed to implement that definition.

JBossBuild is implemented as a set of Ant types and tasks, and target definitions. The types (components, compon-
entdefs, artifacts, etc.) are declared by the developer in the build.xml. These definitions are then combined with the
targetdefs in tasks.xml (under tools/etc/jbossbuild) to produce the generated ant targets.

There are two kinds of build definitions: toplevel, and component. The toplevel builds define the components of a
release and where the artifacts of each component should be placed in the release. The component builds define
how each artifact is built, the sources of those artifacts, and any dependencies of thoses sources.

4.2. Component Build

A component build is made up of two parts: the component info (component-info.xml) and the component defini-
tion (build.xml or jbossbuild.xml). The component info is much like a declaration or manifest of the component. It
defines what the expected outputs (artifacts) of the components are. The component definition specifies how these
artifacts are built from source code.

4.2.1. Component Info Elements Reference

Table 4.1. Component

Name: component

Purpose: Declares a project component.

Attributes:

id The unique identifier for this component. This should

be the same as its directory name in the online repos-
itory and in the local directory structure.

module The CVS module the component source should be
checked out from.

JBoss 2004, Ivelin Ivanov, Ryan 28

Build Reference

version

Table4.2. Artifact

Name:

Purpose:

Attributes;

id

Table 4.3. Export

Name:

The version of the component. This version is used
when retreiving artifacts from the repository. Arti-
facts are stored in the repository under the directory
[id]/[version].

artifact

Declares an artifact (jar, war, config file) which is a
product of the component build.

The unique identifier for this artifact. The id is the
same as the name of the file. Thisid should be unique
across al componentsin a given build.

export

Purpose:

Example:

Lists the default artifacts which should be on the
classpath when this component is included by anoth-
er.

<export> <include input="jnpserver.jar"/> </export>

4.2.2. Component Definition Elements Reference

Table 4.4. Component

Name: component

Purpose: Declares a project component.

Attributes:

id The unique identifier for this component. This should
be the same as its directory name in the online repos-
itory and in the local directory structure.

module The CVS module the component source should be
checked out from.

version The version of the component. This version is used

when retreiving artifacts from the repository. Arti-
facts are stored in the repository under the directory
[id]/[version].

JBoss 2004, Ivelin Ivanov, Ryan

29

Build Reference

4.3. How to Synchronize and Build

Y ou can now partialy build jboss-head from the repository with the new build system.

Y ou probably want thisin it's own directory:

nmkdi r j boss-dir
cd jboss-dir

Then, just check out the toplevel build and the tools module:

cvs co j bossas
cvs co tools

Y ou will need to set your cvsinfo in jbossas/local .properties:

cvs. prefix=: ext:rcanpbel

Note, you will need ssh-agent setup to run cvs without entering a password for now. Now you are ready to syn-
chronize and build:

ant sychronize
ant build
out put/j boss-5. 0. Oal pha/ bi n/run.sh -c al

The synchronize target will checkout the source components from cvs and download thirdparty components from
the repository.

4.4. Tutorial: Anatomy of a Component Build

In this section, we take a component - JBoss Deployment (jboss-head/deployment) and demonstrate how to incor-
porate it into the JBossA S release. This document assumes you have checked out the AS as outlined here.

4.4.1. Top Level Build

First, we need to add the component to the toplevel build under jbossas/jbossbuild.xml. The ordering of the com-
ponents is significant; the deployement module must be placed * after* the other source components it depends on
(ie, common). The ordering of the components in the file dictates the order the components will be built. So, in this
case, we add the component element at the end of the other JBoss components, but before the thirdparty compon-
ents.

JBoss 2004, lvelin lvanov, Ryan 30

Build Reference

<l-- -->
<l -- Depl oynent S
<l-- -->

<conponent i d="depl oynent"
nodul e="j boss-depl oynent"
ver si on="5. 0- SNAPSHOT" >
</ conponent >

At this point, we know that the deployment module will come from the jboss-deployment module in cvs -- repres-
ented by the module attribute. We give it the same version as the other components in jboss-head. With this one
definition, we have several new targetsin our toplevel build:

bash-2.05b$ ant -projecthelp | grep depl oynent

al | . depl oynent Build Al for the conponent depl oynent

api . depl oynent Javadoc for the conponent depl oynment

bui | d. depl oynent Build for the conmponent depl oynent

cl ean. depl oynent Cl ean for the conmponent depl oyment

conmi t . depl oynent Conmit for the conmponent depl oynent

doc. depl oynent Docunentation for the conponent depl oynent

rebui | d. depl oynent Synchroni ze then build for the conponent depl oynent
rebui | dal | . depl oyrment Synchroni ze then build all for the component depl oynment
runt est . depl oynent Run tests for the conponent depl oynent

synchroni ze. af t er. depl oynent After synchronization processing for the conmponent depl oyment
synchroni ze. depl oynent Synchroni ze for the conmponent depl oynment

test. depl oynment Build and run the tests for the component depl oyment

These are al dynamically generated by jbossbuild based on the defintion we have provided. At the moment, we are
only concerned with the synchronize target since we still don't have the source for this component. So let's see what
the synchronize target will do before we try to call it

To see what atarget will do before you call it, you can use the "show" target and pass it a property of which target
you want to see.

bash- 2. 05b$ ant show - Dshow=synchroni ze. depl oynent
Bui I dfile: build.xn

show.
<l-- Synchroni ze for the conponent depl oynent -->
<t arget nanme="synchroni ze. depl oynent ">
<nkdir dir="C:\projects\newbuild-jboss\thirdparty\depl oyment"/>
<get verbose="true" dest="C:\projects\newbuild-jboss\thirdparty\depl oynment/conponent-info.xm"
useti mestanp="true"
src="http://cruisecontrol.jboss. conlrepository/depl oyment/5. 0- SNAPSHOT/ conponent -i nfo. xm "/ >

</target>

Whoops! Calling this target will download the component to thirdparty, which is not what we want at this point. In
order to get the source for this component, we will want to set a property in the jbossas/synchronize.properties file:

checkout . depl oynent =t r ue

Campbell, Pushkala lyer, Clebert Su-

Build Reference

Now, when we show the deployment.synchronize target we see that it intends to pull the source from cvs:

bash- 2. 05b$ ant show - Dshow=synchroni ze. depl oynent
Bui I dfile: build.xm

show.
<l-- Synchroni ze for the conponent deploynment -->
<t arget nanme="synchroni ze. depl oynent ">
<cvs dest="C: \proj ect s\ newbui | d-j boss">
<command!| i ne>
<argunent val ue="-d"/>
<argunent val ue=":ext:rcanpbell @vs. forge.jboss.com/cvsroot/jboss"/>
<ar gunent val ue="co"/>
<argunent val ue="-d"/>
<argument val ue="depl oynment"/>
<argunent val ue="j boss-depl oynent"/>
</ command!| i ne>
</ cvs>
</target>

Ok, so let's go ahead and call this target to checkout the module into our tree (../deployment).

bash- 2. 05b$ ant synchroni ze. depl oynent
Bui I dfile: build.xn

synchroni ze. depl oynent :
[cvs] Using cvs passfile: c:\.cvspass
[cvs] cvs checkout: Updating depl oynent
[cvs] U depl oynent/.cl asspath
[cvs] U depl oynent/. cvsignore

We could have aso called the toplevel synchronize target if we wanted to update (or checkout) all the other com-
ponents and thirdparty artifacts.

Ok, now that we have the source, we can get into creating a component-level build. The toplevel build in jbossas/
jbossbuild.xml defines al the components, their versions, and the locations of their artifacts. However, the com-
ponent-level build defines how those artifacts are composed of java classes and other resources.

4.4.2. Component Level Build

Let's start out by just creating a minimal definition and see what happens. First, we want to create our component-
info.xml under the deployment module. Y ou can think of thisfile as the interface for this component. It will be up-
loaded to the repository along with the artifacts of this component so that other components may reference it.

For now, we can copy the entry from jbossas/jbossbuild.xml.
deployment/component-info.xml

Campbell, Pushkala lyer, Clebert Su-

Build Reference

<proj ect nane="depl oynent - conponent -i nf 0" >

<l-- -->
<I'-- Depl oynent -->
<l-- -->

<conponent i d="depl oynent"
nmodul e="j boss-depl oynent"
ver si on="5. 0- SNAPSHOT" >
</ conponent >

</ proj ect >

Once the component is declared, it needs to be defined. Thisis the responsibility of the jbossbuild.xml file:
deployment/jbossbuild.xml

<?xm version="1.0"?>
<I--[snip: license and header coments]-->
<proj ect nane="project"

defaul t ="bui | d"

basedir="."

<inport file="../tools/etc/jbossbuild/tasks.xm"/>
<import file="conmponent-info.xm"/>

<conponent def conponent ="depl oynment" descri pti on="JBoss Depl oynent" >
<source id="pmin"/>
</ conponent def >

<gener at e gener at e="depl oynent"/>
</ proj ect >

At the top, we see the root project element, which isrequired for al Ant build files. More interestingly, we see that
two files are imported. The tasks.xml is from jbossbuild. This file defines the custom Ant tasks (like compon-
entinfo) and ultimately drives the dynamic creation of Ant targets based on our component definition. The other
file is the component-info.xml file we created above.

The second thing we see is the source element. This says that we have a source directory named "main". jbossbuild
requires that you put all of your source under the "src" directory, so this resolves to "deployment/src/main”.

Finally, we see the generate element. This basically a clue to jbossbuild to tell it we are done defining our compon-
ent and that it should generate the targets.

Let's see what we've got now:

bash- 2. 05b$ ant -f jbossbuild.xm -projecthelp
Bui | dfi | e: j bossbuil d. xn

Mai n targets:

al | Build All

conic, Mark Little, Andrig Miller,

Build Reference

api Javadoc

buil d Bui | d

bui | d. mai n Build for the source src/min
cl ean d ean

comi t Conmi t

doc Docunent ati on

rebuild Synchroni ze then build

rebui | dal | Synchroni ze then build al

runt est Run tests

synchroni ze Synchroni ze

synchroni ze. after After synchronization processing
test Build and run the tests

Default target: build

Again, we see that jbossbuild has automatically generated a basic set of targets for us. Additionally, we see that a
specific target has been generated for our main source. As we add artifacts and sources to our component defini-
tion, jbossbuild will define specific targets for these aswell. Let's take alook at how this target isimplemented:

bash-2.05b$ ant -f jbossbuild.xm show - Dshow=buil d. mai n
Bui | dfile: jbossbuil d.xm

show:
<l-- Build for the source src/main -->
<target nanme="buil d. mai n">

<nkdir dir="C:\projects\newbuil d-jboss\depl oynent\ out put\ cl asses\ mai n"/ >

<depend destdir="C:\projects\newouil d-jboss\depl oynent\ out put\cl asses\ mai n" srcdir="src/ min">
<cl asspat h>
<pat hel enent | ocati on="C:\ proj ects\newbuil d-j boss\ depl oynent\ out put\ cl asses\ mai n"/>
</ cl asspat h>
</ depend>

<javac destdir="C: \projects\newbuil d-jboss\depl oyment\ out put\cl asses\ mai n" deprecati on="true" srcdir="src
<cl asspat h>
<pat hel enent | ocati on="C:\ proj ect s\ newbui |l d-j boss\ depl oynent\ out put\ cl asses\ mai n"/>
</ cl asspat h>
<src path="src/min"/>
</javac>

</target>

Based on this one <source id="main"> element all of the above is generated by jbossbuild. However, if we were to
call thistarget now, it would fail because of unresolved imports. To fix this, we need to define the buildpath for the
main source. The easiest way to do this is to find the library.classpath and dependentmodule.classpath in the de-
ployment/build.xml:

<l-- The conbined library classpath -->
<path id="library. cl asspath">

<path refid="dom4j.domdj.classpath"/>
</ pat h>

<l-- The conbi ned dependant nodul e cl asspath -->
<pat h i d="dependent nbdul e. cl asspat h" >
<path refid="jboss.comon. cl asspat h"/>

conic, Mark Little, Andrig Miller,

Build Reference

<path refid="jboss.j2ee.cl asspath"/>

<path refid="jboss.|2se.classpath"/>

<path refid="jboss. system cl asspath"/>
</ pat h>

Based on this we can determine the buildpath for the main source:

<source id="main">
<i ncl ude conponent ="don4j - dondj "/ >
<i ncl ude conponent ="comon"/ >
<i ncl ude conponent ="j 2ee"/ >
<i ncl ude conponent="j 2se"/>
<i ncl ude conponent ="systeni'/>
</ sour ce>

Generally, you should read this as "The main source tree includes these components as input.” Concretely, the ex-
ported jars from these components are being included in the classpath of the call to javac:

$ ant -f jbossbuild.xm show - Dshow=bui | d. main
<javac destdir="C:\projects\newbuil d-jboss\depl oynent\ out put\cl asses\ nmai n"
deprecati on="true" srcdir="src/main" debug="true" excl udes="${javac. excl udes}">
<cl asspat h>
<pat hel enent | ocati on="C:\ proj ect s\ newbu
<pat hel enent | ocati on="C:\ proj ect s\ newbu
<pat hel enent | ocati on="C:\ proj ect s\ newbui boss\ system out put\lib\jboss-systemjar"/>
<pat hel enent | ocati on="C:\ proj ect s\ newbui boss\ conmon\ out put\ | i b\ j boss-conmon. jar"/>

| d-j boss\j 2ee\ out put\lib\jboss-saaj.jar"/>
| d-j
| d-j
| d-j
<pat hel ement | ocati on="C:\ proj ect s\ newbui |l d-j boss\ depl oynment\ out put\ cl asses\ nai n"/ >
| d-j
| d-j
| d-j
| d-j

boss\ common\ out put\ | i b\ nanespace.jar"/>

<pat hel enent | ocati on="C:\ proj ect s\ newbui boss\j 2se\ out put\lib\jboss-j2se.jar"/>
<pat hel ement | ocati on="C:\ proj ect s\ newbui boss\t hi rdparty\ don¥j - don4j\ i b\dom¥4j .jar"/>
<pat hel enent | ocati on="C:\ proj ect s\ newbui boss\j 2ee\ out put\ i b\jboss-jaxrpc.jar"/>
<pat hel ement | ocati on="C:\ proj ect s\ newbui boss\j 2ee\ out put\ i b\jboss-j2ee.jar"/>
</ cl asspat h>
<src path="src/ min"/>
</javac>

How are components resolved to jars? jbossbuild searches for the component-info.xml of the included component.
First in the root of the project (..) and second in the thirdparty directory (../thirdparty). The component-info.xml in-
cludes an export element which specifies which artifacts should be resolved when the component is included by an-
other component. It's probably not a bad analogy to think of this mechanism as replacing buildmagic's modul es.ent
and libraries.ent

Now we should compile the source to make sure we got it right. We'll just use the build target because we are lazy
and don't want to type build.main (rats!).

bash- 2. 05b$ ant -f jbossbuild.xm build
Bui | dfile: jbossbuil d.xm

build.etc:
[mkdir] Created dir: C: \projects\newbuil d-jboss\depl oynent\ out put\etc
[copy] Copying 1 file to C: \projects\newouil d-jboss\depl oynent\ out put\etc

Alex Pinkin

Build Reference

bui |l d. mai n:
[mkdir] Created dir: C:\projects\newouil d-jboss\depl oynent\ out put\classes\main
[javac] Compiling 16 source files to C \projects\newuild-jboss\depl oynent\ out put\cl asses\ nain

bui | d:

BUI LD SUCCESSFUL
Total time: 7 seconds

4.4.2.1. Defining an Artifact

Great! Notice that the output for the source (id=main) is being placed in output/classes/main. Now we are ready to
add an artifact definition. Looking at the deployment/build.xml, we see there is one artifact named jboss-de-
ployment.jar. First, let's declare the artifact in our component-info.xmil:

<conponent i d="depl oynent "
nodul e="j boss- depl oynent "
ver si on="5. 0- SNAPSHOT" >
<artifact id="jboss-deploynent.jar"/>
<export >
<i ncl ude i nput ="j boss-depl oynent.jar"/>
</ export >
</ conponent >

Notice aso that we export this jar. When other components import this one, this is the jar they will want on their
classpath.

Now, we need to create an artifactdef for this new artifact. The artifacdef defines how the artifact is composed of
other inputs:

</ sour ce>
<artifactdef artifact="jboss-deploynent.jar">
<i ncl ude i nput =" nai n" >
<i ncl ude pattern="org/jboss/ depl oyment/**"/>
</incl ude>
</artifactdef>
</ conponent def >

Thisresultsin the following target being generated:

bash-2.05b$ ant -f jbossbuild.xm show - Dshow=buil d.j boss-depl oynent.j ar
Bui I dfil e: jbossbuild.xmn

show:.
<l-- Build for the artifact jboss-deploynent.jar -->
<target nanme="buil d.jboss-depl oynent.jar">

<nkdir dir="C:\projects\newbuil d-jboss\depl oyment\out put\lib"/>

<jar destfile="C:\projects\newbuil d-jboss\depl oynment\ out put\lib\jboss-depl oynent.jar">

Alex Pinkin

Build Reference

<fileset dir="C:\projects\newouild-jboss\depl oynent\ output\cl asses\ nai n">
<i ncl ude nanme="org/jboss/ depl oyment/**"/>
</fil eset>
</jar>

</target>

Notice that the <includes input="main"/> is resolved to output/classes/main.

4.4.3. Placing an Artifact in the Release

Now that we have completed the artifact, we need to define where it should be placed in the overall release struc-
ture. Thisinformation, as you will recall, is stored in the toplevel build (jbossas/jbossbuild.xml). We define the loc-
ation in the release using the release tag:

jbossag/jbossbuild.xml:

<conponent id="depl oynment"
nodul e="j boss-depl oynent"
ver si on="5. 0- SNAPSHOT" >
<artifact id="jboss-deploynent.jar" release="client"/>
</ conponent >

Thiswill place the artifact in the client directory of the release:

bash- 2. 05b$ ant show - Dshowe=r el ease. j boss- depl oynent . j ar
Bui I dfile: build.xm

show:
<target nanme="rel ease.] boss-depl oynent.jar">

<nkdir dir="C:\projects\newbuil d-jboss\jbossas\ out put\jbossas-5.0.0al pha\client"/>

<copy todir="C:\projects\newbuil d-jboss\jbossas\out put\jbossas-5.0.0al pha\client">
<fileset file="C:\projects\newbuild-jboss\depl oynent\output\lib\jboss-depl oynent.jar"/>

</ copy>

</target>

Now, you should be able perform a build of the application server:

$ ant build

Congratulations, you've successfully added a new component to jboss AS.

4.5. How to Add a Component to the Repository

JBoss 2004, lvelin lvanov, Ryan 37

Build Reference

This section describes the steps necessary to add a component to the build repository, currently at ht-
tp://cruisecontrol.jboss.com/repository

1. First, you will want to checkout the repository locally.

cvs -d:ext:user@vs.forge.jboss. confcvsroot/jboss co repository.jboss.com

2. You need to decide on a component name. It is best to use something like organization-component so others
can quickly tell what the name refers to. The exception is jboss components which are not prefixed with
"jboss’.

Underneath the directory named after the component is the version number, which contains the component-
info.xml. Thelib directory below thiswill hold the jars.

repository.jboss.com
+ apache- | og4;
+ 1.2.8
+ conponent - i nf o. xn
+ lib
+ log4j.jar

3. In addition to adding the jars, you also need to create a component-info.xml. This file alows other compon-
ents to reference your jars. We want to make sure that the component-info.xml reflects the version we indic-
ated in the directory structure above.

<proj ect nanme="apache-| og4j - conponent -i nf 0" >

<I-- -->
<I'-- Apache Log4j o>
<I-- -->

<conponent id="apache-1|og4j"
| i censeType="apache- 2. 0"
version="1.2. 8"
proj ect Hone="http://I| oggi ng. apache. org/ ">
<artifact id="log4j.jar"/>
<artifact id="snnpTrapAppender.jar"/>
<export>
<i nclude input="1o0g4j.jar"/>
</ export >
</ conponent >

</ proj ect >

4. You can commit the new version to the repository using cvs commands. Thereis (will be) a scheduled process
which updates the online repository from cvs every 5 minutes. If thisfails, please contact ga@jboss.com

5. Once the component is available in the online build repository, you may configure toplevel (e.g., jbossas/
jbossbuild.xml) build to include it:

<conponent id="apache-|og4j"

JBoss 2004, lvelin lvanov, Ryan 38

Build Reference

version="1.2. 8"

<artifact id="log4j.jar"/>
<artifact id="snnpTrapAppender.jar"/>
</ conponent >

Campbell, Pushkala lyer, Clebert Su-

CVS Access for JBoss Sources

Source codeis available for every JBoss module and any version of JBoss can be built from source by downloading
the appropriate version of the code from the JBoss Forge CV'S Repository.

5.1. Understanding CVS

CV S (Concurrent Versions System) is an Open Source version control system that is used pervasively throughout
the Open Source community. It keeps track of source changes made by groups of developers who are working on
the same files and enables developers to stay in sync with each other as each individual chooses.

5.2. Obtaining a CVS Client

The command line version of the CV'S program is fredly available for nearly every platform and is included by de-
fault on most Linux and UNIX distributions. A good port of CVS as well as numerous other UNIX programs for
Win32 platformsis available from Cygwin [http://sources.redhat.com/cygwin/].

The syntax of the command line version of CVSwill be examined because thisis common across all platforms.

For compl ete documentation on CV' S, check out The CV S Home Page [http://www.cvshome.org/].

5.3. Anonymous CVS Access

Note that the anonymous repository isamirror of the comitter repository that is synched every 5 minutes.

All JBoss projects CV S repositories can be accessed through anonymous(pserver) CV S with the following instruc-
tion set. The module you want to check out must be specified as the modul enane. When prompted for a password
for anonymous, simply press the Enter key.

The genera syntax of the command line version of CV S for anonymous access to the JBoss repositoriesis:

cvs -d: pserver:anonynous@noncvs. forge. j boss. com/cvsroot/jboss |ogin
cvs -z3 -d: pserver:anonynous@mnoncvs. f orge. j boss. com /cvsroot/j boss co nodul ename

The first command logs into JBoss CV'S repository as an anonymous user. This command only needs to be per-
formed once for each machine on which you use CV S because the login information will be saved in your HOME/
.cvspass file or equivalent for your system. The second command checks out a copy of the nodul enanme source code
into the directory from which you run the cvs command.

JBoss 2004, Ivelin Ivanov, Ryan 40

http://sources.redhat.com/cygwin/
http://www.cvshome.org/

CV S Access for JBoss Sources

To avoid having to type the long cvs command line each time, you can set up a CV SROOT environment variable.

set CVSROOT=: pserver: anonynous@noncvs. f or ge. j boss. com / cvsroot/j boss

The abbreviated versions of the previous commands can then be used:

cvs login
cvs -z3 co nodul enanme

The name of the JBoss module alias you use depends on the version of JBoss you want. For the 3.0 branch the
module name is jboss-3.0, for the 3.2 branch it is jboss-3.2. To obtain more up-to-date information on module nam-
ing, refer to JBossA S Modules [http://wiki.jboss.org/wiki/Wiki.jsp?page=JB0ossA SCV SModules] on our wiki.

To checkout the HEAD revision of jboss (latest code on the main branch), you would use j boss- head as the mod-
ule name.

Releases of JBoss are tagged with the pattern JBoss X_Y_Z where X isthe mgor version, Y is the minor version
and Z is the patch version. Release branches of JBoss are tagged with the pattern Branch_X_Y. For more informa-
tion on Release Tagging Standards, refer to Chapter 14

Some checkout examples are:

cvs co -r JBoss_3_2_6 jboss-3.2 # Checkout the 3.2.6 rel ease version code
cvs co jboss-head # Checkout the curent HEAD branch code

Y ou can also browse the repository using the web interface [http://anoncvs.forge.jboss.com/] . If you are stuck be-
hind a firewall without pserver port access, you can even use fisheye to pull the repo using cvsgrab
[http://cvsgrab.sourceforge.net/].

$ cd /tnp/cvsgrab/
$ cvsgrab -weblnterface FishEyel 0 -url \
http://anoncvs. forge. j boss. conl vi ewr ep/ JBoss/jrunit -destDir

This will create the JBosg/jrunit directory. Just replace jrunit with the module you want. If you want to check out
the entire repo with cvsgrab, just omit the module:

$ cd /tnp/cvsgrab/
$ cvsgrab -weblnterface FishEyel 0 -url \
http://anoncvs. forge. j boss. com vi ew ep/ JBoss -destDir

Or, if you want a branch:

JBoss 2004, lvelin lvanov, Ryan 41

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossASCVSModules
http://anoncvs.forge.jboss.com/
http://cvsgrab.sourceforge.net/

CV S Access for JBoss Sources

$ cd /tnp/cvsgrab/
$ cvsgrab -weblnterface FishEyel 0 -url \
http: //anoncvs. forge. j boss. conl vi ewr ep/ ~br =Branch_4_0/ JBoss -destDir

Or atag:

$ cd /tnp/cvsgrab/
$ cvsgrab -weblnterface FishEyel 0 -url \
htt p: // anoncvs. f or ge. j boss. coni vi ewr ep/ ~br =Br anch_4_0, t ag=sonet ag/ JBoss -destDir

5.4. Committer Access to CVS and JIRA

Write access to the repository is granted only on approval by the Forge Administrator. To request write access send
an email to forge-admin@jboss.com asking for committer access.

On approval, you will be given read/write access to the repository and a committer status in JRA. It is required
that you have a committer role in JIRA. The Forge Admin will make sure that you have the proper role and permis-
sion status.

To use the committer repository:

export CVS_RSH=ssh
export CVSROOT=: ext:usernane@vs. forge.j boss. com/cvsroot/jboss

If you are a JBoss employee, your username is the same as your existing cvs.jboss.com username.

If you are not a JBoss Employee, then your username is your existing SourceForge username OR your jboss.com
username.

Thereis NO shell access, only cvs over ssh, similar to SourceForge.

All commiter access is authenticated via SSH. There is no password based committer access. You need to supply
an SSH protocol verison 2 public key for access to be granted.
This could be done using the ssh-keygen utility as:

ssh-keygen -t dsa -C 'cvs.forge.jboss.comaccess' -f nykey

or

ssh-keygen -t rsa -C 'cvs.forge.jboss.comaccess' -f nykey

If you don't know your username or have any trouble, just send an email to forge-admin@jboss.com.

For committer access requests, please include:

¢ Your full name.

JBoss 2004, lvelin lvanov, Ryan 42

CV S Access for JBoss Sources

e Your SSH public key.
e A valid email addressfor usto use.
e Your SourceForge username IF you had committer access before the CV'S migration

* Your jboss.org website username.

Campbell, Pushkala lyer, Clebert Su-

CVS Administration

This chapter describes the JBoss CVS administration policies for managing the CVS repository. Comments or
questions regarding these policies should be directed to the JBoss Devel opment forum.

6.1. Creating and Managing Release Branches

The CV'S branching and release management procedures are outlined in this section. All development of new fea-
tures occurs on the main trunk. Releases are done on branches off of the main trunk.

6.1.1. Release Numbering

Releases are tracked using CV S tags that have the following forms:

¢ Fina Binary Releases: JBoss_(major).(even_minor).(patch)
* BetaBinary Releases: Rel__ (major).(even_minaor).(patch).(build)
¢ Development Binary Releases(optional): JBoss (major).(odd_minor).(patch)

* AlphaDevelopment Builds(optional): Rel_(major).(odd_minor).(patch).(build)

1. Afinal binary release is atested and approved release of the JBoss server. The magjor and minor version num-
bers are fixed for a given branch. The minor version number is always even on arelease branch. Example final
releasetags are: JBoss 2 2 0,JBoss 2 2 1,JBoss 2 4 13,JBoss 3 0 0.

2. Abetabinary release is a candidate final release that is being made available for testing. The major and minor
version numbers are fixed for a given branch. The patch number is one greater than the current final binary.
The build number indicates the number of patches that have been incorporated into the candidate release. For
example, if the latest final release is JBoss 2 2 0, then next beta binary release patch number will be 1 and
build numbers will start at 1. A build number of 0 is used to tag the previous final release code. So, if
JBoss 2 2 0 werethelatest final release, and three fixes were incorported into the 2.2 branch, there would be
beta binary releasetagsof Rl 2 2 1 O,Rel 22 1 1Rd 22 1 2 Rel 2 2 1 3. Theideaisthat beta bin-
ary releases are building to the next final binary release, in this case JBoss 2 2 1.

3. Adevelopment binary release is an apha release of the JBoss server. It is a snapshot of the functionallity in
the main trunk at some point in time. The major version number is greater than or equal to the latest final bin-
ary release. The minor version number is 1 greater than the latest final binary release minor version number.
This means that minor versions of development binaries will always be odd. Example development binary re-
leasesare: JBoss 2 3 0,JBoss 2 3 1,JBoss 2 5 13,JBoss 3 1 0.

JBoss 2004, Ivelin Ivanov, Ryan 44

CVS Administration

4. An alpha development build is a patch beyond a development binary release. The patch number is one greater
than the current development binary. The build number indicates the number of patches that have been incor-
porated into the candidate build. For example, if the latest development build is JBoss 2 3 0, then next alpha
build patch number will be 1 and build numbers will start at 1. A build number of O is used to tag the previous
devliopment build code. So, if JBoss 2 3 0 were the latest development build, and three fixes were incorpor-
ted into the main trunk, there would be apha release tags of Rel_ 2 31 0, Rel_ 231 1Rel_ 231 2
Rel 2 3 1 3. The idea is that apha builds are leading to the next development build, in this case
JBoss 2 3 1.

6.1.2. Example Release Scenarious

Consider events 1-13 in blue on the following figure:

CVS MAIN
1 & Rel 21057
22 PV I Re22004RI2201 gRel2211
1 ° A . & ¥ Branch_2_2
2Rel 2300 SBoss 220 7JBoss 2 2 1
Rel 2210 Rel 22 2 0
2.3 Dev o JBoss 2 3 1
Rel 2 310
Rel 2 3.1 37
Rel 2400 .. Rel 24 01
11 12
9 - A)- Branch 2 4
10
Rel_.2 500 13
JBoss 24 0
5 & Dev Rel2 410

Y

Prior to event 1, the latest alpha development buildisRel_2 1 0 _57. At this point it is decided to create a new bin-
ary release.

1. Thisisthe creation of a2.2 branch. It is labeled with a branch tag of Branch_2 2. Thisfixes the magjor version
to 2 and the minor version to 2 for all tags on this branch.

JBoss 2004, Ivelin Ivanov, Ryan 45

CVS Administration

10.

11.

12.

13.

Thisisthe creation of aRel_2 3 0 0 alpha release tag on the main trunk. It it is also an alias to the state of
the main branch at the time of the 2.2 branch creation.

This is the creation of aRel_2 2 0 0 beta release tag in the branch. It serves as an dlias to the state of the
main branch at the time the 2.2 branch was created.

This is the integration of the first patch/change into the 2.2 branch. After the code is commited the
Rel_ 2 2 0 1tagisapplied.

This is the release of the initia 2.2 branch binary. The release is tagged as JBoss 2 2 0 as well as
Rel 2 2 1 Oto start the next beta series.

This is the integration of the first patch/change after the 2.2.0 binary release. After the code is commited the
Rel_ 2 2 1 1tagisapplied.

This is the release of the second 2.2 branch binary. The release is tagged as JBoss 2 2 1 as well as
Rel 2 2 2 0to start the next beta series.

Thisis the release of a development binary. The release istagged asJBoss 2 3 1aswellasRel 2 3 1 Oto
start the next apha series. Prior to this there had aso been a JBoss 2 3 0 development binary not shown in
the diagram.

Thisisthe creation of anew binary release branch. After some period of development on the 2.3 portion of the
trunk(Rel 2 3 0 0to Rel 2 3 1 37), it is decided to release a fina binary incorporating the main trunk
functionality. The new 2.4 branch is labeled with a branch tag of Branch_2_4. This fixes the major version to
2 and the minor version to 4 for all tags on this branch.

Thisis the creation of aRel_2 5 0 0 alpha release tag on the main trunk. It it is also an alias to the state of
the main branch at the time of the 2.4 branch creation.

This is the creation of aRel_2 4 0 0 beta release tag in the branch. It serves as an dlias to the state of the
main branch at the time the 2.4 branch was created.

This is the integration of the first patch/change into the 2.4 branch. After the code is commited the
Rel 2 4 0 1tagisapplied.

This is the release of the initia 2.4 branch binary. The release is tagged as JBoss 2 4 0 as well as
Rel 2 4 1 Oto start the next beta series.

6.2. Creating a New Binary Release Branch

1

Perform a clean check out of the jboss main branch without any tags to select the latest code:

cvs co j boss-head

2.

Label the main branch with the next initial apha development build tag: Rel_(major)_(odd_minor)_0_0. For
the case of a 2.2 release case this would mean that main development would be for a 2.3 cycle and so main
should be tagged with Rel_2_3 0_0 asfollows from within the working directory created in step 1.

JBoss 2004, Ivelin Ivanov, Ryan 46

CVS Administration

cvs tag Rel _ 2.3 0 0

3. Create the new branch giving it a branch tag of Branch_(major)_(even_minor). For example, to create a 2.2
branch, perform the following within the working directory created by the previous check out:

cvs tag -b Branch_2_2

4. Create aworking directory for the new branch by checking it out using the Branch 2 2 tag:

cvs co -r Branch_2_2 jboss

5. Label the branch working directory with theinitial betarelease tag of Rel_(major)_(even_minor)_0_0. For the
Branch_2 2 case this would be done by executing the following in the working directory created by the previ-
ous check out:

cvs tag Rel _2_.2.0_0

6. Branch all non-jboss modules that contribute jars to the jboss module. Create a branch for each cvs module for
which there is one or more jars included in the jboss module. This allows patches to be made to these modules
and to be tagged with the JBoss X_Y_Z final release tag so that all source can be obtained for the final re-
lease.

6.3. Checking Code into the MAIN Trunk

New features and bug fixes on unreleased code should go into the main trunk which is the latest development
branch. The steps for doing this are:

1. Checkout the target module in which the changes are to be made. For example to commit changesto thej boss
module do:

cvs co j boss-head

2. Makeyour chagesto the source in the jboss working directory created by the previous check out.

3. Commit your changes. Do this by executing the following command in the directory you made the changesin,
or any common parent directory:

cvs commit -m "conmit-coment”

Y ou don't have to specify the commit msg on the commit command line. If you don't you will be prompted for
the commit msg. Note that this will apply the same commit msg to all files you have changed. If you want spe-
cific commit msgs for each file then you can perform a seperate commit on each file.

4. Optional Tag the code with the next alpha build tag. For example, to tag the jboss source tree with a

Campbell, Pushkala lyer, Clebert Su-

CVS Administration

Rel 2 3 1 3tag, do:

cvs tag Rel _2_3_1_3

from within the jboss working directory.

6.4. Checking in a Patch on a Release Branch

When you have changes that need to go into the codebase of a release branch, you need to check out that branch
and make the changes. So for example, if you need to add a patch the the 2.2 branch of the example CV S structure
above, you need to first check out the 2.2 branch using the Branch 2 2 tag.

1. Checkout the module using the branch tag you want to work on. To checkout the 2.2 branch of the jboss mod-
uledo:

cvs co -r Branch_2_2 jboss

Thiswill create ajboss working directory with a sticky tag that associates the source code with the 2.2 branch.
If you look at the jboss/src/main/org/jboss/Main.java file in the jboss working directory that results from the
previous command using the cvs st at us command you will see something like:

bash-2.04%$ cd jboss/src/ nain/org/jboss/
bash-2.04%$ cvs status Main.java

File: no file Miin.java Status: Needs Checkout
Wor ki ng revi sion: 1.30.2.6
Repository revision: 1.30.2.6 / cvsroot/jboss/jboss/src/ main/org/jboss/Min.java,v
Sticky Tag: Branch_2_2 (branch: 1.30.2)
Sticky Date: (none)
Sticky Options: (none)

This shows that the "Sticky Tag:" is set to the Branch_2_2 tag as we requested.
2. Makeyour chagesto the source in the jboss working directory created by the previous check out.

3. Required Run the jbosstest unit test suite. If there are any errors do NOT commit your change. Repeated fail-
ures to validate a change made to a branch will result in loss of CV S write priviledges.

4. Commit your changes. Do this by executing the following command in the directory you made the changesin,
or any common parent directory:

cvs commit -m"conmit-coment”

As already noted, you don't have to specify the commit msg on the commit command line. If you don't you
will be prompted for the commit msg. Note that this will apply the same commit msg to al files you have
changed. If you want specific commit msgs for each file then you can perform a seperate commit on each file.

5. Required Tag the branch with the next beta binary release tag by incrementing the build number of the latest

Campbell, Pushkala lyer, Clebert Su-

CVS Administration

tag. To determine what build number to use, look at al of the tags for afile using the cvs st at us command
with the -v option. For example, looking at jboss/src/main/org/jboss/Main.java again:

bash-2.04%$ cvs status -v Main.java

File: no file Min.java Status: Needs Checkout
Wor ki ng revi sion: 1.30.2.6
Repository revision: 1.30.2.6 / cvsroot/jboss/jboss/src/ main/org/jboss/ Min.java, v
Sticky Tag: Branch_2_2 (branch: 1.30.2)
Sticky Date: (none)
Sticky Options: (none)

Exi sting Tags:

Rel _2.3.1.0 (revision: 1.34)

Rel _2.2.2 0 (revision: 1.30.2.6)
JBoss_2_2_2 (revision: 1.30.2.6)
JBoss_2_2_1 (revision: 1.30.2.3)
Rel _2.2.10 (revision: 1.30.2.3)

TheRe 2 2 2 Otagisthelatest tag on the 2.2 branch and indicates that no patches have been made since the
JBoss 2 2 2release. So to tag the changes you have made you needtouse Rel_2 2 2 1. Do thisusing:

cvs tag Rel _.2.2 2 1

from the top of the jboss working directory.

6. Required Merge the changes to the main trunk if they are missing. You need to validate that the changes you
have made to the release branch are not already in the main trunk and merge the changes if they are.

7. Required, if merge was done Check out the latest trunk code:

cvs co j boss

8. Required, if merge was done Tag the main trunk with the next alpha build tag. Assuming the this is
Rel 2 3 1 5, youwould do:

cvs tag Rel _2.3.1 5

from within the jboss working directory you just checked out.

6.5. Checking in a Patch on a Non-JBoss CVS Module Release
Branch

When you have changes that need to go into one of the modules other than the j boss cvs module for integration as
ajar in ajboss release branch, perform the following steps. The example below describes how to make a changein
the jbosscx module for incorporation into the jboss 2.4 rel ease branch.

1. Checkout the module using the branch tag you want to work on (if the branch has not been created do so). To

conic, Mark Little, Andrig Miller,

CVS Administration

checkout the 2.4 branch of the jbosscx module do:

cvs co -r Branch_2_4 jbosscx

2. Makeyour chagesto the source in the jbosscx working directory created by the previous check out.
3. Commit your changes. Do this by executing the following command in the directory you made the changesin,

or any common parent directory:

cvs comit -m "commit-coment"

4. Required Tag the branch with the next beta binary release tag on the jboss module release branch, not the
jbossex. The non-jboss modules are not labeled independent of the jboss module. This allows one to see what
changes from the modules were merged into jboss. So, if the latest beta binary release tag in the jboss module
isRe 2 4 0 0, the jbosscx module would be tagged with Rel_2 4 0 1. Do this from within the root jbosscx
working directory:

cvs tag Rel _ 2.4 0_1

TheRel_2 2 2 Otagisthelatest tag on the 2.2 branch and indicates that no patches have been made since the
JBoss 2 2 2release. So to tag the changes you have made you needtouseRel_2 2 2 1.

cvs tag Rel _2.2 2 1
5. Perform the build of the module jars that are to be incorporated into the jboss module.

6. Copy the module jarsinto the approriatej boss/ src subdirectory locations.

7. Required Run the jbosstest unit test suite. If there are any errors do NOT commit your change. Repeated fail-
ures to validate a change made to a branch will result in loss of CV S write priviledges.

8. Commit the jar changes in the jboss module by running the following from within the jboss/src directory:

cvs commit -m"conmit-coment”

9. Required Tag the jboss module with the same tag used in step 4. From within the jboss root working directory
tag the release:

cvs tag Rel 2.4 0_1

conic, Mark Little, Andrig Miller,

SVN Access for JBoss Sources

Source code for specific JBoss projects are located in the JBoss Subversion repository. Please see the project
homepage to determine the source location.

7.1. Understanding SVN

Subversion is an Open Source version control system that is very similiar in functionality to CVS. It keeps track of
source changes made by groups of developers who are working on the same files and enables developers to stay in
sync with each other as each individual chooses.

7.2. Obtaining an SVN Client

The command line version of the Subversion program is freely available for nearly every platform. You can select
the appropriate package here: Subversion downloads [http://subversion.tigris.org/project_packages.html].

Tortoise SVN is a popular GUI based client and can be found here Tortoise SVN downloads
[http://tortoi sesvn.sourceforge.net/downl oads)

The syntax of the command line version of Subversion will be examined because this is common across all plat-
forms.

For compl ete documentation on Subversion, check out The Subversion RedBook [http://svnbook.red-bean.com/].

7.3. Anonymous CVS Access

Note that the anonymous repository isamirror of the comitter repository that is synched every 5 minutes.

All JBoss projects Subversion repositories can be accessed through anonymously with the following instruction
set. The project you want to check out must be specified as the proj ect . You will also provide the path which con-
tains either the correct branch, tag, or trunk.

The genera syntax of the command line version of Subversion for anonymous access to the JBoss repositoriesis:

svn co https://svn.jboss.org/repos/project/path

To checkout the HEAD revision of jboss (latest code on the main branch), you would use the projectj bossas!/

JBoss 2004, Ivelin Ivanov, Ryan 51

http://subversion.tigris.org/project_packages.html
http://tortoisesvn.sourceforge.net/downloads
http://svnbook.red-bean.com/

SV N Access for JBoss Sources

t runk asthe project name

Releases of JBoss are tagged with the pattern JBoss X_Y _Z where X is the mgjor version, Y is the minor version
and Z is the patch version. Release branches of JBoss are tagged with the pattern Branch_X Y. For more informa-
tion on Release Tagging Standards, refer to Chapter 14

Some checkout examples are:

svn co http://anonsvn.jboss. org/repos/jbossas/tags/ JBoss_3_2_6
svn co http://anonsvn.jboss. org/repos/jbossas/trunk # Checkout the curent HEAD branch code

Y ou can also browse the repository using the web interface [http://anonsvn.jboss.org/repos]

7.4. Committer Access to SVN and JIRA

Write access to the repository is granted only on approval by the Forge Administrator. To request write access send
an email to forge-admin@jboss.com asking for committer access.

On approval, you will be given read/write access to the repository and a committer status in JIRA. It is required
that you have a committer rolein JJRA. The Forge Admin will make sure that you have the proper role and permis-
sion status.

To use the committer repository:

svn co https://svn.jboss. org/repos/project

If you are a JBoss employee, your username is the same as your existing cvs.jboss.com username.

If you are not a JBoss Employee, then your username is your existing SourceForge username OR your jboss.com
username.

If you don't know your username or have any trouble, just send an email to forge-admin@jboss.com.

For committer access requests, please include:

* Your full name.
¢ A vaid email addressfor usto use.

e Your jboss.org website username.

JBoss 2004, Ivelin Ivanov, Ryan 52

http://anonsvn.jboss.org/repos

SVN Administration

This chapter describes the JBoss SVN administration policies for managing the SVN repository. Comments or
questions regarding these policies should be directed to the JBoss Devel opment forum.

8.1. Creating and Managing Release Branches

The CV'S branching and release management procedures are outlined in this section. All development of new fea-
tures occurs on the main trunk. Releases are done on branches off of the main trunk.

8.1.1. Release Numbering

Releases are tracked using SV N tags that have the following forms:

¢ Fina Binary Releases: JBoss_(major).(even_minor).(patch)
* BetaBinary Releases: Rel__ (major).(even_minaor).(patch).(build)
¢ Development Binary Releases(optional): JBoss (major).(odd_minor).(patch)

* AlphaDevelopment Builds(optional): Rel_(major).(odd_minor).(patch).(build)

1. Afinal binary release is atested and approved release of the JBoss server. The magjor and minor version num-
bers are fixed for a given branch. The minor version number is always even on arelease branch. Example final
releasetags are: JBoss 2 2 0,JBoss 2 2 1,JBoss 2 4 13,JBoss 3 0 0.

2. Abetabinary release is a candidate final release that is being made available for testing. The major and minor
version numbers are fixed for a given branch. The patch number is one greater than the current final binary.
The build number indicates the number of patches that have been incorporated into the candidate release. For
example, if the latest final release is JBoss 2 2 0, then next beta binary release patch number will be 1 and
build numbers will start at 1. A build number of 0 is used to tag the previous final release code. So, if
JBoss 2 2 0 werethelatest final release, and three fixes were incorported into the 2.2 branch, there would be
beta binary releasetagsof Rl 2 2 1 O,Rel 22 1 1Rd 22 1 2 Rel 2 2 1 3. Theideaisthat beta bin-
ary releases are building to the next final binary release, in this case JBoss 2 2 1.

3. Adevelopment binary release is an apha release of the JBoss server. It is a snapshot of the functionallity in
the main trunk at some point in time. The major version number is greater than or equal to the latest final bin-
ary release. The minor version number is 1 greater than the latest final binary release minor version number.
This means that minor versions of development binaries will always be odd. Example development binary re-
leasesare: JBoss 2 3 0,JBoss 2 3 1,JBoss 2 5 13,JBoss 3 1 0.

JBoss 2004, Ivelin Ivanov, Ryan 53

SVN Administration

4. An alpha development build is a patch beyond a development binary release. The patch number is one greater
than the current development binary. The build number indicates the number of patches that have been incor-
porated into the candidate build. For example, if the latest development build is JBoss 2 3 0, then next alpha
build patch number will be 1 and build numbers will start at 1. A build number of O is used to tag the previous
devliopment build code. So, if JBoss 2 3 0 were the latest development build, and three fixes were incorpor-
ted into the main trunk, there would be apha release tags of Rel_ 2 31 0, Rel_ 231 1Rel_ 231 2
Rel 2 3 1 3. The idea is that apha builds are leading to the next development build, in this case
JBoss 2 3 1.

8.1.2. Example Release Scenarious

Consider events 1-13 in blue on the following figure:

CVS MAIN
1 & Rel 21057
22 PV I Re22004RI2201 gRel2211
1 ° A . & ¥ Branch_2_2
2Rel 2300 SBoss 220 7JBoss 2 2 1
Rel 2210 Rel 22 2 0
2.3 Dev o JBoss 2 3 1
Rel 2 310
Rel 2 3.1 37
Rel 2400 .. Rel 24 01
11 12
9 - A)- Branch 2 4
10
Rel_.2 500 13
JBoss 24 0
5 & Dev Rel2 410

Y

Prior to event 1, the latest alpha development buildisRel_2 1 0 _57. At this point it is decided to create a new bin-
ary release.

1. Thisisthe creation of a2.2 branch. It is labeled with a branch tag of Branch_2 2. Thisfixes the magjor version
to 2 and the minor version to 2 for all tags on this branch.

JBoss 2004, Ivelin Ivanov, Ryan 54

SVN Administration

10.

11.

12.

13.

Thisisthe creation of aRel_2 3 0 0 alpha release tag on the main trunk. It it is also an alias to the state of
the main branch at the time of the 2.2 branch creation.

This is the creation of aRel_2 2 0 0 beta release tag in the branch. It serves as an dlias to the state of the
main branch at the time the 2.2 branch was created.

This is the integration of the first patch/change into the 2.2 branch. After the code is commited the
Rel_ 2 2 0 1tagisapplied.

This is the release of the initia 2.2 branch binary. The release is tagged as JBoss 2 2 0 as well as
Rel 2 2 1 Oto start the next beta series.

This is the integration of the first patch/change after the 2.2.0 binary release. After the code is commited the
Rel_ 2 2 1 1tagisapplied.

This is the release of the second 2.2 branch binary. The release is tagged as JBoss 2 2 1 as well as
Rel 2 2 2 0to start the next beta series.

Thisis the release of a development binary. The release istagged asJBoss 2 3 1aswellasRel 2 3 1 Oto
start the next apha series. Prior to this there had aso been a JBoss 2 3 0 development binary not shown in
the diagram.

Thisisthe creation of anew binary release branch. After some period of development on the 2.3 portion of the
trunk(Rel 2 3 0 0to Rel 2 3 1 37), it is decided to release a fina binary incorporating the main trunk
functionality. The new 2.4 branch is labeled with a branch tag of Branch_2_4. This fixes the major version to
2 and the minor version to 4 for all tags on this branch.

Thisis the creation of aRel_2 5 0 0 alpha release tag on the main trunk. It it is also an alias to the state of
the main branch at the time of the 2.4 branch creation.

This is the creation of aRel_2 4 0 0 beta release tag in the branch. It serves as an dlias to the state of the
main branch at the time the 2.4 branch was created.

This is the integration of the first patch/change into the 2.4 branch. After the code is commited the
Rel 2 4 0 1tagisapplied.

This is the release of the initia 2.4 branch binary. The release is tagged as JBoss 2 4 0 as well as
Rel 2 4 1 Oto start the next beta series.

8.2. Creating a New Binary Release Branch

1

Perform a clean check out of the jboss main branch without any tags to select the latest code:

svn co https://svn.jboss. org/repos/jbossas/trunk

2.

To create a "tag” you simply execute a copy command. Tag the main branch with the next initial apha devel-
opment build tag: Rel_(major) (odd minor) 0 0. For the case of a 2.2 release case this would mean that main
development would be for a 2.3 cycle and so main should be tagged with Rel_2 3 0_0 as follows from within

JBoss 2004, Ivelin Ivanov, Ryan 55

SVN Administration

the working directory created in step 1.

svn copy https://svn.jboss. org/repos/jbossas/trunk https://svn.]jboss. org/repos/jbossas/tags/Rel _2_3_0_0 "Creating a tag"

3. Create the new branch giving it a branch tag of Branch (major) (even_minor). For example, to create a 2.2
branch, perform the following within the working directory created by the previous check out:

svn copy https://svn.jboss.org/repos/jbossas/trunk https://svn.|boss. org/repos/jbossas/branches/Branch_2_2 "Creating a branch”

4. Create aworking directory for the new branch by checking it out using the Branch_2 2 tag:

svn co https://svn.jboss. org/repos/jbossas/branches/Branch_2_2

5. Label the branch working directory with theinitial betarelease tag of Rel_(major)_(even_minor)_0_0. For the
Branch_2_2 case this would be done by executing the following in the working directory created by the previ-
ous check oult:

svn copy https://svn.jboss. org/repos/jbossas/ branches/Branch_2_2 https://svn.jboss.org/repos/jbossas/tags/Rel_2_2 0 0 "Creating a k

8.3. Checking Code into the MAIN Trunk

New features and bug fixes on unreleased code should go into the main trunk which is the latest development
branch. The steps for doing this are:

1. Checkout the target module in which the changes are to be made. For example to commit changes to thej boss
module do:

svn co https://svn.jboss. org/repos/jbossas/trunk

2. Make your chages to the source in the jboss working directory created by the previous check out.

3. Commit your changes. Do this by executing the following command in the directory you made the changesin,
or any common parent directory:

svn comit -m "commt-coment"

Note that this will apply the same commit msg to al files you have changed. If you want specific commit
msgs for each file then you can perform a seperate commit on each file.

8.4. Creating a service patch

The procedure defined below will take a developer through the process of creating a branch, making the necessary
changes, and merging those changes into the main branch.

Campbell, Pushkala lyer, Clebert Su-

SVN Administration

svn copy http://svn.jboss.org/repos/test/tags/JBoss_4_0_3 SP1/ http://svn.|boss.org/repos/test/branches/JBoss_4_0_3 SP1_JBAS-1234 -

2. Checkout the newly created branch

svn co http://svn.jboss. org/repos/test/branches/JBoss_4_0_3_SP1_JBAS-1234 jbas-1234_| ocal _dir

3. Makeyour changes, perform testing, and commit them

svn comit -m "changes required for patch”

4. At this point you may wish to port this patch to the current code line. To do this we will use the svn merge
command. The svn merge command requires 3 pieces of information.

a. Aninitial repository tree
b. A final repository tree

c. A working copy to apply the changesto

Essentially, you are finding the change set between 1 and 2 and applying them to 3. In our case 1 would be the
tagged JB0ss-4.0.3.SP1 and 2 would be the JBoss-4.0.3.SP1.PATCH branch that you created. 3 would be the
current 4.0 branch (which will you need to check out).

Backporting procedure

1. checkout aworking copy of the 4.0 branch

svn co http://svn.jboss. org/repos/test/branches/Branch_4_0 jboss-4.0

2. apply the changeset between the 4.0.3.SP1 tagged release and your patched branch to your working copy

svn nerge http://svn.jboss.org/repos/test/tags/JBoss_4_0_3 SP1 http://svn.|jboss. org/repos/test/branches/JBoss_4_0_3 SP1-JBAS-1234 |

3. The differences are now applied to your working copy. Ensure that no conflicts exist and then commit the
work to current jboss-4.0 branch

svn conmit

Campbell, Pushkala lyer, Clebert Su-

SVN Administration

conic, Mark Little, Andrig Miller,

Coding Conventions

This section lists some general guidelines followed in JBoss code for coding sources/ tests.

All files (including tests) should have a header like the following:

JBoss, Home of Professional Open Source
Copyri ght 2005, JBoss Inc., and individual contributors as indicated
by the @uthors tag. See the copyright.txt in the distribution for a
full listing of individual contributors.

This is free software; you can redistribute it and/or nodify it
under the ternms of the GNU Lesser General Public License as

publ i shed by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any |later version.

This software is distributed in the hope that it will be useful,
but W THOUT ANY WARRANTY; without even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE. See the G\U
Lesser Ceneral Public License for nore details.

You shoul d have received a copy of the GNU Lesser General Public
License along with this software; if not, wite to the Free

Sof tware Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110- 1301 USA, or see the FSF site: http://ww.fsf.org.

. T R R T T

*
-

The header asserts the LGPL license, without which the content would be closed source. The assumption under law
is copyright the author, all rights reserved or sometimes the opposite - if something is published without asserting
the copyright or license it is public domain.

Use the template files on JRA for consistency. These template files encapsulate settings that are generaly fol-
lowed such as replacing tabs with 3 spaces for portability amongst editors, auto-insertion of headers etc.

9.1. Templates

Template files for the Eclipse IDE can be found here: JBoss Eclipse Format
[http://jirajboss.com/jiral/secure/attachment/12310313/jboss-format.xmi/]. JBoss Eclipse Template
[http://jirajboss.com/jiralsecure/attachment/12310312/jboss-template.xmi/] .

Template files for other IDES(IntelliJ-IDEA, NetBeans) should be available here soon.

JBoss 2004, Ivelin Ivanov, Ryan 59

http://jira.jboss.com/jira/secure/attachment/12310313/jboss-format.xml/
http://jira.jboss.com/jira/secure/attachment/12310312/jboss-template.xml/

Coding Conventions

9.1.1. Importing Templates into the Eclipse IDE

The process of importing templates into the Eclipse IDE is as follows:

On the IDE, goto Windows Menu => Preferences => Java => Code Style => Code Templates => Import and
choose to import the Eclipse template files.

= Preferences |: i' E|

+- Workbench Code Templates

+- Ant
Build Order Configure generated code and comments:

+- Help +- Comments
+- InstallUpdate ¥ Code
—I- Java e
+- Appearance etV O
+- Build Path Export...
-+ Code Style _—
Code Formatter Export All...
Code Templates -
Organize Imports
Compiler
+- Debug
+]- Editor
Installed JREs
JUnit
Task Tags
Type Filters
+- Plug-in Development
+- Run/Debug
+- Team

Pattern:

W Automatically add comments for new methods and types
{Comments contained in the code patterns are always inserted)

Restore Defaults | Apply |

Import. .. | Export... | Ok | Cancel |

Tools such as Jalopy [http://jalopy.sourceforge.net] help to automate template changes at one shot to humerous
files.

9.2. Some more general guidelines

1. Fully qualified imports should be used, rather than importing x.y.*.
2. Usenewlinesfor opening braces, so that the top and bottom braces can be visually matched.

3. Aidvisual separation of logical steps by introducing newlines and appropriate comments above them.

JBoss 2004, Ivelin Ivanov, Ryan 60

http://jalopy.sourceforge.net

Coding Conventions

9.3. JavaDoc recommendations

Lo

All public and protected members and methods should be documented.

N

It should be documented if "null" is an acceptable value for parameters.

3. Sideeffects of method calls, if known, or as they're discovered should be documented.

E

It would also be useful to know from where an overridden method can be invoked.

Example 9.1. A classthat conformsto JBoss coding guidelines

* JBoss, Home of Professional Open Source
* Copyright 2005, JBoss Inc., and individual contributors as indicated
* by the @uthors tag. See the copyright.txt in the distribution for a
* full listing of individual contributors.

* This is free software; you can redistribute it and/or nodify it
* under the terns of the G\U Lesser General Public License as

* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any |ater version.

* This software is distributed in the hope that it will be useful,
* but W THOUT ANY WARRANTY; w thout even the inplied warranty of

* MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPCSE. See the GNU
* Lesser General Public License for nore details.

* You shoul d have received a copy of the GNU Lesser General Public

* License along with this software; if not, wite to the Free

* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA, or see the FSF site: http://ww. fsf.org.

package x;

/1 EXPLICIT | MPORTS
inport a.b.Cl; // GOOD
inport a.b.C2;

inport a.b.C3;

/1 DO NOT WRI TE
inport a.b.*; // BAD

/1 DO NOT USE "TAB" TO | NDENT CODE USE *3* SPACES FOR PORTABI LI TY AMONG EDI TORS

/**
* A description of this class.

*

* @ee SoneRel at edd ass.

*

* @ersion <tt>$Revision: 1.4 $</tt>

* @uthor {full nanme}.

* @uthor Marc Fl eury
*/

public class X

JBoss 2004, lvelin lvanov, Ryan

61

Coding Conventions

extends Y
inpl ements Z

/] ConsStants ---------mmom oo

[l Attributes ---------ommm oo

public void startService() throws Exception

{
Il Use the new ine for the opening bracket so we can natch top
/1 and bottom bracket visually
Class cls = d ass. for Nane(dat aSour ceC ass) ;
vendor Sour ce = (XADat aSour ce) cl s. new nstance();
/1 JUWP A LINE BETWEEN LOG CALLY DI STI NCT **STEPS** AND ADD A
/1 LINE OF COWENT TO I T
cls = vendor Sour ce. get O ass();
if(properties !'= null)
{
try
{
}
catch (| OException ioe)
{
}
for (lterator i = props.entrySet().iterator(); i.hasNext();)
{
Il Cet the nane and value for the attributes
Map. Entry entry = (Map. Entry) i.next();
String attributeNane = (String) entry.getKey();
String attributeValue = (String) entry.getVal ue();
/1 Print the debug nessage
| 0og. debug("Setting attribute '" + attributeNane + "' to '" + attributeValue + "'");
/'l get the attribute
Met hod setAttribute =
cls.get Method("set" + attributeNane, new O ass[] { String.class });
/1 And set the value
set Attri bute.invoke(vendor Source, new Object[] { attributeValue });
}
}
/| Test database
vendor Sour ce. get XAConnection().cl ose();
/1 Bind in JNDI
bi nd(new I nitial Context (), "java:/"+getPool Nane(),
new Ref er ence(vendor Sour ce. get C ass() . get Nane(),
getd ass().get Nane(), null));
}

[l Zinplementation ----------c-moomomne e

Il Y overrides -----c-cccocmomomo e e et ce e

Campbell, Pushkala lyer, Clebert Su-

Coding Conventions

I FECkeEe reiEEiEE ~rosreressscoconsorssranosrooeconsamoaea0m30S
e o e e di L L L L L LR L EEEEEEEEEEEEEEEEE
I FFIVERR =ececcesmsorcnsorcnnonoconooronranonroneoo0ea0000305900

[/ 1 NNEr Cl @SS@S === - = - s mf oo oooo.

Example 9.2. An interface that conformsto JBoss coding guidelines

*

*

JBoss, Hone of Professional Open Source
Copyri ght 2005, JBoss Inc., and individual contributors as indicated
by the @uthors tag. See the copyright.txt in the distribution for a
full listing of individual contributors.

This is free software; you can redistribute it and/or nodify it
under the terms of the GNU Lesser General Public License as

publ i shed by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any |later version.

This software is distributed in the hope that it will be useful,
but W THOUT ANY WARRANTY; without even the inplied warranty of
MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE. See the G\U
Lesser General Public License for nore details.

You shoul d have received a copy of the GNU Lesser Ceneral Public
License along with this software; if not, wite to the Free
Sof t ware Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110- 1301 USA, or see the FSF site: http://ww.fsf.org.

/

package x;

/1 EXPLICIT | MPORTS
inport a.b.Cl; // GOOD
inport a.b.C2;

i nport a.b.C3;

/1 DO NOT WRI TE
import a.b.*; // BAD

/1 DO NOT USE "TAB" TO | NDENT CODE USE *3* SPACES FOR PORTABI LI TY AMONG // EDI TORS

/*
*
*
*
*
*
*

*

*

*/
public interface X extends Y

{

A description of this interface.
@ee SoneRel at edd ass
@ersion <tt>$Revision: 1.4 $</tt>

@uthor {full nanme}.
@uthor Marc Fl eury

int MY_STATI C FI NAL_VALUE = 57;

Ret urnCl ass doSonet hing() throws ExceptionA, ExceptionB;

Campbell, Pushkala lyer, Clebert Su-

Coding Conventions

conic, Mark Little, Andrig Miller,

10

Logging Conventions

Persisted diagnostic logs are often very useful in debugging software issues. This section lists some genera
guidelines followed in JBoss code for diagnostic logging.

10.1. Obtaining a Logger

The following code snippet illustrates how you can obtain alogger.

package org.j boss. X.Y;
i nport org.jboss.|ogging. Logger;

public class Test ABCW apper

{
private static final Logger |og = Logger.getLogger(Test ABCW apper. cl ass. get Nane());

/1l Hereafter, the logger may be used with whatever priority |evel as appropriate.

}

After alogger is obtained, it can be used to log messages by specifying appropriate priority levels.

10.2. Logging Levels

1. FATAL - Usethe FATAL level priority for events that indicate a critical service failure. If a service issues a
FATAL error it is completely unable to service requests of any kind.

2. ERROR - Use the ERROR level priority for events that indicate a disruption in a request or the ability to ser-
vice a request. A service should have some capacity to continue to service requests in the presence of ER-
RORs.

3. WARN - Usethe WARN level priority for events that may indicate a non-critical service error. Resumable er-
rors, or minor breaches in request expectations fall into this category. The distinction between WARN and
ERROR may be hard to discern and so its up to the developer to judge. The ssimplest criterion is would this
failure result in a user support call. If it would use ERROR. If it would not use WARN.

4. INFO - Usethe INFO level priority for service life-cycle events and other crucia related information. Looking
at the INFO messages for a given service category should tell you exactly what state the serviceisin.

5. DEBUG - Use the DEBUG level priority for log messages that convey extra information regarding life-cycle
events. Developer or in depth information required for support is the basis for this priority. The important
point is that when the DEBUG level priority is enabled, the JBoss server log should not grow proportionally

JBoss 2004, lvelin lvanov, Ryan 65

Logging Conventions

with the number of server requests. Looking at the DEBUG and INFO messages for a given service category
should tell you exactly what state the service isin, as well as what server resources it is using: ports, inter-
faces, log files, etc.

6. TRACE - Use TRACE thelevel priority for log messages that are directly associated with activity that corres-
ponds requests. Further, such messages should not be submitted to a Logger unless the Logger category prior-
ity threshold indicates that the message will be rendered. Use the Logger . i sTraceEnabl ed() method to de-
termine if the category priority threshold is enabled. The point of the TRACE priority isto alow for deep prob-
ing of the JBoss server behavior when necessary. When the TRACE level priority is enabled, you can expect the
number of messages in the JBoss server log to grow at least ax N, where N is the number of requests received
by the server, a some constant. The server log may well grow as power of N depending on the request-hand-
ling layer being traced.

10.3. Log4j Configuration

Thel og4j configuration is loaded from the jboss server conf /1 og4j . xm file. You can edit this to add/change the
default appenders and logging thresholds.

10.3.1. Separating Application Logs

Y ou can segment logging output by assigning | og4j categories to specific appenders in the conf/1 og4j . xm con-
figuration.

Example 10.1. Assigning categoriesto specific appenders

<appender nane="ApplLog" class="org.apache. | og4j.Fil eAppender">
<error Handl er
class="org.jboss. | ogging.util.Onl yOnceErrorHandl er"/>
<par am nanme="Append" val ue="fal se"/>
<par am name="Fi | e"
val ue="${| boss. server. hone. dir}/| og/ appl.| og"/>
<l ayout class="org.apache.|og4j. PatternLayout">
<par am nane="Conver si onPat t er n"
val ue="%l{ ABSCLUTE} % 5p [%{1}] %?@m"/>
</l ayout >
</ appender >

<cat egory name="com appl">
<appender -ref ref="ApplLog"/>

</ cat egory>

<cat egory name="comutil">
<appender-ref ref="ApplLog"/>

</ cat egory>

<r oot >
<appender -ref ref="CONSOLE"/ >
<appender-ref ref="FILE"/>

JBoss 2004, lvelin lvanov, Ryan 66

Logging Conventions

<appender-ref ref="ApplLog"/>
</ root >

10.3.2. Specifying appenders and filters

If you have multiple apps with shared classes/categories, and/or want the jboss categories to show up in your app
log then this approach will not work. There is a new appender filter called TCLFilter that can help with this. The
filter should be added to the appender and it heeds to be specifed what deployment url should logging be restricted
to. For example, if your appl deployment was appl.ear, you would use the following additions to the conf/

| og4j . xm :

Example 10.2. Filtering log messages

<appender name="ApplLog" cl ass="org. apache. | og4j.Fil eAppender" >
<error Handl er
cl ass="org.jboss. | ogging. util.Onl yOnceErrorHandl er"/>
<par am nane="Append" val ue="fal se"/>
<param nane="Fi | e"
val ue="${j boss. server. hone. dir}/1 og/ appl. | og"/>
<l ayout class="org.apache.|og4j. PatternLayout">
<par am name="Conver si onPat t er n"
val ue="%l{ ABSCLUTE} % 5p [%{1}] %?®m"/>
</l ayout >
<filter class="org.jboss.logging. filter. TCLFilter">
<par am nane="Accept OnMat ch" val ue="true"/>
<par am nanme="Depl oyURL" val ue="appl.ear"/>
</filter>
</ appender >

<r oot >
<appender -ref ref="CONSOLE"/>
<appender-ref ref="FILE"/>
<appender-ref ref="ApplLog"/>
</ r oot >

10.3.3. Logging to a Seperate Server

The log4j framework has a number of appenders that allow you to send log message to an external server. Common
appenders include:

1. org. apache. | og4j . net . JMSAppender
2. org. apache. | 0g4j . net. SMIPAppender

3. org. apache. | og4j . net. Socket Appender

JBoss 2004, lvelin lvanov, Ryan 67

Logging Conventions

4. org. apache. | og4j . net. Sysl ogAppender
5. org. apache. | 0g4j . net. Tel net Appender

Documentation on configuration of these appenders can be found a Apache Logging Services
[http://logging.apache.org/].

JBoss has aLog4j Socket Server service that allows for easy use of the Socket Appender .

Example 10.3. Setting up and using the Log4j Socket Ser ver service.

The or g. j boss. | oggi ng. Log4j Socket Server iSan mbean service that allows one to collect output from multiple
| og4j clients (including jboss servers) that are using the or g. apache. | og4j . net . Socket Appender .

The Log4j Socket Server creates a server socket to accept Socket Appender connections, and logs incoming mes-
sages based on thelocal | og4j . xni configuration.

Y ou can create a minimal jboss configuration that includes aLog4j Socket Ser ver to act as your log server.

Example 10.4. An Log4j Socket Server mbean configuration

The following MBean Configuration can be added to the conf / j boss- ser vi ce. xn

<nbean code="org. jboss. | oggi ng. Log4j Socket Server"
nane="j boss. syst em t ype=Log4j Ser vi ce, servi ce=Socket Server" >
<attribute nane="Port">12345</attribute>
<attribute name="Bi ndAddress" >${| boss. bi nd. address}</attri bute>
</ nbean>

The Log4j Socket Server adds an MDC entry under the key 'host’ which includes the client socket I net Ad-
dr ess. get Host Nare value on every client connection. This allows you to differentiate logging output based on the
client hosthame using the MDC pattern.

Example 10.5. Augmenting the log server console output with the logging client socket hostname

<appender nane="CONSOLE" cl ass="org. apache. | og4j . Consol eAppender ">
<errorHandl er class="org.jboss.|ogging.util.OnlyOnceErrorHandl er"/>
<par am nane="Target" val ue="System out"/>

<par am nane="Thr eshol d" val ue="1NFO'/ >

<l ayout class="org.apache.|og4j. PatternLayout">
<par am nane="Conver si onPat t ern" val ue="%{ ABSOLUTE} % 5p [%{1}, %{host}] %dm"/>
</l ayout >
</ appender >

Campbell, Pushkala lyer, Clebert Su-

http://logging.apache.org/

Logging Conventions

All other jboss servers that should send log messages to the log server would add an appender configuration that

uses the SocketA ppender.

Example 10.6. 1 og4j . xm appender for the L og4j SocketSer ver

<appender nane="SOCKET" cl ass="org. apache. | og4j . net. Socket Appender" >

<param nane="Port" val ue="12345"/>
<par am nane="Renpt eHost" val ue="1 oghost"/>
<par am nane="Reconnecti onDel ay" val ue="60000"/>
<par am nane="Thr eshol d" val ue="1NFQO'/ >
</ appender >

10.3.4. Key JBoss Subsystem Categories

Some of the key subsystem category names are given in the following table. These are just the top level category
names. Generally you can specify much more specific category names to enable very targeted logging.

Table 10.1. JBoss SubSystem Categories

SubSystem Category

Cache org.jboss.cache

CMP org.jboss.gjb.plugins.cmp

Core Service org.jboss.system

Cluster org.jboss.ha

EB org.jboss.gjb

JCA org.jboss.resource

IMX org.jboss.mx

JMS org.jboss.mq

JTA org.jboss.tm

MDB org.jboss.gjb.plugins,jms, org.jboss.,jms
Security org.jboss.security

Tomcat org.jboss.web, org.apache.catalina
Apache Stuff org.apache

JGroups org.jgroups

Campbell, Pushkala lyer, Clebert Su-

Logging Conventions

10.3.5. Redirecting Category Output

When you increase the level of logging for one or more categories, it is often useful to redirect the output to a
seperate file for easier investigation. To do this you add an appender-ref to the category as shown here:

Example 10.7. Adding an appender -ref to a category

<appender nane="JSR77" cl ass="org. apache. | og4j. Fi | eAppender">
<param nane="Fi | e"
val ue="${j boss. server. hone.dir}/log/jsr77.10g"/>

</ appender >

<l-- Limt the JSR77 categories -->

<cat egory name="org.j boss. managenent" additivity="fal se">
<priority val ue="DEBUG'/ >
<appender-ref ref="JSR77"/>

</ cat egory>

This sends alor g. j boss. managenent output to thej sr77. 1 og file. The additivity attribute controls whether output
continues to go to the root category appender. If false, output only goes to the appenders referred to by the cat-

egory.

10.3.6. Using your own log4j.xml file - class loader scoping

In order to use your own | og4j . xni file you need to do something to initialize | og4j inyour application. If you use
the default singleton initialization method where the first use of 1 og4j triggers a search for the | og4j initialization
files, you need to configure a ClassLoader to use scoped class loading, with overrides of the jBoss classes. You
also have to include the 1 og4j . j ar in your application so that new | og4j singletons are created in your applice-
tions scope.

Note

You cannot use al og4j . properti es file using this approach, at least using I og4j - 1. 2. 8 because it prefer-
entially searches for a | og4j . xnl resource and will find the conf/1 og4j.xm ahead of the application
| og4j . properties file. You could rename the conf /1 og4j . xm to something like conf/ | boss- 1 og4j . xm
and then change the Confi gur ati onURL attribute of the Log4j Ser vi ce in the conf/j boss-servi ce. xm to
get around this.

10.3.7. Using your own log4j.properties file - class loader scoping

To useal og4j . properti es file, you have to make the change in conf/j boss- servi ce. xm as shown below. This
is necessary for the reasons mentioned above. Essentially you are changing the | og4j resource file that jBossAS
will look for. After making the change in j boss- servi ce. xni make sure you rename the conf /| og4j . xm to the
name that you have giveinj boss- servi ce. xn (inthiscasej boss-1o0g4j . xn).

conic, Mark Little, Andrig Miller,

Logging Conventions

<l-- =
<!-- Log4j Initialization -->
<l- ==

<nmbean code="org.jboss. | oggi ng. Log4j Servi ce"
nanme="j boss. syst em t ype=Log4j Ser vi ce, servi ce=Loggi ng" >
<attribute name="Confi gurati onURL">
resource: j boss-1og4j.xm </attribute>
<l-- Set the org.apache.|og4j. hel pers. LogLog. set Qui t eMbde
As of log4j1.2.8 this needs to be set to avoid a possibl e deadl ock
on exception at the appender |evel. See bug#696819
-->
<attribute name="Log4j Qui et Mode">true</attribute>

<!-- How frequently in seconds the ConfigurationURL is checked for changes -->
<attribute name="RefreshPeriod">60</attribute>
</ mhbean>

Drop | og4j . j ar inyour nyapp. war / WEB- | NF. Make the change in j boss- web. xn
the section above. In this case, myapp. war / WEB- | NF/ j boss-web. xm |ooks like this;

<j boss- web>
<cl ass- | oadi ng j ava2d assLoadi ngConpl i ance="f al se" >
<l oader - r eposi t ory>
nmyapp: | oader =nyapp. war
<l oader - r eposi t ory- conf i g>j ava2Par ent Del egat i on=f al se
</ | oader -reposi tory-config>
</ | oader - r eposi tory>
</ cl ass- | oadi ng>
</ j boss- web>

Now, in your depl oy/ nyapp. war / WEB- | NF/ cl asses Create al og4j . properti es.

Example 10.8. Sample| og4j . properti es

Debug | og4
| og4j . debug=t rue
| og4j . r oot Logger =debug, nyapp

| og4j . appender . nyapp=or g. apache. | og4j . Fi | eAppender

| og4j . appender . nyapp. | ayout =or g. apache. | og4j . HTM_Layout
| og4j . appender . nyapp. | ayout . Locati onl nf o=t rue

| og4j . appender. nyapp. | ayout. Title="All"' Log

for class-loading, as shown in

| 0g4j . appender . nyapp. Fi | e=${ boss. server. hone. di r}/ depl oy/ nyapp. war / VEB- | NF/ | ogs/ nyapp. ht ni

| og4j . appender . nyapp. | medi at eFl ush=t r ue
| og4j . appender . nyapp. Append=f al se

The above property file setsthe | og4j debug system to true, which displays| og4j messagesin your jBosslog. You
can use this to discover errors, if any in your propertiesfile. It then produces anice HTML log file and placesit in
your application's WeB- | NF/ | ogs directory. In your application, you can call thislogger with the syntax:

conic, Mark Little, Andrig Miller,

Logging Conventions

private static Logger |og = Logger. getLogger("nyapp");

| 0g. debug(" #######HH#H#H#### A debug nmessage from nyapp | ogger #########") ;

If all goeswell, you should see this message in nyapp. ht m .

After jBossAS has reloaded conf/jboss-service.xni (you may have to restart jBossAS), touch
myapp. war / WEB- | NF/ web. xmi SO that JBoss rel oads the configuration for your application. As the application loads
you should seel og4j debug messages showing that its reading your | og4j . properti es. This should enable you to
have your own logging system independent of the JBoss logging system.

10.3.8. Using your own | og4j . xm file - Log4j RepositorySel ect or

Another way to achieve thisis to write a custom Reposi t or ySel ect or that changes how the LogManager getsalog-
ger. Using this technique, Logger . get Logger () will return a different logger based on the context class loader.
Each context class loader has its own configuration set up with itsown | og4j . xm file.

Example 10.9. A Reposi t or ySel ect or

The following code shows a Reposi t orySel ect or that looksfor al og4j . xn filein the Wes- | NF directory.

* JBoss, Hone of Professional Open Source
* Copyright 2005, JBoss Inc., and individual contributors as indicated
* by the @uthors tag. See the copyright.txt in the distribution for a
* full listing of individual contributors.

* This is free software; you can redistribute it and/or nodify it
* under the terns of the G\U Lesser General Public License as

* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any |ater version.

* This software is distributed in the hope that it will be useful,
* but W THOUT ANY WARRANTY; w thout even the inplied warranty of

* MERCHANTABI LI TY or FI TNESS FOR A PARTI CULAR PURPOSE. See the GNU
* Lesser General Public License for nore details.

* You shoul d have received a copy of the GNU Lesser General Public
* License along with this software; if not, wite to the Free
* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
* 02110-1301 USA, or see the FSF site: http://ww.fsf.org.
*/
package org.j boss. repositorysel ectorexanpl e;

i nport java.io.lnputStream

i mport java.util.HashMap;

i mport java.util.Mp;

i nport javax.servlet.ServletConfig;

i mport javax.servlet. Servl et Exception;

i mport javax.xm . parsers. Docunent Bui | der Factory;
i nport org.apache. | og4j . Hi erarchy;

i nport org.apache. | og4j . Level ;

Alex Pinkin

Logging Conventions

i mport org. apache. | og4j . Logvanager ;

i nport org.apache. | og4j . spi.Logger Repository;

i mport org. apache. | og4j . spi . Reposi torySel ect or;
i nport org.apache. | og4j . spi . Root Cat egory;

i mport org. apache. | og4j.xnm . DOMConfi gur at or;

i mport org.w3c. dom Docunent ;

| **

* This RepositorySelector is for use with web applications.
* |t assumes that your log4j.xm file is in the WEB-INF directory.
* @uthor Stan Silvert

public class MyRepositorySel ector inplenments RepositorySel ector

{

private static boolean initialized = fal se;

/1 This object is used for the guard because it doesn't get
/'l recycled when the application is redeployed.
private static Object guard = LogManager . get Root Logger () ;

private static Map repositories = new HashMap();
private static Logger Repository defaul t Repository;

/**
* Regi ster your web-app with this repository selector.
*/
public static synchroni zed void init(ServletConfig config)
throws Servl et Exception {
if(linitialized) // set the gl obal RepositorySel ector
{
def aul t Reposi tory = LogManager . get Logger Reposi tory();
Reposi torySel ector theSel ector = new MyRepositorySel ector();
LogManager . set Reposi t orySel ect or (t heSel ector, guard);
initialized = true;

Hi erarchy hierarchy = new Hi erarchy(new
Root Cat egor y(Level . DEBUG)) ;
| oadLog4JConfi g(config, hierarchy);
Cl assLoader | oader =
Thread. current Thread() . get Cont ext C assLoader () ;
reposi tories. put (| oader, hierarchy);

/1 load |og4j.xm from VEB-|NF
private static void | oadLog4JConfig(ServletConfig config,
Hi erarchy hierarchy)
throws Servl et Exception {
try {
String log4jFile = "/WEB-INF/| og4j . xm";
I nput Stream | og4JConfig =

config. get Servl et Cont ext (). get Resour ceAsStrean(| og4j File);
Docunent doc = Docunent Bui | der Fact ory. newl nst ance()
. newDocumnent Bui | der ()
. parse(l og4JConfig);
DOMConf i gur at or conf = new DOMConfi gurator();
conf . doConf i gur e(doc. get Docunent El enent (), hi erarchy);
} catch (Exception e) {
t hrow new Ser vl et Exception(e);

private MyRepositorySel ector() {
}

publ i c Logger Repository getLogger Repository() {

Alex Pinkin

Logging Conventions

O assLoader | oader =
Thread. current Thread() . get Cont ext Cl assLoader () ;
Logger Repository repository =
(Logger Reposi tory)repositories. get (|l oader);

if (repository == null) {
return defaul t Repository;
} else {
return repository;

}

10.4. JDK java.util.logging

The choice of the actual logging implementation is determined by the or g. j boss. | oggi ng. Logger . pl ugi nd ass
system property. This property specifies the <class name of an implementation of the
org. j boss. | oggi ng. Logger Pl ugi n interface. The default value for this is the
org.j boss. | oggi ng. Log4j Logger Pl ugi n class.

If you want to use the JDK 1.4+ java. util .l oggi ng framework instead of | og4j, you can create your own
Log4j Logger Pl ugi n to do this. The attached JDk14Logger Pl ugi n. j ava file shows an example implementation.

To use this, specify the following system properties:

1. To specify the custom JDK 1.4 plugin:

org.]j boss. | oggi ng. Logger . pl ugi nCl ass = | oggi ng. JDK14Logger Pl ugi n

2. To specify the IDK 1.4 logging configuration file:

java.util.logging.config.file = | ogging. properties
This can be done using the JAvA_oPTS env variable, for example:
JAVA _OPTS="-Dor g. j boss. | oggi ng. Logger . pl ugi nCl ass=Il oggi ng. JDK14Logger Pl ugi n
-Djava. util.logging.config.file=logging.properties"”
Y ou heed to make your custom Log4j Logger Pl ugi n available to JBoss by placingitin ajar inthe JBoSS_DI ST/ 1i b

directory, and then telling JBoss to load this as part of the bootstrap libraries by passing in - L j ar nane on the com-
mand line as follows:

st ar ksm@anshee9100 bi n$ run.sh -c mnimal -L |ogger.jar

JBoss 2004, lvelin lvanov, Ryan 74

11

Logging
Logging

One can say that using a debugger may help to verify the execution of an application. However, in addition to the
fact that a debugger decreases performance of an application, it is difficult to use it in a distributed computing en-
vironment.

This most basic form of logging involves developers manualy inserting code into their applications to display
small (or large) pieces of internal state information to help understand what's going on. It's a useful technique that
every developer has used at least once. The problem is that it doesn't scale. Using print statements for a small pro-
gram is fine, but for alarge, commercia-grade piece of software there is far too much labor involved in manualy
adding and removing logging statements.

C programmers know, of course, that the way to conditionally add and remove code is via the C preprocessor and
the #ifdef directive. Unfortunately, Java doesn't have a preprocessor. How can we make logging scale to a useful
level in Java?

A simple way to provide logging in your program is to use the Java compiler's ability to evaluate boolean expres-
sions at compile time, provided that all the arguments are known. For example, in this code, the printin statements
will not be executed if DEBUG not set to true.

class foo

{
public bar()

{
i f (DEBUG)
{
System out . print| n("Debuggi ng enabled.");

}
}
}

A much better way, and the way that most logging is done in environments where the logged output isimportant, is
to use alogging class.

A logging class collects all the messages in one central place and not only records them, but can also sort and filter
them so that you don't have to see every message being generated. A logging class provides more information than
just the message. It can automatically add information such as the time the event occurred, the thread that generated
the message, and a stack trace of where the message was generated.

Some logging classes will write their output directly to the screen or afile. More advanced logging systems may in-
stead open a socket to allow the log messages to be sent to a separate process, which is in turn responsible for

JBoss 2004, lvelin lvanov, Ryan 75

Logging

passing those messages to the user or storing them. The advantage with this system is that it allows for messages
from multiple sources to be aggregated in a single location and it allows for monitoring remote systems.

The format of the log being generated should be customisable. This could start from just allowing setting the Log
"level" - which means that each log message is assigned a severity level and only messages of greater importance
than the log level are logged - to allowing more flexible log file formatting by using some sort LogFormatter ob-
jectsthat do transformations on the logging information.

The logging service should be able to route logging information to different locations based on the type of the in-
formation. Examples might be printing certain messages to the console, writing to aflat file, to a number of differ-
ent flat files, to a database and so on. Examples of different types information could be for example errors, access
information etc.

An appropriate logging library should provide these features:

1. Control over which logging statements are enabled or disabled,

2. Defineimportance or severity for logging statement viaa set of levels
3. Manage output destinations,

4. Manage output format.

5. Manage internationalization (i18n)

6. Configuration.

11.1. Relevant Logging Framework

According to the features (described above) a logging framework should provide, we have considering the most
common logging serviceis use.

11.1.1. Overview of log4j

11.1.1.1. Categories, Appenders, and Layout

Log4j has three main components:

1. Categories
2. Appenders
3. Layouts

11.1.1.2. Category Hierarchy

The org. 1 0g4j . Category class figures at the core of the package. Categories are named entities. In a naming
scheme familiar to Java developers, a category is said to be a parent of another category if its name, followed by a

JBoss 2004, Ivelin Ivanov, Ryan 76

Logging

dot, is a prefix of the child category name. For example, the category named com f oo is a parent of the category
named com.foo.Bar. Similarly, javaisaparent of j ava. uti | and an ancestor of j ava. util . Vector.

The root category, residing at the top of the category hierarchy, is exceptional in two ways:

1. Itawaysexists
2. It cannot be retrieved by name

In the cat egory class, invoking the static get Root () method retrieves the root category. The static get I nst ance()
method instantiates all other categories. get I nst ance() takes the name of the desired category as a parameter.
Some of the basic methods in the cat egor y class are listed below:

package org. | og4j;

public Category class {
/1l Creation and retrieval nethods:
public static Category getRoot();
public static Category getlnstance(String nane);

/1 printing nethods:

public void debug(String nmessage);
public void info(String nessage);
public void warn(String nessage);
public void error(String nessage);

/1 generic printing nethod:
public void log(Priority p, String nmessage);

Categories may be assigned priorities from the set defined by the org. 1 og4j . Priority class. Five priorities are
defined: FATAL, ERROR, WARN, INFO and DEBUG, listed in decreasing order of priority. New priorities may
be defined by subclassing thePri ori ty class.

1. FATAL: The FATAL priority designates very severe error events that will presumably lead the application to
abort.

2. ERROR: The ERROR priority designates error events that might still allow the application to continue run-
ning.

3. WARN: The WARN priority designates potentially harmful situations.
4. INFO: The INFO priority designates informational messages that highlight the progress of the application.

5. DEBUG: The DEBUG priority designates fine-grained informational events that are most useful to debug an
application.

To make logging requests, invoke one of the printing methods of a category instance. Those printing methods are:
fatal (), error(), warn(), info(), debug(), log().

By definition, the printing method determines the priority of alogging request. For example, if ¢ is a category in-

JBoss 2004, lvelin lvanov, Ryan 77

Logging

stance, then the statement c. i nfo(". . ") isalogging request of priority INFO.

A logging request is said to be enabled if its priority is higher than or equal to the priority of its category. Other-
wise, the request is said to be disabled. A category without an assigned priority will inherit one from the hierarchy.

11.1.1.3. Appenders and layouts

Log4j aso alows logging requests to print to multiple output destinations called appenders in log4j speak. Cur-
rently, appenders exist for the console, files, GUI components, remote socket servers, NT Event Loggers, and re-
mote UNIX Syslog daemons.

A category may refer to multiple appenders. Each enabled logging request for a given category will be forwarded
to all the appenders in that category as well as the appenders higher in the hierarchy. In other words, appenders are
inherited additively from the category hierarchy. For example, if you add a console appender to the root category,
all enabled logging requests will at least print on the console. If, in addition, afile appender is added to a category,
say C, then enabled logging requests for C and C's children will print on afile and on the console.

More often than not, users want to customize not only the output destination but also the output format, a feat ac-
complished by associating alayout with an appender. The layout formats the logging request according to the user's
wishes, whereas an appender takes care of sending the formatted output to its destination.

For example, the PatternL ayout with the conversion pattern % [%] % 5p % - %, will output something like:

176 [main] INFO org.foo.Bar #Hello Wrld.

In the output above:

1. Thefirst field equals the number of milliseconds elapsed since the start of the program
2. Thesecond field indicates the thread making the log request

3. Thethird field represents the priority of the log statement

4. Thefourth field equals the name of the category associated with the log request

The text after the - indicates the statement's message.

11.1.1.4. Configuration

The log4j environment can be fully configured programmatically. However, it is far more flexible to configure
logdj by using configuration files. Currently, configuration files can be written in XML or in Java properties
(key=value) format.

The following figure summarizes the different components when using log4j. Applications make logging calls on
Cat egory objects. The cat egory forwards to Appender logging requests for publication. Appender are registered
with a cat egory with the addAppender method on the Cat egory class. Invoking the addAppender method is made
either by the Appl i cati on or by Confi gurat or objects. Log4j provides Confi gur at or s SUch as Basi cConfi gur at -
or, which registers to the category the Consol eAppender responsible to send logging requests to the console, or the
Proper t yConf i gur at or, Which registers Appender objects based on Appender classes defined in a configuration

Campbell, Pushkala lyer, Clebert Su-

Logging

file. Both cat egory and Appender may use logging Priority and (optionally) Fi | ters to decide if they are inter-
ested in a particular logging request. An Appender can use aLayout to localize and format the message before pub-
lishing it to the output world.

Ly gemad s fozry ok el i Owicyrens
S e | sy Ltk
X iponny altereonile skl 35 S S0 cp s S
Mg ot
Sggemnke
L5 Ciyrsy Hpgrmkerd g Wik
Fliex [EVT) S

Figure11.1. Example of log interactions.

11.1.2. HP Logging Mechanism

The HP Logging Mechanism consists of alog handler, zero or more log writers, and one or more log channels, as
illustrated in Figure below.

b rang Heanindleor bavanal Doy £3Feaninil
I oeaig WG o
) ey MR G]

I oy Wil o o]
Figure11.2. TheLogHandler.

11.1.2.1. Log Handler

The log handler is implemented a a singleton Java Bean. It is accessble from the
com hp. mw. common. uti | . LogHandl er Fact ory which returns the single instance of

com hp. mv. conmon. uti | . LogHandl er .

Campbell, Pushkala lyer, Clebert Su-

Logging

The following code illustrates how to obtain the LogHandler:

LogHandl er handl er;

handl er = LogHandl er Factory. get Handl er () ;

11.1.2.2. Log Channel

Log channels are virtual destinations; they receive messages and pass them to the log writers that are registered to
receive them. They are not aware of the message formatting that might occur and are not aware of the logging tools
that are used to view or store the messages. Log writers are registered for channels. When a log channel receives a
message, and if that channel has aregistered log writer(s), the message is passed along to that writer.

A client may obtain a channel with a specific name as follows.

LogChannel channel ;

channel = LogChannel Fact ory. get Channel (" nyapplication");

11.1.2.3. Log Writers

In order to abstract the destination of alog message (e.g., console, file, database), the Logging Mechanism relies on
log writers. Log writers are defined by the com hp. mw. common. uti | . 1 oggi ng. LogWi ter interface and are given
messages by the channel (s) they service. They are responsible for formatting messages and outputting to the actual
destination.

11.1.2.4. Log Formatters

A log formatter is responsible for formatting a log message into a Java St ri ng. Since many log writers do not re-
quire the String representation, log formatters are not required for every log writer. As a result, the
com hp. mw. common. uti | . | oggi ng. LogMessageFor mat interface would be used for formatting messages into
Strings when applicable and necessary.

11.1.2.5. Log Levels and Thresholds

All log channels are created, initially, with a default log threshold. The threshold is the minimum severity of alog
message that should be processed for that log channel. The log levels defined by the HP logging mechanisms are as
follows:

Log Level Description

1. LOG _LEVEL NONE Thislog level should be used to turn off all messages to achannel.

2. LOG_LEVEL_FLOW How messages indicate program flow and can be extremely frequent.

conic, Mark Little, Andrig Miller,

Logging

LOG_LEVEL_DEBUG Debug messages are fairly low-level messages that provide the developer(s) with in-
formation about events occurring within the application

LOG_LEVEL_INFO Informational messages are of higher severity than debug and should provide informa-
tion that any user could understand, as opposed to debug messages, which provide code-specific information.

LOG_LEVEL_WARNING Warning messages are typically used to report an unusual or unexpected occur-
rence from which recovery is possible (e.g., a missing or incorrect configuration value that has a reasonable
default).

LOG_LEVEL_ERROR Error messages are used to report an unusual or unexpected occurrence from which
recovery is not possible. This does not indicate that the entire application or framework is incapable of con-
tinuing, but that the component involved might be defunct or the operation it was asked to perform is aborted.

LOG_LEVEL_CRITICAL Critical messages are typically used to report a very unusual or unexpected occur-
rence. For example, a component that was functioning correctly but suddenly experiences an unrecoverable
error that preventsit from continuing should emit a critical message.

11.1.2.6. Interactions

The following figure summarizes the different components when using log4j. Applications make logging calls on
Channel objects. The channel forwards to LogWriter logging requests for publication. Logw iter are registered
with the handler associated to a channel . Both LogChannel and LogwW i tter may use logging LogLevel to decideif
they are interested in a particular logging request. A LogW i ter can use alLogFor matter to format the message be-
fore publishing it to the output world.

Vo Wmiew Rewowmi vl mowomiewes] vl e T Bnr
o xakal v e X oo el

Voaws Woatesd
Vape Wit

Agminn i | JPIY 3o MweRS | VoWl Chndgmed Wik

Vawbimatis

Figure 11.3. Basic interactionswith HP L ogger .

11.2. 118N and L10N

An application isinternationalized, if it can correctly handle different encodings of character data. An application is
localized, if it formats and interprets data (dates, times, timezones, currencies, messages and so on) according to
rules specific to the user'slocale (country and language).

conic, Mark Little, Andrig Miller,

Logging

Internationalization (118N) is the process of designing an application so that it can be adapted to various languages
and regions without engineering changes. Localization (L10N) is the use of locale-specific language and constructs
at runtime.

11.2.1. The Java Internationalization API

Java Internationalization shows how to write software that is multi-lingual, using Unicode, a standard system that
supports hundreds of character sets. The Java Internationalization API is a comprehensive set of APIs for creating
multilingual applications. The JDK internationalization features, from its version 1.1, include:

1. Classesfor storing and loading language-specific objects.

2. Services for formatting messages, date, times, and numbers.
3. Servicesfor comparing and collating text.

4. Support for finding character, word, and sentence boundaries.

5. Support for display, input, and output of Unicode characters.

11.2.2. Java Interfaces for Internationalization

Users of the Java internationalization interfaces should be familiar with the following interfaces included in the
Java Developer's Kit (JDK):

1. java. util.Local e Representsa specific geographical, political, or cultural region.
2. java.util.ResourceBundl e Containersfor locale-specific objects

3. java.text.MessageFor mat A means to produce concatenated messages in alanguage-neutral way.

11.2.3. Set the Locale

The concept of a Locale object, which identifies a specific cultura region, includes information about the country
or region. If aclass varies its behavior according to Local e, it is said to be locale-sensitive. For example, the Num

ber For mat classislocale-sensitive; the format of the number it returns depends on the Local e. Thus Nurber For mat

may return a number as 902 300 (France), or 902.300 (Germany), or 902,300 (United States). Local e objects are
only identifiers.

Most operating systems alow to indicate their locale or to modify it. For instance Windows NT does this through
the control panel, under the Regional Option icon. In Java, you can get the Locale object that matches the user's
control-panel setting using nyLocal e = Local e. get Defaul t () ;. YOU can also create Local e objects for specific
places by indicating the language and country you want, such asnyLocal e = new Local e(“fr", "CA"); for "Cana
dian French."

The next example creates L ocale objects for the English language in the United States and Great Britain:

Alex Pinkin

Logging

bLocal e
cLocal e

new Local e("en", "US");
new Local e("en", "GB")

The strings you pass to the Locale constructor are two-letter language and country codes, as defined by |SO stand-
ards.

11.2.4. Isolate your Locale Data

The first step in making an international Java program is to isolate all elements of your Java code that will need to
change in another country. This includes user-interface text -- label text, menu items, shortcut keys, messages, and
thelike.

The Resour ceBundl e class is an abstract class that provides an easy way to organize and retrieve locale-specific
strings or other resources. It stores these resources in an external file, along with a key that you use to retrieve the
information. You'll create a ResourceBundle for each locale your Java program supports.

M eommes: Bmwd ks

Pes 1 Flawrmwd e Pex't DPhwredles ades [onn el Torsd ks, fr Pes 1 Foaresdls it

INpWE i o I e | P Wi Wk

Moprpelinsatier oawyie:

Figure 11.4. Resour ce Bundles.

The Resour ceBundl e class is an abstract class in the j ava. uti| package. You can provide your own subclass of
Resour ceBundl e or use one of the subclass implementations, as in the case of PropertyResour ceBundl e Of Li s-
t Resour ceBundl e.

Resource bundles inherit from the Resour ceBundl e class and contain localized elements that are stored external to
an application. Resource bundles share a base name. The base name TeT_Bundl e, to display transactional messages
such as T#ransaction Commited# might be selected because of the resources it contains. Locale information further
differentiates a resource bundle. For example, TeT_Bundl e_i t means that this resource bundle contains locale-
specific transactional messages for Italian.

To select the appropriate Resour ceBundl e, invoke the Resour ceBundl e. get Bundl e method. The following ex-
ample selects the TeT_Bundl e Resour ceBundl e for the Locale that matches the French language, the country of
Canada.

Local e currentLocal e = new Local e("fr", "CA");

Alex Pinkin

Logging

Resour ceBundl e i ntroLabel s = Resour ceBundl e. get Bundl e(" TeT_Bundl e", currentLocal e);

Java loads your resources based on the locale argument to the get Bundl e method. It searches for matching files
with various suffixes, based on the language, country, and any variant or dialect to try to find the best match. Java
tries to find a complete match first, and then worksits way down to the base filename as alast resort.

Y ou should always supply a base resource bundle with no suffixes, so that your program will still work if the user's
locale does not match any of the resource bundles you supply. The default file can contain the U.S. English strings.
Then you should provide properties files for each additional language you want to support.

Basically, aresource bundle is a container for key/value pairs. The key is used to identify alocal e-specific resource
inabundle. If that key isfound in a particular resource bundle, its value is returned.

The jdk API defines two kinds of Resour ceBundl e subclasses -- the Pr oper t yResour ceBundl e and Li st Resour ce-
Bundl e.

A PropertyResour ceBundl e is backed by a properties file. A properties file is a plain-text file that contains trans-
latable text. Properties files are not part of the Java source code, and they can contain values for String objects
only. A simple default propertiesfile, named hpt s_Bundl e. properti es, for messages sent by HPTS could be.

Sanpl e properties file for denpnstrating PropertyResourceBundl e
Text to informon transaction outcones in English (by default) trans_conmmitted = Transaction Conmitted trans_rol | edback=Trar
#

The equivalent propertiesfile, hpt s_Bundl e_fr_FR. properti es, for French would be:

Sanpl e properties file for denpnstrating PropertyResourceBundl e
Text to informon transaction outcones in French trans_committed = La Transaction a #t# Valid#e trans_roll edback = La Transe
#

11.2.5. Example

The following example illustrates how to use the internationalization APl allowing separating the text with a lan-
guage specified by the user, from the source code.

import java.util.*;

i nport Denp. *;

import java.io.*;

i mport com arj una. O bCommon. *;

i mport com arj una. CosTransactions. *;
i mport org.ong. CosTransactions. *;

i nport org.ony. *;

public class TransDenod ient {
public static void main(String[] args) {

JBoss 2004, lvelin lvanov, Ryan 84

Logging

String | anguage; String country;
if (args.length !'=2) {
| anguage = new String("en");
country = new String("Us"); }
el se {
| anguage = new String(args[0]);
country = new String(args[1]); }

Local e currentLocal e;

Resour ceBundl e nessages;

current Local e = new Local e(l anguage, country);

trans_nessage = ResourceBundl e. get Bundl e("hpts_Bundl e", currentLocale);

try {
ORBI nterface.initORB(args, null);

QAlnterface.initQA();

String ref = new String();

Buf f eredReader file = new BufferedReader (new Fi | eReader (" DenoObj Ref er ence. t np"));
ref = file.readLine();

file.close();

org. ong. CORBA. Obj ect obj = ORBInterface.orb().string_to_object(ref);

Denpol nterface d = (Denol nterface) DenolnterfaceHel per.narrow(obj);

OTS. get _current (). begin();

d. work();

OTS. get _current().comit(true);

System out.println(tran_nessage.getString("trans_committed")); }
catch (Exception e) {

System out. println(tran_nessage. getString("trans_rolledback")); }

}

In the following example the language code is fr (French) and the country code is FR (France), so the program dis-
plays the messagesin French:

% java TransDenoClient fr FR La Transaction a #t# valid#e

11.2.6. Creating Resource Bundles

The following ant task is provided in buildsystemjar to automate the creation of resource bundles:
com hp. nw. bui | dsyst em docl et . r esbundl edocl et . Resour ceBundl eDocl et, which is a doclet for the JavaDoc
tool that ships with the JDK. It produces resource bundle property files from comments placed in Java source. The
comments have the following format:

/**
* @ressage [key] [id] [text]
* e.g., @message foo foo This is a nessage: {0}
*/

JBoss 2004, lvelin lvanov, Ryan 85

Logging

Where [key] is the key used to look up the corresponding message ([text]) in the resource bundle. The [id] field is
typically the same as [key] but need not be: it is output with the internationalized message and is meant to be used
by technical support in order to identify the [key][message] pair in alanguage independent manner.

It takes the following runtime options:

1. -resourcebundle [filename] This pecifies the name of the resource bundle to create, only use this if the Doclet
isto produce a single resource bundle.

2. -basedir [directory] This specifies the base directory to generate the resource bundle property files within
(MANDATORY).

3. -perclass Thisindicates that the doclet should produce resource bundles per class. If thisis not specified then a
single resource bundle properties file is produced for all of the source specified.

4. -ignorerepetition Thisindicates that the doclet should ignore key repetition and not flag an error.

5. -language [language code] Thisindicates which language is to be used

6. -locale[locale code] Thisindicates which localeisto be used.

7. -properties Thisindicates that the property filename should be postfixed with the .properties postfix.

The task can be declared within ant in the following way:

<docl et nane="com hp. mn. bui | dsyst em docl et . r esbundl edocl et . Resour ceBundl eDocl et " >
<pat h>
<pat hel enent pat h="${com hp. nw. ext . depends. cl asspath}"/>
</ pat h>
<par am name="-basedir" val ue="${com hp. mM abs. ts. arjuna. dest}"/>
<par am name="-r esour cebundl e" val ue="${com hp. mM abs. ts. arj una. r esour cebundl e}"/ >
</ docl et >

11.2.7. Example of Use

Below is a sample of the internationalized messages used in the Transaction Service.

-
*
*

Basi cActi on does npost of the work of an atomic action, but does not manage
thread scoping. This is the responsibility of any derived cl asses.

@uthor Mark Little (mark@rjuna.com
@ersion $lId: internationalization.xm,v 1.1 2006/03/07 17:59:23 nmittle Exp $
@ince JTS 1.0.

* k% ok k% ok % ok

@ressage com arj una. ats. arjuna. coordi nat or. Basi cAction_1

Campbell, Pushkala lyer, Clebert Su-

Logging

* [comarjuna. ats. arjuna. coordi nator. Basi cAction_1] - Action nesting

* error - deletion of action id {0} invoked while child actions active
* @ressage com arjuna. ats. arj una. coordi nat or. Basi cActi on_2

* [com arjuna. ats. arjuna. coordi nator. Basi cAction_2] - Aborting child

* {0}

* @ressage com arjuna.ats. arjuna. coordi nator. Basi cActi on_3

* [com arjuna. ats. arj una. coordi nat or. Basi cActi on_3] - Destructor of

* still running action id {0} invoked - Aborting

* @ressage com arjuna. ats. arj una. coordi nat or. Basi cActi on_4

* [comarjuna. ats. arjuna. coordi nator. Basi cAction_4] - The Arjuna

* licence only allows a single resource to be registered. Please apply
* for a new licence.

* @ressage com arjuna. ats. arj una. coordi nat or. Basi cActi on_5

* [comarjuna. ats. arjuna. coordi nator. Basi cAction_5] - Activate of

* atomic action with id {0} and type {1} unexpectedly failed

*/

Which, when processed by the doclet, generates the following within the resource bundle:

com arj una. at s. arj una. coor di nat or. Basi cActi on_1=[com arj una. ats. arj una. coor di nat or. Basi cActi on_1] - Action nesting error - del
active

com arj una. at s. arj una. coor di nat or. Basi cActi on_2=[com arj una. ats. arj una. coor di nat or . Basi cActi on_2
com arjuna. ats. arj una. coordi nat or . Basi cActi on_3=[com arjuna. ats. arj una. coor di nat or. Basi cActi on_3
com arj una. at s. arj una. coor di nat or. Basi cActi on_4=[com arj una. ats. arj una. coor di nat or . Basi cActi on_4
com arjuna. ats. arj una. coordi nat or . Basi cActi on_5=[com arjuna. ats. arj una. coor di nat or. Basi cActi on_5

- Aborting child {0}

- Destructor of still runnir
- The Arjuna licence only al
- Activate of atonmic action

]
]
]
]

11.3. The Common Logging Framework

Campbell, Pushkala lyer, Clebert Su-

Logging

F20

Jakaria Commons Logging

Core Services

o ALK Ik Framework
Lol 1] 14 94 Avalon {f}f%.-} Lcgging
Fil= Teolin | | Win NT
(rolling) | JDBC Socket | | syslog
“hain | | Chain | | xmL
: o
corsole | J s o saw Log

Figure 11.5. The Common L ogging framework ar chitecture.

11.3.1. Package Overview: com arj una. common. util .| oggi ng

11.3.1.1. Interface Summary

1. Logi 18n A simple logging interface abstracting the various logging APIs supported by CLF and providing an
internationalization layer based on resource bundles.

2. LogNoi 18n A simple logging interface abstracting the various logging APIs supported by CLF without interna-
tionalization support

11.3.1.2. Class Summary

1. ConmonDebugLevel The CommonDebugLevel class provides default finer debugging value to determine if finer
debugging is allowed or not.

2. CommonFaci | i t yCode The ConmonFaci | i t yCode class provides default finer facilitycode value to determine if

conic, Mark Little, Andrig Miller,

Logging

finer debugging is alowed or not.

3. CommmonVisibilityLevel The ConmonVisibilityLevel class provides default finer visibility value to determ-
ineif finer debugging is allowed or not.

4. LogFactory Factory for Log objects.

11.3.1.3. LogFactory

Factory for Log objects. LogFactory returns different subclasses of logger according to which logging subsystem is
chosen. The log system is selected through the property com arj una. cormon. uti | s. | ogger . Supported log sys-
tems are:

1. jakarta Jakarta Commons Logging (JCL). JCL can delegate to various other logging subsystems, such as:
log4j, JDK 1.4 logging, JDK 1.1 based logging (for compilation to Microsoft .net), Avalon

2. dotnet .netlogging. (must be JDK 1.1 compliant for compilation by the Microsoft compiler)

Note

Rather than implementing CSF and .net logging as additional loggers for JCL they have been anchored at
this level to maximise code reuse and guarantee that all .net dependent code is 1.1 compliant.

11.3.1.4. Setup of Log Subsystem

The underlying log system can be selected via the following property name:

1. comarjuna. comon. util.logger This property selects the log subsystem to use. Note that this can only be
set as a System property, eg. as a parameter to start up the client application: java
#com arj una. cormon. uti | . | ogger =l 0g4j

Note

Note: The properties of the underlying log system are configured in a manner specific to that log system,
e.d., al og4j . properti es filein the case that log4j logging is used.

The alowed values for the property are:

1. 1og4j Log4j logging (logdj classes must be available in the classpath); configuration through the
| og4j . properties file, which is picked up from the CLASSPATH or given through a Syst em property:
| og4j . configuration

2. jdk14 JDK 1.41logging API (only supported on JVMs of version 1.4 or higher). Configuration is done through
afilel oggi ng. properti es inthejre/lib directory.

3. sinpl e Selectsthe ssimple JDK 1.1 compatible console-based logger provided by Jakarta Commons Logging
4. jakarta Usesthe default log system selection algorithm of the Jakarta Commons Logging framework

5. dotnet Selects a.net logging implementation. Since a dotnet logger is not currently implemented, thisis cur-
rently identical to simple. Simpleisa purely JDK 1.1 console-based log implementation.

conic, Mark Little, Andrig Miller,

Logging

6. noop Disablesal logging

To set logdj (default log system), provide the following System properties:

-Dcom arj una. conmon. uti | . | ogger =l 0g4j
-Dl og4j . configuration=file://c:/Projects/comon/| og4j.properties

11.3.2. Getting Started

Simple use example:

i nport com arjuna.common. util .l ogging.*;

public class Test {
static Log nylog =
LogFact ory. get Log(Test . cl ass);

public static void main(String[] args) {
String paranD = "foo";
String paraml = "bar";

// different log priorities nylog.debug("keyl", new
Obj ect[]{paranD, paraml});

nyl og. i nfo("key2", new Cbject[]{paranD, paraml});
nyl og. war n("key3", new Cbject[]{paranD, parantl});
nyl og. error ("key4", new Object[]{paranD, parantl});
nyl og. fatal ("key5", new Qbject[]{paranD, parani});

/1 optional throwable

Thr owabl e t hrowabl e = new Thr owabl e() ;

nyl og. debug("keyl", new Cbject[]{paranD, paranil}, throwable);
nyl og. i nfo("key2", new Object[]{paranD, paranml}, throwable);
nyl og. war n("key3", new Cbject[]{paranD, paranl}, throwable);
nyl og. error ("key4", new Object[]{paranD, paraml}, throwable);
nyl og. fatal ("key5", new Cbject[]{paranD, paranil}, throwable);

/1 debug guard to avoid an expensive operation if the |ogger does not

/1 log at the given |evel:

if (nylog.isDebugEnabl ed()) {

String x = expensiveOperation(); mnylog.debug("key6", new Object[]{x}); }

[| KREE A KKK KKKk Kk KKk KKKk KKKk Kk KKk kK hkhh Kk kkh Kk kkkkk kx| [

fine-grained debug extensions
nyl og. debug(CormpnDebugLevel . OPERATORS, CommonVi si bilityLevel . VIS PUBLI C, CommonFaci | i tyCode. FAC ALL, "This debug nessage is €

nyl og. set VisibilityLevel (CommonVisibilityLevel.VI S PACKAGE);
nyl og. set DebugLevel (CormbnDebuglLevel . CONSTRUCT_AND_DESTRUCT) ;
nyl og. set Faci | i t yCode(ConmonFaci | i t yCode. FAC ALL);

nyl og. mer geDebugLevel (ConmonDebugLevel . ERROR_MESSAGES) ;

i f (nyl og. debugAl | owed(CormonDebugLevel . OPERATORS, ConmonVi si bilityLevel .VI'S_PUBLI C, CommonFacilityCode. FAC ALL)) {
nyl og. debug(CommonDebugLevel . OPERATORS, CommonVi si bilityLevel . VIS PUBLI C, CommonFaci |l ityCode. FAC ALL, "key7", new Object[]{"

Alex Pinkin

Logging

11.4. Default File Level Logging
Independent of the log system chosen, it is possible to log all messages over a given severity threshold into afile.

This is useful to guarantee that e.g., error and fatal level messages are not lost despite a user has not set up alog
framework, such as log4j

11.4.1. Setup

Usage of this feature is simple and can be controlled through a set of properties. These can be provided through the
Property Manager or as System properties.

Table11.1. Propertiesto control default file-based logging (default values ar e highlighted)

Property Name Values Description

com arj una. conmon. | oggi ng. def true/ false Enabl e/disable default file-based
aul t logging

com arj una. common. util .l oggin | Info/error/fata Severity level for thislog

g.defaul t. | evel

com arj una. common. util.loggin true/ false Record the fully qualified log
g. def aul t . showLogNane name
com arj una. common. util.loggin true/false Record an abbreviated log name

g. def aul t . showShort LogNane

com arj una. common. util.loggin true/false Record the date
g. def aul t . showDat e

com arj una. conmon. util .l oggin | error.log (default) File to use for default logging. This
g.defaul t.logFile can be an absolute filename or rel-
ative to the working directory

com arj una. common. util.loggin true/false Append to the log file abovein
g. defaul t. | ogFi | eAppend case that thisfile already exists

11.5. Fine-Grained Logging

11.5.1. Overview

Finer-grained logging in CLF is available through a set of debug methods:

public void debug(long dl, long vl, long fl, Object nessage);

public void debug(long di, long vl, long fl, Throwable throwable);

public void debug(long dI, long vl, long fl, String key, Object[] parans);

public void debug(long dl, long vl, long fl, String key, Object[] paranms, Throwable throwable);

Alex Pinkin

Logging

All of these methods take the three following parameters in addition to the log messages and possible exception:

dl - The debug finer level associated with the log message. That is, the logger object will only log if the DEBUG
level is alowed and di is either equal or greater than the debug level assigned to the logger Object. See the table
below for possible values.

vl - The visibility level associated with the log message. That is, the logger object will only log if the DEBUG
level isalowed and vi iseither equal or greater than the visibility level assigned to the logger Object. See the table
below for possible values.

f1 - The facility code level associated with the log message. That is, the logger object will only log if the DEBUG
level isallowed and f1 is either equal or greater than the facility code level assigned to the logger Object. See the
table below for possible values.

The debug message is sent to the output only if the specified debug level, visibility level, and facility code match
those allowed by the logger.

Note
The first two methods above do not use i18n. i.e., the messages are directly used for log output.

11.5.2. Usage

Possible values for debug finer level, visibility level and facility code level are declared in the classes DebugLevel ,
VisibilityLevel and FacilityCode respectively. This is useful for programmatically using fine-grained debug-

ging.

Table 11.2. Possible settingsfor finer debug level (class DebugL evel)

Debug Finer Level Value Description
NO_DEBUGG NG 0x0000 No debugging
CONSTRUCTORS 0x0001 Only output for constructors
DESTRUCTORS 0x0002 Only output for finalizers
CONSTRUCT_AND_DESTRUCT CONSTRUCTORS | DESTRUCT-

ORS
FUNCTI ONS 0x0010 Only output for methods
OPERATORS 0x0020 Only output for methods such as

equals, notEquals etc.
FUNCS_AND_OPS FUNCTIONS | OPERATORS

ALL_NON_TRI VI AL CON-
STRUCT_AND_DESTRUCT |
FUNCTIONS | OPERATORS

JBoss 2004, Ivelin Ivanov, Ryan 92

Logging

Debug Finer Level
TRI VI AL_FUNCS
TRI VI AL_OPERATORS

ALL_TRI VI AL

Value
0x0100
0x0200

TRIVIAL_FUNCS| TRIVI-
AL_OPERATORS

Description
Only output from trivial methods

Only output from trivial operators

ERROR_MESSAGES

FULL_DEBUGGE NG

0x0400

Oxffff

Table 11.3. Possible settingsfor visibility level (class VisibilityL evel)

Only output from debugging error/
warning messages

Output all debugging messages

Visibility Level Value Description

VI S_NONE 0x0000 No visibility

VI S_PRI VATE 0x0001 Only from private methods

VI S_PROTECTED 0x0002 Only from protected methods
VI S_PUBLI C 0x0004 Only from public methods

VI S_PACKAGE 0x0008 Only from package methods
VIS ALL Oxffff Output al visibility levels.

Table 11.4. Possible settings for facility code level (class FacilityCode)

Facility Code L evel
FAC_NONE

FAC ALL

Value
0x0000
Oxffffffff

Description
No facility

Output all facility codes

At runtime, the fine-grained debug settings are controlled through a set of properties, listed in the table below:

Table 11.5. Controlling finer granularity

Property Name

Default Value

com arj una. conmon. util .| oggi ng. DebuglLevel NO_DEBUGGING
com arj una. cormon. util .l ogging. VisibilityLeve VIS ALL

I

com arj una. conmon. uti | .| oggi ng. Faci | i t yCode FAC ALL

JBoss 2004, Ivelin Ivanov, Ryan

93

12

JBoss Test Suite

The JBoss Testsuite module is a collection of JUnit tests which require a running JBoss instance for in-container
testing. Unit tests not requiring the container reside in the module they are testing.

The setup and initialization of the container is performed in the testsuite's bui | d. xni file. The testsuite module also
provides utility classes which support the deployment of test artifacts to the container.

12.1. How To Run the JBoss Testsuite

A source distribution of JBoss must be available to run the testsuite. This document applies only to JBoss 3.2.7 and
above.

12.1.1. Build JBoss
Before building the testsuite, the rest of the project must be built:
Unix

cd build
./ build. sh

Windows

cd build
bui | d. bat

12.1.2. Build and Run the Testsuite

To build and run the testsuite, type the following. Note that you no longer are required to seperately start a JBoss
server instance before running the testsuite.

| mportant
Y ou must not have a JBoss instance running before you run the testsuite.

Unix

cd ../testsuite
./build.sh tests

Windows

JBoss 2004, lvelin lvanov, Ryan 9

JBoss Test Suite

cd ../testsuite
buil d. bat tests

The build script will start and stop various configurations of JBoss, and then run tests against those configurations.

12.1.3. Running One Test at a Time

To run an individual test, you will need to start the appropriate configuration. For most tests, thiswill bethe"al I "
configuration:

bui | d/ out put /] boss-5. 0. Oal pha/ bi n/run.sh -c all

And then tell the testsuite which test you want to run;

cd testsuite
./build.sh one-test -Dtest=org.jboss.test.package. SoneTest Case

12.1.4. Clustering Tests Configuration

Most of the tests are against a single server instance started on localhost. However, the clustering tests require two
server instances. By default, the testsuite will bind one of these instances to localhost, and the other will be bound
to hostname. Y ou can overridethisinthet est suit e/ | ocal . properti es file.

nodeO=| ocal host
.n.o.delzlvyl-lost name
The nodes must be bound to different |P addresses, otherwise there will be port conflicts. Also, note these ad-

dresses must be local to the box you are running the testsuite on, the testsuite will need to start each server process
before running the tests.

You can also use the udpGroup property to prevent your clustering tests from interfering with others on the same
network using the udpGroup property. This can be passed at the command line or in the local.properties file. This
will be passed to the servers under test using the -u option:

./build.sh -DudpG oup=128.1.2.3 tests

[server:start] java org.jboss.Main -c mnimal -b |ocal host -u 128.1.2.3

12.1.5. Viewing the Results

A browsable HTML document containing the testsuite results is available under
testsuite/output/reports/htm, and a text report (useful for emailing) is available under testsuite/ out-
put/reports/text.

JBoss 2004, lvelin lvanov, Ryan 95

JBoss Test Suite

12.2. Testsuite Changes
The testsuite bui | d. xni has been refactored to allow automated testing of multiple server configurations. The test-

suite build scripts include facilities for customizing server configurations and starting and stopping these configura-
tions. Most notably, thisimprovement allows clustering unit tests to be compl etely automated.

12.2.1. Targets

Tests are now grouped into targets according to which server configuration they require. Here is a summary of the
targets called by the top-level teststarget:

Table 12.1. Build Targets and Descriptions

Target Description

j boss-mininal -tests Tests requiring the minimal configuration.

jboss-all -config-tests Runsthe all configuration. Most tests can go here.

tests-security- manager Runs the default configuration with a security man-
ager.

tests-clustering Creates two custom configurations based on the all

configuration. Tests run in this target should extend
JBossClusteredTestCase to access cluster informa-

tion.
tonctat-ssl-tests Creates and runs a configuration with Tomcat SSL
enabled.
toncat - sso-tests Creates and runs a configuration with SSO enabled.
toncat - sso-cl ustered-tests Creates and runs two nodes with SSO enabled.

12.2.2. Files

The testsuite build scripts have been reorganized. The code generation and jar targets have been extracted to their
own filesintestsuite/ i nports. These targets are imported for use by the main bui I d. xni file. Also, it isimport-
ant to note that module and library definitions arein different files.

Table 12.2. Summary of build files

Build File Description

testsuite/ build. xm Containstest targets. This file imports the macros and
targets from the files below.

testsuite/inmports/server-config.xm Contains macros for creating and starting different
server configurations.

JBoss 2004, Ivelin Ivanov, Ryan 96

JBoss Test Suite

Build File Description

t ool s/ et ¢/ bui | dmagi ¢/ nodul es. xm Similar to modules.ent, thisfile contains the Ant
classpath definitions for each JBoss module.

tool s/ etc/ buil dmagi c/thirdparty. xm Like thirdparty.ent, this contains the Ant classpath
definitions for each third party library.

testsuite/inports/ code-generation. xn Xdoclet code generation. Thisfile has the following
targets. compile-bean-source, compile-
mbean-sources, compile-xmbean-dds, compile-
proxycompiler-bean-source.

testsuite/inports/test-jars.xm All jar tasks. The top-level jarstarget calls each mod-
ule's_jar-* target (eg: _jar-aop).

12.3. Functional Tests

Functional tests need to be located in the module which they test. The testsuite needs to be able to include these in
the "tests" target.

To contribute functional tests to the testsuite, each module should contain a tests directory with with abui | d. xm .
Thebui | d. xn should contain at least one target, f uncti onal - t est s, which executes JUnit tests. Thef uncti onal -
test s target should build the tests, but should assume that the module itself has been built. The t est s/ bui | d. xni
should use the Ant <i npor t / > task to reuse targets and property definitions from the modulesmain bui I d. xm .

Functional test source code belongsin thet est s/ src directory. The package structure of the tests should mirror the
modul €'s package structure, with an additional test package below or g/ j boss.

For example, classes under org. j boss. messagi ng. core should have tests under
org.j boss.test. nessagi ng. core.

12.3.1. Integration with Testsuite

The testsuite/build. xm will include a functional -tests target which uses the <subant > task to cal the
funtional-tests target on each module€'st est s/ bui | d. xni . The testsuite will only override properties relevant to the
junit execution, and the modul€e's t est s/ bui | d. xm must use these properties as values for the corresponding at-
tributes:

1. junit.printsummary
2. junit.haltonerror
3. junit.haltonfailure
4., junit.fork

5. junit.timeout

6. junit.jvm

7. junit.jvmoptions

Campbell, Pushkala lyer, Clebert Su-

JBoss Test Suite

8. junit.formatter.usefile

9. junit.batchtest.todir

10. junit. batchtest. hal tonerror

11. junit. batchtest. haltonfailure

12. junit.batchtest.fork

The following properties are not set by the testsuite:

1. junit.sysproperty.log4j.configuration

2. junit.sysproperty.*

Example 12.1. Example Build Script for Functional Tests

<?xm version="1.0" encodi ng="UTF- 8" ?>

<l-- -->
oo -->
<l-- JBoss, the OpenSource J2EE webGS -->
<l-- -=>
<!-- Distributable under LGPL |license. -->
<l-- See terms of license at http://ww.gnu.org. -->
<l-- -->
<l-- >

<l-- $ld: testsuite.xnm,v 1.4 2006/02/22 20:56:55 rgenova Exp $ -->
<proj ect defaul t="tests" nanme="JBoss/ Messagi ng">
<!-- overridden to resolve thirdparty & nodul e deps -->

<dirnanme property="renote.root" file="${basedir}"/>
<di rname property="project.root" file="${rempte.root}"/>

<inport file="../../tools/etc/buildmagic/build-common.xm"/>

<inmport file="../../tools/etc/buildmagic/libraries.xm"/>

<inport file="../../tools/etc/buildmagic/nodul es.xm "/>

<l-- -->
<!-- Configuration -->
<l-- -->
<!-- Mdul e name(s) & version -->

<property nane="nodul e. name" val ue="j ns"/>
<property name="nodul e. Nane" val ue="JBoss Messagi ng"/>
<property nane="nodul e. versi on" val ue="5.0.0"/>

e ==m=m=mmmmm o >
<l-- Libraries -->
<l-- ========= -->
<l-- The conbined library classpath -->

<path id="library.cl asspath">
<pat h refid="apache. | og4j.cl asspath"/>
<pat h refid="oswego. concurrent.classpath"/>
<path refid="junit.junit.classpath"/>
<path refid="jgroups.jgroups.classpath"/>
<pat h refid="apache. commons. cl asspath"/>

</ pat h>

Campbell, Pushkala lyer, Clebert Su-

JBoss Test Suite

<l-- ======= -->
<!-- Mdules -->
<l-- ======= -->
<l'-- The conbi ned dependent nodul e cl asspath -->

<pat h i d="dependent nodul e. cl asspat h" >
<path refid="j boss.common. cl asspath"/>
<path refid="jboss.jns.classpath"/>

</ pat h>

<l-o. ===== -.
<l-- Tasks -->
oo ===== o

<property name="source.tests.java" val ue="${nodul e. source}"/>

<property name="buil d.tests.classes" val ue="${nodul e. output}/cl asses"/>

<property name="build.tests.lib" val ue="${nodul e. output}/Ilib"/>

<property name="buil d.tests.output” val ue="${nodul e. out put}/reports"/>

<property name="bui | d. perfornmance. tests. output” val ue="${nodul e. out put}/reports/perfornance"/>
<property name="buil d.tests.archive" val ue="jboss-nessagi ng-tests.jar"/>

<path id="test.classpath">

<path refid="library.classpath"/>

<pat h refid="dependent nodul e. cl asspat h"/>
</ pat h>

<l-- Conpile all test files -->
<t arget nanme="conpil e-test-classes">
<nkdir dir="${build.tests.classes}"/>
<javac destdir="${build.tests.classes}"
optim ze="${javac. opti m ze}"
target="1.4"
source="1. 4"
debug="${j avac. debug}"
depend="$%${j avac. depend}"
ver bose="${j avac. ver bose}"
deprecati on="${j avac. deprecation}"
i ncl udeAnt Runti me="${j avac. i ncl ude. ant.runti ne}"
i ncl udeJavaRunt i me="${j avac. i ncl ude. j ava. runti me}"
failonerror="%${javac.fail.onerror}">
<src path="${source.tests.java}"/>
<cl asspath refid="test.classpath"/>
<include nane="**/*_java"/>
</javac>
</target>

<target nane="tests-jar"
depends="conpi | e-test - cl asses"
description="Creates the jar file with all the tests">

<nmkdir dir="${build. tests.lib}"/>

<!-- Build the tests jar -->
<jar jarfile="${build.tests.lib}/${build.tests.archive}">
<fileset dir="${build. tests.classes}">
<i ncl ude nane="org/jboss/test/messaging/**"/>
</fileset>
</jar>
</target>

<l--
The values frominported files or set by the calling ant tasks will take precedence over
the val ues specified bel ow.

-->

<property name="junit.printsummary"” value="true"/>

conic, Mark Little, Andrig Miller,

JBoss Test Suite

<property name="junit.haltonerror" value="true"/>

<property name="junit.haltonfailure" value="true"/>

<property name="junit.fork" value="true"/>

<property name="junit.includeantruntime" val ue="true"/>
<property name="junit.timeout" value=""/>

<property name="junit.showoutput” val ue="true"/>

<property name="junit.jvn' value=""/>

<property name="junit.jvmoptions" val ue=""/>

<property name="junit.fornmatter.usefile" value="fal se"/>
<property name="junit.batchtest.todir" value="${build.tests.output}"/>
<property nanme="junit.batchtest.haltonerror" value="true"/>
<property name="junit.batchtest.haltonfailure" value="true"/>
<property nanme="junit.batchtest.fork" val ue="true"/>
<property name="junit.test.haltonfailure" value="true"/>
<property name="junit.test.haltonerror" value="true"/>

<target nane="prepare-testdirs"
description="Prepares the directory structure required by a test run">
<nkdir dir="${build.tests.output}"/>
</target>

<target nanme="tests"
depends="tests-jar, prepare-testdirs"
description="Runs all available tests">

<junit printsummary="${junit.printsummary}"
fork="${junit.fork}"
includeantrunti me="${j unit.includeantruntinme}"
hal tonerror="${junit.hal tonerror}"
hal tonfailure="${junit.haltonfailure}"
showout put =" ${j uni t. showout put } " >
<cl asspat h>
<path refid="test.classpath"/>
<pat hel enent | ocation="${build.tests.lib}/${build. tests.archive}"/>
<pat hel enent | ocati on="${nodul e.root}/etc"/>
</ cl asspat h>
<formatter type="plain" usefile="${junit.formatter.usefile}"/>
<bat chtest fork="${junit.batchtest.fork}"
todir="${junit.batchtest.todir}"
hal tonf ai | ure="${j uni t.batchtest.hal tonfailure}"
hal t onerror="%${j uni t. batchtest. hal tonerror}">
<formatter type="plain" usefile="${junit.formatter.usefile}"/>
<fileset dir="${build. tests.classes}">
<i ncl ude nane="**/nessagi ng/ **/ *Test . cl ass"/>
<excl ude nanme="**/nessagi ng/ **/ per f or mance/ **"/ >
</fileset>
</ batcht est >
</junit>
</target>

<target name="test"
depends="tests-jar, prepare-testdirs"
description="Runs a single test, specified by its FQ class nanme via 'test.classnane' ">

<fail unless="test.cl assnane"
message="To run a single test, use: ./build.sh test -Dtest.clasnanme=org. package. MyTest"/>

<junit printsummary="${junit.printsummary}"”
fork="${junit.fork}"
incl udeantruntime="${junit.includeantruntine}"
hal tonerror="${junit. haltonerror}"
hal tonfailure="${junit.haltonfailure}"
showout put =" ${j uni t . showout put } ">

<cl asspat h>

<path refid="test.classpath"/>

<pat hel enent
<pat hel enent

| ocation="${build.tests.lib}/${build.tests.archive}"/>
| ocati on="${nodul e.root}/etc"/>

conic, Mark Little, Andrig Miller,

JBoss Test Suite

</ cl asspat h>

<formatter type="plain" usefile="${junit.formatter.usefile}"/>

<test nane="${test.classnane}"
fork="${junit.batchtest.fork}"
todir="${junit.batchtest.todir}"
hal tonfailure="${junit.test. haltonfailure}"
hal tonerror="${j unit.test.haltonerror}">

</test>

</junit>
</target>

<target nanme="performance-tests"/>
<target nanme="functional -tests" depends="tests"/>
<l-- Cean up all build output -->
<target nane="cl ean"
description="C eans up nost generated files.">
<del ete dir="${nodul e. out put}"/>
</target>

<target nane="cl obber" depends="cl ean"/>

</ proj ect>

12.4. Adding a test requiring a custom JBoss Configuration

Custom JBoss configurations can be added using the creat e- confi g macro as demonstrated by this t ontat -
sso-tests target. Thecr eat e- conf i g target has the following attributes/elements:

1. baseconf : Theexisting jboss configuration that will be used as the base configuration to copy
2. newconf : The name of the new configuration being created

3. patternset : Thisisthe equivalent of the standard patternset element which is used to restrict which content
from the baseconf isto be copied into newconf.

In addition, if you need to override configuration settings or add new content, this can be done by creating a direct-
ory with the same name as the newconf attribute value under the t est sui t e/ src/ resour ce/ t est s- conf i gs direct-
ory. In this case, thereis at oncat - sso directory which adds some security files to the conf directory, removes the
jbossweb sar dependencies it does not need, and enablesthe sso valuein the server. xm :

$ I's -R src/resources/test-configs/tontat-sso
src/resources/test-configs/tontat-sso:
CvS/ conf/ depl oy/

src/resources/test-configs/toncat-sso/conf:
CVS/ login-config.xm* sso-roles.properties* sso-users.properties*

src/resources/test-configs/tontat-sso/ depl oy:
CVS/ j bossweb-tontat 50. sar/

src/resources/test-configs/toncat-sso/ depl oy/j bossweb-t ontat 50. sar:
CVS/ META-INF/ server.xm*

Alex Pinkin

JBoss Test Suite

src/resources/test-configs/tontat-sso/ depl oy/j bossweb-tontat50. sar/ META- | NF:
CVS/ jboss-service. xm *

Thefull t ontat - sso-t est s target is shown here.

<target nane="tontat-sso-tests"
description="Tonctat tests requiring SSO configured">
<l-- Create the sso enabled tontat config starting with the default config -->
<create-config baseconf="default" newconf="tontat-sso">
<patternset>
<include nanme="conf/**" />
<i ncl ude nane="depl oy/j bossweb*.sar/**" />
<i ncl ude nanme="depl oy/j nx-invoker - adapt or - server.sar/**" [>
<include nanme="1ib/**" [>
</ patternset>
</ creat e-confi g>
<start-jboss conf="tontat-sso" />
<wai t - on- host />
<junit dir="${nodul e. out put}"
print sunmary="${j uni t. pri nt summary}"
hal tonerror="${j unit. hal tonerror}"
hal tonf ail ure="${junit.haltonfailure}"
fork="${junit.fork}"
timeout="${junit.tineout}"
jvmE"${junit.jvn}">

<jvmarg val ue="${junit.jvmoptions}"/>

<sysproperty key="jbosstest.deploy.dir" file="${build.lib}"/>

<sysproperty key="build.testlog" value="${build.testlog}"/>

<sysproperty key="1og4j.configuration" value="file: ${build.resources}/Iog4j.xm"/>

<cl asspat h>
<pat hel enent | ocati on="${build.classes}"/>
<pat hel enent | ocati on="${build.resources}"/>
<path refid="tests.classpath"/>

</ cl asspat h>

<formatter type="xm" usefile="${junit.fornmatter.usefile}"/>

<bat chtest todir="${build.reports}”
hal tonerror="${j uni t.batchtest. hal tonerror}"
hal tonfail ure="${junit.batchtest.haltonfailure}"
fork="${junit.batchtest.fork}">

<fileset dir="${build.classes}">
<patternset refid="tc-sso.includes"/>
</fileset>
</ batcht est >

</junit>
<stop-j boss />
</target>

12.5. Tests requiring Deployment Artifacts

This section describes how to write tests that depend on a deployed artifact such as an EAR.

Deployment of any test deployments is done in the setup of the test. For example, the Hi ber nat eEj bl nt er -
cept or Uni t Test Case would add a suite method to deploy/undeploy ahar - t est . ear :

Alex Pinkin

JBoss Test Suite

public class HibernateEj bl nterceptorUnitTestCase extends JBossTest Case {
/** Setup the test suite.
*/
public static Test suite() throws Exception
{

return get Depl oySet up(Hi ber nat eEj bl nt er cept or Uni t Test Case. cl ass, "har-test.ear");

}

If you need to perform additional test setup/tearDown you can do that by extending the test setup class like this
code from the SRPUNi t Test Case:

/** Setup the test suite.
*/
public static Test suite() throws Exception
{
TestSuite suite = new TestSuite();
suite. addTest (new Test Sui t e(SRPUni t Test Case. cl ass));

/Il Create an initializer for the test suite
Test Setup wrapper = new JBossTest Set up(suite)

{
protected void setUp() throws Exception
{
super. set Up();
depl oy(JAR);
/| Establish the JAAS | ogin config
String aut hConf Path = super. get ResourceURL("security-srp/auth.conf");
System set Property("java. security.auth.login.config", authConfPath);
}
protected void tearDown() throws Exception
{
undepl oy(JAR) ;
super . t ear Down() ;
}
b
return w apper;

12.6. JUnit for different test configurations

We use the ant-task <j uni t > to execute tests. That task uses the concept of formatters. The actual implementation
uses the XML formater by specifying type="xml" in the formatter attribute.

If we need to execute the same test more than once, using this default formatter will always overwrite the results.
For keeping these results alive, we have created another formatter. So, use these steps to keep JUnit results between
different runs:

Define the sysproperty “j boss-j uni t - confi gurati on* during the jUnit calls. Change the formatter and set a dif-
ferent extension for keeping the files between different executions:

JBoss 2004, lvelin lvanov, Ryan 103

JBoss Test Suite

Set the class by cl assname="org. j boss. ant . t askdef s. XM_JUni t Mul ti pl eResul t For mat t er

Here is a complete example of the changes:

<junit dir="${nodul e. out put}"
printsummary="${j unit. pri nt summary}"
hal t onerror="${j unit.hal tonerror}"
hal tonfailure="${junit.haltonfailure}"
fork="${junit.fork}"
tinmeout="%{junit.tinmeout}"
jvme"${junit.jvn}"
failureProperty="tests.failure">

<sysproperty key="jboss-junit-configuration" val ue="${jboss-junit-configuration}"/>
<formatter classnane="org.jboss.ant.taskdefs. XM_.JUnitMiltipleResultFormatter" usefile="${junit.formatter.usefile}" extensi

</junit>

12.7. Excluding Bad Tests

If atest cannot be fixed for some reason, it should be added to the bad.test excludes. Thisis maintained near the top
of the testsuite/build.xml. The patternset will be used to exclude tests all calls to JUnit within the testsuite.

<l-- Tests that are currently broken -->
<patternset id="badtest.excludes">
<excl ude nane="org/jboss/test/aop/test/RenotingUnitTest Case"/>

<l-- The nedia ejb is not active -->
<excl ude name="org/j boss/test/ medial/**"/>
<l-- Needs apache ? -->

<excl ude nanme="org/jboss/test/cluster/httpsessionreplication/**"/>
<excl ude nane="org/jboss/test/cache/test/| ocal /Concurrent Transacti onal Uni t Test Case. cl ass"/>

</ patternset>

JBoss 2004, Ivelin Ivanov, Ryan 104

13

Support and Patch Management

13.1. Introduction

Customer requested fix can be made in a cumulative patch, one-off patch, or both. Normally, most of the bug fixes
are included into the cumulative patch, so there is no need to create one-off patches. One-off patches can still be
created for the emergency production and security issues. However, it's strongly advised to merge al the bug fixes
into the cumul ative patches.

13.1.1. Cumulative Patch

1. Cumulative patches contain only customer requested bug fixes and security patches

2. Cumulative patches are additive, i.e. JBossAS-4.0.4.GA_CP02 includes al of the fixes from JBossAS-
4.0.4.GA_CPO1

3. Released on 2nd Tuesday of each month. Code freeze for all cumulative patch branchesis on 1st day of each
month.

4. Separate cumulative patch branch is created for every supported product release, i.e. ht-
tps://svn.jboss.org/repos/jbossas/branches/JBoss 4 0 2 CP.

5. All customers get access to available cumulative patches
6. All thefixesincluded into a cumulative patch need to be included into the next maintenance release
7. It'srequired to have test case(s) for each fix included into the cumulative patch.

8. Cumulative patches are tested by QA so al fixes are tested in combination
13.1.2. One-off Patch

1. Isolated branch is created for every patch, i.e ht-
tps://svn.jboss.org/repos/jbossas/branches/JBoss 4 0 3 SP1 JBAS-2859.
2. Every one-off patch istested by QA

3. It's advised to minimize number of one-off patches, and virtually al one-off patches are supposed to be
merged into the cumulative patches

JBoss 2004, Ivelin Ivanov, Ryan 105

Support and Patch Management

13.2. Support Workflow

1. Customer regquests afix.
2. Iftheissueisfixed in anewer GA/SP version of the product, Support verifiesif upgrade is an option
3. Support engineer raises issue in the patch project (ASPATCH for the application server)

4. If support engineer has concerns, they mark the patch as "Request Triage". Patch is assigned to patch-triage
team for resolution

5. If issues are resolved, the patch continues through the CP process. Support notifies customer when the next
cumulative patch release is scheduled for

6. Otherwise, the patch is done as a one-off. For instance, if customer requires an emergency fix and can’t wait
until the next cumulative patch release, a one-off patch is created. The fix is also merged into the upcoming
cumulative patch

7. After Development, QA, and JBN are done, Support provides patch download link to the customer

8. If customer has a problem with the cumulative patch release, create a bug against it. For the app server, create
a bug under the ASPATCH project. Make sure that every ASPATCH issueis public.

13.3. Cumulative Patch Process

13.3.1. Development Phase
1. Create anissuein JRA with atype "Task" under the appropriate PATCH project. For the App Server it'sAS
PATCH project. Such JIRA issues need to be public.

2. Set Fix Version field value appropriately. For instance, JBossAS-4.0.4.GA_CPO3. It's easy to find out which
Cumulative Patch release is next by looking at the roadmap in JIRA.

3. Link theissue with the appropriate bug issue using "incorporates’.
4. Click the"Start Progress' link

Check out appropriate cumulative patch branch, for instance for the AS4.0.2 release

svn checkout https://svn.]jboss.org/repos/jbossas/branches/JBoss_4_0_2 CP

5. Implement the fix and check it in.

If abug isin app server component such as Web Services or Hibernate, a cumulative patch branch must be
created off of the component release that was included into the app server. For instance, for Hibernate 3.1.3:

JBoss 2004, Ivelin Ivanov, Ryan 106

Support and Patch Management

a Create Hibernate 3 1 3 CP branch
b. Implement or merge the fix into the Hibernate 3 1 3 CP branch

c. TagHibernate 3 1 3 CPbranch asHibernate 3 1 3 CPOx where x isanumber to be incremented with
every fix.

d. Follow normal release process for the component but treat the release as internal. For instance, you
should end up with Hibernate 3.1.3_CP01 component in the repository.

e. Update App Server's build-thirdparty.xml with the appropriate version of the Hibernate CP release, i.e.
3.1.3 CPO1

6. If theissue being resolved does not have atest case, it should be added to the testsuite.
7. If aregression isintroduced, CruiseControl will notify.

8. Click "Resolve". Inthe "Patch Instructions' field enter installation instructions on how to apply the patch.

JBoss 2004, Ivelin Ivanov, Ryan 107

Support and Patch Management

Resolve Issue

Resalving an issue indicates that the developers are satisfied the issue is finished.

Patch Instructions: |PATCH MAME: ~
ASPATCH-143 b
FRODUCT MAME:
JBoss Application Server —
YERSIOM: "

This should contain the patch instructions, the ternplate for which can be found here.

" Resolution: | Done v

Fix Version/s: | Jnreleased Versions ~
JBossAS-4.0.3.5P1_CP04
JBossAS-4.0.2.GA_CP04
JBossAS-3.2.7.GA_CPD4
JBossAS-4.0.4 GA_CPO4

JBossAS-4.05.GA_CPO1 Jkd

[FOR USE BY COMMITTERS ONLY)

" Assign To: | Alex Pinkin | Azsign to me
[FOR USE BY COMMITTERS OMLY)

Comment: (an optional comment describing this update)

Comment: |

Viewable By | Al Users L

Resolve][cancel

Use the Support Patch Template as a basis for these instructions.

Campbell, Pushkala lyer, Clebert Su-

Support and Patch Management

13.3.2. QA Phase
1. Within 48 hours after the cumulative branch code freeze, QA will assign the release task and set a due date for
the QA process to be complete.

2. QA will tag cumulative patch branch upon code freeze. For instance,

svn copy https://svn.jboss. org/repos/jbossas/branches/JBoss 4 0 2 CP https:/

3. QA will run the testsuite to verify that the cumulative patch produces no regressions. If the tests fail, QA will
submit a blocker issue and it will be assigned to the devel oper for root cause analysis.

4, SeeHow To QA aCumulative Patch..
5. QA will mark theissue as "QA Tests Passed” if the tests passed.
6. QA will assemble cumulative patch package for the BN

7. QA will test deployment of the cumulative patch with JBN team

13.3.3. JBN Phase

1. The patch will be deployed by the JBossNetwork team.

13.4. One-Off Patch Process

13.4.1. Development Phase

1. Create anissue in JRA with atype "Support Patch" under the appropriate project. For the App Server, it's
JBAS project.

2. Besureto make the issue either "Customers Only" or "JBoss Internal”

3. Click the"Start Progress' link to enter the CVS or SVN branch information.

CVS Branch: [Jboss_4_0_1_JIRAPLAY-75|

The CW'5 Branch for the patch.
Using that JIRA ID and the tag for the release being patched,

create a branch in ©V5 for the patch usin rmat ReleassTag_JirslD.

iwLi
—
T
ili
—
(%]
3

Enter the branch for the patch. Using that JJRA 1D and the tag for the release being patched, create a branch
for the patch using the format ReleaseTag_JiralD.

For instance, if the patch issue ID is JBAS1234 for JBoss 4.0.3, the patch's branch should be

Campbell, Pushkala lyer, Clebert Su-

Support and Patch Management

JBoss 4 0 3 JBAS-1234.

svn

svn copy https://svn.jboss. org/repos/jbossas/tags/JBoss_4 0 3 SP1/ http:
svn checkout https://svn.jboss.org/repos/jbossas/branches/JBoss_4 0_3_SF

cvs

cvs rtag -r JBoss_4_0 3 -b JBoss_4 _0_3_JBAS-1234 jboss-4.0.x
cvs co -r JBoss_4 _0_3 JBAS-1234 j boss-4.0.x

If the project being patched is not in JBoss hosted CV'S, attach the source diff to this case.
4. |f theissue being resolved does not have atest case, it should be added to the testsuite.

5. When committing the patch to the branch, be sure to include the JIRA ID of the patch in the commit comment.

6. Build the patched jars from the above branch and attach them to the JIRA issue.
Attach File

IUze this form to attach a file to this issue. You can also explain what the file is for using a comment.

O Attach multiple files
Attachment: :ws-E_C_Calpl'ua"-lib"-jbuss{:nmmun.jaﬂ
The maximum file upload size is 10.00 Mb. Pleass zip files larger than this.
Comment: (an cpticnal comment descriking this update)

Update comment. |Uploading the patched jar.

7. Merge the patch into the appropriate cumulative patch branch(es) by following steps described in the cumulat-
ive patch section

8. Click "Hand Over to QA". In the "Patch Instructions" field enter installation instructions on how to apply the
patch to an existing installation.

conic, Mark Little, Andrig Miller,

Support and Patch Management

Hand Over to QA

Patch Instructions: | PATCH MNAME:
JIRAPLAY-75
FRODUCT MAME:
JBoss Application Server
VERSION:

This should contain the patch instructions, the temgplate for which can b

Comment: (an aplional comment describing this update]

Update comment. |The patch is complete and ready for regression testing]

comment Viewable By | 41 Users w

Hand Overto QA | | Cancel

Use the Support Patch Template as a basis for these instructions.

9. Maktheissueas"Passto QA".
13.4.2. QA Phase

1. Within 48 hours, QA will assign the task and set a due date for the QA process to be complete. If the due date
is more than 3 days after the development is complete, QA will comment on the case and let the customer
know when the patch will be ready.

2. QA will run the testsuite to verify that the patch produces no regressions. If the tests fail, QA will mark theis-
sue as "QA Tests Failed" and it will be reassigned to the devel oper.

3. SeeHow To QA aOne-Off Support Patch..
4., QA will mark theissue as"QA Tests Passed" if the tests passed.

5. If tests pass, attach JARS to Support Portal case. Download jars and verify that MD5 sums match originals.

conic, Mark Little, Andrig Miller,

Support and Patch Management

13.4.3. JBN Phase

1. Thepatch will be deployed by the JBossNetwork team. This should include linking the issue to the JBN patch.

Complete Patch

Fatch Repository Linkl |hitp:/patch.network jboss.comi1234

or use by JBN team only) Enter the link to the patch in the JBN pati

Comment: (an optional caomment describing this update)

Update comment. |This patch has been uploaded to the patch repository

13.5. Support Patch Instructions Template

Below is the skeleton of the directions that should be entered in the "Patch Instructions' field in JIRA.

PATCH NAME:
[Not needed for the Curul ative Patch tasks]
JBAS- XXXX
PRODUCT NAME:
[Not needed for the Cunmul ative Patch tasks]
JBoss Application Server
VERSI ON:
[Not needed for the Curul ative Patch tasks]
4.0.2
SHORT DESCRI PTI ON:
[What problemthis patch fixes.]
ex: "A Nul |l Poi nterException is no | onger thrown when the password field is left blank."
LONG DESCRI PTI ON:
[Detail ed expl anati on of the problem]
ex: "Prior to this fix, blah happened. Wth this fix blah will happen instead. This is because t
MANUAL | NSTALL | NSTRUCTI ONS:
[How a user should nmanually install this patch.]
ex: "Renanme %BOSS HOVE% | i b/ someJdar.jar to "sonelJar.repl acedBy. JBAS- xxxx. j ar. ol d"
Copy the new soneJar.jar to %BOSS HOVE% | i b/"
COWPATI BI LI TY:
[known usages and known conbi nations that don't work]
ex: "portal 2.x in a given jens bundl e does not work with this change"
DEPENDENCI ES:
[list any patches this patch is dependent on. Not needed for the Cunul ative Patch tasks]
ex: 4.0.2-SP2
SUPERSEDES:
[list any patches this patch supersedes]
ex: JBAS- 1450
SUPERSEDED BY:
[list any patches this patch is superseded by. Not needed for the Cumul ative Patch tasks]
ex: 4.0.2-SP3
CREATOR:

Alex Pinkin

Support and Patch Management

[aut hor of this patch]
DATE:
[date these instructions were witten]

13.6. How To QA a One-Off Support Patch

Howto test a patch in the QA lab

create a directory which corresponds to the JIRAid for the patch
mkdi r JBAS-1234
cd JBAS- 1234

#set your JAVA HOMVE correctly
#if jboss 3.x, use jdk 1.3
#export JAVA HOVE=/opt/jdkl.3.1_13/

#if jboss 4.x use jdk 1.4
export JAVA HOVE=/ opt/j 2sdkl. 4.2_09/

#Make sure you are testing on a 32-bit box

get the source distribution of the *targetted* version of jboss
tar xvzf /opt/src/jboss-4.0.2-src.tar.gz

build Jboss & save the original output
cd jboss-4.0.2-src/build; sh build.sh
cp -r output output-orig

cd ../..

downl oad the patched binaries into a binaries directory
nkdi r binaries; cd binaries; #downl oad them|locally & upload via scp (if in ga |ab)

#TODO | ook at using wget to retrieve patches

capture the nd5 of each jar and add it as conment to jira
md5sum *. j ar

#use 'find' to locate where in the output each jar is, in
#order to create the right mrror of the install distro

find ../jboss-4.0.2-src/build/output -name jboss.jar

create a mirror of the install distro using the patched jars
#for each configuration 'find |isted

nkdir -p jboss-4.0.2/server/all/lib

cp jboss.jar jboss-4.0.2/server/all/lib

copy the jars to the output, verifying each jar copies correctly
NOTE: neke sure to replace all the jars in the source tree

not just the ones under buil d/output since the client classpath
is affected by the jars under /thirdparty and */output/lib.

cp -ivr jboss-4.0.2 ../jboss-4.0.2-src/buil d/ out put

save the patched version for later (to switch back & forth)
cd ../jboss-4.0.2-src/build
cp -r output output-patched

run the testsuite against the patched version (let nodeO default to | ocal host)
cd ../testsuite

Alex Pinkin

Support and Patch Management

sh build.sh -Dnodel=$MYTESTIP_1 tests

tests will take 1-2 hours, to save tine, verify pass rate every 15 min
if you see several failures, nmake sure no one else is on

who

ps --colums 1000 -ef | grep run.jar

once tests conplete, save the text report and take a look at it
cp output/reports/text/ TESTS- Testsuite.txt ../../TESTS-patched.txt

verify any failures also fail on the unpatched version
upon any failure contact QA Lead for help

cd ../build;

mv/ out put out put - pat ched

cp -r output-orig output

#find out which node the failing tests were using and
#istart the server using the particular configuration
#t he exanpl e below starts the "all' nbde

cd out put/jboss-4.0. 2/

.Ibin/run.sh -c al

#di fferent shel
cd jboss-4.0.2-src/testsuite
sh build.sh -Dtest=org.jboss.tests.the. FailingTest one-test

if failure only occurs on patched version, reject the patch
Attach necessary infornation to JIRA issue
ie, testuite/output/reports/ TESTS-org.jboss.test.the. FailingTest.txt

H H#

\When failing the patch notify devel oper that patched client jars
were note used, ie, add this as a coment:
NOTE: Patched client jars were not used to validate conpatibility.

Upon failure tar up the issue directory and copy to /hone/issues
cd $I SSUE_HOWVE/ . .

tar cvzf JIRA-1234.tar.gz JI RA-1234

cp JIRA-1234.tar.gz /homel/issues

#note path to tar.gz on JIRA issue

13.7. How To QA a Cumulative Patch
To befilled in by QA.

JBoss 2004, Ivelin Ivanov, Ryan 114

14

Weekly Status Reports

Every JBoss employee sends a weekly status report to his/ her manager on the first working day of every week.
This reporting scheme has been established to monitor work progress on outstanding issues and bottlenecks if any.

The format is as follows:

1. Work done last week:
Thisincludes:

a. Development tasks accomplished and the approximate time overall.
b. Support tasks undertaken and approximate time spent on support.
c. Remote consulting tasks undertaken and approximate time spent on them.
d. Any On-site consulting or training and approximate time taken.
e. Preparing for on-site consulting or training and approximate time taken.
2. Work planned for the current work week.
3. Outstanding issues that require others' help.

4. Any other relevant issues.

JBoss 2004, Ivelin Ivanov, Ryan 115

15

Documentation and the Documentation Process

15.1. JBoss Documentation

JBoss Inc. provides awide selection of documentation that provides in-depth coverage across the federation of Pro-
fessional Open Source projects. All documentation is now free. Several versions of our documentation require re-
gistration to the JBoss website, which is also free. If you cannot find the answers that you are looking for, you can
get additional support from the following sources:

e Buying Professional Support [http://www.jboss.com/services/profsupport] from JBoss Inc. and getting answers
from the experts behind the technology.

e Searching the Wiki [http://www.jboss.com/wiki/wiki.jsp].
* Reviewing the Forums [http://www.jboss.com/index.html 2module=bb].
» Watching JBoss Webinars [http://www.jboss.org/services/online_education)].

A complete listing of the documentation by project can be found on the Document Index
[http://imww.jboss.com/docs/index].

15.2. Producing and Maintaining Quality Documentation

For JBoss developers and documentation writers, JJRA and docbook are the two key tools to integrate the docu-
mentation process in the development workflow. Now let's clarify documentation responsibilities and adopt a
simple process to guarantee our documentation is always accurate and up-to-date.

15.2.1. Responsibilities

15.2.1.1. The product team

The development team is responsible for product-specific documentation. Core developers need to maintain the fol-
lowing documents.

¢ The product reference guide
e The Javadoc for key APIs and al annotations

* Annotated test cases

JBoss 2004, Ivelin Ivanov, Ryan 116

http://www.jboss.com/services/profsupport
http://www.jboss.com/wiki/wiki.jsp
http://www.jboss.com/index.html?module=bb
http://www.jboss.org/services/online_education
http://www.jboss.com/docs/index

Documentation and the Documentation Process

e Optional user guides for a specific product
e Optional flash demo for a specific product

Tasks related to producing those documents are managed within the development project's JRA module. Most of
these tasks are assigned to developers within the project but some of them are assigned to documentation team, as
we will seein aminute.

15.2.1.2. The documentation team

The documentation team (Michael Yuan and Norman Richards) is responsible for al "cross-cutting” documents
that cover several projects, as well as tutorial / technical evangelism materials. Examples of such documents are as
follows.

e Overadl server guide

e Trail maps (interactive tutorials)

* Sample applications

» Booksand articles

* The"what's new" guide

e The"best practice" guide

* gtc.

Tasks related to those documents are managed inside the "documentation™ JJRA module. Devel opers are welcome

to raiseissues there if you see errors and/or coverage gaps in existing documents.

15.2.2. Product documentation review

Before each product release, the documentation team needs to review al the documents maintained by project's
core developers (e.g., reference guide and Javadoc). Please create a review task for each document within your
project and assign it to a member in the documentation team. The documentation team will read the draft and use
that JRA task to track any issues.

15.2.3. Keep the documentation up-to-date

Since our technology is evolving fast, it is crucial for us to keep the documents up-to-date. If you have any devel-
opment task that might affect the external interface or observed behavior of the product, please check the appropri-
ate "affects’ check box at the bottom of the JRA task information page.

JBoss 2004, Ivelin Ivanov, Ryan 117

Documentation and the Documentation Process

e P = SR memmeeg e m g m e P ammemees merme e aame i = mp === —

fem e im e m mm P repemem e s

Description: | Change the annotation for message driven POJOs. We need a more descriptive name for the

annotation tag_|

Qriginal Estimate:

An estimate of how much wak remains until this izsue will be resolved.

The format of this is' "w™d *h *m ' (representing weeks, days, hours and minutes - where ® can be any numbe
Examples: 4d, Sh 20m, 50m and S,

JBoss Farum Reference:

SourceFarge Reference:

Affects: W Documentation (Ref Guide, User Guide, etc.)
E Interactive DemalTutarial
M CompatibilibConfiguration

% F LY
Create Cancel

Figure 15.1. Check the " affects’ boxesfor atask that changesthe public API

The project's documentation maintainer searches those tagged tasks periodically to update the reference guide
etc.

The documentation team searches those tagged tasks periodically to update the cross-product documents.

JBoss 2004, Ivelin Ivanov, Ryan 118

Documentation and the Documentation Process

Custom Fields

JBoss
Farum
Reference:

SourceForge
Feference:

Affects: W Documentation (Ref Guide, User Guide, atc.)
E Interactive DemorTutorial
1 CompatibilityConfiguration

’f_ << View & Hide? f_‘-fiew - x

Figure 15.2. Find all tasksthat affect docs

15.2.4. Articles and books

The documentation team also serves as our internal editors for technical articles and books in the JBoss book series.
If you are interested in writing articles or books, please let us know. Even if you do not have time to write a whole
book, we might still find books / articles you can contribute to. So, it is important to keep us informed about your
interestsin this area.

The documentation team will help develop proposals and manage the relationship with outside editors. If you sign
up to write the article / book, a JIRA task in the documentation module would be created and assigned to you to
keep track of the progress.

15.2.5. Authoring JBoss Documentation using DocBook

Writing JBoss documentation using the centralized docbook system is really easy. You first need to check out the
docbook-support top level module:

cvs -d:ext:yournane@vs. sf.net:/cvsroot/jboss co dochook-support.

In the module, you can find the docs/ gui de directory. Copy that directory to the docs/ directory in your own
project and use it as atemplate for your own dochbooks.

For more information about how the directories and build tasks are organized, check out the guide doc in the doc-
book-support module;

The PDF version isdocs/ gui de/ bui | d/ en/ pdf / j boss- docbook. pdf

The HTML version isdocs/ gui de/ bui | d/ en/ ht m /i ndex. ht m

Campbell, Pushkala lyer, Clebert Su-

16

JBoss QA Lab Guide

This chapter provides JBoss devel opers with a guide to the QA lab. It covers usage guidelines as well as setup doc-
umentation

16.1. Quick Start Guide

Use ssh to log into dev02.pub.ga.atl.jboss.com. All of the serversin the Q/A lab have the same public keys and ac-
counts as cvs.jboss.com. If you can't connect, contact it-ops@jboss.com. Dev02 is available for ad-hoc testing by
developers and support engineers. No scheduling is required for this box.

To avoid port conflicts with others, bind listeners to your assigned address. Currently, each account has 4 |P ad-
dresses available. These are available as environment variables: SMYTESTIP_1,$MYTESTIP 2, SMYTESTIP_3,
$SMYTESIP_4. For instance:

./run.sh -b $MYTESTIP_1 -c default

Y ou will find assorted tools and JVM's under /opt. If you can't find something you need, please raise the issue on
the JBIT project in JIRA.

16.2. Lab Setup

16.2.1. Topology

Each node has a public IP address for services such as SSH and HTTP, in addition to 256 private |P addresses. The
local network is Gigabit Ethernet, with connectivity to the public Internet viaa DS3.

To prevent port conflicts, each listener/server process must be bound to a specific private IP address. These IP ad-
dresses are delineated per node and per user in the /opt/etc/assigned-ips file, available on each machine. Currently,
each user is assigned 4 |IP addresses per node. These are automatically set as the environment variables
SMYTESTIP_1 $MYTESTIP_2, etc. All portsfor agiven private | P address may be accessed via SSH tunneling.

16.2.2. File System

The /opt and /home directories on each machine are mapped to the corresponding directories on dev0l1 viaNFS. So
your home directory is the same on each machine. The /opt directory holds common packages needed across all
nodes, preventing unecessary duplication. Under /opt, you will find several useful packages such as:

JBoss 2004, Ivelin Ivanov, Ryan 120

JBoss QA Lab Guide

e Many jdks, including IBM, Sun & JRockit

e JDBC drivers under /opt/jdbc-drivers

* Under /opt/src, several binary & src distros of JBoss

* Severd versions of Ant

16.2.3. Databases

This section documents the available databases in the QA lab, how to start, stop & access them. JDBC drivers are

available under /opt/jdbc-drivers.

For sudo accesto sybase & oracle, see "How do | get DB admin access?"

Table 16.1. Available Databases

Database Connection URL Start/Stop New User
Oracle 10.1.0.3 jd-
bc:oracl e:thin:@devol_pr /etc/init.d/ dbora start|stop $ sudo su - oracle
. $ export ORACLE_SI D=qadb01
IV:lSZl:qadbOl $ sqlplus "/ as sysdba "
CREATE USER your _user nane_here
| DENTI FI ED BY your _passwor d_here
DEFAULT TABLESPACE users
TEMPORARY TABLESPACE t enp
QUOTA UNLI M TED ON users;
GRANT DBA to your_usernane_here
MySQL 4.1.10a jd-
bc:mysql://devOl—priv/yo /etc/init.d/ nysql.server sta $ /opt/nysqgl/bin/nysgl -u ga -h gadb0l -p
Enter password: #request fromJBIT in JIRA
ur_database_here GRANT ALL PRI VI LEGES ON your _db_here. *
TO 'your _usernanme_here' @ %
| DENTI FI ED BY ' your _passwor d_here'
flush privileges
create database your_dat abase_here
Sybase ASE 12.5.2 jd-
bc:sybase:Tds:devOl—priv sudo su - sybase $ sudo su - sybase
i startserver -f \ $ isgl -Usa -P -SsybaseOl
14100 ~/ sybase/ ASE-12_5/instal | / RU sp_addl ogi n "youruser nanehere", "yourpassw
#st op go
sudo su - sybase create database yourdbhere
isgl -Usa -P -Ssybase0l go
shut down use yourdbhere
go go

16.2.4. Servers

sp_changedbowner youruser nanehere
go

JBoss 2004, Ivelin Ivanov, Ryan

121

JBoss QA Lab Guide

This section lists the available servers and their configurations. We can move between Windows/SLES/RHEL very
quickly. Please ask if you need a different OS. All servers have the domain name of dev??.pub.ga.atl.jboss.com.

Table 16.2. Available Servers

Host Purpose 0S CPU Memory
dev0l Database/NFS serv- RHEL 3/2.4 Kernel | 2 x 3.06 GHz P4 4GB
er Xeon
dev02 General usage RHEL 3/2.4 Kernel | 2 x 3.06 GHz P4 2GB

Xeon
dev03 General usage RHEL 3/2.4 Kernel | 2 x 3.06 GHz P4 2GB
Xeon
dev04 General usage SLES9/2.6 Kernel 2 x 3.06 GHz P4 2GB
Xeon
dev05 Cruisecontrol -no RHEL 3/2.4 Kerndl | 2 x 3.06 GHz P4 2GB
general access Xeon
dev07 General usage RHEL 4/2.6 Kernel/ | 2x 1.4 GHz 1A-64 2GB
64 bit [tanium 2
dev08 General usage RHEL 4/2.6 Kernel/ 2x 1.4GHz1A-64 2GB
64 bit [tanium 2
dev12 General usage Solaris 8 2x 1.2HGz Sun 4GB
V210
dev13 General usage Solaris ? 2x 1.8GHz Sun
V20z
devl4 General usage RHEL 4/2.6 Kernel/ 1x15GHzIA-64 4GB
64 bit [tanium 2
dev15 General usage RHEL 4/2.6 Kernel/ 1 x 1.5GHz1A-64 4GB
64 bit [tanium 2
dev16 SPECJ RHEL 4/2.6 Kernel/ 2x 3.6 GHzXeon 4GB
64 bit EM64T
dev17 SPECJ RHEL 4/2.6 Kernel/ 2x 3.6 GHzXeon 4GB
64 bit EM64T
devl18 General usage RHEL 4/2.6 Kernel/ 4x1.5GHzIA-64 4GB
64 bit [tanium 2
dev19 General usage RHEL 4/2.6 Kernel/ 4x 1.5GHz1A-64 4GB
64 bit [tanium 2

JBoss 2004, Ivelin Ivanov, Ryan

122

JBoss QA Lab Guide

16.3. QA Lab FAQ

16.3.1. General

16.3.
16.3. How should | run the testsuite in the QA Lab?

1.1
Jbuild.sh tests -Dnode0=$M Y TESTIP_1 -Dnodel=$MYTESTIP_2
16.3.
16.3. I'm getting port conflicts, how do | fix this?
1.2.

sudo /usr/sbin/lsof -i -P | grep 1099

This should display who has JBoss instances running. If they have not bound to their private IP address, it
will conflict even if you are doing so.

16.3.
16.3. How do | get DB admin access?
1.3.
On dev01, check to seeif you are in the oracle_admin group:

$ groups
If you don't see oracle_admin listed, open a JIRA issuein the JBIT project requesting access to this group.
16.3.
16.3. How do | add disk space for Sybase?
1.4.
Get into the isgl prompt as above, and

di sk resize nane="nmaster", size="200M
go

Campbell, Pushkala lyer, Clebert Su-

17

Project Release Procedures

This section describes the JBoss Project Release procedure.

17.1. Tagging Standards

Tags on JBoss projects should consist of two parts - project identifier and version number. A list of existing mod-
ules can be found on the CVS Modules [http://fisheye.jboss.com/viewrep/IBoss/CV SROOT/maodules] page. The
version number must follow JBoss Versioning Conventions . A correctly tagged project would be JBoss 4 0 2,
which is the tag for the JBoss Application Server, version 4.0.2. Note that al "' from the version have been re-
placed with ' .

17.2. JBoss Versioning Conventions

Product versions follow thisformat X.YY.ZZ.Q* (i.e. 1.2.3.GA, 1.2.3.CR1, 1.2.3.Alphal-20060205091502)

» X signifiesmajor version related to production release.

e YY signifiesminor version with minor feature changes or additions (use of even numbersis preferred - 3.0, 3.2,
3.4, etc.).

e ZZ signifies patches and bug fixes. Minor features that do not introduce backward compatibility issues are ok.

¢ Q* isan apha-numeric qualifier. The prefix of the qualifier needs to match the qualifier conventions listed be-
low to ensure that versions can be compared consistently in terms of version ordering.

Major versions are usually developed in multiple iterations. Each iteration concludes with an intermediate version
release. Intermediate versions are annotated with appropriate suffixes. This shows the progression of release ver-
sions. A given release may not have all stages of releases shown here.

17.2.1. Current Qualifier Conventions (Post 2006-03-01)

The following version conventions were put in place to have interop with eclipse/OSGI bundle version conven-
tions.

1. X.Y.ZZ.Alpha# - An Alpharelease includes all key features and is passing the main test cases. It still needs
work on edge cases, bug fixes, performance tuning and other optimization tasks.

2. X.Y.ZZ.Betad# - A Betarelease is the first release that the development and QA teams feel comfortable releas-
ing for public testing. Some bug fixes and minor optimizations are expected, but no significant refactoring

JBoss 2004, Ivelin Ivanov, Ryan 124

 http://fisheye.jboss.com/viewrep/JBoss/CVSROOT/modules

Project Release Procedures

should occur. No new major features are introduced from this phase on. Only stabilizing work.

3. X.Y.ZZ.CR# - Each candidate for release is a potential target for final release. Only if unexpected bugs are re-
ported during the iteration timeframe the CR number isincremented (e.g. jboss-4.0.1.CR1 to jboss-4.0.1.CR2)
and another release candidate is published. Generally only minor bug fixes are introduced to code and docu-
mentation.

4. X.Y.ZZ.GA - A Find version is released when there are no outstanding issues from the last CR version. Usu-
aly it'samatter of renaming the version from CR# to Final and repackaging the software.

5. X.Y.ZZ.SP#- A service pack release to afinal release. A service pack may be made when there are significant
issues found after afinal release to provide a bug fix release before the next scheduled final release.

17.2.2. Practices

The standard qualifiers are the required prefixes. Additional information may be included in the qualifer as a suffix
to incorprate information such as the build id to alow for distinction between nightly builds for example. If agiven
branch of a project is at 1.2.3.Betal, the full version used could include a build id based on a GMT timestamp, the
actual number of builds, etc. using afull qualifier syntax like Betal-NNN where NNN is the numeric build id.

The key thing is that all version usage be consistent for a given project. A project cannot include a build id in the
nightly builds, and then fail to include abuild id of greater value when 1.2.3.Betal is actually released. The reason
isthat 1.2.3.Betal cannot be seen to be older than some previous 1.2.3.Betal-NNN nightly build.

17.2.3. Legacy Qualifier Conventions (Pre 2006-03-01)

1. X.Y.ZZ.DR# - DR stands for Development Release. There could be a number of development releases. For
example jboss-4.0.0DR1. A development release is a significant project milestone, but it does not implement
all of the key features targeted for the public release.

2. X.Y.ZZ.Alpha - An Alpha release includes all key features and is passing the main test cases. It till needs
work on edge cases, bug fixes, performance tuning and other optimization tasks.

3. X.Y.ZZ.Beta- A Betarelease is the first release that the development and QA teams feel comfortable releas-
ing for public testing. Some bug fixes and minor optimizations are expected, but no significant refactoring
should occur. No new major features are introduced from this phase on. Only stabilizing work.

4. X.Y.ZZ.RC# - Each release candidate is a potential target for final release. Only if unexpected bugs are repor-
ted during the iteration timeframe the RC number is incremented (e.g. jboss-4.0.1RC1 to jboss-4.0.1RC2) and
another release candidate is published. Generally only minor bug fixes are introduced to code and documenta-
tion.

5. X.Y.ZZ.Fina - A Fina version is released when there are no outstanding issues from the last RC version.
Usually it'samatter of renaming the version from RC# to Final and repackaging the software (jboss-4.0.1).

6. X.Y.ZZ.SP#- A service pack release to afinal release. A service pack may be made when there are significant
issues found after afinal release to provide a bug fix release before the next scheduled final release.

JBoss 2004, Ivelin Ivanov, Ryan 125

Project Release Procedures

17.3. JBoss Naming Conventions

17.3.1. Naming of Build Artifacts

When creating jars as a result of a project's build, do not include the version element in the jar name. An example
of that would be the current JBoss Messaging component of the Application Server - jbossmg.jar and not jbossmg-
11ljar

17.3.2. Jar Manifest Headers

The standard Java version information and OSGI bundle version headers and their usage needs to be defined. The
standard javajar manifest headers should include:

1. Manifest-Version: 1.0

2. Created-By: @javavm.verson@ (@java.vm.vendor @)

3. Specification-Title: @specification.title@

4. Specification-Version: @specification.version@

5. Specification-Vendor: @specification.vendor@

6. Implementation-Title: @implementation.title@

7. Implementation-URL: @implementation.url @

8. Implementation-Version: @implementation.version@

9. Implementation-Vendor: @implementation.vendor@

10. Implementation-Vendor-1d: @implementation.vendor.id@

where:

e Specification-Title: whatever name/standard name the jar implements
» Specification-Version: the version number

» Specification-Vendor: JBoss (http://www.jboss.org/)

e Implementation-Title: name with additional implementation details
¢ Implementation-URL: http://www.jboss.org/

* Implementation-Version: a full implementation version with addition build info. For example:
${verson.major} .${ version.minor} .H version.revision} .${ version.tagl (build: CVSTag=%{version.cvstag}
date=${ build.id})

¢ Implementation-Vendor: JBoss Inc.

JBoss 2004, Ivelin Ivanov, Ryan 126

http://www.jboss.org/
http://www.jboss.org/

Project Release Procedures

e Implementation-Vendor-Id: http://www.jboss.org/

17.4. Pre-Release Checklist

A few tasks need to be completed before a project is handed off for release QA.

1. Thefilesto be released should be tagged using the correct tagging convention, and the tags should match the
appropriate version, refer to Tagging Standards

2. A roadmap which corresponds to the tag (eg. an RC1 release) should be present in JRA, and each task in the
roadmap must be marked off as completed

3. Product version should follow Versioning Conventions

4. Thebinary outputs for the project should be built and added to the repository
5. MD5 checksums should be generated for the binary outputs of the project

6. Thetestsuite should be able to run with a 100% success rate

7. Create aJBQA issuein JRA for coordination with QA
Once all items on the Pre-Release Checklist have been completed, the project is ready for release testing.

17.5. QA Release Process

When a project is ready for a release and the Pre-Release Checklist has been completed, the QA team follows a
standard release procedure outlined below.

1. 2 weeks prior to release the project team should open a JIRA issuein the JBoss QA project detailing what will
be released, the date it is expected to be released on, and the CV S tag which will be used for the release

2. Onrelease day the team will tag their project appropriately and enter a comment on the JIRA issue notifying
QA that the project is now ready for the QA process.

3. QA team checks out the project and any dependent modules from cvs by the specified tag
4. QA team then builds the project using the target distr from the build script

5. QA team will then run the testsuite for the specific project and analyze their results - if any failures are present
those issues need to be resolved by the QA or project teams before the release process could resume

6. QA team will verify documentation is present and correct
7. After all tests are passing, QA team will upload the disctribution archives

8. QA team makes arelease on Sourceforge.net and a binary release to jboss-head
For more detailed release process on existing JBoss Projects, refer to JBoss QA Wiki

Campbell, Pushkala lyer, Clebert Su-

http://www.jboss.org/
http://wiki.jboss.org/wiki/Wiki.jsp?page=QualityAssurance

Project Release Procedures

[http://wiki.jboss.org/wiki/Wiki.jsp?page=QualityAssurance] page

17.6. Release Notes

The Project Management System (JIRA) automatically generates Release Notes for a project. This is covered in
Release Notes section of the JIRA chapter

Campbell, Pushkala lyer, Clebert Su-

18

Serialization

18.1. Performance Consideration - Use Externalization

The best way to achieve performance on Serialization, isto use Externalization without using writeObject.

Example 18.1. Externalization Code

public class FirstClass implements Externalizable

{
SecondClass secondClass;
public void writeExternal (ObjectOutputStream out)
{
secondClass.writeExternal (out);
}
public void readExternal (Obj ectlnputStream inp)
{
secondClass = new SecondClass();
secondClass.readExternal (inp);
}
}
class SecondClass implements Externalizable
{
String str;
public void writeExternal (ObjectOutputStream out) { out.writeUTF(str); }
public void readExternal (Objectl nputStream inp) { str = inp.readUTF(); }
}

This is because writeObject will call a heavy discovery meta data for reflection and serialization's constructors.
Dealing directly with the life cycle of objects on externalization routines (calling new) will save you from execu-
tion this meta code.

Of course there are situations where you have to use writeObject/readObject, specialy if the written object was
already described as part of other object (for solving circular references), but most of times when doing writeEx-
ternal routines you can guarantee the life cycle of objects.

JBoss 2004, lvelin lvanov, Ryan 129

Serialization

18.2. Version Compatibility

A rule of thumbsis always define seriaVersionUID.
Example 18.2. serialVersionUID

private static final long serialVersionUID = 39437495895819393L ;

If you don't specify the uniquel D for the object, you can't guarantee version compatibility as minor changes could
end up in different serialVersionUID, as they would be calculated according to rules specified on this URL :

http://java.sun.com/j2se/1.5.0/docs/guide/seriali zation/spec/class.html #4100

18.2.1. In Externalizable Objects

For an externalizable class, writeExternal and readExternal will have to control its version compatibility.

ObjectinputStream encapsulates Streaming in such way that if you try to read more fields from a readExternal
method, you would get an EOFEXxception. Y ou could use the exception to determine if the end of a streaming was
reached, like in the example

Example 18.3. writeExter nal/readExter nal among different versions

public void writeExternal (ObjectOutputStream out)
{
out.writeUTF("FirstString");
/I code added in a newer version
out.writeUTF("SecondString™);

}
public void readExternal (Objectl nputStream inp)
{
String strl = inp.readUTF();
try
{
String str2 = inp.readUTF();
}
catch (EOFException €)
{
}
}

On the example above if an older version was used to write the object an EOFException would happen and it

JBoss 2004, lvelin lvanov, Ryan 130

Serialization

would be ignored. This would guarantee compatibility between different versions.

Any change made to an Externalizable class will be compatible as long as its read and writeExternal methods are
compliant.

18.2.2. Regular Serialization

Serialization's specification describe lots of scenarios on exchanging information between different class versions:
http://java.sun.com/j2se/1.5.0/docs/guide/serialization/spec/version.html

Basically there is one simple and basic rules that will summarize the list above

« Addfields, don't delete them.

Y ou need to take extra care when adding fields if the same Class is used back and forth different versions. For ex-
ample a Class that is for communications on both sides.

18.2.3. Compatible and Incompatible Changes

The following URL lists al the possible situations where a class will and won't be compatible.

http://java.sun.com/j2se/1.5.0/docs/guide/serialization/spec/version.html

JBoss 2004, Ivelin Ivanov, Ryan 131

19

How to Update the Development Guide

This chapter discusses the process of updating the JBoss Development Process Guide.

The Process Guide is written using DocBook schema. To be able to keep it updated, a basic knowledge of Doc-
Book is assumed. For reference and style manuals check the DocBook website [http://www.docbook.org/]

19.1. Checking Out The Guide As A Project

The Development Guide Project has two modules that need to be checked out separately.

e guide modules - checked out from private cvs
e guide build scripts (docbook-support module) - checked out from public cvs

To checkout the guide modules:

cvs -d:ext:usernane@vs. j boss. com/opt/cvs/private/ devel opment/ managenent co -r guide

To checkout the build scripts:

cvs -d: pserver:anonynous@vs. sour cef orge. net:/cvsroot/jboss export -r HEAD docbook- support

The guide module includes the docBook content of the Development Guide - modules, stylesheets and images and
the docbook-support module includes DocBook build scripts and is used to generate the html, single-html and pdf
versions of the Development Guide. For any gquestions on accessing the cvs repository, refer to CVS Access.

19.2. Building The Modules

Building the modules is done through the guide's bui | d. xni file, which is using targets defined in the docbok-
suport module'sbui | d. xm . Make sure the following line in guide/build.xml is correct:

<inport file="docbook-support/support.xm" />

JBoss 2004, lvelin lvanov, Ryan 132

http://www.docbook.org/

How to Update the Development Guide

The current version assumes the docbook module is in a directory called docbook- support inside your guide
project folder. By executing the default target you will generate three different formats of the Guide - single-html,
html and pdf, located in the build directory of your project. Currently the nast er. xm file specifies which modules
of the guide are to be included in the build. If you add new files to the modules directory, you need to specify them
inthisfile.

<l ENTITY qal ab SYSTEM " nodul es/ gal ab. xm ">

Thisline declares a module entity later to be added to the build list.

19.3. Request Development Guide Update

Any updates to the Development Guide need to be requested by creating a JBQA issuein JRA.

JBoss 2004, Ivelin Ivanov, Ryan 133

	JBoss Development Process Guide
	Table of Contents
	Preface
	Chapter 1. Overview
	1.1. Background
	1.2. JEMS integration milestones

	Chapter 2. Productizing Steps in the Overall Release Process
	2.1. I. Background
	2.2. II. Turning a Project into a Product
	2.2.1. I. Product Road Map Creation and Maintenance
	2.2.1.1. Questions for Constructing the Road Map
	2.2.1.2. Project road map checklist:

	2.2.2. II. Reference Documentation
	2.2.2.1. Project reference documentation checklist:

	2.2.3. III. On-line Education
	2.2.3.1. Project on-line education checklist:

	2.2.4. IV. Training Materials
	2.2.4.1. Training materials checklist:

	2.2.5.
	2.2.6. V. Quality Assurance
	2.2.6.1. Quality assurance checklist:

	2.2.7. VI. Development and Management Tooling
	2.2.7.1. Development tooling checklist:

	2.2.8. VII. Release the stable or final release
	2.2.8.1. Release checklist:

	2.3. Appendix A.
	2.3.1. Key Contacts for the Productizing Process

	Chapter 3. JBoss Issue Tracking
	3.1. Creating a new Project
	3.2. Creating Release Notes
	3.2.1. Adding Issues to Release Notes
	3.2.2. Generating Release Notes

	3.3. Issues
	3.3.1. Types
	3.3.2. Priorities
	3.3.3. Estimates and Due Dates
	3.3.4. Affects Checkboxes

	3.4. Managing Container Projects
	3.5. Project Source Repository and Builds
	3.6. Testsuites
	3.7. Dependency Tracking with JIRA

	Chapter 4. Build Reference
	4.1. Overview and Concepts
	4.2. Component Build
	4.2.1. Component Info Elements Reference
	4.2.2. Component Definition Elements Reference
	4.2.2.1.

	4.3. How to Synchronize and Build
	4.4. Tutorial: Anatomy of a Component Build
	4.4.1. Top Level Build
	4.4.2. Component Level Build
	4.4.2.1. Defining an Artifact

	4.4.3. Placing an Artifact in the Release

	4.5. How to Add a Component to the Repository

	Chapter 5. CVS Access for JBoss Sources
	5.1. Understanding CVS
	5.2. Obtaining a CVS Client
	5.3. Anonymous CVS Access
	5.4. Committer Access to CVS and JIRA

	Chapter 6. CVS Administration
	6.1. Creating and Managing Release Branches
	6.1.1. Release Numbering
	6.1.2. Example Release Scenarious

	6.2. Creating a New Binary Release Branch
	6.3. Checking Code into the MAIN Trunk
	6.4. Checking in a Patch on a Release Branch
	6.5. Checking in a Patch on a Non-JBoss CVS Module Release Branch

	Chapter 7. SVN Access for JBoss Sources
	7.1. Understanding SVN
	7.2. Obtaining an SVN Client
	7.3. Anonymous CVS Access
	7.4. Committer Access to SVN and JIRA

	Chapter 8. SVN Administration
	8.1. Creating and Managing Release Branches
	8.1.1. Release Numbering
	8.1.2. Example Release Scenarious

	8.2. Creating a New Binary Release Branch
	8.3. Checking Code into the MAIN Trunk
	8.4. Creating a service patch

	Chapter 9. Coding Conventions
	9.1. Templates
	9.1.1. Importing Templates into the Eclipse IDE

	9.2. Some more general guidelines
	9.3. JavaDoc recommendations

	Chapter 10. Logging Conventions
	10.1. Obtaining a Logger
	10.2. Logging Levels
	10.3. Log4j Configuration
	10.3.1. Separating Application Logs
	10.3.2. Specifying appenders and filters
	10.3.3. Logging to a Seperate Server
	10.3.4. Key JBoss Subsystem Categories
	10.3.5. Redirecting Category Output
	10.3.6. Using your own log4j.xml file - class loader scoping
	10.3.7. Using your own log4j.properties file - class loader scoping
	10.3.8. Using your own log4j.xml file - Log4j RepositorySelector

	10.4. JDK java.util.logging

	Chapter 11. Logging
	11.1. Relevant Logging Framework
	11.1.1. Overview of log4j
	11.1.1.1. Categories, Appenders, and Layout
	11.1.1.2. Category Hierarchy
	11.1.1.3. Appenders and layouts
	11.1.1.4. Configuration

	11.1.2. HP Logging Mechanism
	11.1.2.1. Log Handler
	11.1.2.2. Log Channel
	11.1.2.3. Log Writers
	11.1.2.4. Log Formatters
	11.1.2.5. Log Levels and Thresholds
	11.1.2.6. Interactions

	11.2. I18N and L10N
	11.2.1. The Java Internationalization API
	11.2.2. Java Interfaces for Internationalization
	11.2.3. Set the Locale
	11.2.4. Isolate your Locale Data
	11.2.5. Example
	11.2.6. Creating Resource Bundles
	11.2.7. Example of Use

	11.3. The Common Logging Framework
	11.3.1. Package Overview: com.arjuna.common.util.logging
	11.3.1.1. Interface Summary
	11.3.1.2. Class Summary
	11.3.1.3. LogFactory
	11.3.1.4. Setup of Log Subsystem

	11.3.2. Getting Started

	11.4. Default File Level Logging
	11.4.1. Setup

	11.5. Fine-Grained Logging
	11.5.1. Overview
	11.5.2. Usage

	Chapter 12. JBoss Test Suite
	12.1. How To Run the JBoss Testsuite
	12.1.1. Build JBoss
	12.1.2. Build and Run the Testsuite
	12.1.3. Running One Test at a Time
	12.1.4. Clustering Tests Configuration
	12.1.5. Viewing the Results

	12.2. Testsuite Changes
	12.2.1. Targets
	12.2.2. Files

	12.3. Functional Tests
	12.3.1. Integration with Testsuite

	12.4. Adding a test requiring a custom JBoss Configuration
	12.5. Tests requiring Deployment Artifacts
	12.6. JUnit for different test configurations
	12.7. Excluding Bad Tests

	Chapter 13. Support and Patch Management
	13.1. Introduction
	13.1.1. Cumulative Patch
	13.1.2. One-off Patch

	13.2. Support Workflow
	13.3. Cumulative Patch Process
	13.3.1. Development Phase
	13.3.2. QA Phase
	13.3.3. JBN Phase

	13.4. One-Off Patch Process
	13.4.1. Development Phase
	13.4.2. QA Phase
	13.4.3. JBN Phase

	13.5. Support Patch Instructions Template
	13.6. How To QA a One-Off Support Patch
	13.7. How To QA a Cumulative Patch

	Chapter 14. Weekly Status Reports
	Chapter 15. Documentation and the Documentation Process
	15.1. JBoss Documentation
	15.2. Producing and Maintaining Quality Documentation
	15.2.1. Responsibilities
	15.2.1.1. The product team
	15.2.1.2. The documentation team

	15.2.2. Product documentation review
	15.2.3. Keep the documentation up-to-date
	15.2.4. Articles and books
	15.2.5. Authoring JBoss Documentation using DocBook

	Chapter 16. JBoss QA Lab Guide
	16.1. Quick Start Guide
	16.2. Lab Setup
	16.2.1. Topology
	16.2.2. File System
	16.2.3. Databases
	16.2.4. Servers

	16.3. QA Lab FAQ

	Chapter 17. Project Release Procedures
	17.1. Tagging Standards
	17.2. JBoss Versioning Conventions
	17.2.1. Current Qualifier Conventions (Post 2006-03-01)
	17.2.2. Practices
	17.2.3. Legacy Qualifier Conventions (Pre 2006-03-01)

	17.3. JBoss Naming Conventions
	17.3.1. Naming of Build Artifacts
	17.3.2. Jar Manifest Headers

	17.4. Pre-Release Checklist
	17.5. QA Release Process
	17.6. Release Notes

	Chapter 18. Serialization
	18.1. Performance Consideration - Use Externalization
	18.2. Version Compatibility
	18.2.1. In Externalizable Objects
	18.2.2. Regular Serialization
	18.2.3. Compatible and Incompatible Changes

	Chapter 19. How to Update the Development Guide
	19.1. Checking Out The Guide As A Project
	19.2. Building The Modules
	19.3. Request Development Guide Update

