
Developer Guide

Developing applications

using RichFaces 4 (draft)

by Sean Rogers (Red Hat)

Draft Draft

iii

1. Introduction ... 1

2. Getting started with RichFaces ... 3

2.1. Technical Requirements .. 3

2.2. Setting up RichFaces .. 3

2.3. Creating a project with JBoss Tools ... 4

2.4. Creating a project with Maven ... 5

2.4.1. Setting up Maven ... 5

2.4.2. Using the RichFaces project archetype .. 5

2.5. Using RichFaces in existing JSF2 projects ... 8

3. RichFaces overview ... 9

3.1. Full technical requirements .. 10

3.1.1. Server requirements ... 10

3.1.2. Client requirements .. 11

3.1.3. Development requirements ... 11

3.2. Architecture .. 12

3.2.1. Ajax Action Components ... 12

3.2.2. Ajax Containers .. 12

3.2.3. Skins and theming ... 12

3.2.4. RichFaces JavaScript Engine .. 13

3.3. Technologies .. 13

3.4. Differences between JSF and RichFaces mechanisms .. 13

3.5. Restrictions ... 13

3.6. Compiling from source code .. 13

4. Basic concepts .. 19

4.1. Sending an Ajax request ... 19

4.2. Receiving events and client-side updates ... 19

4.2.1. Partial page updates .. 19

4.3. Component overview ... 20

5. Advanced features ... 21

5.1. JSF2 integration .. 21

5.2. Performance optimization .. 21

5.3. Traffic control and queues ... 21

5.4. Validation ... 22

5.5. Script and style loading ... 22

5.5.1. org.richfaces.LoadScriptStrategy ... 22

5.5.2. org.richfaces.LoadStyleStrategy .. 22

5.6. Error handling ... 23

5.6.1. Handling request errors .. 24

5.6.2. Handling session expiration errors ... 24

5.7. Managing states ... 25

5.8. User roles .. 25

6. Skinning and theming .. 27

6.1. What are skins? .. 27

6.2. Using skins ... 27

Developer Guide Draft

iv

6.3. Customizing skins ... 28

6.4. Skin parameter tables in RichFaces ... 29

6.5. Changing skins at runtime ... 31

6.6. Creating a new skin .. 33

6.7. Skinning standard controls .. 35

6.7.1. Skinning standard JSF components .. 35

6.7.2. Skinning standard HTML controls .. 36

6.8. Defining skins for individual components .. 38

6.9. Plug-n-skin ... 39

Chapter 1. Draft

1

Introduction
The RichFaces framework is a rich component library for JavaServer Faces (JSF). It allows

integration of Ajax capabilities into enterprise web application development without needing to

use JavaScript.

RichFaces leverages several parts of the JSF2 framework including lifecycle, validation,

conversion facilities, and management of static and dynamic resources. The RichFaces

framework includes components with built-in Ajax support and a customizable look-and-feel that

can be incorporated into JSF applications.

RichFaces provides a number of advantages for enterprise web application development:

• Build on the benefits of JavaServer Faces with support for Ajax. RichFaces is fully integrated

into the JSF lifecycle: it uses the action and value change listeners, and invokes server-side

validators and converters during the Ajax request-response cycle.

• Extend Ajax capability in existing JSF applications. The core Ajax library (a4j) adds extra

Ajax functionality into existing pages, such that additional JavaScript code is unnecessary and

existing components do not need to be replaced with Ajax ones. RichFaces enables page-wide

Ajax support instead of the traditional component-wide support, and events can be defined on

the page for invoking an Ajax requests and JSF Component Tree synchronization.

• Create complex application views using out-of-the-box components. The RichFaces user

interface (UI) library (rich) contains components for adding rich interactive features to JSF

applications. It extends the RichFaces framework to include a large set of Ajax-enabled

components that come with extensive skinning support. Additionally, the RichFaces framework

is designed to be used seamlessly with other 3d-party libraries on the same page, so you have

more options for developing applications.

• Write your own customized rich components with built-in Ajax support. The Component

Development Kit (CDK), used for the RichFaces UI library creation, includes a code-generation

facility and a templating facility using XHTML (extended hyper-text markup language) syntax.

• Package dynamic resources with application Java classes. Ajax functionality in RichFaces

extends support for the management of different resources, such as pictures, JavaScript code,

and CSS stylesheets. The resource framework makes it possible to pack dynamic resources

along with the code for any custom components.

• Generate binary resources on the fly. The resource framework can generate images, sounds,

Microsoft Excel spreadsheets, and more during run-time.

• Create a modern rich user-interface with skinning technology. RichFaces provides a skinning

feature that allows you to define and manage different color schemes and other parameters of

the look and feel. It is possible to access the skin parameters from JSP code and Java code

during run-time. RichFaces comes packaged with a number of skins to get you started, but you

can also easily create your own customized skins too.

2

Chapter 2. Draft

3

Getting started with RichFaces
Follow the instructions in this chapter to configure the RichFaces framework and get started

with application development. RichFaces applications can be developed using JBoss Tools, as

described in Section 2.3, “Creating a project with JBoss Tools”; or using Maven, as described in

Section 2.4, “Creating a project with Maven”.

If you have existing projects that use a previous version of RichFaces, refer to the RichFaces

Migration Guide.

2.1. Technical Requirements

The minimum technical requirements needed to get started with RichFaces are outlined below.

• Java Development Kit (JDK) 1.5 or higher

• JBoss Tools 3.1

• A JavaServer Faces 2 (JSF 2) implementation

• An application server, such as JBoss Application Server 6 or Apache Tomcat 6.

• A web browser, such as Firefox 3.5 or Internet Explorer 7

RichFaces supports additional products not listed here. Refer to Section 3.1, “Full technical

requirements” for a full list of technical requirements and supported envrionments, browsers, and

tools.

2.2. Setting up RichFaces

Follow the instructions in this section to set up the RichFaces framework and begin building

applications.

1. Download RichFaces archive

Download RichFaces from the JBoss RichFaces Downloads area at http://www.jboss.org/

richfaces/download.html. The binary files (available in .bin.zip or .bin.tar.gz archives)

contain a compiled, ready-to-use version of RichFaces with a set of basic skins.

• Compiling from source

Instead of downloading the pre-compiled binaries, you can download the source files

and compile them yourself. Refer to Section 3.6, “Compiling from source code” for further

instructions.

http://www.jboss.org/richfaces/download.html
http://www.jboss.org/richfaces/download.html

Chapter 2. Getting started wi... Draft

4

2. Unzip archive

Create a new directory named RichFaces, then unzip the archive containing the binaries

there.

2.3. Creating a project with JBoss Tools

Follow the procedure in this section to create a new RichFaces application with JBoss Tools.

1. Create a new project

Create a new project based on the JSF 2 environment. In JBoss Tools, select File+New →
JSF Project from the menu. Name the project, select JSF 2 from the JSF Environment drop-

down box, and click the Finish button to create the project.

2. Add the RichFaces libraries to the project

Add core-ui.jar, richfaces-api.jar, and richfaces-impl.jar into your project by

copying them from the location where you unzipped the RichFaces archive to the

WebContent/WEB-INF/lib/ directory of your project in JBoss Tools.

3. Reference the tag libraries

The RichFaces tag libraries need to be referenced on each XHTML page in your project:

<ui:composition xmlns="http://www.w3.org/1999/xhtml"

 xmlns:ui="http://java.sun.com/jsf/facelets"

 xmlns:a4j="http://richfaces.org/a4j"

 xmlns:rich="http://richfaces.org/rich">

 ...

</ui:composition>

You are now ready to begin constructing your RichFaces applications. RichFaces components

can be dragged and dropped into your application's XHTML pages from the RichFaces palette in

JBoss Tools, shown in Figure 2.1, “RichFaces palette in JBoss Tools”

Draft Creating a project with Maven

5

Figure 2.1. RichFaces palette in JBoss Tools

2.4. Creating a project with Maven

Apache Maven is a build automation and project management tool for Java projects. Follow the

instructions in this section to create a Maven project for RichFaces.

2.4.1. Setting up Maven

Maven can be downloaded and installed from Apache's website at http://maven.apache.org/

download.html. Version 2.2.1 is recommended.

Once Maven has been installed, no further configuration is required to begin building Maven

projects.

2.4.2. Using the RichFaces project archetype

A Maven archetype is a template for creating projects. Maven uses an archetype to generate a

directory structure and files for a particular project, as well as creating pom.xml files that contain

build instructions.

The RichFaces Component Development Kit includes a Maven archetype named richfaces-

archetype-simpleapp for generating the basic structure and requirements for a RichFaces

application project. Maven can obtain the archetype from the JBoss repository at https://

repository.jboss.org/nexus/content/groups/public/. The archetype is also included with

http://maven.apache.org/download.html
http://maven.apache.org/download.html

Chapter 2. Getting started wi... Draft

6

the RichFaces source code. Follow the procedure in this section to generate a new Maven-based

RichFaces project using the archetype.

1. Add required repository

The details for the JBoss repository need to be added to Maven so it can access the

archetype. Add a profile in the maven_installation_folder/conf/settings.xml file under

the <profiles> element:

<profiles>

 ...

 <profile>

 <id>jboss-public-repository</id>

 <repositories>

 <repository>

 <id>jboss-public-repository-group</id>

 <name>JBoss Public Maven Repository Group</name>

 <url>https://repository.jboss.org/nexus/content/groups/

public/</url>

 <layout>default</layout>

 <releases>

 <enabled>true</enabled>

 <updatePolicy>never</updatePolicy>

 </releases>

 <snapshots>

 <enabled>true</enabled>

 <updatePolicy>never</updatePolicy>

 </snapshots>

 </repository>

 </repositories>

 <pluginRepositories>

 <pluginRepository>

 <id>jboss-public-repository-group</id>

 <name>JBoss Public Maven Repository Group</name>

 <url>https://repository.jboss.org/nexus/content/groups/

public/</url>

 <layout>default</layout>

 <releases>

 <enabled>true</enabled>

 <updatePolicy>never</updatePolicy>

 </releases>

 <snapshots>

 <enabled>true</enabled>

 <updatePolicy>never</updatePolicy>

 </snapshots>

 </pluginRepository>

 </pluginRepositories>

 </profile>

Draft Using the RichFaces project archetype

7

</profiles>

The profile then needs to be activated in the <activeProfiles> element:

<activeProfiles>

 <activeProfile>jboss-public-repository</activeProfile>

</activeProfiles>

2. Generate the project from the archetype

The project can now be generated with the richfaces-archetype-simpleapp archetype.

Create a new directory for your project, then run the following Maven command in the

directory:

mvn archetype:generate -DarchetypeGroupId=org.richfaces.archetypes

 -DarchetypeArtifactId=richfaces-archetype-simpleapp -

DarchetypeVersion=4.0.0-SNAPSHOT -DgroupId=org.docs.richfaces -

DartifactId=new_project

The following parameters can be used to customize your project:

-DgroupId

Defines the package for the Managed Beans

-DartifactId

Defines the name of the project

The command generates a new RichFaces project with the following structure:

new_project

 ### pom.xml

 ### src

 ### main

 ### java

 # ### org

 # ### docs

 # ### richfaces

 # ### RichBean.java

 ### webapp

 ### index.xhtml

 ### templates

 # ### template.xhtml

 ### WEB-INF

 ### faces-config.xml

 ### web.xml

Chapter 2. Getting started wi... Draft

8

3. Add test dependencies (optional)

Your root directory of your project contains a project descriptor file, pom.xml. If you

wish to include modules for test-driven JSF development, add any dependencies for

the tests to the pom.xml file. For full details on how to use the jsf-test project, refer

to http://community.jboss.org/wiki/TestDrivenJSFDevelopment [http://community.jboss.org/

docs/DOC-13155].

4. Build the project

Build the project from the command line by entering the mvn install command.

The BUILD SUCCESSFUL message indicates the project has been assembled and is ready to

import into an IDE (integrated development environment), such as JBoss Tools.

5. Import the project into an IDE

Import the Maven project into your IDE. For Eclipse and JBoss Tools, you can import the

project using the M2Eclipse plug-in.

To install the plug-in, choose Help → Install New Software from the menu. Type Maven to

locate the Maven Integration for Eclipse Update Site entry, then type Maven in the filter to

show the available plug-ins. Follow the prompts to install the Maven Integration for Eclipse

plug-in.

With the plug-in installed, open the importing wizard by choosing File → Import from the

menu. Select Maven → Existing Maven Projects as the import source and choose the

pom.xml file for your project.

Your project is now ready to use. Once components and functionality have been added, you can

run the application on a server and access it through a web browser at the address http://

localhost:8080/jsf-app/.

2.5. Using RichFaces in existing JSF2 projects

RichFaces can be added to existing JSF2 projects by adding references to the new RichFaces

libraries. Refer to Step 2 and Step 3 in Section 2.3, “Creating a project with JBoss Tools” for details.

http://community.jboss.org/docs/DOC-13155
http://community.jboss.org/docs/DOC-13155
http://community.jboss.org/docs/DOC-13155

Chapter 3. Draft

9

RichFaces overview

Documentation in development

Some concepts covered in this chapter may refer to the previous version of

Richfaces, version 3.3.3. This chapter is scheduled for review to ensure all

information is up to date.

The RichFaces framework is a component library which enhances JSF Ajax capabilities, such

that you don't need to write any extra JavaScript code or replace any existing components with

new Ajax widgets. RichFaces also enables page-wide Ajax support instead of the traditional

component-wide support. Events can be defined on pages that invoke Ajax requests. After an Ajax

request, the areas of a page that are synchronized with the JSF Component Tree can themselves

change data on the server according to events fired on the client.

Figure 3.1, “Request processing flow” illustrates how requests are processed in the RichFaces

framework.

Chapter 3. RichFaces overview Draft

10

Figure 3.1. Request processing flow

Using JSF tags, RichFaces allows different parts of a JSF page to be updated with an Ajax request.

JSF pages using RichFaces do not change from "regular" JSF pages, and additional JavaScript

code is not required.

3.1. Full technical requirements

RichFaces has been developed with an open architecture to be compatible with a wide variety

of environments.

3.1.1. Server requirements

A Java application server or servlet container is required for running RichFaces applications.

RichFaces supports the following servers:

• Apache Tomcat 6.0 and higher

• BEA WebLogic 9.1 – 10.0

• JBoss 4.2 and higher

Draft Client requirements

11

• Geronimo 2.0 and higher

• Glassfish (J2EE 5 and JEE 6)

• Resin 3.1

• Sun Application Server 9 (J2EE 1.5)

• Websphere 7.0 and higher

3.1.2. Client requirements

Clients accessing RichFaces applications require a web browser. Richfaces supports the following

web browsers:

Linux environments

• Firefox 3.0 and higher

• Google Chrome

• Opera 9.5 and higher

Mac OS environments

• Firefox 3.5 and higher

• Google Chrome

• Safari 3.0 and higher

Microsoft Windows environments

• Firefox 3.0 and higher

• Google Chrome

• Internet Explorer 7.0 and higher

• Opera 9.5 and higher

• Safari 3.0 and higher

3.1.3. Development requirements

Developing applications with the RichFaces framework requires the Java Development Kit (JDK),

an implementation of JavaServer Faces (JSF), and a development environment.

Java Development Kit (JDK)

RichFaces supports the following JDK versions:

• JDK 1.5 and higher

Chapter 3. RichFaces overview Draft

12

JavaServer Faces (JSF)

RichFaces supports the following JSF implementations and frameworks:

• MyFaces 2 and higher

• Seam 2 and higher

• Sun JSF-RI 2 and higher

Development environment

RichFaces can be developed using most Java development environments. The following are

recommended, and used for examples in this guide:

• JBoss Tools 3.1 and higher

• Maven 2.1.0 and higher (2.2.1 recommended)

3.2. Architecture

The important elements of the RichFaces framework are as follows:

• Ajax Action Components

• Ajax Containers

• Skins and Theming

• RichFaces JavaScript Engine

Read this section for details on each element.

3.2.1. Ajax Action Components

The RichFaces framework includes several Ajax Action Components: <a4j:commandButton>,

<a4j:commandLink>, <a4j:poll>, <a4j:support>, and more. Use Ajax Action Components to

send Ajax requests from the client side.

3.2.2. Ajax Containers

AjaxContainer (name possibly changed in release) is an interface that describes an area

on a JSF page that is decoded during an Ajax request. AjaxViewRoot and AjaxRegion are

implementations of this interface.

3.2.3. Skins and theming

RichFaces includes extensive support for application skinning. Skinning is a high-level extension

to traditional CSS (Cascading Style Sheets) which allows the color scheme and appearance of

an application to be easily managed. The skins simplify look-and-feel design by allowing multiple

elements of the interface to be handled as manageable features, which have associated color

palettes and styling. Application skins can additionally be changed on the fly during run-time,

allowing user experiences to be personalized and customized.

Draft RichFaces JavaScript Engine

13

For full details on skinning and how to create skins for the components in your application, refer

to Chapter 6, Skinning and theming.

3.2.4. RichFaces JavaScript Engine

The RichFaces JavaScript Engine runs on the client side. It can update different areas on a JSF

page based on an Ajax response. It is not necessary to use the JavaScript code directly, as it is

available automatically.

3.3. Technologies

RichFaces originated from the Ajax4jsf project, an open-source web application framework that

added Ajax capabilities to the JavaServer Faces (JSF) framework. The RichFaces components

were split into a separate commercial component library, then later both the Ajax4jsf and

RichFaces libraries were re-combined under the RichFaces name.

RichFaces 4.0 features full JSF2 integration and uses standard web application technologies such

as JavaScript, XML (Extensible Markup Language), and XHTML (Extensible Hypertext Markup

Language).

3.4. Differences between JSF and RichFaces

mechanisms

• JavaServer Faces (JSF) declares render and execute processes on the client side, while

RichFaces declares server-side definitions of lists.

• RichFaces components uses their own renderers. In the Render Response Phase, the

RichFaces framework makes a traversal of the component tree, calls its own renderer, and

passes the result to the Faces Response.

3.5. Restrictions

The following restrictions apply to applications implementing the RichFaces framework:

• Any Ajax framework should not append or delete elements on a page, but should instead replace

them. For successful updates, an element with the same identifier as in the response must exist

on the page. If it is necessary to append code to a page, include a placeholder for it (an empty

element).

• <f:verbatim> should not be used for self-rendered containers, since it is transient and not

saved in the tree.

• The RichFaces ViewHandler puts itself in front of the Facelets ViewHandlers chain.

3.6. Compiling from source code

The source code for the RichFaces framework can be downloaded and compiled manually rather

than using the pre-compiled binaries.

Chapter 3. RichFaces overview Draft

14

1. Download source code

• JBoss RichFaces Downloads area

Download the source files (also available in .bin.zip or .bin.tar.gz archives) from

the JBoss RichFaces Downloads area at http://www.jboss.org/richfaces/download.html.

• Anonymous SVN repository

Alternatively, the source files can be downloaded from the anonymous SVN repository

at http://anonsvn.jboss.org/repos/richfaces/root/ using the following command:

svn co http://anonsvn.jboss.org/repos/richfaces/root/

2. Unzip archive

Create a new directory named RichFaces, then unzip the archive containing the source code

there.

3. Configure Maven with JBoss developer settings

To compile the RichFaces source code, Maven requires access to JBoss development

repositories. Edit the maven_installation_folder/conf/settings.xml file and add the

following settings:

Server definitions

<servers>

 <server>

 <id>jboss-developer-repository-group</id>

 <username>username</username>

 <password>password</password>

 </server>

 <server>

 <id>jboss-screenshots-repository</id>

 <username>username</username>

 <password>password</password>

 </server>

 <server>

 <id>jboss-releases-repository</id>

 <username>username</username>

 <password>password</password>

 </server>

 ...

</servers>

http://www.jboss.org/richfaces/download.html
http://anonsvn.jboss.org/repos/richfaces/root/

Draft Compiling from source code

15

Change the username and password in your server definitions to your JBoss.org

username and password.

Mirror definitions

<mirrors>

 <mirror>

 <id>jboss-developer-repository-group</id>

 <mirrorOf>*,!jboss-deprecated</mirrorOf>

 <name>JBoss.org Developer Repository Group</name>

 <url>https://repository.jboss.org/nexus/content/groups/developer/

</url>

 </mirror>

 ...

</mirrors>

Profile definitions

<profiles>

 <!-- Redefine the Maven central repository to enable snapshots. The

 url will be replaced by the mirror -->

 <profile>

 <id>jboss-nexus</id>

 <repositories>

 <repository>

 <id>central</id>

 <name>Central repository proxy</name>

 <url>replaced by mirror settings</url>

 <layout>default</layout>

 <releases>

 <enabled>true</enabled>

 </releases>

 <snapshots>

 <enabled>true</enabled>

 <updatePolicy>never</updatePolicy>

 </snapshots>

 </repository>

 </repositories>

 <pluginRepositories>

 <pluginRepository>

 <id>central</id>

 <url>replaced by mirror settings</url>

 <releases>

 <enabled>true</enabled>

 </releases>

 <snapshots>

Chapter 3. RichFaces overview Draft

16

 <enabled>true</enabled>

 </snapshots>

 </pluginRepository>

 </pluginRepositories>

 </profile>

 ...

</profiles>

Activate profile

<activeProfiles>

 <activeProfile>jboss-nexus</activeProfile>

 ...

</activeProfiles>

4. Compile using Maven

In the root directory of the unzipped source code, enter the following command to compile

and build the RichFaces framework:

mvn clean install

Add any of the following options after the command to customize the build:

-P release,docs

Maven additionally builds the documentation and release artifacts.

-D skipTests=true

Maven skips the unit and functional tests, which completes the build faster.

-D checkstyle.skip=true

Maven skips the scans for checking style, which completes the build faster.

-D skip-source

Maven does not produce any source jar files from the build.

-D skip-enforce

Maven does not check for the correct JDK version, Maven version, and SNAPSHOT plug-

in, and forces the build.

-D jsf-profile=implementation

Maven tests builds and tests against the specified JSF implementation. The

implementation value can be any of the following:

• jsf_ri: The latest release of JSF RI (Mojarra). This is the default implemenation.

Draft Compiling from source code

17

• jsf_ri_javax: The latest release of javax.faces.

• jsf_ri_snapshot: The latest snapshot version of JSF RI (Mojarra).

• myfaces: The latest release of MyFaces.

• myfaces: The latest snapshot version of MyFaces.

5. Access compiled binaries

The compiled libraries are located in the following sub-directories of the root RichFaces

directory:

• ui/assembly/target/dist/richfaces-ui-version-SNAPSHOT.jar

• framework/api/target/richfaces-api-version-SNAPSHOT.jar

• framework/impl/target/richfaces-impl-version-SNAPSHOT.jar

If Maven built the framework using the -P release option, the distribution package containing

all three compiled libraries and reference documentation is located at ui/assembly/target/

dist/richfaces-ui-version-SNAPSHOT-bin.zip.

You can now add the compiled libraries to your project as described in Step 2 of Section 2.3,

“Creating a project with JBoss Tools”.

18

Chapter 4. Draft

19

Basic concepts

Documentation in development

Some concepts covered in this chapter may refer to the previous version of

Richfaces, version 3.3.3. This chapter is scheduled for review to ensure all

information is up to date.

Read this chapter for the basic concepts of using RichFaces in conjunction with Ajax and

JavaServer Faces.

4.1. Sending an Ajax request

Many of the tags in the a4j and rich tag libraries are capable of sending Ajax requests from

a JavaServer Faces (JSF) page. RichFaces tags hide the usual JavaScript activities that are

required for an XMHTTPRequest object building and an Ajax request sending. Additionally the

tags can determine which components of a JSF page are to be re-rendered as a result of the Ajax

response; refer to Section 4.2.1, “Partial page updates” for details.

• The <a4j:commandButton> and <a4j:commandLink> tags are used to send an Ajax request

on the click JavaScript event.

• The <a4j:poll> tag is used to send an Ajax request periodically using a timer.

• The <a4j:ajax> tag allows you to add Ajax functionality to standard JSF components and send

Ajax request on a chosen JavaScript event, such as keyup or mouseover, for example.

• Most components in the rich tag library have built-in Ajax support. Refer to the RichFaces

Component Reference for details on the use of each component.

4.2. Receiving events and client-side updates

Updates are made only to those regions specified using the execute. If no specific regions are

declared, the whole page is updated when an Ajax response is received.

4.2.1. Partial page updates

Specific regions of a page can be defined through the use of container components such as

<a4j:region>. These regions can then be specified with their id identifiers in the render attribute

of a component so that when the component sends an Ajax request, only the specified regions

are updated. In this way you can control which part of the JSF View is decoded on the server

side when the Ajax request is sent. Multiple regions can be defined and sent, and regions can

be nested inside other regions. Controls and components from third-party libraries contained in

these regions are also updated.

Chapter 4. Basic concepts Draft

20

Additionally, regions can be wrapped with the <a4j:outputPanel ajaxRendered="true"> tag.

This causes all contents of the region to be updated on every Ajax response, even if not explicitly

listed in the requesting component's render attribute.

Setting the limitRender attribute to true will cause only those regions listed in the

requesting component's render attribute to be updated. This overrides any regions with the

<a4j:outputPanel ajaxRendered="true"> tag.

Refer to the RichFaces Component Reference for further details on the common Ajax attributes

used for partial page updates.

4.3. Component overview

The RichFaces framework is made up of two tag libraries: the a4j library and the rich library.

The a4j tag library represents Ajax4jsf, which provides page-level Ajax support with core

Ajax components. This allows developers to make use of custom Ajax behavior with existing

components. The rich tag library provides Ajax support at the component level instead, and

includes ready-made, self-contained components. These components don't require additional

configuration in order to send requests or update.

For details on the use of the various components, refer to RichFaces Component Reference.

Chapter 5. Draft

21

Advanced features

Documentation in development

Some concepts covered in this chapter may refer to the previous version of

Richfaces, version 3.3.3. This chapter is scheduled for review to ensure all

information is up to date.

Read this chapter for details on some of the advanced features and configuration possibilities for

the RichFaces framework.

5.1. JSF2 integration

JavaServer Faces (JSF) is the Java-based web application framework upon which the RichFaces

framework has been built. RichFaces is now integrated with JSF2, which features several

improvements to the framework.

• The standard display technology used by JSF1 was JavaServer Pages (JSP). With JSP2, the

standard display technology has been changed to Facelets, which is a more powerful and more

efficient View Declaration Language (VLD) than JSP.

5.2. Performance optimization

The RichFaces framework includes several components designed to improve application

performance. Script and style management can be optimized with resource-loading components

such as <a4j:loadBundle>, <a4j:loadScript>, and <a4j:loadStyle>.

For further details on optimizing the performance of RichFaces applications, refer to the Resources

and Processing management chapters in the Component Reference Guide.

5.3. Traffic control and queues

The RichFaces framework allows for queues to manage traffic from Ajax requests, events,

and page updates. Controlling the message processing with a queue can make applications

more efficient and avoid problems with data corruption. Basic queuing is available with all

RichFaces components, and the <a4j:queue> component adds advanced queuing to standard

JSF components.

For further details on RichFaces queue management, refer to the queuing details in the Common

Ajax attributes chapter and the Processing management chapter in the Component Reference

Guide.

Chapter 5. Advanced features Draft

22

5.4. Validation

The RichFaces framework features several validation components. These components can

validate Ajax actions, or validate data against model-based constraints defined using Hibernate

Validator.

For further details on RichFaces validation components, refer to the Validation chapter of the

Component Reference Guide.

5.5. Script and style loading

Scripts and styles are normally loaded into a RichFaces application on demand. The default

loading strategy can be altered to suit certain applications by specifying the strategy in the web.xml

file.

5.5.1. org.richfaces.LoadScriptStrategy

The script-loading strategy is specified as follows:

<context-param>

 <param-name>org.richfaces.LoadScriptStrategy</param-name>

 <param-value>ALL</param-value>

</context-param>

The <param-value> element can be set to one of three values:

ALL

All scripts are loaded when the application starts.

JavaScript file compression

When org.richfaces.LoadScriptStrategy is set to ALL, JavaScript file

compression is turned off.

DEFAULT

Scripts are loaded as required. If not otherwise specified, this is the normal script-loading

behavior.

NONE

No scripts are loaded. This can be useful for including scripts manually.

5.5.2. org.richfaces.LoadStyleStrategy

The style-loading strategy is specified as follows:

Draft Error handling

23

<context-param>

 <param-name>org.richfaces.LoadStyleStrategy</param-name>

 <param-value>ALL</param-value>

</context-param>

The <param-value> element can be set to one of three values:

ALL

All styles from a single integrated style sheet are loaded when the application starts.

DEFAULT

Styles are loaded as required. If not otherwise specified, this is the normal style-loading

behavior.

NONE

No styles are loaded. The default plain skin resets all color and font parameters to null. Any

pre-defined styles for RichFaces are not used.

5.6. Error handling

RichFaces allows standard handlers to be defined for processing different application exceptions.

Custom JavaScript can be executed when these exceptions occur.

To define handlers for application exceptions, add the following code to your web.xml file:

<context-param>

 <param-name>org.ajax4jsf.handleViewExpiredOnClient</param-name>

 <param-value>true</param-value>

</context-param>

MyFaces compatibility

Custom error handlers for the onError and onExpire events do not work under

MyFaces. MyFaces handles exceptions through its internal debug page. Use the

following code in the web.xml file to prevent this behavior in MyFaces:

<context-param>

 <param-name>org.apache.myfaces.ERROR_HANDLING</param-name>

 <param-value>false</param-value>

</context-param>

Chapter 5. Advanced features Draft

24

5.6.1. Handling request errors

To execute custom JavaScript code on the client when an error occurs during an Ajax request,

redefine the standard A4J.AJAX.onError method, as shown in Example 5.1, “Example request

error”.

Example 5.1. Example request error

A4J.AJAX.onError = function(req, status, message){

 window.alert("Custom onError handler "+message);

}

The function accepts three parameters:

req

A string of parameters from the request that caused the error.

status

The error number returned by the server.

message

A default message for the error.

5.6.2. Handling session expiration errors

Redefine the A4J.AJAX.onExpired method to handle the expiration of a user's session, as shown

in Example 5.2, “Example session expiration error”.

Example 5.2. Example session expiration error

A4J.AJAX.onExpired = function(loc, expiredMsg){

 if(window.confirm("Custom onExpired handler "+expiredMsg+" for a location:

 "+loc)){

 return loc;

 } else {

 return false;

 }

}

The function accepts two parameters:

loc

The URL of the current page, which can be updated on demand.

Draft Managing states

25

expiredMsg

A default message for the session expiration error.

5.7. Managing states

JavaServer Faces (JSF) has an advanced navigation mechanism that allows you to define

navigation from one view to another. Navigation typically happens in a web application when a

user moves from one page to another, but there is no switch mechanism between certain logical

states in the same view. The RichFaces State API allows sets of states to be defined for the views,

as well as any properties associated with these states.

Actually States is a map where the entry key is a name of the State and the value is a State map.

Particular State map has entries with some names as keys and any objects as values that are used

after the state activation. Thus, in the State map you could define any values, method bindings,

or just some simple state variables (constants) which have different values for every State.

5.8. User roles

To check whether the logged-in user belongs to a certain user role, use the

rich:isUserInRole(Object) function in RichFaces. The example demonstrates the function's

use to render controls only for users with administrator privileges.

Example 5.3. User role example

Certain controls only need to be rendered for administrators.

1. Create admin role

Create the admin role in the web.xml file:

<security-role>

 <role-name>admin</role-name>

</security-role>

2. Implement authorization for users

Assign the admin role to users when they log in to the application as administrators.

3. Use the rich:isUserInRole(Object) function

The rich:isUserInRole(Object) function can be used with the rendered attribute of any

component:

<rich:editor value="#{bean.text}" rendered="#{rich:isUserInRole('admin')}" /

>

26

Chapter 6. Draft

27

Skinning and theming

Documentation in development

Some concepts covered in this chapter may refer to the previous version of

Richfaces, version 3.3.3. This chapter is scheduled for review to ensure all

information is up to date.

Read this chapter for a guide to skinning and theming RichFaces applications, including how to

implement themes, and details on customizing and extending skins.

6.1. What are skins?

Application skins are used with the RichFaces framework to change the appearance of an

application through setting the colors and decoration of controls and components. Typically

the appearance of web applications is handled through the CSS (Cascading Style Sheet) files

associated with the application, but skinning allows the settings in a CSS file to be abstracted and

easily edited. Using skins avoids repetitive coding and duplication in CSS files through the use of

style variables and generalization. CSS files are not completely replaced: skins work as a high-

level extension to standard CSS.

Each skin has a set of skin-parameters, which are used to define the theme palette and other

elements of the user interface. These parameters work together with regular CSS declarations,

and can be referred to from within CSS using JavaServer Faces Expression Language (EL).

The skinning feature of RichFaces also allows themes to be changed at runtime, so users can

personalize an application's appearance.

6.2. Using skins

RichFaces includes a number of predefined skins. These skins can be used in RichFaces web

applications by specifying the skin name in the org.richfaces.SKIN context parameter in the

web.xml settings file. The predefined skins are as follows:

• DEFAULT

• plain, which contains no skin parameters and is intended for embedding RichFaces

components into existing projects with their own styles.

• emeraldTown

• blueSky

• wine

• japanCherry

Chapter 6. Skinning and theming Draft

28

• ruby

• classic

• deepMarine

• laguna

• darkX

• glassX

To add one of these skins to your application, add the org.richfaces.SKIN context parameter

to the web.xml configuration file:

<context-param>

 <param-name>org.richfaces.SKIN</param-name>

 <param-value>skin_name</param-value>

</context-param>

6.3. Customizing skins

RichFaces skins are designed to use a combination of styling elements. Themes for components

can be applied using any of the following style classes:

A default style class inserted into the framework

Style classes contain skin parameters linked to constant theme styles in the skin. Each

component has a class style defining a default representation level. Application interfaces can

be modified by altering the values of skin parameters in the skin itself.

A style class extending the skin

A custom style class can be added to the skin, working in conjunction with CSS classes of the

same name. All components referencing the class are extended in the same way.

User style class

Components can use the styleClass attribute to redefine specific component elements. As

such, the appearance of an individual component can be customized according to a CSS style

parameter specified in the class.

Example 6.1. Simple skinning example

Using any component, such as a panel, without specifying a styleClass will use the default skin

parameters for that component.

<rich:panel>...</rich:panel>

Draft Skin parameter tables in RichFaces

29

When rendered for display, the panel consists of two HTML elements: a wrapper <div> element

and a <div> element for the body of the panel. The wrapper element for a panel without a specified

styleClass is rendered as follows:

<div class="dr-pnl rich-panel">

 ...

</div>

dr-pnl refers to a CSS class specified in the framework. The CSS class uses skin parameters

for generic theme styles:

• The background-color CSS class attribute is defined by the generalBackgroundColor skin

parameter.

• The border-color CSS class attribute is defined by the panelBorderColor skin parameter.

Changing the definitions for generalBackgroundColor or panelBorderColor in the skin will

cause all panels in the application to change.

If a styleClass attribute is used, the specified style class is applied to the component, which

could extend or override the default styles.

<rich:panel styleClass="customClass">...</rich:panel>

The customClass style is added to the CSS, and is applied to the component when it is rendered

for display:

<div class="dr-pnl rich-panel customClass">

 ...

</div>

6.4. Skin parameter tables in RichFaces

Table 6.1, “Parameter settings for the blueSky skin” lists the default values for the parameter

settings in the blueSky skin. These values can be customized and extended for a unique

application theme as described in Section 6.3, “Customizing skins”.

Table 6.1. Parameter settings for the blueSky skin

Parameter name Default value

headerBackgroundColor #BED6F8

headerGradientColor #F2F7FF

Chapter 6. Skinning and theming Draft

30

Parameter name Default value

headTextColor #000000

headerWeightFont bold

generalBackgroundColor #FFFFFF

generalTextColor #000000

generalSizeFont 11px

generalFamilyFont Arial, Verdana, sans-serif

controlTextColor #000000

controlBackgroundColor #ffffff

additionalBackgroundColor #ECF4FE

shadowBackgroundColor #000000

shadowOpacity 1

panelBorderColor #BED6F8

subBorderColor #ffffff

tabBackgroundColor #C6DEFF

tabDisabledTextColor #8DB7F3

trimColor #D6E6FB

tipBackgroundColor #FAE6B0

tipBorderColor #E5973E

selectControlColor #E79A00

generalLinkColor #0078D0

hoverLinkColor #0090FF

visitedLinkColor #0090FF

headerSizeFont 11px

headerFamilyFont Arial, Verdana, sans-serif

tabSizeFont 11px

tabFamilyFont Arial, Verdana, sans-serif

buttonSizeFont 11px

buttonFamilyFont Arial, Verdana, sans-serif

tableBackgroundColor #FFFFFF

tableFooterBackgroundColor #cccccc

tableSubfooterBackgroundColor #f1f1f1

tableBorderColor #C0C0C0

Draft Changing skins at runtime

31

6.5. Changing skins at runtime

The user can change skins at runtime if a managed bean is used to access the skin.

1. Create the skin bean

The skin bean is a simple interface to manage the skin:

public class SkinBean {

 private String skin;

 public String getSkin() {

 return skin;

 }

 public void setSkin(String skin) {

 this.skin = skin;

 }

}

2. Reference the skin bean

Use EL (Expression Language) to reference the skin bean from the web.xml settings file.

<context-param>

 <param-name>org.richfaces.SKIN</param-name>

 <param-value>#{skinBean.skin}</param-value>

</context-param>

3. Set initial skin

The application needs an initial skin to display before the user chooses an alternative skin.

The initial skin is specified in the web.xml configuration file.

<managed-bean>

 <managed-bean-name>skinBean</managed-bean-name>

 <managed-bean-class>SkinBean</managed-bean-class>

 <managed-bean-scope>session</managed-bean-scope>

 <managed-property>

 <property-name>skin</property-name>

 <value>classic</value>

 </managed-property>

</managed-bean>

Chapter 6. Skinning and theming Draft

32

Example 6.2. Skin changing example

This example renders a list of radio buttons from which the user can choose their desired skin.

The chosen skin is then applied to the panel bar items.

<h:form>

 <div style="display: block; float: left">

 <h:selectOneRadio value="#{skinBean.skin}" border="0" layout="pageDirection" title="Changing

 skin" style="font-size: 8; font-family: comic" onchange="submit()">

 <f:selectItem itemLabel="plain" itemValue="plain" />

 <f:selectItem itemLabel="emeraldTown" itemValue="emeraldTown" />

 <f:selectItem itemLabel="blueSky" itemValue="blueSky" />

 <f:selectItem itemLabel="wine" itemValue="wine" />

 <f:selectItem itemLabel="japanCherry" itemValue="japanCherry" />

 <f:selectItem itemLabel="ruby" itemValue="ruby" />

 <f:selectItem itemLabel="classic" itemValue="classic" />

 <f:selectItem itemLabel="laguna" itemValue="laguna" />

 <f:selectItem itemLabel="deepMarine" itemValue="deepMarine" />

 <f:selectItem itemLabel="blueSky Modified" itemValue="blueSkyModify" />

 </h:selectOneRadio>

 </div>

 <div style="display: block; float: left">

 <rich:panelBar height="100" width="200">

 <rich:panelBarItem label="Item 1" style="font-family: monospace;

 font-size: 12;">

 Changing skin in runtime

 </rich:panelBarItem>

 <rich:panelBarItem label="Item 2" style="font-family: monospace;

 font-size: 12;">

 This is a result of the modification "blueSky" skin

 </rich:panelBarItem>

 </rich:panelBar>

 </div>

</h:form>

Draft Creating a new skin

33

Figure 6.1. Skin changing example

6.6. Creating a new skin

1. Create the skin file

The name of the skin file should follow the format new_skin_name.skin.properties and is

placed in either the META-INF/skins/ directory or the classpath directory of your project.

2. Define skin constants

Add skin parameter constants and values to the file. Example 6.3, “blueSky.skin.properties

file” shows how the skin parameters listed in Table 6.1, “Parameter settings for the blueSky

skin” are included in the skin file.

Example 6.3. blueSky.skin.properties file

The blueSky.skin.properties file lists all the skin parameter constants for the skin. It can

be extracted from the /META-INF/skins directory in the richfaces-impl-version.jar package.

#Colors

headerBackgroundColor=#BED6F8

headerGradientColor=#F2F7FF

headerTextColor=#000000

headerWeightFont=bold

generalBackgroundColor=#FFFFFF

generalTextColor=#000000

generalSizeFont=11px

generalFamilyFont=Arial, Verdana, sans-serif

controlTextColor=#000000

controlBackgroundColor=#ffffff

additionalBackgroundColor=#ECF4FE

Chapter 6. Skinning and theming Draft

34

shadowBackgroundColor=#000000

shadowOpacity=1

panelBorderColor=#BED6F8

subBorderColor=#ffffff

tabBackgroundColor=#C6DEFF

tabDisabledTextColor=#8DB7F3

trimColor=#D6E6FB

tipBackgroundColor=#FAE6B0

tipBorderColor=#E5973E

selectControlColor=#E79A00

generalLinkColor=#0078D0

hoverLinkColor=#0090FF

visitedLinkColor=#0090FF

Fonts

headerSizeFont=11px

headerFamilyFont=Arial, Verdana, sans-serif

tabSizeFont=11

tabFamilyFont=Arial, Verdana, sans-serif

buttonSizeFont=11

buttonFamilyFont=Arial, Verdana, sans-serif

tableBackgroundColor=#FFFFFF

tableFooterBackgroundColor=#cccccc

tableSubfooterBackgroundColor=#f1f1f1

tableBorderColor=#C0C0C0

tableBorderWidth=1px

#Calendar colors

calendarWeekBackgroundColor=#F5F5F5

calendarHolidaysBackgroundColor=#FFEBDA

calendarHolidaysTextColor=#FF7800

calendarCurrentBackgroundColor=#FF7800

calendarCurrentTextColor=#FFEBDA

calendarSpecBackgroundColor=#E4F5E2

calendarSpecTextColor=#000000

Draft Skinning standard controls

35

warningColor=#FFE6E6

warningBackgroundColor=#FF0000

editorBackgroundColor=#F1F1F1

editBackgroundColor=#FEFFDA

#Gradients

gradientType=plain

Alternatively, instead of redefining an entire new skin, your skin can use an existing skin as a

base on which to build new parameters. Specify a base skin by using the baseSkin parameter

in the skin file, as shown in Example 6.4, “Using a base skin”.

Example 6.4. Using a base skin

This example takes the blueSky skin as a base and only changes the generalSizeFont

parameter.

baseSkin=blueSky

generalSizeFont=12pt

3. Reference skin definition

Add a skin definition <context-param> to the web.xml settings file of your application:

<context-param>

 <param-name>org.richfaces.SKIN</param-name>

 <param-value>new_skin_name</param-value>

</context-param>

6.7. Skinning standard controls

6.7.1. Skinning standard JSF components

The RichFaces framework can also use skinning to theme JSF (JavaServer Faces) components

in addition to RichFaces components. Follow these additional steps to skin JSF components.

1. Register a custom render kit

The custom render kit is created by registering it in the faces-config.xml configuration file:

<render-kit>

 <render-kit-id>new_skin_name</render-kit-id>

Chapter 6. Skinning and theming Draft

36

 <render-kit-

class>org.ajax4jsf.framework.renderer.ChameleonRenderKitImpl</render-kit-

class>

</render-kit>

2. Register custom renderers for the JSF component

Add custom renderers in the faces-config.xml configuration file for each JSF component

you want to skin:

<renderer>

 <component-family>javax.faces.Command</component-family>

 <renderer-type>javax.faces.Link</renderer-type>

 <renderer-class>new_skin_name.HtmlCommandLinkRenderer</renderer-class>

</renderer>

3. Reference the render kit in the skin file

Add the following to the top of the skin parameters file: render.kit=new_skin_name

6.7.2. Skinning standard HTML controls

Standard HTML controls and components used alongside RichFaces and JSF components can

also be themed to create a cohesive user interface. The following HTML elements accept skinning:

• <a> (including a:hover, a:visited and other elements)

• <fieldset>

• <hr>

• <input>

• <isindex>

• <keygen>

• <legend>

• <select>

• <textarea>

Skinning for standard HTML controls can be included in one of two ways:

Automatic skinning

The skinning style properties are automatically applied to controls based on their

element names and attribute types. Specify the org.richfaces.CONTROL_SKINNING context

parameter in the web.xml configuration file:

Draft Skinning standard HTML controls

37

<context-param>

 <param-name>org.richfaces.CONTROL_SKINNING</param-name>

 <param-value>enable</param-value>

 </context-param>

Skinning with CSS classes

The skinning style properties are determined through CSS. This method is available

by default, but can be disabled through the org.richfaces.CONTROL_SKINNING_CLASSES

context parameter in the web.xml configuration file:

<context-param>

 <param-name>org.richfaces.CONTROL_SKINNING_CLASSES</param-name>

 <param-value>disable</param-value>

 </context-param>

When enabled, the parameter offers a predefined CSS class named rich-container.

Reference the class from any container-like component, and the standard HTML controls in

the container will be skinned. Standard HTML controls can also be specifically defined in

the CSS; refer to the org/richfaces/renderkit/html/css/basic_classes.xcss file in the

richfaces-ui.jar package for examples of specially-defined CSS classes with skin parameters

for HTML controls.

6.7.2.1. Skinning levels for standard HTML controls

There are two levels of skinning for HTML controls, depending on whether the browser viewing

the application includes rich visual styling capabilities, and whether the browser supports features

of CSS2 and CSS3.

Browser lists may need to be updated.

Basic skinning

• Apple Safari

• Microsoft Internet Explorer 6

• Microsoft Internet Explorer 7 in BackCompat mode (refer to “compatMode Property” at http://

msdn.microsoft.com/en-us/library/ms533687(VS.85).aspx

• Opera

Extended skinning

• Microsoft Internet Explorer 7 in standards-compliant mode

• Mozilla Firefox

http://msdn.microsoft.com/en-us/library/ms533687(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms533687(VS.85).aspx

Chapter 6. Skinning and theming Draft

38

If the browser type cannot be identified, the extended level is used. Set the level explicitly by adding

the following context parameter to the web.xml configuration file, and specifying the <param-

value> element as either basic or extended:

<context-param>

 <param-name>org.richfaces.CONTROL_SKINNING_LEVEL</param-name>

 <param-value>basic</param-value>

</context-param>

6.8. Defining skins for individual components

RichFaces uses XCSS (XML-formatted CSS) files to add extra functionality to the skinning

process. XCSS files can contain all the styling information for each RichFaces component in the

library.

XCSS files contain mappings between CSS properties and skin parameters. The name attribute

of the <u:selector> element is the name of the CSS selector. Each <u:style> element defines

a CSS property with the name attribute as its name. Using the skin attribute specifies a skin

parameter from the current skin file, while using the value attribute enters the literal value in the

CSS file. An example of this is shown in Example 6.5, “XCSS style mappings”.

Example 6.5. XCSS style mappings

The XCSS code for the CSS selector named .rich-component-name is as follows:

<u:selector name=".rich-component-name">

 <u:style name="background-color" skin="additionalBackgroundColor" />

 <u:style name="border-color" skin="tableBorderColor" />

 <u:style name="border-width" skin="tableBorderWidth" />

 <u:style name="border-style" value="solid" />

</u:selector>

This renders the following CSS code to be read by a standard browser:

.rich-component-name {

 background-color: additionalBackgroundColor; /*the value of the constant

 defined by your skin*/

 border-color: tableBorderColor; /*the value of the constant defined by your

 skin*/

 border-width: tableBorderWidth; /*the value of the constant defined by your

 skin*/

 border-style: solid;

}

Draft Plug-n-skin

39

CSS selectors with identical skinning properties can be listed in a single name attribute of a

<u:selector> element, separated by commas.

<u:selector name=".rich-ordering-control-disabled, .rich-ordering-control-

top, .rich-ordering-control-bottom, .rich-ordering-control-up, .rich-ordering-

control-down">

 <u:style name="border-color" skin="tableBorderColor" />

</u:selector>

Style properties can be modified using XML-based XCSS code, or using embedded standard CSS

code, as shown in Example 6.6, “Using XCSS code or standard CSS code”

Example 6.6. Using XCSS code or standard CSS code

Using XCSS code. XCSS code follows an XML structure, using <u:selector> elements to

define style classes and <u:style> elements for each style parameter.

...

<u:selector name=".rich-calendar-cell">

 <u:style name="border-bottom-color" skin="panelBorderColor"/>

 <u:style name="border-right-color" skin="panelBorderColor"/>

 <u:style name="background-color" skin="tableBackgroundColor"/>

 <u:style name="font-size" skin="generalSizeFont"/>

 <u:style name="font-family" skin="generalFamilyFont"/>

</u:selector>

...

Using standard CSS code. CSS code can be included in an XCSS file through the use of a

<f:verbatim> element with a character data (CDATA) section.

<f:verbatim><![CDATA[

 ...

 .rich-calendar-cell {

 background: #537df8;

 }

 ...

]]></f:verbatim>

6.9. Plug-n-skin

Plug-n-skin is an alternate method to create, customize, and add a skin. The skin can be based

on an existing RichFaces skin, and can include support for skinning standard HTML controls.

Chapter 6. Skinning and theming Draft

40

1. Create a template

Use the Maven build and deployment tool to create the skin template by using the following

command:

mvn archetype:create -DarchetypeGroupId=org.richfaces.cdk -

DarchetypeArtifactId=maven-archetype-plug-n-skin -DarchetypeVersion=RF-

VERSION -DartifactId=ARTIFACT-ID -DgroupId=GROUP-ID -Dversion=VERSION

Use the following parameters for the command:

archetypeVersion

The version of RichFaces, for example, 4.0.0.GA.

artifactId

The artifact identifier or name of the project. The Maven template will be created in a

directory using this name.

groupId

The group identifier of the project.

version

The version of your project, for example, 1.0.

2. Add the skin to the CDK

Change to the newly-created directory. Ensure it contains the pom.xml project file, then enter

the following command to create a new skin and add it to the CDK (Component Development

Kit):

mvn cdk:add-skin -Dname=SKIN-NAME -Dpackage=SKIN-PACKAGE

Use the following parameters for the command:

name

The name of your new skin.

package

The base package of the skin. By default, the group identifier is used.

Use the following optional keys for advanced features:

baseSkin

The skin to use as a base for the new skin.

Draft Plug-n-skin

41

createExt

Use createExt=true to add extended CSS classes for skinning standard HTML controls.

The command creates the following files:

src/main/java/SKIN-PACKAGE/SKIN-NAME/images/BaseImage.java

The base class to store images.

src/test/java/SKIN-PACKAGE/SKIN-NAME/images/BaseImage.java

A test version of the base class to store images.

src/main/resources/SKIN-PACKAGE/SKIN-NAME/css/

The directory that holds the XCSS files that define the themes for RichFaces components

affected by the new skin.

If the createExt=true parameter was used with the command, the following XCSS files

are included for defining styles for standard HTML controls:

• extended_classes.xcss

• extended.xcss

src/main/resources/SKIN-PACKAGE/SKIN-NAME/css/SKIN-NAME.properties

The file that contains the skin properties.

src/main/resources/META-INF/skins/SKIN-NAME.xcss

A global XCSS file that imports the component-specific XCSS files.

If the createExt=true parameter was used with the command, the following skin-name-

ext.xcss file is included, which imports the XCSS files for standard HTML controls.

src/main/config/resources/SKIN-NAME-resources.xml

The file that contains the description of all the files listed above.

3. Edit XCSS files

Edit the XCSS files contained in the src/main/resources/META-INF/skins/ directory.

Refer to Section 6.8, “Defining skins for individual components” for instructions on how to

edit XCSS files.

4. Build the skin

After editing the XCSS files, build the skin by running the following command in the root

directory of your skin project (the directory that contains the pom.xml file).

mvn clean install

Chapter 6. Skinning and theming Draft

42

5. Add the skin to the project configuration

Add the following context parameter to your project's web.xml configuration file to use the

new skin in your application:

<context-param>

 <param-name>org.ajax4jsf.SKIN</param-name>

 <param-value>SKIN-NAME</param-value>

</context-param>

	Developer Guide
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Getting started with RichFaces
	2.1. Technical Requirements
	2.2. Setting up RichFaces
	2.3. Creating a project with JBoss Tools
	2.4. Creating a project with Maven
	2.4.1. Setting up Maven
	2.4.2. Using the RichFaces project archetype

	2.5. Using RichFaces in existing JSF2 projects

	Chapter 3. RichFaces overview
	3.1. Full technical requirements
	3.1.1. Server requirements
	3.1.2. Client requirements
	3.1.3. Development requirements

	3.2. Architecture
	3.2.1. Ajax Action Components
	3.2.2. Ajax Containers
	3.2.3. Skins and theming
	3.2.4. RichFaces JavaScript Engine

	3.3. Technologies
	3.4. Differences between JSF and RichFaces mechanisms
	3.5. Restrictions
	3.6. Compiling from source code

	Chapter 4. Basic concepts
	4.1. Sending an Ajax request
	4.2. Receiving events and client-side updates
	4.2.1. Partial page updates

	4.3. Component overview

	Chapter 5. Advanced features
	5.1. JSF2 integration
	5.2. Performance optimization
	5.3. Traffic control and queues
	5.4. Validation
	5.5. Script and style loading
	5.5.1. org.richfaces.LoadScriptStrategy
	5.5.2. org.richfaces.LoadStyleStrategy

	5.6. Error handling
	5.6.1. Handling request errors
	5.6.2. Handling session expiration errors

	5.7. Managing states
	5.8. User roles

	Chapter 6. Skinning and theming
	6.1. What are skins?
	6.2. Using skins
	6.3. Customizing skins
	6.4. Skin parameter tables in RichFaces
	6.5. Changing skins at runtime
	6.6. Creating a new skin
	6.7. Skinning standard controls
	6.7.1. Skinning standard JSF components
	6.7.2. Skinning standard HTML controls
	6.7.2.1. Skinning levels for standard HTML controls

	6.8. Defining skins for individual components
	6.9. Plug-n-skin

