

SAVARA and SOA Repository

2

The Problem

● Software Development Projects involve
● Many people in different capacities (roles), from high

level business sponsers/users, analysis, architects,
designers, developers, QA testers, production
engineers, etc

● Many stages in the lifecycle, from business analysis
(requirements capture), architecture, service oriented
analysis & design, implementation, testing, deployment
and monitoring/management

● Usually multiple artifacts involved at each stage of the
lifecycle

● Systems comprised of multiple services, where each
may have multiple dependencies on shared artifacts

● Geographical distribution of project teams

3

The Problem (2)

● This leads to many people trying to maintain:
● a large number of inter-related services and artifacts,
● across multiple repositories, and
● ensure they remain valid and consistent

● Apart from the lack of management, this also leads to a
visibility problem in respect of the business users

● business users can only interpret the high level
requirements and design documents

● they have limited visibility of the stages and deliverables
of each phase of the lifecycle

4

The Solution

● A solution to this problem must address the following
requirements:

● Management of services and artifacts (dependencies &
lifecycles)

● Validation of services and artifacts against governance
policies

● Conformance/consistency checking between dependent
services/artifacts

● Tool support for rectifying conformance/consistency
issues

● User/Role based service and artifact browsing
● Service deployment from consistent and valid artifacts

within the repository

5

Requirement 1: Management of Services and
Artifacts

● Federated repository of services and artifacts
● A federated approach is required as services and

artifacts will be stored in different types of repository
(e.g. Network file systems, wiki, subversion/cvs, maven,
proprietary databases, UDDI, etc.)

● Manage dependencies (links) between services/artifacts
● In the federated repository, these links need to

potentially be managed across different underlying
repositories

● Manage service, artifact and group lifecycles
● Artifacts may need to be managed in logical groups
● Individual services, artifacts or groups may need to be

tracked against phases in a lifecycle

6

Requirement 1: Management of Services and
Artifacts (2)

● Manage service, artifact and group lifecycles
● Artifacts may need to be managed in logical groups
● Individual services, artifacts or groups may need to be

tracked against phases in a lifecycle
● Authorization based lifecycle change

● A change to a particular lifecycle phase may require
approval from one or more people within an organization

● Approval request should be accompanied by an impact
analysis of the requested lifecycle change

● Authorization procedure may need to be customizable

7

Requirement 1: Management of Services and
Artifacts (3)

● Support for collaboration
● Need to track modification history (versions) and enable

comparison between versions
● Enable version history graph to be viewed
● Comments should be recorded against each stored

version
● Support informal review comments associated with a

service and/or artifact
● Support links between a service/artifact and ticket(s)

within an issue tracking system
● Support user defined tags, to facilitate advanced search

capabilities

8

Requirement 2: Validation of services and
artifacts against governance policies

● Tools used in creation of service/artifact may provide
validation related to particular syntax or semantics

● Where this is not the case, a per service/artifact
validation capability (with pluggable rules) would ensure
that each service/artifact was classified as being valid
before it is used in subsequent phases of the
development lifecycle

● Organisations may wish to provide additional
governance 'rules' for specific service/artifact types

● Such rules may be related to standards, compliance
regulations or corporate policies (e.g. Conformance to
WS-I profile, coding standards, test coverage, etc).

9

Requirement 3: Conformance/consistency
checking between dependent services/artifacts

● As services/artifacts are modified, we need to ensure
that any dependent services/artifacts are not adversely
affected

● Process Governance can be used to analyse process
behavioral differences (for relevant artifact types)

● “What-if” capability should be provided to enable the
effect of the change to be explained to the user before
they make the change public in the repository

● Suitable notification mechanism must be provided
● User that has applied the change should be notified of

the effects
● Users responsible for affected services/artifacts should

be notified of the impact, along with other people that
have registered interest

10

Requirement 4: Tool support for rectifying
conformance/consistency issues

● Identification of conformance issue should determine
nature of the differences

● Difference information should be used to help guide
modification of affected services or artifacts

● In some situations the source service/artifact that has
been modified will need to be reverted, as it must
conform to the target service/artifact

● In other situations, the target service/artifact must be
updated in-line with the new representation of the
source service/artifact

● Tool support may be web based, to directly help fix
services/artifacts in the repository, or Eclipse IDE based
where development artifacts are affected

11

Requirement 5: User/Role Service and Artifact
Browser

● Storing the services and artifacts, and the dependencies
between them, is only one part of the problem

● We need advanced ways to navigate the potentially
large amount of inter-related information (services,
artifacts, comments, tags, different lifecycles, etc)

● User/Role specific filters may be required to only show
pertinent information

● Service and Artifact editor/viewers may need to present
information in different styles/levels of abstraction,
suitable to the user/role

12

Requirement 6: Service Deployment

● Repository defines dependencies between service and
required artifacts

● Step required to package service and relevant artifacts
in a deployable unit

● Within or outside the control of the repository

● Association of deployment unit with IT resources
(service containers) capable of executing service

● As packaged service enters 'test' and/or 'production'
lifecycle phases, deployment could be automated to
associated service containers

● Immediate or specific time based deployment

13

Use Case 1: Requirements gathering

● Requirements may initially be defined in a number of
unstructured documents in different repositories

● Structured requirements can be defined to support a
'testable' approach

● A federated repository can be used to
● Define dependencies between the structured

requirements, and the more adhoc unstructured
documents from which the requirements were derived

● Provide comments on how the requirement was derived
from the source material

● Enable a reviewer to understand the source of a
particular requirement via easy navigation to the original
material

14

Use Case 2: User feedback

● Business users may need to review and comment on
artifacts at various stages of the lifecycle

● Generally will be at the earlier stages, related to
requirements or architectural models

● Developer peer review
● Design and implementation artifacts will need to be

reviewed by peers, with their comments being
associated with the relevant artifacts

● Feedback can be used as
● Actions to rectifying short term problems
● Input to requirements for subsequent phases (as part of

a change management process)
● General comments with no action required

15

Use Case 3: Historical context

● Systems are developed over long periods of time

● They involve different people at different stages

● They involve different people on the same stage at
different times

● Historical version information and comments, along with
dependencies between relevant artifacts, can help
maintain an understanding of why certain decisions
were taken

16

Use Case 4: Change Management

● Maintaining of dependencies between components is
important when we need to make changes to an existing
system

● When a change has been identified, the dependency
information can be used to determine whether the
change has an adverse effect on other services or
artifacts within the repository

● Knowledge of the impact of a change can enable careful
planning to avoid issues when the change is deployed
into a production environment

