34 redhat

SAVARA and SOA Repository



The Problem

Software Development Projects involve

Many people in different capacities (roles), from high
level business sponsers/users, analysis, architects,
designers, developers, QA testers, production
engineers, etc

Many stages in the lifecycle, from business analysis
(requirements capture), architecture, service oriented
analysis & design, implementation, testing, deployment
and monitoring/management

Usually multiple artifacts involved at each stage of the
lifecycle

Systems comprised of multiple services, where each
may have multiple dependencies on shared artifacts

2 Geographical distribution of project teams ~— cssuma @@



The Problem (2)

This leads to many people trying to maintain:
a large number of inter-related services and artifacts,
across multiple repositories, and
ensure they remain valid and consistent

Apart from the lack of management, this also leads to a
visibility problem in respect of the business users

business users can only interpret the high level
requirements and design documents

they have limited visibility of the stages and deliverables
of each phase of the lifecycle

3 < >-SAVARA ‘



The Solution

A solution to this problem must address the following
requirements:

Management of services and artifacts (dependencies &
lifecycles)

Validation of services and artifacts against governance
policies

Conformance/consistency checking between dependent
services/artifacts

Tool support for rectifying conformance/consistency
Issues

User/Role based service and artifact browsing

Service deployment from consistent and valid artifacts
) within the repository | ‘



Requirement 1: Management of Services and
Artifacts

Federated repository of services and artifacts

A federated approach is required as services and
artifacts will be stored in different types of repository
(e.g. Network file systems, wiki, subversion/cvs, maven,
proprietary databases, UDDI, etc.)

Manage dependencies (links) between services/artifacts

In the federated repository, these links need to
potentially be managed across different underlying
repositories

Manage service, artifact and group lifecycles

Artifacts may need to be managed in logical groups

Individual services, artifacts or groups may need to be
: tracked against phases in a lifecycle rosmen )



Requirement 1: Management of Services and
Artifacts (2)

Manage service, artifact and group lifecycles

Artifacts may need to be managed in logical groups

Individual services, artifacts or groups may need to be
tracked against phases in a lifecycle

Authorization based lifecycle change

A change to a particular lifecycle phase may require
approval from one or more people within an organization

Approval request should be accompanied by an impact
analysis of the requested lifecycle change

Authorization procedure may need to be customizable

o D



Requirement 1: Management of Services and
Artifacts (3)
Support for collaboration

Need to track modification history (versions) and enable
comparison between versions

Enable version history graph to be viewed

Comments should be recorded against each stored
version

Support informal review comments associated with a
service and/or artifact

Support links between a service/artifact and ticket(s)
within an issue tracking system

Support user defined tags, to facilitate advanced search
capabilities

; Mm‘




Requirement 2: Validation of services and
artifacts against governance policies

Tools used in creation of service/artifact may provide
validation related to particular syntax or semantics

Where this is not the case, a per service/artifact
validation capabillity (with pluggable rules) would ensure
that each service/artifact was classified as being valid
before it is used in subsequent phases of the
development lifecycle

Organisations may wish to provide additional
governance 'rules' for specific service/artifact types

Such rules may be related to standards, compliance
regulations or corporate policies (e.g. Conformance to
WS-I| profile, coding standards, test coverage, etc).

o D



Requirement 3: Conformance/consistency
checking between dependent services/artifacts

As services/artifacts are modified, we need to ensure
that any dependent services/artifacts are not adversely

affected

Process Governance can be used to analyse process
behavioral differences (for relevant artifact types)

“What-if’ capability should be provided to enable the
effect of the change to be explained to the user before
they make the change public in the repository

Suitable notification mechanism must be provided
User that has applied the change should be notified of
the effects

Users responsible for affected services/artifacts should
be notified of the impact, along with other people that ‘
have registered interest




Requirement 4: Tool support for rectifying
conformancel/consistency issues

10

|dentification of conformance issue should determine
nature of the differences

Difference information should be used to help guide
modification of affected services or artifacts

In some situations the source service/artifact that has
been modified will need to be reverted, as it must
conform to the target service/artifact

In other situations, the target service/artifact must be
updated in-line with the new representation of the
source service/artifact

Tool support may be web based, to directly help fix
services/artifacts in the repository, or Eclipse IDE based
where development artifacts are affected



Requirement 5: User/Role Service and Artifact
Browser

11

Storing the services and artifacts, and the dependencies
between them, is only one part of the problem

We need advanced ways to navigate the potentially
large amount of inter-related information (services,
artifacts, comments, tags, different lifecycles, etc)

User/Role specific filters may be required to only show
pertinent information

Service and Artifact editor/viewers may need to present
Information in different styles/levels of abstraction,
suitable to the user/role




Requirement 6: Service Deployment

12

Repository defines dependencies between service and
required artifacts

Step required to package service and relevant artifacts
In a deployable unit

Within or outside the control of the repository

Association of deployment unit with IT resources
(service containers) capable of executing service

As packaged service enters 'test' and/or '‘production
lifecycle phases, deployment could be automated to
associated service containers

Immediate or specific time based deployment

o D



Use Case 1: Requirements gathering

13

Requirements may initially be defined in a number of
unstructured documents in different repositories

Structured requirements can be defined to support a
'testable’ approach

A federated repository can be used to

Define dependencies between the structured
requirements, and the more adhoc unstructured
documents from which the requirements were derived

Provide comments on how the requirement was derived
from the source material

Enable a reviewer to understand the source of a
particular requirement via easy navigation to the original

material | )



Use Case 2: User feedback

Business users may need to review and comment on
artifacts at various stages of the lifecycle

Generally will be at the earlier stages, related to
requirements or architectural models

Developer peer review

Design and implementation artifacts will need to be
reviewed by peers, with their comments being
associated with the relevant artifacts

Feedback can be used as

Actions to rectifying short term problems

Input to requirements for subsequent phases (as part of
a change management process)

14

General comments with no action required = =54 ‘



Use Case 3: Historical context

Systems are ¢
They involve o

eveloped over long periods of time
Ifferent people at different stages

They involve o
different times

Ifferent people on the same stage at

Historical version information and comments, along with

dependencies

between relevant artifacts, can help

maintain an understanding of why certain decisions

were taken

15




Use Case 4: Change Management

16

Maintaining of dependencies between components is
important when we need to make changes to an existing
system

When a change has been identified, the dependency
iInformation can be used to determine whether the
change has an adverse effect on other services or
artifacts within the repository

Knowledge of the impact of a change can enable careful
planning to avoid issues when the change is deployed
INto a production environment

o D



