
SAVARA
Project Charter

Version 1.0

Date: 18th August 2009

1 © Copyight Red Hat Ltd 2009

Table of Contents
1 Introduction
..4
2 Testable Architecture Methodology
..5

2.1 Architecture Specification ...7
2.1.1 Requirements: Defining Communication based Scenarios with Example
Messages
..8
2.1.2 Global Model/Choreography
..9
2.1.3 Message Schema Definition...10
2.1.4 Outline Deployment Model
..10

2.2 Service Specification ...10
2.2.1 Local Model
..10
2.2.2 Service Level Agreement
..11

2.3 Service Development
...11

2.3.1 Service Design
..12
2.3.2 Data Model Design
..13
2.3.3 Service Implementation
..13
2.3.4 Detailed Deployment Model
..13

2.4 Testing
...14

2.4.1 Component Unit Testing
..14
2.4.2 System Integration Testing
..15

2.5 Documentation
...16
2.6 Deployment
...16

2 © Copyight Red Hat Ltd 2009

2.7 Runtime Monitoring
...16

3 Tool Architecture
..17

3.1 Repository
...17
3.2 Managing Users and Tasks
...18
3.3 User Interface - Navigating, Creating and Editing Artifacts
...18

4 Project Governanace..19
4.1 Aims...19
4.2 Project Board..19
4.3 Working Groups...20

4.3.1 Methodology...20
4.3.2 Compliance and Standards...20
4.3.3 Tooling...21

5 List of Contributors..21

3 © Copyight Red Hat Ltd 2009

1 Introduction

SAVARA is a new community project established by JBoss/RedHat, in collaboration
with Cognizant Technology Solutions, to provide a framework for Enterprise and
Solution Architects, based around a new methodology called "Testable Architecture",
used to build distributed systems of which service oriented systems are an embodiment.

The difference between the tools that will be developed as part of this project, and other
enterprise architecture tool suites, is that the goal of this project is to ensure that all
artifacts created throughout the lifecycle of a software development project are verifiable
against other previously defined artifacts. Using this approach, it will be possible to
ensure that the delivered system conforms to the original business requirements.

SAVARA will build upon the Process Governance capabilities in Project Overlord to
ensure that models defined at various stages in the development lifecycle conform to
models from the preceding stage of the lifecycle. Runtime Process Governance will also
be used to ensure that the running system continues to conform to the original design and
therefore requirements.

Although this document will present the "Testable Architecture" as a top down approach,
the methodology should also support bottom up and iterative development approaches. It
is also not mandatory that the methodology be used from a global model downwards - a
user can start using the methodology from a later phase. The only requirement is that
artifacts developed in subsequent phases should be verifiable back to the artifacts
associated with the first phase used.

We will also investigate techniques to enable the artifacts from preceding phases to be
"reverse engineered". For example, a common scenario will be the need to leverage
legacy services in new systems being developed. Therefore, if a service design is not
available, then techniques could be used to derive the design from the implementation. It
should also be possible to reverse engineer a Global Model from multiple interacting
Local Models. Some of these areas are research topics currently being explored by our
academic partners.

The document is divided into two main sections, the first discussing the "Testable
Architecture" methodology describing the proposed phases, and the second discussing the
proposed tool architecture.

4 © Copyight Red Hat Ltd 2009

2 Testable Architecture Methodology

This section outlines the "Testable Architecture" methodology, based around the
emerging BPMN2 standard. In general terms, a "Testable Architecture" can be thought of
as any capability that enables use cases to be specified that can subsequently be used to
validate/test a model and that model can be used to drive delivery.

Although BPMN2 will provide the core models used in specifying the architecture and
resulting service behaviour, other methodologies (and models) will be used where
appropriate to provide useful tools for use by Enterprise and Solution Architects.

The principle focus of the methodology is on building communication oriented systems,
that is systems that are distributed in nature and achieve their business goals through
interaction. This does not mean that data (or information) modelling in an organisation is
less important, but in terms of this methodology, communication is the primary concept.
For example if we have a solutions architect, responsible for the global model, and a data
architect, responsible for the data/information model, there maybe iterative cycles
between the two in which the solutions architect provides requirements concerning
identity over conversations to the data architect and in which the data architect provides
pre and post-condition as requirements to the solutions architect on the interactions that
underpin the global model.

As will be discussed in the relevant sections, corporate information may be used:

(1) by a single service - where the service is providing an 'added value' interface to the
underlying information

(2) by multiple services - where each client service will have specific queries that need to
be performed. These can be modelled in terms of interactions on a logical service that
represents the information model.

By dealing with data/information models in this way, it is possible to understand what
information is required to support the clients of those information sources, and then
define the underlying information models to meet those needs as part of the 'service
development' phase.

The following diagram represents a high level view of the "Testable Architecture"
methodology as applied to the interaction/communication oriented view of a system. As
previously mentioned, the principal aim of this methodology is to ensure that each stage
in the development lifecycle can be verified against the preceding stage. As the diagram

5 © Copyight Red Hat Ltd 2009

also shows, it is possible to use artifacts from a preceding stage to generate skeleton
artifacts for the subsequent stage.

6 © Copyight Red Hat Ltd 2009

2.1 Architecture Specification

This section outlines the tasks that are performed to define the overall architecture of a
system. The steps within this section can be defined in an iterative manner, defining the
requirements and associated model in progressive levels of detail until the specification is
complete enough to be used to identify the service specifications.

For example, the requirements and associated model could be refined in the following
way:

This diagram outlines the evolution of business requirements and associated models
through a series of levels, where each subsequent level is a refinement of the preceding
level, and can be verified against it. Once the requirements and model have reached a
suitable level of completeness (level 3 in this diagram), then the requirements can be
tested against the model.

7 © Copyight Red Hat Ltd 2009

2.1.1 Requirements: Defining Communication based Scenarios with
Example Messages

Scenarios represent the interaction based use-cases, to describe how the various
components in a system will interact to achieve certain business goals. Participants in
these scenarios may represent software components or people (human roles). Interactions
with people can be achieved through workflow/task management (such as WS-
HumanTask).

Scenarios can be represented using a simplified form of UML sequence diagrams, with
example messages attached to each interaction. Assertions can also be defined, to indicate
conditions that must be met by messages generated by services. Each scenario represents
a particular path through the business process being developed.

In terms of the "testable architecture" methodology, these scenarios represent the high
level business requirements for the system. Therefore ultimately it must be shown that
each scenario has been satisfied by the implemented system.

The vertical lines in the scenarios represent roles being enacted. This does not necessarily
mean that each role equates to a service. It may be that a service will implement multiple
roles. When the scenarios are initially defined, it should be based on a logical separation
of responsibilities. When defining the choreography, it may be necessary to refactor the
roles, and possibly this is something that should be supported by the tooling.

The scenario can be specified by defining the interactions that occur between each of the
roles. The interactions will define the necessary message type details, to distinguish them
from other interactions, and to provide a business context to the message exchange.

As part of the scenario, the user will be required to define example messages. Although
the actual message implementations may be defined in a variety of formats, from a
specification perspective we will define message content in a neutral XML format. This
can be transformed into an appropriate implementation format for testing purposes.

The association between example messages, and the interactions they relate to within a
scenario, will be represented in such a way to enable the scenario to be reused against
different sets of example messages.

Unlike standard UML sequence diagrams, it will be possible to express a timeline over
which the scenario occurs. For example, it will be possible to define 'time compression' to
enable the scenario to simulate a significant lapse in time, which may result in a timeout
action being taken within affected services.

8 © Copyight Red Hat Ltd 2009

As well as scenarios being used to defined valid paths through a business process, it will
also be possible to define invalid paths. These represent negative tests that ensure the
system does not permit invalid use-cases to occur.

2.1.2 Global Model/Choreography

The Choreography Model provides a global perspective over the interactions that can
occur between services in an architecture. It defines the dynamic "behavioural type" of
the architecture. It provides the 'type' definition that encompasses and aggregates the
various paths expressed within the individual scenarios. As such, it will only be
considered valid, and therefore meeting the overall business requirements, when it can
successfully be verified against the previously defined scenarios.

Where a scenario has been defined to express an invalid path through the business
process, validation of this scenario against the choreography should correctly highlight
the invalid interaction(s), to demonstrate that the choreography model does not
inadvertantly support invalid paths.

The Scenario editor should provide support for manual simulation of a scenario against a
choreography model. The results should be overlaid on top of the scenario notation,
showing successful interactions in green and failed in red. However continuous validation
of the scenarios against the choreography model should be performed when either
changes, reflecting any validation errors against the choreography and scenario.

The Choreography (Global) Model can be used to derive a Local Model per participant in
the choreography. The use of the Local Model will be described in a following section.

The Choreography Model should be extensible to enable assertions, constraints and
policies (e.g. SLAs) to be defined. Assertions and constraints may be used to indicate
aspects of messages that must be consistent within a business transaction. SLAs defined
within a global model can be used to specify quality of service metrics that span a scope
wider than an individual component. For example, a critical SLA may relate to the time it
takes for a transaction to initiate a particular interaction with one service, and for another
interaction to occur between two other unrelated components.

The assertions/constraints and policies defined in the global model could be monitored
and enforced as part of the runtime montoring mechanism.

9 © Copyight Red Hat Ltd 2009

2.1.3 Message Schema Definition

The Global Model or Choreography provides the dynamic behavioural type that
represents the scenarios, however it does not define the static types associated with the
messages being exchanged between the communicating services.

This is achieved by deriving (or re-using) a schema that can accomodate the message
content as defined in the example messages associated with the scenarios.

2.1.4 Outline Deployment Model

The deployment model is an optional part of the "Testable Architecture" methdology that
can provide a physical context for the components associated with a system.

Linking the logical service components with the physical deployment can help with
project planning and costing, as well as providing the information required to actually
deploy the fully implemented system into a test and/or production environment.

The deployment model can represent real or virtual resources.

If a deployment model is defined for an architecture, then validation can be provided to
ensure all the participants in the global model are associated with a component in the
deployment model. The type of associated component in the deployment model, can also
provide contextual information that can help with the implementation of the global model
participant (i.e. service, human task management, database, etc).

This phase will define an 'outline' deployment model, as at this stage the decision
regarding the actual deployment technology/platforms may not have been made.

2.2 Service Specification

2.2.1 Local Model

The Local Model represents the abstract behavioural interface of the service component.
This model is used to provide a simple definition of the behaviour required to use the

10 © Copyight Red Hat Ltd 2009

service, as well as the behaviour the service expects of its partners.

Where a Global Model has been defined, it is possible that the Local Model does not
need to be explicitly persisted. It can be used in a transient manner, derived from the
Global Model, and used where appropriate to either generate the skeleton for the Service
Design artifacts, or be used to check conformance of the Service Design artifacts
whenever they change.

One place where this model may be persisted is as metadata associated with the service
implementations within a Service Registry/Repository. This can then be used to support
behaviour based service lookups.

If the Local Model is persisted within a project workspace, then it will be a stable
interface against which the Global Model(s) and Service Implementation(s) must
conform.

Therefore, when developing a component that requires the use of a service, the Local
Model for that service can be used to develop against, without having to reference service
design or implementation artifacts for that used service. At runtime, an appropriate
implementation can then be located that implements the Local Model behaviour.

2.2.2 Service Level Agreement

The abstract behavioural specification of a service, as represented by the Local Model,
may be accompanied by policies that define its contractual obligations in terms of
availability and performance characteristics.

Service level agreements may be tailored to user groups, so a range of policies based on
the authentication of the 'user' may be defined.

As with the Local Model behavioural description, associated Service Level Agreements
may also be recorded in the repository, for enforcement at runtime.

2.3 Service Development

This section discusses the areas related to service development.

One of the benefits of the "Testable Architecture" approach is that it enables different

11 © Copyight Red Hat Ltd 2009

aspects of a system to be built by different groups. Due to the verifiability of different
components and phases against preceding phases, and ultimately the originating business
requirements, the responsibilities of each implementing group can be clearly defined.

For example, if each service involved in an architecture is being designed/implemented
by a separate team, potentially geographically distributed, then each team can be given
the Service Specification (i.e. Local Model and optionally a set of SLAs), representing
the behavioural contract they must adhere to, and the scenarios that can be used to test the
individual service against the original business requirements.

It ensures each service can be independently developed, while still ensuring that when the
service components are brought together for integration testing, they will work as
required.

At the commencement of this phase, the only technology decision that needs to be made
relates to the service interface. This involves the communications technology that will be
used to interact with the service (and for it to interact with other dependent services), as
well as the message format (e.g. XML, Java objects, etc). Where a deployment model has
been defined, this information can be specified against the relevant components.

2.3.1 Service Design

The Service Design represents the elaboration of a Local Model to include the relevant
implementation details. The Local Model can be used to generate an initial skeleton
version of the Service Design (as a BPMN2 Process Model).

The Local Model defined in the previous phase, which may be transiently derived from a
Choreography Model, can be used to perform continuous (or on demand) validation to
ensure the Service Design continues to meet its obligations with respect to the
Choreography (Global) Model.

The Service Design should ideally provide extensibility to enable additional
implementation technology specific information to be captured as part of the Service
Design. Where such additional information can be defined, it should also be possible to
extend the model validation to enable the information to be validated.

12 © Copyight Red Hat Ltd 2009

2.3.2 Data Model Design

One way to view a database is in terms of providing a service. It is a shared component
that in most cases will be used by more than one service. Even if not shared, it is useful to
be able to separate out the persistent data management aspects from the behaviour of a
service.

This enables queries to the database to be represented as an interaction in a Scenario,
allowing the access to the database to be tested against the business requirements.

Where a deployment model is defined, the 'database' service can be classified based on
the type of component used in the deployment model (i.e. a database).

Tools should be provided to enable the database schema to be defined. Where
appropriate, existing schema should be used, and if necessary database virtualisation can
be used to consolidate various data sources and present in a simple relationship table
format (see http://www.jboss.org/teiid).

2.3.3 Service Implementation

The Service Design should be used to generate initial skeleton artifacts for the selected
implementation approach/technology.

Where possible, the behaviour should be derived from the implementation to allow it to
be checked for conformance against the design and Local Model. If this is not possible,
then runtime behavioural monitoring can be used to check the behaviour of the service
against the Local Model.

The initial target implementation language will be BPEL, although direct execution of the
BPMN2 process model will also be explored.

Subsequent implementation targets may include SCA and other techniques suitable for
execution on an ESB.

2.3.4 Detailed Deployment Model

This phase will enhance the previous (optionally) defined 'outline' deployment model, to
provide additional technology specific deployment information related to the individual

13 © Copyight Red Hat Ltd 2009

http://www.jboss.org/teiid

components.

For example, where the component represents a database, the deployment model may be
elaborated to define the type of database being used. Where the component is a service,
the deployment model may define an application server and particular technology stack
that will be used.

In situations where the link between the component and the associated element in the
deployment model has already been defined in a previous phase, the tool support around
generating a skeleton implementation of a service or database schema may capture
additional information that can be used to automatically enhance the deployment model.

2.4 Testing

There are two types of testing that we will initially be interested in, namely Component
Unit Testing and Integration Testing.

2.4.1 Component Unit Testing

This section is named "Component" unit testing, as opposed to "Service" unit testing,
because the global model may define components other than just services. For example,
some of the participants within a global model may represent a database or a human
interface.

As a component within the global model, it will have clear interaction based behavioural
boundaries with other associated components. These relationships, and the specific use
cases and example messages that are provided in the scenarios, can be used to test a
component in isolation.

The output from a component can also be compared against the scenarios used to test the
component, to compare the results against the expected messages.

In some cases, the complete message can be directly compared against the expected
message, to determine whether the component responded in a valid manner. However, in
many cases, the content of the response message type may contain some variable data
that does not actually invalidate the test. For example, some message may carry a
date/time field related to when it was processed. This would not compare correctly with
any example message stored with the scenario. Similarly the ordering of some XML

14 © Copyight Red Hat Ltd 2009

elements may not be fixed, and therefore the component response may not exactly match
the ordering of elements in the scenario example message.

Therefore a message validation mechanism will be required that can flexibly enable the
scenario designer to indicate what constitutes a valid response, based on an example
message that has been provided. This could be:

1) Precise message comparison
2) Use of message schema to understand ordering issues
3) Inclusion/Exclusion xpath expressions to indicate which parts of the documents should
be compared or ignored

The global model may additionally provide constraints that must be satisfied between
messages associated with different interactions. In cases where those constraints relate to
messages inbound and outbound for a particular component, the constraints could be
validated as part of the component's unit test.

2.4.2 System Integration Testing

Although component unit testing can ensure that each component performs as expected
against the use cases defined as scenarios, prior to going into production, all of the
components of the system will need to be tested as a complete system.

If a deployment model has been specified, and elaborated as part of the service
development phase, then it can be used to help automate the deployment of the system
components into a test environment that mirrors the production environment.

Although the scenarios could be used to initiate tests across the complete system, at this
stage it may be advisable to use an independent set of use cases.

The Integration Tests will be validated using the runtime monitoring mechanism (part of
Project Overlord - Process Governance) that will validate the observed interactions
between the components being tested against the global model. This test is therefore
ensuring that the system as a whole conforms to the global model.

15 © Copyight Red Hat Ltd 2009

2.5 Documentation

One of the key motivations for adopting the "Testable Architecture" is to ensure that all
information captured, from the initial requirements defined as scenarios, through to the
service design and implementation, are verifiable and therefore are guaranteed to meet
the original requirements, but just as important, remain up to date. If any changes are
made at any stage, that are not internally consistent with artifacts defined in other phases,
then this is detected so that it can be fixed.

This approach overcomes the common problem in building large scale systems - namely
documenting the requirements and design, and ensuring that they remain up-to-date and
of value. If the validity of requirements and design artifacts cannot be guaranteed, then
maintainence and change management of the system becomes error prone, time
consuming and therefore costly.

Although the benefits of an internally consistent and verifiable software development
lifecycle are a significant benefit, it does not mean that documentation is redundant. It
simply means that paper based documentation no longer becomes the 'master' copy in
terms of architecture and design - however it can be useful to promote understanding of
how a system operates.

Therefore, to gain full benefit from the artifacts that are collected through the various
phases of the "Testable Architecture" methodology, the project will need to provide a
framework that can produce custom documentation using the various artifacts as input.

2.6 Deployment

This phase will be similar to the Testing phase. If the optional Deployment Model has
been defined, then it can be used in conjunction with the implemented components to
deploy the system to a production environment.

This stage will require extensibility to support a wide range of deployment environments.

2.7 Runtime Monitoring

The final stage in the "Testable Architecture" methodology is to monitor the running
system in the production environment to ensure that it continues to conform to the

16 © Copyight Red Hat Ltd 2009

expected behaviour as defined in the Choreography (Global) Model, and each component
specifically against their Local Model representation.

Where assertions/constraints and/or SLAs have been defined, whether associated with the
Global or Local Models, these can be evaluated by the runtime monitoring mechanism,
and any violations reported to the appropriate destination.

3 Tool Architecture

This section discusses the proposed tool architecture to support the project. Although
JBoss open source projects are Java based, the tooling architecture will also aim to
support Microsoft based organisations.

3.1 Repository

The tooling for the project will revolve around a central repository, used to organise and
version the various artifacts that may be created for a system.

The repository will be based on the JBoss Guvnor project, which is built upon the Java
Content Repository (JCR) standard specification. Although this is a Java based API,
Guvnor will also provide a WebDAV interface to the repository. This will enable
Microsoft based tools to retrieve artifacts and submit changes.

The repository will support a validation framework, to verify the artifacts when changes
are made.

Guvnor will provide dependency management, to enable relationships between artifacts
to be represented. Therefore, when an artifact is modified, other artifacts that are
dependent upon the changed artifact can also be re-validated.

Guvnor will also manage the lifecycle of artifacts (and groups of artifacts), using a
configurable workflow based mechanism to implement required authorisation
procedures.

Notification of relevant changes (and possibly validation results) will be available via
Atom feeds.

17 © Copyight Red Hat Ltd 2009

3.2 Managing Users and Tasks

Users, whether business analysts, solution architects, data architects, service designers or
implementers, will collaborate based on a Task Management capability that will ensure
users are informed of their responsibilities, and provide the necessary input at the
appropriate time.

The tasks may be procedural, reviewing artifacts and approving (or raising issues to be
rectified), or instructional, creating new artifacts and specifying the location of the
associated artifacts that can be used to perform the task.

Some tasks may be collaborative, where multiple users (possible distributed in many
geographical locations) may be working on the same artifacts.

Task notifications may also be automatically created when validation errors are detected
between artifacts in different stages of the "Testable Architecture" methodology. This
may be tied to the lifecycle phases associated with the artifact. For example, if the
lifecycle indicates the artifact is "in development", then validation errors affecting
artifacts in subsequent phases may be surpressed. The only validation errors that are
relevant during development are those associated with validating the artifact against
preceding phases of the lifecycle. Only when the artifact itself is considered complete,
and valid with respect to the artifacts in the preceding phases, will its lifecycle be allowed
to progress to a 'stable' state. Once this has occurred, validation errors that may now
occur between that artifact and existing artifacts in subsequent phases of the methodolgy
may be distributed, and used to create tasks that will inform the owners of those artifacts
that work is required to bring them up-to-date with respect to an artifact on which they
are dependent.

3.3 User Interface - Navigating, Creating and Editing Artifacts

Guvnor will provide a GWT web based user interface, to enable system and service
groups to be established, and the various artifacts to be created and managed.

In some cases, a web based editor may be provided to enable users to directly modify
artifacts. In other cases, or as well as a web based editor, the WebDAV interface to the
Guvnor repository will enable the artifacts to be retrieved into a user's local file system
(or IDE) and edited using appropriate locally installed editors.

18 © Copyight Red Hat Ltd 2009

The models used in the project will aim to leverage standards where possible, making use
of third party editors as easy as possible. However in some cases, the extensible nature of
even standard models is not necessarily supported in many editors.

Therefore the project will also aim to provide suitable custom editors that can focus on
the needs of the particular user type (e.g. business analyst, service designer etc), to ensure
that the relevant aspects of the model are easy to define, and appropriate extensions are
easily supported.

4 Project Governanace

4.1 Aims

During the early stages of the project, the intension is to minimize the amount of project
governance required, so that the overhead of managing the project does not detract
resources from actually delivering on its goals.

The following sections are intended to provide guidelines on how the governance of the
project may evolve as more corporate members and individuals join the project.

Generally open source projects at RedHat are managed on a very informal basis. The
projects comprise of individual contributors that collaborate on code development
through a subversion repository, discuss issues via forums, and produce documentation
on a wiki.

However, this project is expected to gain the involvement of corporate, as well as
individual members, and therefore needs to be managed on a slightly more formal basis.
The aim will be to adapt the governance of the project to meet the needs of the project
membership as it grows.

4.2 Project Board

The remit of the project board is:

19 © Copyight Red Hat Ltd 2009

● To set the high level objectives/goals for the project

● To manage the relationship with corporate members of the project

● To oversee the governance of the project

At this stage, there are no guidelines or rules associated with who can be on the project
board, how often it convenes, how voting is handled, etc. These items will be addressed
as and when the project board needs to adopt a more formal structure.

4.3 Working Groups

This section describes the initial set of working groups that will be established for the
project.

It is proposed that each working group will have a lead member. The lead member will
decide how best to collaborate with the members of the working group, whether based on
regular conference calls or simply using the forums. The collaboration methods can then
evolve as the project grows, based on the needs of the individual working groups.

4.3.1 Methodology

The methodology working group will be responsible for defining the «out of the box»
methodology that a user can use when initially downloading the tools.

It is anticipated that user organisations and system integrators may want to customise this
methodology to meet their own specific requirements, but this initial methodolgy will
enable users new to the project to understand how the tools can be used in the context of
a methodology that can be used to deliver a «testable architecture».

4.3.2 Compliance and Standards

This working group will be responsible for defining areas of extensibility required in the
tooling, and the criteria that must be met by user organisations and system integrators to
be compliant with the project.

This working group will also be responsible for liasing with relevant standards groups to
ensure that the project conforms to those standards. The initial standards of interest are:

● BPMN2

20 © Copyight Red Hat Ltd 2009

● ArchiMate

● TOGAF

4.3.3 Tooling

The tooling working group will be responsible for ensuring that the tools being developed
as part of the project are supporting the methodology and compliance criteria as defined
by the other working groups.

The requirements from a tooling perspective will derive from the initial framework
description, outlined in this document, the other working groups, and the user
community.

5 List of Contributors

We would like to thank the following contributors:

Gary Brown (gbrown@redhat.com)
Jeff DeLong (jdelong@redhat.com)
Jay Goode (jay.goode@cognizant.com)
John Graham (jgraham@redhat.com)
Glyn Humphreys (glyn.humphreys@cognizant.com)
Bhavish Kumar (bhavish.kumar@cognizant.com)
Mark Little (mlittle@redhat.com)
Sanda Morar (sanda.morar@cognizant.com)
Paul Mukherjee (paul.mukherjee@cognizant.com)
Andrew Porter (andrew.porter@cognizant.com)
Steve Ross-Talbot (steve.ross-talbot@cognizant.com)
Ricky Tapper (rickyscott.tapper@cognizant.com)

21 © Copyight Red Hat Ltd 2009

mailto:rickyscott.tapper@cognizant.com
mailto:steve.ross-talbot@cognizant.com
mailto:andrew.porter@cognizant.com
mailto:paul.mukherjee@cognizant.com
mailto:sanda.morar@cognizant.com
mailto:mlittle@redhat.com
mailto:bhavish.kumar@cognizant.com
mailto:glyn.humphreys@cognizant.com
mailto:jgraham@redhat.com
mailto:jay.goode@cognizant.com
mailto:jdelong@redhat.com
mailto:gbrown@redhat.com

	1 Introduction

	2 Testable Architecture Methodology

	2.1 Architecture Specification
	2.1.1 Requirements: Defining Communication based Scenarios with Example Messages

	2.1.2 Global Model/Choreography

	2.1.3 Message Schema Definition
	2.1.4 Outline Deployment Model

	2.2 Service Specification
	2.2.1 Local Model

	2.2.2 Service Level Agreement

	2.3 Service Development

	2.3.1 Service Design

	2.3.2 Data Model Design

	2.3.3 Service Implementation

	2.3.4 Detailed Deployment Model

	2.4 Testing

	2.4.1 Component Unit Testing

	2.4.2 System Integration Testing

	2.5 Documentation

	2.6 Deployment

	2.7 Runtime Monitoring

	3 Tool Architecture

	3.1 Repository

	3.2 Managing Users and Tasks

	3.3 User Interface - Navigating, Creating and Editing Artifacts

	4 Project Governanace
	4.1 Aims
	4.2 Project Board
	4.3 Working Groups
	4.3.1 Methodology
	4.3.2 Compliance and Standards
	4.3.3 Tooling

	5 List of Contributors

