SAVARA 1.0

User Guide

by Gary Brown and Jeff Yu

O Y1 V=Y

11 WSCDL .o,
1.2. Pi4S0a ...cvvveiiieiiieeiie,
1.3. SOA Lifecycle Governance

1.3.1. DeSIgN TimME GOVEINBNCEuueiiteiiieeeiieeeteeete e et e e st e e et e eat s e et e e st e eaneeanaees

1.3.2. Runtime Governance

2.2. Generating a BPEL process .
2.2.1. Overview
2.2.2. Generating the BPEL

Process from a Choreography Descriptioncccevuveeeen.

2.2.3. Limitations with the current CDL to BPEL mMappingccoovvvviveiiiieiiineciieeennnn,

3. Conversation Validation with CDL

I @ YA/ =

3.2. Configuration of Conversatio

ARV 1T = (o] o NPT

3.2.1. Installing the Conversation Validation Mechanismcccccoiviiiiiiiineiin e,

3.2.2. EXPlICit CONFIQUIBLIONeeeeeii ettt e

3.2.3. Defining the Validator Configuration within a Choreographycccoocvveiiiinnnes
3.3. Monitoring the Choreography DESCriptionovcieuuiieieiiieiei e
3.4. Configuration for Conversation RECOIAINGuveiuuieiiieiiiieeiin e e e

Chapter 1.

Overview

The SAVARA project aims to leverage the concept of a choreography (or conversation) description to
provide design-time and run-time governance of an SOA.

A Choreography provides the means to describe the service interactions between multiple parties from a
global (or service neutral) perspective. This means that it is possible for an organisation to define how
an end-to-end business process should function, regardless of whether orchestrated or peer-to-peer service
collaboration will be used.

Although in simple situations, a BPEL process description can provide a description of the interactions
between multiple services, this only works where a single orchestrating process is in control. The benefit
of the choreography description isthat it can be used to provide a global view of a process across multiple
orchestrated service domains.

This document will outline how the Choreography Description isbeing used as part of SAVARA to provide
SOA governance capabilities for each phase of the SOA lifecycle.

When a validated design has been approved by the users, it can be used to generate an initial skeleton of
the implementation for each service. The current version of SAVARA enables a skeleton implementation
to be generated as a service implementation (e.g. WS-BPEL process).

1.1. WS-CDL

WS-CDL, or Web Service Choreography Description Language, isacandidate recommendation from W3C.
Although associated with W3C and Web Services, it isimportant to begin by stating that the Choreography
Description Language (CDL) is not web service specific.

Thepurpose of CDL isto enable theinteractions between acollection of peer to peer servicesto be described
from aneutral (or global) perspective. Thisis different to other standards, such as WS-BPEL, that describe
interactions from a service specific viewpoint.

In essence a choreography description declares roles which will pass messages between each other, called
interactions. The interactions are ordered based on a number of structuring mechanism which enables
loops, conditional, choices and paralelism to be described. In CDL variables used for messages and for
conditionals are all situated at roles. Thereis no shared state rather there is a precise description of the state
at each role and a precise description of how these roles interact in order to reach some notion of common
state in which information is exchanged and processed between them.

In CDL we use interactions and these structuring mechanisms to describe the observable behaviour, the
messages exchanges and the rules for those exchanges and any supporting observable state on which they
depend, of asystem.

pidsoa

1.2. pi4soa

pidsoa is an open source project established to demonstrate the potential benefits that a global model (as
described using CDL) can provide when building an SOA. The open source project is managed by the Pi4
Technol ogies Foundation, which is a collaboration between industry and academia.

Building complex distributed systems, without introducing unintended consequences, is area challenge.
Although the Choreography Description Language provides a means of describing complex systems at a
higher level, and therefore help to reduce such complexity, it does not necessarily guarantee that erronous
situations cannot occur due to inappropriately specified interactions. The research, being carried out by
members of the Pi4 Technologies Foundation, into the global model and endpoint projection is targeted
at identifying potential unintended consequences, to ensure that a global description of a system can be
reliably executed and can be free from unintended consequences.

Thetool suite currently offers the ability to:

* Define achoreography description

» Export the description to arange of other formats, such as BPMN, UML activity/state/sequence models,
and HTML

 Define scenarios (equival ent to sequence diagrams), with exampl e messages, which can then be simulated
against an associated choreography

1.3. SOA Lifecycle Governance

1.3.1. Design Time Gover nance

Design-time governance is concerned with ensuring that the resulting system correctly implements
requirements (whether functional or non-functional). A choreography description can be used to ensure that
the implemented system meets the behavioural requirements.

The behavioural requirements can be captured as a collection of scenarios (e.g. sequence diagrams) with
associated example messages. This enables an unambiguous representation of the business requirementsto
be stored in a machine processable form, which can subsequently be used to validate other phases of the
SOA lifecycle.

Once the choreography description for the SOA has been defined, it can be validated against the scenarios,
to ensure that the choreography correctly handles al of the business requirements.

Once the service enters the implementation phase, it is important to ensure that it continues to adhere to
the design and therefore meets the business requirements. Currently this is achieved through the use of
techniques such as continuous testing. However this is only as reliable as the quality of the unit tests that
have been written.

When a'structured' implementation language has been used, such as WS-BPEL, it will be possible to infer
the behaviour of the service being implemented, to compare it against the choreography description.

Runtime Governance

Detecting incorrectly implemented behaviour at the earliest possible time saves on downstream costs
associated with finding and fixing errors. By using static validation against the original design, it ensures
that the implemented service will deliver its expected behaviour first time. This is important in building
large scale SOAs where different services may be implemented in different locations.

There are two other areas where a choreography description can be used as part of design-time governance,
that are not currently implemented in SAVARA:

 Service lookup —the choreography description can be used to determine if a service already existsin the
Service Repository that meets the appropriate behavioural requirements.

» Service unit testing - this can be achieved using the scenarios originally specified to document the
behavioural regquirements. Rather than develop an independent source of test data, the scenarios can be
used to validate the sequence of messages sent to, and received from, a service, aswell as validating the
contents of the messages returned from the service under test.

1.3.2. Runtime Governance

Runtime governance ensures that the SOA executes as expected according to predefined policies. In this
context, a choreography description can be used in two ways.

1.3.2.1. Servicevalidator

The choreography description represents the interactions between multiple services to deliver a business
goal. To validate the behaviour of each individua service, within the choreography description, the
behaviour of each service can be derived from the choreography.

The derived behaviour (or “endpoint projection”) of a service can be used within a 'service vaidator'
to monitor the inbound and outbound messages for the service, to ensure they conform to the expected
behaviour. If an invalid message is detected, it would be possible to block it, to prevent it from causing
subsequent problems in downstream systems. The error can aso be reported to a central management
capability.

The SAVARA Validator provides the ability to configure service validators to monitor the behaviour of
individual services. An enhanced version of the JBossESB trailblazer example has been included, with the
appropriate validator configuration, to demonstrate this mechanism.

1.3.2.2. Process correlation

Validating each servicelocally can enable errorsto be detected quickly, and the effects of the error prevented
from contaminating other systems by blocking the erroneous messages.

However local service specific validation may not be adequate to identify errors that would affect the end-
to-end business pracess. Therefore the message activity at each service validator can be reported to acentral
'process correlation engine' which can reconstitute aglobal view of the business transaction, and determine
if it matches the expected behaviour as defined in the choreography description.

First Steps

Thebenefit of acorrelated global view of thedistributed businesstransactionisthat it can befurther analysed
to ensure other governance polices have been followed —e.g. SLAs.

The pidsoatool suiteincludesasimple GUI based monitoring tool to display the information obtained from
correl ating message events associated with individual services. The trailblazer example has been written to
cause out of sequence messages under certain circumstances. Seethe Samples Guide” for moreinformation
on how to run this example.

1.4. First Steps

Thefirst step will be to follow the instructions in the Getting Started Guide to install SAVARA.

Onceinstalled, the next step should beto try out the examplesin the samplesfolder. The examples consistent
of:

» Choreography related examples
These examples provide an illustration of how to use scenarios, choreographies and other associated
artifacts.

 Service Validation related examples
The samplesfolder contains an enhanced version of thetrailblazer example from the JBossESB, with the
addition of a File Based Bank, and message content including a conversation id to enable the messages
to be correlated with a specific session.

Chapter 2.

BPEL

2.1. Overview

This section will describe generation and conformance checking features related to WS-BPEL.

Thisinitial release provides basic support for generating BPEL processes from a choreography description.
Subsequent releases will also provide conformance checking, to ensure that changesto a BPEL process are
validated to ensure the process remains conformant with the choreography.

2.2. Generating a BPEL process

2.2.1. Overview

This section explains how to generate a template BPEL process from architectural and design artifacts.

2.2.2. Generating the BPEL Process from a Choreography Description

When the choreography description has been completed, and has no errors, the user should select the
"SAVARA->Generate->WS-BPEL" menu item from the popup menu associated with the choreography
description (.cdm) file.

ﬁ Lrecll-((_necknequem Compare With N
& InvalidPurchase.scn Replace With 5

EE= S Choreography >
[8) store.xsd ‘ ‘ WSDL
@ SuccessfulPurchase e

s WikiText > x
+ 2 trailblazer-models
Properties Alt+Enter

When the dialog window is displayed, it will contain the list of services that can be generated, along with
the project names that will be created. The user can unselect the services they do not wish to generate (also
using the 'Check All' or 'Clear All' buttons).

£ X

Service Role Project Name

Buyer PurchaseGoodsProcess-Buyer
CreditAgency PurchaseGoodsProcess-CreditAgency
Store PurchaseGoodsProcess-Store

| checkal || cearm Buid: | Ant v

[OK H Cancel]

The user can also select their preferred build system, which will create the relevant build structure.

If there is a problem with the name of the project select, such asinvalid characters used in the name, or the
project name already exists, then it will be displayed in red.

Limitations with the current CDL to BPEL mapping

Once the BPEL is generated, it can be viewed using the Eclipse BPEL editor, e.g.

© Sequence
& | Receive
I E2
= Sequence B
CreditCheckFailed
& Invoke
= Sequence
| Reply =
= 2| Reply
@

2.2.3. Limitationswith the current CDL to BPEL mapping

Thisinitial version of the BPEL generation is primarily targeted at generating the interactions and grouping
constructs. These are the important components that will be required when doing conformance checking
as part of the next milestone.

Thismeansthat assignmentsand conditional expressionsare not currently generated. The'when' constructin
CDL (also known asthe blocking workunit) isalso not currently handled. Thismay possible beimplemented
using flow links.

Chapter 3.

Conversation Validation with CDL

3.1. Overview

Conversation validation isaform of runtime governance concerned with the dynamic behaviour of asystem.

When coupled with a choreography description model of a system, this means having the ability to ensure
that the way a collection of servicesinteract correctly adheresto a description of the business process being
enacted.

This sectionintroduces the choreography description language (CDL) defined by W3C, and the pi4soa open
source project which provides an editor for creating choreography descriptions, as well as utilizing these
descriptions for runtime validation and execution purposes.

3.2. Configuration of Conversation Validation

This section explains how to configure the conversation validation mechanism to validate ESB services
against a choreography description. The first sub-section describes how the mechanism is hooked into the
JBossESB environment. The following two sub-sections explain two alternate ways that relevant endpoint
references can be configured for validation.

3.2.1. Installing the Conver sation Validation M echanism

The principle mechanism used for validating conversationswithin an ESB isthrough the use of aglobal filter
registered with the jbossesb-properties.xml. This file is located in the $IBossESB/server/default/depl oy/
jbossesh.sar folder.

<properties nane="filters">
<property nanme="org.j boss. soa.esb.filter. 10"

val ue="org.j boss. savara. val i dat or. j bossesb. Val i datorFilter"/>
</ properties>

Thisfilter isinstalled as part of the installation process for the SAVARA distribution.

3.2.2. Explicit Configuration

Theinformation concerning which destinationswill be validated, and to which model/rolethey relate, can be
explicitly defined within the validator-config.xml file, contained within the savara-validator-jbossesh.esb
bundle.

An example of the contents of thisfile, that would related to the TrailBlazer example, is:

Explicit Configuration

<val i dat or nmode="nonitor" replyToTi meout ="10000" >
<service nodel ="Trail Bl azer. cdnf
rol e="LoanBr oker Partici pant" >
<out put epr="j ns: queue/ esb-tb-credit AgencyQueue" />
<i nput epr="j nms: queue/ esh-tb-creditAgencyQueue_reply" />
<out put epr="j ns: queue/ esh-tb-j nsBankRequest Queue" />
<out put epr="j ms: queue/ esh-tb-fil eBankRequest Queue" />
<i nput epr="jns: queue/ esh-tb-j neBankResponseQueue" />
<out put epr="j ms: queue/ esb-tb-custonmerNotifier" />
<input epr="jnms: queue/ esh-tb-fil eBankResponseQueue" />
</ service>
<servi ce nodel ="Trail Bl azer. cdnf
rol e="Credi t AgencyPartici pant" >
<i nput epr="jns: queue/ esh-tb-creditAgencyQueue" />
<out put epr="j ms: queue/ esh-tb-credi t AgencyQueue_reply" />
</ service>
<service nodel ="Trail Bl azer. cdnf
rol e="BankPartici pant” >
<i nput epr="jms: queue/ esh-tb-j nsBankRequest Queue" />
<i nput epr="jnms: queue/ esb-tb-fil eBankRequest Queue" />
<out put epr="j ns: queue/ esh-tb-j nsBankResponseQueue" />
<out put epr="j nms: queue/ esh-tb-fil eBankResponseQueue" />
</ service>
<service nodel ="Trail Bl azer. cdnf
rol e="NotifierParticipant" >
<i nput epr="jns: queue/ esh-tb-custonerNotifier" />
</ service>
</val i dat or>

The 'validator' element has an optional attribute called 'mode, with the possible values of 'monitor’ or
‘manage’. If the mode is 'monitor' (which is the default), then any messages that result in validation errors
being detected will continueto bereceived or sent, with the errorsonly be reported for information purposes.
If the mode is 'manage’, then any erronous messages detected during validation, that conflict with the
behaviour as described in the choreography, will be prevented from being received or sent.

Note

It is important to note that if 'manage’ validation mode is used, then the validation
mechanismwill beanintegral part of the messageflow. Thismay haveadlight performance
impact on the delivery of messages between services.

The optiona 'replyToTimeout' (defined in milliseconds) is used to determine how long a dynamic reply-
to destination should be monitored for validation purposes. In some message exchanges, the response
destination will not always be known in advance. Therefore the configuration can identify such situations,
and monitor the reply-to destination for the response. However, if aresponseis not delivered in a particular
time period, we need to be able to discontinue the validation of the dynamic endpoint. If thisdid not occur,
then over time too many endpoints would be monitored, which may result in out-of-memory problems. The
default timeout period is 10 seconds.

Defining the Validator Configuration within a

Choreography

Within the 'validator' element isalist of 'service' elements, one per service being validated. The behaviour

of the service being validated is identified by specifying the model (e.g. choreography description file)

and the role (e.g. participant type) within the model. Therefore, within the above configuration, the first

set of destinations (eprs) are associated with the LoanBroker Participant defined within the choreography

description model found inthefileTr ai | Bl azer . cdm whichwill belocated withinthe nodel s folder
contained within the savara-validator-jbossesh.esb bundle.

The elements contained within the 'service' element define the input and output eprs (Endpoint References)
that are associated with the service. The input eprs are the destinations on which messages will be received
and the output eprs are the destinations on which messages will be sent by the service.

Theformat of the 'epr" attribute will be specific to the type of transport used for the ESB aware destination.
Currently only IMS is supported, and can be identified by the protocol prefix jms:".

Each 'input' and 'output’ element can al so define an optional 'dynamicReplyTo' boolean attribute. If defined,
it will indicate to the Service Validator that the message on the specified endpoint (epr) will contain a
dynamically defined 'reply-to' destination that needs to be monitored for a response.

3.2.3. Defining the Validator Configuration within a Chor eography

Thefirst step to configuring the validator is to associate the endpoint references (EPRS) against the relevant
choreography interactions. Thisisachieved by defining an annotation for each 'exchange details' component
(i.e. each request and response/notification).

|3 |PolicyQuoteProcess

]

% [PolicyQuoteRequs

#— PolicyQuoteRe

\.(ﬁPoIicyQuoteRﬁ Copy

I Delete
< DrivingRecordé | A
— DrivingReco| Bun As >| Generate Image...
*_ {jDrivingRecorc ~ Debug As >
] Profile As >

When the annotation editor is displayed for the relevant ‘exchange details component, the validator
annotation should be added. Thisis achieved by selecting the popup menu associated with the background
of the lefthand panel, and selecting the Add Defined Annotation menu item.

Defining the Validator Configuration within a
Choreography

Edit Annotations'[PolicyQuoteRequest]

Parameters | Annotation

ﬁned Annotation

Add Freeform Annotation
Delete

When the list of defined annotationsis displayed, select the validator annotation.

"=l Selection Needed = &

Predefined Annotation

validator

L3
| selectAll || Deselectall |
@ l Cancel] l 0K]

After pressing the Ok button, the annotation editor will configure the righthand panel with the parameters
associated with this annotation.

10

Monitoring the Choreography Description

Edit/Annotations [PolicyQuoteRequest] [l
BEUEEE | Parameters | Annotation
Destination [jms:queuefesb-quotes|]
Dynamic ReplyTo O
Ly
|Sa\.re| |Close|

To specify the EPR for a particular message exchange, enter the EPR into the Destination field. If the
exchange is a request, that will result in a response being sent on a dynamically provided "reply-to"
destination, then the Dynamic Reply-To checkbox should be selected.

Once the annotation has been defined, then press the Save button to save the annotation against the
interaction’'s exchange details.

When al of the relevant 'exchange details components have been configured with a validator annotation,
defining the EPR to be validated, then the choreography description file can be copied into the savar a-

val i dat or - j bossesb. esb/ nodel s folder. Thiswill cause the validation mechanism to derive the
configuration information from the choreography description model, and begin validating the defined
destinations against that choreography description model.

3.3. Monitoring the Choreography Description

Oncethe JBossESB environment has been configured, to perform service validation of aset of ESB services
against a choreography description, and the server has been started, then the next step is to launch a tool
to view the correlated information from the service validators - and determine if the transactions are being
correctly executed.

Within an Eclipse Java project, that contains the choreography description to be monitored, a configuration
file called pidsoa.xml needs to be defined on the project's classpath. This file provides details of the IMS
configuration parameters required to subscribe for the information generated by the service validators. The
contents of thisfileis:

11

Monitoring the Choreography Description

<pi 4soa>
<tracker>
<j ndi >
<initial ContextFactory>org.jnp.interfaces. Nam ngCont ext Factory</initial Cont ext Fact ory>
<provi der URL>j np: / /| ocal host: 1099</ pr ovi der URL>
<fact or yURLPackages>or g. j boss. nami ng: org. j np. i nterfaces</fact oryURLPackages>
</j ndi >
<j ms>
<connect i onFact or y>Connect i onFact ory</ connect i onFact or y>
<connect i onFact or yAl t er nat e>Connect i onFact or y</ connecti onFact or yAl t er nat e>
<desti nati on>t opi c/tracker</destination>
</j s>
</tracker>
</ pi 4soa>

The destination defined in this file must match the one configured in the pidsoa.sar/pidsoa.xml file within
the server.

The next step is to launch the monitoring tool. This is located on the popup menu, for the choreography
description (i.e. .cdm) file, by selecting the Choreography->Monitor menu item. Once the tool has been
launched, it will load the choreography description, subscribe to the relevant event destination, and then
indicate via a message in the bottom status line that it is ready to monitor.

. Choreography Monitor

File Help
- |55ueS | Sessian I Fram Ta LED] Status
. ur :|123452 (SSN), b2 (QuoteRel) LoanBroker Hotifier notif{gquote) |
:|123452 (SSN), b2 (QuoteRel) Bank LoanBroker regue: stQuote{quote)
® Erors 11123452 (SSN), b1 (QuoteRel) LoanBroker Hotifier notify{guote)
J Wiarnings 123452 (SSN), b1 (QuoteRel) Bank LoanBroker reque: St
123452 {SSN), b2 (QuoteRef) LoanBroker Bank requeston Request) H
= Sessions :1123452 (SSN), b1 (QuoteRef) LoanBroker Bank requestQuote(yuoteRequest) Completed
1?}’ 123451 (25N 5123452 (SSN) CreditAgency LoanBroker checkCrediticreditCheckResult) i
:|123452 (S5N) LoanBroker CreditAgency checkCrediticreditCheck) r
fj?}' 123452 (SSM) :1123451 (SSN) LoanBroker Motifier otifiyi i redit)
- Channals :|123451 (SSN) CreditAgency LoanBroker checkCredit{creditCheckResult)
:|123451 (SSN) LoanBroker CreditAgency checkCrediticreditCheck) -

[v]:

& Bankchannemps ; o
y JJ=guote xmins="httpffwne sericedescription orgiserviceltracker'=

& CredithgencyChannelT | re——c—

’ MotifierChanneType 8.60

| =iinterestRate=

J =guoteld=

| IMSBasedBank-2

J =iguoteld=

| =ref=

1 o

| =lef=

|| =enorCode>

3 1}

| =rerrarCodes

| =customeriD=

| 123482

| =feustameriD=

| =customerEmail=

joei@iliketospendit.com

| =custormerEmail> —

4] [l [T» |=iguote= -

Monitoring TrailBtazer

When the information is received, from the service validators representing the different participants
(services), it is correlated to show the global status of the business transaction. The list of correlated
interactionsis show in reversetime order in theimage, so in thisexample aLoanBroker sendsacreditCheck
message to a CreditAgency, followed by a creditCheckResult being returned.

If any out of sequence or other error situations arise, these are displayed in red.

12

Configuration for Conversation Recording

3.4. Configuration for Conver sation Recording

As well as validating the interactions between a set of services, against a pre-defined choreography
description, it is also possible to use the Service Validators in a non-validating record mode.

Thiswill be useful in situations where a choreography description does not currently exist, and we wish to
use the stream of business events being sent and received by each identified service (or participant type) to
gain an understanding of the current business process.

An example of this type of configuration, associated with the TrailBlazer example, is:

<val i dat or >

<service rol e="LoanBrokerParticipant" validate="fal se" >
<out put epr="j ms: queue/ esh-tb-credi t AgencyQueue" />
<i nput epr="jns: queue/ esh-tb-credit AgencyQueue_reply" />
<out put epr="j ms: queue/ esh-t b-j neBankRequest Queue" />
<out put epr="j ns: queue/ esb-tb-fil eBankRequest Queue" />
<i nput epr="j ms: queue/ esbh-tb-j nmsBankResponseQueue" />
<out put epr="j ns: queue/ esb-tb-custonerNotifier" />
<i nput epr="jns: queue/ esh-tb-fil eBankResponseQueue" />

</ service>

<service rol e="CreditAgencyParticipant” validate="fal se" >
<i nput epr="jns: queue/ esh-tb-credi t AgencyQueue" />
<out put epr="j ms: queue/ esh-tb-credit AgencyQueue_reply" />

</ service>

<service rol e="BankParticipant" validate="fal se" >
<i nput epr="j ns: queue/ esbh-t b-j msBankRequest Queue" />
<i nput epr="jns: queue/ esh-tb-fil eBankRequest Queue" />
<out put epr="j ms: queue/ esh-t b-j neBankResponseQueue" />
<out put epr="j nms: queue/ esh-tb-fil eBankResponseQueue" />

</ service>

<service role="NotifierParticipant" validate="fal se" >
<input epr="jns: queue/ esh-tb-custonerNotifier" />

</ service>

</val i dat or >

To define a Service Validator in record only mode, the model attribute is not specified (because no
choreography description exists to be validated against), and the optional validate attribute should be set
to false (by default this attribute is true).

13

	SAVARA 1.0
	Table of Contents
	Chapter 1. Overview
	1.1. WS-CDL
	1.2. pi4soa
	1.3. SOA Lifecycle Governance
	1.3.1. Design Time Governance
	1.3.2. Runtime Governance
	1.3.2.1. Service validator
	1.3.2.2. Process correlation

	1.4. First Steps

	Chapter 2. BPEL
	2.1. Overview
	2.2. Generating a BPEL process
	2.2.1. Overview
	2.2.2. Generating the BPEL Process from a Choreography Description
	2.2.3. Limitations with the current CDL to BPEL mapping

	Chapter 3. Conversation Validation with CDL
	3.1. Overview
	3.2. Configuration of Conversation Validation
	3.2.1. Installing the Conversation Validation Mechanism
	3.2.2. Explicit Configuration
	3.2.3. Defining the Validator Configuration within a Choreography

	3.3. Monitoring the Choreography Description
	3.4. Configuration for Conversation Recording

