Getting Started Guide

Testable Architecture

by Gary Brown, Jeff Y u, and Jeff Del_ong

O Y1 V=Y 1

2 1 = >4 o 2
2.1, InStall@tion INSEIUCTIONSeiieitee et e e e et e e et eeeeate e e e eatenaeeees 2

2.2. Importing Samples iNt0 ECHIPSEnviiii e 2

I U Lo N o = A2 5
3.1, Create EXAmMPIE MESSATESieiiieteii ettt ettt 5

3.2, OULIING SCENAIIOS ..vuieiiiti ettt e e ettt e e et s e e e et s e e e et neeeeatn s eeeeatnaaaaes 5

AN g 1 (= o {0 = T 7
4.1. Define INfOrmation MOGE]coouuniiiiiii e aeens 7
4.1.1. Validating Example Messages against Schema............coovevviiiniiiiiinc, 8

4.2. Define Choreography MOGELoiiiiii e 8
4.2.1. Vdidating Requirements against Choreography Modelccooiveiiiiiiiiiiiiinnenen, 9

5. Service Oriented ANalysSiS anNd DESIQNuuiiiiiiiiiii e e e e e e e e 13
5.1, Service Oriented DESION ...ccouuniiiiiiiee it et e e e e 13

(SRS = Y o ol D= V7= o] o] 0T o | 15
B. L. B oo 15
6.1.1. Generating WS-BPEL based ServiCeSocovuiiiiiiiiiiiec e 15

6.1.2. Statically Verifying the SErViCeooiiiiiiiii e 16

S 07NN - Y- L PP 16
6.2.1. Generating SCA Java based SErVICESiviiiiiiieiii et 16

6.2.2. Verifying the SCA Javaimplementation against a SCenarioccooevevvevvnneennnn. 17

Chapter 1.

Overview

This is the Getting Started Guide for Testable Architecture, and the supporting tools provided by project
SAVARA. Thisguide starts with the installation instructions for the SAVARA tools.

Theremainder of the document is organised to reflect phaseswithin the Testable Architecture Methodol ogy,
and how the current tools can be used in support of that methodology. The tools are till in development,
and therefore not all phases will have tools, and the toolsin some phases will not necessarily be complete.

Asan overview, the tools currently include capabilities for:

« Definition of business requirements as scenarios

 Creation of a choreography (global model) to represent the architecture for a system that delivers the
requirements

» Generation of documentation based on the choreography

» Generation of service designs (e.g. BPMNZ2, etc)

» Generation of service contracts (e.g. WSDL, €tc)

» Generation of service implementation (e.g. WS-BPEL, SCA Java, etc)

» Simulation of scenarios against the choreography and service designs/implementations

Chapter 2.

| nstallation

This section describes the installation procedure for the SAVARA tools.

2.1. Installation I nstructions

Theinstallation instructions for the SAVARA Eclipse tools are:

* Eclipse

Download the latest version of Eclipse JEE, from http://www.eclipse.org, and install in your environment.

» SavaraEclipse Tools

Start up your Eclipse environment, and go to the Help->Install New Software.. menu item. Select the
appropriate update site URL from the SAVARA Downloads page. Once the contents of the update site is
available, then select the Savara and Savara Dependencies categories and follow the instructions to install
them within your Eclipse environment.

2.2. Importing Samplesinto Eclipse

For the purpose of the Getting Started Guide, we will be using the Purchasing example located here: http://
downloads.jboss.org/savara/exampl es/savara2-exampl e-purchasing.zip

Oncethe SAVARA Eclipse Tool distribution has been correctly installed, and the example zip downl oaded,

then use the following steps to import the project:

» Select the 'Import..." menu item, associated with the popup menu on the background of the left panel
(Navigator or Package depending on perspective being viewed).

©=- Navigator i3 =
e
MNew 4
e Export...
] Refresh

Figure 2.1. Select import from the Project Explorer context menu

http://www.eclipse.org/
http://www.jboss.org/savara/downloads
http://downloads.jboss.org/savara/examples/savara2-example-purchasing.zip
http://downloads.jboss.org/savara/examples/savara2-example-purchasing.zip

Importing Samplesinto Eclipse

» When the import dialog appears, select the "General->Existing Projects from Workspace " option and
press the 'Next' button.

W@
Select

-
Create new projects from an archive file or directory. Et’ﬂ

Select an import source:

(i

v = General
[, Archive File
& Existing Projects into Workspace

(7, File System
El preferences
b = cCvs
> =EB
b & Install
b = Java EE
b & Plug-in Development
P (= Remote Systems

@ Bac Next >] [Cancel
L

Figure 2.2. Import existing project into wor kspace

» Ensuring that the 'Select archive file' radio button is selected, press the '‘Browse' button and locate the
downloaded example zip, and then press 'Ok'. Press the 'Finish' button to import the project.

(E)

Import Projects E 2
Select a directory to search for existing Eclipse projects.)
O Select root directory: | | WSE
@ Select archive file: [a,iexamplesisavaraErexamplerpurchasing.ziﬂl [Browse...]
Projects:
purchasing (/) Select All
Deselect All
Copy projects into workspace
Working sets
[Add project to working sets
jorking sets sel
® o[t][y
L

Figure 2.3. L ocate the downloaded purchasing sample proj ect

Once imported, the Eclipse navigator will list the sample project:

Importing Samplesinto Eclipse

[t5 Project Explarer i3 =8

< = purchasing
+ = architecture
[2] PurchaseGoods.bpmn
= (= requirements
[AccountNotFound.xml
[#] BuyConfirmed.xml
[#] BuyFailed.xml
BuyRequest.xml
[#] CreditCheckRequest.xml
[#] CreditCheckRequest2.xml
|#] CreditRatingl.xml
[CreditRating2.xml
g CustomerUnknown.scn
[#] CustomerUnknown.xml
[DeliveryConfirmed.xml
[#] DeliveryRequest.xml
g InsufficientCredit.scn
k& InvalidStoreBehaviour.scn
k4 SuccessfulPurchase.scn
~ =schema
[5] creditAgency.xsd
[s] logistics.xsd
[5] store.xsd

x

Figure 2.4. Project structurefor purchasing example

Chapter 3.

Business Analysis

3.1. Create Example M essages

Thefirst step isto create the example messages, to be used by the scenarios that will document the business
reguirements.

Some previously defined examples can be found in the pur chasi ng Eclipse project. For example, the
Buy request is defined as:

<t ns: BuyRequest xm ns:tns="http://ww.jboss. org/ exanpl es/ st ore"
id="1" product="Laptop" />

Although a schema may not have been defined at this stage, unless one previously existed that is being
reused, it is agood idea to define a namespace for the message type. Thisis because it will be used within
the scenarios and architectural models defined in the following stage. If the namespace was not specified
at this stage, then the example messages, scenarios and architectural models would need to be updated at
alater stage.

Although this phase has been defined before the definition of the scenarios, in practice these phases are
iterative. So scenarios and example messages would be defined concurrently, as the requirements evolve
through discussions between the business analyst and users.

3.2. Outline Scenarios

When designing a system, it is necessary to capture requirements. V arious approaches can be used for this,
but currently there are no mechanisms that enable the requirements to be documented in such a way to
enable an implementation to be validated back against the requirements.

The SAVARA tools provide a means of describing requirements, representing specific use cases for the
interactions between aset of cooperating services, using scenarios - which can be considered similar to UML
sequence diagrams that have been enhanced to include example messages. In the pur chasi ng Eclipse
project, the Successf ul Pur chase. scn scenario looks like this:

QOutline Scenarios

o T TR EIB])
File Edit View Navigate Search Project Run Window Help
g % 04 | B-E | oS |0 |2 G & [48Java EE|
C—— -
- & SuccessfulPurchase.scn 2 =8 -
By [+ select oz
(&= Scenario <«]
T Role Buyer Store: CreditAgency Logistics
Event o
Group lbuy(BuyRequest)]
~, Message
Link
T Send D
checkCredit(CreditCheckRequest)
= Receive)
i Elapsed
Time - H— (I
IcheckCredit(CreditRating)
Import S E—
Scenario
[
[deliver (DeliveryRequest)
P
[
deliver(DeliveryConfirmed)|
21
[
[buy (BuyConfirmed)
Scenario Editor
o° sl ERRE®

Figure 3.1. Scenario representing a successful purchase

The business requirements can therefore be defined as a set of scenarios, each demonstrating a specific use-
case, or path through the business process being enacted.

It is also possible to define scenarios that represent invalid use cases, that should not be implemented by
the system. In these cases, the invalid message events (i.e. the sending or receiving icons) will be flagged
as "Error Expected”, to indicate that they should not occur.

Chapter 4.

Architecture

4.1. Define Information M odel

One of the stages within the architecture phase is to define the information model for the message types
associated with the messages exchanges between the interacting participants.

This involves defining message schema for each example message. The schema could aready exist and be
reused, it could be based on existing schema and just need to be upgraded to support new requirements, or
it may need to be defined from scratch.

An example of a schema associated with the purchasing mode! isthe st or e. xsd shown here:

<?xm version="1.0" encodi ng="UTF-8"?>
<schema xm ns="http://ww. w3. or g/ 2001/ XM_Schenma" t ar get Namespace="htt p: // ww. j boss. or g/
exanpl es/ store" xm ns:tns="http://ww. j boss. or g/ exanpl es/ st ore" el enent For nDef aul t ="qual i fi ed">

<el enent nanme="BuyRequest" type="tns: BuyRequest Type" ></ el enent >

<el enent name="BuyConfirnmed" type="tns:BuyConfirmedType"></el ement >

<el ement name="Account Not Found" type="t ns: Account Not FoundType" ></ el enent >
<el enent nanme="BuyFail ed" type="tns:BuyFail edType"></el enent >

<conpl exType name="BuyRequest Type" >
<attribute nanme="id" type="string"></attribute>
<attribute name="product" type="string"></attribute>
<attribute nanme="custoner" type="string"></attribute>
</ conpl exType>

<conpl exType nane="BuyConfirnedType">
<attribute name="id" type="string"></attribute>
<attribute nanme="anobunt" type="integer"></attribute>
<attribute nanme="del i veryDate" type="date"></attribute>
</ conpl exType>

<conpl exType nanme="Account Not FoundType" >
<attribute name="id" type="string"></attribute>
<attribute nane="reason" type="string"></attribute>
</ conpl exType>

<conpl exType name="BuyFail edType" >
<attribute nanme="id" type="string"></attribute>
<attribute name="reason" type="string"></attribute>
</ conpl exType>
</ schenma>

Once the schema has been defined, then the example messages need to be updated to reference the schema,
as shown in the following Buy Request . xim example message:

<t ns: BuyRequest xml ns:xsi ="http://ww.w3. org/ 2001/ XM_Schen®- i nst ance"
xm ns:tns="http://ww.jboss. org/ exanpl es/ st ore"
xsi : schemaLocati on="http://ww. j boss. org/ exanpl es/store ../schenma/store. xsd "

Validating Example Messages against Schema

id="1" product="Laptop" custoner="Joe" />

4.1.1. Validating Example M essages against Schema

Once the association between example messages and the schema has been established, it is possible
to validate the messages against the schema. Select the context menu associated with the XML file
(e.g. BuyRequest . xni), and choose the Validate menu item. Y ou should see the following message
displayed, and no errors or warnings appear in the Problems or Markers view:

@ Nalidation Results =)

/"J*- The validation completed with no errors or warnings.
\ =

[] Do not show this dialog in the future.

OK\

Figure 4.1. Dialog showing successful validation of the XML document against its
schema

However, if we now introduce an error into this example message, for example change the attribute name
‘customer' to ‘customerX’, and then perform the validation again, you will see an error has been reported:

[£¢ Markers 52 . I Properties| 4% Servers [Data Source Explorer [Snippets
1 error, 0 warnings, 0 others

Description

~ @ XML Problem (1 item)

@ cvc-complex-type.3.2.2: Attribute 'customerX' is not allowed to appear in element 'tns:BuyRequest'. BuyRequest.xml|

Resource

Figure4.2. Error created when a schema validation problem is detected

@ Note
Don't forget to change the attribute name back to ‘customer’, and re-validate the XML

file, before proceeding - as we will need the message be valid for the next section of the
document.

For further information on how to use the validation capabilities within Eclipse, please read the Eclipse
XML Validation Tutorial .

4.2. Define Choreography M odel

Thenext step in the devel opment processisto specify aChoreography Model to implement the requirements
described within the set of scenarios. Information on how to build a choreography can be found in the User
Guide.

http://www.eclipse.org/webtools/community/tutorials/XMLValidation/XMLValidationTutorial.html
http://www.eclipse.org/webtools/community/tutorials/XMLValidation/XMLValidationTutorial.html

Validating Requirements against Choreography Model

The choreography description for the Purchasing example can be found in purchasi ng/
ar chi t ect ur e/ Pur chaseGoods. bpm , and looks like this:

nnnnnnnnnnnnnnn

Good Rating |

Figure 4.3. Example BPM N2 choreography representing a purchasing process

4.2.1. Validating Requirements against Choreography M odel

The SAVARA tools can be used to validate the scenarios against the choreography description, to
ensure that the choreography correctly implements the requirements. To test the requi renment s/
Successf ul Pur chase. scn scenario against the choreography, launch the scenario editor by double-
clicking on the scenario file, and then pressing the green play button in thetoolbar. Thiswill display adlaog
window used to configure what models and simulators are used for each role in the scenario:

el (1)
Buyer

Model: “ ‘:k‘

Model Role:

Simulator: | 2 ‘

Store

Maodel: [(o)

Model Role:

Simulator: | A

CreditAgency

Model: | (o]

Model Role:

Simulator: | 2 ‘

Logistics

Model: [-

Maodel Role:

simulator: | 2

Simulate‘ |Qancel|

Figure 4.4. Scenario simulation dialog

Validating Requirements against Choreography Model

When simulating all roles against a single model (i.e. a choreography), then simply browser for the model
(using the ... button) - which in this case is the PurchaseGoods.bpmn file in the same Eclipse project
(architecture folder), and then when asked " Should model be set for al roles”, pressthe"Yes' button. This
will setup the simulation configuration for al roles:

= &

Buyer

Model: [purcha5|ngfarch\tecture,‘PurchaseGoods.bpmn ‘Z‘
Model Role: | Buyer 2|
simulator: | Protocol simulator 2]
Store

Model: [purchasingfarch\tecture,‘PurchaseGoods,bpmn (]
Model Role: | Store =
simulator: | Protocol simulator =

CreditAgency

Model: [purchasingfarch\tecture}PurchaseGoods,bpmn =
Model Role: | CreditAgency o]
simulator: | Protocol simulator =
Logistics

Model: [pur[hasingfar[h\tecture,‘PurchaseGoods‘bpmn| (]
Model Role: | Logistics =
Simulator: | Protocol simulator 2]

|.§imulate.‘ |Qancel|
) ———

Figure 4.5. Scenario ssimulation dialog initialized with choreography simulation
details

The simulators are all automatically initialised to "Protocol simulator”, as this is the only simulator that
supports the ".bpmn" type of model, and the model roles are initialised on a best guess basis. If therolesin
the scenario are completely different names to the ones in the model (i.e. choreography), then the user will
need to select the appropriate model rolesto map from the scenario roles.

When the"Simulate” button has been pressed, and the simulation is complete, the scenario should look like
the following image, indicating that the scenario completed successfully.

10

Validating Requirements against Choreography Model

[&] PurchaseGoods & SuccessfulPurchase.scn 82 =8
| select
(= Scenario o
'|' Role Buyer Store CreditAgency Logistics
Event »
Group lbuy (BuyRequest)
<, Message > |
Link
= Send » - B
creditCheck(CreditCheckRequest)
S5 Receive 3
‘L) Elapsed
Time _ _ = D
creditCheck(CreditRating)|
& Import b ol
Scenario
»
delivery(DeliveryRequest)
|
»
delivery(DeliveryConfirmed)|
b
buy{BuyConfirmed)|

Scenario Editor | Simulation Log

Figure4.6. Simulation results showing the successful validation of a scenario against
the choreography
To view a scenario that demonstrates a test failure, open the requirenents/

I nval i dSt or eBehavi our . scn scenario by double-clicking onthefile, and then initiate the test using
the green play button in the toolbar. When complete, the scenario should ook like the following image.

[2] PurchaseGoods 4 InvalidstoreBehaviour.scn 53 =4
[select
(= Scenario @

T Role Buyer Store CreditAgency Logistics

Event »

Group lbuy (BuyRequest)
~, Message

Link
= send

y [creditCheckiCreditCheckRequest)

% Receive T
i) Elapsed

Time

[creditCheck(CustomerUnknown) fault CustomerUnknown|

% Import Zlk‘

Scenario

»
delivery(DeliveryRequest)|
p |
»
delivery(DeliveryConfirmed)|
) |

lbuy(BuyConfirmed)|
) |

Scenario Editor | Simulation Log

Figure 4.7. Simulation results showing validation issues between a scenario and

chor eography

Y ou will notice that the Sore participant has ared 'send' node, indicating that this action was not expected
behaviour when compared with the choreography description. The reason this is considered an error, is

11

Validating Requirements against Choreography Model

that the Store participant should only send an AccountNotFound message following a customer unknown
response from the credit agency.

When an error is detected in a scenario, the architect can then determine whether the scenario iswrong (i.e.

it does not correctly describe a business requirement), or whether the choreography is wrong and needs to
be updated to accommodate the scenario.

12

Chapter 5.

Service Oriented Analysisand Design

At this point in the lifecycle, various activities would occur related to reviewing services (i.e. in a SOA
Repository) and understanding whether existing services meet requirements, need to be modified, or
whether new services need to be devel oped from scratch.

5.1. Service Oriented Design

In the current SAVARA tooling, the main functionality in the Service Oriented Design phase is the
generation of BPMN2 diagrams. These diagrams can be used as guidance for the development teams that
areimplementing theindividual services (i.e. as design documents) or asthe basis for the development (i.e.
by using the BPMN2 models as executabl e processes).

It is also possible to extend the generated BPMN2 diagrams to include service logic. However it should be
noted that changes to the choreography or BPMN2 diagrams will not be synchronized/merged. In future
versionsof SAVARA it will be possibleto formally check BPMN2 process modelsfor conformance against
a choreography model, and potentially synchronize differences in externally observable behaviour
between them.

To generate the BPMN2 processes for a choreography, select the Savara->Generate-> Service menu item
from the context menu associated with the choreography, and then for each relevant participant choose the
BPMN2 Process service type:

& E)

Service Role Project Name Service Type

CreditAgency PurchaseGoods-CreditAgency ‘BPMN? Process ¢ |

Store PurchaseGoods-Store ‘BPMN? Process | & |

Logistics PurchaseGoods-Logistics BPMN2 Process ¢

| checkall || clearall

Figureb5.1. Dialog for generating BPM N2 based services

Once the "Ok" button has been pressed, separate projects will be created for each participant, containing
the appropriate BPMN2 process for that participant. For example, the Store participant will have:

13

Service Oriented Design

=
) Receive: creditCheok{CustomerUnknovin) fror
I CreditAgency

‘ Send: buy(AccountNotFound) to Buye .

&

Send: buy(BuyFailed) to Buyer

Store

‘
Send:

credit Check(Credi [
Check) to |

— =
2D Receive:
|)" buyBuyrequest)
~— from Buyer

| =
\ Receive:
creditCheck(Credi

®%

Rating) from

|
4 Send:
equest) to

= |
Receive: Send: L
buy(BuyConfi
onfirmed) from d) to Buyer

Figure5.2. Generated BPM N2 process for the Storerole

14

Chapter 6.

Service Development

Servicescan be devel oped by generating initial development artifacts, based on artifactscreatedin preceding
phases (e.g. architectural model or service contracts/designs).

To ensure that the services continue to conform to the artifacts defined in the previous phases, the tools
will (eventaully) perform conformance checking between the service implementation and the existing
architecture/design artifacts. Thisisnot possible with all implementation languages - they must provide the
means to extract the communication structure for comparison.

The following sections explain how the generation can be achieved for the WS-BPEL and SCA Java
implementations.

6.1. BPEL

The tools include a capability to generate a service implementation, for a participant in a choreography,
using WS-BPEL.

6.1.1. Generating WS-BPEL based Services

When achoreography description has been created, it ispossibleto generate aBPEL Process (and associated
WSDL files and deployment descriptor) for each of the participants defined within the choreography. To
try this out, select the Savara->Generate-> Service menu item from the popup menu associated with the
archi t ectur e/ Pur chaseGoods. bpm .

Thiswill display adialog listing the possible services that can be generated from this choreography, with a
proposed Eclipse project name, and the option to select a service type.

& E)
Service Role Project Name Service Type
CreditAgency PurchaseGoods-CreditAgency BPEL $
Store PurchaseGoods-Store | BPEL |
Logistics PurchaseGoods-Logistics | BPEL |
| Checkall || clearall |

cancel || oK |
K—

Figure6.1. Dialog for generating BPEL based services

Pressthe 'Ok’ button and thiswill create asingle aBPEL project for the Store, Logistics and CreditAgency
participants.

Each project will contain asingle bpel Cont ent folder containing the WS-BPEL process definition for
the participant, alist of relevant WSDL files and a deployment descriptor file for use with any Apache ODE
based engine (e.g. RiftSaw). However the WS-BPEL and WSDL files are standard, so can be deployed to
any WS-BPEL 2.0 compliant engine.

15

Statically Verifying the Service

6.1.2. Statically Verifying the Service

The SAVARA tools include the ability to statically verify the external observable behaviour of a BPEL
process definition against other artifacts (e.g. a scenario).

To verify a scenario against one or more BPEL process definitions, open the scenario in the
editor and select the green play button. When the dialog is displayed, select the BPEL process
associated with the role being simulated. For example, the St or e role should be associated with
the generated Pur chaseGoods_Store. bpel , the Credit Agency role associated with the
Pur chaseGoods_Cr edi t Agency. bpel , etc. When the OK button is pressed, the simulation will be
performed against the selected BPEL process definitions.

'Static' verification refersto the fact that aprotocol description isderived from the BPEL process, describing
the communications behaviour of the process. It is this protocol description that is validated against other
artifacts - in this case a scenario.

In contract, a dynamic verification would involve actually executing an instance of the BPEL process, to
determine whether it correctly behaves when presented with a series of sample (simulated) use cases. We
hope to be able to support this functionality in the near future.

6.2. SCA Java

This section shows how to generate SCA Java based services from a choreography, add implementation
details to the service and then verify it against scenarios.

6.2.1. Generating SCA Java based Services

When a choreography description has been created, it is possible to generate a SCA Java implementation
(and associated WSDL files and SCA composite descriptor) for one or more of the participants defined
within the choreography. To try this out, select the Savara->Generate-> Service menu item from the popup
menu associated with thear chi t ect ur e/ Pur chaseGoods. bpmm .

Thiswill display adiaog listing the possible services that can be generated from this choreography, with a
proposed Eclipse project name, and the option to select a service type (in this case SCA Java).

- &
Service Role Project Name Service Type

CreditAgency PurchaseGoods-CreditAgency SCA Java

oo

Store PurchaseGoods-Store SCA Java

Logistics PurchaseGoods-Logistics

Check All Clear All

o

Cancel OK |

Figure6.2. Dialog for generating SCA Java based services

Press the 'Ok’ button and this will create a Java project for the Store , Logistics and CreditAgency
participants.

16

Verifying the SCA Javaimplementation against a Scenario

Each project will be generated as a Java project, containing the relevant Javainterfaces and classes for the
service implementation, the WSDL and X SD files for the public service interface, and the SCA composite
descriptor.

6.2.2. Verifying the SCA Java implementation against a Scenario

In a previous section of the document, it showed how to use the Scenario (that represents a particular use
case or requirement) to verify an architectural model (or choreography). The same scenarios can be used to
test the service implementations generated from those architectural models or designs.

For example, to test the SCA Java implementation for the Sore participants, you open the
requi renment s/ Successf ul Purchase. scn scenario and press the green "play" button in the
toolbar. Thiswill show the 'scenario simulation' dialog. Then for the Sorerole, select therelevant composite
file, so for the Sore role locate the St or e. conposi t e filein the Pur chaseGoods- St or e/ src/
mai n/ r esour ces folder:

- 5

‘ ’y| ‘ < ” eclipse H workspace H PurchaseGoods-Stare ||5r[" main H rasources‘

Location: [Sture.mmpns\te]

Places Name v | Size Modified | —
&4 Search B3 wsdl 16:18
@ Recently Used

& gbrown

Desktop

[File System

[Documents

(& Music

Pictures

Videos

Downloads

cancel || oK

o _\

Figure 6.3. Dialog for selecting the SCA composite

When the SCA composite has been selected, then it will automatically set the smulator to be "SCA
simulator" and clear the model role - this is because the model role is not relevant as the service
implementation represents a single role, rather than a collection of roles as in the case of a choreography
being used for the model.

17

Verifying the SCA Javaimplementation against a Scenario

Buyer

Model: [| v" ()

Model Role: [Buyer

<

L8

Simulator: [

Store

Model: [:ds—store,fsrc,‘main,‘resourcesfstore.composite| v ‘ D

Model Role:

Simulator: | SCA simulator =

CreditAgency

Model: [| = ‘ ()
Model Role: [CreditAgency < 1
Simulator: | =
Logistics

Model: “ | v ‘ ()
Model Role: | Logistics =
Simulator: l S 1
SimuI:te Cancel

Figure 6.4. Scenario simulation configured for validating the SCA Java
implementation for the Storerole

Next press the "Simulate” button. Unlike the verification against a choreography model, which is pure
simulation, when the SCA simulator is used and configured with a particular SCA composite file, then the
simulation is performed by executing the serviceimplementation. The simulation output isthe same though:

18

Verifying the SCA Javaimplementation against a Scenario

Buyer Store CreditAgency Logistics

L
buy(BuyRequest)
)|

[creditCheck(CreditCheckRequest)]
—3

2]

[creditCheck(CreditRating)]
&

) |
»
[delivery(DeliveryRequest)]
3]
L
[delivery(DeliveryConfirmed)]
b |
»

buy(BuyConfirmed)
21

Figure 6.5. Result of simulating the Store role, within the Successful Purchase
scenario, against the SCA Java implementation

Note however, before being able to verify the SCA Storeimplementation through simulation, you will need
toimplement the servicelogic. Initially it will be created as a skeleton. The following isacompleted version
of theor g. savar a. exanpl es. store. St or el npl class:

package org. savar a. exanpl es. store;

inport java. math. Bi gl nt eger;

inmport java.util.logging.Logger;

import javax.jws.WbMet hod;

inmport javax.jws.WbParam

inmport javax.jws.WbResult;

inmport javax.jws.WbService;

inmport javax.jws.soap. SOAPBi ndi ng;

inmport javax.xmnl . bind. annot ati on. Xm SeeAl so;

inmport org.savara. exanpl es. credi t agency. Credi t Agency;
import org.savara.exanpl es. | ogi stics. Logistics;
inport org.jboss. exanpl es. store. Account Not FoundType;
i nport org.oasi sopen. sca. annot ati on. Ref erence;

/**

* This class was generated by Apache CXF 2.4.0
* 2012-02-08T10: 25: 28. 453Z

* Cenerated source version: 2.4.0

*

*/

@ avax.jws. WebSer vi ce(
servi ceName = "StoreService",

19

Verifying the SCA Javaimplementation against a Scenario

port Nane = "StorePort",

target Namespace = "http://ww. savar a. or g/ exanpl es/ Store",
wsdl Locati on = "wsdl / PurchaseGoods_Store. wsdl ",
endpoi ntlnterface = "org. savara. exanpl es. store. Store")

public class Storelnpl inplenents Store {
private static final Logger LOG = Logger. get Logger (Storelnpl.class.getNanme());

@ref erence
public CreditAgency creditAgency;

@ref erence
public Logistics |ogistics;

/* (non-Javadoc)
* @ee org.savara.exanpl es.store. Store#buy(org.]jboss. exanpl es. st ore. BuyRequest Type

content)*
*/
public org.j boss. exanpl es. st ore. BuyConfi rmedType buy(org.jboss. exanpl es. st or e. BuyRequest Type
content) throws |nsufficientCreditFault , AccountNotFoundFaul t {

LOG i nf o(" Executi ng operation buy");
Systemout. println(content);
try {
org. j boss. exanpl es. credi t agency. Credi t CheckType check=
new org. j boss. exanpl es. credi t agency. Credi t CheckType();
check. setld(content.getld());
check. set Cust omer (" C104536") ;

org.j boss. exanpl es. credi t agency. Credi t Rati ngType rati ng=
credi t Agency. credi t Check(check);

System out . printl n("RATI NG="+r ati ng) ;

if (rating.getRating().intValue() > 5) {
org. j boss. exanpl es. | ogi stics. Del i veryRequest Type del i ver yRequest =
new org. j boss. exanpl es. | ogi stics. Del i ver yRequest Type();
del i veryRequest . setld(content.getld());
del i ver yRequest . set Address("1001 Acne Street");

org. j boss. exanpl es. | ogi sti cs. Del i veryConfirnedType delivery=
| ogi stics.delivery(deliveryRequest);

org. j boss. exanpl es. store. BuyConfirmedType _return =
new or g.j boss. exanpl es. store. BuyConfirnedType();

_return.setld("1");

_return. set Amount (Bi gl nt eger. val ue (500)) ;

return _return;

} else {

org. j boss. exanpl es. st ore. BuyFai | edType buyFail ed =
new org. j boss. exanpl es. st ore. BuyFai | edType();

buyFai | ed. set1d("1");

t hr ow new or g. savar a. exanpl es. store. I nsufficientCreditFault("Buy fail ed", buyFail ed);
}
} catch(org. savara. exanpl es. credi t agency. Cust omer UnknownFaul t cuf) {
Account Not FoundType anft=new Account Not FoundType();
anft.setld(content.getld());
anft.set Reason("Don't know you");

20

Verifying the SCA Javaimplementation against a Scenario

t hrow new Account Not FoundFaul t (" Account not found", anft);

}

21

	Getting Started Guide
	Table of Contents
	Chapter 1. Overview
	Chapter 2. Installation
	2.1. Installation Instructions
	2.2. Importing Samples into Eclipse

	Chapter 3. Business Analysis
	3.1. Create Example Messages
	3.2. Outline Scenarios

	Chapter 4. Architecture
	4.1. Define Information Model
	4.1.1. Validating Example Messages against Schema

	4.2. Define Choreography Model
	4.2.1. Validating Requirements against Choreography Model

	Chapter 5. Service Oriented Analysis and Design
	5.1. Service Oriented Design

	Chapter 6. Service Development
	6.1. BPEL
	6.1.1. Generating WS-BPEL based Services
	6.1.2. Statically Verifying the Service

	6.2. SCA Java
	6.2.1. Generating SCA Java based Services
	6.2.2. Verifying the SCA Java implementation against a Scenario

