Scribble Developers Guide

by Gary Brown

T = T S 1
A o= o A (o U =N 2
2.1, ProjeCt M@aN@QEMENTcieeii ettt ettt et ettt 2
2.1.1. 1SSUE MaNaQEIMENT ..eviieitii et 2

2.1.2. Project Build Managementueieiuuneieiiiiee et ee et e e e e e e eeni e 2

P2 B 1= 1o 11 1o OO 2

R R 10105 = 1o o E PP ORI 3
bR 0 R ©o o 10 7= 9 1o [N o PP 3

2.3.2. EMBEAded JAVA ... ccvuiiii e 3

A T T o o1 = YRS 3

2 /o o (1] =P 4

2L T © PP 4
2.5.1. Protocol Conformance Test Kit (CTK) ..coeuuuiiiiiiieiiiie e 5

A S 1 410 = PP 7

I A o T = ox (1 = P 8
3.1, OSGI INFIESITUCLUIE ...ttt e e e e e e et e e e e et e e e e et e e e anbe s eeeeee 8

3.2, C0Ore COMPONENES ...evtieeeie ettt e et ettt et et e e e e et et e e et e e et n e e e ene s 8

G 7250 IR 1 o oo o1 o [8

3.2.2. ProtoCol MOGE ... 9

3.2.3. PrOtOCOl ParSErcieviiiiiiiii et 9

3.2.4. ProtoCOl PrOJECHIONeiiiiiieiiii et e 10

3.2.5. Praotocol Validation Manager and Validatorscooevvveiiiiiiiiieciin e, 10

3.2.6. Exporting the Protocol model to other representations...........cccvvveeivviineeinneennnn. 10

3.2.7. Scribble Protocol MONITOTcocvueieiiiii e 11

3.3. CommMaNd Lin@ ACHONSc.uiiiiiieii e e e e e e e e aaas 11

4, Developing @ Validatorccuuiiiiiiiiiiieie e e e e e e e e e e e 13
4.1. Create the Validator OSGi BUNAI©oveeiiiii e 13

4.2, Establish Bundle DEPENTENCIESoiiviieii e ece e e e e aan s 13

4.3. Implement the MOAUIEcoouuiii e 14

4.4. Create the Maven POMoiiiiiiiiiiiiie e e e e e eai e e eaens 14

AL REVISION HISIOMY ..ottt e et e et e e e s 15

Preface

Chapter 1.

Overview

This developers guide is intended for two groups of developers,
* those wishing to develop applications that make use of (i.e. integrate) components of the Scribble tool
chain, and

* those wishing to develop additional components (or alternative implementations) for the Scribble tool
chain The document initially discusses information about the project itself, to provide background
information on how issues are managed, and the build and distribution performed.

The document then discusses the architecture of the tool chain.

Finally we will look in more detail at how a validation module can be added to the tool chain.

Chapter 2.

Project Structure

2.1. Project Management

This section outlines the technology used to manage the different aspects of the project.

2.1.1. Issue M anagement

The issue management is handled through the JIRA system located at https://jira,jboss.org/browse/
SCRIBBLE.

I ssues can be created for bugs, feature requests and tasks. Bugs are used to report unexpected behaviour, and
will generally be created by language/tool users. Feature requests can equally be used by users to request
new language or tool features.

Taskswill only generally be created by project developers, as away of keeping track of work that needs to
be done, potentially in support of bugs or feature requests.

Issues in JRA can be linked, where a dependency exists. It is aso possible to create a simple hierarchiy
with tasks, such that a parent task can contain related sub-tasks.

An important usage of the issue management system is to keep track of what issues are associated rel eased
versions of the tools, and what target release they will be implemented or fixed within. This enables users
to understand the schedule of features and bug fixes, aswell as providing an automated mechanism for
providing release notes describing the work associated with a particular release.

2.1.2. Project Build Management

The project build is performed using maven. A specific maven plugin, called Tycho, is used to build the
Eclipse based OSGi modules.

The project also uses the Hudson continuous build and integration system to automatically trigger the build
when changes are detected in the Scribble subversion repository.

Using the continuous build approach enables problemsto be detected at the earliest possible stage. The build
includes the execution of JUnit tests, implemented as part of the project, and the reporting of their results.

2.2. Distribution

Thedistribution mechanism isaimed at providing a zipped archive that contains the necessary environment.

This environment provides the ability to execute Scribble commands from the command line. However it
is also possible to use the jars, contained in the | i b and bundl e sub-folders, directly within other Java
applications.

To automatically include a new bundlein the distribution (bundl e subfolder), it should be defined in the
org.scribble.bundles maven group.

https://jira.jboss.org/browse/SCRIBBLE
https://jira.jboss.org/browse/SCRIBBLE

Integration

The build procedure also creates an Eclipse update site that includes the OSGi bundles as well as some
additional Eclipse specific plugins (e.g. protocol editor).

2.3. Integration

Ther unt i me branch of the project is concerned with providing integration of the OSGi bundles, defined
inthet ool s/ bundl es branch, in different execution environments.

2.3.1. Command Line

The Scribble tools architecture is based on OSGi, which means that the OSGi compliant bundles can run
within any OSGi compliant service container. However OSGi is a service framework, intended to manage
servicesin a service container (or server).

Therefore, to leverage OSGi bundles (or services), from a command line invoked application, we need to
select a specific OSGi implementation that supports this approach, asit is not defined as part of the OSGi
standard.

Therefore, to provide this command line capability, we have selected the Apache Felix OSGi
implementation. Thisisthe reason that the Felix jarsareincluded in the distribution's| i b sub-folder, rather
than just implementation independent OSGi jars.

Although it is possible to define new modules as part of the Scribble project, it is also possible to develop
them independently and just place them within the bundl e folder of the installed (unpacked) Scribble
distribution. This will make them available as part of the command line commands (e.g. if the bundle
represents an additional validation module).

2.3.2. Embedded Java

OSGi is about defining components, with well defined interfaces, and managing their isolation, to enable
modules to be dyamically added or removed as necessary.

However, it is also possible to use these same components, based on the separation of interfaces and
implementations, using any suitable factory or direct injection approach.

The bundles are just normal jar archives. They only have special significance when placed in an OSGi
container.

2.3.3. Eclipse

To integrate the Scribble protocol model, parser and supporting validating modules into Eclipse, it is
necessary to package them in the form of an update site. This is achieved using the maven plugin called
Tycho.

Thet ool s folder within the source project structure contains all of the OSGi and Eclipse based artifacts.

Thebundl es sub-folder contains the OSGi modules that can be used in an OSGi container, or integrated
with the Eclipse specific pluginsinto an Eclipse update site.

http://felix.apache.org

Modules

Thef eat ur es and pl ugi ns sub-folders contain the moretraditional Eclipsefeaturesand plugins. These
plugins providethe Eclipse specific capabilitiesthat also utilise the capabilities of the OSGi modul es defined
inthebundl es sub-folder.

Thesi t e sub-folder providesthe update site definition. Thisisused by Tycho to build an update site from
the specified features, plugins and other OSGi bundles.

@ Note
The update site that is built as part of the maven build scripts is not included as part of the
distribution. The update site isintended to be installed on a network server, to enable users
to reference it from the update manager in their Eclipse environment.

The final sub-folder within thet ool s structure is the tests

sub-folder. Thisis used to define the test plugins that are invoked as part of the Tycho build mechanism.

2.4. Modules

Thet ool s/ bundl es sub-folder contains all of the OSGi compliant bundles that can be used in any of
the integration environments.

Some of the main bundles in this sub-folder are:

1. org.scribble.common This module provides common capabilities used by the other bundles.

2. org.scribble.protocol This is the main 'protocol’ related module. It contains the protocol object model,
and the interfaces for the other main componentsin the tool chain.

3. org.scribble.protocol.parser This module provides the ANTLR based parser implementation.
4. org.scribble.protocol.projection This module provides the endpoint projection mechanism.

5. org.scribble.protocol.monitor and org.scribble.protocol.export.monitor These modules provide the
runtime monitoring support. The export monitor bundle convertsaProtocol object model into the concise
monitoring finite state machine representation, and the org.scribble.protocol.monitor module provides
the Java based monitoring engine implementation.

25.QA

There are two types of QA that are performed as part of the project:

1. Locdl test cases Unit tests would be used to test theindividual classes within the specific implementation
of aninterface.

2. Integration tests Where multiple implementations of a particular module could exist, an integration test
strategy may be useful to ensurethat all implementations of the sameinterface behaviour inthe sameway.

Protocol Conformance Test Kit (CTK)

This section will discuss the second type of QA, aimed at ensuring multiple implementations behaviour
in the same way.

2.5.1. Protocol Conformance Test Kit (CTK)

2.5.1.1. Parser

This part of the project structure provides a set of tests to check that the parser (being tested) processes the
supplied set of test 'protocol’ descriptions, and returns the correct object model.

The test protocol descriptions are stored inthe src/t est/resources/ t ests folder. The gl obal
sub-folder provides the global representation of the protocols, with the local representation of these
protocols (for al of the relevant roles) being defined inthel ocal sub-folder.

Each test isaccompanied by ajunit test, defined in the class org.scribble.protocol .parser.ctk . For example:

@rg.junit. Test
public void testSinglelnteraction() {
Test Journal | ogger=new Test Journal ();

Prot ocol Model nodel =CTKUt i | . get Model ("t ests/ protocol /gl obal / Si ngl el nteraction.spr", |ogger);
assert Not Nul | (nodel) ;
assert True(l ogger. getErrorCount () == 0);

/1 Build expected nodel
Prot ocol Model expect ed=new Prot ocol Mdel ();

I mportList inp=new | nportList();
Typel mport t=new Typel nport();
t.set Name("Order");

i mp. get Typel nports().add(t);
expect ed. get | nports().add(inp);

Prot ocol protocol =new Protocol ();
expect ed. set Prot ocol (protocol);

protocol . set Nane(" Si ngl el nteraction");

Rol eLi st rl=new Rol eList();
Rol e buyer =new Rol e();
buyer . set Name(" Buyer");
rl.getRol es().add(buyer);
Rol e sel | er=new Rol e();

sel ler.setName("Seller");
rl.getRoles().add(seller);

prot ocol . get Bl ock().add(rl);
Interaction interacti on=new Interaction();
MessageSi gnat ure nms=new MessageSi gnature();

TypeRef erence tref=new TypeRef erence();
tref.set Name("Order");

Protocol Conformance Test Kit (CTK)

nms. get TypeRef erences() . add(tref);
interaction. set MessageSi gnat ur e(ns) ;

i nteraction. set FronRol e(buyer);
interaction. get ToRol es(). add(seller);

protocol . get Bl ock().add(i nteraction);

CTKU i | . verify(nodel, expected);

The CTKULil.getModel () method retrievesthe protocol description from anamed file, and invokesthe parser
implementation being tested.

The parser implementation is defined using the scribble.protocol.parser system property. If this property is
not set, then it will default to the ANTLR based implementation.

Once the model has been retrieved using the parser, the unit test will construct an ‘expected' object model.

The final step in the unit test is to invoke the CTKUtil.verify() method to compare the model retrieved
against the '‘expected’ version.

To perform the verification, each model isflattened to producealist of 'model objects. Thenthe verification
mechanism iterates through the list, checking that the same entry in each list isidentical - first checking
they are the same class, and then invoking a'comparator' implementation for that class.

The 'comparator' implementations are defined in the org.scribble.protocol.parser.ctk.comparators
package. The comparator implementations are registered in the static initiaizer for the
org.scribble.protocol . parser.ctk.Protocol Parser Test class.

2.5.1.2. Projection

Aswith the parser, the CTK provides a set of tests that can be used to test the projection implementation.

The projector implementation is defined using the scribble.protocol.projector system property. If this
property is not set, then it will use the default implementation.

The tests are performed by initially retrieving the global representation of a Protocol, and then the local
representation that is associated with the particular role that will be projected. This local representation
effectively becomes the 'expected' projection.

The project isthen invoked, for the required role, which will produce another local representation. All that
isthen left to doisverify that the projected local representation isidentical to thelocal representation loaded
from thefile.

An example of aprojection test is shown below, where the global model isbeing projected to the Buyer role:
@rg.junit. Test
public void testSinglelnteractionAtBuyer() {
TestJour nal | ogger =new Test Journal ();

Prot ocol Model nodel =CTKUt i | . get Model ("t ests/ protocol /gl obal / Si ngl el nteraction.spr", |ogger);

Samples

assert Not Nul | (nodel) ;
assert True(| ogger. getErrorCount () == 0);

Prot ocol Model expected=CTKUti | . get Mbdel ("tests/protocol /| ocal/Singlelnteracti on@uyer.spr",
I ogger);

assert Not Nul | (expect ed) ;
assert True(l ogger. getErrorCount () == 0);

/'l Produce projection of nodel to buyer
Rol e rol e=new Rol e(" Buyer");
Pr ot ocol Model projected=CTKUt il . project(nodel, role, |ogger);

CTKU i |l .verify(projected, expected);

2.5.1.3. Monitor

The monitoring CTK tests are based on simulating a set of events against the local representation of
protocols, as defined inthet est s/ pr ot ocol /| ocal sub-folder.

The JUnit tests are structured as follows:

@rg.junit. Test
public void testSinglelnteracti onXSDI nport At Buyer () {
test Monitor("tests/protocol /| ocal/SinglelnteractionXSDl nport @uyer. spr",
"tests/nonitor/Singlelnteracti onXSDI nport @uyer. events", false);

They simply specify thelocation of thelocal protocol representation that will be monitored, and the location
of the file containing the list of events to be simulated. The final parameter indicates whether the test (or
simulation) is expected to fail.

The event file has the same structure as used with the simulate command line function. For example,

recei veMessage, Or der
sendChoi ce, val i dPr oduct
sendMessage, Or der

recei veChoi ce, _Confirmation
recei veMessage, Confirmation
sendMessage, Confirnation

2.6. Samples

The sanpl es sub-folder will provide samples that reflect different aspects of the Scribble notation, and
the different capabilities offered by the tool chain.

Chapter 3.

Architecture

3.1. OSGi Infrastructure

The Scribble architecture is based on OSGi, to provide a means of managing the individual modules, but
without causing tight coupling.

Service bundles enable implementations to be specified that implement defined interfaces. Other services
can then request access to services that implement a particular interface.

The OSGi service container takes responsibility of managing the services, and providing access to
reguesting components.

This provides flexibility for Scribble tooling in two respects:

1. Replaceable The implementation of a particular Scribble interface can easily be replaced. This enables
different research or industry groupsto replace specific modules, with alternativeimplementations, while
still reusing other modules.

2. Extensibility Some aspects of the architecture allow for multiple implementations of the same interface.
Therefore, using OSGi, enables additional implementations of the same interface to be easily plugged
in, without having to define any additional configuration information.

3.2. Core Components

3.2.1. Error Logging

Thereisagenericlogging APl within the Scribble framework that can be used for reporting errors, warnings,
information or debuging details. This API is org.scribble.common.logging.Journal .

The methods generally take two parameters, a message and a property map. The message is smply a
description of the issue being reported. The property map contain specific details about the issue being
reported.

For example, when the parser detects a problem, it can report the nature of the problem, and provide the
location of theissue in the source file.

3.2.1.1. Internationalization

To enable errors reported from the Scribble parser and validation modules, in a number of different
languages, internationalization should be used.

The following code fragment provides an example of how internationalization can be achieved, using
parameterised messages.

| ogger. error(java.text.MessageUtil . format(

Protocol Model

java. util.PropertyResourceBundl e. get Bundl e(
"org.scribble.protocol. Messages"). get String(
"_CHO CE_ROLE"), "froni), obj.getProperties());

The main message content is obtained from a propertiesfile, with the name being supplied as the parameter
to the getBundle method. The property file must be placed the correct package within the sr ¢/ mai n/
r esour ces folder, to ensure the properties are correctly packaged by maven.

The messages within the property files can have values that include parameters. Parameters are numbered
in sequentia order, and defined between curly braces (e.g. { n} where'n' isthe number). For example,

_EXI STI NG_DECLARATI ON=Decl arati on al ready exists for name {0}

This message only has a single parameter.

In the previous code fragment, the MessageUTtil .format() method takes the message as the first parameter,
and avariable comma separated list of strings as the parameter values to be substituted in the message. So
in the code fragment, the value "from" would be substituted in the {0} parameter of the _ CHOICE_ROLE
message, and then reported to the journal.

3.2.2. Protocol M odéel

The object model representation of a Protocol is defined using classes within the
org.scribble.protocol.model package. All model classes are derived from a common Model Object class,
which defines common properties of all components in the model.

Where object model components are contained by another model component, we use a special list
implementation called ContainmentList . Thisimplementation maintains areferenceto its containing parent
model object, making it easier to navigate up the protocol object model hierarchy.

3.2.3. Protocol Par ser

The Protocol Parser is responsible for converting the textual Scribble notation into an object model
representation.

package org. scribbl e. protocol . parser;

public interface Protocol Parser {
public org.scribble.protocol.nodel . Protocol Mbdel parse(java.io.lnputStreamis,
org. scri bbl e. common. | oggi ng. Journal journal);

The parser only has a single method, which takes the input stream containing the text based representation
of the Scribble protocol, and a Journal for error reporting purposes.

Protocol Projection

If the Protocol has valid syntax, then a ProtocolModel will be returned representing the protocol in object
model form.

3.2.4. Protocol Projection

The protocol projection component is used to derive a local protocol representation, associated with a
nominated role, from aglobal protocol representation.

Theinterface for this component is,

package org. scribble. protocol . projection;
public interface Protocol Projector {

publ i c Protocol Model project(Protocol Model nodel, Role role,
Journal journal);

This method takes the global protocol model, the role to be projected, and ajournal for reporting any errors.
The result is either alocal representation of the protocol model for the specified role, or null if a failure
occurred.

3.2.5. Protocol Validation Manager and Validators

The validation manager, when used in a OSGi runtime environment, will listen for the activation of any
implementations of theor g. scri bbl e. prot ocol . val i dati on. Val i dat or interface.

This means that the validation of any model can be performed wusing the
org.scribble.protocol .validation.ValidationManager , rather than having to obtain instances of multiple
implementations of the Val i dat or interface.

WhentheVal i dat or Manager isused outside of an OSGi environment, it is necessary for the validators
to be added to the manager by other means.

3.2.5.1. Model Component based Validation

One of the default validation implementations is
org.scribble.protocol.validation.rules.Defaul tProtocol ComponentValidator . This class is derived from a
generic based class that validates supplied protocol models by visiting the component objects within the
model, and invoking a specific 'validation rule' based on the type of the model object.

This default implementation is used to provide the basic validation rules for the model components. For
example, to ensure that the roles defined within an interaction have been previoudly declared within the
scope containing the interaction.

3.2.6. Exporting the Protocol model to other representations

The Scribble tools provide a mechanism for exporting a Scribble Protocol object model to other
representations. This module has the following interface,

10

Scribble Protocol Monitor

package org. scribbl e. protocol . exporter;

public interface Protocol Exporter {
public String getld();
public String getNane();
public void export(Protocol Model nobdel, Journal journal, java.io.CQutputStream os);

}

Each 'exporter’ implementation defines an id and more descriptive. The id can be used to lookup the
implementation from the Protocol ExportManager , whereas the name can be used as a descriptive name
for display to users.

The export method takes the protocol model to be exported, thejournal whereto report errors, and the output
stream which will be the destination for the exported representation.

The org.scribble.protocol bundle contains a default exporter to convert the Scribble object model
representation into a text based representation. The 'id' for thisimplementation istxt .

3.2.6.1. Monitor

Another export module is the org.scribble.protocol .export.monitor .

This implementation produces an XML based finite state machine representation of the protocol, for use
by the Scribble Protocol Monitor.

3.2.7. Scribble Protocol Monitor

The Scribble Protocol Monitor provides a runtime component that can observe messages being sent and
received by an endpoint application, assuming a particular rolewithin aprotocol, and ensurethat it conforms
to the expected behaviour.

Warning

TO BE DOCUMENTED

3.3. Command Line Actions

Thefirst step is to define the command implementation of the org.scribble.command.Command interface.
This can be created in the org.scribble.command Eclipse plugin.

To initialise the command, as part of an OSGi runtime environment, the command implementation can be
instantiated in the org.scribble.command plugin's Activator , and then registered with the bundle context.

If the command requires other OSGi services, then these can be established by setting up service listeners
for the relevant service interface classes. When OSGi services are registered, then the relationship can be
established.

11

Command Line Actions

This command mechanism will generally only be used as part of the command line approach, and therefore
does not need to beinitialised in other ways. However other dependency injection techniques could be used
if appropriate.

The only remaining step isto create the scripts necessary to enable a user to invoke the command. Thiscan
be achieved by copying one of the existing scripts, inthedi st ri buti on/ src/ mai n/ r el ease folder
(such aspar se. sh), and modify the parameter details as necessary.

12

Chapter 4.

Developing a Validator

This section will describe how to create avalidator, using the 'simple validator' example within the Scribble
distribution sanpl es/ val i dat or/ si npl e. val i dat or folder.

4.1. Createthe Validator OSGi bundle

This section will explain how to create an OSGi bundlefor avalidator from within the Eclipse environment.
Thefirst step isto create the plugin project, using the New->Project->Plugin Project menu item.

Ensure the 'Create java project’ checkbox is ticked, and then set the source folder tobesr ¢/ mai n/ j ava
and set the Target Platformto a standard 'OSGi Framework'.

Then press the Next button to set some details associated with the plugin, such as the version, description,
provider, etc.

In this example, we will be registering the validator using the OSGi registerService method. This is
performed in the bundle activator, whose classis set in the plugin details. For example, in the start method
of the created Activator, we would have:

public void start(Bundl eContext context) throws Exception {
Properties props = new Properties();

Prot ocol Val i dat or val i dat or=new Si npl eVal i dat or () ;

context.regi sterServi ce(Protocol Val i dator. cl ass. get Nane(),
val i dator, props);

4.2. Establish Bundle Dependencies

Depending on the type of bundle being developed, it may have adifferent set of dependenciesthan the ones
reguired by this'simple' validator. However the configuration approach will be the same.

Go to the META- | NF/ MANI FEST. MF file and select it. This will cause the plugin manifest editor to be
displayed.

Select the Dependencies tab and select the other bundles that will be required, or preferrably select
the packages to be imported (as this avoids dependency on specific bundles, and instead just identifies
the packages required). For this example validator, we just need to add the packages from the
org.scribble.common bundle which is used by all Scribble plugins. However if additional packages
were required, then they could be added as imported packages (e.g. org.scribble.protocol.model and
org.scribble.protocol .validation).

13

Implement the Module

4.3. Implement the M odule

Each modulewill be different, and therefore discussing specific implementation detail swill not be possible.

However validation modules will tend to access the complete model, but possibly only be interested
in certain parts of it. Therefore usually the validation modules will define an implementation of the
org. scri bbl e. protocol . nodel . Vi si t or interface.

In the example validator, there is a Si npl eVal i dat or Vi si t or class that is derived from the
Def aul t Vi si t or , and only overrides the method to accept an interaction. Therefore only validation
of interactions is of interest to this validator. In this particular case, the validator is checking the message
types, and reporting an error if aparticular value is detected.

The actua man class within the validator module would implement the
org. scribbl e.protocol . validation.Protocol Val i dat or interface.

There may aso exist specialised implementations of the ProtocolValidator interface that help
support the validation process. For example, the ProtocolComponentValidator which triggers a
Protocol ComponentValidator Rule based on the type of the model component. Thevisitor isused to traverse
the model to identify the model components being validated. So its possible, if validation of only a
couple of model component types is required (as in the ssimple validator), to derive a specialisation of the
Protocol ComponentValidator class with the relevant rule implementations.

4.4. Createthe Maven POM

The simple validator in the Scribble samples uses Maven to build the OSGi bundle.

Themain aspect of the Maven pom isto define the dependencies, which are equivalent to the ones defined in
theMANIFEST.MF, and to customise the build phase to make surethedelivered jar hasthe MANIFEST.MF
included, rather than the default one.

14

Appendix A. Revision History

Revision History

Revision 2.0.0 Sept 20 2011 GaryBrown<gar y@cr i bbl e. or g>
Initial version of developer guide

15

	Scribble Developers Guide
	Table of Contents
	Preface
	Chapter 1. Overview
	Chapter 2. Project Structure
	2.1. Project Management
	2.1.1. Issue Management
	2.1.2. Project Build Management

	2.2. Distribution
	2.3. Integration
	2.3.1. Command Line
	2.3.2. Embedded Java
	2.3.3. Eclipse

	2.4. Modules
	2.5. QA
	2.5.1. Protocol Conformance Test Kit (CTK)
	2.5.1.1. Parser
	2.5.1.2. Projection
	2.5.1.3. Monitor

	2.6. Samples

	Chapter 3. Architecture
	3.1. OSGi Infrastructure
	3.2. Core Components
	3.2.1. Error Logging
	3.2.1.1. Internationalization

	3.2.2. Protocol Model
	3.2.3. Protocol Parser
	3.2.4. Protocol Projection
	3.2.5. Protocol Validation Manager and Validators
	3.2.5.1. Model Component based Validation

	3.2.6. Exporting the Protocol model to other representations
	3.2.6.1. Monitor

	3.2.7. Scribble Protocol Monitor

	3.3. Command Line Actions

	Chapter 4. Developing a Validator
	4.1. Create the Validator OSGi bundle
	4.2. Establish Bundle Dependencies
	4.3. Implement the Module
	4.4. Create the Maven POM

	Appendix A. Revision History

