
Scribble Protocol Guide

by Gary Brown

ii

Preface .. iii

1. Overview .. 1

2. Protocol Constructs ... 2

2.1. Protocol Definition ... 2

2.2. Interaction ... 4

2.3. Sequence .. 4

2.4. Choice ... 5

2.4.1. Directed Choice ... 5

2.4.2. Located Choice ... 6

2.5. Parallel ... 7

2.6. Unordered ... 7

2.7. Repetition ... 8

2.8. Recursion ... 8

2.9. Global Escape ... 9

2.10. Composition .. 9

3. Examples .. 11

3.1. Buyer Seller Protocol .. 11

3.2. Credit Check Protocol ... 11

3.3. Purchasing Goods Conversation .. 11

A. Revision History .. 13

iii

Preface

Chapter 1.

1

Overview
Scribble is a simple text based language for describing interactions between multiple parties in the form

of a Protocol .

The Protocol notation is intended to provide an abstract description of the communication behaviour, with

addtional optional layers being used to describe assertions and other governance related information.

In the world of programming languages, the measure of the simplicity of a language is based on its

representation of a simple 'hello world' example. The Scribble Protocol representation of such an example

would be:

protocol HelloWorld (role You) {

 You introduces World;

 Hello from You to World;

}

The notation will be explained in more detail in this guide, but basically the protocol is named 'HelloWorld'

and is specified with a parameter (role 'You') which defines the role initiating the conversation. The next

step is for this initiating role to introduce the other role(s) that it will interact with, which in this case is the

role 'World'. The final statement in this example protocol is a single interaction for sending a message of

type 'Hello' from role 'You' to role 'World'.

In the following chapter we will explore the main constructs of the protocol notation. Then we will explore

a range of examples, before concluding with a brief overview of some more advanced constructs that are

still under development.

Chapter 2.

2

Protocol Constructs

2.1. Protocol Definition

The protocol definition is comprised of a:

• Imports A list of import statements that can reference types (messages or other protocols) in other

namespaces, optionally providing a URL to the detailed information about the type.

• Protocol unit The protocol definition contains a single top level protocol unit, with a name that is scoped

to the previously defined namespace. The syntax for the process definition is:

(import [<TypeSystem>]

 ["<DataType>" as] <name>

 ("," ["<DataType>" as] <name>)*

 [from "<Location>"] ";")*

protocol <name> ["at" <Role>] "(" (role | <Type>) <name>

 ("," role | <Type>) <name>)* ")" "{"

 ";"

"}"

The import statement is used to define a type that will be used within the protocol definition. When

referenced in the protocol, the type is known by a local name (or alias). If we want to be able to monitor,

or use the protocol definition in any other 'real world' situation, then we need to bind the concrete type

information to this alias.

The import statement can optionally define a type system associated with the imported type. For example,

this could be 'java' if referring to a Java class or interface, or 'xsd' for an XSD type or element.

Within the type information, we can identify a specific data type, followed by the 'as' keyword and then

the name of the type alias.

The import can optionally specify the location of the type information, by specifying the 'from' keyword

followed by a string literal with type system specific location information.

In its simpliest form, the import can just define the type name, which will be represented without any type

system specific information. The next level can introduce a type specific 'data type' value. Finally the most

complete version will include the location of the type information.

Following the import statements is the declaration of the protocol unit itself. This defines the name of the

protocol and whether it is located at a particular role.

The following represents a 'global' protocol example:

import Customer;

import xsd "{http://www.acme.org/Purchasing}Order" as Order,

Protocol Definition

3

 "{http://www.acme.org/Purchasing}Quote" as Quote

 from "../schema/MySchema.xsd";

import java "Order" as Order,

 "Quote" as Quote

 from "org.scribble";

protocol PurchaseGoods (role Buyer) {

 Buyer introduces Seller;

 Order from Buyer to Seller;

}

This example shows three variations of the import statement. The first importing a single type based on a

name, without any concrete type information being bound.

The second importing a particular XSD schema, from a schema location, and referring to two specific types

within the schema. The first being an XSD type, known by the qualified name { [http://www.acme.org/

Purchasing] }Order and locally referred to using the alias Order . The second being an XSD element,

known by the qualified name { [http://www.acme.org/Purchasing] }Quote and locally referred to using the

alias Quote .

The third import statement shows the case where two Java classes are bound to local aliases. The Java

package is specified within the 'from' clause, and the class name is defined prior to the 'as' keyword in each

case.

The global protocol is then defined, named as PurchaseGoods . This is a global protocol because it does

not specify a particular role at which the definition is located.

A local protocol variation would be:

protocol PurchaseGoods at Buyer (role Buyer) {

 Buyer introduces Seller;

 Order to Seller;

}

This local representation of the protocol defines the behaviour from the Buyer role's perspective. That is

why the interaction defined within the protocol unit only include the 'to role' Seller , as this is the role with

which the Buyer is going to communicate. The Buyer role in the interaction is implied from the located

role of the local protocol.

The protocol can also be defined with parameters, to allow other protocols to invoke them with specific

values. Below is a variation of the previous example, with the roles passed into the protocol instead.

protocol PurchaseGoods(role Buyer, role Seller) {

}

Interaction

4

The way in which another protocol can be invoked will be presented in a subsequent section.

2.2. Interaction

Interactions in Scribble are based on two assumptions:

• Asynchrony, so no wait on sends, and

• Message order preservation for messages sent to the same role The syntax for the interaction is:

<MessageSignature> [from <Role>] [to <Role> ("," <Role>)*)]

The following example shows a similar type of interaction as shown in the 'hello world' example.

Customer introduces Supplier;

Order from Customer to Supplier;

In this sample, two roles are declared, with the interaction indicating that a message of type 'Order' will be

sent from role 'Customer' to role 'Supplier'.

placeOrder(Order) from Customer to Supplier;

This example demonstrates an alternative way for the exchanged message to be specified. In the first sample

a message-style was used. In this sample, an RPC style has been used, specifying the operation name with

type parameters. In this case, only a single typed parameter Order has been specified, but this could be a

comma separated list of one or more types.

Note

When specifying interactions, it is not possible to just define an operation name with no

type parameters.

2.3. Sequence

The sequence construct is a list of activities, separated by a semi-colon, such that each subsequent activity

is only performed after the completion of the preceding activity.

"{"

 (<Activity> ";")*

"}"

Choice

5

where Activity<i> represents any protocol based activity or construct.

The following example shows a sequence of interactions.

{

 Order from Buyer to Seller;

 Invoice from Seller to Buyer;

 Payment from Buyer to Seller;

 Confirmation from Seller to Buyer;

}

2.4. Choice

The choice construct represents a set of mutually exclusive paths triggered by different interactions that

could occur between two roles. One of the roles will be the decision maker, initiating the interaction, and

the other role will be the recipient, reacting to the specific message received.

There are two various of the choice construct, which will be presented below.

2.4.1. Directed Choice

The syntax for the directed choice construct is:

from <Role> to <Role> ("," <Role>)* "{"

 <MessageSignature> ":"

 ...

 <MessageSignature> ":"

 ...

"}"

For example,

CreditCheck from Seller to CreditAgency;

choicefrom CreditAgency to Seller {

 CreditRefused:

 CreditOk:

}

Another example is,

Order from Buyer to Broker;

from Broker to Buyer {

 validProduct():

Located Choice

6

 Order from Broker to Supplier;

 Confirmation from Supplier to Broker;

 OrderDetails from Broker to Buyer;

 invalidProduct(UnknownProduct):

}

In this example, the first choice path defines a message signature with only a label (or operation name), and

the second choice path uses the operation name/parameters style of message signature.

2.4.2. Located Choice

The syntax for the directed choice construct is:

choice at <Role> "{"

"}" or "{"

"}"

For example,

CreditCheck from Seller to CreditAgency;

choice CreditAgency to Seller {

 CreditRefused from CreditAgency to Seller;

} or {

 CreditOk from CreditAgency to Seller;

}

Another example is,Order from Buyer to Broker;

choice at Broker {

 Order from Broker to Supplier;

 Confirmation from Supplier to Broker;

 OrderDetails from Broker to Buyer;

} or {

 invalidProduct(UnknownProduct) Broker to Buyer;

}

This example demonstrates one of the main distinctions between the directed and located choice constructs.

The direct choice defines the source and destination roles, and each path of the choice construct must send

a message between those roles.

In the located choice, as shown in the example above, only the source role is defined, which means that

each choice path has the flexibility to send messages to different destination roles. So in the example above,

it means that the Broker can communicate with the Supplier before it has to respond back to the Buyer -

Parallel

7

whereas with the directed choice version of the example, a message needed to be sent back to the Buyer

before communicating with the Supplier .

2.5. Parallel

The parallel construct defines a set of paths that represent behaviour that should occur concurrently.

The syntax for the parallel construct is:

parallel "{"

 ...

("}" and "{"

 ...)+

"}"

For example,

parallel {

 CheckStock from Seller to Wholesaler;

 StockAvailability from Wholesaler to Seller;

} and {

 CreditCheck from Seller to CreditAgency;

 CreditReport from CreditAgency to Seller;

}

2.6. Unordered

The unordered construct defines a set of statements that represent behaviour that should occur in any order.

The syntax for the unordered construct is:

unordered "{"

 ...

"}"

For example,

unordered {

 CheckStock from Seller to Wholesaler;

 CreditCheck from Seller to CreditAgency;

}

Repetition

8

2.7. Repetition

The repeat construct represents the 'while' style loop. A decision will be made at one or more nominated

roles. If more than one located role is defined, then all of those roles must synchronize in their decision

making, using some non-observable mechanism.

The first activity contains within the repetition construct must be initiated at one of the located roles

associated with the construct.

The syntax for the repeat construct is:

repeat at <Role> { "," <Role> }* "{"

 ...

"}"

The following example shows a repeat construct, located at the Buyer role. This means that the Buyer will

be responsible for deciding when to iterate, and when to terminate the repetition.

It also means that the initial activity (in this case interaction) defined within the repeat construct must be

initiated by the Buyer . In this case, the Buyer is sending an Order message to the Seller .

repeat at Buyer {

 Order from Buyer to Seller;

 Invoice from Seller to Buyer;

}

2.8. Recursion

Recursion is supported in the protocol definition by defining a 'rec' keyword with a label prior to a block,

that defines the scope of the recursive behaviour, and at some point in the enclosed behaviour, the same

label is used to show where the recursion should be performed. The label can only be used within the scope

of the recursion block to which the label has been associated.

rec <Label> "{"

 ...

 <Label> ";"

"}"

The following example shows a recursion construct defined using the label 'Transaction'. Within the

associated block, the recursion is triggered by the 'Transaction' clause.

rec Transaction {

 ...

 Transaction;

Global Escape

9

}

2.9. Global Escape

The 'global escape' concept provides a means for breaking out of a particular scope based on an interaction.

The syntax for the global escape construct is:

do "{"

 ...

("}" interrupt "{"

 ...

)+

"}"

In the following example, the body of the do block is enacted, involving an interaction between a Buyer

and Seller , followed by some other activities.

During this scoped set of activities, if the Seller returns an OutOfStock message, then it will cause the flow of

control to move to the first interrupt block. However if the Buyer sends an OrderExpired or OrderCancelled

message, then the flow will move to the second interrupt block.

do {

 Order from Buyer to Seller;

 ...

} interrupt {

 OutOfStock from Seller to Buyer;

 ...

} interrupt {

 choice at Buyer {

 expire(OrderExpired) from Buyer to Seller;

 } or {

 OrderCancelled from Buyer to Seller);

 }

 ...

}

2.10. Composition

Protocols can be defined in a modular way, with one protocol being able to compose another using the run

construct.

The run construct composes another protocol in a synchronous manner. This means that the composed

protocol will complete before any subsequent activity in the composing protocol can proceed.

There are two ways in which another protocol can be composed. These are:

Composition

10

• Nested The nested variation defines the sub-protocol as an inner part of the composing protocol - in a

similar way to an inner class in Java.

• External The external variation defines the sub-protocol in a separate protocol definition, which is then

referenced within the composing protocol.

The syntax for the nested and external run construct is:

run <ProtocolName> "(" <param> ("," <param>)* ")" at <Role>;

An example of the nested variation, using the run , is:

run PlaceOrder(Client, Supplier) at Client;

....

protocol PlaceOrder(role Buyer, role Seller) {

}

The external variation is similar to the nested variation above, except that the composed protocol definition

(i.e. PlaceOrder in this case), would be stored in a separate definition.

Chapter 3.

11

Examples
This chapter presents some examples using the protocol notation.

3.1. Buyer Seller Protocol

This example shows how a Buyer role and Seller role may interact in an ordering process.

protocol BuyerSeller (role Buyer) {

 Buyer introduces Seller;

 Order from Buyer to Seller;

 choice at Seller {

 Invoice from Seller to Buyer;

 } or {

 Rejected from Seller to Buyer;

 }

}

3.2. Credit Check Protocol

This example shows how a Client role performs a credit check against a CreditAgency role.

protocol CreditCheck (role Client) {

 Client introduces CreditAgency;

 CheckCredit from Client to CreditAgency;

 choice at CreditAgency {

 CreditOk from CreditAgency to Client;

 } or {

 NoCredit from CreditAgency to Client;

 }

}

3.3. Purchasing Goods Conversation

This example shows how a protocol can be defined that 'implements' the previous two protocol examples.

protocol BuyerSellerCreditCheck (role Buyer) {

 Buyer introduces Seller;

 Order from Buyer to Seller;

 Seller introduces CreditAgency;

Purchasing Goods Conversation

12

 CheckCredit from Seller to CreditAgency;

 choice at CreditAgency {

 CreditOk from CreditAgency to Seller;

 Invoice from Seller to Buyer;

 } or {

 NoCredit from CreditAgency to Seller;

 Rejected from Seller to Buyer;

 }

}

13

Appendix A. Revision History
Revision History

Revision 2.0.0 Sept 20 2011 GaryBrown<gary@scribble.org>

Initial version of the protocol guide

Revision 2.0.1 November 13 2011 GaryBrown<gary@scribble.org>

Updated notation to Scribble Type Language version 1 compliant

	Scribble Protocol Guide
	Table of Contents
	Preface
	Chapter 1. Overview
	Chapter 2. Protocol Constructs
	2.1. Protocol Definition
	2.2. Interaction
	2.3. Sequence
	2.4. Choice
	2.4.1. Directed Choice
	2.4.2. Located Choice

	2.5. Parallel
	2.6. Unordered
	2.7. Repetition
	2.8. Recursion
	2.9. Global Escape
	2.10. Composition

	Chapter 3. Examples
	3.1. Buyer Seller Protocol
	3.2. Credit Check Protocol
	3.3. Purchasing Goods Conversation

	Appendix A. Revision History

