Seam - Contextual Components

A Framework for

Enterprise Java

2.1.2

by Gavin King, Pete Muir, Norman Richards, Shane Bryzak, Michael Yuan, Mike
Youngstrom, Christian Bauer, Jay Balunas, Dan Allen, Max Rydahl Andersen, Emmanuel
Bernard, Nicklas Karlsson, Daniel Roth, Matt Drees, Jacob Orshalick, and Marek Novotny

edited by Samson Kittoli

and thanks to James Cobb (Graphic Design), Cheyenne Weaver (Graphic Design),
Mark Newton, Steve Ebersole, Michael Courcy (French Translation), Nicola
Benaglia (Italian Translation), Stefano Travelli (Italian Translation), Francesco
Milesi (Italian Translation), and Japan JBoss User Group (Japanese Translation)






INtrOdUCTION 1O JBOSS SEAIM ..euiniiiiiie e e e e e e et e e et et et e e et e e et e e e aaeens XVii

I @0 | ] o 10 ) (=T (o RS T =T o XXi
ST g o B U (Y - | PR 1
1.1. Using the Seam eXampPlesS ...t 1
1.1.1. Running the examples 0n JBOSS AS .......cccouiiiiiiiiiiii e 1
1.1.2. Running the examples 0N TOMCAL ..........vviiiiiiiiiiiee e 1
1.1.3. Running the example tESIS .......oiiiiiiii e 2

1.2. Your first Seam application: the registration example ..........ccccooviiiiiniiiiiinee. 2
1.2.1. Understanding the COE .........oiiiiiiiiiiiii e 3
1.2.2. HOW 0t WOTKS .ot e e e 14

1.3. Clickable lists in Seam: the messages example .........cccooeviiviiiiiiiii i, 15
1.3.1. Understanding the COUE ..........coiuuiiiiiiiiii e 15
1.3.2. HOW Bt WOTKS .ot e s 21

1.4. Seam and jBPM: the todo list @Xample ...........cooiviiiiiiiiiiiii e 21
1.4.1. Understanding the COUE .........oiiiiiiiiiiiiii e 22
I o o YA | A Yo PP 29

1.5. Seam pageflow: the numberguess example ........cccccoiiiiiiiiii i, 30
1.5.1. Understanding the COUE ..........coouuiiiiiiiiiei e 31
1.5.2. HOW Bt WOTKS .ot e s 39

1.6. A complete Seam application: the Hotel Booking example ..........cccoccoiveiiiivinnenann. 40
700 O [ 11 o To [ o 1T PPN 40
1.6.2. Overview of the booking example ..o 42
1.6.3. Understanding Seam CONVErSatioNS ...........coeevuuieiinieriiieeiiieeiiiieeieeeaieeannns 42
1.6.4. The Seam Debug Page .........ccoouuiiiiiiiiiii e 51

1.7. Nested conversations: extending the Hotel Booking example ..........cccccoevevinienannn. 52
A R [ 11 o T [T o ) o PN 52
1.7.2. Understanding Nested Conversations ............cc.ovveiuieeiiiieeiieeiiieeaineeeieeeens 54

1.8. A complete application featuring Seam and jBPM: the DVD Store example ........... 60
1.9. Bookmarkable URLs with the Blog example ...........ccooovviieiiiiiiiiiii e 62
1.9.1. Using "PUll’-Style MVC ......ccooiiiiiiiii e 63
1.9.2. Bookmarkable search results page ........cccovvviiiiiii i, 65
1.9.3. Using "push"-style MVC in a RESTful application .............cc.cccoevvviiieennn. 68

2. Getting started with Seam, USING SEAM-gEN .......ccvuuiiiiiiiiiii e e 73
2.1, BEfOrE YOU SEANM ..oovuiiiiiiiiiee ettt ettt ettt e e e e et e eaaa s 73
2.2, SEetting UP @ NEW PIrOJECT ..uiiiiiii e e e e e e e e e e e eeanns 74
2.3. Creating @ NEW ACHION ....c.uuuiiiiiiiie ittt e et e e et eeeeaa e eees 77
2.4. Creating a form with @an action ............ccooeiiiiiiiii e 78
2.5. Generating an application from an existing database ..........c..c.ccooviiiiiiiiiinnn. 79
2.6. Generating an application from existing JPA/EJB3 entities ...........ccceveveviiieeinnnnnnnn. 80
2.7. Deploying the application as an EAR ...........coiiiiiiiiiiii e 80
2.8. Seam and incremental hot deployment ...........cccoeiiiiiiiiiiiii e 80
2.9. Using Seam With JBOSS 4.0 ......iiiiiiiiiiiiiiie ettt 81
2.9.1. INStAll JBOSS 4.0 ..ieeiiiieiii ettt 81
2.9.2. Install the JSF 1.2 Rl .ooouuiiiiii e e e 82




Seam - Contextual Components

3. Getting started with Seam, using JB0OSS TOOIS ....cc.iiiiiiiiiiiiiii e 83
O I = 7= (o] (=R 11 ) = A PO PP PPPPTR 83
3.2. Setting Up @ NEW SEAM PrOJECT ...uiviun et e e e 83
3.3. Creating @ NEW ACHION ....c.uuuiiiiiiii et e et e e e eba e eees 99
3.4. Creating a form with @an action .............ccooviiiiii i 101
3.5. Generating an application from an existing database ............c..cccooiiiiiiin . 102
3.6. Seam and incremental hot deployment with JBoSS TOOIS .........cocceeveviiiiiiieinnnnns 104

4. The contextual component MOAEl ........ooiiiiiiiiii e 105
4.1, SEAM CONIEXES ....iiiiiieeieie et ettt ettt et e et e et e e e e e e e e e eeees 105

4.1.1. StateleSS CONEXL .....iieiieii e e e e 105
4.1.2. EVENE CONEXL ..ovnieeieii et et eaes 106
4.1.3. PAJE CONTEXLE ...uiietiiiiieei ettt ettt e e e e e enes 106
4.1.4. CONVErSAtION CONTEXLE ..ovevunieiiiiiieeeeii e ettt e e et e e e e 106
4.1.5. SESSION CONEXLE ...uniieiieii et e e e e e e e e e e e et e e e eeneeeens 107
4.1.6. BUSINESS PrOCESS CONTEXLE ..ovvuiiiiieiiiiieeiee et i ee e et e e e s e e e e e e et e e e eeees 107
4.1.7. ApPlCAtioN CONTEXT ....iiiiii e 107
4.1.8. Context VariableS .........oiiiiiiiiiiii e 107
4.1.9. Context SEArCh PriOritY .........ooeuuiiiiiii e 108
4.1.10. Concurrency MOEl .........uiiiiiiiii e 108
4.2, SEAM COMPONENTS ..oetuiiiiieiii ettt ettt e e e et et et e e et e e e e eee e enes 109
4.2.1. Stateless Session Beans ... 109
4.2.2. Stateful SESSION DEANS .......oiiiii 110
4.2.3. ENtity DEANS ...oviiiii e 110
4.2.4. JAVABRANS ..ot 111
4.2.5. Message-driven DEANS ........ccccuiiiiiiiiie e 111
4.2.6. INTEICEPLION ..ttt e e e aaan s 111
4.2.7. COMPONENT NAIMIES ...iuiiiiiiiiie e e e et e e aaanas 112
4.2.8. Defining the COMPONENE SCOPE ....covviiriiiiiiiieeiii e 114
4.2.9. Components with multiple roles ...........coooiiiiiiiii e 114
4.2.10. BUIlt-iN COMPONENTS ...ttt ettt ettt eea e 115
e F = 11 =Tox 1T P 115
4.4, Lifecycle MethOdS .......oooiiiiii e 118
4.5, Conditional INSLallAtioN ..........cooiuiiiiiii e 119
T o To o 1 o o I PSPPSR PTRR 120
4.7. The Mut abl e interface and @ReadONnl Y ......cccovveiiiiiiiiiiee e 121
4.8. Factory and manager COMPONENTS ........eieuuuneieiiiieeerii e eeti e e et e e e e enia s 124

5. Configuring Seam COMPONENTS .....ciiiiiiii i e e e e aans 127
5.1. Configuring components via property Settings .........cooceeuuiveieiiinneeeiiine e 127
5.2. Configuring components via component s. Xm .........ooveiiieriiiieiiii e 127
5.3. Fine-grained configuration fileS .............oiiiiiiiiiii 131
5.4. Configurable Property tyPES .....cviiiiii e 132
5.5. USING XML NAMESPACES ... ceiitiiiiiiiieieiii ettt et e ettt e e e e e eena e aees 134

6. Events, interceptors and exception handling .........cccccoiiiiiiiii i 139
B.1. SEAM BVENES ...ttt et et et et e e et e et ea e e e e annas 139




(S I o- To LT T 1o o 1PN 140
6.3. PAgE PANAIMELEIS ....oeiiiiieiii ettt ettt e 141
6.3.1. Mapping request parameters to the model ............ccooveviiiiiiiinieeeeen, 141

6.4. Propagating request Parameters .........oocoeuuuiieiiitiieeieei et 142
6.5. URL rewriting with page parameters ..........ccoovvieiiiiieiiie e 143
6.6. Conversion and Validation .............co.ioiiiiiiiiii e 144
ST = AV o = L4 o o N 145
6.8. Fine-grained files for definition of navigation, page actions and parameters .......... 149
6.9. ComMPONENt-AriVEN EVENLS ....ccviiiiiii i ee e e e e e e e e e e e e e e ees 149
6.10. CONtEXIUAI BVENLS ....uiiie et e et e e e et e e e e ee 151
Lo ST =T T T =Y (o7 =T o (o ) P 153
6.12. Managing EXCEPLIONS .....cceeueu ittt ettt et e e et e e e e ab e eenans 155
6.12.1. Exceptions and tranSactions ...........cccceuieiiiiieiiieeiii e 155
6.12.2. Enabling Seam exception handling ..............coioiiiiiiiiii e, 156
6.12.3. Using annotations for exception handling .............ccoccoveiiiiiiiiieeeis 156
6.12.4. Using XML for exception handling ............ocoouiiiiiiiiiiiiiii e, 157
6.12.5. Some COMMON EXCEPLIONS ....uiiiiiiiiieiiie e e e e e e e e e e e 159

7. Conversations and workspace management ........c.oiveiiiiiieieiiiii e 161
7.1. Seam's CONVErsation MOE! ...........uviiiiiiiiiiiii e 161
7.2. NeSted CONVEISALIONS .....cieuieiiiieii et e e e e e e e e e et e e e eenn s 164
7.3. Starting conversations with GET reqUEeSstS ........cccouiiiiiiiiiiiiiiiii e 164
7.4. Requiring a long-running CONVEISAtION ...........ccouuuuieiiiiiieeiiine e 166
7.5. Using <s:1ink>and <s: DUt TON> ..ot e e e 167
7.6. SUCCESS MESSAGES ...cevuiirnnerieiet et e et ettt et et et et e et et et e e e et e e e e eenaaes 169
7.7. Natural CONVErSatioN idS ........uiiiiiiiiieiiiie e e e eeaens 169
7.8. Creating a natural CONVEISAtION .........cccuuuiiiiiiiiieiiii e 170
7.9. Redirecting to a natural CONVErsation ............cocceuiiiiiieiiiieiiii e e e e 171
7.10. WOrkSpace ManagemMENT ..........uieiiitn ettt et e et et e et e e e s 172
7.10.1. Workspace management and JSF navigation ..............cccoeevviiiiiiineinnnenn, 172
7.10.2. Workspace management and jPDL pageflow .............ccccoovieiiiiniiiiinnnnnn. 173
7.10.3. The conversation SWItCNEN ............uuiiiiiiiiiieiie e 173
7.10.4. The conversation liSt ... 174
7.10.5. BreadCrumbs .........iiiiiii e 175
7.11. Conversational components and JSF component bindings .........ccccooevvviiieiennnn. 175
7.12. Concurrent calls to conversational COMPONENLS .........cccevvveiiiieiiiieeiiieeiiieeeieen, 177
7.12.1. How should we design our conversational AJAX application? ................. 178
7.12.2. Dealing With €ITOIS .....ciiuiiiii i 178
7.12.3. RiChFaces (AJaX4ST) oo 180

8. Pageflows and bBUSINESS PrOCESSES ...uuiiiiiiiiii i 181
8.1. Pageflow iN SAM ... i 181
8.1.1. The two navigation MOdels ............coiiiiiiiiiii i, 181
8.1.2. Seam and the back bUutton ............coiiiiii i 185

8.2. Using JPDL Pageflows .......iiiiiiiiii e 186
8.2.1. Installing PageflOWS .....couuniiiiiii e 186




Seam - Contextual Components

8.2.2. Starting pageflows .........i i 187
8.2.3. Page nodes and tranSitioNS .............vveiiiiiiieiiiiiece e 188
8.2.4. Controlling the floW ..o 189
8.2.5. ENding the fIOW .......coouiiiiiii e 190
8.2.6. Pageflow COMPOSITION ......coovniiiiiii e 190

8.3. Business process Mmanagement in SEAIM ...........vviiiuiiiiiiiiiieeiii et 190
8.4. Using jPDL business process definitions ..........ccccuvieviiiiiiiiiiiiiieceeeeceee e, 192
8.4.1. Installing process definitioNS ...........oveiiiiiiiiiiiie e 192
8.4.2. INitializiNng @CtOr IS ....ceveiiii i 192
8.4.3. Initiating & DUSINESS PrOCESS .....covvuiiiiii i 192
8.4.4. TaSK ASSIGNMENT .....ciiiiiiii e e e e e e e e 193
8.4.5. TASK lISES ..uiiiiiiii e 193
8.4.6. Performing a task .........ooiiiiiiiiii 194

9. Seam and Object/Relational Mapping .......coouuuieieiiiiiiiiii e 197
LS % I T 1 £ To 11Tt 1o ) o IR 197
9.2. Seam managed tranNSACHONS .......cccuuuiiiiiiiii e 198
9.2.1. Disabling Seam-managed transactions ............cccoeevviiieiiiieeiiieeiiieeeeeeeenn, 199
9.2.2. Configuring a Seam transaction Manager ............cooveveeuiieieriinieieiineeeenenn 199
9.2.3. Transaction Synchronization ..............ccooeviiiieiii i, 200

9.3. Seam-managed PersiStENCE CONTEXLS .......iieiuuueiiiiiieieii e e 200
9.3.1. Using a Seam-managed persistence context with JPA ..............cccoeeeen. 201
9.3.2. Using a Seam-managed Hibernate SesSion ..........cccoeveiiiiiiiiiiieiiiieeiees 201
9.3.3. Seam-managed persistence contexts and atomic conversations .............. 202

9.4. Using the JPA "delegate” ........cooeuiiiiii e 204
9.5. Using EL iN EIB-QL/HQL ...iiiiiiiiiiii et eei e 205
9.6. Using Hibernate filters ... ... e 205
10. JSF form validation 1N SEAM .......uuiiiiiiii e e e eaaens 207
11. GrooVY iNTEOIATION ...ttt e et et e e e e aaa s 215
5 0 I 7 o To Y VA T 1 (Yo 18 o 1 o o 215
11.2. Writing Seam applications in GIrOOVY ..........ccoiuuiiiiiiiiiiieiiiie e 215
11.2.1. Writing Groovy COMPONENES ......uiiiiieiiiieiiiieeeiee e e e e e e e e e e e eaneens 215
11.2.2. SEAMGEI ..oeiiiii ettt et 217
5 TR 7= o[ )Y/ 21T o | P 217
11.3.1. Deploying GrOOVY COUE .......cccouuuiiiiiiiieiieii et e e 218
11.3.2. Native .groovy file deployment at development time ............c...cccoeeeennnis 218
11.3.3. SEAMIGEIN .oeiiiii ittt 218

12. Writing your presentation layer using Apache Wicket ..........ccooveiiiiiiiiinieieeennn, 219
12.1. Adding Seam to your wicket appliCation .............ccoeieuiiiiiiiiiiieee e 219
0 0 O = =T 1 o o PPN 219
12.1.2. OFChESIIAtION ... e e e 220
12.2. SEtting UP YOUI PrOJECT ...ivieiiii e e e et e e e e e e e e e e aanas 221
12.2.1. Runtime inStrumentation .............cooiiiiiiiii e 221
12.2.2. Compile-time inStrumentation .............ccoveviiiiiiii e 222
12.2.3. The @eanmh cket Conponent annotation ...............ccooeiiiiiiiiiiein e, 224

vi



12.2.4. Defining the ApPliCatioN .........ccuiiiiiiiiii e 224

13. The Seam Application FramewWork ... 227
R 204 O o1 1o T [ o 1o o I PP 227
13.2. HOME ODJECES ...ttt ettt e e e e e eab e eees 229
R T T @ V1Y oY o] oY= ot N 234
13.4. Controller ODJECLS ........iiiii 237

14. Seam and JBOSS RUIES ....oiiiiiiiiiii e et e e 239
14.2. INSLAIlING TUIES ...t 239
14.2. Using rules from a Seam COMPONENT .......c.uiiiiiiiiiieiiieeiieeeie e e e e e e e 240
14.3. Using rules from a jBPM process definition .............cccoiviiiiiiiiiiiiieiee, 241

ST Y- o] U1 Y/ 245
T I @ V=T V1= PR 245
15.2. DIiSabling SECUNLY ...ccvuiiiiiiiii e e e e e e e e 245
15.3. AUTNENTICALION ...ueiie e e e e 246

15.3.1. Configuring an Authenticator COmMpoNENt ...........ccceevviviiiiieeiiiieeie e, 246
15.3.2. Writing an authentication method ..., 247
15.3.3. Writing a 10gin fOrm .......coooviiii e 250
15.3.4. Configuration SUMMAIY ..........oiiiiiiiniiiiii e 250
15.3.5. REMEMDEN ME ..oiiiiiiiiiei e e e eees 250
15.3.6. Handling Security EXCEPLIONS ........ociiiiiiiiiiiiiieeiii e 254
15.3.7. Login REIrECHON .....iiiiiiii e 254
15.3.8. HTTP AUthentiCation ...........c.oviiiiiiiiiei e 255
15.3.9. Advanced Authentication Features ..........cooveveiiniiiiiiiniiiiiee e 256
15.4. Identity ManAgeMENT ........oiiiiiiieiiii et 257
15.4.1. Configuring 1dentityManager .........cc.ieeiiiiiiiieii e e 257
15.4.2. JPAldENtitYSTOre ...ccovviieiiiiii e 258
15.4.3. LAapldentityStOre .......civunieiiiei e e 265
15.4.4. Writing your own 1dentityStore ..........cc.oiiiiiiiiiiiiii e 268
15.4.5. Authentication with Identity Management .............cccoovviieiiinciin e, 269
15.4.6. Using 1dentityManager ...........viiieuiiiiiieiiieeeeii e 269
15.5. EITON MESSAGES ..iviiiiitiiiiitiiiit ettt ettt e et e e e et e e e eneeans 275
BT G A 01 oo = 1 o] o 275
15.6.1. COrE CONCEPLS ouiiuiiiiiiiite ittt e e e e en 275
15.6.2. SECUriNg COMPONENTS ...couuuiiiiiiii ittt e e e e e e eneans 276
15.6.3. Security in the user INterface .........ccoovvvii it 279
15.6.4. SECUIMNG PAGES ..eevrniiiitn i etiiit ettt e ettt ettt e et et eai e eebi e e enaan s 280
15.6.5. SeCUNNG ENLLIES ....uiiiiiii e 280
15.6.6. Typesafe Permission ANNOLALIONS ...........cvveiiiiiiiiiiiiiieiiii e 283
15.6.7. Typesafe Role ANNOtAtiONS .........cccviiiiiiieiii e 285
15.6.8. The Permission Authorization Model ...........ccooeiiiiiiiiiiii e, 285
15.6.9. RuleBasedPermisSioNRESOIVET ..........oveiiiiiiieiiiiii e 289
15.6.10. PersistentPermisSionRESOIVET ........cc.uiiiiiiiiiiiiii e 294
15.7. Permission ManagemMENt ..........uiiiiuieiiiieiiii e e e e e e e e e e e e e e e e et e eeaneee 306
15.7.1. PermiSSIONMANAQJEYT .......uiiiiiiiiieeiiii et 306

Vii



Seam - Contextual Components

15.7.2. Permission checks for PermissionManager operations .................c......... 309
15.8. SSL SECUMLY .vuueiiiti ettt ettt e et e et e et eeeaa s 309
15.8.1. Overriding the default ports .........cooviiiiiii i 310
15,0, CAP T CHA e 311
15.9.1. Configuring the CAPTCHA Serviet .........ccooviiiiiiiiiiiieie e 311
15.9.2. Adding a CAPTCHA t0 @ fOrmM ......ccoiiiiiiiiiiic e 311
15.9.3. Customising the CAPTCHA algorithm ............ccoooiiiiiiiii e 311
15.10. SECUMLY EVENTS ..ottt 312
L 700 I I 1 o PSP 313
15.12. Extending the Identity COMPONENT .........iiiiiiieiiii e e 313
L300 T @ o T=T o | PRI 314
15.13.1. Configuring OPENID .......iiiiiiiiiiiii e 315
15.13.2. Presenting an OpenldDLogin form ........ccooovvieiiii i 315
15.13.3. Logging in immediately ............cooiiiiiiiiiiii 316
15.13.4. Deferring 10gin ... 316
15.13.5. LOQQING OUL ..ciitiieiiiiieeeeet ettt e et e e 316

16. Internationalization, localization and themes ...........cccoiviiiiiiiiiin e, 319
16.1. Internationalizing YOUI 8PP ....ceeeruuieiiiiii ettt eaeans 319
16.1.1. Application server configuration .............cccceieiiiieiiiie e 319
16.1.2. Translated application StrNGS .........coeeuiiiiiiiiiiee e 319
16.1.3. Other encoding SEtNGS .....cvvviiii e e 320
G2 I Yo 1 =PSRN 320
L 70 7 PSP 322
16.4. Defining 1aDEIS ... oo 322
16.5. Displaying abels ........ccoouiiiiiii 323
16.6. FACES MESSAGES ....uiiiiieitieiti ettt ettt et et et e e 324
T A T 0 T= .o ) = PR 324
GRS I 1= = 324
16.9. Persisting locale and theme preferences via cookies ...........cccocevveiiiiiiiiieiinns 326
ST T o B =) S PPN 327
A I 2 7 T ol (0] .4 F= 1 1 o P 327
17.2. Entering code and text with special characters .............cccoooiiiiiiiiiiiiine, 329
17,30 LINKS oo a s 330
17.4. ENEriNg HTIML «.ooiii et ettt e eeb e eees 331
18. iTeXt PDF gENEIALION ...uuiiii i et e e e e e e e e e e e e e e e e e e e anaeeeen 333
18.1. USING PDF SUPPOIT ...ttt ettt e e e 333
18.1.1. Creating @ dOCUMENT .......iiiiiieii e e e e e e e e e e 333
18.1.2. Basic Text EIBMENTS ......ooeiiii e 334
18.1.3. Headers and FOOLEIS ........iiiiiiiiieiiiiiii et 339
18.1.4. Chapters and SECHONS .......ccuuuiiiiiiiiieiei e 340
L8.0.5. LISES teuuiiiiiii ettt e e e e e e et aaar e aea 341
18.10.6. TABIES ..oovviiiii i 343
18.1.7. DOCUMENT CONSLANTS .....uieiiiiiiiiee e e e e ens 345
R 1 o= 15 110 Vo T PP PTT O OP PR 346

viii



RS TR TR 7= T oo 1o [T 355

RS 1| T {0 0 TP 356
18.5. Rendering SWIiNg/AWT COMPONENTS .....uiiiuiiiiiiiiiiee e e e e eaans 357
18.6. CONFIGUING TTEXE ...ieiie ettt et e e e e e eeeans 357
18.7. Further doOCUMENTALION .........uuuiiiiiii et e e et e et e e eeaa e eeees 358
19. The Microsoft® Excel® spreadsheet application .........cccooveiviiiiiiiiiiiiiiiiiiici e 359
19.1. The Microsoft® Excel® spreadsheet application support ............cccoevvviiveiinennnn. 359
19.2. Creating a Simple WOrKDOOK ............ooiiiuiiiiiiiiieci e e 360
19.3. WOIKDOOKS ... e e et e et e eeeat e eees 361
19.4. WOIKSREELS . .oeiiei e e e e 363
L TS T @] 8] 1 4] PP 367
L T T Y|P 368
B ST V- 1 1 1T o PR 369
19.6.2. FOIrMAt MASKS ...ceuiiiiiieiii e e e e e e e ean e 373
T A o1 1411 F= LS PP 373
B0.8. IMAGES ..eiieiii ettt 374
19.9. HYPEIINKS ..ot e e e e e e 375
19.10. Headers and fOOLEIS .......oiiuu i et e e e e 376
19.11. Print areas and titleS .......coouuiiiiiiiii e 378
19.12. Worksheet COMMEANTAS ... .c.uiiiieii e e e e e e e eees 379
S 2 I 1 o 11 o' o P 379
19.12.2. PAQe Drea@ks ....oovuiiiiiiiiece e 380

S R 2 TR |V 1= o 11 o P 381
19.13. Datatable @XPOITEI ......cieeei ittt 382
19.14. FONES ANd JAYOUL .....ccuvniiii e e e e e 382
19.14.1. Stylesheet lINKS .....coouuiiiii e 383
19,042, FONES oottt 383
R TR = o (o =T £ 384
19.14.4. BACKQrOUNG .....ooviiiiiicii e e e e e e 385
19.14.5. ColUMN SELHNGS ...eevviieiiitiie et eeae e eeees 385
R G T = | BT =Y 1] o N 386
19.14.7. The datatable eXpOrter ..o 386
19.14.8. LayOut @XAMPIES ...covniiiiieie e 386
19.14.9. LIMITAtIONS ..uiitiieiie ettt e et e e e e e e e e eees 386
19.15. INternatioNaliZation .............uiiiiiiiiii i 387
19.16. Links and further documentation .............coooeiiiiiiiii i 387
20, RS S SUP P O ittt e 389
2O 00 1 1 = = 1 o o S 389
20.2. Generating fEEAS ....c.uiii i 389
0 R T = o £ 390
2004, ENIES ittt ettt e s 390
20.5. Links and further documentation .............co.ioiiiiiiiiiii e 391
20 EMAIL e 393
21.1. CreatiNg @ MESSAGE .....ueteeuunatiitieteeti et eete et eati et eate et eea e e eaae e eeaaa e eenans 393




Seam - Contextual Components

21.1.1. AHACHMENTS ...ttt 394
21.1.2. HTML/Text alternative Part .........cc.uoieeiiiiiieeiiieeeeie e 396
21.1.3. MUItipl@ FECIPIENLS ...ivviiiiiie i 396
21.1.4. MUIIPIE MESSAUES .. eevineiiiii ettt 396
40 0 T =12 o] = 1 T 396
21.1.6. InternationaliSation ...........coouuiiiiiii e 397
21.0.7. Other HEAUEIS .....coiiiiiiiiiiei ettt 398
21.2. RECEIVING EMAIIS ...oeiiniiiiii e 398
240 R T @ T [ = 4o ) o 1P 399
A I 0 I 1 o= Y I Y= =3 1o 1 399
214, MEIAWAIE ...ttt e et e s 400
A T I To [ PP UP PP PPTIPPPIN 401
22. Asynchronicity and MESSAQING ...cevuuiiiiuieiiiei e e 405
22.1. ASYNCRIONICITY ...uiiiiie ettt e 405
22.1.1. Asynchronous mMethods .........cccuiiiiiiiiiiic e 406
22.1.2. Asynchronous methods with the Quartz Dispatcher .............ccccoevveeeennnnn. 409
22.1.3. ASYNCHIONOUS EVENLS .....uiiiiiiiiieiii e et e e e e e e e e e et e eeeas 412
22.1.4. Handling exceptions from asynchronous calls .............ccccooeveiiiiinieninnnnnn. 412
22.2. MESSAQING 1N SEAIM ...uiiiiiiiiiii e e e e e e e e e e e e e e e et e e eaaeees 413
22.2.1. CONTIQUIALION ...oiiitieeiie e 413
22.2.2. SENAING MESSATES ..evuneirnieiiieeeiie ettt e eie e st e et e et e e e r e et e et e eataaaanaaees 413
22.2.3. Receiving messages using a message-driven bean .............ccccoeveeeennnnn. 414
22.2.4. Receiving messages inthe client ...........cocooiiiiiiiiiin e, 414

23, CACNING it 415
23.1. Using Caching in SEam .......ccouiiiiiiiiii e 416
23.2. Page fragment CaChiNg ........ooiiiiiiiiiiii e 418
24, WED SEIVICES ...ttt ettt e e e et e e 421
24.1. Configuration and Packaging .............oveieiiiiiiiiiiii e 421
24.2. Conversational WED SErVICES .........ccouiiriiiiiiiieeiiiieie et 421
24.2.1. A Recommended SIrategy .......ocoeuuuieiiiiieeiiieeeei e 422
24.3. AN eXample WED SEIVICE ......uiiiiiiiiii et 423
24.4. RESTful HTTP webservices with RESTEASY .........oocviuiiiieiiiiiiieiiiiieeeeii e, 425
24.4.1. RESTEasy configuration and request Serving ..........ccoeevveeviinieiineennnnn, 425
24.4.2. Resources and providers as Seam COMPONENES .........cccuuuveeierinneerenennnn 428
24.4.3. SECUIMNQ FESOUITES ..evuuiiiteiitieeeieeeteeettesttaeeataeestaestaaeetnaerstneeenaearnaes 430
24.4.4. Mapping exceptions t0 HTTP reSPONSES .......cccuvuieiiiiiieiiiineeeeiiinaeeenenn 430
24.4.5. Testing resources and ProViders .........cccccivviviieeiiiieiii e 431

2, REIMOLING it e et et et et e e e 435
b4 0 I O T [ = 4o ) o 1PN 435
25.2. The "S€amM" ODJECT ...uu it 436
25.2.1. A Hello World @Xample ........oooiiiiiiiiiee e e e 436
25.2.2. SaM.COMPONENT ...iiiiiiieet ettt e eee s 438
25.2.3. SEAM.REMOLING ..ovuuiiiiieiiii et e e e e e e e e e e e eaaees 440
25.3. Evaluating EL EXPreSSIONS ......cccuuuiiiiiiiaieiiii ettt e e e e e enees 441




25.4, ClIENt INTEITACES ...ueniieiii e e e e e e e e e e e e ans 441

25.5. The CONEXL ...uiiiieeee e e e e e et e et eeanaeeees 442
25.5.1. Setting and reading the Conversation ID ...........c.cccoiviiiiieiiiiciin e, 442
25.5.2. Remote calls within the current conversation SCope .............cccevuivevennnnn. 442

25.6. BAtCh REQUESES ...uuiiiiiiiiii e e e e e e e e e e e e aaen 443

25.7. Working With Data tYPeS ....couuniiiiiiiiiee it 443
25.7.1. Primitives / BaSIC TYPES ..cvuuuiiiiiiiii et e et e e e e e e e e e e e 443
25.7.2. JAVABEANS ..ot 443
25.7.3. DAtes and TiMES ...uuiiiiiiiieiiiii et e et e e 444
25.7. 4. BNUIMS L. et 444
25.7.5. COlECHIONS . .eeviiieieei ettt e e e e eaaens 445

25.8. DEDUGGING .. eeitiieieii et 445

25.9. Handling EXCEPLIONS .. .cvuiiiiiiiiii et e e e 446

25.10. The LoAding MESSAUE ... .cccuuuuieiiiii ittt e e e e e e eees 446
25.10.1. Changing the MESSAQE ........oeviiiiiiiii e 446
25.10.2. Hiding the loading MESSAQE .....ccuuuiiiiiiiiieiiiiie e 447
25.10.3. A Custom Loading INdiCator ...........oevviiiiiiiieiie e 447

25.11. Controlling what data iS returned .............coooeiiiiiiiiiiii e 447
25.11.1. Constraining normal fields ...........c.coiiiiiiiii e 448
25.11.2. Constraining Maps and ColleCtions ............ccceuuiiiiiiiiiiiiiiiieeeii e, 448
25.11.3. Constraining objects of a Specific type ......cccvveiiiiiiiiiin e 449
25.11.4. CombiniNg CONSIFAINTS .....cccvuiiiiiiiee et 449

25.12. Transactional REQUESLES .........cciiuiiiiiiii e e e e aans 449

25.13. IMS MESSAGING -.eevtnetetti ettt ettt e e et 450
25.13.1. CoNfIQUIAtiON ......cvinieiii e e 450
25.13.2. Subscribing t0 @ JMS TOPIC ...ccvvvuneeiiiiieee it 450
25.13.3. Unsubscribing from @ TOPIC ......uviiiiiiiiiciii e 450
25.13.4. Tuning the PolliNg PrOCESS .......cccutiiiiiiiiie e 451

26. Seam and the Google Web TOOIKIit .......ccocoeuiiiiiii e 453

b B O] o1 To [ ] 7= 11T ] o PP PRSPPI 453

26.2. Preparing your COMPONENT .......iiiiieiiieeii e e e e e e e e e e et e et e e e e eanas 453

26.3. Hooking up a GWT widget to the Seam COmMpPONENt ...........coveeviiiiieeiiiiineeieninnnn. 454

26.4, GWT AN TaAIgOES .vuiiiiiii et e e e e e e e e e e e 456

27. Spring Framework integration ... e 459

27.1. Injecting Seam components iNto SPring beans ..........cccccceeveviievii i, 459

27.2. Injecting Spring beans into Seam COMPONENES ...........uvviiiiiiiieiiriineeiiieeeeiannnn 461

27.3. Making a Spring bean into a Seam component ............ccoveviiieiiiieiiiii e 461

27.4. Seam-scoped Spring DEaNS ..o 462

27.5. Using Spring PlatformTransactionManagement ..........c.ccceveviiieiinieiiiieiineeiieens 463

27.6. Using a Seam Managed Persistence Context in SPring .........cccoovevvevinieieeiinnenens 464

27.7. Using a Seam Managed Hibernate Session in SPring .......c..ccoevevviieviiiieiieeennnn. 466

27.8. Spring Application Context as a Seam COMPONENT .........ooeeevviieiiiiiineieeiineeeennn. 466

27.9. Using a Spring TaskExecutor for @ASYNChronousS ............ccoocvvvveviineiiiiieiieeennnn, 467

28. GUICE TNTEOTALION .ottt et e et e ettt e e e e et e e e enaaaeaees 469

Xi



Seam - Contextual Components

28.1. Creating a hybrid Seam-Guice COMPONENL ..........ovviiiiiiiiieiii e, 469
28.2. Configuring &N INJECLOT ........cieiiii ittt 470
28.3. Using MUILIPIE INJECIOIS . .cevuiiiieii e e e 471
29. HIDernate SEArCh ... 473
P22 O 1o o o[0T i o] o N PP 473
29.2. CONFIQUIALION ..ttt ettt e e et e e 473
20,3, U S A0 ittt 475
30. Configuring Seam and packaging Seam applications ........c....occviiieiiiiinieiiininneeenn, 479
30.1. Basic Seam CoNfigUuIration ..........cccouuiiiiiiiiii e e e e e e e 479
30.1.1. Integrating Seam with JSF and your servlet container ...............ccc......... 479
30.1.2. USING FACEIELS ....uniiiiiiiii e e e 480
30.1.3. Seam ReSOUICE SEIVIET .....cuuiiiiiii e 481
30.1.4. Seam servlet filLers ..o 481
30.1.5. Integrating Seam with your EJB container ...........ccccooevvviiiiiiiiineeiininnnnn. 485
30.1.6. DON't fOrgEL! .ouiiiii e 490
30.2. Using Alternate JPA ProVIOEIS .......coouuuiiiiiiii e 490
30.3. Configuring Seam in JAVA EE 5 ......cooiiiiiii e, 491
30.3.1. PACKAGING ... ceeeiiieeiii e 491
30.4. Configuring Seam iN J2EE ..........ooiiiiiii i 493
30.4.1. Boostrapping Hibernate in Seam ..o 493
30.4.2. Boostrapping JPA iN SCAIM .......ccvvuiiiiiieiii e 494
30.4.3. PACKAGING ... ceiiiiieeiii e e 494
30.5. Configuring Seam in Java SE, without JBoss Embedded ...................ccoeeeeinnes 495
30.6. Configuring Seam in Java SE, with JBoss Embedded .............ccccoooeiiiiiiiiiinnnnnn. 496
30.6.1. Installing Embedded JBOSS .........coccouiiiiiiiiiii e 496
30.6.2. PACKAGING ... ceiitiieeiii e e 498
30.7. Configuring [BPM N SEAIM ......ciiiiiiiiicii e e e 499
30.7.2. PACKAGING ... eeeeiiieeiii et 500
30.8. Configuring SFSB and Session Timeouts in JBOSS AS .......ccoovvvvieviiiiiviieeeie, 501
30.9. Running Seam in @ POrtIet ..........oooiiiiiiii e 502
30.10. Deploying CUSLOM FESOUICES ....ucivuueeeiiieiiieeeeiieeeieeetee et aeeateesaeeetaessnneeanaees 502
31. SEAM ANNOTALIONS ..iitiiiii e e e e e e e e e et e e e ean s 507
31.1. Annotations for component definition .............cooooiiiiiii i 507
31.2. Annotations for DIjECtiON ......... ..o 510
31.3. Annotations for component lifecycle methods ...........c.ccoveiiiiiiiiii i, 514
31.4. Annotations for context demarCation .............ccoieiiiiiiii i 515
31.5. Annotations for use with Seam JavaBean components in a J2EE environment... 519
31.6. ANNOtationNs fOr @XCEPLIONS ......ciiiieii i 520
31.7. Annotations for Seam ReMOLING .....c.uviviniiiiiieiii e e e e 520
31.8. Annotations for Seam INtEIrCEPLONS .......veiiutii it 521
31.9. Annotations for asynChroniCity ...........ccuuiiiiiiiiiiiieii e e e 521
31.10. Annotations for use With JSF ... 522
31.10.1. Annotations for use with dat aTabl € ........ccoevveviiiiiiiiiiiii e, 523
31.11. Meta-annotations for databinding ... 524

Xii



31.12. Annotations for PACKAGING .....ccuviiiiiiii e 524

31.13. Annotations for integrating with the servlet container .............cccooooeiiiiiiinnnnn. 525
32. BUilt-in SEAM COMPONENTS ..iiviiiiiiieiii e e e e e e et e e e eees 527
32.1. Context iNJeCtion COMPONENTS ........iiiiuiieiiiti ettt e e e e e e eeanns 527
32.2. JSF-related COMPONENLS .....couiiiiiieiiieei e e e e e e e e e e e e e e ees 527
32.3. ULlity COMPONENTS ....eiiiiiii ettt e e 529
32.4. Components for internationalization and themes ..............ccooveviiiiiiiiie e, 530
32.5. Components for controlling CONVErsations ............ccccevieiiiiiineiiiiiieeee e 531
32.6. [BPM-related COMPONENLS ......coiuiiiiii e e e e e e e e e e e 532
32.7. Security-related COMPONENTS .......ociiiiiieiiiie e 534
32.8. IMS-related COMPONENLS ......uiiiiiieiii i e e e e e e e e e e e 534
32.9. Mail-related COMPONENTS ........uiiiiiiii i 534
32.10. Infrastructural COMPONENTS ......cuuiiiiieiii e e e e e 535
32.11. Miscellan@ous COMPONENTS ......u.iiiuuineeiiii ettt et e e e eeere s 537
32.12. Special COMPONENLS ....civieiiiieiii et e e e e e e e ean s 538
33, .S€AM JSF CONTIOIS Lo e e e e eanns 541
1 1C 20 I 1= o L= TR 541
33.1.1. Navigation CONMIOIS ..........uiiiiiiiieiiii e e 541
33.1.2. Converters and Validators ..........cooveiiiiiiiiiiiiiieee e 544
33.1.3. FOMMALING .. eeeetieeiiii et e e e e e aaaas 550
3314, SEAM TEXE ..ot 553
33.1.5. FOIM SUPPOIT .. oeeeetieeee ettt e e 554
3316, OtNEI e 557
10 T AN g g To] =1 1 o] o 1= PP 561
B4, IBOSS EL oiiiiiiiiiii e 563
34.1. Parameterized EXPreSSIONS .......oociiiiiiiiiiiiiieeei et 563
B, L. L USBOE oniiniiiiiiii ettt 563
34.1.2. Limitations and HiNtS ..........oooiiiiiiii e 564
G = (o T1=Y 1 1o o 565
35. Clustering and EJB PasSiVatioN ........cc.iiiiiiiiiiiiii e 567
G0 I @4 11 =1 o P 567
35.1.1. Programming for CIUSTEING .........coeuuiiiiiiiiieii e 568

35.1.2. Deploying a Seam application to a JBoss AS cluster with session
FEPHCALION ... et e 568

35.1.3. Validating the distributable services of an application running in a JBoss
AS CIUSTEE e 570
35.2. EJB Passivation and the ManagedEntitylnterceptor ............c.ccceeevviiiiiiievinennnn. 571
35.2.1. The friction between passivation and persistence .............cccceevveeiiineeenn. 571
35.2.2. Case #1: Surviving EJB passivation ...........ccccoceuiveiiiiiiiiiiei e 572
35.2.3. Case #2: Surviving HTTP session replication ............ccccooevevviieieiiinneeenn. 573
35.2.4. ManagedEntityInterceptor Wrap-Up .........ccoeeeuieeuneeeinieriiieeeineeeiieeanaeennns 574
36. PerformanCe TUNING ...coooueiiii ettt e e e e 575
36.1. BYpassing INTEICEPLOIS ..ocvuuiiiiieiii et e e e ean s 575
37. Testing Seam apPliCAtiONS .....ciiiii i e 577

Xiii



Seam - Contextual Components

37.1.
37.2.

37.3.

38. Seam

38.1.

39. Seam

39.1.

39.2.

39.3.

39.4.

40. Seam
40.1.

40.2.

40.3.

40.4.

41. Seam
41.1.

Unit testing Seam COMPONENES .......cvviiiiiiieiii e e e e e 577
Integration testing Seam COMPONENTS .........oviiiiiiiiiiiie e 578
37.2.1. Using mocks in integration teStS ..........cceevuiiiiiiiieiii e 579
Integration testing Seam application user interactions ............ccccceveevevineeiennnnnn. 580
A T R @o ) T [ U -1 1o I 584
37.3.2. Using SeamTest with another test framework .............ccccooveiiiiinieiinnnnnn. 585
37.3.3. Integration Testing with Mock Data ............cc.coevieiiiiiiiiiiici e, 585
37.3.4. Integration Testing Seam Maiil ...........ccoiiiiiiiiiiiii 587
L0 X0 =T PP 589
JBPM deSigner and VIEWET ........ccouuuiiiiiiiiiieeiii et e e e e e 589
38.1.1. BUSINESS ProCeSS UESIONEN .....ucvivniiiiieeii et e e ee e e e e e e e e e e eenas 589
38.1.2. PageflOW VIEWET ... .ottt e 589
0N BEA'S WEDIOGQIC .oovviiice e 591
Installation and operation of WebIlogic .............ccoiiiiiiiiiiiii e, 591
39.1.1. INStalling L10.3 ... 592
39.1.2. Creating your WebIlogic dOmain ............oceviuiiiiiiiiiiiiiii e 592
39.1.3. How to Start/Stop/Access your domain ...........cceeevunieiiiieeiineeeiiieeneeennns 593
39.1.4. Setting up Weblogic's JSF SUPPOIT .......viiiiiiiieiiii e 594
The j ee5/ booki Ng EXAMPIE .ovniii e 594
39.2.1. EJB3 Issues with WebIlogic ... 594
39.2.2. Getting the j ee5/ booki Nng WOIKING .....ouveiiiiiiiiciii e 596
The j pa booKing eXample ... 601
39.3.1. Building and deploying j pa booking example ............cccooeeiiiiiiiieiinenn. 601
39.3.2. What's different with WeblogiC 10.X .......cccuuiiiiiiiiiiiiiiiieieei e 602
Deploying an application created using seam gen on Weblogic 10.X .................. 604
39.4.1. RUNNING SEAM gEN SEIUD ..evvtuiiiiiiieeiiiii ettt e e eeab e e 605
39.4.2. What to change for Weblogic 10.X .......ccccouiiiiiieiiiiiiiiiee e 606
39.4.3. Building and Deploying your application ..............cccooeeveiiiiiiiiiiiiinneiennnne. 609
0N IBM'S WEDSPRhEre AS ... 611
Websphere AS environment and deployment information ...............ccccooeeeeennnnnn. 611
40.1.1. INStallation VEISIONS ......coieiiiiieiiii et et e e et e aens 611
The j ee5/ booki NG €XAMPIE ..o 611
40.2.1. Configuration file Changes .........cocoui it 611
40.2.2. Building the j ee5/ booki ng eXample ...........ccooveiiiiiiiiiiiiiineeie, 615
40.2.3. Deploying the application to Websphere ............cccooeviiiiiiiiiiiiiiciiece, 616
The j pa booking eXample ... 617
40.3.1. Building the j pa eXample .........ccooouiiiiiiiii e 618
40.3.2. Deploying the j pa example ... 618
40.3.3. What's different for Websphere AS V7 ....cooiiiiiiiiiiiiiiieieeeeee 619
Deploying an application created using seam gen on Websphere V7 ................. 620
40.4.1. RUNNING S€aM geN SEIUP ..uiivuuiiiiieiie i eee e e e e e e e e e e e 620
40.4.2. Changes needed for deployment to Websphere ............ccccoooviiiiniiinnnnn. 622
on GlassFish application SErVer ........ccooiiiiiiiii i 629
GlassFish environment and deployment information ................coceeiiiiiiinnenennnn, 629

Xiv



g O O [ 1 = 11 = [ o T 629

41.2. The j ee5/ booki Ng €XaMPIE .......oiiiiii e e 630
41.2.1. Building the j ee5/ booki ng eXxample .........ccooovviiiiiiiiiiiicie e, 630
41.2.2. Deploying the application to GIassFiSh ..o, 630

41.3. The j pa booKing €Xample ..o 631
41.3.1. Building the j pa example ..........ccooooiiiiiii e 631
41.3.2. Deploying the j pa eXxample .......oooiiiiiiii e 631
41.3.3. What's different for GlassFish V2 UR2 ..........cccoooiiiiiiiiiii e 632

41.4. Deploying an application generated by seam gen on GlassFish v2 UR2 ............. 632
41.4.1. RUNNING SEAM gEN SEIUD oivvniiiiiii et 632
41.4.2. Changes needed for deployment to GlassFish ...........c...cccooeiiiiiinennn.. 634

A2, DEPENUENCIES ..uiiiiiiii ettt ettt ettt e ettt e et et b e e e eab e et eat e e e enbaaee 641

N N 1 L LT 01T o [T o T 641
42.1.1. Sun's JDK 6 CONSIAEratiONS ........ccuuiiiuniiiiieii e e e 641

42.2. ProjeCt DEPENUENCIES ....uiiiieiiiieiii et e e e e e e e eaens 641
N T o (S P 641
42.2.2. RICNFACES ...uiiiiiiii et e et e e e e e 642
42.2.3. S€AM Malil ..ueieiiii e e 643
42.2.4. SEAM PDF ..o 643
42.2.5. Seam MiICroSOft® EXCEI® .........ccouuiiiuiiiiiiiiieeeee e 643
42.2.6. SEAM RSS SUPPOIT ..ottt e 643
42.2.7. JBOSS RUIES ..ottt 644
42.2.8. IBPIM ..ot 644
A2.2.9. G WV T e 644
A2.2.00. SPFING teetneeitti ettt ettt ettt eaaans 644
5 A €1 o T 1V 645

42.3. Dependency Management USINg MaVEN ...........ociiiiiiieiiiiiieiiii e 645

XV



XVi



Introduction to JBoss Seam

Seam is an application framework for Enterprise Java. It is inspired by the following principles:

One kind of "stuff"
Seam defines a uniform component model for all business logic in your application. A
Seam component may be stateful, with the state associated with any one of several well-
defined contexts, including the long-running, persistent, business process context and the
conversation context, which is preserved across multiple web requests in a user interaction.

There is no distinction between presentation tier components and business logic components
in Seam. You can layer your application according to whatever architecture you devise, rather
than being forced to shoehorn your application logic into an unnatural layering scheme forced
upon you by whatever combination of stovepipe frameworks you're using today.

Unlike plain Java EE or J2EE components, Seam components may simultaneously access
state associated with the web request and state held in transactional resources (without the
need to propagate web request state manually via method parameters). You might object that
the application layering imposed upon you by the old J2EE platform was a Good Thing. Well,
nothing stops you creating an equivalent layered architecture using Seam — the difference
is that you get to architect your own application and decide what the layers are and how they
work together.

Integrate JSF with EJB 3.0

JSF and EJB 3.0 are two of the best new features of Java EE 5. EJB3 is a brand new
component model for server side business and persistence logic. Meanwhile, JSF is a great
component model for the presentation tier. Unfortunately, neither component model is able
to solve all problems in computing by itself. Indeed, JSF and EJB3 work best used together.
But the Java EE 5 specification provides no standard way to integrate the two component
models. Fortunately, the creators of both models foresaw this situation and provided standard
extension points to allow extension and integration with other frameworks.

Seam unifies the component models of JSF and EJB3, eliminating glue code, and letting the
developer think about the business problem.

It is possible to write Seam applications where "everything" is an EJB. This may come as a
surprise if you're used to thinking of EJBs as coarse-grained, so-called "heavyweight" objects.
However, version 3.0 has completely changed the nature of EJB from the point of view of
the developer. An EJB is a fine-grained object — nothing more complex than an annotated
JavaBean. Seam even encourages you to use session beans as JSF action listeners!

On the other hand, if you prefer not to adopt EJB 3.0 at this time, you don't have to. Virtually
any Java class may be a Seam component, and Seam provides all the functionality that you
expect from a "lightweight" container, and more, for any component, EJB or otherwise.

XVii



Introduction to JBoss Seam

Integrated AJAX

Seam supports the best open source JSF-based AJAX solutions: JBoss RichFaces and
ICEfaces. These solutions let you add AJAX capability to your user interface without the need
to write any JavaScript code.

Alternatively, Seam provides a built-in JavaScript remoting layer that lets you call components
asynchronously from client-side JavaScript without the need for an intermediate action layer.
You can even subscribe to server-side JMS topics and receive messages via AJAX push.

Neither of these approaches would work well, were it not for Seam's built-in concurrency and
state management, which ensures that many concurrent fine-grained, asynchronous AJAX
requests are handled safely and efficiently on the server side.

Business process as a first class construct

Optionally, Seam provides transparent business process management via jBPM. You
won't believe how easy it is to implement complex workflows, collaboration and and task
management using jBPM and Seam.

Seam even allows you to define presentation tier pageflow using the same language (jPDL)
that jBPM uses for business process definition.

JSF provides an incredibly rich event model for the presentation tier. Seam enhances this
model by exposing jBPM's business process related events via exactly the same event
handling mechanism, providing a uniform event model for Seam's uniform component model.

Declarative state management

We're all used to the concept of declarative transaction management and declarative
security from the early days of EJB. EJB 3.0 even introduces declarative persistence context
management. These are three examples of a broader problem of managing state that is
associated with a particular context, while ensuring that all needed cleanup occurs when the
context ends. Seam takes the concept of declarative state management much further and
applies it to application state. Traditionally, J2EE applications implement state management
manually, by getting and setting servlet session and request attributes. This approach to state
management is the source of many bugs and memory leaks when applications fail to clean
up session attributes, or when session data associated with different workflows collides in
a multi-window application. Seam has the potential to almost entirely eliminate this class of
bugs.

Declarative application state management is made possible by the richness of the context
model defined by Seam. Seam extends the context model defined by the servilet spec —
request, session, application — with two new contexts — conversation and business process
— that are more meaningful from the point of view of the business logic.

You'll be amazed at how many things become easier once you start using conversations. Have
you ever suffered pain dealing with lazy association fetching in an ORM solution like Hibernate
or JPA? Seam's conversation-scoped persistence contexts mean you'll rarely have to see a
Lazyl nitializati onExcepti on. Have you ever had problems with the refresh button? The

XViii



back button? With duplicate form submission? With propagating messages across a post-
then-redirect? Seam's conversation management solves these problems without you even
needing to really think about them. They're all symptoms of the broken state management
architecture that has been prevalent since the earliest days of the web.

Bijection

The notion of Inversion of Control or dependency injection exists in both JSF and EJB3, as
well as in numerous so-called "lightweight containers". Most of these containers emphasize
injection of components that implement stateless services. Even when injection of stateful
components is supported (such as in JSF), it is virtually useless for handling application
state because the scope of the stateful component cannot be defined with sufficient flexibility,
and because components belonging to wider scopes may not be injected into components
belonging to narrower scopes.

Bijection differs from IoC in that it is dynamic, contextual, and bidirectional. You can think of
it as a mechanism for aliasing contextual variables (names in the various contexts bound to
the current thread) to attributes of the component. Bijection allows auto-assembly of stateful
components by the container. It even allows a component to safely and easily manipulate the
value of a context variable, just by assigning it to an attribute of the component.

Workspace management and multi-window browsing
Seam applications let the user freely switch between multiple browser tabs, each associated
with a different, safely isolated, conversation. Applications may even take advantage of
workspace management, allowing the user to switch between conversations (workspaces) in
a single browser tab. Seam provides not only correct multi-window operation, but also multi-
window-like operation in a single window!

Prefer annotations to XML
Traditionally, the Java community has been in a state of deep confusion about precisely what
kinds of meta-information counts as configuration. J2EE and popular "lightweight" containers
have provided XML-based deployment descriptors both for things which are truly configurable
between different deployments of the system, and for any other kinds or declaration which
can not easily be expressed in Java. Java 5 annotations changed all this.

EJB 3.0 embraces annotations and "configuration by exception" as the easiest way to provide
information to the container in a declarative form. Unfortunately, JSF is still heavily dependent
on verbose XML configuration files. Seam extends the annotations provided by EJB 3.0 with
a set of annotations for declarative state management and declarative context demarcation.
This lets you eliminate the noisy JSF managed bean declarations and reduce the required
XML to just that information which truly belongs in XML (the JSF navigation rules).

Integration testing is easy
Seam components, being plain Java classes, are by nature unit testable. But for complex
applications, unit testing alone is insufficient. Integration testing has traditionally been a messy
and difficult task for Java web applications. Therefore, Seam provides for testability of Seam
applications as a core feature of the framework. You can easily write JUnit or TestNG tests

XiX



Introduction to JBoss Seam

that reproduce a whole interaction with a user, exercising all components of the system apart
from the view (the JSP or Facelets page). You can run these tests directly inside your IDE,
where Seam will automatically deploy EJB components using JBoss Embedded.

The specs ain't perfect

We think the latest incarnation of Java EE is great. But we know it's never going to be perfect.
Where there are holes in the specifications (for example, limitations in the JSF lifecycle for
GET requests), Seam fixes them. And the authors of Seam are working with the JCP expert
groups to make sure those fixes make their way back into the next revision of the standards.

There's more to a web application than serving HTML pages

Today's web frameworks think too small. They let you get user input off a form and into
your Java objects. And then they leave you hanging. A truly complete web application
framework should address problems like persistence, concurrency, asynchronicity, state
management, security, email, messaging, PDF and chart generation, workflow, wikitext
rendering, webservices, caching and more. Once you scratch the surface of Seam, you'll be
amazed at how many problems become simpler...

Seam integrates JPA and Hibernate3 for persistence, the EJB Timer Service and Quartz for
lightweight asychronicity, jBPM for workflow, JBoss Rules for business rules, Meldware Malil
for email, Hibernate Search and Lucene for full text search, JMS for messaging and JBoss
Cache for page fragment caching. Seam layers an innovative rule-based security framework
over JAAS and JBoss Rules. There's even JSF tag libraries for rendering PDF, outgoing
email, charts and wikitext. Seam components may be called synchronously as a Web Service,
asynchronously from client-side JavaScript or Google Web Toolkit or, of course, directly from
JSF.

Get started now!

Seam works in any Java EE application server, and even works in Tomcat. If your environment
supports EJB 3.0, great! If it doesn't, no problem, you can use Seam's built-in transaction
management with JPA or Hibernate3 for persistence. Or, you can deploy JBoss Embedded
in Tomcat, and get full support for EJB 3.0.

JSP Facelets | | Portal Presentation Tier
JSF Request Controller
Seam Context Management
EJB 3 JBoss jEPM | | Hibernate State Management
e EE 5

It turns out that the combination of Seam, JSF and EJB3 is the simplest way to write a complex
web application in Java. You won't believe how little code is required!

XX



Contribute to Seam

1. Contribute to Seam

Visit SeamFramework.org [http://www.seamframework.org/Community/Contribute] to find out
how to contribute to Seam!

XXi


http://www.seamframework.org/Community/Contribute
http://www.seamframework.org/Community/Contribute

XXii



Chapter 1.

Seam Tutorial

1.1. Using the Seam examples

Seam provides a number of example applications demonstrating how to use the various features of
Seam. This tutorial will guide you through a few of those examples to help you get started learning
Seam. The Seam examples are located in the exanpl es subdirectory of the Seam distribution. The
registration example, which will be the first example we look at, is in the exanpl es/ regi strati on
directory.

Each example has the same directory structure:

e The vi ew directory contains view-related files such as web page templates, images and
stylesheets.

» The resour ces directory contains deployment descriptors and other configuration files.
« The src directory contains the application source code.

The example applications run both on JBoss AS and Tomcat with no additional configuration. The
following sections will explain the procedure in both cases. Note that all the examples are built and
run from the Ant bui | d. xni , so you'll need a recent version of Ant installed before you get started.

1.1.1. Running the examples on JBoss AS

The examples are configured for use on JBoss AS 4.2 or 5.0. You'll need to set j boss. hone, in
the shared bui | d. properti es file in the root folder of your Seam installation, to the location of
your JBoss AS installation.

Once you've set the location of JBoss AS and started the application server, you can build
and deploy any example by typing ant expl ode in the the directory for that example. Any
example that is packaged as an EAR deploys to a URL like / seam exanpl e, where exanpl e is
the name of the example folder, with one exception. If the example folder begins with seam, the
prefix "seam" is ommitted. For instance, if JBoss AS is running on port 8080, the URL for the
registration example is http:/ /1 ocal host: 8080/ seam regi stration/ [http://localhost:8080/
seam-registration/], whereas the URL for the seamspace example is http://1 ocal host: 8080/
seam space/ [http://localhost:8080/seam-space/].

If, on the other hand, the example gets packaged as a WAR, then it deploys to a URL like / j boss-
seam exanpl e. Most of the examples can be deployed as a WAR to Tomcat with Embedded
JBoss by typing ant t ontat . depl oy. Several of the examples can only be deployed as a WAR.
Those examples are groovybooking, hibernate, jpa, and spring.

1.1.2. Running the examples on Tomcat

The examples are also configured for use on Tomcat 6.0. You will need to follow the instructions
in Section 30.6.1, “Installing Embedded JBoss” for installing JBoss Embedded on Tomcat 6.0.



http://localhost:8080/seam-registration/
http://localhost:8080/seam-registration/
http://localhost:8080/seam-registration/
http://localhost:8080/seam-space/
http://localhost:8080/seam-space/
http://localhost:8080/seam-space/

Chapter 1. Seam Tutorial

JBoss Embedded is only required to run the Seam demos that use EJB3 components on Tomcat.
There are also examples of hon-EJB3 applications that can be run on Tomcat without the use
of JBoss Embedded.

You'll need to set t ontat . hone, in the shared bui | d. properti es file in the root folder of your
Seam installation, to the location of your Tomcat installation. make sure you set the location of
your Tomcat.

You'll need to use a different Ant target when using Tomcat. Use ant tontat . depl oy in example
subdirectory to build and deploy any example for Tomcat.

On Tomcat, the examples deploy to URLs like /j boss- seam exanpl e, so for the registration
example the URL would be http://local host:8080/jboss-seamregistration/ [http:/
localhost:8080/jboss-seam-registration/]. The same is true for examples that deploy as a WAR,
as mentioned in the previous section.

1.1.3. Running the example tests

Most of the examples come with a suite of TestNG integration tests. The easiest way to run the
testsistorunant test. Itisalso possible to run the tests inside your IDE using the TestNG plugin.
Consult the readme.txt in the examples directory of the Seam distribution for more information.

1.2. Your first Seam application: the registration
example

The registration example is a simple application that lets a new user store his username, real name
and password in the database. The example isn't intended to show off all of the cool functionality
of Seam. However, it demonstrates the use of an EJB3 session bean as a JSF action listener,
and basic configuration of Seam.

We'll go slowly, since we realize you might not yet be familiar with EJB 3.0.

The start page displays a very basic form with three input fields. Try filling them in and then
submitting the form. This will save a user object in the database.



http://localhost:8080/jboss-seam-registration/
http://localhost:8080/jboss-seam-registration/
http://localhost:8080/jboss-seam-registration/

Understanding the code

) Register New User - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

QE - E:} - @ @ @ |@ http://localhost:8080/seam-registration/register.seam V| © Go @

[ Chapter 1. Seam Tutorial | [ Register New User |[#3Boss DVD Store

Username |93Vi”
Real Name |Gavin King
Password |’”*”1

1.2.1. Understanding the code

The example is implemented with two Facelets templates, one entity bean and one stateless
session bean. Let's take a look at the code, starting from the "bottom".

1.2.1.1. The entity bean: user.java

We need an EJB entity bean for user data. This class defines persistence and validation
declaratively, via annotations. It also needs some extra annotations that define the class as a
Seam component.

Example 1.1. User.java

@Entity 1

@Name("user") 2

@Scope(SESSION) 3
4

@Table(name="users")
public class User implements Serializable

{
private static final long serialVersionUID = 1881413500711441951L;




Chapter 1. Seam Tutorial

private String username;
private String password;
private String name;

public User(String name, String password, String username)

{

this.name = name;
this.password = password;
this.username = username;

}

public User() {} &

@NotNull @Length(min=5, max=15)
public String getPassword()
{

return password;

}

public void setPassword(String password)

{

this.password = password;

}

@NotNull
public String getName()

{

return name;

public void setName(String name)

{

this.name = name;

}

@Id @NotNull @Length(min=5, max=15)
public String getUsername()
{

return username;

public void setUsername(String username)




Understanding the code

{

this.username = username;

1. The EJB3 standard @nt i t y annotation indicates that the User class is an entity bean.

2 A Seam component needs a component name specified by the @ane annotation. This
name must be unique within the Seam application. When JSF asks Seam to resolve a context
variable with a name that is the same as a Seam component name, and the context variable
is currently undefined (null), Seam will instantiate that component, and bind the new instance
to the context variable. In this case, Seam will instantiate a User the first time JSF encounters
a variable named user.

2 Whenever Seam instantiates a component, it binds the new instance to a context variable
in the component's default context. The default context is specified using the @scope
annotation. The User bean is a session scoped component.

4 The EJB standard @abl e annotation indicates that the User class is mapped to the users
table.

5 nane, password and user nane are the persistent attributes of the entity bean. All of our
persistent attributes define accessor methods. These are needed when this component is
used by JSF in the render response and update model values phases.

& An empty constructor is both required by both the EJB specification and by Seam.

7 The @ot Nul I and @engt h annotations are part of the Hibernate Validator framework. Seam
integrates Hibernate Validator and lets you use it for data validation (even if you are not using
Hibernate for persistence).

g The EJB standard @ d annotation indicates the primary key attribute of the entity bean.

The most important things to notice in this example are the @ane and @cope annotations. These
annotations establish that this class is a Seam component.

We'll see below that the properties of our User class are bound directly to JSF components and
are populated by JSF during the update model values phase. We don't need any tedious glue
code to copy data back and forth between the JSP pages and the entity bean domain model.

However, entity beans shouldn't do transaction management or database access. So we can't
use this component as a JSF action listener. For that we need a session bean.

1.2.1.2. The stateless session bean class: RegisterAction.java

Most Seam application use session beans as JSF action listeners (you can use JavaBeans instead
if you like).

We have exactly one JSF action in our application, and one session bean method attached to it.
In this case, we'll use a stateless session bean, since all the state associated with our action is
held by the User bean.




Chapter 1. Seam Tutorial

This is the only really interesting code in the example!

Example 1.2. RegisterAction.java

@Stateless
@Name("register")
public class RegisterAction implements Register

{
@In

private User user;

@PersistenceContext

private EntityManager em;

@Logger

private Log log;

public String register()
{ 5
List existing = em.createQuery(
"select username from User where username = #{user.username}")

.getResultList(); &

if (existing.size()==0)

{

em.persist(user);
log.info("Registered new user #{user.username}");

return “/registered.xhtml"; 7

} &

else

{
FacesMessages.instance().add("User #{user.username} already exists");
return null; 9

}




Understanding the code

1 The EJB @t at el ess annotation marks this class as a stateless session bean.

2 The @n annotation marks an attribute of the bean as injected by Seam. In this case, the
attribute is injected from a context variable named user (the instance variable name).

3 The EJB standard @persi st enceContext annotation is used to inject the EJB3 entity
manager.

4 The Seam @ogger annotation is used to inject the component's Log instance.

5 The action listener method uses the standard EJB3 Entit yManager API to interact with
the database, and returns the JSF outcome. Note that, since this is a session bean, a
transaction is automatically begun when the r egi st er () method is called, and committed
when it completes.

& Notice that Seam lets you use a JSF EL expression inside EJB-QL. Under the covers, this
results in an ordinary JPA set Par anet er () call on the standard JPA Query object. Nice,
huh?

7. The Log APl lets us easily display templated log messages which can also make use of JSF
EL expressions.

g JSF action listener methods return a string-valued outcome that determines what page will
be displayed next. A null outcome (or a void action listener method) redisplays the previous
page. In plain JSF, it is normal to always use a JSF navigation rule to determine the JSF view
id from the outcome. For complex application this indirection is useful and a good practice.
However, for very simple examples like this one, Seam lets you use the JSF view id as the
outcome, eliminating the requirement for a navigation rule. Note that when you use a view
id as an outcome, Seam always performs a browser redirect.

g Seam provides a number of built-in components to help solve common problems. The
FacesMessages component makes it easy to display templated error or success messages.
(As of Seam 2.1, you can use St at usMessages instead to remove the semantic dependency
on JSF). Built-in Seam components may be obtained by injection, or by calling the
i nstance() method on the class of the built-in component.

Note that we did not explicitly specify a @cope this time. Each Seam component type has a default
scope if not explicitly specified. For stateless session beans, the default scope is the stateless
context, which is the only sensible value.

Our session bean action listener performs the business and persistence logic for our mini-
application. In more complex applications, we might need require a separate service layer. This
is easy to achieve with Seam, but it's overkill for most web applications. Seam does not force you
into any particular strategy for application layering, allowing your application to be as simple, or
as complex, as you want.

Note that in this simple application, we've actually made it far more complex than it needs to be.
If we had used the Seam application framework controllers, we would have eliminated all of our
application code. However, then we wouldn't have had much of an application to explain.

1.2.1.3. The session bean local interface: register.java

Naturally, our session bean needs a local interface.




Chapter 1. Seam Tutorial

Example 1.3. Register.java

@Local
public interface Register
{

public String register();
}

That's the end of the Java code. Now we'll look at the view.
1.2.1.4. The view: register. xhtni and regi st ered. xht

The view pages for a Seam application could be implemented using any technology that supports
JSF. In this example we use Facelets, because we think it's better than JSP.

Example 1.4. register.xhtml

<?xml version="1.0" encoding="utf-8"?>

<IDOCTYPE html PUBLIC "-//W3C//IDTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmiIns="http://www.w3.0rg/1999/xhtml"
xmins:s="http://jboss.com/products/seam/taglib”
xmins:h="http://java.sun.com/jsf/html"
xmins:f="http://java.sun.com/jsf/core">

<head>
<title>Register New User</title>
</head>
<body>
<fview>
<h:form>
<s:validateAll>
<h:panelGrid columns="2">
Username: <h:inputText value="#{user.username}" required="true"/>
Real Name: <h:inputText value="#{user.name}" required="true"/>
Password: <h:inputSecret value="#{user.password}" required="true"/>
</h:panelGrid>
</s:validateAll>
<h:messages/>
<h:commandButton value="Register" action="#{register.register}"/>
</h:form>
</f.view>
</body>




Understanding the code

</html|>

The only thing here that is specific to Seam is the <s: val i dat eAl | > tag. This JSF component tells
JSF to validate all the contained input fields against the Hibernate Validator annotations specified
on the entity bean.

Example 1.5. registered.xhtml

<?xml version="1.0" encoding="utf-8"?>

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://iwww.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlins:f="http://java.sun.com/jsf/core">

<head>
<title>Successfully Registered New User</title>
</head>
<body>
<fview>
Welcome, #{user.name}, you are successfully registered as #{user.username}.
</f.view>
</body>

</html>

This is a simple Facelets page using some inline EL. There's nothing specific to Seam here.
1.2.1.5. The Seam component deployment descriptor: conponents. xni

Since this is the first Seam app we've seen, we'll take a look at the deployment descriptors.
Before we get into them, it is worth noting that Seam strongly values minimal configuration. These
configuration files will be created for you when you create a Seam application. You'll never need
to touch most of these files. We're presenting them now only to help you understand what all the
pieces in the example are doing.

If you've used many Java frameworks before, you'll be used to having to declare all your
component classes in some kind of XML file that gradually grows more and more unmanageable
as your project matures. You'll be relieved to know that Seam does not require that application
components be accompanied by XML. Most Seam applications require a very small amount of
XML that does not grow very much as the project gets bigger.

Nevertheless, it is often useful to be able to provide for some external configuration of some
components (particularly the components built in to Seam). You have a couple of options here,




Chapter 1. Seam Tutorial

but the most flexible option is to provide this configuration in a file called conponent s. xnl , located
in the VEB- | NF directory. We'll use the conponents. xm file to tell Seam how to find our EJB
components in JNDI:

Example 1.6. components.xml

<?xml version="1.0" encoding="UTF-8"?>
<components xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jboss.com/products/seam/core"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://jboss.com/products/seam/core
http://jboss.com/products/seam/core-2.1.xsd
http://jboss.com/products/seam/components
http://jboss.com/products/seam/components-2.1.xsd">

<core:init jndi-pattern="@jndiPattern@"/>

</components>

This code configures a property named j ndi Pattern of a built-in Seam component named
org.j boss.seamcore.init. The funny @symbols are there because our Ant build script
puts the correct JNDI pattern in when we deploy the application, which it reads from the
components.properties file. You learn more about how this process works in Section 5.2,
“Configuring components via conponent s. xn ",

1.2.1.6. The web deployment description: web. xn

The presentation layer for our mini-application will be deployed in a WAR. So we'll need a web
deployment descriptor.

Example 1.7. web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmIns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation="
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 2 5.xsd"
version="2.5">

<listener>
<listener-class>org.jboss.seam.servlet.SeamListener</listener-class>

10



Understanding the code

</listener>

<context-param>
<param-name>javax.faces.DEFAULT_SUFFIX</param-name>
<param-value>.xhtml</param-value>

</context-param>

<servlet>
<servlet-name>Faces Servlet</serviet-name>
<servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.seam</url-pattern>
</servlet-mapping>

<session-config>
<session-timeout>10</session-timeout>
</session-config>

</web-app>

This web. xnl file configures Seam and JSF. The configuration you see here is pretty much
identical in all Seam applications.

1.2.1.7. The JSF configration: faces-config. xn

Most Seam applications use JSF views as the presentation layer. So usually we'll need f aces-
config.xnl . In our case, we are going to use Facelets for defining our views, so we need to tell
JSF to use Facelets as its templating engine.

Example 1.8. faces-config.xml

<?xml version="1.0" encoding="UTF-8"?>
<faces-config xmIns="http://java.sun.com/xml/ns/javaee"”
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-facesconfig_1 2.xsd"
version="1.2">

<application>

11



Chapter 1. Seam Tutorial

<view-handler>com.sun.facelets.FaceletViewHandler</view-handler>
</application>

</faces-config>

Note that we don't need any JSF managed bean declarations! Our managed beans are annotated
Seam components. In Seam applications, the f aces- confi g. xm is used much less often than
in plain JSF. Here, we are simply using it to enable Facelets as the view handler instead of JSP.

In fact, once you have all the basic descriptors set up, the only XML you need to write as you
add new functionality to a Seam application is orchestration: navigation rules or jBPM process
definitions. Seam's stand is that process flow and configuration data are the only things that truly
belong in XML.

In this simple example, we don't even need a navigation rule, since we decided to embed the
view id in our action code.

1.2.1.8. The EJB deployment descriptor: ejb-jar. xni

The ej b-jar.xn file integrates Seam with EJB3, by attaching the Seami nterceptor to all
session beans in the archive.

<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar xmlIns="http://java.sun.com/xml/ns/javaee"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance
xsi:schemalocation="
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/ejb-jar_3 0.xsd"
version="3.0">

<interceptors>
<interceptor>
<interceptor-class>org.jboss.seam.ejb.Seaminterceptor</interceptor-class>
</interceptor>
</interceptors>

<assembly-descriptor>
<interceptor-binding>
<ejb-name>*</ejb-name>
<interceptor-class>org.jboss.seam.ejb.Seaminterceptor</interceptor-class>
</interceptor-binding>
</assembly-descriptor>

</ejb-jar>

12



Understanding the code

1.2.1.9. The EJB persistence deployment descriptor: persi stence. xn

The persi st ence. xni file tells the EJB persistence provider where to find the datasource, and
contains some vendor-specific settings. In this case, enables automatic schema export at startup
time.

<?xml version="1.0" encoding="UTF-8"?>
<persistence xmIns="http://java.sun.com/xml/ns/persistence"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd"
version="1.0">

<persistence-unit name="userDatabase">
<provider>org.hibernate.ejb.HibernatePersistence</provider>
<jta-data-source>java:/DefaultDS</jta-data-source>
<properties>
<property name="hibernate.hbm2ddl.auto" value="create-drop"/>
</properties>
</persistence-unit>

</persistence>

1.2.1.10. The EAR deployment descriptor: application. xni

Finally, since our application is deployed as an EAR, we need a deployment descriptor there, too.

Example 1.9. registration application

<?xml version="1.0" encoding="UTF-8"?>
<application xmlns="http://java.sun.com/xml/ns/javaee"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="
http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/application_5.xsd"
version="5">

<display-name>Seam Registration</display-name>
<module>

<web>
<web-uri>jboss-seam-registration.war</web-uri>

13



Chapter 1. Seam Tutorial

<context-root>/seam-registration</context-root>
</web>
</module>
<module>
<ejb>jboss-seam-registration.jar</ejb>
</module>
<module>
<ejb>jboss-seam.jar</ejb>
</module>
<module>
<java>jboss-el.jar</java>
</module>

</application>

This deployment descriptor links modules in the enterprise archive and binds the web application
to the context root / seam regi strati on.

We've now seen all the files in the entire application!

1.2.2. How it works

When the form is submitted, JSF asks Seam to resolve the variable named user . Since there is no
value already bound to that name (in any Seam context), Seam instantiates the user component,
and returns the resulting User entity bean instance to JSF after storing it in the Seam session
context.

The form input values are now validated against the Hibernate Validator constraints specified on
the User entity. If the constraints are violated, JSF redisplays the page. Otherwise, JSF binds the
form input values to properties of the User entity bean.

Next, JSF asks Seam to resolve the variable named r egi st er. Seam uses the JNDI pattern
mentioned earlier to locate the stateless session bean, wraps it as a Seam component, and returns
it. Seam then presents this component to JSF and JSF invokes the regi st er () action listener
method.

But Seam is not done yet. Seam intercepts the method call and injects the User entity from the
Seam session context, before allowing the invocation to continue.

The r egi st er () method checks if a user with the entered username already exists. If so, an error
message is queued with the FacesMessages component, and a null outcome is returned, causing
a page redisplay. The FacesMessages component interpolates the JSF expression embedded in
the message string and adds a JSF FacesMessage to the view.

If no user with that username exists, the "/regi stered. xht ml " outcome triggers a browser
redirect to the r egi st er ed. xht Ml page. When JSF comes to render the page, it asks Seam to

14



Clickable lists in Seam: the messages example

resolve the variable named user and uses property values of the returned User entity from Seam's
session scope.

1.3. Clickable lists in Seam: the messages example

Clickable lists of database search results are such an important part of any online application that
Seam provides special functionality on top of JSF to make it easier to query data using EJB-QL
or HQL and display it as a clickable list using a JSF <h: dat aTabl e>. The messages example
demonstrates this functionality.

) Messages - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

Ga@-o -8 ) [0 http:/fiocahost:s080 | @ Go [[GL

B3 Latest Headlines £33 The World Clock B XE Currency Converter ' Hibernate JIRA
|[] Chapter 1. Seam Tutorial | LI Messages \

Message List

Read Title Date/Time
Greetings Earthling Feb 4, 2006 9:40 AM
Hello World Jan 2, 2006 7:00 AM

Greetings Earthling

This is another example of a message.

1.3.1. Understanding the code

The message list example has one entity bean, Message, one session bean, MessagelLi st Bean
and one JSP.

15



Chapter 1. Seam Tutorial

1.3.1.1. The entity bean: wmessage. java

The Message entity defines the title, text, date and time of a message, and a flag indicating whether
the message has been read:

Example 1.10. Message.java

@Entity
@Name("'message")
@Scope(EVENT)
public class Message implements Serializable
{
private Long id;
private String title;
private String text;
private boolean read;
private Date datetime;

@Ild @GeneratedValue
public Long getld()

{

return id;

}
public void setld(Long id)

{
this.id = id;
}

@NotNull @Length(max=100)
public String getTitle()

{

return title;

}
public void setTitle(String title)

{
this.title = title;

}

@NotNull @Lob
public String getText()

{

return text,

}
public void setText(String text)

16



Understanding the code

{

this.text = text;

}

@NotNull
public boolean isRead()
{
return read,;
}
public void setRead(boolean read)
{
this.read = read;

}

@NotNull

@Basic @Temporal(TemporalType. TIMESTAMP)
public Date getDatetime()

{

return datetime;

}

public void setDatetime(Date datetime)

{

this.datetime = datetime;

1.3.1.2. The stateful session bean: messageManager Bean. j ava

Just like in the previous example, we have a session bean, MessageManager Bean, which defines
the action listener methods for the two buttons on our form. One of the buttons selects a message
from the list, and displays that message. The other button deletes a message. So far, this is not
so different to the previous example.

But MessageManager Bean is also responsible for fetching the list of messages the first time we
navigate to the message list page. There are various ways the user could navigate to the page,
and not all of them are preceded by a JSF action — the user might have bookmarked the page, for
example. So the job of fetching the message list takes place in a Seam factory method, instead
of in an action listener method.

We want to cache the list of messages in memory between server requests, so we will make this
a stateful session bean.

17



Chapter 1. Seam Tutorial

Example 1.11. MessageManagerBean.java

@Stateful

@Scope(SESSION)

@Name("messageManager")

public class MessageManagerBean implements Serializable, MessageManager

{
@DataModel

private List<Message> messageList;

@DataModelSelection
@Out(required=false)

private Message message;

@PersistenceContext(type=EXTENDED)

private EntityManager em;

@Factory("messageList")

public void findMessages()

{

messageList = em.createQuery("select msg from Message msg order by msg.datetime desc")
.getResultList();

public void select()
‘ &
message.setRead(true);

}

public void delete()

{ [
messageList.remove(message);
em.remove(message);

message=null;

}

@Remove

public void destroy() {}

18



Understanding the code

The @at aMbdel annotation exposes an attibute of type j ava. uti | . Li st to the JSF page
as an instance of j avax. f aces. nodel . Dat aMbdel . This allows us to use the list in a JSF
<h: dat aTabl e> with clickable links for each row. In this case, the Dat aMbdel is made
available in a session context variable named nessagelLi st .

The @pat aMbdel Sel ection annotation tells Seam to inject the List element that
corresponded to the clicked link.

The @ut annotation then exposes the selected value directly to the page. So every time
a row of the clickable list is selected, the Message is injected to the attribute of the stateful
bean, and the subsequently outjected to the event context variable named nessage.

This stateful bean has an EJB3 extended persistence context. The messages retrieved in the
guery remain in the managed state as long as the bean exists, so any subsequent method
calls to the stateful bean can update them without needing to make any explicit call to the
Entit yManager.

The first time we navigate to the JSP page, there will be no value in the nessageLi st context
variable. The @act or y annotation tells Seam to create an instance of MessageManager Bean
and invoke the fi ndMessages() method to initialize the value. We call fi ndMessages() a
factory method for nessages.

The sel ect () action listener method marks the selected Message as read, and updates it
in the database.

The del et e() action listener method removes the selected Message from the database.

All stateful session bean Seam components must have a method with no parameters marked
@Renpve that Seam uses to remove the stateful bean when the Seam context ends, and
clean up any server-side state.

Note that this is a session-scoped Seam component. It is associated with the user login session,
and all requests from a login session share the same instance of the component. (In Seam
applications, we usually use session-scoped components sparingly.)

1.3.1.3. The session bean local interface: messagemanager . j ava

All session beans have a business interface, of course.

Example 1.12. MessageManager.java

@Local
public interface MessageManager

{

public void findMessages();
public void select();

public void delete();

public void destroy();

19



Chapter 1. Seam Tutorial

From now on, we won't show local interfaces in our code examples.

Let's skip over conponent s. xm , per si st ence. xm , web. xm , ej b-j ar. xnl , faces-confi g. xm
and appl i cati on. xnl since they are much the same as the previous example, and go straight
to the JSP.

1.3.1.4. The view: nessages. j sp

The JSP page is a straightforward use of the JSF <h: dat aTabl e> component. Again, nothing
specific to Seam.

Example 1.13. messages.jsp

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<html>
<head>
<title>Messages</title>
</head>
<body>
<f:view>
<h:form>
<h2>Message List</h2>
<h:outputText value="No messages to display"
rendered="#{messageList.rowCount==0}"/>
<h:dataTable var="msg" value="#{messageList}"
rendered="#{messageList.rowCount>0}">
<h:column>
<f:.facet name="header">
<h:outputText value="Read"/>
</f:facet>
<h:selectBooleanCheckbox value="#{msg.read}" disabled="true"/>
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="Title"/>
</f:facet>
<h:commandLink value="#{msg.title}" action="#{messageManager.select}"/>
</h:column>
<h:column>
<f:.facet name="header">
<h:outputText value="Date/Time"/>

20



How it works

</f:facet>
<h:outputText value="#{msg.datetime}">
<f:convertDateTime type="both" dateStyle="medium" timeStyle="short"/>
</h:outputText>
</h:column>
<h:column>
<h:commandButton value="Delete" action="#{messageManager.delete}"/>
</h:column>
</h:dataTable>
<h3><h:outputText value="#{message.title}"/></h3>
<div><h:outputText value="#{message.text}"/></div>
</h:form>
</f.view>
</body>
</html>

1.3.2. How it works

The first time we navigate to the messages. j sp page, the page will try to resolve the messagelLi st
context variable. Since this context variable is not initialized, Seam will call the factory method
fi ndMessages() , which performs a query against the database and results in a Dat aMbdel being
outjected. This Dat aMbdel provides the row data needed for rendering the <h: dat aTabl e>.

When the user clicks the <h: commandLi nk>, JSF calls the sel ect () action listener. Seam
intercepts this call and injects the selected row data into the message attribute of the
messageManager component. The action listener fires, marking the selected Message as read. At
the end of the call, Seam outjects the selected Message to the context variable named nessage.
Next, the EJB container commits the transaction, and the change to the Message is flushed to
the database. Finally, the page is re-rendered, redisplaying the message list, and displaying the
selected message below it.

If the user clicks the <h: commandBut t on>, JSF calls the del et e() action listener. Seam intercepts
this call and injects the selected row data into the message attribute of the nmessageli st
component. The action listener fires, removing the selected Message from the list, and also
calling renove() onthe Enti t yManager . At the end of the call, Seam refreshes the nessagelLi st
context variable and clears the context variable named nessage. The EJB container commits
the transaction, and deletes the Message from the database. Finally, the page is re-rendered,
redisplaying the message list.

1.4. Seam and jBPM: the todo list example

jBPM provides sophisticated functionality for workflow and task management. To get a small taste
of how jBPM integrates with Seam, we'll show you a simple "todo list" application. Since managing
lists of tasks is such core functionality for jBPM, there is hardly any Java code at all in this example.

21



Chapter 1. Seam Tutorial

Y Todo List - Mozilla Firefox
File Edit View Go Bookmarks Tools Help

<&~ - & ) @) [ ntip:/fiocahost:8080/seam-todo/todo.seam v| @ 6o G

[| Chapter 1. Seam Tutoral [ Todo List |[#3Boss DVD Store

Todo List

Description Created Priority Due Date
[Book flight o sreal |Jm13=2005 |

Getthe stupid Seam release finished! | Jan 13, 2006 117/06

Haircut Jan13,20063 | |

|Review Hibernate in Action second edition |Jan 13,2006 |
|Kick Roy out of my office |Ja.n 13, 2006 |
|Blog aboutworkspace management |Jam 13, 2006 |

Update ltems

| |[ Create New ltem ]

1.4.1. Understanding the code

The center of this example is the jBPM process definition. There are also two JSPs and two trivial
JavaBeans (There was no reason to use session beans, since they do not access the database,
or have any other transactional behavior). Let's start with the process definition:

Example 1.14. todo.jpdl.xml

<process-definition name="todo">

<start-state name="start">
<transition to="todo"/>
</start-state>

<task-node name="todo">
<task name="todo" description="#{todoList.description}">

<assignment actor-id="#{actor.id}"/>
</task>
<transition to="done"/>

22



Understanding the code

<ftask-node>

<end-state name="done"/>

</process-definition>

11 The <start-state> node represents the logical start of the process. When the process
starts, it immediately transitions to the t odo node.

2. The <t ask- node> node represents a wait state, where business process execution pauses,
waiting for one or more tasks to be performed.

a3 The <t ask> element defines a task to be performed by a user. Since there is only one task
defined on this node, when it is complete, execution resumes, and we transition to the end
state. The task gets its description from a Seam component named t odoLi st (one of the
JavaBeans).

4 Tasks need to be assigned to a user or group of users when they are created. In this case,
the task is assigned to the current user, which we get from a built-in Seam component named
act or . Any Seam component may be used to perform task assignment.

5 The <end- st at e> node defines the logical end of the business process. When execution
reaches this node, the process instance is destroyed.

If we view this process definition using the process definition editor provided by JBossIDE, this
is what it looks like:

<=5Sfart State==
start

. “<Task Node>>
todo

<<fnd State>>
[
done

23



Chapter 1. Seam Tutorial

This document defines our business process as a graph of nodes. This is the most trivial possible
business process: there is one task to be performed, and when that task is complete, the business
process ends.

The first JavaBean handles the login screen | ogi n. j sp. Its job is just to initialize the jBPM actor
id using the act or component. In a real application, it would also need to authenticate the user.

Example 1.15. Login.java

@Name("login™)
public class Login

{
@In
private Actor actor;

private String user;

public String getUser()
{

return user;

public void setUser(String user)

{

this.user = user;

}

public String login()
{

actor.setld(user);
return "/todo.jsp";

}
}

Here we see the use of @ n to inject the built-in Act or component.

The JSP itself is trivial:

Example 1.16. login.jsp

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h"%>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="{"%>
<html>

24



Understanding the code

<head>
<title>Login</title>
</head>
<body>
<h1>Login</h1>
<fview>
<h:form>
<div>
<h:inputText value="#{login.user}"/>
<h:commandButton value="Login" action="#{login.login}"/>
</div>
</h:form>
</fview>
</body>
</html>

The second JavaBean is responsible for starting business process instances, and ending tasks.

Example 1.17. TodoList.java

@Name("todoList")
public class TodoList

{

private String description;

public String getDescription()
{

return description;

}

public void setDescription(String description)

{

this.description = description;

}

@CreateProcess(definition="todo")
public void createTodo() {}

@StartTask @EndTask
public void done() {}

25



Chapter 1. Seam Tutorial

1. The description property accepts user input from the JSP page, and exposes it to the process
definition, allowing the task description to be set.

2z The Seam @r eat ePr ocess annotation creates a new jBPM process instance for the named
process definition.

a2 The Seam @t art Task annotation starts work on a task. The @ndTask ends the task, and
allows the business process execution to resume.

In a more realistic example, @t art Task and @ndTask would not appear on the same method,
because there is usually work to be done using the application in order to complete the task.

Finally, the core of the application is in t odo. j sp:

Example 1.18. todo.jsp

<%@ taglib uri="http://java.sun.com/jsf/html" prefix="h" %>
<%@ taglib uri="http://java.sun.com/jsf/core" prefix="f" %>
<%@ taglib uri="http://jboss.com/products/seam/taglib" prefix="s" %>
<html>
<head>
<title>Todo List</title>
</head>
<body>
<h1>Todo List</h1>
<f.view>
<h:form id="list">
<div>
<h:outputText value="There are no todo items."
rendered="#{empty taskinstanceList}"/>
<h:dataTable value="#{taskinstanceList}" var="task
rendered="#{not empty taskinstanceList}">
<h:column>
<f.facet name="header">
<h:outputText value="Description"/>
</f:facet>
<h:inputText value="#{task.description}"/>
</h:column>
<h:column>
<f.facet name="header">
<h:outputText value="Created"/>
</f:facet>
<h:outputText value="#{task.taskMgmtinstance.processinstance.start}">
<f.convertDateTime type="date"/>

26



Understanding the code

</h:outputText>
</h:column>
<h:column>
<f:.facet name="header">
<h:outputText value="Priority"/>
</f:facet>
<h:inputText value="#{task.priority}" style="width: 30"/>
</h:column>
<h:column>
<f:.facet name="header">
<h:outputText value="Due Date"/>
</f:facet>
<h:inputText value="#{task.dueDate}" style="width: 100">
<f:convertDateTime type="date" dateStyle="short"/>
</h:inputText>
</h:column>
<h:column>
<s:button value="Done" action="#{todoList.done}" taskinstance="#{task}"/>
</h:column>
</h:dataTable>
</div>
<div>
<h:messages/>
</div>
<div>
<h:commandButton value="Update Items" action="update"/>
</div>
</h:form>
<h:form id="new">
<div>
<h:inputText value="#{todoL.ist.description}"/>
<h:commandButton value="Create New Item" action="#{todoList.createTodo}"/>
</div>
</h:form>
</f.view>
</body>
</html>

Let's take this one piece at a time.

The page renders a list of tasks, which it gets from a built-in Seam component named
t askl nst ancelLi st . The list is defined inside a JSF form.

27



Chapter 1. Seam Tutorial

Example 1.19. todo.jsp

<h:form id="list">
<div>
<h:outputText value="There are no todo items." rendered="#{empty taskinstanceList}"/>
<h:dataTable value="#{tasklnstanceList}" var="task"
rendered="#{not empty taskinstanceList}">

</h:dataTable>
</div>
</h:form>

Each element of the list is an instance of the jBPM class Taskl nst ance. The following code simply
displays the interesting properties of each task in the list. For the description, priority and due
date, we use input controls, to allow the user to update these values.

<h:column>
<f:.facet name="header">
<h:outputText value="Description"/>
</f:facet>
<h:inputText value="#{task.description}"/>
</h:column>
<h:column>
<f:.facet name="header">
<h:outputText value="Created"/>
</f:facet>
<h:outputText value="#{task.taskMgmtinstance.processinstance.start}">
<f:convertDateTime type="date"/>
</h:outputText>
</h:column>
<h:column>
<f:.facet name="header">
<h:outputText value="Priority"/>
</f:facet>
<h:inputText value="#{task.priority}" style="width: 30"/>
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="Due Date"/>
</f:facet>
<h:inputText value="#{task.dueDate}" style="width: 100">
<f:convertDateTime type="date" dateStyle="short"/>

28



How it works

</h:inputText>
</h:column>

° Note

Seam provides a default JSF date converter for converting a string to a date (no
time). Thus, the converter is not necessary for the field bound to #{ t ask. dueDat €} .

This button ends the task by calling the action method annotated @t art Task @ndTask. It passes
the task id to Seam as a request parameter:

<h:column>
<s:button value="Done" action="#{todoList.done}" taskinstance="#{task}"/>
</h:column>

Note that this is using a Seam <s: but t on> JSF control from the seam ui . j ar package. This
button is used to update the properties of the tasks. When the form is submitted, Seam and jBPM
will make any changes to the tasks persistent. There is no need for any action listener method:

<h:commandButton value="Update Items" action="update"/>

A second form on the page is used to create new items, by calling the action method annotated
@Cr eat ePr ocess.

<h:form id="new">
<div>
<h:inputText value="#{todoL.ist.description}"/>
<h:commandButton value="Create New Item" action="#{todoList.createTodo}"/>
</div>
</h:form>

1.4.2. How it works

After logging in, todo.jsp uses the t askl nst anceLi st component to display a table of outstanding
todo items for a the current user. Initially there are none. It also presents a form to enter
a new entry. When the user types the todo item and hits the "Create New ltem" button,
#{t odolLi st. creat eTodo} is called. This starts the todo process, as defined in t odo. j pdl . xm .

The process instance is created, starting in the start state and immediately transition to the t odo
state, where a new task is created. The task description is set based on the user's input, which

29



Chapter 1. Seam Tutorial

was saved to #{t odoLi st . descri pti on}. Then, the task is assigned to the current user, which
was stored in the seam actor component. Note that in this example, the process has no extra
process state. All the state in this example is stored in the task definition. The process and task
information is stored in the database at the end of the request.

When t odo. j sp is redisplayed, t askl nst anceLi st now finds the task that was just created. The
task is shown in an h: dat aTabl e. The internal state of the task is displayed in each column:
#{task. description}, #{task.priority}, #{task. dueDat e}, etc... These fields can all be
edited and saved back to the database.

Each todo item also has "Done" button, which calls #{t odoLi st . done}. Thet odoLi st component
knows which task the button is for because each s:button specificies t askl nst ance="#{t ask}",
referring to the task for that particular line of of the table. The @tart Tast and @ndTask
annotations cause seam to make the task active and immediately complete the task. The original
process then transitions into the done state, according to the process definition, where it ends.
The state of the task and process are both updated in the database.

When todo.jsp is displayed again, the now-completed task is no longer displayed in the
t askl nst anceli st, since that component only display active tasks for the user.

1.5. Seam pageflow: the numberguess example

For Seam applications with relatively freeform (ad hoc) navigation, JSF/Seam navigation rules are
a perfectly good way to define the page flow. For applications with a more constrained style of
navigation, especially for user interfaces which are more stateful, navigation rules make it difficult
to really understand the flow of the system. To understand the flow, you need to piece it together
from the view pages, the actions and the navigation rules.

Seam allows you to use a jPDL process definition to define pageflow. The simple number guessing
example shows how this is done.

©) Guess a number... - Mozilla Firefox EIIEIIXI
File Edit View Go Bookmarks Tools Help

Qil - E:> - % @ |@ http://localhost: 8080/seam-numberguess/numberGuess.seam?conversationld=1 V| D Go ||Qv

|| Chapter 1. Seam Tutoril | [ Guess a number... }

Guess a number...

Lower!
I'm thinking of a number between 1 and 49. You have 9 guesses.
Your guess: |50 ‘ [ Guess ]

30



Understanding the code

1.5.1. Understanding the code

The example is implemented using one JavaBean, three JSP pages and a jPDL pageflow
definition. Let's begin with the pageflow:

Example 1.20. pageflow.jpdl.xml

<pageflow-definition
xmlns="http://jboss.com/products/seam/pageflow"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://jboss.com/products/seam/pageflow
http://jboss.com/products/seam/pageflow-2.1.xsd"
name="numberGuess">

<start-page name="displayGuess" view-id="/numberGuess.jspx"> 1
<redirect/>
<transition name="guess" to="evaluateGuess"> 2
3

<action expression="#{numberGuess.guess}'/>
</transition>
<transition name="giveup" to="giveup"/>
<transition name="cheat" to="cheat"/>
</start-page>

4

<decision name="evaluateGuess" expression="#{numberGuess.correctGuess}">
<transition name="true" to="win"/>
<transition name="false" to="evaluateRemainingGuesses"/>

</decision>

<decision name="evaluateRemainingGuesses" expression="#{numberGuess.lastGuess}">
<transition name="true" to="lose"/>
<transition name="false" to="displayGuess"/>

</decision>

<page name="giveup" view-id="/giveup.jspx">
<redirect/>
<transition name="yes" to="lose"/>
<transition name="no" to="displayGuess"/>
</page>

<process-state name="cheat">
<sub-process name="cheat"/>

31



Chapter 1. Seam Tutorial

<transition to="displayGuess"/>
</process-state>

<page name="win" view-id="/win.jspx">
<redirect/>
<end-conversation/>

</page>

<page name="lose" view-id="/lose.jspx">
<redirect/>
<end-conversation/>

</page>

</pageflow-definition>

1. The <page> element defines a wait state where the system displays a particular JSF view
and waits for user input. The vi ew- i d is the same JSF view id used in plain JSF navigation
rules. The redirect attribute tells Seam to use post-then-redirect when navigating to the
page. (This results in friendly browser URLS.)

2 The <transition> element names a JSF outcome. The transition is triggered when a JSF
action results in that outcome. Execution will then proceed to the next node of the pageflow
graph, after invocation of any jBPM transition actions.

a3 Atransition <act i on> is just like a JSF action, except that it occurs when a jBPM transition
occurs. The transition action can invoke any Seam component.

4 A <deci si on> node branches the pageflow, and determines the next node to execute by
evaluating a JSF EL expression.

Here is what the pageflow looks like in the JBoss Developer Studio pageflow editor:

32



Understanding the code

i} <<Sfarf Pege==
displayGuess

guess cheat
ﬂ?_l <& lacisions o1 <<Frocess Siafess
* evaluateGuess false giveup cheat
false
s hacision= TEl <<Fage=>
':'Jwaluataﬁanmlnlngﬁuas glveup
true
true yes
T q:F'.Qg.e:-:r qqpage}?
E win ?El lose

Now that we have seen the pageflow, it is very, very easy to understand the rest of the application!

Here is the main page of the application, nunber Guess. j spx:

Example 1.21. numberGuess.jspx

<<?xml version="1.0"?>
<jsp:root xmins:jsp="http://java.sun.com/JSP/Page"
xmins:h="http://java.sun.com/jsf/html|"
xmins:f="http://java.sun.com/jsf/core"
xmins:s="http://jposs.com/products/seam/taglib"
xmins="http://www.w3.0rg/1999/xhtm|"
version="2.0">
<jsp:output doctype-root-element="html"
doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"
doctype-system="http://www.w3c.org/TR/xhtm|1/DTD/xhtml1-transitional.dtd"/>
<jsp:directive.page contentType="text/html|"/>

33



Chapter 1. Seam Tutorial

<html|>
<head>

<title>Guess a number...</title>
<link href="niceforms.css" rel="stylesheet" type="text/css" />
<script language="javascript" type="text/javascript" src="niceforms.js" />

</head>
<body>

<h1>Guess a number...</h1>
<f:view>
<h:form styleClass="niceform">

<div>
<h:messages globalOnly="true"/>
<h:outputText value="Higher!"

rendered="#{numberGuess.randomNumber gt numberGuess.currentGuess}"/>
<h:outputText value="Lower!"

rendered="#{numberGuess.randomNumber It numberGuess.currentGuess}"/>
</div>

<div>

I'm thinking of a number between

<h:outputText value="#{numberGuess.smallest}"/> and

<h:outputText value="#{numberGuess.biggest}"/>. You have
<h:outputText value="#{numberGuess.remainingGuesses}"/> guesses.
</div>

<div>
Your guess:
<h:inputText value="#{numberGuess.currentGuess}" id="inputGuess"
required="true" size="3"
rendered="#{(numberGuess.biggest-numberGuess.smallest) gt 20}">
<f.validateLongRange maximum="#{numberGuess.biggest}"
minimum="#{numberGuess.smallest}"/>
</h:inputText>
<h:selectOneMenu value="#{numberGuess.currentGuess}"
id="selectGuessMenu" required="true"
rendered="#{(numberGuess.higgest-numberGuess.smallest) le 20 and
(numberGuess.biggest-numberGuess.smallest) gt 4}">
<s:selectltems value="#{numberGuess.possibilities}" var="i" label="#{i}"/>
</h:selectOneMenu>
<h:selectOneRadio value="#{numberGuess.currentGuess}" id="selectGuessRadio"
required="true"
rendered="#{(numberGuess.biggest-numberGuess.smallest) le 4}">
<s:selectltems value="#{numberGuess.possibilities}" var="i" label="#{i}"/>

34



Understanding the code

</h:selectOneRadio>

<h:commandButton value="Guess" action="guess"/>
<s:button value="Cheat" view="/confirm.jspx"/>
<s:button value="Give up" action="giveup"/>

</div>

<div>
<h:message for="inputGuess" style="color: red"/>
</div>

</h:form>
</f.view>
</body>
</html>
</jsp:root>

Notice how the command button names the guess transition instead of calling an action directly.

The wi n. j spx page is predictable:

Example 1.22. win.jspx

<jsp:root xmlIns:jsp="http://java.sun.com/JSP/Page"
xmlins:h="http://java.sun.com/jsf/html"
xmins:f="http://java.sun.com/jsf/core"
xmlns="http://www.w3.0rg/1999/xhtm|"
version="2.0">
<jsp:output doctype-root-element="html"
doctype-public="-//W3C//DTD XHTML 1.0 Transitional//EN"
doctype-system="http://www.w3c.org/TR/xhtm|1/DTD/xhtml1-transitional.dtd"/>
<jsp:directive.page contentType="text/html|"/>
<html>
<head>
<title>You won!</title>
<link href="niceforms.css" rel="stylesheet" type="text/css" />
</head>
<body>
<h1>You won!</h1>
<fview>
Yes, the answer was <h:outputText value="#{numberGuess.currentGuess}" />.
It took you <h:outputText value="#{numberGuess.guessCount}" /> guesses.
<h:outputText value="But you cheated, so it doesn't count!"
rendered="#{numberGuess.cheat}"/>
Would you like to <a href="numberGuess.seam">play again</a>?

35



Chapter 1. Seam Tutorial

</fview>
</body>
</html>
</jsp:root>

The | ose. j spx looks roughly the same, so we'll skip over it.

Finally, we'll look at the actual application code:

Example 1.23. NumberGuess.java

@Name("numberGuess")
@Scope(ScopeType. CONVERSATION)
public class NumberGuess implements Serializable {

private int randomNumber;
private Integer currentGuess;
private int biggest;

private int smallest;

private int guessCount;
private int maxGuesses;
private boolean cheated;

@Create 1
public void begin()
{

randomNumber = new Random().nextint(100);
guessCount = 0;

biggest = 100;

smallest = 1;

}

public void setCurrentGuess(Integer guess)

{

this.currentGuess = guess;

}

public Integer getCurrentGuess()

{

return currentGuess;

public void guess()

36



Understanding the code

if (currentGuess>randomNumber)

{

biggest = currentGuess - 1;

}

if (currentGuess<randomNumber)

{

smallest = currentGuess + 1;

}

guessCount ++;

public boolean isCorrectGuess()

{

return currentGuess==randomNumber;

public int getBiggest()
{

return biggest;

}

public int getSmallest()
{

return smallest;

public int getGuessCount()
{

return guessCount;

}

public boolean isLastGuess()

{

return guessCount==maxGuesses;

public int getRemainingGuesses() {
return maxGuesses-guessCount;

public void setMaxGuesses(int maxGuesses) {
this.maxGuesses = maxGuesses;

}

37



Chapter 1. Seam Tutorial

public int getMaxGuesses() {
return maxGuesses;

public int getRandomNumber() {
return randomNumber;

}
public void cheated()
{
cheated = true;
}

public boolean isCheat() {
return cheated,;

public List<Integer> getPossibilities()

{
List<Integer> result = new ArrayList<Integer>();
for(int i=smallest; i<=biggest; i++) result.add(i);
return result;

1. The first time a JSP page asks for a nunber Guess component, Seam will create a new one
for it, and the @r eat e method will be invoked, allowing the component to initialize itself.

The pages. xn file starts a Seam conversation (much more about that later), and specifies the
pageflow definition to use for the conversation's page flow.

Example 1.24. pages.xml

<?xml version="1.0" encoding="UTF-8"?>

<pages xmlns="http://jposs.com/products/seam/pages"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://jboss.com/products/seam/pages http://jposs.com/products/

seam/pages-2.1.xsd">

<page view-id="/numberGuess.jspx">

<begin-conversation join="true" pageflow="numberGuess"/>

</page>

38



How it works

</pages>

As you can see, this Seam component is pure business logic! It doesn't need to know anything at
all about the user interaction flow. This makes the component potentially more reuseable.

1.5.2. How it works

We'll step through basic flow of the application. The game starts with the nunber Guess. j spx
view. When the page is first displayed, the pages. xm configuration causes conversation to begin
and associates the nunber Guess pageflow with that conversation. The pageflow starts with a
st art - page tag, which is a wait state, so the nunber Guess. xht nl is rendered.

The view references the nunber Guess component, causing a new instance to be created and
stored in the conversation. The @r eat e method is called, initializing the state of the game. The
view displays an h: f or mthat allows the user to edit #{ nunber Guess. cur r ent Guess}.

The "Guess" button triggers the guess action. Seam defers to the pageflow to handle the
action, which says that the pageflow should transition to the eval uat eGuess state, first invoking
#{ nunmber Guess. guess}, which updates the guess count and highest/lowest suggestions in the
nunber Guess component.

The eval uat eGuess state checks the value of #{ nunber Guess. correct Guess} and transitions
either to the wi n or eval uat i ngRemai ni ngGuesses state. We'll assume the number was incorrect,
in which case the pageflow transitions to eval uat i ngRemai ni ngGuesses. That is also a decision
state, which tests the #{ nunber Guess. | ast Guess} state to determine whether or not the user
has more guesses. If there are more guesses (I ast Guess is f al se), we transition back to the
original di spl ayGuess state. Finally we've reached a page state, so the associated page /
nunber Guess. j spx is displayed. Since the page has a redirect element, Seam sends a redirect
to the the user's browser, starting the process over.

We won't follow the state any more except to note that if on a future request either the wi n or
the | ose transition were taken, the user would be taken to either the / wi n. j spx or /| ose. j spx.
Both states specify that Seam should end the conversation, tossing away all the game state and
pageflow state, before redirecting the user to the final page.

The numberguess example also contains Giveup and Cheat buttons. You should be able to trace
the pageflow state for both actions relatively easily. Pay particular attention to the cheat transition,
which loads a sub-process to handle that flow. Although it's overkill for this application, it does
demonstrate how complex pageflows can be broken down into smaller parts to make them easier
to understand.

39



Chapter 1. Seam Tutorial

1.6. A complete Seam application: the Hotel Booking
example

1.6.1. Introduction

The booking application is a complete hotel room reservation system incorporating the following
features:

» User registration

e Login

* Logout

e Set password

» Hotel search

» Hotel selection

* Room reservation

» Reservation confirmation

« Existing reservation list

40



Introduction

jboss suites

State management in
Seam

State In Seam is contextual.
When you click "Find
Hotels", the application
retrieves a list of hotels
from the database and
caches it in the session
context. When you navigate
to one of the hotel records
by clicking the "View Hotel"
link, a conversation begins.
The conversation is
attached to a particular
tab, in a particular browser
window. You can navigate
to multiple hotels using
"open in new tab" or "open
in new window" in your web
browser. Each window will
execute in the context of a
different conversation. The
application keeps state
associated with your hotel
booking in the conversation
context, which ensures that
the concurrent
conversations do not
interfere with each other.

How does the search page

work?

seam framework demo

Thank you, Gavin King, your confimation number for Doubletree is 1

Search Hotels

Aflanta

Maximum results:  10¥

Name Address

Marriott Tower Place,

Courtyard Buckhead
Tower Place

Doubletree '
Buckhead

Ritz Carlton Peachtree Rd,

Buckhead

Current Hotel Bookings

City
Name Address r
State
Tower
Doubletree Place, 'égaﬂta;
Buckhead

Find Hotels

Check
in
date

Apr 16,
2006

City, State

Atlanta, GA,
usa

Atlanta, GA,
usa

Atlanta, GA,
usa

Zip Action
30305 %
30305 %
30326 %

Check .

out Confirmation Action
number

date

Apr 17,

2006 1 Cancel

Created with JBoss EJB 3.0, Seam, MyFaces, and Facelets

The booking application uses JSF, EJB 3.0 and Seam, together with Facelets for the view. There
is also a port of this application to JSF, Facelets, Seam, JavaBeans and Hibernate3.

One of the things you'll notice if you play with this application for long enough is that it is extremely
robust. You can play with back buttons and browser refresh and opening multiple windows and
entering nonsensical data as much as you like and you will find it very difficult to make the

41



Chapter 1. Seam Tutorial

application crash. You might think that we spent weeks testing and fixing bugs to achive this.
Actually, this is not the case. Seam was designed to make it very straightforward to build robust
web applications and a lot of robustness that you are probably used to having to code yourself
comes naturally and automatically with Seam.

As you browse the sourcecode of the example application, and learn how the application works,
observe how the declarative state management and integrated validation has been used to
achieve this robustness.

1.6.2. Overview of the booking example

The project structure is identical to the previous one, to install and deploy this application, please
refer to Section 1.1, “Using the Seam examples”. Once you've successfully started the application,
you can access it by pointing your browser to http:// 1 ocal host: 8080/ seam booki ng/ [http:/
/localhost:8080/seam-booking/]

The application uses six session beans for to implement the business logic for the listed features.

e Aut henti cat or Act i on provides the login authentication logic.
* Booki ngLi st Act i on retrieves existing bookings for the currently logged in user.
» ChangePasswor dAct i on updates the password of the currently logged in user.

* Hot el Booki ngAct i on implements booking and confirmation functionality. This functionality is
implemented as a conversation, so this is one of the most interesting classes in the application.

* Hot el Sear chi ngAct i on implements the hotel search functionality.
* Regi st er Acti on registers a new system user.

Three entity beans implement the application's persistent domain model.

e Hot el is an entity bean that represent a hotel
» Booki ng is an entity bean that represents an existing booking

e User is an entity bean to represents a user who can make hotel bookings

1.6.3. Understanding Seam conversations

We encourage you browse the sourcecode at your pleasure. In this tutorial we'll concentrate
upon one particular piece of functionality: hotel search, selection, booking and confirmation. From
the point of view of the user, everything from selecting a hotel to confirming a booking is one
continuous unit of work, a conversation. Searching, however, is not part of the conversation. The
user can select multiple hotels from the same search results page, in different browser tabs.

Most web application architectures have no first class construct to represent a conversation. This
causes enormous problems managing conversational state. Usually, Java web applications use a
combination of several techniques. Some state can be transfered in the URL. What can't is either

42


http://localhost:8080/seam-booking/
http://localhost:8080/seam-booking/
http://localhost:8080/seam-booking/

Understanding Seam conversations

thrown into the Ht t pSessi on or flushed to the database after every request, and reconstructed
from the database at the beginning of each new request.

Since the database is the least scalable tier, this often results in an utterly unacceptable lack of
scalability. Added latency is also a problem, due to the extra traffic to and from the database on
every request. To reduce this redundant traffic, Java applications often introduce a data (second-
level) cache that keeps commonly accessed data between requests. This cache is necessarily
inefficient, because invalidation is based upon an LRU policy instead of being based upon when
the user has finished working with the data. Furthermore, because the cache is shared between
many concurrent transactions, we've introduced a whole raft of problem's associated with keeping
the cached state consistent with the database.

Now consider the state held in the Ht t pSessi on. The HttpSession is great place for true session
data, data that is common to all requests that the user has with the application. However, it's a bad
place to store data related to individual series of requests. Using the session of conversational
quickly breaks down when dealing with the back button and multiple windows. On top of that,
without careful programming, data in the HTTP Session can grow quite large, making the HTTP
session difficult to cluster. Developing mechanisms to isolate session state associated with
different concurrent conversations, and incorporating failsafes to ensure that conversation state
is destroyed when the user aborts one of the conversations by closing a browser window or tab
is not for the faint hearted. Fortunately, with Seam, you don't have to worry about that.

Seam introduces the conversation context as a first class construct. You can safely keep
conversational state in this context, and be assured that it will have a well-defined lifecycle. Even
better, you won't need to be continually pushing data back and forth between the application
server and the database, since the conversation context is a natural cache of data that the user
is currently working with.

In this application, we'll use the conversation context to store stateful session beans. There is
an ancient canard in the Java community that stateful session beans are a scalability killer. This
may have been true in the early days of enterprise Java, but it is no longer true today. Modern
application servers have extremely sophisticated mechanisms for stateful session bean state
replication. JBoss AS, for example, performs fine-grained replication, replicating only those bean
attribute values which actually changed. Note that all the traditional technical arguments for why
stateful beans are inefficient apply equally to the Ht t pSessi on, so the practice of shifting state from
business tier stateful session bean components to the web session to try and improve performance
is unbelievably misguided. It is certainly possible to write unscalable applications using stateful
session beans, by using stateful beans incorrectly, or by using them for the wrong thing. But that
doesn't mean you should never use them. If you remain unconvinced, Seam allows the use of
POJOs instead of stateful session beans. With Seam, the choice is yours.

The booking example application shows how stateful components with different scopes can
collaborate together to achieve complex behaviors. The main page of the booking application
allows the user to search for hotels. The search results are kept in the Seam session scope. When
the user navigates to one of these hotels, a conversation begins, and a conversation scoped
component calls back to the session scoped component to retrieve the selected hotel.

43



Chapter 1. Seam Tutorial

The booking example also demonstrates the use of RichFaces Ajax to implement rich client
behavior without the use of handwritten JavaScript.

The search functionality is implemented using a session-scope stateful session bean, similar to
the one we saw in the message list example.

Example 1.25. HotelSearchingAction.java

@ Stateful 1
@Name("hotelSearch")
@Scope(ScopeType.SESSION)

@Restrict("#{identity.loggedIn}") 2
public class HotelSearchingAction implements HotelSearching

{

@PersistenceContext
private EntityManager em;

private String searchString;
private int pageSize = 10;
private int page;

@DataModel 3
private List<Hotel> hotels;

public void find()
{
page = 0;
gueryHotels();

}
public void nextPage()

{
page++;
queryHotels();
}

private void queryHotels()
{
hotels =
em.createQuery("select h from Hotel h where lower(h.name) like #{pattern} " +
"or lower(h.city) like #{pattern} " +
"or lower(h.zip) like #{pattern} " +

44



Understanding Seam conversations

"or lower(h.address) like #{pattern}")
.setMaxResults(pageSize)
.setFirstResult( page * pageSize )
.getResultList();

public boolean isNextPageAvailable()

{

return hotels!=null && hotels.size()==pageSize;

}

public int getPageSize() {
return pageSize;

}

public void setPageSize(int pageSize) {
this.pageSize = pageSize;
}

@Factory(value="pattern", scope=ScopeType.EVENT)
public String getSearchPattern()

{

return searchString==null ?
"%" : '%' + searchString.toLowerCase().replace(™, '%'") + '%';

public String getSearchString()
{

return searchString;

}

public void setSearchString(String searchString)
{

this.searchString = searchString;

}

@Remove
public void destroy() {}
}

11 The EJB standard @t at ef ul annotation identifies this class as a stateful session bean.
Stateful session beans are scoped to the conversation context by default.

45



Chapter 1. Seam Tutorial

The @restri ct annotation applies a security restriction to the component. It restricts access
to the component allowing only logged-in users. The security chapter explains more about
security in Seam.

The @pat aMbdel annotation exposes a Li st as a JSF Li st Dat aMbdel . This makes it easy
to implement clickable lists for search screens. In this case, the list of hotels is exposed to
the page as a Li st Dat aMbdel in the conversation variable named hot el s.

The EJB standard @renove annotation specifies that a stateful session bean should be
removed and its state destroyed after invocation of the annotated method. In Seam, all
stateful session beans must define a method with no parameters marked @enove. This
method will be called when Seam destroys the session context.

The main page of the application is a Facelets page. Let's look at the fragment which relates to
searching for hotels:

Example 1.26. main.xhtml

<div class="section">

<span class="errors">

<h:messages globalOnly="true"/>

</span>

<h1>Search Hotels</h1>

<h:form id="searchCriteria">
<fieldset>

<h:inputText id="searchString" value="#{hotelSearch.searchString}"
style="width: 165px;">
<a:support event="onkeyup" actionListener="#{hotelSearch.find}"

reRender="searchResults" /> 1

</h:inputText>

&#160;

<a:commandButton id="findHotels" value="Find Hotels" action="#{hotelSearch.find}"
reRender="searchResults"/>

&#160;

<a:status>
<f:.facet name="start">
<h:graphiclmage value="/img/spinner.gif"/>
</f:facet>
</a:status>
<br/>
<h:outputLabel for="pageSize">Maximum results:</h:outputLabel>&#160;
<h:selectOneMenu value="#{hotelSearch.pageSize}" id="pageSize">

46



Understanding Seam conversations

<f:selectltem itemLabel="5" itemValue="5"/>
<f:selectltem itemLabel="10" itemValue="10"/>
<f:selectltem itemLabel="20" itemValue="20"/>
</h:selectOneMenu>
</fieldset>
</h:form>

</div>

<a:outputPanel id="searchResults">
<div class="section">
<h:outputText value="No Hotels Found"
rendered="#{hotels != null and hotels.rowCount==0}"/>
<h:dataTable id="hotels" value="#{hotels}" var="hot"
rendered="#{hotels.rowCount>0}">

<h:column>
<f:facet name="header">Name</f:facet>
#{hot.name}

</h:column>

<h:column>
<f:.facet name="header">Address</f:facet>
#{hot.address}

</h:column>

<h:column>
<f.facet name="header">City, State</f:facet>
#{hot.city}, #{hot.state}, #{hot.country}

</h:column>

<h:column>
<f:facet name="header">Zip</f:facet>
#{hot.zip}

</h:column>

<h:column>
<f:.facet name="header">Action</f.facet>

<s:link id="viewHotel" value="View Hotel"
action="#{hotelBooking.selectHotel(hot)}"/>
</h:column>
</h:dataTable>
<s:link value="More results" action="#{hotelSearch.nextPage}"
rendered="#{hotelSearch.nextPageAvailable}"/>
</div>
</a:outputPanel>

47



Chapter 1. Seam Tutorial

11 The RichFaces Ajax <a: support > tag allows a JSF action event listener to be called by
asynchronous XMLHt t pRequest when a JavaScript event like onkeyup occurs. Even better,
the r eRender attribute lets us render a fragment of the JSF page and perform a partial page
update when the asynchronous response is received.

2. The RichFaces Ajax <a: st at us> tag lets us display an animated image while we wait for
asynchronous requests to return.

a3 The RichFaces Ajax <a: out put Panel > tag defines a region of the page which can be re-
rendered by an asynchronous request.

4 The Seam <s: | i nk> tag lets us attach a JSF action listener to an ordinary (non-JavaScript)
HTML link. The advantage of this over the standard JSF <h: commandLi nk> is that it preserves
the operation of "open in new window" and "open in new tab". Also notice that we use
a method binding with a parameter: #{hot el Booki ng. sel ect Hot el (hot)}. This is not
possible in the standard Unified EL, but Seam provides an extension to the EL that lets you
use parameters on any method binding expression.

If you're wondering how navigation occurs, you can find all the rules in VEB- | NF/ pages. xni ;
this is discussed in Section 6.7, “Navigation”.

This page displays the search results dynamically as we type, and lets us choose a hotel and pass
it to the sel ect Hot el () method of the Hot el Booki ngAct i on, which is where the really interesting
stuff is going to happen.

Now let's see how the booking example application uses a conversation-scoped stateful session
bean to achieve a natural cache of persistent data related to the conversation. The following code
example is pretty long. But if you think of it as a list of scripted actions that implement the various
steps of the conversation, it's understandable. Read the class from top to bottom, as if it were
a story.

Example 1.27. HotelBookingAction.java

@Stateful

@Name("hotelBooking")

@Restrict("#{identity.loggedin}")

public class HotelBookingAction implements HotelBooking

{

@PersistenceContext(type=EXTENDED) 1
private EntityManager em;

@In
private User user;

@In(required=false) @Out
private Hotel hotel;

48



Understanding Seam conversations

@In(required=false)

@Out(required=false)
private Booking booking;

@In
private FacesMessages facesMessages;

@In

private Events events;

@Logger
private Log log;

private boolean bookingValid;

@Begin
public void selectHotel(Hotel selectedHotel)

{

hotel = em.merge(selectedHotel);

}

public void bookHotel()

{
booking = new Booking(hotel, user);
Calendar calendar = Calendar.getinstance();
booking.setCheckinDate( calendar.getTime() );
calendar.add(Calendar.DAY_OF_MONTH, 1);
booking.setCheckoutDate( calendar.getTime() );

public void setBookingDetails()
{

Calendar calendar = Calendar.getinstance();
calendar.add(Calendar.DAY_OF_MONTH, -1);
if ( booking.getCheckinDate().before( calendar.getTime() ) )

{

facesMessages.addToControl("checkinDate", "Check in date must be a future date");

bookingValid=false;

}
else if ( 'booking.getCheckinDate().before( booking.getCheckoutDate() ) )

{

facesMessages.addToControl("checkoutDate",

49



Chapter 1. Seam Tutorial

"Check out date must be later than check in date");
bookingValid=false;

else

bookingValid=true;

public boolean isBookingValid()

{

return bookingValid;

@End 4
public void confirm()

{
em.persist(booking);
facesMessages.add("Thank you, #{user.name}, your confimation number " +

" for #{hotel.name} is #{booki g.id}");

log.info("New booking: #{booking.id} for #{user.username}");
events.raiseTransactionSuccessEvent("bookingConfirmed");

@End
public void cancel() {}

@Remove

public void destroy() {}

This bean uses an EJB3 extended persistence context, so that any entity instances remain
managed for the whole lifecycle of the stateful session bean.

The @ut annotation declares that an attribute value is outjected to a context variable after
method invocations. In this case, the context variable named hot el will be set to the value
of the hot el instance variable after every action listener invocation completes.

The @egin annotation specifies that the annotated method begins a long-running
conversation, so the current conversation context will not be destroyed at the end of the
request. Instead, it will be reassociated with every request from the current window, and
destroyed either by timeout due to conversation inactivity or invocation of a matching @nd
method.

The @nd annotation specifies that the annotated method ends the current long-running
conversation, so the current conversation context will be destroyed at the end of the request.

50



The Seam Debug Page

5 This EJB remove method will be called when Seam destroys the conversation context. Don't
forget to define this method!

Hot el Booki ngAct i on contains all the action listener methods that implement selection, booking
and booking confirmation, and holds state related to this work in its instance variables. We think
you'll agree that this code is much cleaner and simpler than getting and setting Ht t pSessi on
attributes.

Even better, a user can have multiple isolated conversations per login session. Try it! Log in, run
a search, and navigate to different hotel pages in multiple browser tabs. You'll be able to work
on creating two different hotel reservations at the same time. If you leave any one conversation
inactive for long enough, Seam will eventually time out that conversation and destroy its state. If,
after ending a conversation, you backbutton to a page of that conversation and try to perform an
action, Seam will detect that the conversation was already ended, and redirect you to the search

page.
1.6.4. The Seam Debug Page

The WAR also includes seam debug. j ar. The Seam debug page will be available if this jar is
deployed in VEB- | NF/ | i b, along with the Facelets, and if you set the debug property of the i ni t
component:

<core:init jndi-pattern="@jndiPattern@" debug="true"/>

This page lets you browse and inspect the Seam components in any of the Seam contexts
associated with your current login session. Just point your browser at htt p: // 1 ocal host : 8080/
seam booki ng/ debug. seam [http://localhost:8080/seam-booking/debug.seam].

51


http://localhost:8080/seam-booking/debug.seam
http://localhost:8080/seam-booking/debug.seam
http://localhost:8080/seam-booking/debug.seam

Chapter 1. Seam Tutorial

JBoss Seam Debug Page

This page allows you to view and inspect any component in any Seam context associated with the current session.

Conversations

conversation id activity description view id

4 1:51:34 AM - 1:51:34 AM Search hotels: M fmain.xhtml Select conversation context
6 1:57:40 AM - 1:52:23 AM Book hotel: Marriott Courtyard fbook.xhtml Select conversation context

- Component (booking)

checkinDate Fri Jan 20 20:52:20 EST 2006

checkoutDate Sat.Jan 21 20:52:20 EST 2006

class class org.jboss.seam.example.booking.Booking
creditCard

description Marriott Courtyard, Jan 20, 2006 to Jan 21, 2006
hotel Hotel{Tower Place, Buckhead, Atlanta,30305)

id

user User(gavin)

- Conversation Context (6)

booking

conversation

hotel

hotelBooking
hotels

- Business Process Context
Empty business process context
+ Session Context

+ Application Context

1.7. Nested conversations: extending the Hotel Booking
example

1.7.1. Introduction

Long-running conversations make it simple to maintain consistency of state in an application
even in the face of multi-window operation and back-buttoning. Unfortunately, simply beginning
and ending a long-running conversation is not always enough. Depending on the requirements
of the application, inconsistencies between what the user's expectations and the reality of the
application’s state can still result.

52



Introduction

The nested booking application extends the features of the hotel booking application to incorporate
the selection of rooms. Each hotel has available rooms with descriptions for a user to select from.
This requires the addition of a room selection page in the hotel reservation flow.

jboss suites

Mesting conversations
Mested conversations

allow the application to
capture a consistent
continuable state at
yarious points in a user
interaction, thus insuring
truly correct behavior in
the face of backbuttoning
and workspace
management,

How Seam manages
continuable state

Seam provides a container
for context state for each
nested conversation, &ny
contextual variable in the
outer conversations
context will not be
overwritten by a new
value, the value will simply
be stored in the new
context container, This
allows each nested
conversation to maintain
its own unigue state,

seam framework demo

Welcome Jacob Orshalick |Search |Settings |Logout

Foom Preference

Rooms available for the dates selected: Tue Cct 14 00:00:00 COT 20082
“wed Qct 15 00:00:00 CODT 2008

Mame

Wonderful
Foom

Spectacular
Foom

Fantastic
Suite

YWorkspaces

Eoom Preference: W Hotel [current]

Description

Cne king bed, Desk, Cable/satellite TV
with pay movies and OWVD player, CD
player. Coffeeftea maker and minibar,
Hair dryer, Ironfironing board. In-room
safe. Complimentary newspaper.

one king bed, Desk, Cable/satellite TV
with pay movies and OWD playver, CD
player, Coffeeftea maker and minibar.
Hair dryer. Ironfironing board. In-room
safe, Complimentary newspaper,

Cne king bed, Desk, Cable/satellite TV
with pay movies and OWVD player, CD
player. Coffeeftea maker and minibar,
Hair dryer, Ironfironing board, In-room
safe. Complimentary newspaper.

Per
Might

£450.00

£500.00

£1,000,00

0g:28 -08:28

Action

Select

Select

Select

Created with JBoss EIB 2.0, Seam, MyFaces, and Facelets

The user now has the option to select any available room to be included in the booking. As with
the hotel booking application we saw previously, this can lead to issues with state consistency.
As with storing state in the HTTPSessi on, if a conversation variable changes it affects all windows
operating within the same conversation context.

53



Chapter 1. Seam Tutorial

To demonstrate this, let's suppose the user clones the room selection screen in a new window.
The user then selects the Wonderful Room and proceeds to the confirmation screen. To see just
how much it would cost to live the high-life, the user returns to the original window, selects the
Fantastic Suite for booking, and again proceeds to confirmation. After reviewing the total cost,
the user decides that practicality wins out and returns to the window showing Wonderful Room
to confirm.

In this scenario, if we simply store all state in the conversation, we are not protected from multi-
window operation within the same conversation. Nested conversations allow us to achieve correct
behavior even when context can vary within the same conversation.

1.7.2. Understanding Nested Conversations

Now let's see how the nested booking example extends the behavior of the hotel booking
application through use of nested conversations. Again, we can read the class from top to bottom,
as if it were a story.

Example 1.28. RoomPreferenceAction.java

@ Stateful

@Name("roomPreference")

@Restrict("#{identity.loggedIn}")

public class RoomPreferenceAction implements RoomPreference

{

@Logger
private Log log;

@In private Hotel hotel;
@In private Booking booking;

@DataModel(value="availableRooms")
private List<Room> availableRooms;

@DataModelSelection(value="availableRooms")
private Room roomSelection;

@In(required=false, value="roomSelection")
@Out(required=false, value="roomSelection")
private Room room;

@Factory("availableRooms")

public void loadAvailableRooms()

54



Understanding Nested Conversations

availableRooms = hotel.getAvailableRooms(booking.getCheckinDate(),
booking.getCheckoutDate());
log.info("Retrieved #0 available rooms", availableRooms.size());

}

public BigDecimal getExpectedPrice()
{

log.info("Retrieving price for room #0", roomSelection.getName());

return booking.getTotal(roomSelection);

}

@Begin(nested=true)
public String selectPreference()

{

log.info("Room selected");

this.room = this.roomSelection;

return "payment";

}

public String requestConfirmation()

{

/I all validations are performed through the s:validateAll, so checks are already
/I performed
log.info("Request confirmation from user");

return "confirm";

@End(beforeRedirect=true)

public String cancel()
{

log.info("ending conversation™);
return "cancel";

@Destroy @Remove
public void destroy() {}

55



Chapter 1. Seam Tutorial

The hot el instance is injected from the conversation context. The hotel is loaded through
an extended persistence context so that the entity remains managed throughout the
conversation. This allows us to lazily load the avai | abl eRoons through an @act or y method
by simply walking the association.

When @Begi n(nested=true) is encountered, a nested conversation is pushed onto the
conversation stack. When executing within a nested conversation, components still have
access to all outer conversation state, but setting any values in the nested conversation’s
state container does not affect the outer conversation. In addition, nested conversations can
exist concurrently stacked on the same outer conversation, allowing independent state for
each.

The r oonBel ecti on is outjected to the conversation based on the @at aMbdel Sel ecti on.
Note that because the nested conversation has an independent context, the r oontel ecti on
is only set into the new nested conversation. Should the user select a different preference in
another window or tab a new nested conversation would be started.

The @nd annotation pops the conversation stack and resumes the outer conversation. The
roonBel ecti on is destroyed along with the conversation context.

When we begin a nested conversation it is pushed onto the conversation stack. In the
nest edbooki ng example, the conversation stack consists of the outer long-running conversation
(the booking) and each of the nested conversations (room selections).

Example 1.29. rooms.xhtml

<div class="section">

<h1>Room Preference</h1>

</div>

<div class="section">

<h:form id="room_selections_form">

<div class="section">
<h:outputText styleClass="output"
value="No rooms available for the dates selected: "
rendered="#{availableRooms != null and availableRooms.rowCount == 0}"/>
<h:outputText styleClass="output"
value="Rooms available for the dates selected: "
rendered="#{availableRooms != null and availableRooms.rowCount > 0}"'/>

<h:outputText styleClass="output" value="#{booking.checkinDate}"/> -
<h:outputText styleClass="output" value="#{booking.checkoutDate}"/>

<br/><br/>

56



Understanding Nested Conversations

1

<h:dataTable value="#{availableRooms}" var="room"

rendered="#{availableRooms.rowCount > 0}">

<h:column>
<f:.facet name="header">Name</f.facet>
#{room.name}

</h:column>

<h:column>
<f.facet name="header">Description</f:facet>
#{room.description}

</h:column>

<h:column>
<f.facet name="header">Per Night</f:facet>
<h:outputText value="#{room.price}">

<f:convertNumber type="currency" currencySymbol="$"/>

</h:outputText>

</h:column>

<h:column>
<f.facet name="header">Action</f:facet>
<h:commandLink id="selectRoomPreference"
action="#{roomPreference.selectPreference}">Select</h.:commandLink>
</h:column>
</h:dataTable>
</div>
<div class="entry">
<div class="label">&#160;</div>

<div class="input"> 3
<s:button id="cancel" value="Revise Dates" view="/book.xhtml"/>
</div>
</div>
</h:form>

</div>

1. When requested from EL, the #{avai | abl eRoons} are loaded by the @act ory method
defined in RoonPr ef er enceAct i on. The @act or y method will only be executed once to load
the values into the current context as a @at aMbdel instance.

2z Invoking the #{roonPreference. sel ect Preference} action results in the row being
selected and set into the @at aMbdel Sel ect i on. This value is then outjected to the nested
conversation context.

2 Revising the dates simply returns to the / book. xht nl . Note that we have not yet nested
a conversation (no room preference has been selected), so the current conversation can

57



Chapter 1. Seam Tutorial

simply be resumed. The <s: but t on> component simply propagates the current conversation
when displaying the / book. xht m view.

Now that we have seen how to nest a conversation, let's see how we can confirm the booking
once a room has been selected. This can be achieved by simply extending the behavior of the
Hot el Booki ngActi on.

Example 1.30. HotelBookingAction.java

@ Stateful

@Name("hotelBooking")

@Restrict("#{identity.loggedIn}")

public class HotelBookingAction implements HotelBooking

{

@PersistenceContext(type=EXTENDED)
private EntityManager em;

@In
private User user;

@In(required=false) @Out
private Hotel hotel;

@In(required=false)
@Out(required=false)
private Booking booking;

@In(required=false)
private Room roomSelection;

@In

private FacesMessages facesMessages;

@In
private Events events;

@Logger
private Log log;

@Begin
public void selectHotel(Hotel selectedHotel)

{
log.info("Selected hotel #0", selectedHotel.getName());

58



Understanding Nested Conversations

hotel = em.merge(selectedHotel);

}

public String setBookingDates()

{
/I the result will indicate whether or not to begin the nested conversation
/[ as well as the navigation. if a null result is returned, the nested
/I conversation will not begin, and the user will be returned to the current
/I page to fix validation issues
String result = null;

Calendar calendar = Calendar.getinstance();
calendar.add(Calendar.DAY_OF_MONTH, -1);

/I validate what we have received from the user so far
if ( booking.getCheckinDate().before( calendar.getTime() ) )
{

facesMessages.addToControl("checkinDate", "Check in date must be a future date");

}
else if ( 'booking.getCheckinDate().before( booking.getCheckoutDate() ) )

{
facesMessages.addToControl("checkoutDate", "Check out date must be later than check
in date");

}

else

{

result = "rooms";

return result;

public void bookHotel()
{

booking = new Booking(hotel, user);

Calendar calendar = Calendar.getinstance();
booking.setCheckinDate( calendar.getTime() );
calendar.add(Calendar.DAY_OF_MONTH, 1);
booking.setCheckoutDate( calendar.getTime() );

@End(root=true)

public void confirm() 1

{

59



Chapter 1. Seam Tutorial

/I on confirmation we set the room preference in the booking. the room preference
/I will be injected based on the nested conversation we are in.
booking.setRoomPreference(roomSelection);

em.persist(booking);

facesMessages.add("Thank you, #{user.name}, your confimation number for #{hotel.name}
is #{booking.id}");

log.info("New booking: #{booking.id} for #{user.username}");

events.raiseTransactionSuccessEvent("bookingConfirmed");

@End(root=true, beforeRedirect=true)
public void cancel() {}

@Destroy @Remove
public void destroy() {}

1. Annotating an action with @nd(r oot =true) ends the root conversation which effectively
destroys the entire conversation stack. When any conversation is ended, its nested
conversations are ended as well. As the root is the conversation that started it all, this is a
simple way to destroy and release all state associated with a workspace once the booking
is confirmed.

2 The roonBel ection is only associated with the booki ng on user confirmation. While
outjecting values to the nested conversation context will not impact the outer conversation,
any objects injected from the outer conversation are injected by reference. This means that
any changing to these objects will be reflected in the parent conversation as well as other
concurrent nested conversations.

& By simply annotating the cancellation action with @nd(root =true,
bef oreRedi rect =true) we can easily destroy and release all state associated with the
workspace prior to redirecting the user back to the hotel selection view.

Feel free to deploy the application, open many windows or tabs and attempt combinations of
various hotels with various room preferences. Confirming a booking always results in the correct
hotel and room preference thanks to the nested conversation model.

1.8. A complete application featuring Seam and jBPM:
the DVD Store example

The DVD Store demo application shows the practical usage of jBPM for both task management
and pageflow.

60



A complete application featuring Seam and
jBPM: the DVD Store example

The user screens take advantage of a jPDL pageflow to implement searching and shopping cart
functionality.

Search for Movies My Orders

Search Results

m Welcome, Harry

Add to cart Title Actor Price Thank you for choosing
E Life is Beautiful Roberto Benini £12.00 the DVD Store
] Finding Nemo Albert Brooks $22.49 Logout
| March of the Penguins Morgan Freeman $16.98
| Indiana Jones and the Temple of Doom Harisson Ford $19.99 )
] Clear and Present Danger Harisson Ford $19.99 Search for DVDs:
L] Roman Holiday Audrey Hepburn $12.99
] Breakfast at Tiffany's Audrey Hepburn $12.99
] Sabrina Audrey Hepburn $12.99
E Sabrina Harrison Ford £19.99
| Kill Bill vol. 1 Uma Thurman £$19.99 T
O Kill Bill vaol. 2 Uma Thurman $19.99 v |
E Lost in Translation Bill Murray £19.99 Results Per Page:
F Broken Flowers Bill Murray £$19.99 b |
] Better Off Dead John Cusak $8.99 Search
E Grosse Pointe Blank John Cusak £11.99
N——
¥ High Fidelity John Cusak $14.99 ) )
O Somewhere in Time Christopher Reeve $11.24 Shopping Cart
| Superman - The Movie Christopher Reeve $14.99 1 Napoleon Dynamite
] Superman II Christopher Reeve 314,99
. Superman III Christopher Reeve $14.99 Total:$14.06
Update Shopping Cart Checkout
L
Done

The administration screens take use jBPM to manage the approval and shipping cycle for
orders. The business process may even be changed dynamically, by selecting a different process
definition!

61



Chapter 1. Seam Tutorial

Manage Orders

Order Management

Pending orders are shown here on the order management screen for the store
manager to process. Rather than being data-driven, order management is the DVD Store

I Welcome, Albus

Thank you for choosing

process-driven. A JBoss JBPM process assigns fulfillment tasks to the manager ‘

. L t
based on the wversion of the process loaded. The manager can change the oged

version of the process at any time using the admin options box to the right.

* Order process 1 sends orders immediately to shipping, where the manager should
ship the order and record the tracking number for the user to see.

* Order process 2 adds an approval step where the manager is first given the Inventory .
. - s 28 sold, 2473 in stock
chance to approve the order before sending it to shipping. In each case, the S

. . X i
status of the order is shown in the customer's order list. $437.63 from 7 orders

* Order process 3 introduces a decision node. Only orders over $100.00 need to
be accepted. Smaller orders are automatically approved for shipping.
Admin Options
Task Assignment
Process Management

Order Id Order Amount Customer Task |0rdermanagement3

-]

[ $12.99 userl ship ‘ Switch Order Process |

7 577.70 user2 ship

Order Acceptance

There are no orders to be accepted.

Shipping

Order Id Order Amount Customer

5 94,95 userl
Done

The Seam DVD Store demo can be run from dvdst ore directory, just like the other demo
applications.

1.9. Bookmarkable URLs with the Blog example

Seam makes it very easy to implement applications which keep state on the server-side. However,
server-side state is not always appropriate, especially in for functionality that serves up content.
For this kind of problem we often want to keep application state in the URL so that any page can
be accessed at any time through a bookmark. The blog example shows how to a implement an
application that supports bookmarking throughout, even on the search results page. This example
demonstrates how Seam can manage application state in the URL as well as how Seam can
rewrite those URLSs to be even

62




Using "pull”-style MVC

-

@v I..p? A e @ Q o |=‘: http://lecalhost: 8080 /seam-blog/entry/book B | =2 'f' Google
& JBoss Seam Blog o |

| Search | Idefault | Select Theme |

JBoss Seam Blog
An example of a RESTful Seam application

Seam book excerpt on InfoQ

Michael and Thomas are writing a book about Seam for O'Reilly, which is apparently the hottest selling

Meanwhile, Norman and | have been tearing our way through JIRA issues, and so 1.1.1 will be ready to
go when | get back from vacation :-)

[Posted on 19/12/2006 17:00:00]

JBoss Seam Blog:[All posts][Recent posts][Write new post][Atom feed]
Total pageviews: 1009

The Blog example demonstrates the use of "pull"-style MVC, where instead of using action listener
methods to retrieve data and prepare the data for the view, the view pulls data from components
as it is being rendered.

1.9.1. Using "pull"-style MVC

This snippet from the i ndex. xht nl facelets page displays a list of recent blog entries:

Example 1.31.

<h:dataTable value="#{blog.recentBlogEntries}" var="blogEntry" rows="3">
<h:column>
<div class="blogEntry">
<h3>#{blogEntry.title}</h3>
<div>

63



Chapter 1. Seam Tutorial

<s:formattedText value="#{blogEntry.excerpt==null ? blogEntry.body : blogEntry.excerpt}"'/>
</div>
<p>
<s:link view="/entry.xhtml" rendered="#{blogEntry.excerpt!=null}" propagation="none"
value="Read more...">
<f:param name="blogEntryld" value="#{blogEntry.id}"/>
</s:link>
</p>
<p>
[Posted on&#160;
<h:outputText value="#{blogEntry.date}">
<f:convertDateTime timeZone="#{blog.timeZone}" locale="#{blog.locale}" type="both"/>
</h:outputText>]
&#160;
<s:link view="/entry.xhtml" propagation="none" value="[Link]">
<f:param name="blogEntryld" value="#{blogEntry.id}"/>
</s:link>
</p>
</div>
</h:column>
</h:dataTable>

If we navigate to this page from a bookmark, how does the #{bl og. recent Bl ogEntri es} data
used by the <h: dat aTabl e> actually get initialized? The Bl og is retrieved lazily — "pulled" —
when needed, by a Seam component named bl og. This is the opposite flow of control to what is
used in traditional action-based web frameworks like Struts.

Example 1.32.

@Name("blog")
@Scope(ScopeType.STATELESS)
@AutoCreate

public class BlogService

{

@In EntityManager entityManager;

@Unwrap
public Blog getBlog()
{
return (Blog) entityManager.createQuery("select distinct b from Blog b left join fetch
b.blogEntries")

64



Bookmarkable search results page

.setHint("org.hibernate.cacheable", true)
.getSingleResult();

1 This component uses a seam-managed persistence context. Unlike the other examples
we've seen, this persistence context is managed by Seam, instead of by the EJB3 container.
The persistence context spans the entire web request, allowing us to avoid any exceptions
that occur when accessing unfetched associations in the view.

2z The @nw ap annotation tells Seam to provide the return value of the method — the Bl og
— instead of the actual Bl ogServi ce component to clients. This is the Seam manager
component pattern.

This is good so far, but what about bookmarking the result of form submissions, such as a search
results page?

1.9.2. Bookmarkable search results page

The blog example has a tiny form in the top right of each page that allows the user to search for blog
entries. This is defined in a file, menu. xht mi , included by the facelets template, t enpl at e. xht ni :

Example 1.33.

<div id="search">
<h:form>
<h:inputText value="#{searchAction.searchPattern}"/>
<h:commandButton value="Search" action="/search.xhtml"/>
</h:form>
</div>

To implement a bookmarkable search results page, we need to perform a browser redirect after
processing the search form submission. Because we used the JSF view id as the action outcome,
Seam automatically redirects to the view id when the form is submitted. Alternatively, we could
have defined a navigation rule like this:

<navigation-rule>
<navigation-case>
<from-outcome>searchResults</from-outcome>
<to-view-id>/search.xhtml</to-view-id>
<redirect/>
</navigation-case>

65



Chapter 1. Seam Tutorial

</navigation-rule>
Then the form would have looked like this:

<div id="search">
<h:form>
<h:inputText value="#{searchAction.searchPattern}"/>
<h:commandButton value="Search" action="searchResults"/>
</h:form>
</div>

But when we redirect, we need to include the values submitted with the form in the URL to get
a bookmarkable URL like http://1 ocal host : 8080/ seam bl og/ sear ch/ . JSF does not provide
an easy way to do this, but Seam does. We use two Seam features to accomplish this: page
parameters and URL rewriting. Both are defined in WEB- | NF/ pages. xmi :

Example 1.34.

<pages>
<page view-id="/search.xhtml">
<rewrite pattern="/search/{searchPattern}"/>
<rewrite pattern="/search"/>

<param name="searchPattern" value="#{searchService.searchPattern}"/>
</page>
</pages>

The page parameter instructs Seam to link the request parameter named searchPattern to
the value of #{ sear chSer vi ce. sear chPat t er n}, both whenever a request for the Search page
comes in and whenever a link to the search page is generated. Seam takes responsibility for
maintaining the link between URL state and application state, and you, the developer, don't have
to worry about it.

Without URL rewriting, the URL for a search on the term book would be ht t p: / / | ocal host : 8080/
seam bl og/ sean sear ch. xht nl ?sear chPat t er n=book. This is nice, but Seam can make the
URL even simpler using a rewrite rule. The first rewrite rule, for the pattern /search/
{searchPattern}, says that any time we have a URL for search.xhtml with a searchPattern
request parameter, we can fold that URL into the simpler URL. So,the URL we saw
earlier, http://1 ocal host: 8080/ seam bl og/ seant sear ch. xht m ?sear chPat t er n=book can
be written instead as htt p: / /| ocal host : 8080/ seam bl og/ sear ch/ book.

66



Bookmarkable search results page

Just like with page parameters, URL rewriting is bi-directional. That means that Seam forwards
requests for the simpler URL to the the right view, and it also automatically generates the simpler
view for you. You never need to worry about constructing URLSs. It's all handled transparently
behind the scenes. The only requirement is that to use URL rewriting, the rewrite filter needs to
be enabled in conponent s. xni .

<web:rewrite-filter view-mapping="/seam/*" />

The redirect takes us to the sear ch. xht nl page:

<h:dataTable value="#{searchResults}" var="blogEntry">
<h:column>
<div>
<s:link view="/entry.xhtml" propagation="none" value="#{blogEntry.title}">
<f:param name="blogEntryld" value="#{blogEntry.id}"/>
</s:link>
posted on
<h:outputText value="#{blogEntry.date}">
<f:convertDateTime timeZone="#{blog.timeZone}" locale="#{blog.locale}" type="both"/>
</h:outputText>
</div>
</h:column>
</h:dataTable>

Which again uses "pull"-style MVC to retrieve the actual search results using Hibernate Search.

@Name("searchService")
public class SearchService

{

@In
private FullTextEntityManager entityManager;

private String searchPattern;

@Factory("searchResults")
public List<BlogEntry> getSearchResults()
{
if (searchPattern==null || "".equals(searchPattern) ) {
searchPattern = null;

67



Chapter 1. Seam Tutorial

return entityManager.createQuery("select be from BlogEntry be order by date
desc").getResultList();
}
else
{
Map<String,Float> boostPerField = new HashMap<String,Float>();
boostPerField.put( "title", 4f);
boostPerField.put( "body", 1f );
String[] productFields = {"title", "body"};
QueryParser parser = new MultiFieldQueryParser(productFields, new StandardAnalyzer(),
boostPerField);
parser.setAllowLeadingWildcard(true);
org.apache.lucene.search.Query luceneQuery;
try
{
luceneQuery = parser.parse(searchPattern);
}
catch (ParseException e)
{

return null;

}

return entityManager.createFullTextQuery(luceneQuery, BlogEntry.class)
.setMaxResults(100)
.getResultList();

public String getSearchPattern()
{

return searchPattern;

public void setSearchPattern(String searchPattern)

{

this.searchPattern = searchPattern;

}

1.9.3. Using "push"-style MVC in a RESTful application

Very occasionally, it makes more sense to use push-style MVC for processing RESTful pages,
and so Seam provides the notion of a page action. The Blog example uses a page action for the

68



Using "push”-style MVC in a RESTful

application

blog entry page, ent ry. xht nl . Note that this is a little bit contrived, it would have been easier to

use pull-style MVC here as well.

The ent ryActi on component works much like an action class in a traditional push-MVC action-

oriented framework like Struts:

@Name("entryAction")
@Scope(STATELESS)
public class EntryAction

{
@In Blog blog;

@Out BlogEntry blogEntry;

public void loadBlogEntry(String id) throws EntryNotFoundException

{

blogEntry = blog.getBlogEntry(id);

if (blogEntry==null) throw new EntryNotFoundException(id);
}

Page actions are also declared in pages. xni :

<pages>

<page view-id="/entry.xhtm|">
<rewrite pattern="/entry/{blogEntryld}" />
<rewrite pattern="/entry" />

<param name="blogEntryld"
value="#{blogEntry.id}"/>

<action execute="#{entryAction.loadBlogEntry(blogEntry.id)}"/>
</page>

<page view-id="/post.xhtml" login-required="true">
<rewrite pattern="/post" />

<action execute="#{postAction.post}"
if="#{validation.succeeded}"/>

69



Chapter 1. Seam Tutorial

<action execute="#{postAction.invalid}"
if="#{validation.failed}"/>

<navigation from-action="#{postAction.post}">
<redirect view-id="/index.xhtml"/>
</navigation>
</page>

<page view-id="*">
<action execute="#{blog.hitCount.hit}"/>
</page>

</pages>

Notice that the example is using page actions for post validation and the pageview counter. Also
notice the use of a parameter in the page action method binding. This is not a standard feature of
JSF EL, but Seam lets you use it, not just for page actions but also in JSF method bindings.

When the entry. xht nl page is requested, Seam first binds the page parameter bl ogEntryl d
to the model. Keep in mind that because of the URL rewriting, the blogEntryld parameter name
won't show up in the URL. Seam then runs the page action, which retrieves the needed data —
the bl ogEnt ry — and places it in the Seam event context. Finally, the following is rendered:

<div class="blogEntry">
<h3>#{blogEntry.title}</h3>
<div>
<s:formattedText value="#{blogEntry.body}"/>
</div>
<p>
[Posted on&#160;
<h:outputText value="#{blogEntry.date}">
<f:convertDateTime timeZone="#{blog.timeZone}" locale="#{blog.locale}" type="both"/>
</h:outputText>]
</p>
</div>

If the blog entry is not found in the database, the Ent r yNot FoundExcept i on exception is thrown.
We want this exception to result in a 404 error, not a 505, so we annotate the exception class:

@ApplicationException(rollback=true)
@HttpError(errorCode=HttpServletResponse.SC_NOT_FOUND)
public class EntryNotFoundException extends Exception

70



Using "push”-style MVC in a RESTful

application
{
EntryNotFoundException(String id)
{
super("entry not found: " + id);
}
}

An alternative implementation of the example does not use the parameter in the method binding:

@Name("entryAction")
@Scope(STATELESS)
public class EntryAction

{
@In(create=true)
private Blog blog;

@In @Out
private BlogEntry blogEntry;

public void loadBlogEntry() throws EntryNotFoundException

{
blogEntry = blog.getBlogEntry( blogEntry.getld() );
if (blogEntry==null) throw new EntryNotFoundException(id);

}
}

<pages>

<page view-id="/entry.xhtml" action="#{entryAction.loadBlogEntry}">
<param name="blogEntryld" value="#{blogEntry.id}"/>
</page>

</pages>
It is a matter of taste which implementation you prefer.

The blog demo also demonstrates very simple password authentication, posting to the blog, page
fragment caching and atom feed generation.

71



72



Chapter 2.

Getting started with Seam, using
seam-gen

The Seam distribution includes a command line utility that makes it really easy to set up an Eclipse
project, generate some simple Seam skeleton code, and reverse engineer an application from a
preexisting database.

This is the easy way to get your feet wet with Seam, and gives you some ammunition for next
time you find yourself trapped in an elevator with one of those tedious Ruby guys ranting about
how great and wonderful his new toy is for building totally trivial applications that put things in
databases.

In this release, seam-gen works best for people with JBoss AS. You can use the generated project
with other J2EE or Java EE 5 application servers by making a few manual changes to the project
configuration.

You can use seam-gen without Eclipse, but in this tutorial, we want to show you how to use it in
conjunction with Eclipse for debugging and integration testing. If you don't want to install Eclipse,
you can still follow along with this tutorial—all steps can be performed from the command line.

seam-gen is basically just an intricate Ant script wrapped around Hibernate Tools, together with
some templates. That makes it easy to customize if you need to.

2.1. Before you start

Make sure you have JDK 5 or JDK 6 (see Section 42.1, “JDK Dependencies” for details), JBoss
AS 4.2 or 5.0 and Ant 1.7.0, along with recent versions of Eclipse, the JBoss IDE plugin for Eclipse
and the TestNG plugin for Eclipse correctly installed before starting. Add your JBoss installation
to the JBoss Server View in Eclipse. Start JBoss in debug mode. Finally, start a command prompt
in the directory where you unzipped the Seam distribution.

JBoss has sophisticated support for hot re-deployment of WARs and EARs. Unfortunately,
due to bugs in the JVM, repeated redeployment of an EAR—which is common during
development—eventually causes the JVM to run out of perm gen space. For this reason, we
recommend running JBoss in a JVM with a large perm gen space at development time. If you're
running JBoss from JBoss IDE, you can configure this in the server launch configuration, under
"VM arguments”. We suggest the following values:

-Xms512m -Xmx1024m -XX:PermSize=256m -XX:MaxPermSize=512m

If you don't have so much memory available, the following is our minimum recommendation:

73



Chapter 2. Getting started wi...

-Xms256m -Xmx512m -XX:PermSize=128m -XX:MaxPermSize=256m

If you're running JBoss from the command line, you can configure the JVM options in bi n/

run. conf.

If you don't want to bother with this stuff now, you don't have to—come back to it later, when you
get your first Qut Of Menor yExcept i on.

2.2. Setting up a new project

The first thing we need to do is configure seam-gen for your environment: JBoss AS installation
directory, project workspace, and database connection. It's easy, just type:

cd jboss-seam-2.0.x
seam setup

And you will be prompted for the needed information:

~/workspace/jboss-seam$ ./seam setup
Buildfile: build.xml

init;

setup:

[echo] Welcome to seam-gen :-)

[input] Enter your project workspace (the directory that contains your Seam projects) [C:/

Projects] [C:/Projects]
/Users/pmuir/workspace

[input] Enter your JBoss home directory [C:/Program Files/jboss-4.2.3.GA] [C:/Program Files/
jboss-4.2.3.GA]
/Applications/jboss-4.2.3.GA

[input] Enter the project name [myproject] [myproject]
helloworld

[echo] Accepted project name as: helloworld

[input] Select a RichFaces skin (not applicable if using ICEFaces) [blueSky] ([blueSky], classic,
ruby, wine, deepMarine, emeraldTown, sakura, DEFAULT)

[input] Is this project deployed as an EAR (with EJB components) or a WAR (with no EJB
support) [ear] ([ear], war, )

[input] Enter the Java package name for your session beans [com.mydomain.helloworld]
[com.mydomain.helloworld]

74



Setting up a new project

org.jboss.helloworld
[input] Enter the Java package name for your entity beans [org.jboss.helloworld]
[org.jboss.helloworld]

[input] Enter the Java package name for your test cases [org.jboss.helloworld.test]
[org.jboss.helloworld.test]

[input] What kind of database are you using? [hsql] ([hsql], mysql, oracle, postgres, mssq|,
db2, sybase, enterprisedb, h2)
mysq|

[input] Enter the Hibernate dialect for your database [org.hibernate.dialect. MySQLDialect]
[org.hibernate.dialect. MySQLDialect]

[input] Enter the filesystem path to the JDBC driver jar [lib/hsgldb.jar] [lib/hsqldb.jar]
/Users/pmuir/java/mysql.jar
[input] Enter JDBC driver class for your database [com.mysql.jdbc.Driver]
[com.mysql.jdbc.Driver]

[input] Enter the JDBC URL for your database [jdbc:mysql:///test] [jdbc:mysql:///test]
jdbc:mysql:///helloworld

[input] Enter database username [sa] [sa]
pmuir

[input] Enter database password [] []

[input] skipping input as property hibernate.default_schema.new has already been set.
[input] Enter the database catalog name (it is OK to leave this blank) [] []

[input] Are you working with tables that already exist in the database? [n] (y, [n],)

y

[input] Do you want to drop and recreate the database tables and data in import.sgl each time
you deploy? [n] (y, [n], )
n

[input] Enter your ICEfaces home directory (leave blank to omit ICEfaces) [] []

[propertyfile] Creating new property file: /Users/pmuir/workspace/jboss-seam/seam-gen/
build.properties

[echo] Installing JDBC driver jar to JBoss server

[echo] Type 'seam create-project' to create the new project

BUILD SUCCESSFUL

Total time: 1 minute 32 seconds
~/workspace/jboss-seam $

The tool provides sensible defaults, which you can accept by just pressing enter at the prompt.

75



Chapter 2. Getting started wi...

The most important choice you need to make is between EAR deployment and WAR deployment
of your project. EAR projects support EJB 3.0 and require Java EE 5. WAR projects do not support
EJB 3.0, but may be deployed to a J2EE environment. The packaging of a WAR is also simpler to
understand. If you installed an EJB3-ready application server like JBoss, choose ear . Otherwise,
choose war . We'll assume that you've chosen an EAR deployment for the rest of the tutorial, but
you can follow exactly the same steps for a WAR deployment.

If you are working with an existing data model, make sure you tell seam-gen that the tables already
exist in the database.

The settings are stored in seam gen/ bui | d. properti es, but you can also modify them simply
by running seam set up a second time.

Now we can create a new project in our Eclipse workspace directory, by typing:

seam new-project

C:\Projects\jboss-seam>seam new-project
Buildfile: build.xml

new-project:
[echo] A new Seam project named 'helloworld' was created in the C:\Projects directory
[echo] Type 'seam explode' and go to http://localhost:8080/helloworld
[echo] Eclipse Users: Add the project into Eclipse using File > New > Project and select General
> Project (not Java Project)
[echo] NetBeans Users: Open the project in NetBeans

BUILD SUCCESSFUL
Total time: 7 seconds
C:\Projects\jboss-seam>

This copies the Seam jars, dependent jars and the JDBC driver jar to a new Eclipse project, and
generates all needed resources and configuration files, a facelets template file and stylesheet,
along with Eclipse metadata and an Ant build script. The Eclipse project will be automatically
deployed to an exploded directory structure in JBoss AS as soon as you add the project using
New -> Project... -> General -> Project -> Next,typingthe Proj ect nane (hell oworld
in this case), and then clicking Fi ni sh. Do not select Java Pr oj ect from the New Project wizard.

If your default JDK in Eclipse is not a Java SE 5 or Java SE 6 JDK, you will need to select a Java
SE 5 compliant JDK using Proj ect -> Properties -> Java Conpil er.

Alternatively, you can deploy the project from outside Eclipse by typing seam expl ode.

76



Creating a new action

Go to http://1ocal host: 8080/ hel | owor | d to see a welcome page. This is a facelets page,
vi ew horre. xht nl , using the template vi ew/ | ayout / t enpl at e. xht m . You can edit this page,
or the template, in Eclipse, and see the results immediately, by clicking refresh in your browser.

Don't get scared by the XML configuration documents that were generated into the project
directory. They are mostly standard Java EE stuff, the stuff you need to create once and then
never look at again, and they are 90% the same between all Seam projects. (They are so easy
to write that even seam-gen can do it.)

The generated project includes three database and persistence configurations. The
persi stence-test.xnm and inport-test.sqgl files are used when running the TestNG unit
tests against HSQLDB. The database schema and the test data in i nport-test.sql is always
exported to the database before running tests. The nyproj ect - dev-ds. xnl , persi stence-
dev. xm and inport-dev.sqgl files are for use when deploying the application to your
development database. The schema might be exported automatically at deployment, depending
upon whether you told seam-gen that you are working with an existing database. The nypr oj ect -
prod-ds. xm , per si st ence- prod. xm andi nport - pr od. sql files are for use when deploying the
application to your production database. The schema is not exported automatically at deployment.

2.3. Creating a new action

If you're used to traditional action-style web frameworks, you're probably wondering how you can
create a simple web page with a stateless action method in Java. If you type:

seam new-action

Seam will prompt for some information, and generate a new facelets page and Seam component
for your project.

C:\Projects\jboss-seam>seam new-action
Buildfile: build.xml

validate-workspace:
validate-project:
action-input:
[input] Enter the Seam component hame
ping
[input] Enter the local interface name [Ping]

[input] Enter the bean class name [PingBean)

[input] Enter the action method name [ping]

77



Chapter 2. Getting started wi...

[input] Enter the page name [ping]

setup-filters:

new-action:
[echo] Creating a new stateless session bean component with an action method
[copy] Copying 1 file to C:\Projects\helloworld\src\hot\org\jboss\helloworld
[copy] Copying 1 file to C:\Projects\helloworld\src\hot\org\jboss\helloworld
[copy] Copying 1 file to C:\Projects\helloworld\src\hot\org\jboss\helloworld\test
[copy] Copying 1 file to C:\Projects\helloworld\src\hot\org\jboss\helloworld\test
[copy] Copying 1 file to C:\Projects\helloworld\view
[echo] Type 'seam restart' and go to http://localhost:8080/helloworld/ping.seam

BUILD SUCCESSFUL
Total time: 13 seconds
C:\Projects\jboss-seam>

Because we've added a new Seam component, we need to restart the exploded directory
deployment. You can do this by typing seam restart, or by running the rest art target in the
generated project bui | d. xm file from inside Eclipse. Another way to force a restart is to edit
the file r esour ces/ META- | NF/ appl i cati on. xm in Eclipse. Note that you do not need to restart
JBoss each time you change the application.

Now go to http:/ /1 ocal host: 8080/ hel | owor | d/ pi ng. seamand click the button. You can see
the code behind this action by looking in the project sr ¢ directory. Put a breakpoint in the pi ng()
method, and click the button again.

Finally, locate the Pi ngTest . xn file in the test package and run the integration tests using the
TestNG plugin for Eclipse. Alternatively, run the tests using seam t est or the t est target of the
generated build.

2.4. Creating a form with an action

The next step is to create a form. Type:

seam new-form

C:\Projects\jboss-seam>seam new-form
Buildfile: C:\Projects\jboss-seam\seam-gen\build.xml

validate-workspace:

78



Generating an application from an existing
database

validate-project:

action-input:

[input] Enter the Seam component name
hello

[input] Enter the local interface name [Hello]

[input] Enter the bean class name [HelloBean]
[input] Enter the action method name [hello]

[input] Enter the page name [hello]

setup-filters:

new-form:
[echo] Creating a new stateful session bean component with an action method
[copy] Copying 1 file to C:\Projects\hello\src\hot\com\hello
[copy] Copying 1 file to C:\Projects\hello\src\hot\com\hello
[copy] Copying 1 file to C:\Projects\hello\src\hot\com\hello\test
[copy] Copying 1 file to C:\Projects\hello\view
[copy] Copying 1 file to C:\Projects\hello\src\hot\com\hello\test
[echo] Type 'seam restart' and go to http://localhost:8080/hello/hello.seam

BUILD SUCCESSFUL
Total time: 5 seconds
C:\Projects\jboss-seam>

Restart the application again, and go to http://1 ocal host: 8080/ hel | owor | d/ hel | 0. seam
Then take a look at the generated code. Run the test. Try adding some new fields to the form and
Seam component (remember to restart the deployment each time you change the Java code).

2.5. Generating an application from an existing
database

Manually create some tables in your database. (If you need to switch to a different database, just
run seam set up again.) Now type:

seam generate-entities

79



Chapter 2. Getting started wi...

Restart the deployment, and go to htt p://1 ocal host: 8080/ hel | owor | d. You can browse the
database, edit existing objects, and create new objects. If you look at the generated code, you'l
probably be amazed how simple it is! Seam was designed so that data access code is easy to
write by hand, even for people who don't want to cheat by using seam-gen.

2.6. Generating an application from existing JPA/EJB3
entities

Place your existing, valid entity classes inside the sr ¢/ mai n. Now type
seam generate-ui

Restart the deployment, and go to htt p: / /| ocal host : 8080/ hel | owor | d.

2.7. Deploying the application as an EAR

Finally, we want to be able to deploy the application using standard Java EE 5 packaging. First,
we need to remove the exploded directory by running seam unexpl ode. To deploy the EAR, we
can type seam depl oy at the command prompt, or run the depl oy target of the generated project
build script. You can undeploy using seam undepl oy or the undepl oy target.

By default, the application will be deployed with the dev profile. The EAR will include the
persi stence-dev.xm and i nport-dev. sql files, and the nyproj ect - dev-ds. xnm file will be
deployed. You can change the profile, and use the prod profile, by typing

seam -Dprofile=prod deploy

You can even define new deployment profiles for your application. Just add appropriately
named files to your project—for example, per si st ence- st agi ng. xm , i mpor t - st agi ng. sql and
nmypr oj ect - st agi ng- ds. xnl —and select the name of the profile using - Dpr of i | e=st agi ng.

2.8. Seam and incremental hot deployment

When you deploy your Seam application as an exploded directory, you'll get some support for
incremental hot deployment at development time. You need to enable debug mode in both Seam
and Facelets, by adding this line to conponent s. xm :

<core:init debug="true">

Now, the following files may be redeployed without requiring a full restart of the web application:

80



Using Seam with JBoss 4.0

« any facelets page
e any pages. xni file

But if we want to change any Java code, we still need to do a full restart of the application. (In JBoss
this may be accomplished by touching the top level deployment descriptor: appl i cati on. xml for
an EAR deployment, or web. xm for a WAR deployment.)

But if you really want a fast edit/compile/test cycle, Seam supports incremental redeployment
of JavaBean components. To make use of this functionality, you must deploy the JavaBean
components into the WEB- | NF/ dev directory, so that they will be loaded by a special Seam
classloader, instead of by the WAR or EAR classloader.

You need to be aware of the following limitations:

« the components must be JavaBean components, they cannot be EJB3 beans (we are working
on fixing this limitation)

* entities can never be hot-deployed

« components deployed via conponent s. xni may not be hot-deployed

« the hot-deployable components will not be visible to any classes deployed outside of WEB- | NF/
dev

« Seam debug mode must be enabled and j boss- seam debug. j ar must be in VEB- I NF/ i b
* You must have the Seam filter installed in web.xml
* You may see errors if the system is placed under any load and debug is enabled.

If you create a WAR project using seam-gen, incremental hot deployment is available out of the
box for classes inthe sr ¢/ hot source directory. However, seam-gen does not support incremental
hot deployment for EAR projects.

2.9. Using Seam with JBoss 4.0

Seam 2.0 was developed for JavaServer Faces 1.2. When using JBoss AS, we recommend using
JBoss 4.2 or JBoss 5.0, both of which bundle the JSF 1.2 reference implementation. However, it is
still possible to use Seam 2.0 on the JBoss 4.0 platform. There are two basic steps required to do
this: install an EJB3-enabled version of JBoss 4.0 and replace MyFaces with the JSF 1.2 reference
implementation. Once you complete these steps, Seam 2.0 applications can be deployed to JBoss
4.0.

2.9.1. Install JBoss 4.0

JBoss 4.0 does not ship a default configuration compatible with Seam. To run Seam, you must
install JBoss 4.0.5 using the JEMS 1.2 installer with the ejb3 profile selected. Seam will not run

81



Chapter 2. Getting started wi...

with an installation that doesn't include EJB3 support. The JEMS installer can be downloaded
from http://labs.jboss.com/jemsinstaller/downloads.

2.9.2. Install the JSF 1.2 RI

The web configuration for JBoss 4.0 can be found in the server/ def aul t/ depl oy/ j bossweb-
tontat 55. sar. You'll need to delete nyf aces-api . j ar any nyfaces-inpl.jar from the j sf-
li bs directory. Then, you'll need to copy j sf-api.jar,jsf-inpl.jar, el-api.jar, and el -
ri.jar tothatdirectory. The JSF JARs can be found in the Seam | i b directory. The el JARs can
be obtained from the Seam 1.2 release.

You'll also need to edit the conf/ web. xn , replacing nyf aces-i npl . j ar withjsf-inpl.jar.

82


http://labs.jboss.com/jemsinstaller/downloads

Chapter 3.

Getting started with Seam, using
JBoss Tools

JBoss Tools is a collection of Eclipse plugins. JBoss Tools a project creation wizard for Seam,
Content Assist for the Unified Expression Language (EL) in both facelets and Java code, a
graphical editor for jPDL, a graphical editor for Seam configuration files, support for running Seam
integration tests from within Eclipse, and much more.

In short, if you are an Eclipse user, then you'll want JBoss Tools!

JBoss Tools, as with seam-gen, works best with JBoss AS, but it's possible with a few tweaks to
get your app running on other application servers. The changes are much like those described
for seam-gen later in this reference manual.

3.1. Before you start

Make sure you have JDK 5, JBoss AS 4.2 or 5.0, Eclipse 3.3, the JBoss Tools plugins (at least
Seam Tools, the Visual Page Editor, jBPM Tools and JBoss AS Tools) and the TestNG plugin for
Eclipse correctly installed before starting.

Please see the official JBoss Tools installation [http://www.jboss.org/tools/download/installation]
page for the quickest way to get JBoss Tools setup in Eclipse. You can also check out the
Installing JBoss Tools [http://www.jboss.org/community/wiki/InstallingJBossTools] page on the
JBoss community wiki for the gory details and a set of alternative installation approaches.

3.2. Setting up a new Seam project

Start up Eclipse and select the Seam perspective.

Go to File -> New -> Seam Web Project.

83


http://www.jboss.org/tools/download/installation
http://www.jboss.org/tools/download/installation
http://www.jboss.org/community/wiki/InstallingJBossTools
http://www.jboss.org/community/wiki/InstallingJBossTools

Chapter 3. Getting started wi...

£ Seam Web Project

=ar

Show In W > [ Project...
Copy § - El_:l} Pﬂ.Cl‘(-ﬂgE
Copy Qualified Name © Class
‘% Paste g\ & Interface
u:l Delete + | #@7Source Folder
[ Folder
Build Path » ¢ File
43 Import... Seam Action
1 Export Seam Form
3 Seam Entity
7 " Refresh F5 - Seam Conversation
= Properties o ' Seam Generate Entities
| | | —
I - i Example... ew 52N\
Server | |_

= Other...
T ————

First, enter a name for your new project. For this tutorial, we're going to use hel | owor 1 d .

Now, we need to tell JBoss Tools about JBoss AS. In this example we are using JBoss AS 4.2,
though you can certainly use JBoss AS 5.0 as well. Selecting JBoss AS is a two step process.
First we need to define a runtime. Again, we'll choose JBoss AS 4.2 in this case:

84



Setting up a new Seam project

88 New Server Runtime

Mew Server Runtime

Define a new installed server runtime environment

Runtimes are used at build time to compile projects.

Download additional server adapters

Select the runtime type:

type filter text

b = Apache

b [ Basic

b [ Caucho

b = IBM

¥ [ JBoss, a division of Red Hat
".J JBoss 3.2 Runtime
".J JBoss 4.0 Runtime
".J JBoss 4.2 Runtime

<J IRnss Menlov-0nlv Runtime

JBoss Application Server 4.2

E Also create new local server

(P——

4|

@ e ()

Enter a name for the runtime, and locate it on your hard drive:

Firish

Cancel

85



Chapter 3. Getting started wi...

MMM New Server Runtime

JBoss Runtime Wizard

] L ]
e 4.2
A JBoss Server runtime references a JBoss installation directory.
It can be used to set up classpaths for projects which depend on this runtime,
as well as by a "server” which will be able to start and stop instances of JBoss.
Mame
|Boss AS 4.2.2.CA
Home Directory
fApplications/jboss-4.2.2.04 Browse...
JIRE
VM 1.5.0 (MacOS X Default) v IRE
Configuration
1 all
'ﬁ default
'ﬁ minimal
) < Back Next = Finish Cance
P

Next, we need to define a server JBoss Tools can deploy the project to. Make sure to again select
JBoss AS 4.2, and also the runtime you just defined:

86




Setting up a new Seam project

MY M

MNew Server

Define a New Server

Choose the type of server to create

Lerver's host name:  |ocalhost

Select the server type:

w

Diown load additional server adapters

type filter text

=~ Apache

= Basic

= Caucho

(== IBM

=~ JBoss, a division of Red Hat
“J JBoss AS 3.2
“J JBoss AS 4.0
“J JBoss AS 4.2

",J JBoss Deploy-0Only Server
(=T [y Ai =

JBoss Application Server 4.2

Server runtime:  JBoss AS 4.2.2.GA

s < Back

On the next screen give the server a name, and hit Finish:

MNext >

e

. Installed Runtimes...

Finish Cance

87



Chapter 3. Getting started wi...

OO0 New Server

Create a new JBoss Server B

o 4.2

A JBoss Server manages starting and stopping instances of JBoss.
It manages command line arguments and keeps track of which modules have been deployed.

Marme
|Boss 4.2.2.C8 Server

Runtime Information

If the runtime information below is incorrect, please press back, Installed Runtimes...,
and then Add to create a new runtime from a different location.

Home Directory fApplications/jboss-4.2.2.GA
JRE JSystem/Library/Frameworks /JavavM.framework /Versions/1.5.0/Home
Configuration default

Login Credentials

JMX Console Access

User Mame

Password

Ceployment

Deploy Directory fApplications/jboss-4.2.2.GA/server/default/deploy Browse...
(7) < Back Next > Finish Cance

Make sure the runtime and server you just created are selected, select Dynamic Web Project with
Seam 2.0 (technology preview) and hit Next:

88



Setting up a new Seam project

Mew Seam Project

Seam Web Project

Create standalone Seam Web Project

Project name: helloworld

Project contents:

‘u"r Use default

Directory: JfUsers/pmuir/workspace-jbug/helloworld Browse..

Target Runtime

JBoss AS 4.2.2.CA = P EW

Target Server

JBoss 4.2.2.GA Server

4B
-

Configurations

4

Dynamic Web Project with Seam 2.0 (technology preview)

(7 < Back MNext = Finish Cance

']

The next 3 screens allow you to further customize your new project, but for us the defaults are
fine. So just hit Next until you reach the final screen.

The first step here is to tell JBoss Tools about the Seam download you want to use. Add a new
Seam Runtime - make sure to give it a name, and select 2.0 as the version:

89



Chapter 3. Getting started wi...

Mew Seam Runtime

Seam Runtime

Create a Seam Runtime

Marmne: Seam 2.0.2.CR1
Version: 2.0

Home Folder: JUsers/pmuir/workspace fjboss-seam-2.0.2.CR1

The most important choice you need to make is between EAR deployment and WAR deployment
of your project. EAR projects support EJB 3.0 and require Java EE 5. WAR projects do not support
EJB 3.0, but may be deployed to a J2EE environment. The packaging of a WAR is also simpler to
understand. If you installed an EJB3-ready application server like JBoss, choose EAR. Otherwise,
choose WAR. We'll assume that you've chosen a WAR deployment for the rest of the tutorial, but
you can follow exactly the same steps for a EAR deployment.

Next, select your database type. We'll assume you have MySQL installed, with an existing
schema. You'll need to tell JBoss Tools about the database, select MySQL as the database, and
create a new connection profile. Select Generic JDBC Connection:

90

1 ¥



Setting up a new Seam project

MY M MNew Connection Profile

Wizard Selection Page

Please select the connection profile type:

E4 Derby Embedded Database
£4 Generic JDBC Connection

Ej HSQLDE Connection Profile
Ej PostgreSQL JDBC Connection
£4 Sybase ASA

L3 < Back MNext

Give it a name:

Finish

Cance

91

=
-
Bt
g



Chapter 3. Getting started wi...

OO New JDBC Connection Profile

Create connection profile

Please enter detailed information

Marme: MySQL Hellowaorld

Description(optional):

p— Auto-connect at startup.

| < Back Next =

Finish

_""M;‘l.-"

Cancel

92



Setting up a new Seam project

JBoss Tools doesn't come with drivers for any databases, so you need to tell JBoss Tools where

the MySQL JDBC driver is. Tell it about the driver by clicking ....

Locate MySQL 5, and hit Add...:

YOy Oy Driver Definitions

Available Driver Definitions

Add, edit, or remove driver definitions to manage available driver definitions.

-

E‘%‘ MySQL Add...
C& 4.0 .
E,Eﬁ 41 Edit...
3 5.0
Remowve
G sa
E;@a Dracle Copy
7 Cance 0K
Pl
Choose the MySQL JDBC Driver template:
OO0 New Driver Definition
Specify a Driver Template and Definition Name
Select an available driver template and provide a name for the new driver definition.
Available Driver Templates
E%e Database
0% mysaL
£% 5.0
# MySQL JDBC Driver
Driver Name:
MySQL JDBC Driver
f Edit Mew Driver Definition Immediately
[_‘E] Cance OK
P

93



Chapter 3. Getting started wi...

Locate the jar on your computer by choosing Edit Jar/Zip:

Provide Driver Details

Edit Driver Definition

Madify details in the fields below to provide a unigue name, a list of required jars, and set any available and applicable property values.

Driver Name

MySQL JOBC Driver
Driver Type:

MySQL JOBC Driver
Driver File(s):

SUsersfpmuir/java/mysgl.jar

g
Properties:

Property

Ceneral
Connection URL
Database Name
Driver Class
Password
User ID

jdbc:mysqgl:/ flocalhost:3306/database
database
com.mysql.jdbe.Driver

root

Edit Jar/Zip

Remove Jar/Zip

Review the username and password used to connect, and if correct, hit Ok.

Finally, choose the newly created driver:

94



Setting up a new Seam project

Driver Definitions

Available Driver Definitions

Add, edit, or remove driver definitions to manage available driver definitions,

L MySOL .
G a0

O 4.1 Edit...

Gk 5.0

s

# MySQL JDBC Driver Remove

G 5.1

o

i R i o nY

7

n
|'_'h

If you are working with an existing data model, make sure you tell JBoss Tools that the tables
already exist in the database.

Review the username and password used to connect, test the connection using the Test
Connection button, and if it works, hit Finish:

Finally, review the package names for your generated beans, and if you are happy, click Finish:

95



Chapter 3. Getting started wi...

Mew Seam Project

Seam Facet

Configure Seam Facet Settings

General

Seam Runtime: Seam 2.0.1.CA =

Deploy as: | WAR EAR

Database

Database Type: MyS0L

Connection profile: MySOL Hellowarld = Edit.. ey

Database Schema Name:

Catabase Catalog Name:

DB Tables already exists in database:

Recreate database tables and data on deploy:
Code Generation

Session Bean Package Name: helloworld.session
Entity Bean Package Name: helloworld.entity

Test Package Name: helloworld. test

JBoss has sophisticated support for hot re-deployment of WARs and EARs. Unfortunately,
due to bugs in the JVM, repeated redeployment of an EAR—which is common during
development—eventually causes the JVM to run out of perm gen space. For this reason, we
recommend running JBoss in a JVM with a large perm gen space at development time. We
suggest the following values:

96

4k



Setting up a new Seam project

-Xms512m -Xmx1024m -XX:PermSize=256m -XX:MaxPermSize=512

If you don't have so much memory available, the following is our minimum recommendation:

-Xms256m -Xmx512m -XX:PermSize=128m -XX:MaxPermSize=256

Locate the server in the JBoss Server View, right click on the server and select Edit Launch
Configuration:

Clean...

& Twiddle Server
22 Edit Launch Configuration

Server State I Add and Remove Projects...
“J JBoss 4.2.2.GA Serve | o Stopped

[EA Problems

Seam Componen

Then, alter the VM arguements:

97



Chapter 3. Getting started wi...

OO0 Properties for JBoss 4.2.2.CA Server

Edit launch configuration properties
Below is the launch configuration properties for starting, stopping, and polling JBoss Servers for their status. t I ;a

If your server issecure, you will want to ensure the appropriate password parameters are passed in.

Name: |Boss 4.2.2.CA Server

(= Arguments ™. % Classpath\l T:E.._/; Snurce\l E Envirnnmenﬂ E@JRE} E=| Cnmmorﬂ

Program arguments:
--configuration=default
Variables...
WM arguments:
-Xms5Ll2m -XmxL024m -¥X:PermSize=256m -XX:MaxPermSize=512
Variables...
Working directory:
) Default: fApplications/jbdevstudio/eclipse/Eclipse.app /Contents /Mac05
i Other: fApplications/jboss-4.2.2.G4A/bin
Waorkspace... File System... Variables...
Apply Revert
Cance 0K

If you don't want to bother with this stuff now, you don't have to—come back to it later, when you
get your first Qut Of Menmor yExcept i on.

To start JBoss, and deploy the project, just right click on the server you created, and click Start,
(or Debug to start in debug mode):

98



Creating a new action

~ psat
%5 Debug
W Stop
L Publish
Clean...

& Twiddle Server

2. Problems |~ZI 1) Edit Launch Configuration m

Server [y Add and Remove Projects... |
“J JBoss 4.2.

Don't get scared by the XML configuration documents that were generated into the project
directory. They are mostly standard Java EE stuff, the stuff you need to create once and then
never look at again, and they are 90% the same between all Seam projects.

3.3. Creating a new action

If you're used to traditional action-style web frameworks, you're probably wondering how you can
create a simple web page with a stateless action method in Java.

First, select New -> Seam Action:

| ' .
ve h*”"“‘“;_ (2 Seam Web Project
» Zsrel 0 Into F

—

b B srcf _ T Project...

> EEJRE! Open in New Window # Package

= =LAl Open Type Hierarchy F4 & Class

> EiWeb  Show In EW -
&= buil | & Interface

b = resq [iZ Copy %C 7 Source Folder
(= sre Copy Qualified Name (% Folder

b= Well & pagre 3BV ¥ File

i hlelc % Delete & ¥ Seam Action

Now, enter the name of the Seam component. JBoss Tools selects sensible defaults for other
fields:

99



Chapter 3. Getting started wi...

Mew Seam Action

Seam Action

Create a new Seam action

Seam Project: helloworld Browse...

Seam component name:  ping

POJO class name: Ping

Bean name: FingBean

Method name: ping

Fage name: ping

Package mame: helloworld.session Browse...
(7 Cance Finish

Finally, hit Finish.

Now go to http:/ /I ocal host : 8080/ hel | owor | d/ pi ng. seamand click the button. You can see
the code behind this action by looking in the project sr ¢ directory. Put a breakpoint in the pi ng()
method, and click the button again.

Finally, open the hel | owor | d-t est project, locate Pi ngTest class, right click on it, and choose
Run As -> TestNG Test:

100



Creating a form with an action

. = L0 udalmea Marme
v '[5"'- helloworld-test B= Py

k [ test-src LE Paste ®V

v #H helloworld.test # Delete 3

> PingTest.java
) PingTestja Build Path >
|X| PinaTestxml _

b (= META-INF Source LHS >
components.prope Refactor BT >
seam.properties

tug Import...
b =i Referenced Libraries s Imp
. 3 Export...
p =0 JRE System Library VM
r & lib - References >
PEEE——— .
Declarations >
= Properties B3 (= ::
........................................... — &
Property value | ¥ SEfrESh F5
¥ Info Assign Working Sets...
derived false
editable true
last modified | April 12, 2| Debug As >
linked false Prﬂ_ﬁ|E As >
——— tiemeeimd  Validate

3.4. Creating a form with an action

The first step is to create a form. Select New -> Seam Form:

b > hellowarld | T
b & helloworld-te AL A
Co Into
Open in New Window
Open Type Hierarchy F4
Show In HEW »
= Copy #C
Copy Qualified Name
- Paste BV
# Delete =
Build Path »

Now, enter the name of the Seam component. JBoss Tools
fields:

pnal action methods

w-| 1 Run on Server
" 2 TestNG Test

GXXR
XX N

(2 Open Run Dialog...

> Searmn Web Project
© Project...

H# Package

(& Class

& Interface

&7 Source Folder
[ Folder

| File

Seam Action

© Seam Form

™~ _ _ _ F__als

selects sensible defaults for other

101



Chapter 3. Getting started wi...

o T e R e ¥

Mew Seam Form

Seam Form

Create a new Seam form

Seam Project: helloworld Browse...

Seam component name:  hello

POJO class name: Hello

Bean name:; HelloBean

Method name: hello

Fage name: hello

Package mame: helloworld.session Browse...
(7 Cance Finish

Go to http:/ /1 ocal host: 8080/ hel | owor | d/ hel | 0. seam Then take a look at the generated
code. Run the test. Try adding some new fields to the form and Seam component (note, you don't
need to restart the app server each time you change the code in src/ act i on as Seam hot reloads
the component for you Section 3.6, “Seam and incremental hot deployment with JBoss Tools”).

3.5. Generating an application from an existing

database

Manually create some tables in your database. (If you need to switch to a different database, create
a new project, and select the correct database). Then, select New -> Seam Generate Entities:

102



Generating an application from an existing
database

|I_I‘=|.?- “

b 2= helloworld — .
b & hetloworid- ML - Seam Web Project o

Go Into Y Project...

Open in New Window ! # Package

Open Type Hierarchy F4 @ Class

Show In HEW > . . & Interface )

2 Copy 3#C & Source Folder

Copy Qualified Name % Folder

‘2 Paste A % File

# Delete 32 Seam Action |
Seam Form kL

Build Path ) > Seam Entity Ih

SOUTCE -‘faﬂs " Seam Conversation

Refactor NET >

. Seam Generate Entities

JBoss Tools gives you the option to either reverse engineer entities, components and views from a
database schema or to reverse engineer components and views from existing JPA entities. We're
going to do Reverse engieneer from database.

Restart the deployment:
L

r - =
(e JBoss Servg View EE\[L Problems | v Taskq - Seam Com|

Server State Status
-,J JBoss 4.2.2.C0A Serve E‘p Started Synchro

k4 -T- Modules
=L fhelloworld fresources fhelloworld-ds. xmil

—
| helloworld pe
i Event Log J Remove

R PR o Full Publish

- File Filters 54 Incremental Publish

Then go to http://1 ocal host: 8080/ hel | owor | d. You can browse the database, edit existing
objects, and create new objects. If you look at the generated code, you'll probably be amazed
how simple it is! Seam was designed so that data access code is easy to write by hand, even for
people who don't want to cheat by using reverse engineering.

103



Chapter 3. Getting started wi...

3.6. Seam and incremental hot deployment with JBoss
Tools

JBoss Tools supports incremental hot deployment of:

« any facelets page
e any pages. xni file
out of the box.

But if we want to change any Java code, we still need to do a full restart of the application by
doing a Full Publish.

But if you really want a fast edit/compile/test cycle, Seam supports incremental redeployment
of JavaBean components. To make use of this functionality, you must deploy the JavaBean
components into the WEB- | NF/ dev directory, so that they will be loaded by a special Seam
classloader, instead of by the WAR or EAR classloader.

You need to be aware of the following limitations:

» the components must be JavaBean components, they cannot be EJB3 beans (we are working
on fixing this limitation)

« entities can never be hot-deloyed

« components deployed via conponent s. xni may not be hot-deployed

« the hot-deployable components will not be visible to any classes deployed outside of WEB- | NF/
dev

« Seam debug mode must be enabled and j boss- seam debug. j ar must be in VEB- I NF/ | i b
« You must have the Seam filter installed in web.xml
* You may see errors if the system is placed under any load and debug is enabled.

If you create a WAR project using JBoss Tools, incremental hot deployment is available out of
the box for classes in the src/ acti on source directory. However, JBoss Tools does not support
incremental hot deployment for EAR projects.

104



Chapter 4.

The contextual component model

The two core concepts in Seam are the notion of a context and the notion of a component.
Components are stateful objects, usually EJBs, and an instance of a component is associated
with a context, and given a name in that context. Bijection provides a mechanism for aliasing
internal component names (instance variables) to contextual names, allowing component trees to
be dynamically assembled, and reassembled by Seam.

Let's start by describing the contexts built in to Seam.

4.1. Seam contexts

Seam contexts are created and destroyed by the framework. The application does not control
context demarcation via explicit Java API calls. Context are usually implicit. In some cases,
however, contexts are demarcated via annotations.

The basic Seam contexts are:

» Stateless context

« Event (i.e., request) context
» Page context

» Conversation context

» Session context
 Business process context

* Application context

You will recognize some of these contexts from servlet and related specifications. However, two of
them might be new to you: conversation context, and business process context. One reason state
management in web applications is so fragile and error-prone is that the three built-in contexts
(request, session and application) are not especially meaningful from the point of view of the
business logic. A user login session, for example, is a fairly arbitrary construct in terms of the
actual application work flow. Therefore, most Seam components are scoped to the conversation
or business process contexts, since they are the contexts which are most meaningful in terms
of the application.

Let's look at each context in turn.

4.1.1. Stateless context

Components which are truly stateless (stateless session beans, primarily) always live in the
stateless context (which is basically the absense of a context since the instance Seam resolves
is not stored). Stateless components are not very interesting, and are arguably not very object-

105



Chapter 4. The contextual com...

oriented. Nevertheless, they do get developed and used and are thus an important part of any
Seam application.

4.1.2. Event context

The event context is the "narrowest" stateful context, and is a generalization of the notion of the
web request context to cover other kinds of events. Nevertheless, the event context associated
with the lifecycle of a JSF request is the most important example of an event context, and the
one you will work with most often. Components associated with the event context are destroyed
at the end of the request, but their state is available and well-defined for at least the lifecycle of
the request.

When you invoke a Seam component via RMI, or Seam Remoting, the event context is created
and destroyed just for the invocation.

4.1.3. Page context

The page context allows you to associate state with a particular instance of a rendered page.
You can initialize state in your event listener, or while actually rendering the page, and then have
access to it from any event that originates from that page. This is especially useful for functionality
like clickable lists, where the list is backed by changing data on the server side. The state is
actually serialized to the client, so this construct is extremely robust with respect to multi-window
operation and the back button.

4.1.4. Conversation context

The conversation context is a truly central concept in Seam. A conversation is a unit of work from
the point of view of the user. It might span several interactions with the user, several requests,
and several database transactions. But to the user, a conversation solves a single problem. For
example, "book hotel", "approve contract", "create order" are all conversations. You might like to
think of a conversation implementing a single "use case" or "user story", but the relationship is

not necessarily quite exact.

A conversation holds state associated with "what the user is doing now, in this window". A single
user may have multiple conversations in progress at any point in time, usually in multiple windows.
The conversation context allows us to ensure that state from the different conversations does not
collide and cause bugs.

It might take you some time to get used to thinking of applications in terms of conversations. But
once you get used to it, we think you'll love the notion, and never be able to not think in terms
of conversations again!

Some conversations last for just a single request. Conversations that span multiple requests must
be demarcated using annotations provided by Seam.

Some conversations are also tasks. A task is a conversation that is significant in terms of a long-
running business process, and has the potential to trigger a business process state transition when
it is successfully completed. Seam provides a special set of annotations for task demarcation.

106



Session context

Conversations may be nested, with one conversation taking place "inside" a wider conversation.
This is an advanced feature.

Usually, conversation state is actually held by Seam in the servlet session between
requests. Seam implements configurable conversation timeout, automatically destroying inactive
conversations, and thus ensuring that the state held by a single user login session does not grow
without bound if the user abandons conversations.

Seam serializes processing of concurrent requests that take place in the same long-running
conversation context, in the same process.

Alternatively, Seam may be configured to keep conversational state in the client browser.

4.1.5. Session context

A session context holds state associated with the user login session. While there are some cases
where it is useful to share state between several conversations, we generally frown on the use of
session context for holding components other than global information about the logged in user.

In a JSR-168 portal environment, the session context represents the portlet session.

4.1.6. Business process context

The business process context holds state associated with the long running business process. This
state is managed and made persistent by the BPM engine (JBoss jBPM). The business process
spans multiple interactions with multiple users, so this state is shared between multiple users, but
in a well-defined manner. The current task determines the current business process instance, and
the lifecycle of the business process is defined externally using a process definition language, so
there are no special annotations for business process demarcation.

4.1.7. Application context

The application context is the familiar servlet context from the servlet spec. Application context
is mainly useful for holding static information such as configuration data, reference data or
metamodels. For example, Seam stores its own configuration and metamodel in the application
context.

4.1.8. Context variables

A context defines a namespace, a set of context variables. These work much the same as session
or request attributes in the servlet spec. You may bind any value you like to a context variable,
but usually we bind Seam component instances to context variables.

So, within a context, a component instance is identified by the context variable name (this is
usually, but not always, the same as the component name). You may programatically access a
named component instance in a particular scope via the Cont ext s class, which provides access
to several thread-bound instances of the Cont ext interface:

107



Chapter 4. The contextual com...

User user = (User) Contexts.getSessionContext().get("user");

You may also set or change the value associated with a name:

Contexts.getSessionContext().set("user", user);

Usually, however, we obtain components from a context via injection, and put component
instances into a context via outjection.

4.1.9. Context search priority

Sometimes, as above, component instances are obtained from a particular known scope. Other
times, all stateful scopes are searched, in priority order. The order is as follows:

« Event context

* Page context

« Conversation context

» Session context

» Business process context

 Application context

You can perform a priority search by calling Contexts. | ookupl nStateful Contexts().
Whenever you access a component by name from a JSF page, a priority search occurs.

4.1.10. Concurrency model

Neither the servlet nor EJB specifications define any facilities for managing concurrent requests
originating from the same client. The servlet container simply lets all threads run concurrently
and leaves enforcing threadsafeness to application code. The EJB container allows stateless
components to be accessed concurrently, and throws an exception if multiple threads access a
stateful session bean.

This behavior might have been okay in old-style web applications which were based around fine-
grained, synchronous requests. But for modern applications which make heavy use of many fine-
grained, asynchronous (AJAX) requests, concurrency is a fact of life, and must be supported by
the programming model. Seam weaves a concurrency management layer into its context model.

The Seam session and application contexts are multithreaded. Seam will allow concurrent
requests in a context to be processed concurrently. The event and page contexts are by nature
single threaded. The business process context is strictly speaking multi-threaded, but in practice

108



Seam components

concurrency is sufficiently rare that this fact may be disregarded most of the time. Finally, Seam
enforces a single thread per conversation per process model for the conversation context by
serializing concurrent requests in the same long-running conversation context.

Since the session context is multithreaded, and often contains volatile state, session scope
components are always protected by Seam from concurrent access so long as the Seam
interceptors are not disabled for that component. If interceptors are disabled, then any thread-
safety that is required must be implemented by the component itself. Seam serializes requests to
session scope session beans and JavaBeans by default (and detects and breaks any deadlocks
that occur). This is not the default behaviour for application scoped components however, since
application scoped components do not usually hold volatile state and because synchronization at
the global level is extremely expensive. However, you can force a serialized threading model on
any session bean or JavaBean component by adding the @ynchr oni zed annotation.

This concurrency model means that AJAX clients can safely use volatile session and
conversational state, without the need for any special work on the part of the developer.

4.2. Seam components

Seam components are POJOs (Plain Old Java Objects). In particular, they are JavaBeans or
EJB 3.0 enterprise beans. While Seam does not require that components be EJBs and can even
be used without an EJB 3.0 compliant container, Seam was designed with EJB 3.0 in mind and
includes deep integration with EJB 3.0. Seam supports the following component types.

* EJB 3.0 stateless session beans

» EJB 3.0 stateful session beans

» EJB 3.0 entity beans (i.e., JPA entity classes)
« JavaBeans

» EJB 3.0 message-driven beans

« Spring beans (see Chapter 27, Spring Framework integration)

4.2.1. Stateless session beans

Stateless session bean components are not able to hold state across multiple invocations.
Therefore, they usually work by operating upon the state of other components in the various
Seam contexts. They may be used as JSF action listeners, but cannot provide properties to JSF
components for display.

Stateless session beans always live in the stateless context.

Stateless session beans can be accessed concurrently as a new instance is used for each
request. Assigning the instance to the request is the responsibility of the EJB3 container (normally

109



Chapter 4. The contextual com...

instances will be allocated from a reusable pool meaning that you may find any instance variables
contain data from previous uses of the bean).

Stateless session beans are the least interesting kind of Seam component.

Seam stateless session bean components may be instantiated using Conponent . get | nst ance()
or @n(create=true). They should not be directly instantiated via JNDI lookup or the new
operator.

4.2.2. Stateful session beans

Stateful session bean components are able to hold state not only across multiple invocations of
the bean, but also across multiple requests. Application state that does not belong in the database
should usually be held by stateful session beans. This is a major difference between Seam
and many other web application frameworks. Instead of sticking information about the current
conversation directly in the Ht t pSessi on, you should keep it in instance variables of a stateful
session bean that is bound to the conversation context. This allows Seam to manage the lifecycle
of this state for you, and ensure that there are no collisions between state relating to different
concurrent conversations.

Stateful session beans are often used as JSF action listener, and as backing beans that provide
properties to JSF components for display or form submission.

By default, stateful session beans are bound to the conversation context. They may never be
bound to the page or stateless contexts.

Concurrent requests to session-scoped stateful session beans are always serialized by Seam as
long as the Seam interceptors are not disabled for the bean.

Seam stateful session bean components may be instantiated using Conponent . get | nst ance()
or @n(create=true). They should not be directly instantiated via JNDI lookup or the new
operator.

4.2.3. Entity beans

Entity beans may be bound to a context variable and function as a seam component. Because
entities have a persistent identity in addition to their contextual identity, entity instances are usually
bound explicitly in Java code, rather than being instantiated implicitly by Seam.

Entity bean components do not support bijection or context demarcation. Nor does invocation of
an entity bean trigger validation.

Entity beans are not usually used as JSF action listeners, but do often function as backing beans
that provide properties to JSF components for display or form submission. In particular, it is
common to use an entity as a backing bean, together with a stateless session bean action listener
to implement create/update/delete type functionality.

By default, entity beans are bound to the conversation context. They may never be bound to the
stateless context.

110



JavaBeans

Note that it in a clustered environment is somewhat less efficient to bind an entity bean directly to
a conversation or session scoped Seam context variable than it would be to hold a reference to
the entity bean in a stateful session bean. For this reason, not all Seam applications define entity
beans to be Seam components.

Seam entity bean components may be instantiated using Conponent. getlnstance(),
@n(create=true) or directly using the new operator.

4.2.4. JavaBeans

Javabeans may be used just like a stateless or stateful session bean. However, they do not provide
the functionality of a session bean (declarative transaction demarcation, declarative security,
efficient clustered state replication, EJB 3.0 persistence, timeout methods, etc).

In a later chapter, we show you how to use Seam and Hibernate without an EJB container. In
this use case, components are JavaBeans instead of session beans. Note, however, that in many
application servers it is somewhat less efficient to cluster conversation or session scoped Seam
JavaBean components than it is to cluster stateful session bean components.

By default, JavaBeans are bound to the event context.
Concurrent requests to session-scoped JavaBeans are always serialized by Seam.

Seam JavaBean components may be instantiated using Conponent. getlnstance() or
@n(create=true). They should not be directly instantiated using the new operator.

4.2.5. Message-driven beans

Message-driven beans may function as a seam component. However, message-driven beans
are called quite differently to other Seam components - instead of invoking them via the context
variable, they listen for messages sent to a JMS queue or topic.

Message-driven beans may not be bound to a Seam context. Nor do they have access to the
session or conversation state of their "caller". However, they do support bijection and some other
Seam functionality.

Message-driven beans are never instantiated by the application. They are instantiated by the EJB
container when a message is received.

4.2.6. Interception

In order to perform its magic (bijection, context demarcation, validation, etc), Seam must intercept
component invocations. For JavaBeans, Seam is in full control of instantiation of the component,
and no special configuration is needed. For entity beans, interception is not required since bijection
and context demarcation are not defined. For session beans, we must register an EJB interceptor
for the session bean component. We could use an annotation, as follows:

@Stateless

111



Chapter 4. The contextual com...

@Interceptors(Seaminterceptor.class)
public class LoginAction implements Login {

But a much better way is to define the interceptor in ej b-j ar. xmi .

<interceptors>
<interceptor>
<interceptor-class>org.jboss.seam.ejb.Seaminterceptor</interceptor-class>
</interceptor>
</interceptors>

<assembly-descriptor>
<interceptor-binding>
<ejb-name>*</ejb-name>
<interceptor-class>org.jboss.seam.ejb.Seaminterceptor</interceptor-class>
</interceptor-binding>
</assembly-descriptor>

4.2.7. Component names

All seam components need a name. We can assigh a hame to a component using the @lane
annotation:

@Name("loginAction")
@Stateless
public class LoginAction implements Login {

This name is the seam component name and is not related to any other name defined by the EJB
specification. However, seam component names work just like JSF managed bean names and
you can think of the two concepts as identical.

@\anre is not the only way to define a component name, but we always need to specify the name
somewhere. If we don't, then none of the other Seam annotations will function.

Whenever Seam instantiates a component, it binds the new instance to a variable in the scope
configured for the component that matches the component name. This behavior is identical to
how JSF managed beans work, except that Seam allows you to configure this mapping using
annotations rather than XML. You can also programmatically bind a component to a context

112



Component names

variable. This is useful if a particular component serves more than one role in the system. For
example, the currently logged in User might be bound to the current User session context
variable, while a User that is the subject of some administration functionality might be bound
to the user conversation context variable. Be careful, though, because through a programmatic
assignment, it's possible to overwrite a context variable that has a reference to a Seam component,
potentially confusing matters.

For very large applications, and for built-in seam components, qualified component names are
often used to avoid naming conflicts.

@Name("com.jboss.myapp.loginAction")
@Stateless
public class LoginAction implements Login {

We may use the qualified component name both in Java code and in JSF's expression language:

<h:commandButton type="submit" value="Login"
action="#{com.jboss.myapp.loginAction.login}"/>

Since this is noisy, Seam also provides a means of aliasing a qualified nhame to a simple name.
Add a line like this to the conponent s. xm file:

<factory name="loginAction" scope="STATELESS" value="#{com.jboss.myapp.loginAction}"/>

All of the built-in Seam components have qualified nhames but can be accessed through their
unqualified names due to the namespace import feature of Seam. The conponents. xn file
included in the Seam JAR defines the following namespaces.

<components xmlns="http://jboss.com/products/seam/components">

<import>org.jboss.seam.core</import>
<import>org.jboss.seam.cache</import>
<import>org.jboss.seam.transaction</import>
<import>org.jboss.seam.framework</import>
<import>org.jboss.seam.web</import>
<import>org.jboss.seam.faces</import>
<import>org.jboss.seam.international</import>
<import>org.jboss.seam.theme</import>

113



Chapter 4. The contextual com...

<import>org.jboss.seam.pageflow</import>
<import>org.jboss.seam.bpm</import>
<import>org.jboss.seam.jms</import>
<import>org.jboss.seam.mail</import>
<import>org.jboss.seam.security</import>
<import>org.jboss.seam.security.management</import>
<import>org.jboss.seam.security.permission</import>
<import>org.jboss.seam.captcha</import>
<import>org.jboss.seam.excel.exporter</import>

<l-- .. --->

</components>

When attempting to resolve an unqualified name, Seam will check each of those namespaces,
in order. You can include additional namespaces in your application's conponent s. xm file for
application-specific namespaces.

4.2.8. Defining the component scope

We can override the default scope (context) of a component using the @cope annotation. This
lets us define what context a component instance is bound to, when it is instantiated by Seam.

@Name("user"
@Entity
@Scope(SESSION)
public class User {

org. j boss. seam ScopeType defines an enumeration of possible scopes.

4.2.9. Components with multiple roles

Some Seam component classes can fulfill more than one role in the system. For example, we
often have a User class which is usually used as a session-scoped component representing the
current user but is used in user administration screens as a conversation-scoped component. The
@Rol e annotation lets us define an additional named role for a component, with a different scope
— it lets us bind the same component class to different context variables. (Any Seam component
instance may be bound to multiple context variables, but this lets us do it at the class level, and
take advantage of auto-instantiation.)

@Name("user")
@Entity
@Scope(CONVERSATION)

114



Built-in components

@Role(name="currentUser", scope=SESSION)
public class User {

The @Rol es annotation lets us specify as many additional roles as we like.

@Name("user")

@Entity

@Scope(CONVERSATION)

@Roles({@Role(name="currentUser", scope=SESSION),
@Role(name="tempUser", scope=EVENT)})

public class User {

4.2.10. Built-in components

Like many good frameworks, Seam eats its own dogfood and is implemented mostly as a set of
built-in Seam interceptors (see later) and Seam components. This makes it easy for applications
to interact with built-in components at runtime or even customize the basic functionality of Seam
by replacing the built-in components with custom implementations. The built-in components are
defined in the Seam namespace or g. j boss. seam cor e and the Java package of the same name.

The built-in components may be injected, just like any Seam components, but they also provide
convenient static i nst ance() methods:

FacesMessages.instance().add("Welcome back, #{user.name}!");

4.3. Bijection

Dependency injection or inversion of control is by now a familiar concept to most Java developers.
Dependency injection allows a component to obtain a reference to another component by
having the container "inject" the other component to a setter method or instance variable. In all
dependency injection implementations that we have seen, injection occurs when the component
is constructed, and the reference does not subsequently change for the lifetime of the component
instance. For stateless components, this is reasonable. From the point of view of a client, all
instances of a particular stateless component are interchangeable. On the other hand, Seam
emphasizes the use of stateful components. So traditional dependency injection is no longer a
very useful construct. Seam introduces the notion of bijection as a generalization of injection. In
contrast to injection, bijection is:

115



Chapter 4. The contextual com...

 contextual - bijection is used to assemble stateful components from various different contexts (a
component from a "wider" context may even have a reference to a component from a "narrower"
context)

« bidirectional - values are injected from context variables into attributes of the component being
invoked, and also outjected from the component attributes back out to the context, allowing the
component being invoked to manipulate the values of contextual variables simply by setting its
own instance variables

e dynamic - since the value of contextual variables changes over time, and since Seam
components are stateful, bijection takes place every time a component is invoked

In essence, bijection lets you alias a context variable to a component instance variable, by
specifying that the value of the instance variable is injected, outjected, or both. Of course, we use
annotations to enable bijection.

The @ n annotation specifies that a value should be injected, either into an instance variable:

@Name("loginAction")

@Stateless

public class LoginAction implements Login {
@In User user;

or into a setter method:

@Name("loginAction")

@Stateless

public class LoginAction implements Login {
User user;

@In
public void setUser(User user) {
this.user=user;

By default, Seam will do a priority search of all contexts, using the name of the property or instance
variable that is being injected. You may wish to specify the context variable name explicitly, using,
for example, @ n("current User").

116



Bijection

If you want Seam to create an instance of the component when there is no existing component
instance bound to the named context variable, you should specify @ n( cr eat e=t r ue) . If the value
is optional (it can be null), specify @ n(r equi r ed=f al se) .

For some components, it can be repetitive to have to specify @ n(cr eat e=t r ue) everywhere they
are used. In such cases, you can annotate the component @ut oCr eat e, and then it will always
be created, whenever needed, even without the explicit use of cr eat e=t r ue.

You can even inject the value of an expression:

@Name("loginAction")

@Stateless

public class LoginAction implements Login {
@In("#{user.username}") String username;

Injected values are disinjected (i.e., set to nul | ) immediately after method completion and
outjection.

(There is much more information about component lifecycle and injection in the next chapter.)

The @ut annotation specifies that an attribute should be outjected, either from an instance
variable:

@Name("loginAction")

@Stateless

public class LoginAction implements Login {
@Out User user;

or from a getter method:

@Name("loginAction")

@Stateless

public class LoginAction implements Login {
User user;

@Out
public User getUser() {
return user;

117



Chapter 4. The contextual com...

An attribute may be both injected and outjected:

@Name("loginAction™)

@Stateless

public class LoginAction implements Login {
@In @Out User user;

or:

@Name("loginAction")

@Stateless

public class LoginAction implements Login {
User user;

@In
public void setUser(User user) {
this.user=user,;

@Out
public User getUser() {
return user;

4.4, Lifecycle methods

Session bean and entity bean Seam components support all the usual EJB 3.0 lifecycle
callback (@ost Const ruct , @r eDest r oy, etc). But Seam also supports the use of any of these
callbacks with JavaBean components. However, since these annotations are not available in
a J2EE environment, Seam defines two additional component lifecycle callbacks, equivalent to
@Post Const ruct and @°r eDest r oy.

118



Conditional installation

The @ eat e method is called after Seam instantiates a component. Components may define only
one @r eat e method.

The @est roy method is called when the context that the Seam component is bound to ends.
Components may define only one @est r oy method.

In addition, stateful session bean components must define a method with no parameters annotated
@enove. This method is called by Seam when the context ends.

Finally, a related annotation is the @t ar t up annotation, which may be applied to any application
or session scoped component. The @t ar t up annotation tells Seam to instantiate the component
immediately, when the context begins, instead of waiting until it is first referenced by a
client. It is possible to control the order of instantiation of startup components by specifying
@5t artup(depends={....}).

4.5. Conditional installation

The @ nst al | annotation lets you control conditional installation of components that are required
in some deployment scenarios and not in others. This is useful if:

* You want to mock out some infrastructural component in tests.
« You want change the implementation of a component in certain deployment scenarios.

« You want to install some components only if their dependencies are available (useful for
framework authors).

@nst al | works by letting you specify precedence and dependencies.

The precedence of a component is a number that Seam uses to decide which component to
install when there are multiple classes with the same component name in the classpath. Seam
will choose the component with the higher precendence. There are some predefined precedence
values (in ascending order):

1. BUI LT_I N— the lowest precedece components are the components built in to Seam.

2. FRAMEWORK — components defined by third-party frameworks may override built-in
components, but are overridden by application components.

3. APPLI CATI ON— the default precedence. This is appropriate for most application components.
4. DEPLOYMENT — for application components which are deployment-specific.
5. MOCK — for mock objects used in testing.

Suppose we have a component named messageSender that talks to a JMS queue.

119



Chapter 4. The contextual com...

@Name("messageSender")
public class MessageSender {
public void sendMessage() {
/ldo something with IMS

In our unit tests, we don't have a JMS queue available, so we would like to stub out this method.
We'll create a mock component that exists in the classpath when unit tests are running, but is
never deployed with the application:

@Name("'messageSender")
@Install(precedence=MOCK)
public class MockMessageSender extends MessageSender {
public void sendMessage() {
/ldo nothing!

The pr ecedence helps Seam decide which version to use when it finds both components in the
classpath.

This is nice if we are able to control exactly which classes are in the classpath. But if I'm writing
a reusable framework with many dependecies, | don't want to have to break that framework
across many jars. | want to be able to decide which components to install depending upon
what other components are installed, and upon what classes are available in the classpath. The
@nstal | annotation also controls this functionality. Seam uses this mechanism internally to
enable conditional installation of many of the built-in components. However, you probably won't
need to use it in your application.

4.6. Logging

Who is not totally fed up with seeing noisy code like this?

private static final Log log = LogFactory.getLog(CreateOrderAction.class);

public Order createOrder(User user, Product product, int quantity) {
if (log.isDebugEnabled() ) {
log.debug("Creating new order for user: " + user.username() +
" product: " + product.name()
+ " quantity: " + quantity);

120



The Mt abl e interface and @rReadOnl y

return new Order(user, product, quantity);

It is difficult to imagine how the code for a simple log message could possibly be more verbose.
There is more lines of code tied up in logging than in the actual business logic! | remain totally
astonished that the Java community has not come up with anything better in 10 years.

Seam provides a logging API that simplifies this code significantly:

@Logger private Log log;

public Order createOrder(User user, Product product, int quantity) {
log.debug("Creating new order for user: #0 product: #1 quantity: #2", user.username(),
product.name(), quantity);
return new Order(user, product, quantity);

It doesn't matter if you declare the | og variable static or not — it will work either way, except for
entity bean components which require the | og variable to be static.

Note that we don't need the noisy if ( |o0g.isDebugEnabled() ) guard, since string
concatenation happens inside the debug() method. Note also that we don't usually need to specify
the log category explicitly, since Seam knows what component it is injecting the Log into.

If User and Product are Seam components available in the current contexts, it gets even better:

@Logger private Log log;

public Order createOrder(User user, Product product, int quantity) {

log.debug("Creating new order for user: #{user.username} product: #{product.name} quantity:
#0", quantity);

return new Order(user, product, quantity);

Seam logging automagically chooses whether to send output to log4j or JDK logging. If log4j is in
the classpath, Seam with use it. If it is not, Seam will use JDK logging.

4.7. The mtavi e iInterface and @readoniy

Many application servers feature an amazingly broken implementation of Ht t pSessi on clustering,
where changes to the state of mutable objects bound to the session are only replicated when the
application calls set Attri but e() explicitly. This is a source of bugs that can not effectively be
tested for at development time, since they will only manifest when failover occurs. Furthermore,

121



Chapter 4. The contextual com...

the actual replication message contains the entire serialized object graph bound to the session
attribute, which is inefficient.

Of course, EJB stateful session beans must perform automatic dirty checking and replication of
mutable state and a sophisticated EJB container can introduce optimizations such as attribute-
level replication. Unfortunately, not all Seam users have the good fortune to be working in an
environment that supports EJB 3.0. So, for session and conversation scoped JavaBean and entity
bean components, Seam provides an extra layer of cluster-safe state management over the top
of the web container session clustering.

For session or conversation scoped JavaBean components, Seam automatically forces replication
to occur by calling set Attri but e() once in every request that the component was invoked by
the application. Of course, this strategy is inefficient for read-mostly components. You can control
this behavior by implementing the org. j boss. seam cor e. Mut abl e interface, or by extending
org.j boss. seam core. Abstract Mut abl e, and writing your own dirty-checking logic inside the
component. For example,

@Name("account")
public class Account extends AbstractMutable

{

private BigDecimal balance;

public void setBalance(BigDecimal balance)

{

setDirty(this.balance, balance);
this.balance = balance;

public BigDecimal getBalance()

{

return balance;

Or, you can use the @eadOnl y annotation to achieve a similar effect:

@Name("account")
public class Account

{

private BigDecimal balance;

122



The Mt abl e interface and @rReadOnl y

public void setBalance(BigDecimal balance)

{

this.balance = balance;

@ReadOnly
public BigDecimal getBalance()

{

return balance;

For session or conversation scoped entity bean components, Seam automatically forces
replication to occur by calling set At t ri but e() once in every request, unless the (conversation-
scoped) entity is currently associated with a Seam-managed persistence context, in which case no
replication is needed. This strategy is not necessarily efficient, so session or conversation scope
entity beans should be used with care. You can always write a stateful session bean or JavaBean
component to "manage" the entity bean instance. For example,

@Stateful
@Name("account")
public class AccountManager extends AbstractMutable

{

private Account account; // an entity bean

@Unwrap
public Account getAccount()

{

return account;

Note that the Ent i t yHorre class in the Seam Application Framework provides a great example of
managing an entity bean instance using a Seam component.

123



Chapter 4. The contextual com...

4.8. Factory and manager components

We often need to work with objects that are not Seam components. But we still want to be able to
inject them into our components using @ n and use them in value and method binding expressions,
etc. Sometimes, we even need to tie them into the Seam context lifecycle (@est r oy, for example).
So the Seam contexts can contain objects which are not Seam components, and Seam provides a
couple of nice features that make it easier to work with non-component objects bound to contexts.

The factory component pattern lets a Seam component act as the instantiator for a non-component
object. A factory method will be called when a context variable is referenced but has no value
bound to it. We define factory methods using the @act or y annotation. The factory method binds
a value to the context variable, and determines the scope of the bound value. There are two styles
of factory method. The first style returns a value, which is bound to the context by Seam:

@Factory(scope=CONVERSATION)
public List<Customer> getCustomerList() {
return ... ;

The second style is a method of type voi d which binds the value to the context variable itself:

@DataModel List<Customer> customerList;

@Factory("customerList")
public void initCustomerList() {
customerlList = ... ;

In both cases, the factory method is called when we reference the cust oner Li st context variable
and its value is null, and then has no further part to play in the lifecycle of the value. An even more
powerful pattern is the manager component pattern. In this case, we have a Seam component
that is bound to a context variable, that manages the value of the context variable, while remaining
invisible to clients.

A manager component is any component with an @nw ap method. This method returns the value
that will be visable to clients, and is called every time a context variable is referenced.

@Name("customerList")
@Scope(CONVERSATION)
public class CustomerListManager

{

124



Factory and manager components

@Unwrap
public List<cCustomer> getCustomerList() {
return ... ;

The manager component pattern is especially useful if we have an object where you need more
control over the lifecycle of the component. For example, if you have a heavyweight object that
needs a cleanup operation when the context ends you could @hnw ap the object, and perform
cleanup in the @est r oy method of the manager component.

@Name("hens")
@Scope(APPLICATION)
public class HenHouse

{

Set<Hen> hens;

@In(required=false) Hen hen;

@Unwrap
public List<Hen> getHens()

{

if (hens == null)

{

/I Setup our hens

}

return hens;

@Observer({"chickBorn", "chickenBoughtAtMarket"})
public addHen()

{
hens.add(hen);

@Observer("chickenSoldAtMarket")
public removeHen()

{

hens.remove(hen);

@Observer("foxGetsIn™)

125



Chapter 4. The contextual com...

public removeAllHens()

{

hens.clear();

Here the managed component observes many events which change the underlying object. The
component manages these actions itself, and because the object is unwrapped on every access,
a consistent view is provided.

126



Chapter 5.

Configuring Seam components

The philosophy of minimizing XML-based configuration is extremely strong in Seam.
Nevertheless, there are various reasons why we might want to configure a Seam component
using XML: to isolate deployment-specific information from the Java code, to enable the creation
of re-usable frameworks, to configure Seam's built-in functionality, etc. Seam provides two basic
approaches to configuring components: configuration via property settings in a properties file or
in web. xm , and configuration via conponent s. xn .

5.1. Configuring components via property settings

Seam components may be provided with configuration properties either via servlet context
parameters, via system properties, or via a properties file named seam properti es in the root
of the classpath.

The configurable Seam component must expose JavaBeans-style property setter methods
for the configurable attributes. If a Seam component named com j boss. nyapp. settings
has a setter method named setlLocale(), we can provide a property named
com j boss. nmyapp. settings. | ocal e in the seam properties file, a system property named
org.j boss. seam properties. comjboss. nyapp. settings.|ocal e via -D at startup, or as a
servlet context parameter, and Seam will set the value of the | ocal e attribute whenever it
instantiates the component.

The same mechanism is used to configure Seam itself. For example, to set the conversation
timeout, we provide a value for org.jboss.seam core. manager. conversationTi meout
in  web.xml, seamproperties, or via a system property prefixed with
org.jboss.seam properties. (There is a  built-in Seam component named
org. j boss. seam cor e. manager with a setter method named set Conver sati onTi neout () .)

5.2. Configuring components via conponents. xni
The conponent s. xm file is a bit more powerful than property settings. It lets you:

» Configure components that have been installed automatically — including both built-in
components, and application components that have been annotated with the @ame annotation
and picked up by Seam's deployment scanner.

« Install classes with no @ane annotation as Seam components — this is most useful for certain
kinds of infrastructural components which can be installed multiple times with different names
(for example Seam-managed persistence contexts).

* Install components that do have a @ane annotation but are not installed by default because of
an @ nst al | annotation that indicates the component should not be installed.

» Override the scope of a component.

A conponent s. xn file may appear in one of three different places:

127



Chapter 5. Configuring Seam c...

e The VEB- | NF directory of a war .
* The META- | NF directory of a j ar .
* Any directory of aj ar that contains classes with an @ane annotation.

Usually, Seam components are installed when the deployment scanner discovers a class
with a @lame annotation sitting in an archive with a seam properties file or a META- | NF/
component s. xni file. (Unless the component has an @ nst al | annotation indicating it should not
be installed by default.) The conponent s. xnl file lets us handle special cases where we need
to override the annotations.

For example, the following conponent s. xni file installs jBPM:

<components xmlns="http://jboss.com/products/seam/components"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:bpm="http://jboss.com/products/seam/bpm">
<bpm:jbpm/>
</components>

This example does the same thing:

<components>
<component class="org.jboss.seam.bpm.Jbpm"/>
</components>

This one installs and configures two different Seam-managed persistence contexts:

<components xmlns="http://jposs.com/products/seam/components”
xmins:persistence="http://jpboss.com/products/seam/persistence"

<persistence:managed-persistence-context name="customerDatabase"
persistence-unit-jndi-name="java:/customerEntityManagerFactory"/>

<persistence:managed-persistence-context name="accountingDatabase"
persistence-unit-jndi-name="java:/accountingEntityManagerFactory"/>

</components>

As does this one:

<components>

128



Configuring components via conponent s. xni

<component name="customerDatabase"
class="org.jboss.seam.persistence.ManagedPersistenceContext">
<property name="persistenceUnitJndiName">java:/customerEntityManagerFactory</
property>
</component>

<component name="accountingDatabase"
class="org.jboss.seam.persistence.ManagedPersistenceContext">
<property name="persistenceUnitJndiName">java:/accountingEntityManagerFactory</
property>
</component>
</components>

This example creates a session-scoped Seam-managed persistence context (this is not
recommended in practice):

<components xmlns="http://jposs.com/products/seam/components”
xmlns:persistence="http://jboss.com/products/seam/persistence"

<persistence:managed-persistence-context name="productDatabase"
scope="session"
persistence-unit-jndi-name="java:/productEntityManagerFactory"/>

</components>

<components>

<component name="productDatabase"
scope="session"
class="org.jboss.seam.persistence.ManagedPersistenceContext">
<property name="persistenceUnitJndiName">java:/productEntityManagerFactory</property>
</component>

</components>

It is common to use the aut o- cr eat e option for infrastructural objects like persistence contexts,
which saves you from having to explicitly specify cr eat e=t r ue when you use the @ n annotation.

<components xmlns="http://jboss.com/products/seam/components"
xmlns:persistence="http://jpboss.com/products/seam/persistence”

129



Chapter 5. Configuring Seam c...

<persistence:managed-persistence-context name="productDatabase"
auto-create="true"
persistence-unit-jndi-name="java:/productEntityManagerFactory"/>

</components>

<components>
<component name="productDatabase"
auto-create="true"
class="org.jboss.seam.persistence.ManagedPersistenceContext">
<property name="persistenceUnitJndiName">java:/productEntityManagerFactory</property>

</component>

</components>

The <f act or y> declaration lets you specify a value or method binding expression that will be
evaluated to initialize the value of a context variable when it is first referenced.

<components>

<factory name="contact" method="#{contactManager.loadContact}"
scope="CONVERSATION"/>

</components>

You can create an "alias" (a second name) for a Seam component like so:

<components>

<factory name="user" value="#{actor}" scope="STATELESS"/>

</components>

You can even create an "alias" for a commonly used expression:

<components>

130



Fine-grained configuration files

<factory name="contact" value="#{contactManager.contact}" scope="STATELESS"/>

</components>
It is especially common to see the use of aut o- cr eat e="t r ue" with the <f act or y> declaration:

<components>

<factory name="session" value="#{entityManager.delegate}' scope="STATELESS" auto-
create="true"/>

</components>

Sometimes we want to reuse the same conponents. xm file with minor changes during
both deployment and testing. Seam lets you place wildcards of the form @i | dcard@in the
conponent s. xn file which can be replaced either by your Ant build script (at deployment time) or
by providing a file named conponent s. properti es in the classpath (at development time). You'll
see this approach used in the Seam examples.

5.3. Fine-grained configuration files

If you have a large number of components that need to be configured in XML, it makes much
more sense to split up the information in conponent s. xm into many small files. Seam lets you
put configuration for a class named, for example, com hel | owor | d. Hel | o in a resource named
com hel | owor | d/ Hel | 0. conponent . xnl . (You might be familiar with this pattern, since it is the
same one we use in Hibernate.) The root element of the file may be either a <conponent s> or
<conponent > element.

The first option lets you define multiple components in the file:

<components>
<component class="com.helloworld.Hello" hame="hello">
<property name="name">#{user.name}</property>
</component>
<factory name="message" value="#{hello.message}"/>
</components>

The second option only lets you define or configure one component, but is less noisy:

<component name="hello">
<property name="name">#{user.name}</property>

131



Chapter 5. Configuring Seam c...

</component>

In the second option, the class name is implied by the file in which the component definition
appears.

Alternatively, you may put configuration for all classes in the com hel | owor | d package in com
hel | owor | d/ conponent s. xmi .

5.4. Configurable property types

Properties of string, primitive or primitive wrapper type may be configured just as you would expect:

org.jboss.seam.core.manager.conversationTimeout 60000

<core:manager conversation-timeout="60000"/>

<component name="org.jboss.seam.core.manager">
<property name="conversationTimeout">60000</property>
</component>

Arrays, sets and lists of strings or primitives are also supported:

org.jboss.seam.bpm.jbpm.processDefinitions order.jpdl.xml, return.jpdl.xml, inventory.jpdl.xml

<bpm:jbpm>
<bpm:process-definitions>
<value>order.jpdl.xml</value>
<value>return.jpdl.xml</value>
<value>inventory.jpdl.xmi</value>
</bpm:process-definitions>
</bpm:jbpm>

<component name="org.jboss.seam.bpm.jbpm">
<property name="processDefinitions">
<value>order.jpdl.xml</value>
<value>return.jpdl.xml</value>

132



Configurable property types

<value>inventory.jpdl.xml</value>
</property>
</component>

Even maps with String-valued keys and string or primitive values are supported:

<component name="issueEditor">
<property name="issueStatuses">
<key>open</key> <value>open issue</value>
<key>resolved</key> <value>issue resolved by developer</value>
<key>closed</key> <value>resolution accepted by user</value>
</property>
</component>

When configuring multi-valued properties, by default, Seam will preserve the order in which you
place the attributes in conponent s. xnl (unless you use a Sort edSet /Sor t edMap then Seam will
use Tr eeMap/Tr eeSet ). If the property has a concrete type (for example Li nkedLi st ) Seam will
use that type.

You can also override the type by specifying a fully qualified class name:

<component name="issueEditor">
<property name="issueStatusOptions" type="java.util.LinkedHashMap">
<key>open</key> <value>open issue</value>
<key>resolved</key> <value>issue resolved by developer</value>
<key>closed</key> <value>resolution accepted by user</value>
</property>
</component>

Finally, you may wire together components using a value-binding expression. Note that this is
quite different to injection using @ n, since it happens at component instantiation time instead of
invocation time. It is therefore much more similar to the dependency injection facilities offered by
traditional loC containers like JSF or Spring.

<drools:managed-working-memory name="policyPricingWorkingMemory"
rule-base="#{policyPricingRules}"/>

<component name="policyPricingWorkingMemory"
class="org.jboss.seam.drools.ManagedWorkingMemory">

133



Chapter 5. Configuring Seam c...

<property name="ruleBase">#{policyPricingRules}</property>
</component>

Seam also resolves an EL expression string prior to assigning the initial value to the bean property
of the component. So you can inject some contextual data into your components.

<component name="greeter" class="com.example.action.Greeter">
<property name="message">Nice to see you, #{identity.username}!</property>
</component>

However, there is one important exception. If the type of the property to which the initial value is
being assigned is either a Seam Val ueExpr essi on or Met hodExpr essi on, then the evaluation of
the EL is deferred. Instead, the appropriate expression wrapper is created and assigned to the
property. The message templates on the Home component from the Seam Application Framework
serve as an example.

<framework:entity-home name="myEntityHome"
class="com.example.action.MyEntityHome" entity-class="com.example.model.MyEntity"
created-message="#{myEntityHome.instance.name}' has been successfully added."/>

Inside the component, you can access the expression string by calling get Expr essi onStri ng()
on the Val ueExpr essi on or Met hodExpr essi on. If the property is a Val ueExpr essi on, you can
resolve the value using get Val ue() and if the property is a Met hodExpr essi on, you can invoke
the method usingi nvoke( Obj ect args. . .).Obviously, to assign avalue to a Met hodExpr essi on
property, the entire initial value must be a single EL expression.

5.5. Using XML Namespaces

Throughout the examples, there have been two competing ways of declaring components: with
and without the use of XML namespaces. The following shows a typical conponent s. xni file
without namespaces:

<?xml version="1.0" encoding="UTF-8"?>
<components xmlns="http://jboss.com/products/seam/components"

xsi:schemal ocation="http://jboss.com/products/seam/components http://jboss.com/
products/seam/components-2.1.xsd">

<component class="org.jboss.seam.core.init">

<property name="debug">true</property>

<property name="jndiPattern">@jndiPattern@</property>
</component>

134



Using XML Namespaces

</components>

As you can see, this is somewhat verbose. Even worse, the component and attribute names
cannot be validated at development time.

The namespaced version looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<components xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jboss.com/products/seam/core"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=
"http://jboss.com/products/seam/core http://jboss.com/products/seam/core-2.1.xsd
http://jboss.com/products/seam/components http://jboss.com/products/seam/
components-2.1.xsd">

<core:init debug="true" jndi-pattern="@jndiPattern@"/>

</components>

Even though the schema declarations are verbose, the actual XML content is lean and easy to
understand. The schemas provide detailed information about each component and the attributes
available, allowing XML editors to offer intelligent autocomplete. The use of namespaced elements
makes generating and maintaining correct conponent s. xm files much simpler.

Now, this works great for the built-in Seam components, but what about user components? There
are two options. First, Seam supports mixing the two models, allowing the use of the generic
<conponent > declarations for user components, along with namespaced declarations for built-
in components. But even better, Seam allows you to quickly declare hamespaces for your own
components.

Any Java package can be associated with an XML namespace by annotating the package with
the @anespace annotation. (Package-level annotations are declared in a file named package-
i nfo. j ava in the package directory.) Here is an example from the seampay demo:

@Namespace(value="http://jposs.com/products/seam/examples/seampay")
package org.jboss.seam.example.seampay;

import org.jposs.seam.annotations.Namespace;

That is all you need to do to use the namespaced style in conponent s. xm ! Now we can write:

135



Chapter 5. Configuring Seam c...

<components xmIns="http://jboss.com/products/seam/components"”
xmlns:pay="http://jpboss.com/products/seam/examples/seampay"
">

<pay:payment-home new-instance="#{newPayment}"
created-message="Created a new payment to #{newPayment.payee}" />

<pay:payment name="newPayment"
payee="Somebody"
account="#{selectedAccount}"
payment-date="#{currentDatetime}"
created-date="#{currentDatetime}" />

</components>

Or:

<components xmlns="http://jposs.com/products/seam/components”

xmlns:pay="http://jboss.com/products/seam/examples/seampay"
o>

<pay:payment-home>
<pay:new-instance>"#{newPayment}"</pay:new-instance>
<pay:created-message>Created a new payment to #{newPayment.payee}</pay:created-
message>
</pay:payment-home>

<pay:payment name="newPayment">
<pay:payee>Somebody"</pay:payee>
<pay:account>#{selectedAccount}</pay:account>
<pay:payment-date>#{currentDatetime}</pay:payment-date>
<pay:created-date>#{currentDatetime}</pay:created-date>
</pay:payment>

</components>

These examples illustrate the two usage models of a namespaced element. In the first declaration,
the <pay: paynent - hone> references the paynment Hone component:

package org.jboss.seam.example.seampay;

136



Using XML Namespaces

@Name("paymentHome")
public class PaymentController
extends EntityHome<Payment>

The element name is the hyphenated form of the component name. The attributes of the element
are the hyphenated form of the property names.

In the second declaration, the <pay: paynent > element refers to the Payment class in the
org. j boss. seam exanpl e. seanpay package. In this case Payment is an entity that is being
declared as a Seam component:

package org.jpboss.seam.example.seampay;

@Entity
public class Payment
implements Serializable

If we want validation and autocompletion to work for user-defined components, we will need a
schema. Seam does not yet provide a mechanism to automatically generate a schema for a set of
components, so it is necessary to generate one manually. The schema definitions for the standard
Seam packages can be used for guidance.

The following are the the namespaces used by Seam:

e components — http://jboss. conl product s/ seani conmponent s
e core —http://jboss. coni products/seani core

e drools — http://jboss. conl product s/ seam dr ool s

» framework — htt p://j boss. cont product s/ seant f r anewor k

e jms—http://jboss. com products/seam jns

e remoting — http://jboss. com products/seani renoting

e theme — http://jboss. cont product s/ sean t hene

e security — http://jboss. com product s/ seam security

137



Chapter 5. Configuring Seam c...

e mail —http://jboss. com product s/ seani mai |
e web —http://jboss. con product s/ seam web
e pdf — http://jboss. com product s/ seant pdf

e spring — htt p: //j boss. conl product s/ seam spring

138



Chapter 6.

Events, interceptors and exception
handling

Complementing the contextual component model, there are two further basic concepts that
facilitate the extreme loose-coupling that is the distinctive feature of Seam applications. The first
is a strong event model where events may be mapped to event listeners via JSF-like method
binding expressions. The second is the pervasive use of annotations and interceptors to apply
cross-cutting concerns to components which implement business logic.

6.1. Seam events

The Seam component model was developed for use with event-driven applications, specifically to
enable the development of fine-grained, loosely-coupled components in a fine-grained eventing
model. Events in Seam come in several types, most of which we have already seen:

JSF events

jBPM transition events

e Seam page actions

e Seam component-driven events
* Seam contextual events

All of these various kinds of events are mapped to Seam components via JSF EL method binding
expressions. For a JSF event, this is defined in the JSF template:

<h:commandButton value="Click me!" action="#{hellowWorld.sayHello}"/>

For a jBPM transition event, it is specified in the jBPM process definition or pageflow definition:

<start-page name="hello" view-id="/hello.jsp">
<transition to="hello">
<action expression="#{helloWorld.sayHello}"/>
</transition>
</start-page>

You can find out more information about JSF events and jBPM events elsewhere. Let's
concentrate for now upon the two additional kinds of events defined by Seam.

139



Chapter 6. Events, intercepto...

6.2. Page actions

A Seam page action is an event that occurs just before we render a page. We declare page actions
in VEB- | NF/ pages. xnl . We can define a page action for either a particular JSF view id:

<pages>
<page view-id="/hello.jsp" action="#{helloWorld.sayHello}"/>
</pages>

Or we can use a * wildcard as a suffix to the vi ew- i d to specify an action that applies to all view
ids that match the pattern:

<pages>
<page view-id="/hello/*" action="#{helloWorld.sayHello}"/>
</pages>

Keep in mind that if the <page> element is defined in a fine-grained page descriptor, the vi ew-i d
attribute can be left off since it is implied.

If multiple wildcarded page actions match the current view-id, Seam will call all the actions, in
order of least-specific to most-specific.

The page action method can return a JSF outcome. If the outcome is non-null, Seam will use the
defined navigation rules to navigate to a view.

Furthermore, the view id mentioned in the <page> element need not correspond to a real JSP or
Facelets page! So, we can reproduce the functionality of a traditional action-oriented framework
like Struts or WebWork using page actions. This is quite useful if you want to do complex things
in response to non-faces requests (for example, HTTP GET requests).

Multiple or conditional page actions my be specified using the <act i on> tag:

<pages>
<page view-id="/hello.jsp">
<action execute="#{helloWorld.sayHello}" if="#{not validation.failed}"/>
<action execute="#{hitCount.increment}"/>
</page>
</pages>

Page actions are executed on both an initial (hon-faces) request and a postback (faces) request.
If you are using the page action to load data, this operation may conflict with the standard JSF

140



Page parameters

action(s) being executed on a postback. One way to disable the page action is to setup a condition
that resolves to true only on an initial request.

<pages>
<page view-id="/dashboard.xhtml|">
<action execute="#{dashboard.loadData}"
if="#{not facesContext.renderKit.responseStateManager.isPostback(facesContext)}"/>
</page>
</pages>

This condition consults the ResponseSt at eManager #i sPost back( FacesCont ext) to determine
if the request is a postback. The ResponseStateManager is accessed using
FacesCont ext . get Current | nstance(). get RenderKi t (). get ResponseSt at eManager () .

To save you from the verbosity of JSF's API, Seam offers a built-in condition that allows you to
accomplish the same result with a heck of a lot less typing. You can disable a page action on
postback by simply setting the on- post back to f al se:

<pages>
<page view-id="/dashboard.xhtml|">
<action execute="#{dashboard.loadData}" on-postback="false"/>
</page>
</pages>

For backwards compatibility reasons, the default value of the on- post back attribute is true, though
likely you will end up using the opposite setting more often.

6.3. Page parameters

A JSF faces request (a form submission) encapsulates both an "action" (a method binding) and
"parameters" (input value bindings). A page action might also needs parameters!

Since GET requests are bookmarkable, page parameters are passed as human-readable request
parameters. (Unlike JSF form inputs, which are anything but!)

You can use page parameters with or without an action method.

6.3.1. Mapping request parameters to the model

Seam lets us provide a value binding that maps a named request parameter to an attribute of a
model object.

<pages>

141



Chapter 6. Events, intercepto...

<page view-id="/hello.jsp" action="#{helloWorld.sayHello}">
<param name="firstName" value="#{person.firstName}"/>
<param name="lastName" value="#{person.lastName}"/>
</page>
</pages>

The <par ane declaration is bidirectional, just like a value binding for a JSF input:

* When a non-faces (GET) request for the view id occurs, Seam sets the value of the named
request parameter onto the model object, after performing appropriate type conversions.

e Any <s: |ink> or <s: but t on> transparently includes the request parameter. The value of the
parameter is determined by evaluating the value binding during the render phase (when the
<s: |i nk> is rendered).

e Any navigation rule with a <redirect/> to the view id transparently includes the request
parameter. The value of the parameter is determined by evaluating the value binding at the end
of the invoke application phase.

» The value is transparently propagated with any JSF form submission for the page with the given
view id. This means that view parameters behave like PAGE-scoped context variables for faces
requests.

The essential idea behind all this is that however we get from any other page to / hel | 0. j sp (or
from / hel | 0. j sp back to / hel | 0. j sp), the value of the model attribute referred to in the value
binding is "remembered", without the need for a conversation (or other server-side state).

6.4. Propagating request parameters

If just the nane attribute is specified then the request parameter is propagated using the PAGE
context (it isn't mapped to model property).

<pages>
<page view-id="/hello.jsp" action="#{helloworld.sayHello}">
<param name="firstName" />
<param name="lastName" />
</page>
</pages>

Propagation of page parameters is especially useful if you want to build multi-layer master-detail
CRUD pages. You can use it to "remember" which view you were previously on (e.g. when
pressing the Save button), and which entity you were editing.

e Any<s:|ink>or<s: button>transparently propagates the request parameter if that parameter
is listed as a page parameter for the view.

142



URL rewriting with page parameters

« The value is transparently propagated with any JSF form submission for the page with the given
view id. (This means that view parameters behave like PAGE-scoped context variables for faces
requests.

This all sounds pretty complex, and you're probably wondering if such an exotic construct is really
worth the effort. Actually, the idea is very natural once you "get it". It is definitely worth taking the
time to understand this stuff. Page parameters are the most elegant way to propagate state across
a non-faces request. They are especially cool for problems like search screens with bookmarkable
results pages, where we would like to be able to write our application code to handle both POST
and GET requests with the same code. Page parameters eliminate repetitive listing of request
parameters in the view definition and make redirects much easier to code.

6.5. URL rewriting with page parameters

Rewriting occurs based on rewrite patterns found for views in pages. xnl . Seam URL rewriting
does both incoming and outgoing URL rewriting based on the same pattern. Here's a simple
pattern:

<page view-id="/home.xhtm|">
<rewrite pattern="/home" />
</page>

In this case, any incoming request for / home will be sent to / home. xht nl . More interestingly,
any link generated that would normally point to / hone. seam will instead be rewritten as /
hone. Rewrite patterns only match the portion of the URL before the query parameters. So,
/ home. sean®conver sati onl d=13 and / hore. seanfcol or=red will both be matched by this
rewrite rule.

Rewrite rules can take these query paramters into consideration, as shown with the following rules.

<page view-id="/home.xhtm|">
<rewrite pattern="/home/{color}" />
<rewrite pattern="/home" />
</page>

In this case, an incoming request for / hone/red will be served as if it were a request for
/ home. seanfcol or =r ed. Similarly, if color is a page parameter an outgoing URL that would
normally show as / horre. seanfcol or =bl ue would instead be output as / horre/ bl ue. Rules are
processed in order, so it is important to list more specific rules before more general rules.

143



Chapter 6. Events, intercepto...

Default Seam query parameters can also be mapped using URL rewriting, allowing
for another option for hiding Seam's fingerprints. In the following example, /
sear ch. seanfconver sat i onl d=13 would be written as / sear ch- 13.

<page view-id="/search.xhtml">
<rewrite pattern="/search-{conversationld}" />
<rewrite pattern="/search" />

</page>

Seam URL rewriting provides simple, bidirectional rewriting on a per-view basis. For more complex
rewriting rules that cover non-seam components, Seam applications can continue to use the
org.tuckey URLRewriteFilter orapply rewriting rules at the web server.

URL rewriting requires the Seam rewrite filter to be enable. Rewrite filter configuration is discussed
in Section 30.1.4.3, “URL rewriting”.

6.6. Conversion and Validation

You can specify a JSF converter for complex model propreties:

<pages>
<page view-id="/calculator.jsp" action="#{calculator.calculate}">
<param name="X" value="#{calculator.lhs}"/>
<param name="y" value="#{calculator.rhs}"/>
<param name="op" converterld="com.my.calculator.OperatorConverter"
value="#{calculator.op}"'/>
</page>
</pages>

Alternatively:

<pages>
<page view-id="/calculator.jsp" action="#{calculator.calculate}">
<param name="x" value="#{calculator.lhs}"/>
<param name="y" value="#{calculator.rhs}"/>
<param name="op" converter="#{operatorConverter}" value="#{calculator.op}"/>
</page>
</pages>

JSF validators, and r equi r ed="t r ue" may also be used:

144



Navigation

<pages>
<page view-id="/blog.xhtml">
<param name="date"
value="#{blog.date}"
validatorld="com.my.blog.PastDate
required="true"/>
</page>
</pages>

Alternatively:

<pages>
<page view-id="/blog.xhtml">
<param name="date"
value="#{blog.date}"
validator="#{pastDateValidator}"
required="true"/>
</page>
</pages>

Even better, model-based Hibernate validator annotations are automatically recognized and
validated. Seam also provides a default date converter to convert a string parameter value to a
date and back.

When type conversion or validation fails, a global FacesMessage is added to the FacesCont ext .

6.7. Navigation

You can use standard JSF navigation rules defined in f aces- confi g. xnl in a Seam application.
However, JSF navigation rules have a number of annoying limitations:

« ltis not possible to specify request parameters to be used when redirecting.
* Itis not possible to begin or end conversations from a rule.

« Rules work by evaluating the return value of the action method; it is not possible to evaluate
an arbitrary EL expression.

A further problem is that "orchestration" logic gets scattered between pages. xnl and f aces-
confi g. xnl . It's better to unify this logic into pages. xm .

This JSF navigation rule:

<navigation-rule>

145



Chapter 6. Events, intercepto...

<from-view-id>/editDocument.xhtml</from-view-id>

<navigation-case>
<from-action>#{documentEditor.update}</from-action>
<from-outcome>success</from-outcome>
<to-view-id>/viewDocument.xhtml</to-view-id>
<redirect/>

</navigation-case>

</navigation-rule>

Can be rewritten as follows:

<page view-id="/editDocument.xhtml">

<navigation from-action="#{documentEditor.update}">
<rule if-outcome="success">
<redirect view-id="/viewDocument.xhtml"/>
</rule>
</navigation>

</page>

But it would be even nicer if we didn't have to pollute our Docurent Edi t or component with string-
valued return values (the JSF outcomes). So Seam lets us write:

<page view-id="/editDocument.xhtm|">

<navigation from-action="#{documentEditor.update}"
evaluate="#{documentEditor.errors.size}">
<rule if-outcome="0">
<redirect view-id="/viewDocument.xhtml|"/>
</rule>
</navigation>

</page>

Or even:

<page view-id="/editDocument.xhtml">

146



Navigation

<navigation from-action="#{documentEditor.update}">
<rule if="#{documentEditor.errors.empty}">
<redirect view-id="/viewDocument.xhtml|"/>
</rule>
</navigation>

</page>

The first form evaluates a value binding to determine the outcome value to be used by the
subsequent rules. The second approach ignores the outcome and evaluates a value binding for
each possible rule.

Of course, when an update succeeds, we probably want to end the current conversation. We can
do that like this:

<page view-id="/editDocument.xhtml">

<navigation from-action="#{documentEditor.update}">
<rule if="#{documentEditor.errors.empty}">
<end-conversation/>
<redirect view-id="/viewDocument.xhtml["/>
</rule>
</navigation>

</page>

As we've ended conversation any subsequent requests won't know which document we are
interested in. We can pass the document id as a request parameter which also makes the view
bookmarkable:

<page view-id="/editDocument.xhtm|">

<navigation from-action="#{documentEditor.update}">
<rule if="#{documentEditor.errors.empty}">
<end-conversation/>
<redirect view-id="/viewDocument.xhtm|">
<param name="documentld" value="#{documentEditor.documentld}"/>
</redirect>
</rule>
</navigation>

147



Chapter 6. Events, intercepto...

</page>

Null outcomes are a special case in JSF. The null outcome is interpreted to mean "redisplay the
page". The following navigation rule matches any non-null outcome, but not the null outcome:

<page view-id="/editDocument.xhtml">
<navigation from-action="#{documentEditor.update}">
<rule>
<render view-id="/viewDocument.xhtml"/>
</rule>

</navigation>

</page>

If you want to perform navigation when a null outcome occurs, use the following form instead:

<page view-id="/editDocument.xhtml">
<navigation from-action="#{documentEditor.update}">
<render view-id="/viewDocument.xhtml"/>

</navigation>

</page>

The view-id may be given as a JSF EL expression:

<page view-id="/editDocument.xhtml">

<navigation>
<rule if-outcome="success">
<redirect view-id="/#{userAgent}/displayDocument.xhtml"/>
</rule>
</navigation>

</page>

148



Fine-grained files for definition of navigation,
page actions and parameters

6.8. Fine-grained files for definition of navigation, page
actions and parameters

If you have a lot of different page actions and page parameters, or even just a lot of navigation
rules, you will almost certainly want to split the declarations up over multiple files. You can define
actions and parameters for a page with the view id / cal ¢/ cal cul at or. j sp in a resource named
cal ¢/ cal cul at or. page. xn . The root element in this case is the <page> element, and the view
id is implied:

<page action="#{calculator.calculate}">
<param name="x" value="#{calculator.lhs}"/>
<param name="y" value="#{calculator.rhs}"/>
<param name="op" converter="#{operatorConverter}" value="#{calculator.op}"/>

</page>

6.9. Component-driven events

Seam components can interact by simply calling each others methods. Stateful components may
even implement the observer/observable pattern. But to enable components to interact in a more
loosely-coupled fashion than is possible when the components call each others methods directly,
Seam provides component-driven events.

We specify event listeners (observers) in conponent s. xmi .

<components>
<event type="hello">
<action execute="#{helloListener.sayHelloBack}"/>
<action execute="#{logger.logHello}"/>
</event>
</components>

Where the event type is just an arbitrary string.

When an event occurs, the actions registered for that event will be called in the order they appear
in conponent s. xm . How does a component raise an event? Seam provides a built-in component
for this.

@Name("helloworld")
public class HelloWorld {
public void sayHello() {
FacesMessages.instance().add("Hello World!");

149



Chapter 6. Events, intercepto...

Events.instance().raiseEvent("hello");

Or you can use an annotation.

@Name("helloWorld")
public class HelloWorld {
@RaiseEvent("hello™)
public void sayHello() {
FacesMessages.instance().add("Hello World!");

Notice that this event producer has no dependency upon event consumers. The event listener
may now be implemented with absolutely no dependency upon the producer:

@Name("helloListener")
public class HelloListener {
public void sayHelloBack() {
FacesMessages.instance().add("Hello to you too!");

The method binding defined in conponent s. xnl above takes care of mapping the event to the
consumer. If you don't like futzing about in the conponent s. xni file, you can use an annotation
instead:

@Name("helloListener")
public class HelloListener {
@Observer("hello")
public void sayHelloBack() {
FacesMessages.instance().add("Hello to you too!");

You might wonder why I've not mentioned anything about event objects in this discussion. In
Seam, there is no need for an event object to propagate state between event producer and listener.
State is held in the Seam contexts, and is shared between components. However, if you really
want to pass an event object, you can:

150



Contextual events

@Name("helloworld")
public class HelloWorld {
private String name;
public void sayHello() {
FacesMessages.instance().add("Hello World, my name is #0.", name);
Events.instance().raiseEvent("hello", name);

@Name("helloListener")
public class HelloListener {
@Observer("hello")
public void sayHelloBack(String hame) {
FacesMessages.instance().add("Hello #0!", name);

6.10. Contextual events

Seam defines a number of built-in events that the application can use to perform special kinds of
framework integration. The events are:

e org.jboss.seam val i dati onFai | ed — called when JSF validation fails

e org.jboss. seam noConver sat i on — called when there is no long running conversation and
a long running conversation is required

e org.jboss. seam preSet Vari abl e. <nanme> — called when the context variable <name> is set
e org.jboss. seam post Set Vari abl e. <nane>— called when the context variable <name> is set

e org.jboss. seam preRenoveVari abl e. <name> — called when the context variable <name> is
unset

* org.jboss. seam post RenoveVari abl e. <nanme> — called when the context variable <name>
is unset

e org.jboss. seam preDest royCont ext . <SCOPE> — called before the <SCOPE> context is
destroyed

e org.jboss. seam post Dest royCont ext . <SCOPE> — called after the <SCOPE> context is
destroyed

e org.jboss.seam begi nConversation — called whenever a long-running conversation
begins

151



Chapter 6. Events, intercepto...

e org.jboss.seam endConversati on — called whenever a long-running conversation ends

* org.jboss.seam conversationTi mneout — called when a conversation timeout occurs. The
conversation id is passed as a parameter.

e org.jboss. seam begi nPagef| ow — called when a pageflow begins

e org.jboss. seam begi nPagef | ow. <name> — called when the pageflow <name> begins

e org.jboss. seam endPagef | ow — called when a pageflow ends

e org.jboss. seam endPagef | ow. <nane> — called when the pageflow <name> ends

e org.jboss.seam creat eProcess. <name> — called when the process <name> is created
e org.jboss. seam endProcess. <nane> — called when the process <name> ends

e org.jboss.seaminitProcess. <nane> — called when the process <name> is associated
with the conversation

e org.jboss.seaminitTask. <name> — called when the task <name> is associated with the
conversation

e org.jboss.seam start Task. <name> — called when the task <name> is started

* org.jboss. seam endTask. <nane> — called when the task <name> is ended

e org.jboss. seam post Cr eat e. <nane> — called when the component <name> is created

e org.jboss. seam preDestroy. <nanme> — called when the component <name> is destroyed
e org.jboss. seam bef orePhase — called before the start of a JSF phase

e org.jboss.seam aft er Phase — called after the end of a JSF phase

e org.jboss.seam postlinitialization — calledwhen Seam has initialized and started up
all components

e org.jboss.seam postRelnitialization — called when Seam has re-initialized and started
up all components after a redeploy

e org.jboss. seam excepti onHandl ed. <type> — called when an uncaught exception is
handled by Seam

e org.jboss. seam excepti onHandl ed — called when an uncaught exception is handled by
Seam

e org.jboss. seam excepti onNot Handl ed — called when there was no handler for an uncaught
exception

e org.jboss.seam after Transacti onSuccess — called when a transaction succeeds in the
Seam Application Framework

e org.jboss.seam after Transacti onSuccess. <nane> — called when a transaction succeeds
in the Seam Application Framework which manages an entity called <name>

152



Seam interceptors

e org.jboss.seam security.| oggedOut — called when a user logs out
e org.jboss.seam security. | ogi nFai | ed — called when a user authentication attempt fails

e org.jboss.seam security.|ogi nSuccessful — called when a user is successfully
authenticated

e org.jboss.seam security. not Aut hori zed — called when an authorization check fails

e org.jboss.seam security.notLoggedln — called there is no authenticated user and
authentication is required

e org.jboss.seam security. post Aut henti cate. — called after a user is authenticated

e org.jboss.seam security. preAut henti cat e — called before attempting to authenticate a
user

Seam components may observe any of these events in just the same way they observe any other
component-driven events.

6.11. Seam interceptors

EJB 3.0 introduced a standard interceptor model for session bean components. To add an
interceptor to a bean, you need to write a class with a method annotated @\ oundl nvoke and
annotate the bean with an @ nt er cept or s annotation that specifies the name of the interceptor
class. For example, the following interceptor checks that the user is logged in before allowing
invoking an action listener method:

public class Loggedininterceptor {

@Aroundinvoke
public Object checkLoggedIn(InvocationContext invocation) throws Exception {

boolean isLoggedIn = Contexts.getSessionContext().get("loggedin")!=null;
if (isLoggedIn) {
/lthe user is already logged in
return invocation.proceed();
}
else {
/lthe user is not logged in, fwd to login page
return "login";

153



Chapter 6. Events, intercepto...

To apply this interceptor to a session bean which acts as an action listener, we must
annotate the session bean @ nt er cept or s( Logged! nl nt er cept or. cl ass) . This is a somewhat
ugly annotation. Seam builds upon the interceptor framework in EJB3 by allowing you
to use @nterceptors as a meta-annotation for class level interceptors (those annotated
@rar get ( TYPE) ). In our example, we would create an @ogged! n annotation, as follows:

@Target(TYPE)

@Retention(RUNTIME)
@Interceptors(LoggedIninterceptor.class)
public @interface Loggedin {}

We can now simply annotate our action listener bean with @ ogged! n to apply the interceptor.

@Stateless

@Name("changePasswordAction™)

@LoggediIn

@Interceptors(Seaminterceptor.class)

public class ChangePasswordAction implements ChangePassword {

public String changePassword() { ... }

If interceptor ordering is important (it usually is), you can add @ nt er cept or annotations to your
interceptor classes to specify a partial order of interceptors.

@Interceptor(around={Bijectioninterceptor.class,
ValidationInterceptor.class,
Conversationinterceptor.class},

within=Removelnterceptor.class)

public class Loggedininterceptor

{

You can even have a "client-side" interceptor, that runs around any of the built-in functionality
of EJB3:

154



Managing exceptions

@Interceptor(type=CLIENT)
public class Loggedininterceptor

{

EJB interceptors are stateful, with a lifecycle that is the same as the component they intercept. For
interceptors which do not need to maintain state, Seam lets you get a performance optimization
by specifying @ nt er cept or (st at el ess=true).

Much of the functionality of Seam is implemented as a set of built-in Seam interceptors, including
the interceptors named in the previous example. You don't have to explicitly specify these
interceptors by annotating your components; they exist for all interceptable Seam components.

You can even use Seam interceptors with JavaBean components, not just EJB3 beans!

EJB defines interception not only for business methods (using @r oundl nvoke), but also for
the lifecycle methods @ost Const ruct , @r eDest r oy, @r ePassi vat e and @ost Acti ve. Seam
supports all these lifecycle methods on both component and interceptor not only for EJB3 beans,
but also for JavaBean components (except @r eDest r oy which is not meaningful for JavaBean
components).

6.12. Managing exceptions

JSF is surprisingly limited when it comes to exception handling. As a partial workaround for this
problem, Seam lets you define how a particular class of exception is to be treated by annotating
the exception class, or declaring the exception class in an XML file. This facility is meant to
be combined with the EJB 3.0-standard @\ppl i cati onExcepti on annotation which specifies
whether the exception should cause a transaction rollback.

6.12.1. Exceptions and transactions

EJB specifies well-defined rules that let us control whether an exception immediately
marks the current transaction for rollback when it is thrown by a business method of the
bean: system exceptions always cause a transaction rollback, application exceptions do not
cause a rollback by default, but they do if @\pplicationException(rollback=true) is
specified. (An application exception is any checked exception, or any unchecked exception
annotated @\ppl i cati onExcepti on. A system exception is any unchecked exception without an
@\ppl i cati onExcepti on annotation.)

Note that there is a difference between marking a transaction for rollback, and actually rolling it
back. The exception rules say that the transaction should be marked rollback only, but it may still
be active after the exception is thrown.

Seam applies the EJB 3.0 exception rollback rules also to Seam JavaBean components.

155



Chapter 6. Events, intercepto...

But these rules only apply in the Seam component layer. What about an exception that is uncaught
and propagates out of the Seam component layer, and out of the JSF layer? Well, it is always
wrong to leave a dangling transaction open, so Seam rolls back any active transaction when an
exception occurs and is uncaught in the Seam component layer.

6.12.2. Enabling Seam exception handling

To enable Seam's exception handling, we need to make sure we have the master servlet filter
declared in web. xn :

<filter>
<filter-name>Seam Filter</filter-name>
<filter-class>org.jboss.seam.servlet. SeamFilter</filter-class>
<[filter>

<filter-mapping>
<filter-name>Seam Filter</filter-name>
<url-pattern>*.seam</url-pattern>
<[filter-mapping>

You need to disable Facelets development mode in web. xm and Seam debug mode in
conmponent s. xnl if you want your exception handlers to fire.

6.12.3. Using annotations for exception handling

The following exception results in a HTTP 404 error whenever it propagates out of the Seam
component layer. It does not roll back the current transaction immediately when thrown, but the
transaction will be rolled back if it the exception is not caught by another Seam component.

@HttpError(errorCode=404)
public class ApplicationException extends Exception { ... }

This exception results in a browser redirect whenever it propagates out of the Seam component
layer. It also ends the current conversation. It causes an immediate rollback of the current
transaction.

@Redirect(viewld="/failure.xhtml", end=true)
@ApplicationException(rollback=true)
public class UnrecoverableApplicationException extends RuntimeException { ... }

156



Using XML for exception handling

You can also use EL to specify the vi ewl d to redirect to.

This exception results in a redirect, along with a message to the user, when it propagates out of
the Seam component layer. It also immediately rolls back the current transaction.

@Redirect(viewld="/error.xhtml", message="Unexpected error")
public class SystemException extends RuntimeException { ... }

6.12.4. Using XML for exception handling

Since we can't add annotations to all the exception classes we are interested in, Seam also lets
us specify this functionality in pages. xm .

<pages>

<exception class="javax.persistence.EntityNotFoundException">
<http-error error-code="404"/>
</exception>

<exception class="javax.persistence.PersistenceException">
<end-conversation/>
<redirect view-id="/error.xhtml|">
<message>Database access failed</message>
</redirect>
</exception>

<exception>
<end-conversation/>
<redirect view-id="/error.xhtm|">
<message>Unexpected failure</message>
</redirect>
</exception>

</pages>

157




Chapter 6. Events, intercepto...

The last <except i on> declaration does not specify a class, and is a catch-all for any exception
for which handling is not otherwise specified via annotations or in pages. xn .

You can also use EL to specify the vi ew- i d to redirect to.

You can also access the handled exception instance through EL, Seam places it in the
conversation context, e.g. to access the message of the exception:

throw new AuthorizationException("You are not allowed to do this!");
<pages>

<exception class="org.jboss.seam.security.AuthorizationException">
<end-conversation/>
<redirect view-id="/error.xhtml|">
<message severity="WARN">#{org.jboss.seam.handledException.message}</message>
</redirect>
</exception>

</pages>

org. j boss. seam handl edExcepti on holds the nested exception that was actually handled
by an exception handler. The outermost (wrapper) exception is also available, as
org.j boss. seam caught Excepti on.

6.12.4.1. Suppressing exception logging

For the exception handlers defined in pages. xni , it is possible to declare the logging level at
which the exception will be logged, or to even suppress the exception being logged altogether. The
attributes | og and | og- | evel can be used to control exception logging. By setting | og="f al se"
as per the following example, then no log message will be generated when the specified exception
occurs:

<exception class="org.jboss.seam.security.NotLoggedInException" log="false">
<redirect view-id="/register.xhtm|">
<message severity="warn">You must be a member to use this feature</message>
</redirect>
</exception>

If the | og attribute is not specified, then it defaults to true (i.e. the exception will be logged).
Alternatively, you can specify the | og- | evel to control at which log level the exception will be
logged:

158



Some common exceptions

<exception class="org.jboss.seam.security.NotLoggedInException" log-level="info">
<redirect view-id="/register.xhtml|">
<message severity="warn">You must be a member to use this feature</message>
</redirect>
</exception>

The acceptable values for | og-1 evel are:fatal, error, warn, info, debugortrace. If the
| og- | evel is not specified, or if an invalid value is configured, then it will default to err or.

6.12.5. Some common exceptions

If you are using JPA:

<exception class="javax.persistence.EntityNotFoundException">
<redirect view-id="/error.xhtm|">
<message>Not found</message>
</redirect>
</exception>

<exception class="javax.persistence.OptimisticLockException">
<end-conversation/>
<redirect view-id="/error.xhtml">
<message>Another user changed the same data, please try again</message>
</redirect>
</exception>

If you are using the Seam Application Framework:

<exception class="org.jboss.seam.framework.EntityNotFoundException">
<redirect view-id="/error.xhtml|">
<message>Not found</message>
</redirect>
</exception>

If you are using Seam Security:

<exception class="org.jboss.seam.security.AuthorizationException">
<redirect>
<message>You don't have permission to do this</message>
</redirect>

159



Chapter 6. Events, intercepto...

</exception>

<exception class="org.jboss.seam.security.NotLoggedInException">
<redirect view-id="/login.xhtm|">
<message>Please log in first</message>
</redirect>
</exception>

And, for JSF:

<exception class="javax.faces.application.ViewExpiredException">
<redirect view-id="/error.xhtml">
<message>Your session has timed out, please try again</message>
</redirect>
</exception>

A Vi ewExpi redExcepti on occurs if the user posts back to a page once their session has
expired. The conversati on-requi red and no-conversation-vi ewid settings in the Seam
page descriptor, discussed in Section 7.4, “Requiring a long-running conversation”, give you finer-
grained control over session expiration if you are accessing a page used within a conversation.

160



Chapter 7.

Conversations and workspace
management

It's time to understand Seam's conversation model in more detail.

Historically, the notion of a Seam "conversation" came about as a merger of three different ideas:

» Theidea of a workspace, which | encountered in a project for the Victorian government in 2002.
In this project | was forced to implement workspace management on top of Struts, an experience
| pray never to repeat.

» Theidea of an application transaction with optimistic semantics, and the realization that existing
frameworks based around a stateless architecture could not provide effective management of
extended persistence contexts. (The Hibernate team is truly fed up with copping the blame for
Lazyl nitializati onExcepti ons, which are not really Hibernate's fault, but rather the fault of
the extremely limiting persistence context model supported by stateless architectures such as
the Spring framework or the traditional stateless session facade (anti)pattern in J2EE.)

* The idea of a workflow task.

By unifying these ideas and providing deep support in the framework, we have a powerful construct
that lets us build richer and more efficient applications with less code than before.

7.1. Seam's conversation model

The examples we have seen so far make use of a very simple conversation model that follows
these rules:

e There is always a conversation context active during the apply request values, process
validations, update model values, invoke application and render response phases of the JSF
request lifecycle.

« At the end of the restore view phase of the JSF request lifecycle, Seam attempts to restore
any previous long-running conversation context. If none exists, Seam creates a new temporary
conversation context.

« When an @egi n method is encountered, the temporary conversation context is promoted to
a long running conversation.

« When an @nd method is encountered, any long-running conversation context is demoted to
a temporary conversation.

« Atthe end of the render response phase of the JSF request lifecycle, Seam stores the contents
of a long running conversation context or destroys the contents of a temporary conversation
context.

161



Chapter 7. Conversations and ...

« Any faces request (a JSF postback) will propagate the conversation context. By default, non-
faces requests (GET requests, for example) do not propagate the conversation context, but see
below for more information on this.

« If the JSF request lifecycle is foreshortened by a redirect, Seam transparently stores and
restores the current conversation context — unless the conversation was already ended via
@End( bef or eRedi rect =t rue) .

Seam transparently propagates the conversation context (including the temporary conversation
context) across JSF postbacks and redirects. If you don't do anything special, a non-faces request
(a GET request for example) will not propagate the conversation context and will be processed in
a new temporary conversation. This is usually - but not always - the desired behavior.

If you want to propagate a Seam conversation across a non-faces request, you need to explicitly

code the Seam conversation id as a request parameter:

<a href="main.jsf?#{manager.conversationldParameter}=#{conversation.id}">Continue</a>

Or, the more JSF-ish:

<h:outputLink value="main.jsf">
<f:param name="#{manager.conversationldParameter}" value="#{conversation.id}"/>
<h:outputText value="Continue"/>

</h:outputLink>

If you use the Seam tag library, this is equivalent:

<h:outputLink value="main.jsf">
<s:conversationld/>
<h:outputText value="Continue"/>
</h:outputLink>

If you wish to disable propagation of the conversation context for a postback, a similar trick is used:

<h:commandLink action="main" value="Exit">
<f:param name="conversationPropagation” value="none"/>
</h:commandLink>

If you use the Seam tag library, this is equivalent:

162



Seam's conversation model

<h:commandLink action="main" value="Exit">
<s:conversationPropagation type="none"/>
</h:commandLink>

Note that disabling conversation context propagation is absolutely not the same thing as ending

the conversation.

The conver sat i onPropagat i on request parameter, or the <s: conver sat i onPr opagat i on> tag
may even be used to begin and end conversation, or begin a nested conversation.

<h:commandLink action="main" value="Exit">
<s:conversationPropagation type="end"/>
</h:commandLink>

<h:commandLink action="main" value="Select Child">
<s:conversationPropagation type="nested"/>
</h:commandLink>

<h:commandLink action="main" value="Select Hotel">
<s:conversationPropagation type="begin"/>
</h:commandLink>

<h:commandLink action="main" value="Select Hotel">
<s:conversationPropagation type="join"/>
</h:commandLink>

This conversation model makes it easy to build applications which behave correctly with respect
to multi-window operation. For many applications, this is all that is needed. Some complex
applications have either or both of the following additional requirements:

« A conversation spans many smaller units of user interaction, which execute serially or even
concurrently. The smaller nested conversations have their own isolated set of conversation

state, and also have access to the state of the outer conversation.

« The user is able to switch between many conversations within the same browser window. This

feature is called workspace management.

163



Chapter 7. Conversations and ...

7.2. Nested conversations

A nested conversation is created by invoking a method marked @egi n( nest ed=t rue) inside
the scope of an existing conversation. A nested conversation has its own conversation context,
but can read values from the outer conversation's context. The outer conversation's context is
read-only within a nested conversation, but because objects are obtained by reference, changes
to the objects themselves will be reflected in the outer context.

* Nesting a conversation through initializes a context that is stacked on the context of the original,
or outer, conversation. The outer conversation is considered the parent.

« Any values outjected or directly set into the nested conversation’s context do not affect the
objects accessible in the parent conversation’s context.

« Injection or a context lookup from the conversation context will first lookup the value in the
current conversation context and, if no value is found, will proceed down the conversation stack
if the conversation is nested. As you will see in moment, this behavior can be overriden.

When an @nd is subsequently encountered, the nested conversation will be destroyed, and
the outer conversation will resume, by "popping” the conversation stack. Conversations may be
nested to any arbitrary depth.

Certain user activity (workspace management, or the back button) can cause the outer
conversation to be resumed before the inner conversation is ended. In this case it is possible
to have multiple concurrent nested conversations belonging to the same outer conversation.
If the outer conversation ends before a nested conversation ends, Seam destroys all nested
conversation contexts along with the outer context.

The conversation at the bottom of the conversation stack is the root conversation. Destroying
this conversation always destroy all of its descendents. You can achieve this declaratively by
specifying @nd( r oot =t r ue) .

A conversation may be thought of as a continuable state. Nested conversations allow the
application to capture a consistent continuable state at various points in a user interaction, thus
ensuring truly correct behavior in the face of backbuttoning and workspace management.

As mentioned previously, if a component exists in a parent conversation of the current nested
conversation, the nested conversation will use the same instance. Occasionally, it is useful to
have a different instance in each nested conversation, so that the component instance that exists
in the parent conversation is invisible to its child conversations. You can achieve this behavior by
annotating the component @&er Nest edConver sat i on.

7.3. Starting conversations with GET requests

JSF does not define any kind of action listener that is triggered when a page is accessed via a
non-faces request (for example, a HTTP GET request). This can occur if the user bookmarks the
page, or if we navigate to the page via an <h: out put Li nk>.

164



Starting conversations with GET requests

Sometimes we want to begin a conversation immediately the page is accessed. Since there is no
JSF action method, we can't solve the problem in the usual way, by annotating the action with
@Begi n.

A further problem arises if the page needs some state to be fetched into a context variable. We've
already seen two ways to solve this problem. If that state is held in a Seam component, we can
fetch the state in a @r eat e method. If not, we can define a @act ory method for the context
variable.

If none of these options works for you, Seam lets you define a page action in the pages. xmi file.

<pages>
<page view-id="/messageList.jsp" action="#{messageManager.list}"/>

</pages>

This action method is called at the beginning of the render response phase, any time the page
is about to be rendered. If a page action returns a non-null outcome, Seam will process any
appropriate JSF and Seam navigation rules, possibly resulting in a completely different page being
rendered.

If all you want to do before rendering the page is begin a conversation, you could use a built-in

action method that does just that:

<pages>
<page view-id="/messageList.jsp" action="#{conversation.begin}"/>

</pages>

Note that you can also call this built-in action from a JSF control, and, similarly, you can use
#{ conver sat i on. end} to end conversations.

If you want more control, to join existing conversations or begin a nested conversion, to begin a
pageflow or an atomic conversation, you should use the <begi n- conver sat i on> element.

<pages>
<page view-id="/messageList.jsp">
<begin-conversation nested="true" pageflow="Addltem"/>
<page>

</pages>

165



Chapter 7. Conversations and ...

There is also an <end- conver sat i on> element.

<pages>
<page view-id="/home.jsp">
<end-conversation/>
<page>

</pages>

To solve the first problem, we now have five options:

Annotate the @r eat e method with @egi n

Annotate the @act or y method with @egi n

Annotate the Seam page action method with @egi n
* Use <begi n- conver sati on> in pages. xni .

» Use #{conver sati on. begi n} as the Seam page action method

7.4. Requiring a long-running conversation

Certain pages are only relevant in the context of a long-running conversation. One way to "protect”
such a page is to require a long-running conversation as a prerequisite to rendering the page.
Fortunately, Seam has a built-in mechanism for enforcing this requirement.

In the Seam page descriptor, you can indicate that the current conversation must be long-running
(or nested) in order for a page to be rendered using the conversati on-requi red attribute as
follows:

<page view-id="/book.xhtml" conversation-required="true"/>

Note

j=deo

The only downside is there's no built-in way to indicate which long-running
conversation is required. You can build on this basic authorization by dually
checking if a specific value is present in the conversation within a page action.

When Seam determines that this page is requested outside of a long-running conversation, the
following actions are taken:

166



Using <s: | i nk> and <s: butt on>

« A contextual event named or g. j boss. seam noConver sat i on is raised

« A warning status message is registered using the bundle key

org.j boss. seam NoConver sati on
« The user is redirected to an alternate page, if defined

The alternate page is defined in the no- conver sati on- vi ew i d attribute on a <pages> element
in the Seam page descriptor as follows:

<pages no-conversation-view-id="/main.xhtml"/>

At the moment, you can only define one such page for the entire application.

75 USing <s:|ink> and <s: button>

JSF command links always perform a form submission via JavaScript, which breaks the web
browser's "open in new window" or "open in new tab" feature. In plain JSF, you need to
use an <h: out put Li nk> if you need this functionality. But there are two major limitations to
<h: out put Li nk>.

« JSF provides no way to attach an action listener to an <h: out put Li nk>.

« JSF does not propagate the selected row of a Dat aMbdel since there is no actual form
submission.

Seam provides the notion of a page action to help solve the first problem, but this does nothing to
help us with the second problem. We could work around this by using the RESTful approach of
passing a request parameter and requerying for the selected object on the server side. In some
cases — such as the Seam blog example application — this is indeed the best approach. The
RESTful style supports bookmarking, since it does not require server-side state. In other cases,
where we don't care about bookmarks, the use of @at aMbdel and @at aModel Sel ecti on is just
S0 convenient and transparent!

To fill in this missing functionality, and to make conversation propagation even simpler to manage,
Seam provides the <s: | i nk> JSF tag.

The link may specify just the JSF view id:

<s:link view="/login.xhtml|" value="Login"/>

Or, it may specify an action method (in which case the action outcome determines the page that
results):

167



Chapter 7. Conversations and ...

<s:link action="#{login.logout}" value="Logout"/>

If you specify both a JSF view id and an action method, the 'view' will be used unless the action
method returns a non-null outcome:

<s:link view="/loggedOut.xhtml" action="#{login.logout}" value="Logout"/>

The link automatically propagates the selected row of a Dat aMbdel using inside <h: dat aTabl e>:

<s:link view="/hotel.xhtml" action="#{hotelSearch.selectHotel}" value="#{hotel.name}"/>

You can leave the scope of an existing conversation:

<s:link view="/main.xhtml" propagation="none"/>

You can begin, end, or nest conversations:

<s:link action="#{issueEditor.viewComment}" propagation="nest"/>

If the link begins a conversation, you can even specify a pageflow to be used:

<s:link action="#{documentEditor.getDocument}" propagation="begin"
pageflow="EditDocument"/>

The t askl nst ance attribute is for use in jBPM task lists:

<s:link action="#{documentApproval.approveOrReject}" taskinstance="#{task}"/>

(See the DVD Store demo application for examples of this.)

Finally, if you need the "link" to be rendered as a button, use <s: but t on>:

<s:button action="#{login.logout}" value="Logout"/>

168



Success messages

7.6. Success messages

It is quite common to display a message to the user indicating success or failure of an action. Itis
convenient to use a JSF FacesMessage for this. Unfortunately, a successful action often requires
a browser redirect, and JSF does not propagate faces messages across redirects. This makes it
quite difficult to display success messages in plain JSF.

The built in conversation-scoped Seam component named f acesMessages solves this problem.
(You must have the Seam redirect filter installed.)

@Name("editDocumentAction")

@Stateless

public class EditDocumentBean implements EditDocument {
@In EntityManager em;
@In Document document;
@In FacesMessages facesMessages;

public String update() {

em.merge(document);
facesMessages.add("Document updated");

Any message added to f acesMessages is used in the very next render response phase for the
current conversation. This even works when there is no long-running conversation since Seam
preserves even temporary conversation contexts across redirects.

You can even include JSF EL expressions in a faces message summary:
facesMessages.add("Document #{document.title} was updated");

You may display the messages in the usual way, for example:

<h:messages globalOnly="true"/>

7.7. Natural conversation ids

When working with conversations that deal with persistent objects, it may be desirable to use the
natural business key of the object instead of the standard, "surrogate" conversation id:

Easy redirect to existing conversation

169



Chapter 7. Conversations and ...

It can be useful to redirect to an existing conversation if the user requests the same operation
twice. Take this example: “ You are on ebay, half way through paying for an item you just won as
a Christmas present for your parents. Lets say you're sending it straight to them - you enter your
payment details but you can't remember their address. You accidentally reuse the same browser
window finding out their address. Now you need to return to the payment for the item. ”

With a natural conversation it's really easy to have the user rejoin the existing conversation, and
pick up where they left off - just have them to rejoin the payForltem conversation with the itemld
as the conversation id.

User friendly URLs

For me this consists of a navigable hierarchy (I can navigate by editing the url) and a meaningful
URL (like this Wiki uses - so don't identify things by random ids). For some applications user
friendly URLs are less important, of course.

With a natural conversation, when you are building your hotel booking system (or,
of course, whatever your app is) you can generate a URL like http://seam hotel s/
book. seanPhot el =Best West er nAnt wer pen (of course, whatever parameter hot el maps to on
your domain model must be unique) and with URLRewrite easily transform this to http://seam-
hotels/book/BestWesternAntwerpen.

Much better!

7.8. Creating a natural conversation

Natural conversations are defined in pages. xni :

<conversation name="PlaceBid"
parameter-name="auctionld"
parameter-value="#{auction.auctionld}"/>

The first thing to note from the above definition is that the conversation has a hame, in this case
Pl aceBi d. This name uniquely identifies this particular named conversation, and is used by the
page definition to identify a named conversation to participate in.

The next attribute, par anet er - nane defines the request parameter that will contain the natural
conversation id, in place of the default conversation id parameter. In this example, the par anet er -
nane is auct i onl d. This means that instead of a conversation parameter like ci d=123 appearing
in the URL for your page, it will contain auct i onl d=765432 instead.

The last attribute in the above configuration, par anet er - val ue, defines an EL expression used
to evaluate the value of the natural business key to use as the conversation id. In this example,
the conversation id will be the primary key value of the auct i on instance currently in scope.

Next, we define which pages will participate in the named conversation. This is done by specifying
the conver sat i on attribute for a page definition:

170



Redirecting to a natural conversation

<page view-id="/bid.xhtml" conversation="PlaceBid" login-required="true">
<navigation from-action="#{bidAction.confirmBid}">
<rule if-outcome="success">
<redirect view-id="/auction.xhtm|">
<param name="id" value="#{bidAction.bid.auction.auctionld}"/>
</redirect>
</rule>
</navigation>
</page>

7.9. Redirecting to a natural conversation

When starting, or redirecting to, a natural conversation there are a number of options for specifying
the natural conversation name. Let's start by looking at the following page definition:

<page view-id="/auction.xhtml|">
<param name="id" value="#{auctionDetail.selectedAuctionld}"/>

<navigation from-action="#{bidAction.placeBid}">
<redirect view-id="/bid.xhtml"/>
</navigation>
</page>

From here, we can see that invoking the action #{ bi dAct i on. pl aceBi d} from our auction view
(by the way, all these examples are taken from the seamBay example in Seam), that we will be
redirected to/ bi d. xht nl , which, as we saw previously, is configured with the natural conversation
Pl aceBi d. The declaration for our action method looks like this:

@Begin(join = true)
public void placeBid()

When named conversations are specified in the <page/ > element, redirection to the named
conversation occurs as part of navigation rules, after the action method has already been invoked.
This is a problem when redirecting to an existing conversation, as redirection needs to be occur
before the action method is invoked. Therefore it is necessary to specify the conversation name
when the action is invoked. One way of doing this is by using the s: conver sat i onNane tag:

<h:commandButton id="placeBidWithAmount" styleClass="placeBid"
action="#{bidAction.placeBid}">

171



Chapter 7. Conversations and ...

<s:conversationName value="PlaceBid"/>
</h:commandButton>

Another alternative is to specify the conversati onNanme attribute when using either s: 1i nk or
s: button:

<s:link value="Place Bid" action="#{bidAction.placeBid}" conversationName="PlaceBid"/>

7.10. Workspace management

Workspace management is the ability to "switch" conversations in a single window. Seam
makes workspace management completely transparent at the level of the Java code. To enable
workspace management, all you need to do is:

» Provide description text for each view id (when using JSF or Seam navigation rules) or page
node (when using jPDL pageflows). This description text is displayed to the user by the
workspace switchers.

 Include one or more of the standard workspace switcher JSP or facelets fragments in your
pages. The standard fragments support workspace management via a drop down menu, a list
of conversations, or breadcrumbs.

7.10.1. Workspace management and JSF navigation

When you use JSF or Seam navigation rules, Seam switches to a conversation by restoring
the current vi ew- i d for that conversation. The descriptive text for the workspace is defined in
a file called pages. xm that Seam expects to find in the WEB- | NF directory, right next to f aces-
config.xm :

<pages>

<page view-id="/main.xhtml">

<description>Search hotels: #{hotelBooking.searchString}</description>
</page>
<page view-id="/hotel.xhtml">

<description>View hotel: #{hotel.name}</description>
</page>
<page view-id="/book.xhtml">

<description>Book hotel: #{hotel.name}</description>
</page>
<page view-id="/confirm.xhtml">

<description>Confirm: #{booking.description}</description>
</page>

172



Workspace management and jPDL pageflow

</pages>

Note that if this file is missing, the Seam application will continue to work perfectly! The only
missing functionality will be the ability to switch workspaces.

7.10.2. Workspace management and jPDL pageflow

When you use a jPDL pageflow definition, Seam switches to a conversation by restoring the
current jBPM process state. This is a more flexible model since it allows the same vi ew- i d to have
different descriptions depending upon the current <page> node. The description text is defined
by the <page> node:

<pageflow-definition name="shopping">

<start-state name="start">
<transition to="browse"/>
</start-state>

<page name="browse" view-id="/browse.xhtm|">
<description>DVD Search: #{search.searchPattern}</description>
<transition to="browse"/>
<transition name="checkout" to="checkout"/>

</page>

<page name="checkout" view-id="/checkout.xhtm|">
<description>Purchase: $#{cart.total}</description>
<transition to="checkout"/>
<transition name="complete" to="complete"/>
</page>

<page name="complete" view-id="/complete.xhtml">
<end-conversation />

</page>

</pageflow-definition>

7.10.3. The conversation switcher

Include the following fragment in your JSP or facelets page to get a drop-down menu that lets you
switch to any current conversation, or to any other page of the application:

<h:selectOneMenu value="#{switcher.conversationldOrOutcome}">

173



Chapter 7. Conversations and ...

<f:selectltem itemLabel="Find Issues" itemValue="findIssue"/>
<f:selectltem itemLabel="Create Issue" itemValue="editlssue"/>
<f:selectltems value="#{switcher.selectltems}"/>

</h:selectOneMenu>
<h:commandButton action="#{switcher.select}" value="Switch"/>

In this example, we have a menu that includes an item for each conversation, together with two
additional items that let the user begin a new conversation.

Only conversations with a description (specified in pages. xm ) will be included in the drop-down

menu.

: Comment on Issue [1] for Project [HHH] | +
Find Issues
Create lssue
Browse Projects
Create Project
Me | |5sue [1] for Project [HHH]

an K Project [HHH
Comment on Issue [1] for Project [HHH]

7.10.4. The conversation list

The conversation list is very similar to the conversation switcher, except that it is displayed as

a table:

<h:dataTable value="#{conversationList}" var="entry"
rendered="#{not empty conversationList}">
<h:column>
<f:.facet name="header">Workspace</f:facet>
<h:commandLink action="#{entry.select}" value="#{entry.description}"/>
<h:outputText value="[current]" rendered="#{entry.current}"/>
</h:column>
<h:column>
<f.facet name="header">Activity</f.facet>
<h:outputText value="#{entry.startDatetime}">
<f:convertDateTime type="time" pattern="hh:mm a"/>
</h:outputText>
<h:outputText value="-"/>
<h:outputText value="#{entry.lastDatetime}">
<f:convertDateTime type="time" pattern="hh:mm a"/>

174



Breadcrumbs

</h:outputText>
</h:column>
<h:column>
<f.facet name="header">Action</f:facet>
<h:commandButton action="#{entry.select}" value="#{msg.Switch}"/>
<h:commandButton action="#{entry.destroy}" value="#{msg.Destroy}"/>
</h:column>
</h:dataTable>

We imagine that you will want to customize this for your own application.

Workspace Workspace activity Action

Comment on Issue [1] for Project [HHH] 01:18 PM - 01:18 PM | switch || Destroy |
Issue [1] for Project [HHH] 01:18 PM - 01:18 PM | switch || Destroy |
Project [HHH] 01:18 PM - 01:18 PM | Switch || Destroy |

Only conversations with a description will be included in the list.

Notice that the conversation list lets the user destroy workspaces.

7.10.5. Breadcrumbs

Breadcrumbs are useful in applications which use a nested conversation model. The breadcrumbs
are a list of links to conversations in the current conversation stack:

<uicrepeat value="#{conversationStack}" var="entry">

<h:commandLink value="#{entry.description}" action="#{entry.select}"/>
</ui:repeat

Home | Find Issues | Create Issue | Project [HHH] | Issue [1] for Project [HHH]
—Issue Attributes ,

7.11. Conversational components and JSF component
bindings
Conversational components have one minor limitation: they cannot be used to hold bindings to

JSF components. (We generally prefer not to use this feature of JSF unless absolutely necessary,
since it creates a hard dependency from application logic to the view.) On a postback request,

175



Chapter 7. Conversations and ...

component bindings are updated during the Restore View phase, before the Seam conversation
context has been restored.

To work around this use an event scoped component to store the component bindings and inject
it into the conversation scoped component that requires it.

@Name("grid")
@Scope(ScopeType.EVENT)
public class Grid

{
private HtmIPanelGrid htmlPanelGrid;

Il getters and setters

@Name("gridEditor")
@Scope(ScopeType.CONVERSATION)
public class GridEditor
{

@In(required=false)

private Grid grid;

Also, you can't inject a conversation scoped component into an event scoped component which
you bind a JSF control to. This includes Seam built in components like f acesMessages.

Alternatively, you can access the JSF component tree through the implicit ui Conponent handle.
The following example accesses get Rowl ndex() of the Ul Dat a component which backs the data
table during iteration, it prints the current row number:

<h:dataTable id="lineltemTable" var="lineltem" value="#{orderHome.lineltems}">
<h:column>
Row: #{uiComponent['lineltemTable".rowindex}
</h:column>

</h:dataTable>

176



Concurrent calls to conversational components

JSF Ul components are available with their client identifier in this map.

7.12. Concurrent calls to conversational components

A general discussion of concurrent calls to Seam components can be found in Section 4.1.10,
“Concurrency model”. Here we will discuss the most common situation in which you will encounter
concurrency — accessing conversational components from AJAX requests. We're going to
discuss the options that a Ajax client library should provide to control events originating at the
client — and we'll look at the options RichFaces gives you.

Conversational components don't allow real concurrent access therefore Seam queues each
request to process them serially. This allows each request to be executed in a deterministic
fashion. However, a simple queue isn't that great — firstly, if a method is, for some reason, taking a
very long time to complete, running it over and over again whenever the client generates a request
is bad idea (potential for Denial of Service attacks), and, secondly, AJAX is often to used to provide
a quick status update to the user, so continuing to run the action after a long time isn't useful.

Therefore, when you are working inside a long running conversation, Seam queues the action
event for a period of time (the concurrent request timeout); if it can't process the event in time, it
creates a temporary conversation and prints out a message to the user to let them know what's
going on. It's therefore very important not to flood the server with AJAX events!

We can set a sensible default for the concurrent request timeout (in ms) in components.xml:
<core:manager concurrent-request-timeout="500" />
We can also fine tune the concurrent request timeout on a page-by-page basis:

<page view-id="/book.xhtml"
conversation-required="true"
login-required="true"
concurrent-request-timeout="2000" />

So far we've discussed AJAX requests which appear serial to the user - the client tells the server
that an event has occur, and then rerenders part of the page based on the result. This approach
is great when the AJAX request is lightweight (the methods called are simple e.g. calculating the
sum of a column of numbers). But what if we need to do a complex computation thats going to
take a minute?

For heavy computation we should use a poll based approach — the client sends an AJAX request
to the server, which causes action to be executed asynchronously on the server (the response
to the client is immediate) and the client then polls the server for updates. This is good approach
when you have a long-running action for which it is important that every action executes (you don't
want some to timeout).

177



Chapter 7. Conversations and ...

7.12.1. How should we design our conversational AJAX
application?

Well first, you need to decide whether you want to use the simpler "serial" request or whether you
want to use a polling approach.

If you go for a "serial" requests, then you need to estimate how long your request will take to
complete - is it much shorter than the concurrent request timeout? If not, you probably want to alter
the concurrent request timeout for this page (as discussed above). You probably want a queue
on the client side to prevent flooding the server with requests. If the event occurs often (e.g. a
keypress, onblur of input fields) and immediate update of the client is not a priority you should set
a request delay on the client side. When working out your request delay, factor in that the event
may also be queued on the server side.

Finally, the client library may provide an option to abort unfinished duplicate requests in favor of
the most recent.

Using a poll-style design requires less fine-tuning. You just mark your action method
@synchr onous and decide on a polling interval:

int total;

/I This method is called when an event occurs on the client
/I It takes a really long time to execute
@Asynchronous
public void calculateTotal() {
total = someReallyComplicatedCalculation();

}

/I This method is called as the result of the poll
Il It's very quick to execute
public int getTotal() {

return total;

7.12.2. Dealing with errors

However carefully you design your application to queue concurrent requests to your
conversational component, there is a risk that the server will become overloaded and be unable to
process all the requests before the request will have to wait longer than the concur r ent - r equest -
ti meout . In this case Seam will throw a Concur r ent Request Ti meout Except i on which can be
handled in pages. xm . We recommend sending an HTTP 503 error:

178



Dealing with errors

<exception class="org.jpboss.seam.ConcurrentRequestTimeoutException" log-level="trace">
<http-error error-code="503" />
</exception>

503 Service Unavailable (HTTP/1.1 RFC)

j=deo

The server is currently unable to handle the request due to a temporary overloading
or maintenance of the server. The implication is that this is a temporary condition
which will be alleviated after some delay.

Alternatively you could redirect to an error page:

<exception class="org.jboss.seam.ConcurrentRequestTimeoutException" log-level="trace">
<end-conversation/>
<redirect view-id="/error.xhtml">
<message>The server is too busy to process your request, please try again later</message>
</redirect>
</exception>

ICEfaces, RichFaces Ajax and Seam Remoting can all handle HTTP error codes. Seam Remoting
will pop up a dialog box showing the HTTP error. ICEfaces will indicate the error in its connection
status component. RichFaces provides the most complete support for handling HTTP errors by
providing a user definable callback. For example, to show the error message to the user:

<script type="text/javascript">
A4J.AJAX.onError = function(req,status,message) {
alert("An error occurred");
)i

</script>

If instead of an error code, the server reports that the view has expired, perhaps because the
session timed out, you use a separate callback function in RichFaces to handle this scenario.

<script type="text/javascript">
A4J.AJAX.onExpired = function(loc,message) {
alert("View expired");
)i

</script>

179



Chapter 7. Conversations and ...

Alternatively, you can allow RichFaces handle the error, in which case the user will be presented
with a prompt that reads "View state could't be restored - reload page?" You can customize this
message globally by setting the following message key in an application resource bundle.

AJAX_VIEW_EXPIRED=View expired. Please reload the page.

7.12.3. RichFaces (Ajax4jsf)

RichFaces (Ajax4jsf) is the Ajax library most commonly used with Seam, and provides all the
controls discussed above:

* event sQueue — provides a queue in which events are placed. All events are queued and
requests are sent to the server serially. This is useful if the request to the server can take
some time to execute (e.g. heavy computation, retrieving information from a slow source) as
the server isn't flooded.

* i gnor eDupResponses — ignores the response produced by the request if a more recent 'similar’
request is already in the queue. ignoreDupResponses="true" does not cancel the processing
of the request on the server side — just prevents unnecessary updates on the client side.

This option should be used with care with Seam's conversations as it allows multiple concurrent
requests to be made.

* request Del ay — defines the time (in ms.) that the request will be remain on the queue. If
the request has not been processed by after this time the request will be sent (regardless of
whether a response has been received) or discarded (if there is a more recent similar event
on the queue).

This option should be used with care with Seam's conversations as it allows multiple concurrent
requests to be made. You need to be sure that the delay you set (in combination with the
concurrent request timeout) is longer than the action will take to execute.

e <a:poll reRender="total" interval ="1000" />— Polls the server, and rerenders an area
as needed

180



Chapter 8.

Pageflows and business processes

JBoss jBPM is a business process management engine for any Java SE or EE environment. jBPM
lets you represent a business process or user interaction as a graph of nodes representing wait
states, decisions, tasks, web pages, etc. The graph is defined using a simple, very readable, XML
dialect called jPDL, and may be edited and visualised graphically using an eclipse plugin. jPDL
is an extensible language, and is suitable for a range of problems, from defining web application
page flow, to traditional workflow management, all the way up to orchestration of services in a
SOA environment.

Seam applications use jBPM for two different problems:

« Defining the pageflow involved in complex user interactions. A jPDL process definition defines
the page flow for a single conversation. A Seam conversation is considered to be a relatively
short-running interaction with a single user.

« Defining the overarching business process. The business process may span multiple
conversations with multiple users. Its state is persistent in the jJBPM database, so it is considered
long-running. Coordination of the activities of multiple users is a much more complex problem
than scripting an interaction with a single user, so jBPM offers sophisticated facilities for task
management and dealing with multiple concurrent paths of execution.

Don't get these two things confused! They operate at very different levels or granularity. Pageflow,
conversation and task all refer to a single interaction with a single user. A business process spans
many tasks. Futhermore, the two applications of jBPM are totally orthogonal. You can use them
together or independently or not at all.

You don't have to know jDPL to use Seam. If you're perfectly happy defining pageflow using
JSF or Seam navigation rules, and if your application is more data-driven that process-driven,
you probably don't need jBPM. But we're finding that thinking of user interaction in terms of a
well-defined graphical representation is helping us build more robust applications.

8.1. Pageflow in Seam

There are two ways to define pageflow in Seam:

* Using JSF or Seam navigation rules - the stateless navigation model
» Using jPDL - the stateful navigation model

Very simple applications will only need the stateless navigation model. Very complex applications
will use both models in different places. Each model has its strengths and weaknesses!

8.1.1. The two navigation models

The stateless model defines a mapping from a set of named, logical outcomes of an event directly
to the resulting page of the view. The navigation rules are entirely oblivious to any state held by the

181



Chapter 8. Pageflows and busi...

application other than what page was the source of the event. This means that your action listener
methods must sometimes make decisions about the page flow, since only they have access to
the current state of the application.

Here is an example page flow definition using JSF navigation rules:

<navigation-rule>
<from-view-id>/numberGuess.jsp</from-view-id>

<navigation-case>
<from-outcome>guess</from-outcome>
<to-view-id>/numberGuess.jsp</to-view-id>
<redirect/>

</navigation-case>

<navigation-case>
<from-outcome>win</from-outcome>
<to-view-id>/win.jsp</to-view-id>
<redirect/>

</navigation-case>

<navigation-case>
<from-outcome>lose</from-outcome>
<to-view-id>/lose.jsp</to-view-id>
<redirect/>

</navigation-case>

</navigation-rule>

Here is the same example page flow definition using Seam navigation rules:

<page view-id="/numberGuess.jsp">

<navigation>
<rule if-outcome="guess">
<redirect view-id="/numberGuess.jsp"/>
</rule>
<rule if-outcome="win">
<redirect view-id="/win.jsp"/>
</rule>
<rule if-outcome="lose">
<redirect view-id="/lose.jsp"/>
</rule>

182



The two navigation models

</navigation>

</page>

If you find navigation rules overly verbose, you can return view ids directly from your action listener
methods:

public String guess() {
if (guess==randomNumber) return "/win.jsp";
if (++guessCount==maxGuesses) return "/lose.jsp";
return null;

Note that this results in a redirect. You can even specify parameters to be used in the redirect:

public String search() {
return "/searchResults.jsp?searchPattern=#{searchAction.searchPattern}";

The stateful model defines a set of transitions between a set of named, logical application states.
In this model, it is possible to express the flow of any user interaction entirely in the jPDL
pageflow definition, and write action listener methods that are completely unaware of the flow of
the interaction.

Here is an example page flow definition using jPDL:

<pageflow-definition name="numberGuess">

<start-page name="displayGuess" view-id="/numberGuess.jsp">
<redirect/>
<transition name="guess" to="evaluateGuess">
<action expression="#{numberGuess.guess}" />
</transition>
</start-page>

<decision name="evaluateGuess" expression="#{numberGuess.correctGuess}">
<transition name="true" to="win"/>
<transition name="false" to="evaluateRemainingGuesses"/>

</decision>

<decision name="evaluateRemainingGuesses" expression="#{numberGuess.lastGuess}">

183



Chapter 8. Pageflows and busi...

<transition name="true" to="lose"/>
<transition name="false" to="displayGuess"/>
</decision>

<page name="win" view-id="/win.jsp">
<redirect/>
<end-conversation />

</page>

<page name="lose" view-id="/lose.jsp">
<redirect/>
<end-conversation />

</page>

</pageflow-definition>

= 0| 5= outline 22 = B
[x Select Sl
4, Marquee e e +-@ numberGuess
Q Start start
ChDecision
E=E| Page {{P&Qe:}
— Transition Edigmayﬁuess
guess false
o ==Decisions== false i ==Decision==
" evaluateGuess * evaluateRemainingGuesses
frue frue
Page==
E=. ==Pgge== [= =l
& Win &l lose

Diagram | Design | Source

There are two things we notice immediately here:

e The JSF/Seam navigation rules are much simpler. (However, this obscures the fact that the
underlying Java code is more complex.)

» The jPDL makes the user interaction immediately understandable, without us needing to even
look at the JSP or Java code.

184



Seam and the back button

In addition, the stateful model is more constrained. For each logical state (each step in the page
flow), there are a constrained set of possible transitions to other states. The stateless model is
an ad hoc model which is suitable to relatively unconstrained, freeform navigation where the user
decides where he/she wants to go next, not the application.

The stateful/stateless navigation distinction is quite similar to the traditional view of modal/
modeless interaction. Now, Seam applications are not usually modal in the simple sense of
the word - indeed, avoiding application modal behavior is one of the main reasons for having
conversations! However, Seam applications can be, and often are, modal at the level of a particular
conversation. It is well-known that modal behavior is something to avoid as much as possible; it
is very difficult to predict the order in which your users are going to want to do things! However,
there is no doubt that the stateful model has its place.

The biggest contrast between the two models is the back-button behavior.

8.1.2. Seam and the back button

When JSF or Seam navigation rules are used, Seam lets the user freely navigate via the back,
forward and refresh buttons. It is the responsibility of the application to ensure that conversational
state remains internally consistent when this occurs. Experience with the combination of web
application frameworks like Struts or WebWork - that do not support a conversational model -
and stateless component models like EJB stateless session beans or the Spring framework has
taught many developers that this is close to impossible to do! However, our experience is that
in the context of Seam, where there is a well-defined conversational model, backed by stateful
session beans, it is actually quite straightforward. Usually it is as simple as combining the use
of no- conversati on-vi ew i d with null checks at the beginning of action listener methods. We
consider support for freeform navigation to be almost always desirable.

In this case, the no-conversation-vi ewi d declaration goes in pages. xm . It tells Seam to
redirect to a different page if a request originates from a page rendered during a conversation,
and that conversation no longer exists:

<page view-id="/checkout.xhtml"
no-conversation-view-id="/main.xhtml"/>

On the other hand, in the stateful model, using the back button is interpreted as an undefined
transition back to a previous state. Since the stateful model enforces a defined set of transitions
from the current state, the back button is not permitted by default in the stateful model! Seam
transparently detects the use of the back button, and blocks any attempt to perform an action from
a previous, "stale" page, and simply redirects the user to the "current” page (and displays a faces
message). Whether you consider this a feature or a limitation of the stateful model depends upon
your point of view: as an application developer, it is a feature; as a user, it might be frustrating!
You can enable backbutton navigation from a particular page node by setting back="enabl ed".

185



Chapter 8. Pageflows and busi...

<page name="checkout"
view-id="/checkout.xhtml|"
back="enabled">
<redirect/>
<transition to="checkout"/>
<transition name="complete" to="complete"/>
</page>

This allows navigation via the back button from the checkout state to any previous state!

Of course, we still need to define what happens if a request originates from a page rendered
during a pageflow, and the conversation with the pageflow no longer exists. In this case, the
no- conver sati on-vi ew i d declaration goes into the pageflow definition:

<page name="checkout"
view-id="/checkout.xhtml"
back="enabled"
no-conversation-view-id="/main.xhtml|">
<redirect/>
<transition to="checkout"/>
<transition name="complete" to="complete"/>
</page>

In practice, both navigation models have their place, and you'll quickly learn to recognize when
to prefer one model over the other.

8.2. Using jPDL pageflows

8.2.1. Installing pageflows

We need to install the Seam jBPM-related components, and place the pageflow definitions
(using the standard . j pdl . xm extension) inside a Seam archive (an archive which contains a
seam properti es file):

186



Starting pageflows

<bpm:jbpm />

We can also explicitly tell Seam where to find our pageflow definition. We specify this in

conponents. xmi :

<bpm:jbpm>
<bpm:pageflow-definitions>
<value>pageflow.jpdl.xml</value>
</bpm:pageflow-definitions>
</bpm:jbpm>

8.2.2. Starting pageflows

We "start" a jPDL-based pageflow by specifying the name of the process definition using a @egi n,
@egi nTask or @t art Task annotation:

@Begin(pageflow="numberguess")
public void begin() { ... }

Alternatively we can start a pageflow using pages.xml:

<page>
<begin-conversation pageflow="numberguess"/>
</page>

If we are beginning the pageflow during the RENDER_RESPONSE phase — during a @act ory or
@r eat e method, for example — we consider ourselves to be already at the page being rendered,
and use a <st art - page> node as the first node in the pageflow, as in the example above.

But if the pageflow is begun as the result of an action listener invocation, the outcome of the action
listener determines which is the first page to be rendered. In this case, we use a <start - st at e>
as the first node in the pageflow, and declare a transition for each possible outcome:

<pageflow-definition name="viewEditDocument">

<start-state name="start">
<transition name="documentFound" to="displayDocument"/>
<transition name="documentNotFound" to="notFound"/>
</start-state>

187



Chapter 8. Pageflows and busi...

<page name="displayDocument" view-id="/document.jsp">
<transition name="edit" to="editDocument"/>
<transition name="done" to="main"/>

</page>

<page name="notFound" view-id="/404.jsp">
<end-conversation/>
</page>

</pageflow-definition>

8.2.3. Page nodes and transitions

Each <page> node represents a state where the system is waiting for user input:

<page name="displayGuess" view-id="/numberGuess.jsp">
<redirect/>
<transition name="guess" to="evaluateGuess">
<action expression="#{numberGuess.guess}" />
</transition>
</page>

The vi ew i d is the JSF view id. The <r edi r ect / > element has the same effect as <r edi rect />
in a JSF navigation rule: namely, a post-then-redirect behavior, to overcome problems with the
browser's refresh button. (Note that Seam propagates conversation contexts over these browser
redirects. So there is no need for a Ruby on Rails style "flash" construct in Seam!)

The transition name is the name of a JSF outcome triggered by clicking a command button or
command link in nunber Guess. j sp.

<h:commandButton type="submit" value="Guess" action="guess"/>

When the transition is triggered by clicking this button, jBPM will activate the transition action
by calling the guess() method of the nunber Guess component. Notice that the syntax used for
specifying actions in the jPDL is just a familiar JSF EL expression, and that the transition action
handler is just a method of a Seam component in the current Seam contexts. So we have exactly
the same event model for jBPM events that we already have for JSF events! (The One Kind of
Stuff principle.)

188



Controlling the flow

In the case of a null outcome (for example, a command button with no act i on defined), Seam will
signal the transition with no name if one exists, or else simply redisplay the page if all transitions
have names. So we could slightly simplify our example pageflow and this button:

<h:commandButton type="submit" value="Guess"/>

Would fire the following un-named transition:

<page name="displayGuess" view-id="/numberGuess.jsp">
<redirect/>
<transition to="evaluateGuess">
<action expression="#{numberGuess.guess}" />
</transition>
</page>

It is even possible to have the button call an action method, in which case the action outcome will
determine the transition to be taken:

<h:commandButton type="submit" value="Guess" action="#{numberGuess.guess}'/>

<page name="displayGuess" view-id="/numberGuess.jsp">
<transition name="correctGuess" to="win"/>
<transition name="incorrectGuess" to="evaluateGuess"/>
</page>

However, this is considered an inferior style, since it moves responsibility for controlling the flow
out of the pageflow definition and back into the other components. It is much better to centralize
this concern in the pageflow itself.

8.2.4. Controlling the flow

Usually, we don't need the more powerful features of jPDL when defining pageflows. We do need
the <deci si on> node, however:

<decision name="evaluateGuess" expression="#{numberGuess.correctGuess}">
<transition name="true" to="win"/>
<transition name="false" to="evaluateRemainingGuesses"/>

</decision>

189



Chapter 8. Pageflows and busi...

A decision is made by evaluating a JSF EL expression in the Seam contexts.

8.2.5. Ending the flow

We end the conversation using <end- conver sat i on> or @nd. (In fact, for readability, use of both
is encouraged.)

<page name="win" view-id="/win.jsp">
<redirect/>
<end-conversation/>

</page>

Optionally, we can end a task, specify a jJBPM transi ti on name. In this case, Seam will signal
the end of the current task in the overarching business process.

<page name="win" view-id="/win.jsp">
<redirect/>
<end-task transition="success"/>
</page>

8.2.6. Pageflow composition

It is possible to compose pageflows and have one pageflow pause pause while another pageflow
executes. The <process- st at e> node pauses the outer pageflow, and begins execution of a
named pageflow:

<process-state name="cheat">
<sub-process name="cheat"/>
<transition to="displayGuess"/>
</process-state>

The inner flow begins executing at a <st art - st at e> node. When it reaches an <end- st at e>
node, execution of the inner flow ends, and execution of the outer flow resumes with the transition
defined by the <pr ocess- st at e> element.

8.3. Business process management in Seam

A business process is a well-defined set of tasks that must be performed by users or software
systems according to well-defined rules about who can perform a task, and when it should
be performed. Seam's |BPM integration makes it easy to display lists of tasks to users and
let them manage their tasks. Seam also lets the application store state associated with the

190



Business process management in Seam

business process in the BUSI NESS_PROCESS context, and have that state made persistent via jBPM
variables.

A simple business process definition looks much the same as a page flow definition (One Kind
of Stuff), except that instead of <page> nodes, we have <t ask- node> nodes. In a long-running
business process, the wait states are where the system is waiting for some user to log in and
perform a task.

<process-definition name="todo">

<start-state name="start">
<transition to="todo"/>
</start-state>

<task-node name="todo">
<task name="todo" description="#{todoList.description}">
<assignment actor-id="#{actor.id}"/>
</task>
<transition to="done"/>
</task-node>

<end-state name="done"/>

</process-definition>

[s Select |E

£ marquee .
+ perty Value
2 start O <<Start State>>

start MName
e State . Source start
End

Target todo
of[2 Fork

<k Join . <<Task Node>>
7 Decision todo

% Node

¥ Task Node

It

—+ Transition

=<fEnd State==

done

Diagram | Swimlanes  Design | Source

191



Chapter 8. Pageflows and busi...

It is perfectly possible that we might have both jPDL business process definitions and jPDL
pageflow definitions in the same project. If so, the relationship between the two is that a single
<t ask> in a business process corresponds to a whole pageflow <pagef | ow defi niti on>

8.4. Using jPDL business process definitions

8.4.1. Installing process definitions

We need to install BPM, and tell it where to find the business process definitions:
<bpm:jbpm>
<bpm:process-definitions>
<value>todo.jpdl.xml</value>

</bpm:process-definitions>
</bpm:jbpm>

As jBPM processes are persistent across application restarts, when using Seam in a production
environment you won't want to install the process definition every time the application starts.
Therefore, in a production environment, you'll need to deploy the process to jBPM outside of
Seam. In other words, only install process definitions from conponent s. xmi when developing your
application.

8.4.2. Initializing actor ids

We always need to know what user is currently logged in. jBPM "knows" users by their actor id and
group actor ids. We specify the current actor ids using the built in Seam component named act or :

@In Actor actor;
public String login() {

actor.setld( user.getUserName() );
actor.getGroupActorlds().addAll( user.getGroupNames() );

8.4.3. Initiating a business process

To initiate a business process instance, we use the @r eat ePr ocess annotation:

@CreateProcess(definition="todo")

192



Task assignment

public void createTodo() { ... }

Alternatively we can initiate a business process using pages.xml:

<page>
<create-process definition="todo" />
</page>

8.4.4. Task assignment

When a process reaches a task node, task instances are created. These must be assigned to
users or user groups. We can either hardcode our actor ids, or delegate to a Seam component:

<task name="todo" description="#{todoList.description}">
<assignment actor-id="#{actor.id}"/>
</task>

In this case, we have simply assigned the task to the current user. We can also assign tasks to
a pool:

<task name="todo" description="#{todoList.description}">
<assignment pooled-actors="employees"/>
</task>

8.4.5. Task lists

Several built-in  Seam components make it easy to display task lists. The
pool edTaskl nst ancelLi st is a list of pooled tasks that users may assign to themselves:

<h:dataTable value="#{pooledTasklInstanceList}" var="task">
<h:column>
<f.facet name="header">Description</f:facet>
<h:outputText value="#{task.description}"/>
</h:column>
<h:column>
<s:link action="#{pooledTask.assignToCurrentActor}" value="Assign" taskinstance="#{task}"/

</h:column>

193



Chapter 8. Pageflows and busi...

</h:dataTable>

Note that instead of <s: | i nk> we could have used a plain JSF <h: commandLi nk>:

<h:commandLink action="#{pooledTask.assignToCurrentActor}">
<f:param name="taskld" value="#{task.id}"/>
</h:commandLink>

The pool edTask component is a built-in component that simply assigns the task to the current
user.

The t askl nst anceli st For Type component includes tasks of a particular type that are assigned
to the current user:

<h:dataTable value="#{taskinstanceListForType['todo']}" var="task">
<h:column>
<f.facet name="header">Description</f.facet>
<h:outputText value="#{task.description}"/>
</h:column>
<h:column>
<s:link action="#{todoList.start}" value="Start Work" taskinstance="#{task}"/>
</h:column>
</h:dataTable>

8.4.6. Performing a task

To begin work on a task, we use either @t art Task or @egi nTask on the listener method:

@StartTask
public String start() { ... }

Alternatively we can begin work on a task using pages.xmil:

<page>
<start-task />
</page>

194



Performing a task

These annotations begin a special kind of conversation that has significance in terms of the
overarching business process. Work done by this conversation has access to state held in the
business process context.

If we end the conversation using @ndTask, Seam will signal the completion of the task:

@EndTask(transition="completed")
public String completed() { ... }

Alternatively we can use pages.xml:

<page>
<end-task transition="completed" />
</page>

You can also use EL to specify the transition in pages.xml.

At this point, jBPM takes over and continues executing the business process definition. (In more
complex processes, several tasks might need to be completed before process execution can
resume.)

Please refer to the jBPM documentation for a more thorough overview of the sophisticated features
that jBPM provides for managing complex business processes.

195



196



Chapter 9.

Seam and Object/Relational Mapping

Seam provides extensive support for the two most popular persistence architectures for Java:
Hibernate3, and the Java Persistence API introduced with EJB 3.0. Seam's unique state-
management architecture allows the most sophisticated ORM integration of any web application
framework.

9.1. Introduction

Seam grew out of the frustration of the Hibernate team with the statelessness typical of
the previous generation of Java application architectures. The state management architecture
of Seam was originally designed to solve problems relating to persistence — in particular
problems associated with optimistic transaction processing. Scalable online applications always
use optimistic transactions. An atomic (database/JTA) level transaction should not span a user
interaction unless the application is designed to support only a very small number of concurrent
clients. But almost all interesting work involves first displaying data to a user, and then, slightly
later, updating the same data. So Hibernate was designed to support the idea of a persistence
context which spanned an optimistic transaction.

Unfortunately, the so-called "stateless" architectures that preceded Seam and EJB 3.0 had no
construct for representing an optimistic transaction. So, instead, these architectures provided
persistence contexts scoped to the atomic transaction. Of course, this resulted in many problems
for users, and is the cause of the number one user complaint about Hibernate: the dreaded
Lazyl nitializationException. What we need is a construct for representing an optimistic
transaction in the application tier.

EJB 3.0 recognizes this problem, and introduces the idea of a stateful component (a stateful
session bean) with an extended persistence context scoped to the lifetime of the component. This
is a partial solution to the problem (and is a useful construct in and of itself) however there are
two problems:

» The lifecycle of the stateful session bean must be managed manually via code in the web tier
(it turns out that this is a subtle problem and much more difficult in practice than it sounds).

» Propagation of the persistence context between stateful components in the same optimistic
transaction is possible, but tricky.

Seam solves the first problem by providing conversations, and stateful session bean components
scoped to the conversation. (Most conversations actually represent optimistic transactions in the
data layer.) This is sufficient for many simple applications (such as the Seam booking demo)
where persistence context propagation is not needed. For more complex applications, with many
loosly-interacting components in each conversation, propagation of the persistence context across
components becomes an important issue. So Seam extends the persistence context management
model of EJB 3.0, to provide conversation-scoped extended persistence contexts.

197



Chapter 9. Seam and Object/Re...

9.2. Seam managed transactions

EJB session beans feature declarative transaction management. The EJB container is able to start
a transaction transparently when the bean is invoked, and end it when the invocation ends. If we
write a session bean method that acts as a JSF action listener, we can do all the work associated
with that action in one transaction, and be sure that it is committed or rolled back when we finish
processing the action. This is a great feature, and all that is needed by some Seam applications.

However, there is a problem with this approach. A Seam application may not perform all data
access for a request from a single method call to a session bean.

» The request might require processing by several loosely-coupled components, each of which
is called independently from the web layer. It is common to see several or even many calls per
request from the web layer to EJB components in Seam.

» Rendering of the view might require lazy fetching of associations.

The more transactions per request, the more likely we are to encounter atomicity and isolation
problems when our application is processing many concurrent requests. Certainly, all write
operations should occur in the same transaction!

Hibernate users developed the "open session in view" pattern to work around this problem. In
the Hibernate community, "open session in view" was historically even more important because
frameworks like Spring use transaction-scoped persistence contexts. So rendering the view would
cause Lazyl nitial i zati onExcepti ons when unfetched associations were accessed.

This pattern is usually implemented as a single transaction which spans the entire request. There
are several problems with this implementation, the most serious being that we can never be sure
that a transaction is successful until we commit it — but by the time the "open session in view"
transaction is committed, the view is fully rendered, and the rendered response may already have
been flushed to the client. How can we notify the user that their transaction was unsuccessful?

Seam solves both the transaction isolation problem and the association fetching problem, while
working around the problems with "open session in view". The solution comes in two parts:

e use an extended persistence context that is scoped to the conversation, instead of to the
transaction

* use two transactions per request; the first spans the beginning of the restore view phase (some
transaction managers begin the transaction later at the beginning of the apply request vaues
phase) until the end of the invoke application phase; the second spans the render response
phase

In the next section, we'll tell you how to set up a conversation-scope persistence context. But
first we need to tell you how to enable Seam transaction management. Note that you can use
conversation-scoped persistence contexts without Seam transaction management, and there are
good reasons to use Seam transaction management even when you're not using Seam-managed

198



Disabling Seam-managed transactions

persistence contexts. However, the two facilities were designed to work together, and work best
when used together.

Seam transaction management is useful even if you're using EJB 3.0 container-managed
persistence contexts. But it is especially useful if you use Seam outside a Java EE 5 environment,
or in any other case where you would use a Seam-managed persistence context.

9.2.1. Disabling Seam-managed transactions

Seam transaction management is enabled by default for all JSF requests. If you want to disable
this feature, you can do it in conponent s. xm :

<core:init transaction-management-enabled="false"/>

<transaction:no-transaction />

9.2.2. Configuring a Seam transaction manager

Seam provides a transaction management abstraction for beginning, committing, rolling back,
and synchronizing with a transaction. By default Seam uses a JTA transaction component that
integrates with Container Managed and programmatic EJB transactions. If you are working
in a Java EE 5 environment, you should install the EJB synchronization component in
conponent s. xm :

<transaction:ejb-transaction />

However, if you are working in a non EE 5 container, Seam will try auto detect the transaction
synchronization mechanism to use. However, if Seam is unable to detect the correct transaction
synchronization to use, you may find you need configure one of the following:

« JPA RESOURCE_LOCAL transactions with the j avax. persistence. EntityTransaction
interface. EntityTransacti on begins the transaction at the beginning of the apply request
values phase.

* Hibernate managed transactions with the org. hibernate. Transaction interface.
H ber nat eTr ansact i on begins the transaction at the beginning of the apply request values
phase.

e Spring managed transactions with the
org. springframework.transaction. Pl at f or nifr ansact i onManager interface. The Spring
Pl at f or niTr ansact i onManagenent manager may begin the transaction at the beginning of the
apply request values phase if the user Conver sat i onCont ext attribute is set.

» Explicitly disable Seam managed transactions

199



Chapter 9. Seam and Object/Re...

Configure JPA RESOURCE_LOCAL transaction management by adding the following to your
components.xml where #{ en} is the hame of the per si st ence: managed- per si st ence- cont ext
component. If your managed persistence context is named ent i t yManager , you can opt to leave
out the enti ty- nanager attribute. (see Seam-managed persistence contexts )

<transaction:entity-transaction entity-manager="#{em}"/>

To configure Hibernate managed transactions declare the following in your components.xml where
#{ hi ber nat eSessi on} is the name of the project's per si st ence: nanaged- hi ber nat e- sessi on
component. If your managed hibernate session is hamed sessi on, you can opt to leave out the
sessi on attribute. (see Seam-managed persistence contexts )

<transaction:hibernate-transaction session="#{hibernateSession}"/>
To explicitly disable Seam managed transactions declare the following in your components.xml:
<transaction:no-transaction />

For configuring Spring managed transactions see using Spring PlatformTransactionManagement .

9.2.3. Transaction synchronization

Transaction synchronization provides callbacks for transaction related events such as
bef oreConpl eti on() and after Conpl etion(). By default, Seam uses it's own transaction
synchronization component which requires explicit use of the Seam transaction component when
committing a transaction to ensure synchronization callbacks are correctly executed. If in a Java
EE 5 environment the <transacti on: ej b-transacti on/ > component should be be declared
in conponents. xm to ensure that Seam synchronization callbacks are correctly called if the
container commits a transaction outside of Seam's knowledge.

9.3. Seam-managed persistence contexts

If you're using Seam outside of a Java EE 5 environment, you can't rely upon the container to
manage the persistence context lifecycle for you. Even if you are in an EE 5 environment, you
might have a complex application with many loosly coupled components that collaborate together
in the scope of a single conversation, and in this case you might find that propagation of the
persistence context between component is tricky and error-prone.

In either case, you'll need to use a managed persistence context (for JPA) or a managed session
(for Hibernate) in your components. A Seam-managed persistence context is just a built-in Seam
component that manages an instance of Ent i t yManager or Sessi on in the conversation context.
You can inject it with @ n.

200



Using a Seam-managed persistence context

with JPA

Seam-managed persistence contexts are extremely efficient in a clustered environment. Seam

is able to perform an optimization that EJB 3.0 specification does not allow containers to use

for container-managed extended persistence contexts. Seam supports transparent failover of

extended persisence contexts, without the need to replicate any persistence context state between
nodes. (We hope to fix this oversight in the next revision of the EJB spec.)

9.3.1. Using a Seam-managed persistence context with JPA

Configuring a managed persistence context is easy. In conponent s. xnl , we can write:

<persistence:managed-persistence-context name="bookingDatabase"
auto-create="true"
persistence-unit-jndi-name="java:/EntityManagerFactories/bookingData"/>

This configuration creates a conversation-scoped Seam component named booki ngDat abase
that manages the lifecycle of EntityManager instances for the persistence unit
(Enti tyManager Factory instance) with JNDI name java:/EntityManagerFactories/
booki ngDat a.

Of course, you need to make sure that you have bound the Ent i t yManager Fact ory into JNDI. In
JBoss, you can do this by adding the following property setting to per si st ence. xmi .

<property name="jboss.entity.manager.factory.jndi.name"
value="java:/EntityManagerFactories/bookingData"/>

Now we can have our Ent i t yManager injected using:

@In EntityManager bookingDatabase;

If you are using EJB3 and mark your class or method @ ansacti onAt t ri but e( REQUI RES_NEW
then the transaction and persistence context shouldn't be propagated to method calls on this
object. However as the Seam-managed persistence context is propagated to any component
within the conversation, it will be propagated to methods marked REQUI RES_NEW Therefore,
if you mark a method REQUI RES_NEW then you should access the entity manager using
@PersistenceContext.

9.3.2. Using a Seam-managed Hibernate session

Seam-managed Hibernate sessions are similar. In conponent s. xni :

<persistence:hibernate-session-factory name="hibernateSessionFactory"/>

201



Chapter 9. Seam and Object/Re...

<persistence:managed-hibernate-session name="bookingDatabase"
auto-create="true"
session-factory-jndi-name="java:/bookingSessionFactory"/>

Where java:/booki ngSessi onFactory is the name of the session factory specified in
hi bernate. cfg. xm .

<session-factory name="java:/bookingSessionFactory">
<property name="transaction.flush_before_completion">true</property>
<property name="connection.release_mode">after_statement</property>
<property

property>
<property

property>
<property name="connection.datasource">java:/bookingDatasource</property>

</session-factory>

Note that Seam does not flush the session, so you should always enable
hi bernat e. transacti on. fl ush_bef or e_conpl et i on to ensure that the session is automatically
flushed before the JTA transaction commits.

We can now have a managed Hibernate Sessi on injected into our JavaBean components using
the following code:

@In Session bookingDatabase;

9.3.3. Seam-managed persistence contexts and atomic
conversations

Persistence contexts scoped to the conversation allows you to program optimistic transactions
that span multiple requests to the server without the need to use the ner ge() operation , without
the need to re-load data at the beginning of each request, and without the need to wrestle with
the Lazyl niti al i zati onExcepti on or NonUni queQbj ect Excepti on.

As with any optimistic transaction management, transaction isolation and consistency can be
achieved via use of optimistic locking. Fortunately, both Hibernate and EJB 3.0 make it very easy
to use optimistic locking, by providing the @/er si on annotation.

202



Seam-managed persistence contexts and

atomic conversations
By default, the persistence context is flushed (synchronized with the database) at the end of

each transaction. This is sometimes the desired behavior. But very often, we would prefer
that all changes are held in memory and only written to the database when the conversation
ends successfully. This allows for truly atomic conversations. As the result of a truly stupid
and shortsighted decision by certain non-JBoss, non-Sun and non-Sybase members of the EJB
3.0 expert group, there is currently no simple, usable and portable way to implement atomic
conversations using EJB 3.0 persistence. However, Hibernate provides this feature as a vendor
extension to the Fl ushMbdeTypes defined by the specification, and it is our expectation that other
vendors will soon provide a similar extension.

Seam lets you specify Fl ushMbdeType. MANUAL when beginning a conversation. Currently, this
works only when Hibernate is the underlying persistence provider, but we plan to support other
equivalent vendor extensions.

@In EntityManager em; //a Seam-managed persistence context

@Begin(flushMode=MANUAL)
public void beginClaimWizard() {
claim = em.find(Claim.class, claimld);

Now, the cl ai m object remains managed by the persistence context for the rest ot the
conversation. We can make changes to the claim:

public void addPartyToClaim() {
Party party = ....;
claim.addParty(party);

But these changes will not be flushed to the database until we explicitly force the flush to occur:

@End
public void commitClaim() {
em.flush();

Of course, you could set the f | ushibde to MANUAL from pages.xml, for example in a navigation
rule:

203



Chapter 9. Seam and Object/Re...

<begin-conversation flush-mode="MANUAL" />
You can set any Seam Managed Persistence Context to use manual flush mode:

<components xmlns="http://jboss.com/products/seam/components"
xmins:core="http://jboss.com/products/seam/core">
<core:manager conversation-timeout="120000" default-flush-mode="manual" />
</components>

9.4. Using the JPA "delegate”

The EntityManager interface lets you access a vendor-specific APl via the get Del egat e()
method. Naturally, the most interesting vendor is Hibernate, and the most powerful delegate
interface is or g. hi ber nat e. Sessi on. You'd be nuts to use anything else. Trust me, I'm not biased
at all. If you must use a different JPA provider see Using Alternate JPA Providers.

But regardless of whether you're using Hibernate (genius!) or something else (masochist, or just
not very bright), you'll almost certainly want to use the delegate in your Seam components from
time to time. One approach would be the following:

@In EntityManager entityManager;

@Create
public void init() {
( (Session) entityManager.getDelegate() ).enableFilter("currentVersions");

But typecasts are unquestionably the ugliest syntax in the Java language, so most people avoid
them whenever possible. Here's a different way to get at the delegate. First, add the following
line to conponent s. xn :

<factory name="session"
scope="STATELESS"
auto-create="true"
value="#{entityManager.delegate}"/>

Now we can inject the session directly:

@In Session session;

204



Using EL in EJB-QL/HQL

@Create
public void init() {
session.enableFilter("currentVersions");

9.5. Using EL in EJB-QL/HQL

Seam proxies the EntityManager or Session object whenever you use a Seam-
managed persistence context or inject a container managed persistence context using
@er si st enceCont ext. This lets you use EL expressions in your query strings, safely and
efficiently. For example, this:

User user = em.createQuery("from User where username=#{user.username}")
.getSingleResult();

is equivalent to:

User user = em.createQuery("from User where username=:username")
.setParameter("username", user.getUsername())
.getSingleResult();

Of course, you should never, ever write it like this:

User user = em.createQuery("from User where username=" + user.getUsername()) //BAD!
.getSingleResult();

(It is inefficient and vulnerable to SQL injection attacks.)

9.6. Using Hibernate filters

The coolest, and most unique, feature of Hibernate is filters. Filters let you provide a restricted view
of the data in the database. You can find out more about filters in the Hibernate documentation.
But we thought we'd mention an easy way to incorporate filters into a Seam application, one that
works especially well with the Seam Application Framework.

Seam-managed persistence contexts may have a list of filters defined, which will be enabled
whenever an Ent i t yManager or Hibernate Sessi on is first created. (Of course, they may only be
used when Hibernate is the underlying persistence provider.)

205



Chapter 9. Seam and Object/Re...

<persistence:filter name="regionFilter">
<persistence:name>region</persistence:name>
<persistence:parameters>
<key>regionCode</key>
<value>#{region.code}</value>
</persistence:parameters>
</persistence:filter>

<persistence:filter name="currentFilter">
<persistence:name>current</persistence:name>
<persistence:parameters>
<key>date</key>
<value>#{currentDate}</value>
</persistence:parameters>
</persistence:filter>

<persistence:managed-persistence-context name="personDatabase"
persistence-unit-jndi-name="java:/EntityManagerFactories/personDatabase">

<persistence:filters>
<value>#{regionFilter}</value>
<value>#{currentFilter}</value>
</persistence:filters>
</persistence:managed-persistence-context>

206



Chapter 10.

JSF form validation in Seam

In plain JSF, validation is defined in the view:

<h:form>
<h:messages/>

<div>
Country:
<h:inputText value="#{location.country}" required="true">
<my:validateCountry/>
</h:inputText>
</div>

<div>
Zip code:
<h:inputText value="#{location.zip}" required="true">
<my:validateZip/>
</h:inputText>
</div>

<h:commandButton/>
</h:form>

In practice, this approach usually violates DRY, since most "validation" actually enforces
constraints that are part of the data model, and exist all the way down to the database schema
definition. Seam provides support for model-based constraints defined using Hibernate Validator.

Let's start by defining our constraints, on our Locat i on class:

public class Location {
private String country;
private String zip;

@NotNull

@Length(max=30)

public String getCountry() { return country; }
public void setCountry(String c) { country =c; }

@NotNull
@Length(max=6)
@Pattern("MN\d*$")

207



Chapter 10. JSF form validati...

public String getZip() { return zip; }
public void setZip(String z) { zip = z; }

Well, that's a decent first cut, but in practice it might be more elegant to use custom constraints
instead of the ones built into Hibernate Validator:

public class Location {
private String country;
private String zip;

@NotNull

@Country

public String getCountry() { return country; }
public void setCountry(String c) { country = c; }

@NotNull

@ZipCode

public String getZip() { return zip; }
public void setZip(String z) { zip = z; }

Whichever route we take, we no longer need to specify the type of validation to be used in the
JSF page. Instead, we can use <s: val i dat e> to validate against the constraint defined on the
model object.

<h:form>
<h:messages/>

<div>
Country:
<h:inputText value="#{location.country}" required="true">
<s:validate/>
</h:inputText>
</div>

<div>
Zip code:
<h:inputText value="#{location.zip}" required="true">
<s:validate/>
</h:inputText>
</div>

208



<h:commandButton/>

</h:form>
Note: specifying @ot Nul | on the model does not eliminate the requirement for r equi r ed="t r ue"
to appear on the control! This is due to a limitation of the JSF validation architecture.

This approach defines constraints on the model, and presents constraint violations in the view —
a significantly better design.

However, it is not much less verbose than what we started with, so let's try <s: val i dat eAl | >:

<h:form>

<h:messages/>

<s:validateAll>

<div>

Country:

<h:inputText value="#{location.country}" required="true"/>
</div>

<div>

Zip code:

<h:inputText value="#{location.zip}" required="true"/>
</div>

<h:commandButton/>

</s:validateAll>

</h:form>

This tag simply adds an <s: val i dat e> to every input in the form. For a large form, it can save
a lot of typing!

Now we need to do something about displaying feedback to the user when validation fails.
Currently we are displaying all messages at the top of the form. In order for the user to correlate
the message with an input, you need to define a label using the standard | abel attribute on the
input component.

209



Chapter 10. JSF form validati...

<h:inputText value="#{location.zip}" required="true" label="Zip:">
<s:validate/>
</h:inputText>

You can then inject this value into the message string using the placeholder {0} (the first
and only parameter passed to a JSF message for a Hiberate Validator restriction). See the
internationalization section for more information regarding where to define these messages.

validator.length={0} length must be between {min} and {max}

What we would really like to do, though, is display the message next to the field with the error (this
is possible in plain JSF), highlight the field and label (this is not possible) and, for good measure,
display some image next to the field (also not possible). We also want to display a little colored
asterisk next to the label for each required form field. Using this approach, the identifying label
is not necessary.

That's quite a lot of functionality we need for each field of our form. We wouldn't want to have to
specify higlighting and the layout of the image, message and input field for every field on the form.
So, instead, we'll specify the common layout in a facelets template:

<ui:composition xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://java.sun.com/jsf/facelets"
xmins:h="http://java.sun.com/jsf/ntml"
xmins:f="http://java.sun.com/jsf/core"
xmins:s="http://jboss.com/products/seam/taglib">

<div>

<s:label styleClass="#{invalid?'error""}">

<ui:insert name="label"/>

<s:span styleClass="required" rendered="#{required}">*</s:span>
</s:label>

<span class="#{invalid?'error""}">
<h:graphiclmage value="/img/error.gif" rendered="#{invalid}"/>
<s:validateAll>
<ui:insert/>
</s:validateAll>
</span>

<s:message styleClass="error"/>

210



</div>

</ui:composition>

We can include this template for each of our form fields using <s: decor at e>.

<h:form>

<h:messages globalOnly="true"/>

<s:decorate template="edit.xhtml">
<ui:define name="label">Country:</ui:define>
<h:inputText value="#{location.country}" required="true"/>
</s:decorate>

<s:decorate template="edit.xhtml|">
<ui:define name="label">Zip code:</ui:define>
<h:inputText value="#{location.zip}" required="true"/>
</s:decorate>

<h:commandButton/>

</h:form>

Finally, we can use RichFaces Ajax to display validation messages as the user is navigating
around the form:

<h:form>

<h:messages globalOnly="true"/>

<s:decorate id="countryDecoration" template="edit.xhtm[">
<ui:define name="label">Country:</ui:define>
<h:inputText value="#{location.country}" required="true">
<a:support event="onblur" reRender="countryDecoration" bypassUpdates="true"/>
</h:inputText>
</s:decorate>

<s:decorate id="zipDecoration" template="edit.xhtm|">
<ui:define name="label">Zip code:</ui:define>
<h:inputText value="#{location.zip}" required="true">

211



Chapter 10. JSF form validati...

<a:support event="onblur" reRender="zipDecoration" bypassUpdates="true"/>
</h:inputText>
</s:decorate>

<h:commandButton/>

</h:form>

It's better style to define explicit ids for important controls on the page, especially if you want to
do automated testing for the Ul, using some toolkit like Selenium. If you don't provide explicit ids,
JSF will generate them, but the generated values will change if you change anything on the page.

<h:form id="form">

<h:messages globalOnly="true"/>

<s:decorate id="countryDecoration" template="edit.xhtml">
<ui:define name="label">Country:</ui:define>
<h:inputText id="country" value="#{location.country}" required="true">
<a:support event="onblur" reRender="countryDecoration" bypassUpdates="true"/>
</h:inputText>
</s:decorate>

<s:decorate id="zipDecoration" template="edit.xhtm|">
<ui:define name="label">Zip code:</ui:define>
<h:inputText id="zip" value="#{location.zip}" required="true">
<a:support event="onblur" reRender="zipDecoration" bypassUpdates="true"/>
</h:inputText>
</s:decorate>

<h:commandButton/>

</h:form>

And what if you want to specify a different message to be displayed when validation fails? You
can use the Seam message bundle (and all it's goodies like el expressions inside the message,
and per-view message bundles) with the Hibernate Validator:

public class Location {
private String name;
private String zip;

212



/I Getters and setters for name

@NotNull

@Length(max=6)
@ZipCode(message="#{messages|['location.zipCode.invalid]}")
public String getZip() { return zip; }

public void setZip(String z) { zip = z; }

location.zipCode.invalid = The zip code is not valid for #{location.name}

213



214



Chapter 11.

Groovy integration

One aspect of JBoss Seam is its RAD (Rapid Application Development) capability. While not
synonymous with RAD, one interesting tool in this space is dynamic languages. Until recently,
choosing a dynamic language was required choosing a completely different development platform
(a development platform with a set of APIs and a runtime so great that you would no longer want to
use you old legacy Java [sic] APIs anymore, which would be lucky because you would be forced to
use those proprietary APls anyway). Dynamic languages built on top of the Java Virtual Machine,
and Groovy [http://groovy.codehaus.org] in particular broke this approach in silos.

JBoss Seam now unites the dynamic language world with the Java EE world by seamlessly
integrating both static and dynamic languages. JBoss Seam lets the application developer use
the best tool for the task, without context switching. Writing dynamic Seam components is exactly
like writing regular Seam components. You use the same annotations, the same APls, the same
everything.

11.1. Groovy introduction

Groovy is an agile dynamic language based on the Java language but with additional features
inspired by Python, Ruby and Smalltalk. The strengths of Groovy are twofold:

« Java syntax is supported in Groovy: Java code is Groovy code, making the learning curve very
smooth

« Groovy objects are Java objects, and Groovy classes are Java classes: Groovy integrates
smoothly with existing Java libraries and frameworks.

TODO: write a quick overview of the Groovy syntax add-on

11.2. Writing Seam applications in Groovy

There is not much to say about it. Since a Groovy object is a Java object, you can virtually write
any Seam component, or any class for what it worth, in Groovy and deploy it. You can also mix
Groovy classes and Java classes in the same application.

11.2.1. Writing Groovy components

As you should have noticed by now, Seam uses annotations heavily. Be sure to use Groovy 1.1 or
above for annotation support. Here are some example of groovy code used in a Seam application.

11.2.1.1. Entity

@Entity
@Name("hotel")
class Hotel implements Serializable

215


http://groovy.codehaus.org
http://groovy.codehaus.org

Chapter 11. Groovy integration

@ld @GeneratedValue
Long id

@Length(max=50) @NotNull
String name

@Length(max=100) @NotNull
String address

@Length(max=40) @NotNull
String city

@Length(min=2, max=10) @NotNull
String state

@Length(min=4, max=6) @NotNull
String zip

@Length(min=2, max=40) @NotNull
String country

@Column(precision=6, scale=2)
BigDecimal price

@Override
String toString()

{
return "Hotel(${name},${address},${city}, ${zip})"

Groovy natively support the notion of properties (getter/setter), so there is no need to explicitly
write verbose getters and setters: in the previous example, the hotel class can be accessed from
Java as hot el . get G ty(), the getters and setters being generated by the Groovy compiler. This
type of syntactic sugar makes the entity code very concise.

11.2.1.2. Seam component

Writing Seam components in Groovy is in no way different than in Java: annotations are used to
mark the class as a Seam component.

@Scope(ScopeType.SESSION)
@Name("bookingList")

216



seam-gen

class BookingListAction implements Serializable
{
@In EntityManager em
@In User user
@DataModel List<Booking> bookings
@DataModelSelection Booking booking
@Logger Log log

@Factory public void getBookings()
{

bookings = em.createQuery(
select b from Booking b
where b.user.username = :username
order by b.checkinDate™)
.setParameter("username", user.username)
.getResultList()

public void cancel()

{

log.info("Cancel booking: #{bookingList.booking.id} for #{user.username}")
Booking cancelled = em.find(Booking.class, booking.id)
if (cancelled != null) em.remove( cancelled )
getBookings()
FacesMessages.instance().add("Booking cancelled for confirmation number
#{bookingList.booking.id}", new Object[0])
}

11.2.2. seam-gen

Seam gen has a transparent integration with Groovy. You can write Groovy code in seam-gen
backed projects without any additional infrastructure requirement. When writing a Groovy entity,
simply place your . gr oovy files in sr ¢/ mai n. Unsurprisingly, when writing an action, simply place
your . gr oovy filesin src/ hot.

11.3. Deployment

Deploying Groovy classes is very much like deploying Java classes (surprisingly, no need to
write nor comply with a 3-letter composite specification to support a multi-language component
framework).

Beyond standard deployments, JBoss Seam has the ability, at development time, to redeploy
JavaBeans Seam component classes without having to restart the application, saving a lot of time

217



Chapter 11. Groovy integration

in the development/ test cycle. The same support is provided for GroovyBeans Seam components
when the . gr oovy files are deployed.

11.3.1. Deploying Groovy code

A Groovy class is a Java class, with a bytecode representation just like a Java class. To deploy,
a Groovy entity, a Groovy Session bean or a Groovy Seam component, a compilation step is
necessary. A common approach is to use the gr oovyc ant task. Once compiles, a Groovy class
is in no way different than a Java class and the application server will treat them equally. Note
that this allow a seamless mix of Groovy and Java code.

11.3.2. Native .groovy file deployment at development time

JBoss Seam natively supports the deployment of . groovy files (ie without compilation) in
incremental hotdeployment mode (development only). This enables a very fast edit/test cycle. To
set up .groovy deployments, follow the configuration at Section 2.8, “Seam and incremental hot
deployment” and deploy your Groovy code (. gr oovy files) into the WEB- | NF/ dev directory. The
GroovyBean components will be picked up incrementally with no need to restart the application
(and obviously not the application server either).

Be aware that the native .groovy file deployment suffers the same limitations as the regular Seam
hotdeployment:

« The components must be JavaBeans or GroovyBeans. They cannot be EJB3 bean

 Entities cannot be hotdeployed

» The hot-deployable components will not be visible to any classes deployed outside of WVEB- | NF/
dev

* Seam debug mode must be enabled

11.3.3. seam-gen

Seam-gen transparently supports Groovy files deployment and compilation. This includes the
native . gr oovy file deployment in development mode (compilation-less). If you create a seam-
gen project of type WAR, Java and Groovy classes in src/ hot will automatically be candidate
for the incremental hot deployment. If you are in production mode, the Groovy files will simply be
compiled before deployment.

You will find a live example of the Booking demo written completely in Groovy and supporting
incremental hot deployment in exanpl es/ gr oovybooki ng.

218



Chapter 12.

Writing your presentation layer
using Apache Wicket

Seam supports Wicket as an alternative presentation layer to JSF. Take a look at the wi cket
example in Seam which shows the Booking Example ported to Wicket.

12.1. Adding Seam to your wicket application

The features added to your Wicket application can be split into two categories: bijection and
orchestration; these are discussed in detail below.

Extensive use of inner classes is common when building Wicket applications, with the component
tree being built in the constructor. Seam fully supports the use of annotation based control in inner
classes and constructors (unlike regular Seam components).

Annotations are processed after any call to a superclass. This mean's that any injected attributes
cannot be passed as an argument in a call to t hi s() or super ().

When a method is called in an inner class, bijection occurs for any class which encloses it. This
allows you to place your bijected variables in the outer class, and refer to them in any inner class.

12.1.1. Bijection

A Seam enabled Wicket application has full access to the all the standard Seam contexts (EVENT,
CONVERSATI ON, SESSI ON, APPLI CATI ON and BUSI NESS_PROCESS).

To access Seam component's from Wicket, you just need to inject it using @ n:

@In(create=true)
private HotelBooking hotelBooking;

219



Chapter 12. Writing your pres...

As your Wicket class isn't a full Seam component, there is no need to annotate
it @lane.

You can also outject an object into the Seam contexts from a Wicket component:

@Out(scope=ScopeType.EVENT, required=false)
private String verify;

TODO Make this more use case driven

12.1.2. Orchestration

You can secure a Wicket component by using the @Restri ct annotation. This can be placed
on the outer component or any inner components. If @Rest ri ct is specified, the component will
automatically be restricted to logged in users. You can optionally use an EL expression in the
val ue attribute to specify a restriction to be applied. For more refer to the Chapter 15, Security.

For example:

@Restrict
public class Main extends WebPage {

Tip

Seam will automatically apply the restriction to any nested classes.

You can demarcate conversations from within a Wicket component through the use of @egi n and
@nd. The semantics for these annotations are the same as when used in a Seam component.
You can place @egi n and @nd on any method.

For example:

220



Setting up your project

item.add(new Link("viewHotel") {

@Override
@Begin
public void onClick() {
hotelBooking.selectHotel(hotel);
setResponsePage(org.jboss.seam.example.wicket.Hotel.class);
}
K

You may have pages in your application which can only be accessed when the user has a long-
running conversation active. To enforce this you can use the @oConver sat i onPage annotation:

@Restrict
@NoConversationPage(Main.class)
public class Hotel extends WebPage {

If you want to further decouple your application classes, you can use Seam events. Of course,
you can raise an event using Events. i nstance().rai seEvent ("foo0") . Alternatively, you can
annotate a method @Rai seEvent ("foo"); if the method returns a non-null outcome without
exception, the event will be raised.

You can also control tasks and processes in Wicket classes through the use of @r eat ePr ocess,
@rResuneTask, @egi nTask, @ndTask, @t art Task and @t ansi ti on.

TODO - Implement BPM control - JBSEAM-3194

12.2. Setting up your project

Seam needs to instrument the bytecode of your Wicket classes to be able to intercept the
annotations you use. The first decision to make is: do you want your code instrumented at
runtime as your app is running, or at compile time? The former requires no integration with your
build environment, but has a performance penalty when loading each instrumented class for the
first time. The latter is faster, but requires you to integrate this instrumentation into your build
environment.

12.2.1. Runtime instrumentation

There are two ways to achieve runtime instrumentation. One relies on placing wicket components
to be instrumented in a special folder in your WAR deployment. If this is not acceptable or possible,
you can also use an instrumentation "agent,” which you specify in the command line for launching
your container.

221



Chapter 12. Writing your pres...

12.2.1.1. Location-specific instrumentation

Any classes placed in the VEB-INF/ wi cket folder within your WAR deployment will be
automatically instrumented by the seam-wicket runtime. You can arrange to place your wicket
pages and components here by specifying a separate output folder for those classes in your IDE,
or through the use of ant scripts.

12.2.1.2. Runtime instrumentation agent

The jar file j boss- seam wi cket . j ar can be used as an iinstrumentation agent through the Java
Instrumentation api. This is accomplished through the following steps:

« Arrange for the j boss- seam wi cket . j ar file to live in a location for which you have an absolute
path, as the Java Instrumentation API does not allow relative paths when specifying the location
of an agent lib.

e Add javaagent:/path/to/jboss-seamw cket.jar to the command line options when
launching your webapp container:

« In addition, you will need to add an environment variable that specifies packages that the agent
should instrument. This is accomplished by a comma separated list of package names:

-Dorg.jboss.seam.wicket.instrumented-packages=my.package.one,my.other.package

Note that if a package A is specified, classes in subpackages of A are also examined. The
classes chosen for instrumentation can be further limited by specifying:

-Dorg.jboss.seam.wicket.scanAnnotations=true

and then marking instrumentable classes with the @eam cket Conponent annotation, see
Section 12.2.3, “The @eanm cket Conponent annotation”.

12.2.2. Compile-time instrumentation
Seam supports instrumentation at compile time through either Apache Ant or Apache Maven.
12.2.2.1. Instrumenting with ant

Seam provides an ant task in the j boss- seam wi cket-ant.jar . This is used in the following
manner:

<taskdef name="instrumentWicket"
classname="org.jboss.seam.wicket.ioc.WicketInstrumentationTask">
<classpath>

222



Compile-time instrumentation

<pathelement location="lib/jboss-seam-wicket-ant.jar"/>
<pathelement location="web/WEB-INF/lib/jboss-seam-wicket.jar"/>
<pathelement location="lib/javassist.jar"/>
<pathelement location="lib/jboss-seam.jar"/>
</classpath>
</taskdef>

<instrumentWicket outputDirectory="${build.instrumented}" useAnnotations="true">
<classpath refid="build.classpath"/>
<fileset dir="${build.classes}" includes="**/*.class"/>

</instrumentWicket>

This results in the instrumented classes being placed in the directory specified by
${ bui | d. i nstrument ed}. You will then need to instruct ant to copy these classes into WEB- | NF/
cl asses. If you want to hot deploy the Wicket components, you can copy the instrumented classes
to VEB- | NF/ dev; if you use hot deploy, make sure that your W cket Appl i cati on class is also
hot-deployed. Upon a reload of hot-deployed classes, the entire WicketApplication instance has
to be re-initialized, in order to pick up new references to the classes of mounted pages.

The useAnnotations attribute is used to make the ant task only include classes that
have been marked with the @eanW cket Conponent annotation, see Section 12.2.3, “The
@ean cket Conponent annotation”.

12.2.2.2. Instrumenting with maven

The jboss maven repository repository.jboss.org provides a plugin named seam
i nstrunent -wi cket with a process-cl asses mojo. An example configuration in your pom.xml
might look like:

<build>
<plugins>
<plugin>
<groupld>org.jboss.seam</groupld>
<artifactld>seam-instrument-wicket</artifactld>
<version>2.1.2</version>
<configuration>
<scanAnnotations>true</scanAnnotations>
<includes>
<include>your.package.name</include>
</includes>
</configuration>
<executions>
<execution>
<id>instrument</id>

223



Chapter 12. Writing your pres...

<phase>process-classes</phase>
<goals>
<goal>instrument</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>

The above example illustrates that the instrumentation is limited to classes specified by the
i ncl udes element. In this example, the scanAnnot at i ons is specified, see Section 12.2.3, “The
@eami cket Conponent annotation”.

12.2.3. The @eam cket Conponent annotation

Classes placed in WEB-INF/wicket will unconditionally be instrumented. The other instrumentation
mechanisms all allow you to specify that instrumentation should only be applied to classes
annotated with the @eamn cket Conponent annotation. This annotation is inherited, which means
all subclasses of an annotated class will also be instrumented. An example usage is:

import org.jboss.seam.wicket.ioc.SeamWicketComponent;
@SeamWicketComponent
public class MyPage extends WebPage{

12.2.4. Defining the Application

A Wicket web application which uses Seam should use SeamAbApplication as the base
class; this creates hooks into the Wicket lifecycle allowing Seam to automagically propagate the
conversation as needed. It also adds status messages to the page.

For example:

The SeamAut hor i zat i onSt r at egy delegates authorization to Seam Security, allowing the use of
@Restrict on Wicket components. SeambAppl i cati on installs the authorization strategy for
you. You can specify the login page by implementing the get Logi nPage() method.

You'll also need to set the home page of the application by implementing the get HomePage()
method.

public class WicketBookingApplication extends SeamWebApplication {

224



Defining the Application

@Override
public Class getHomePage() {
return Home.class;

@Override
protected Class getLoginPage() {
return Home.class;

Seam automatically installs the Wicket filter for you (ensuring that it is inserted in the correct place
for you). But you still need to tell Wicket which WebAppl i cat i on class to use.

<components xmIns="http://jboss.com/products/seam/components"
xmins:wicket="http://jboss.com/products/seam/wicket"
xsi:schemalLocation=
"http://jboss.com/products/seam/wicket
http://jboss.com/products/seam/wicket-2.1.xsd">

<wicket:web-application
application-class="org.jboss.seam.example.wicket.WicketBookingApplication" />
</components

In addition, if you plan to use JSF-based pages in the same application as wicket pages, you'll
need to ensure that the jsf exception filter is only enabled for jsf urls:

<components xmlns="http://jposs.com/products/seam/components”
xmlns:web="http://jboss.com/products/seam/web"
xmlns:wicket="http://jposs.com/products/seam/wicket"
xsi:schemalLocation=
"http://jboss.com/products/seam/web
http://jboss.com/products/seam/web-2.1.xsd">

<!l-- Only map the seam jsf exception filter to jsf paths, which we identify with the *.seam path -->
<web:exception-filter url-pattern="*.seam"/>
</components

225



Chapter 12. Writing your pres...

Tip

Take a look at the Wicket documentation for more on authorization strategies and
other methods you can override on the Appl i cati on class.

226



Chapter 13.

The Seam Application Framework

Seam makes it really easy to create applications by writing plain Java classes with annotations,
which don't need to extend any special interfaces or superclasses. But we can simplify some
common programming tasks even further, by providing a set of pre-built components which can
be re-used either by configuration in conponent s. xm (for very simple cases) or extension.

The Seam Application Framework can reduce the amount of code you need to write when doing
basic database access in a web application, using either Hibernate or JPA.

We should emphasize that the framework is extremely simple, just a handful of simple classes
that are easy to understand and extend. The "magic" is in Seam itself — the same magic you use
when creating any Seam application even without using this framework.

13.1. Introduction

The components provided by the Seam application framework may be used in one of two
different approaches. The first way is to install and configure an instance of the component
in component s. xni , just like we have done with other kinds of built-in Seam components. For
example, the following fragment from conponent s. xm installs a component which can perform
basic CRUD operations for a Per son entity:

<framework:entity-home name="personHome"
entity-class="eg.Person”
entity-manager="#{personDatabase}">
<framework:id>#{param.personld}</framework:id>
</framework:entity-home>

If that looks a bit too much like "programming in XML" for your taste, you can use extension instead:

@Name("personHome")
public class PersonHome extends EntityHome<Person> {

@In EntityManager personDatabase;

public EntityManager getEntityManager() {
return personDatabase;

227



Chapter 13. The Seam Applicat...

The second approach has one huge advantage: you can easily add extra functionality, and
override the built-in functionality (the framework classes were carefully designed for extension
and customization).

A second advantage is that your classes may be EJB stateful session beans, if you like. (They
do not have to be, they can be plain JavaBean components if you prefer.) If you are using JBoss
AS, you'll need 4.2.2.GA or later:

@Stateful
@Name("personHome")
public class PersonHome extends EntityHome<Person> implements LocalPersonHome {

You can also make your classes stateless session beans. In this case you must use injection to
provide the persistence context, even if it is called ent i t yManager :

@Stateless
@Name("personHome")
public class PersonHome extends EntityHome<Person> implements LocalPersonHome {

@In EntityManager entityManager;

public EntityManager getPersistenceContext() {
entityManager;

At this time, the Seam Application Framework provides four main built-in components:
EntityHome and HibernateEntityHome for CRUD, along with EntityQuery and
Hi ber nat eEnt i t yQuery for queries.

The Home and Query components are written so that they can function with a scope of session,
event or conversation. Which scope you use depends upon the state model you wish to use in
your application.

The Seam Application Framework only works with Seam-managed persistence contexts. By
default, the components will look for a persistence context named ent i t yManager .

228



Home objects

13.2. Home objects

A Home object provides persistence operations for a particular entity class. Suppose we have our
trusty Per son class:

@Entity

public class Person {
@Id private Long id;
private String firstName;
private String lastName;
private Country nationality;

/lgetters and setters...

We can define a per sonHome component either via configuration:
<framework:entity-home name="personHome" entity-class="eg.Person" />
Or via extension:

@Name("personHome")
public class PersonHome extends EntityHome<Person> {}

A Home object provides the following operations: persist(), renove(), update() and
get I nst ance() . Before you can call the r enove() , or updat e() operations, you must first set the
identifier of the object you are interested in, using the set | d() method.

We can use a Home directly from a JSF page, for example:

<h1>Create Person</h1>

<h:form>
<div>First name: <h:inputText value="#{personHome.instance.firstName}"/></div>
<div>Last name: <h:inputText value="#{personHome.instance.lastName}"/></div>
<div>

<h:commandButton value="Create Person" action="#{personHome.persist}"/>

</div>

</h:form>

229



Chapter 13. The Seam Applicat...

Usually, it is much nicer to be able to refer to the Per son merely as per son, so let's make that
possible by adding a line to conmponent s. xni :

<factory name="person"
value="#{personHome.instance}"/>

<framework:entity-home name="personHome"
entity-class="eg.Person" />

(If we are using configuration.) Or by adding a @act or y method to Per sonHone:

@Name("personHome")
public class PersonHome extends EntityHome<Person> {

@Factory("person™)
public Person initPerson() { return getinstance(); }

(If we are using extension.) This change simplifies our JSF page to the following:

<h1>Create Person</h1>
<h:form>
<div>First name: <h:inputText value="#{person.firstName}"/></div>
<div>Last name: <h:inputText value="#{person.lastName}"/></div>
<div>
<h:commandButton value="Create Person" action="#{personHome.persist}"/>
</div>
</h:form>

Well, that lets us create new Per son entries. Yes, that is all the code that is required! Now, if we
want to be able to display, update and delete pre-existing Per son entries in the database, we
need to be able to pass the entry identifier to the Per sonHore. Page parameters are a great way
to do that:

<pages>
<page view-id="/editPerson.jsp">
<param name="personld" value="#{personHome.id}"/>
</page>

230



Home objects

</pages>

Now we can add the extra operations to our JSF page:

<h1>
<h:outputText rendered="#{!personHome.managed}" value="Create Person"/>
<h:outputText rendered="#{personHome.managed}" value="Edit Person"/>
</h1>
<h:form>
<div>First name: <h:inputText value="#{person.firstName}"/></div>
<div>Last name: <h:inputText value="#{person.lastName}"/></div>
<div>
<h:commandButton value="Create Person" action="#{personHome.persist}"
rendered="#{!personHome.managed}"/>
<h:commandButton value="Update Person" action="#{personHome.update}"
rendered="#{personHome.managed}"/>
<h:commandButton value="Delete Person" action="#{personHome.remove}"
rendered="#{personHome.managed}"/>
</div>
</h:form>

When we link to the page with no request parameters, the page will be displayed as a "Create
Person” page. When we provide a value for the per sonl d request parameter, it will be an "Edit
Person" page.

Suppose we need to create Per son entries with their nationality initialized. We can do that easily,
via configuration:

<factory name="person"
value="#{personHome.instance}"/>

<framework:entity-home name="personHome"
entity-class="eg.Person"
new-instance="#{newPerson}"/>

<component name="newPerson"
class="eg.Person">
<property name="nationality">#{country}</property>
</component>

Or by extension:

231



Chapter 13. The Seam Applicat...

@Name("personHome")
public class PersonHome extends EntityHome<Person> {

@In Country country;

@Factory("person")
public Person initPerson() { return getinstance(); }

protected Person createlnstance() {
return new Person(country);

Of course, the Country could be an object managed by another Home object, for example,
Count r yHone.

To add more sophisticated operations (association management, etc), we can just add methods
to Per sonHone.

@Name("personHome")
public class PersonHome extends EntityHome<Person> {

@In Country country;

@Factory("person")
public Person initPerson() { return getinstance(); }

protected Person createlnstance() {
return new Person(country);

public void migrate()

{

getinstance().setCountry(country);
update();

The Home object raises an org.jboss. seam afterTransacti onSuccess event when a
transaction succeeds (a call to persi st (), updat e() orrenove() succeeds). By observing this

232



Home objects

event we can refresh our queries when the underlying entities are changed. If we only want to
refresh certain queries when a particular entity is persisted, updated or removed we can observe
the org. j boss. seam af t er Transact i onSuccess. <nane> event (where <nane> is the simple
name of the entity, e.g. an entity called "org.foo.myEntity" has "myEntity" as simple name).

The Home object automatically displays faces messages when an operation is successful. To
customize these messages we can, again, use configuration:

<factory name="person"
value="#{personHome.instance}"/>

<framework:entity-home name="personHome"
entity-class="eg.Person"
new-instance="#{newPerson}">
<framework:created-message>New person #{person.firstName} #{person.lastName} created</
framework:created-message>
<framework:deleted-message>Person #{person.firstName} #{person.lastName} deleted</
framework:deleted-message>
<framework:updated-message>Person #{person.firstName} #{person.lastName} updated</
framework:updated-message>
</framework:entity-home>

<component name="newPerson"
class="eg.Person">

<property name="nationality">#{country}</property>
</component>

Or extension:

@Name("personHome")
public class PersonHome extends EntityHome<Person> {

@In Country country;

@Factory("person")
public Person initPerson() { return getinstance(); }

protected Person createlnstance() {

return new Person(country);

protected String getCreatedMessage() { return createValueExpression("New person
#{person.firstName} #{person.lastName} created"); }

233



Chapter 13. The Seam Applicat...

protected String getUpdatedMessage() { return createValueExpression("Person
#{person.firstName} #{person.lastName} updated"); }

protected String getDeletedMessage() { return createValueExpression("Person
#{person.firstName} #{person.lastName} deleted"); }

But the best way to specify the messages is to put them in a resource bundle known to Seam (the
bundle named nessages, by default).

Person_created=New person #{person.firstName} #{person.lastName} created
Person_deleted=Person #{person.firstName} #{person.lastName} deleted
Person_updated=Person #{person.firstName} #{person.lastName} updated

This enables internationalization, and keeps your code and configuration clean of presentation
concerns.

The final step is to add validation functionality to the page, using <s:validateAl | > and
<s: decor at e>, but I'll leave that for you to figure out.

13.3. Query objects

If we need a list of all Per son instance in the database, we can use a Query object. For example:

<framework:entity-query name="people"
ejbql="select p from Person p"/>

We can use it from a JSF page:

<hl>List of people</h1>
<h:dataTable value="#{people.resultList}" var="person">
<h:column>
<s:link view="/editPerson.jsp" value="#{person.firstName} #{person.lastName}">
<f:param name="personld" value="#{person.id}"/>
</s:link>
</h:column>
</h:dataTable>

We probably need to support pagination:

234



Query objects

<framework:entity-query name="people"
ejbgl="select p from Person p"
order="lastName"
max-results="20"/>

We'll use a page parameter to determine the page to display:

<pages>
<page view-id="/searchPerson.jsp">
<param name="firstResult" value="#{people.firstResult}"/>
</page>
</pages>

The JSF code for a pagination control is a bit verbose, but manageable:

<h1>Search for people</h1>
<h:dataTable value="#{people.resultList}" var="person">
<h:column>
<s:link view="/editPerson.jsp" value="#{person.firstName} #{person.lastName}">
<f:param name="personld" value="#{person.id}"/>
</s:link>
</h:column>
</h:dataTable>

<s:link view="/search.xhtml" rendered="#{people.previousExists}" value="First Page">
<f:param name="firstResult" value="0"/>
</s:link>

<s:link view="/search.xhtml" rendered="#{people.previousExists}" value="Previous Page">
<f:param name="firstResult" value="#{people.previousFirstResult}"'/>
</s:link>

<s:link view="/search.xhtml" rendered="#{people.nextExists}" value="Next Page">
<f:param name="firstResult" value="#{people.nextFirstResult}"/>
</s:link>

<s:link view="/search.xhtml" rendered="#{people.nextExists}" value="Last Page">
<f:param name="firstResult" value="#{people.lastFirstResult}"/>
</s:link>

235



Chapter 13. The Seam Applicat...

Real search screens let the user enter a bunch of optional search criteria to narrow the list of
results returned. The Query object lets you specify optional "restrictions" to support this important
usecase:

<component name="examplePerson" class="Person"/>

<framework:entity-query name="people"
ejbql="select p from Person p"
order="lastName"
max-results="20">
<framework:restrictions>
<value>lower(firstName) like lower( concat(#{examplePerson.firstName},'%") )</value>
<value>lower(lastName) like lower( concat(#{examplePerson.lastName},'%") )</value>
</framework:restrictions>
</framework:entity-query>

Notice the use of an "example" object.

<h1>Search for people</h1>

<h:form>
<div>First name: <h:inputText value="#{examplePerson.firstName}"/></div>
<div>Last name: <h:inputText value="#{examplePerson.lastName}"/></div>
<div><h:commandButton value="Search" action="/search.jsp"/></div>

</h:form>

<h:dataTable value="#{people.resultList}" var="person">
<h:column>
<s:link view="/editPerson.jsp" value="#{person.firstName} #{person.lastName}">
<f:param name="personld" value="#{person.id}"/>
</s:link>
</h:column>
</h:dataTable>

To refresh the query when the underlying entities change we observe the
org.j boss. seam aft er Transact i onSuccess event:

<event type="org.jboss.seam.afterTransactionSuccess">
<action execute="#{people.refresh}" />
</event>

236



Controller objects

Or, to just refresh the query when the person entity is persisted, updated or removed through
Per sonHone:

<event type="org.jboss.seam.afterTransactionSuccess.Person">
<action execute="#{people.refresh}" />
</event>

Unfortunately Query objects don't work well with join fetch queries - the use of pagination with
these queries is not recommended, and you'll have to implement your own method of calculating
the total number of results (by overriding get Count Ej bgl () .

The examples in this section have all shown reuse by configuration. However, reuse by extension
is equally possible for Query objects.

13.4. Controller objects

A totally optional part of the Seam Application Framework is the class
Controller and its subclasses EntityController HibernateEntityController and
Busi nessProcessControl | er. These classes provide nothing more than some convenience
methods for access to commonly used built-in components and methods of built-in components.
They help save a few keystrokes (characters can add up!) and provide a great launchpad for new
users to explore the rich functionality built in to Seam.

For example, here is what Regi st er Act i on from the Seam registration example would look like:

@Stateless
@Name("register")
public class RegisterAction extends EntityController implements Register

{

@In private User user;

public String register()
{
List existing = createQuery("select u.username from User u where u.username=:username")
.setParameter("username", user.getUsername())
.getResultList();

if (existing.size()==0)

{
persist(user);
info("Registered new user #{user.username}");
return "/registered.jspx";

237



Chapter 13. The Seam Applicat...

else

{

addFacesMessage("User #{user.username} already exists");
return null;

As you can see, its not an earthshattering improvement...

238



Chapter 14.

Seam and JBoss Rules

Seam makes it easy to call JBoss Rules (Drools) rulebases from Seam components or jBPM
process definitions.

14.1. Installing rules

The first step is to make an instance of org. drool s. Rul eBase available in a Seam context
variable. For testing purposes, Seam provides a built-in component that compiles a static set of
rules from the classpath. You can install this component via conponent s. xm :

<drools:rule-base name="policyPricingRules">
<drools:rule-files>
<value>policyPricingRules.drl</value>
</drools:rule-files>
</drools:rule-base>

This component compiles rules from a set of .drl files and caches an instance of
org. drool s. Rul eBase in the Seam APPLI CATI ON context. Note that it is quite likely that you will
need to install multiple rule bases in a rule-driven application.

If you want to use a Drools DSL, you alse need to specify the DSL definition:

<drools:rule-base name="policyPricingRules" dsl-file="policyPricing.dsl">
<drools:rule-files>
<value>policyPricingRules.drl</value>
</drools:rule-files>
</drools:rule-base>

In most rules-driven applications, rules need to be dynamically deployable, so a production
application will want to use a Drools RuleAgent to manage the RuleBase. The RuleAgent can
connect to a Drools rule server (BRMS) or hot deploy rules packages from a local file repository.
The RulesAgent-managed RuleBase is also configurable in conponent s. xni :

<drools:rule-agent name="insuranceRules"
configurationFile="/WEB-INF/deployedrules.properties" />

The properties file contains properties specific to the RulesAgent. Here is an example
configuration file from the Drools example distribution.

239



Chapter 14. Seam and JBoss Rules

newlnstance=true
url=http://localhost:8080/drools-jbrms/org.drools.brms.JBRMS/package/org.acme.insurance/
fmeyer
localCacheDir=/Users/fernandomeyer/projects/jbossrules/drools-examples/drools-examples-
brms/cache

poll=30

name=insuranceconfig

It is also possible to configure the options on the component directly, bypassing the configuration
file.

<drools:rule-agent name="insuranceRules"
url="http://localhost:8080/drools-jbrms/org.drools.brms.JBRMS/package/org.acme.insurance/
fmeyer"
local-cache-dir="/Users/fernandomeyer/projects/jbossrules/drools-examples/drools-
examples-brms/cache"
poll="30"
configuration-name="insuranceconfig" />

Next, we need to make an instance of org.drools. WrkingMenory available to each
conversation. (Each Wr ki ngMenor y accumulates facts relating to the current conversation.)

<drools:managed-working-memory name="policyPricingWorkingMemory" auto-create="true"
rule-base="#{policyPricingRules}"/>

Notice that we gave the pol i cyPri ci ngWor ki ngMenory a reference back to our rule base via the
rul eBase configuration property.

14.2. Using rules from a Seam component

We can now inject our Wr ki ngMenor y into any Seam component, assert facts, and fire rules:

@In WorkingMemory policyPricingWorkingMemory;

@In Policy policy;
@In Customer customer;

public void pricePolicy() throws FactException

{
policyPricingWorkingMemory.assertObject(policy);

240



Using rules from a jBPM process definition

policyPricingWorkingMemory.assertObject(customer);
policyPricingWorkingMemory.fireAlIRules();

14.3. Using rules from a jBPM process definition

You can even allow a rule base to act as a jBPM action handler, decision handler, or assignment
handler — in either a pageflow or business process definition.

<decision name="approval">

<handler class="org.jboss.seam.drools.DroolsDecisionHandler">
<workingMemoryName>orderApprovalRulesWorkingMemory</workingMemoryName>
<assertObjects>
<element>#{customer}</element>
<element>#{order}</element>
<element>#{order.lineltems}</element>
</assertObjects>
</handler>

<transition name="approved" to="ship">
<action class="org.jboss.seam.drools.DroolsActionHandler">
<workingMemoryName=>shippingRulesWorkingMemory</workingMemoryName>
<assertObjects>
<element>#{customer}</element>
<element>#{order}</element>
<element>#{order.lineltems}</element>
</assertObjects>
</action>
</transition>

<transition name="rejected" to="cancelled"/>

</decision>

The <assert Obj ect s> element specifies EL expressions that return an object or collection of
objects to be asserted as facts into the Wor ki ngMenory.
There is also support for using Drools for jBPM task assignments:

<task-node name="review">
<task name="review" description="Review Order">

241



Chapter 14. Seam and JBoss Rules

<assignment handler="org.jboss.seam.drools.DroolsAssignmentHandler">
<workingMemoryName>orderApprovalRulesWorkingMemory</workingMemoryName>
<assertObjects>
<element>#{actor}</element>
<element>#{customer}</element>
<element>#{order}</element>
<element>#{order.lineltems}</element>
</assertObjects>
</assignment>
</task>
<transition name="rejected" to="cancelled"/>
<transition name="approved" to="approved"/>
</task-node>

Certain objects are available to the rules as Drools globals, namely the jBPM Assi gnabl e, as
assi gnabl e and a Seam Deci si on object, as deci si on. Rules which handle decisions should call
deci si on. set Qut come("resul t") to determine the result of the decision. Rules which perform
assignments should set the actor id using the Assi gnabl e.

package org.jboss.seam.examples.shop

import org.jboss.seam.drools.Decision

global Decision decision
rule "Approve Order For Loyal Customer"
when
Customer( loyaltyStatus == "GOLD" )
Order( totalAmount <= 10000 )
then
decision.setOutcome("approved”);
end

package org.jboss.seam.examples.shop

import org.jbpm.taskmgmt.exe.Assignable

global Assignable assignable

rule "Assign Review For Small Order"
when

242



Using rules from a jBPM process definition

Order( totalAmount <= 100 )
then
assignable.setPooledActors( new String[] {"reviewers"} );
end

http://www.drools.org

Tip

Drools comes with MVEL compiled for Java 1.4, which is compatible with Java 1.4,
Java 5 and Java 6. You may want to change your MVEL jar with one compiled for
the version of Java you are using

243


http://www.drools.org

244



Chapter 15.

Security

15.1. Overview

The Seam Security API provides a multitude of security-related features for your Seam-based
application, covering such areas as:

e Authentication - an extensible, JAAS-based authentication layer that allows users to
authenticate against any security provider.
« Identity Management - an API for managing a Seam application's users and roles at runtime.

« Authorization - an extremely comprehensive authorization framework, supporting user roles,
persistent and rule-based permissions, and a pluggable permission resolver for easily
implementing customised security logic.

» Permission Management - a set of built-in Seam components to allow easy management of an
application's security policy.

* CAPTCHA support - to assist in the prevention of automated software/scripts abusing your
Seam-based site.

¢ And much more

This chapter will cover each of these features in detail.

15.2. Disabling Security

In some situations it may be necessary to disable Seam Security, for instances during unit tests
or because you are using a different approach to security, such as native JAAS. Simply call the
static method 1 dent i ty. set Securit yEnabl ed(fal se) to disable the security infrastructure. Of
course, it's not very convenient to have to call a static method when you want to configure the
application, so as an alternative you can control this setting in components.xml:

 Entity Security

Hibernate Security Interceptor
e Seam Security Interceptor

» Page restrictions

Servlet API security integration

Assuming you are planning to take advantage of what Seam Security has to offer, the rest of this
chapter documents the plethora of options you have for giving your user an identity in the eyes of
the security model (authentication) and locking down the application by establishing constraints

245



Chapter 15. Security

(authorization). Let's begin with the task of authentication since that's the foundation of any security
model.

15.3. Authentication

The authentication features provided by Seam Security are built upon JAAS (Java Authentication
and Authorization Service), and as such provide a robust and highly configurable API for handling
user authentication. However, for less complex authentication requirements Seam offers a much
more simplified method of authentication that hides the complexity of JAAS.

15.3.1. Configuring an Authenticator component

Note

=de

If you use Seam's Identity Management features (discussed later in this chapter)
then it is not necessary to create an authenticator component (and you can skip
this section).

The simplified authentication method provided by Seam uses a built-in JAAS login module,
SeanlLogi nMbdul e, which delegates authentication to one of your own Seam components. This
login module is already configured inside Seam as part of a default application policy and as such
does not require any additional configuration files. It allows you to write an authentication method
using the entity classes that are provided by your own application, or alternatively to authenticate
with some other third party provider. Configuring this simplified form of authentication requires the
i denti ty component to be configured in conponent s. xmi :

<components xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jposs.com/products/seam/core"
xmlns:security="http://jboss.com/products/seam/security"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalLocation=
"http://jboss.com/products/seam/components http://jboss.com/products/seam/
components-2.1.xsd
http://jboss.com/products/seam/security http://jboss.com/products/seam/security-
2.1.xsd">

<security:identity authenticate-method="#{authenticator.authenticate}"/>

</components>

The EL expression #{aut henti cat or. aut henti cate} is a method binding that indicates the
aut hent i cat e method of the aut hent i cat or component will be used to authenticate the user.

246



Writing an authentication method

15.3.2. Writing an authentication method

The aut henticate-nethod property specified for identity in conmponents.xnml specifies
which method will be used by Seaniogi nModul e to authenticate users. This method
takes no parameters, and is expected to return a boolean, which indicates whether
authentication is successful or not. The user's username and password can be obtained from
Credenti al s. get Username() and Credenti al s. get Passwor d(), respectively (you can get a
reference to the credenti al s component via | dentity.instance().get Credential s()). Any
roles that the user is a member of should be assigned using | dentity. addRol e() . Here's a
complete example of an authentication method inside a POJO component:

@Name("authenticator")

public class Authenticator {
@In EntityManager entityManager;
@In Credentials credentials;
@In Identity identity;

public boolean authenticate() {
try {
User user = (User) entityManager.createQuery(
"from User where username = :username and password = :password")
.setParameter("username", credentials.getUsername())
.setParameter("password", credentials.getPassword())
.getSingleResult();

if (user.getRoles() != null) {
for (UserRole mr : user.getRoles())
identity.addRole(mr.getName());

return true;

}

catch (NoResultException ex) {
return false;

In the above example, both User and User Rol e are application-specific entity beans. The rol es
parameter is populated with the roles that the user is a member of, which should be added
to the Set as literal string values, e.g. "admin”, "user". In this case, if the user record is not

247



Chapter 15. Security

found and a NoResul t Except i on thrown, the authentication method returns f al se to indicate the
authentication failed.

Tip

When writing an authenticator method, it is important that it is kept minimal and free
from any side-effects. This is because there is no guarantee as to how many times
the authenticator method will be called by the security API, and as such it may be
invoked multiple times during a single request. Because of this, any special code
that should execute upon a successful or failed authentication should be written
by implementing an event observer. See the section on Security Events further
down in this chapter for more information about which events are raised by Seam
Security.

15.3.2.1. Identity.addRole()

Theldentity. addRol e() method behaves differently depending on whether the current session
is authenticated or not. If the session is not authenticated, then addRol e() should only be called
during the authentication process. When called here, the role name is placed into a temporary
list of pre-authenticated roles. Once authentication is successful, the pre-authenticated roles then
become "real" roles, and calling 1 denti ty. hasRol e() for those roles will then return true. The
following sequence diagram represents the list of pre-authenticated roles as a first class object to
show more clearly how it fits in to the authentication process.

248



Writing an authentication method

User [denti Pre-authenticated roles JAAS LodinContext Authenticatar
| 1: loging | | !
L : L 1.1: clear) | | |

| I
1.2 laging | |
= L2 imoken |
| P
! 1.2.1.1: addRale
I
T 1.21.1.1: add{) >E:|
J |
e :— ————————— T [
| | I
1.3 pre-auth roles hecu:urllne real rolesd : :
T T

If the current session is already authenticated, then calling | dentity. addRol e() will have the
expected effect of immediately granting the specified role to the current user.

15.3.2.2. Writing an event observer for security-related events

Say for example, that upon a successful login that some user statistics must
be updated. This would be done by writhng an event observer for the
org.j boss. seam security.|ogi nSuccessful event, like this:

@In UserStats userStats;

@Observer("org.jboss.seam.security.loginSuccessful")
public void updateUserStats()
{
userStats.setLastLoginDate(new Date());
userStats.incrementLoginCount();

}

This observer method can be placed anywhere, even in the Authenticator component itself. You
can find more information about security-related events later in this chapter.

249




Chapter 15. Security

15.3.3. Writing a login form

The credenti al s component provides both user nane and passwor d properties, catering for the
most common authentication scenario. These properties can be bound directly to the username
and password fields on a login form. Once these properties are set, calling i dentity. | ogin()
will authenticate the user using the provided credentials. Here's an example of a simple login form:

<div>
<h:outputLabel for="name" value="Username"/>
<h:inputText id="name" value="#{credentials.username}"/>
</div>

<div>
<h:outputLabel for="password" value="Password"/>
<h:inputSecret id="password" value="#{credentials.password}"/>
</div>

<div>
<h:commandButton value="Login" action="#{identity.login}"/>
</div>

Similarly, logging out the user is done by calling #{i dentity. | ogout}. Calling this action will
clear the security state of the currently authenticated user, and invalidate the user's session.

15.3.4. Configuration Summary

So to sum up, there are the three easy steps to configure authentication:

« Configure an authentication method in conponent s. xm .
« Write an authentication method.

» Write a login form so that the user can authenticate.

15.3.5. Remember Me

Seam Security supports the same kind of "Remember Me" functionality that is commonly
encountered in many online web-based applications. It is actually supported in two different
"flavours", or modes - the first mode allows the username to be stored in the user's browser as a
cookie, and leaves the entering of the password up to the browser (many modern browsers are
capable of remembering passwords).

The second mode supports the storing of a unique token in a cookie, and allows a user to
authenticate automatically upon returning to the site, without having to provide a password.

250



Remember Me

Warning

Automatic client authentication with a persistent cookie stored on the client
machine is dangerous. While convenient for users, any cross-site scripting security
hole in your website would have dramatically more serious effects than usual.
Without the authentication cookie, the only cookie to steal for an attacker with XSS
is the cookie of the current session of a user. This means the attack only works
when the user has an open session - which should be a short timespan. However,
it is much more attractive and dangerous if an attacker has the possibility to steal a
persistent Remember Me cookie that allows him to login without authentication, at
any time. Note that this all depends on how well you protect your website against
XSS attacks - it's up to you to make sure that your website is 100% XSS safe - a
non-trival achievement for any website that allows user input to be rendered on
a page.

Browser vendors recognized this issue and introduced a "Remember Passwords"
feature - today almost all browsers support this. Here, the browser remembers the
login username and password for a particular website and domain, and fills out the
login form automatically when you don't have an active session with the website.
If you as a website designer then offer a convenient login keyboard shortcut,
this approach is almost as convenient as a "Remember Me" cookie and much
safer. Some browsers (e.g. Safari on OS X) even store the login form data in
the encrypted global operation system keychain. Or, in a networked environment,
the keychain can be transported with the user (between laptop and desktop for
example), while browser cookies are usually not synchronized.

To summarize: While everyone is doing it, persistent "Remember Me" cookies with
automatic authentication are a bad practice and should not be used. Cookies that
"remember"” only the users login name, and fill out the login form with that username
as a convenience, are not an issue.

To enable the remember me feature for the default (safe, username only) mode, no special
configuration is required. In your login form, simply bind the remember me checkbox to
renmenber Me. enabl ed, like in the following example:

<div>
<h:outputLabel for="name" value="User name"/>
<h:inputText id="name" value="#{credentials.username}"/>
</div>

<div>
<h:outputLabel for="password" value="Password"/>
<h:inputSecret id="password" value="#{credentials.password}" redisplay="true"/>

251



Chapter 15. Security

</div>

<div class="loginRow">
<h:outputLabel for="rememberMe" value="Remember me"/>
<h:selectBooleanCheckbox id="rememberMe" value="#{rememberMe.enabled}"/>
</div>

15.3.5.1. Token-based Remember-me Authentication

To use the automatic, token-based mode of the remember me feature, you must first configure a
token store. The most common scenario is to store these authentication tokens within a database
(which Seam supports), however it is possible to implement your own token store by implementing
the org. j boss. seam security. TokenSt or e interface. This section will assume you will be using
the provided JpaTokenSt or e implementation to store authentication tokens inside a database
table.

The first step is to create a new Entity which will contain the tokens. The following example shows
a possible structure that you may use:

@Entity

public class AuthenticationToken implements Serializable {
private Integer tokenid;
private String username;
private String value;

@ld @GeneratedValue
public Integer getTokenld() {
return tokenld;

public void setTokenld(Integer tokenld) {
this.tokenld = tokenld;

@TokenUsername
public String getUsername() {
return username;

public void setUsername(String username) {
this.username = username;

@TokenValue

252



Remember Me

public String getValue() {
return value;

public void setValue(String value) {
this.value = value;

As you can see from this listing, a couple of special annotations, @okenUsername and
@okenVval ue are used to configure the username and token properties of the entity. These
annotations are required for the entity that will contain the authentication tokens.

The next step is to configure JpaTokenStore to use this entity bean to store and retrieve
authentication tokens. This is done in conponent s. xnl by specifying the t oken- cl ass attribute:

<security:jpa-token-store token-
class="org.jboss.seam.example.seamspace.AuthenticationToken"/>

Once this is done, the last thing to do is to configure the Renenber Me component in
conponent s. xnl also. Its node should be set to aut oLogi n:

<security:remember-me mode="autoLogin"/>

That is all that is required - automatic authentication will now occur for users revisiting your site
(as long as they check the "remember me" checkbox).

To ensure that users are automatically authenticated when returning to the site, the following
section should be placed in components.xml:

<event type="org.jboss.seam.security.notLoggedIn">
<action execute="#{redirect.captureCurrentView}"/>
<action execute="#{identity.tryLogin()}"/>

</event>

<event type="org.jboss.seam.security.loginSuccessful">
<action execute="#{redirect.returnToCapturedView}"/>

</event>

253



Chapter 15. Security

15.3.6. Handling Security Exceptions

To prevent users from receiving the default error page in response to a security error, it's
recommended that pages. xm is configured to redirect security errors to a more "pretty" page.
The two main types of exceptions thrown by the security API are:

* Not LoggedI| nExcepti on - This exception is thrown if the user attempts to access a restricted
action or page when they are not logged in.

e Aut hori zati onExcept i on - This exception is only thrown if the user is already logged in, and
they have attempted to access a restricted action or page for which they do not have the
necessary privileges.

In the case of a Not Logged| nExcept i on, it is recommended that the user is redirected to either
a login or registration page so that they can log in. For an Aut hori zat i onExcept i on, it may be
useful to redirect the user to an error page. Here's an example of a pages. xni file that redirects
both of these security exceptions:

<pages>

<exception class="org.jboss.seam.security.NotLoggedInException">
<redirect view-id="/login.xhtml">
<message>You must be logged in to perform this action</message>
</redirect>
</exception>

<exception class="org.jboss.seam.security.AuthorizationException">
<end-conversation/>
<redirect view-id="/security_error.xhtml">
<message>You do not have the necessary security privileges to perform this action.</
message>
</redirect>
</exception>

</pages>
Most web applications require even more sophisticated handling of login redirection, so Seam

includes some special functionality for handling this problem.

15.3.7. Login Redirection

You can ask Seam to redirect the user to a login screen when an unauthenticated user tries to
access a particular view (or wildcarded view id) as follows:

254



HTTP Authentication

<pages login-view-id="/login.xhtml">

<page view-id="/members/*" login-required="true"/>

</pages>

Tip

This is less of a blunt instrument than the exception handler shown above, but
should probably be used in conjunction with it.

After the user logs in, we want to automatically send them back where they came from, so they can
retry the action that required logging in. If you add the following event listeners to conponent s. xm ,
attempts to access a restricted view while not logged in will be remembered, so that upon the
user successfully logging in they will be redirected to the originally requested view, with any page
parameters that existed in the original request.

<event type="org.jboss.seam.security.notLoggedin">
<action execute="#{redirect.captureCurrentView}"/>
</event>

<event type="org.jboss.seam.security.postAuthenticate">
<action execute="#{redirect.returnToCapturedView}"/>
</event>

Note that login redirection is implemented as a conversation-scoped mechanism, so don't end the
conversation in your aut hent i cat e() method.

15.3.8. HTTP Authentication

Although not recommended for use unless absolutely necessary, Seam provides means for
authenticating using either HTTP Basic or HTTP Digest (RFC 2617) methods. To use either form
of authentication, the aut hent i cati on-fi | ter component must be enabled in components.xml:

<web:authentication-filter url-pattern="*.seam" auth-type="basic"/>

255



Chapter 15. Security

To enable the filter for basic authentication, set aut h-t ype to basi c, or for digest authentication,
set it to di gest . If using digest authentication, the key and r eal mmust also be set:

<web:authentication-filter url-pattern="*.seam" auth-type="digest" key="AA3JK34aSDIkj"
realm="My App"/>

The key can be any String value. The real mis the name of the authentication realm that is
presented to the user when they authenticate.

15.3.8.1. Writing a Digest Authenticator

If using digest authentication, your authenticator class should extend the abstract class
org.j boss.seam security. di gest. Di gest Aut henti cat or, and use the val i dat ePasswor d()
method to validate the user's plain text password against the digest request. Here is an example:

public boolean authenticate()

{
try
{

User user = (User) entityManager.createQuery(
"from User where username = :username")
.setParameter("username", identity.getUsername())
.getSingleResult();

return validatePassword(user.getPassword());

}
catch (NoResultException ex)
{
return false;
}
}

15.3.9. Advanced Authentication Features

This section explores some of the advanced features provided by the security API for addressing
more complex security requirements.

256



Identity Management

15.3.9.1. Using your container's JAAS configuration

If you would rather not use the simplified JAAS configuration provided by the Seam Security AP,
you may instead delegate to the default system JAAS configuration by providing aj aas- confi g-
nanme property in conponent s. xnl . For example, if you are using JBoss AS and wish to use the
ot her policy (which uses the User sRol esLogi nMbdul e login module provided by JBoss AS), then
the entry in conponent s. xnml would look like this:

<security:identity jaas-config-name="other"/>

Please keep in mind that doing this does not mean that your user will be authenticated in whichever
container your Seam application is deployed in. It merely instructs Seam Security to authenticate
itself using the configured JAAS security policy.

15.4. Identity Management

Identity Management provides a standard API for the management of a Seam application's users
and roles, regardless of which identity store (database, LDAP, etc) is used on the backend. At
the center of the Identity Management API is the i denti t yManager component, which provides
all the methods for creating, modifying and deleting users, granting and revoking roles, changing
passwords, enabling and disabling user accounts, authenticating users and listing users and roles.

Before it may be used, the identityManager must first be configured with one or more
I dentityStores. These components do the actual work of interacting with the backend security
provider, whether it be a database, LDAP server, or something else.

) _ Security Provider
IdentityManager |——®| |dentityStore |—®=( (JPA, LDAP,
Kerberos, etc)

15.4.1. Configuring ldentityManager

The identityManager component allows for separate identity stores to be configured for
authentication and authorization operations. This means that it is possible for users to be
authenticated against one identity store, for example an LDAP directory, yet have their roles
loaded from another identity store, such as a relational database.

Seam provides two | denti t ySt or e implementations out of the box; Jpal dentitySt ore uses a
relational database to store user and role information, and is the default identity store that is used

257



Chapter 15. Security

if nothing is explicitly configured in the i dent i t yManager component. The other implementation
that is provided is Ldapl dent i t ySt or e, which uses an LDAP directory to store users and roles.

There are two configurable properties for the i dentit yManager component - i dentityStore
and rol el dentityStore. The value for these properties must be an EL expression referring
to a Seam component implementing the | denti t ySt or e interface. As already mentioned, if left
unconfigured then Jpal denti t ySt ore will be assumed by default. If only the i dentityStore
property is configured, then the same value will be used for rol el dentityStore also. For
example, the following entry in conmponents. xm will configure i dentityManager to use an
Ldapl denti t ySt or e for both user-related and role-related operations:

<security:identity-manager identity-store="#{ldapldentityStore}"/>

The following example configures i dentityManager to use an Ldapl dentityStore for user-
related operations, and Jpal dent i t ySt or e for role-related operations:

<security:identity-manager
identity-store="#{ldapldentityStore}"
role-identity-store="#{jpaldentityStore}"/>

The following sections explain both of these identity store implementations in greater detail.
15.4.2. JpaldentityStore

This identity store allows for users and roles to be stored inside a relational database. It is designed
to be as unrestrictive as possible in regards to database schema design, allowing a great deal
of flexibility in the underlying table structure. This is achieved through the use of a set of special
annotations, allowing entity beans to be configured to store user and role records.

15.4.2.1. Configuring JpaldentityStore

Jpal dent i t ySt or e requires that both the user - cl ass andr ol e- cl ass properties are configured.
These properties should refer to the entity classes that are to be used to store both user and role
records, respectively. The following example shows the configuration from conponents. xm in
the SeamSpace example:

<security:jpa-identity-store
user-class="org.jboss.seam.example.seamspace.MemberAccount"

258



JpaldentityStore

role-class="org.jboss.seam.example.seamspace.MemberRole"/>

15.4.2.2. Configuring the Entities

As already mentioned, a set of special annotations are used to configure entity beans for storing
users and roles. The following table lists each of the annotations, and their descriptions.

Table 15.1. User Entity Annotations

@Jser Princi pal

@Jser Passwor d

Annotation

Status

Required

Required

Description

This annotation marks
the field or method
containing the user's
username.

This annotation marks
the field or method
containing the user's
password. It allows
a hash algorithm
to be specified for
password hashing.
Possible values for
hash are nd5, sha and
none. E.g:

@UserPassword(hash

="md5")

public String

getPasswordHash() {
return

passwordHash;

}

If an  application
requires a hash
algorithm that isn't
supported natively
by Seam, it s
possible to extend
the Passwor dHash
component to

259



Chapter 15. Security

Annotation Status
@Jser Fi r st Name Optional
@Jser Last Nane Optional
@Jser Enabl ed Optional
@Jser Rol es Required

Table 15.2. Role Entity Annotations

Annotation Status
@Rol eNane Required
@rol eG oups Optional
@Rol eCondi ti onal Optional

Description

implement other
hashing algorithms.

This annotation marks
the field or method
containing the user's
first name.

This annotation marks
the field or method
containing the user's
last name.

This annotation marks
the field or
method containing the
enabled status of the
user. This should be
a boolean property,
and if not present
then all user accounts
are assumed to be
enabled.

This annotation marks
the field or method
containing the roles of
the user. This property
will be described in
more detail further
down.

Description

This annotation marks
the field or method
containing the name
of the role.

This annotation marks
the field or method
containing the group
memberships of the
role.

260



JpaldentityStore

Annotation Status Description

This annotation marks
the field or method
indicating whether the
role is conditional or
not. Conditional roles
are explained later in
this chapter.

15.4.2.3. Entity Bean Examples

As mentioned previously, Jpal dentityStore is designed to be as flexible as possible when it
comes to the database schema design of your user and role tables. This section looks at a number
of possible database schemas that can be used to store user and role records.

15.4.2.3.1. Minimal schema example

In this bare minimal example, a simple user and role table are linked via a many-to-many
relationship using a cross-reference table named User Rol es.

User Role

- Username : 5tring - . rolenarme ; 5tring

- passwordHash ; String

- foles : Set

@Entity

public class User {
private Integer userld;
private String username;
private String passwordHash;
private Set<Role> roles;

@ld @GeneratedValue
public Integer getUserld() { return userld; }

public void setUserld(Integer userld) { this.userld = userld; }

@UserPrincipal

261



Chapter 15. Security

public String getUsername() { return username; }
public void setUsername(String username) { this.username = username; }

@UserPassword(hash = "md5")
public String getPasswordHash() { return passwordHash; }
public void setPasswordHash(String passwordHash) { this.passwordHash = passwordHash; }

@UserRoles
@ManyToMany(targetEntity = Role.class)
@JoinTable(name = "UserRoles",
joinColumns = @JoinColumn(name = "Userld"),
inverseJoinColumns = @JoinColumn(name = "Roleld"))
public Set<Role> getRoles() { return roles; }
public void setRoles(Set<Role> roles) { this.roles = roles; }

}

@Entity

public class Role {
private Integer roleld;
private String rolename;

@ld @Generated
public Integer getRoleld() { return roleld; }
public void setRoleld(Integer roleld) { this.roleld = roleld; }

@RoleName
public String getRolename() { return rolename; }
public void setRolename(String rolename) { this.rolename = rolename; }

15.4.2.3.2. Complex Schema Example

This example builds on the above minimal example by including all of the optional fields, and
allowing group memberships for roles.

262



JpaldentityStore

User

- Username : 5tring

- passwordHash ; String
- roles : Set=Role=

- firsthame : String

- lasthame : String

- enahled : boolean

@Entity

public class User {
private Integer userld;
private String username;

private String passwordHash;

private Set<Role> roles;
private String firsthname;
private String lastname;
private boolean enabled;

@!d @GeneratedValue

public Integer getUserld() { return userld; }

public void setUserld(Integer userld) { this.userld = userld; }

@UserPrincipal

public String getUsername() { return username; }
public void setUsername(String username) { this.username = username; }

@UserPassword(hash = "md5")

public String getPasswordHash() { return passwordHash; }

Role

- rolename ; String
- conditional : hoolean
- groups ; Set=Role=

-

public void setPasswordHash(String passwordHash) { this.passwordHash = passwordHash; }

@UserFirstName

public String getFirstname() { return firstname; }
public void setFirstname(String firstname) { this.firstname = firstname; }

@UserLastName

public String getLastname() { return lastname; }
public void setLastname(String lastname) { this.lastname = lastname; }

263



Chapter 15. Security

@UserEnabled
public boolean isEnabled() { return enabled; }
public void setEnabled(boolean enabled) { this.enabled = enabled; }

@UserRoles
@ManyToMany(targetEntity = Role.class)
@JoinTable(name = "UserRoles",
joinColumns = @JoinColumn(name = "Userld"),
inverseJoinColumns = @JoinColumn(name = "Roleld"))
public Set<Role> getRoles() { return roles; }
public void setRoles(Set<Role> roles) { this.roles = roles; }

}

@Entity

public class Role {
private Integer roleld;
private String rolename;
private boolean conditional;

@ld @Generated
public Integer getRoleld() { return roleld; }
public void setRoleld(Integer roleld) { this.roleld = roleld; }

@RoleName
public String getRolename() { return rolename; }
public void setRolename(String rolename) { this.rolename = rolename; }

@RoleConditional
public boolean isConditional() { return conditional; }
public void setConditional(boolean conditional) { this.conditional = conditional; }

@RoleGroups

@ManyToMany(targetEntity = Role.class)

@JoinTable(name = "RoleGroups”,
joinColumns = @JoinColumn(name = "Roleld"),
inverseJoinColumns = @JoinColumn(name = "Groupld"))

public Set<Role> getGroups() { return groups; }

public void setGroups(Set<Role> groups) { this.groups = groups; }

264



LdapldentityStore

15.4.2.4. JpaldentityStore Events

When using Jpal denti t ySt or e as the identity store implementation with | dent i t yManager, a
few events are raised as a result of invoking certain | dent i t yManager methods.

15.4.2.4.1. JpaldentityStore.EVENT_PRE_PERSIST_USER

This eventis raised in response to calling | dent i t yManager . cr eat eUser () . Just before the user
entity is persisted to the database, this event will be raised passing the entity instance as an event
parameter. The entity will be an instance of the user - cl ass configured for Jpal denti tyStore.

Writing an observer for this event may be useful for setting additional field values on the entity,
which aren't set as part of the standard cr eat eUser () functionality.

15.4.2.4.2. JpaldentityStore. EVENT_USER_CREATED

This event is also raised in response to calling | dentityManager. createUser (). However,
it is raised after the user entity has already been persisted to the database. Like the
EVENT_PRE_PERSI ST_USER event, it also passes the entity instance as an event parameter. It may
be useful to observe this event if you also need to persist other entities that reference the user
entity, for example contact detail records or other user-specific data.

15.4.2.4.3. JpaldentityStore. EVENT_USER_AUTHENTICATED

This event is raised when calling I dent i t yManager . aut henti cat e() . It passes the user entity
instance as the event parameter, and is useful for reading additional properties from the user
entity that is being authenticated.

15.4.3. LdapldentityStore

This identity store implementation is designed for working with user records stored in an LDAP
directory. It is very highly configurable, allowing great flexibility in how both users and roles are
stored in the directory. The following sections describe the configuration options for this identity
store, and provide some configuration examples.

15.4.3.1. Configuring LdapldentityStore

The following table describes the available properties that can be configured in conponent s. xni
for Ldapl dentityStore.

Table 15.3. LdapldentityStore Configuration Properties

Property Default Value Description

server - addr ess | ocal host The address of the
LDAP server.

server - port 389 The port number that
the LDAP server is
listening on.

265



Chapter 15. Security

Property

user - cont ext - DN

user - DN prefi x

user - DN-suffi x

rol e-cont ext - DN

rol e- DN prefix

rol e-DN-suffix

bi nd- DN

bi nd-credential s

user-role-attribute

Default Value

Description

ou=Per son, dc=acne, dcFhem Distinguished

Name (DN) of the
context containing
user records.

ui d= This value is prefixed
to the front of the
username to locate
the user's record.

, ou=Per son, dc=acne, dthisom value is

appended to the end
of the username to
locate the user's
record.

ou=Rol e, dc=acne, dc=cbhe DN of the

chn=

context containing role
records.

This value is prefixed
to the front of the role
name to form the DN
for locating the role
record.

, ou=Rol es, dc=acne, dcEaism value is

appended to the role
name to form the DN
for locating the role
record.

cn=Manager, dc=acne, dthisonis the context

secret

rol es

used to bind to the
LDAP server.

These are the
credentials (the
password) used to
bind to the LDAP
server.

This is the name of the
attribute of the user
record that contains
the list of roles that the
user is a member of.

266



LdapldentityStore

Property

role-attribute-is-DN

user-nane-attribute

user - password-attribute

first-nane-attribute

| ast-nane-attri bute

full-nanme-attribute

enabl ed-attri bute

rol e-nane-attribute

obj ect-class-attribute

Default Value

true

uid

user Password

nul |

sn

cn

nul |

cn

obj ect d ass

Description

This boolean property
indicates whether the
role attribute of the
user record is itself a
distinguished name.

Indicates which
attribute of the user
record contains the
username.

Indicates which
attribute of the user
record contains the
user's password.

Indicates which
attribute of the user
record contains the
user's first name.

Indicates which
attribute of the user
record contains the
user's last name.

Indicates which
attribute of the user
record contains the
user's full (common)
name.

Indicates which
attribute of the user
record determines
whether the user is
enabled.

Indicates which
attribute of the role
record contains the
name of the role.

Indicates which
attribute  determines
the class of an object
in the directory.

267



Chapter 15. Security

Property Default Value Description
rol e- obj ect - cl asses organi zati onal Rol e An array of the object
classes that new role
records should be
created as.
user - obj ect - cl asses per son, ui dCbj ect An array of the object

15.4.3.2. LdapldentityStore Configuration Example

classes that new user
records should be
created as.

The following configuration example shows how Ldapl dentityStore may be configured for
an LDAP directory running on fictional host di r ect ory. myconpany. com The users are stored
within this directory under the context ou=Per son, dc=nmyconpany, dc=com and are identified using
the ui d attribute (which corresponds to their username). Roles are stored in their own context,
ou=Rol es, dc=nyconpany, dc=comand referenced from the user's entry via the r ol es attribute.
Role entries are identified by their common name (the cn attribute) , which corresponds to the
role name. In this example, users may be disabled by setting the value of their enabl ed attribute

to false.

<security:ldap-identity-store
server-address="directory.mycompany.com"
bind-DN="cn=Manager,dc=mycompany,dc=com"
bind-credentials="secret"
user-DN-prefix="uid="
user-DN-suffix=",ou=Person,dc=mycompany,dc=com"
role-DN-prefix="cn="
role-DN-suffix=",ou=Roles,dc=mycompany,dc=com"
user-context-DN="ou=Person,dc=mycompany,dc=com'
role-context-DN="ou=Roles,dc=mycompany,dc=com"
user-role-attribute="roles"
role-name-attribute="cn"
user-object-classes="person,uidObject"
enabled-attribute="enabled"
/>

15.4.4. Writing your own IdentityStore

Writing your own identity store implementation allows you to authenticate and perform
identity management operations against security providers that aren't supported out of the

268



Authentication with Identity Management

box by Seam. Only a single class is required to achieve this, and it must implement the
org.j boss. seam security. managenent. | dentitySt or e interface.

Please refer to the JavaDoc for | dent it ySt ore for a description of the methods that must be
implemented.

15.4.5. Authentication with Identity Management

If you are using the Identity Management features in your Seam application, then it is not
required to provide an authenticator component (see previous Authentication section) to enable
authentication. Simply omit the aut henti cator-met hod from the identity configuration in
conponent s. xnl , and the Seanlogi nModul e will by default use | dent i t yManager to authenticate

your application’s users, without any special configuration required.

15.4.6. Using IdentityManager

The I dentityManager can be accessed either by injecting it into your Seam component as
follows:

@In IdentityManager identityManager;

or by accessing it through its static i nst ance() method:

IdentityManager identityManager = IdentityManager.instance();

The following table describes | dent i t yManager 's APl methods:

Table 15.4. Identity Management API

Method Returns Description
creat eUser (Stri nigool ean Creates a new
name, String user account,
passwor d) with the specified

name and
password.
Returns true if
successful, or
f al se if not.
del et eUser ( St ri ngool ean Deletes the user
name) account with the

specified name.
Returns true if

269



Chapter 15. Security

Method Returns

creat eRol e(Stri nigool ean
rol e)

del et eRol e( St ri nigool ean
nane)

enabl eUser (Stri nigool ean
name)

di sabl eUser ( Strilngol ean
nane)

changePasswor d( Sbooingan
nane, String
passwor d)

i sUser Enabl ed( Stbhooigean
name)

Description

successful, or
fal se if not.

Creates a new
role, with the
specified name.
Returns true if

successful, or
fal se if not.
Deletes the

role with the
specified name.
Returns true if
successful, or
fal se if not.

Enables the user
account with the
specified name.
Accounts that
are not enabled
are not able
to authenticate.
Returns true if
successful, or
f al se if not.

Disables the user
account with the
specified name.
Returns true if
successful, or
fal se if not.

Changes the
password for the
user account
with the specified
name. Returns

true if
successful, or
f al se if not.

Returns true
if the specified
user account

270



Using IdentityManager

Method Returns

gr ant Rol e( St ri ngbool ean
nanme, String

rol e)

revokeRol e( Stri nigool ean
nane, String
rol e)

user Exi st s(Stri nigool ean
name)

listUsers() Li st

listUsers(StringList
filter)

Description

is enabled, or
fal se ifitisn't.

Grants the
specified role to
the specified user
or role. The
role must already
exist for it to be
granted. Returns
true if the role
is  successfully
granted, or f al se
if it is already
granted to the
user.

Revokes the
specified role
from the

specified user
or role. Returns
true if the
specified user is
a member of
the role and
it is successfully
revoked, or
f al se if the user
is not a member
of the role.

Returns true if
the specified user
exists, or f al se if
it doesn't.

Returns a list of
all user names,
sorted in alpha-
numeric order.

Returns a list
of all user
names filtered
by the specified

271



Chapter 15. Security

Method Returns

I'i stRol es() Li st

get Gr ant edRol es(I1Stst ng
narme)

get I npl i edRol es(IStst ng
name)

aut hent i cat e( St rbogl ean
nane, String

passwor d)

Description

filter parameter,
sorted in alpha-
numeric order.

Returns a list of
all role names.

Returns a list
of the names
of all the roles
explicitly granted
to the specified
user name.

Returns a list
of the names
of all the
roles  implicitly
granted to the
specified user
name. Implicitly
granted roles
include those that
are not directly
granted to a user,
rather they are
granted to the
roles that the
user is a member
of. For example,
is the admi n role
is a member of
the user role,
and a user is a
member of the
admi n role, then
the implied roles
for the user are
both the admin,
and user roles.

Authenticates the
specified

username  and
password using
the  configured

272



Using IdentityManager

Method Returns Description

Identity  Store.
Returns true
if successful or
fal se if
authentication

failed. Successful
authentication

implies  nothing
beyond the
return value of
the method. It
does not change
the state of
the I dentity
component -
to perform a
proper Seam
login the
Identity.login()
must be used

instead.
addRol eToG oup( Shoolngan Adds the
rol e, String specified role as
group) a member of the

specified group.
Returns true if
the operation is

successful.
r enoveRol eFr onG loail(&ami ng Removes the
rol e, String specified role
group) from the

specified group.
Returns true if
the operation is
successful.

|'i stRol es() Li st Lists the names
of all roles.

Using the Identity Management API requires that the calling user has the appropriate authorization
to invoke its methods. The following table describes the permission requirements for each of the
methods in | dent i t yManager . The permission targets listed below are literal String values.

273



Chapter 15. Security

Table 15.5. Identity Management Security Permissions

Method Permission Target Permission
Action

creat eUser () seam user create
del et eUser () seam user del ete
creat eRol e() seamrol e create
del et eRol e() seamrol e del ete
enabl eUser () seam user updat e
di sabl eUser () seam user updat e
changePasswor d()seam user updat e
i sUser Enabl ed() seam user read

gr ant Rol e() seam user updat e
revokeRol e() seam user updat e
user Exi sts() seam user read

listUsers() seam user read

i stRol es() seamrole read

addRol eToG oup()seamrol e updat e
r enoveRol eFr onGrae@t)r ol e updat e

The following code listing provides an example set of security rules that grants access to all Identity
Management-related methods to members of the admi n role:

rule ManageUsers
no-loop
activation-group "permissions”
when
check: PermissionCheck(name == "seam.user", granted == false)
Role(name == "admin")
then
check.grant();
end

rule ManageRoles
no-loop
activation-group "permissions”
when
check: PermissionCheck(name == "seam.role", granted == false)
Role(name == "admin")
then

274



Error Messages

check.grant();
end

15.5. Error Messages

The security API produces a number of default faces messages for various security-related events.
The following table lists the message keys that can be used to override these messages by
specifying them in a message. properti es resource file. To suppress the message, just put the
key with an empty value in the resource file.

Table 15.6. Security Message Keys

Message Key Description

org.j boss. seam | ogi nSuccessful This message is produced when a user successfully logs
in via the security API.

org. j boss. seam | ogi nFai | ed This message is produced when the login process fails,
either because the user provided an incorrect username
or password, or because authentication failed in some
other way.

org. j boss. seam Not Logged! n This message is produced when a user attempts to
perform an action or access a page that requires
a security check, and the user is not currently
authenticated.

org. j boss. seam Al readyLoggedl n This message is produced when a user that is already
authenticated attempts to log in again.

15.6. Authorization

There are a number of authorization mechanisms provided by the Seam Security API for securing
access to components, component methods, and pages. This section describes each of these. An
important thing to note is that if you wish to use any of the advanced features (such as rule-based
permissions) then your conponents. xm may need to be configured to support this - see the
Configuration section above.

15.6.1. Core concepts

Seam Security is built around the premise of users being granted roles and/or permissions,
allowing them to perform operations that may not otherwise be permissible for users without
the necessary security privileges. Each of the authorization mechanisms provided by the Seam
Security APl are built upon this core concept of roles and permissions, with an extensible
framework providing multiple ways to secure application resources.

275



Chapter 15. Security

15.6.1.1. What is arole?

A role is a group, or type, of user that may have been granted certain privileges for performing
one or more specific actions within an application. They are simple constructs, consisting of just
a name such as "admin”, "user", "customer", etc. They can be granted either to users (or in some
cases to other roles), and are used to create logical groups of users for the convenient assignment

of specific application privileges.

Role

- name : 5tring

15.6.1.2. What is a permission?

A permission is a privilege (sometimes once-off) for performing a single, specific action. It is
entirely possible to build an application using nothing but permissions, however roles offer a higher
level of convenience when granting privileges to groups of users. They are slightly more complex
in structure than roles, essentially consisting of three "aspects"; a target, an action, and a recipient.
The target of a permission is the object (or an arbitrary name or class) for which a particular action
is allowed to be performed by a specific recipient (or user). For example, the user "Bob" may have
permission to delete customer objects. In this case, the permission target may be "customer", the
permission action would be "delete" and the recipient would be "Bob".

Permission

- target : Object
- action : String
- recipient : Principal

Within this documentation, permissions are generally represented in the form target: acti on
(omitting the recipient, although in reality one is always required).

15.6.2. Securing components

Let's start by examining the simplest form of authorization, component security, starting with the
@Rest ri ct annotation.

o @Restrict vs Typesafe security annotations

While using the @Restrict annotation provides a powerful and flexible method
for security component methods due to its ability to support EL expressions, it is

276



Securing components

recommended that the typesafe equivalent (described later) be used, at least for
the compile-time safety it provides.

15.6.2.1. The @Restrict annotation

Seam components may be secured either at the method or the class level, using the @Restri ct
annotation. If both a method and it's declaring class are annotated with @Restrict, the
method restriction will take precedence (and the class restriction will not apply). If a method
invocation fails a security check, then an exception will be thrown as per the contract for
Identity.checkRestriction() (see Inline Restrictions). A @Restrict on just the component
class itself is equivalent to adding @rest ri ct to each of its methods.

An empty @Restrict implies a permission check of conponent Nane: net hodNane. Take for
example the following component method:

@Name("account")
public class AccountAction {
@Restrict public void delete() {

In  this example, the implied permission required to call the delete()
method is account:delete. The equivalent of this would be to write
@Restrict("#{s: hasPerm ssion('account','delete')}"). Now let's look at another
example:

@Restrict @Name("account")
public class AccountAction {
public void insert() {

}
@Restrict("#{s:hasRole('admin’)}")

public void delete() {

This time, the component class itself is annotated with @Rest ri ct . This means that any methods
without an overriding @Rest ri ct annotation require an implicit permission check. In the case
of this example, the i nsert () method requires a permission of account:insert, while the
del et e() method requires that the user is a member of the adni n role.

277



Chapter 15. Security

Before we go any further, let's address the #{s: hasRol e()} expression seen in the above
example. Both s: hasRol e and s: hasPerni ssion are EL functions, which delegate to the
correspondingly named methods of the I dent i t y class. These functions can be used within any
EL expression throughout the entirety of the security API.

Being an EL expression, the value of the @est ri ct annotation may reference any objects that
exist within a Seam context. This is extremely useful when performing permission checks for a
specific object instance. Look at this example:

@Name("account")
public class AccountAction {
@In Account selectedAccount;
@Restrict("#{s:hasPermission(selectedAccount,'modify')}")
public void modify() {
selectedAccount.modify();

The interesting thing to note from this example is the reference to sel ect edAccount seen within
the hasPermi ssi on() function call. The value of this variable will be looked up from within the
Seam context, and passed to the hasPer i ssi on() method in | dent i ty, which in this case can
then determine if the user has the required permission for modifying the specified Account object.

15.6.2.2. Inline restrictions

Sometimes it might be desirable to perform a security check in code, without using the @est ri ct
annotation. In this situation, simply use I dentity. checkRestriction() to evaluate a security
expression, like this:

public void deleteCustomer() {
Identity.instance().checkRestriction("#{s:hasPermission(selectedCustomer,'delete’)}");

If the expression specified doesn't evaluate to t r ue, either

« if the user is not logged in, a Not Logged| nExcept i on exception is thrown or
« if the user is logged in, an Aut hori zat i onExcept i on exception is thrown.

It is also possible to call the hasRol e() and hasPer ni ssi on() methods directly from Java code:

if (!ldentity.instance().hasRole("admin"))
throw new AuthorizationException("Must be admin to perform this action");

278



Security in the user interface

if (!ldentity.instance().hasPermission("customer", "create"))
throw new AuthorizationException("You may not create new customers");

15.6.3. Security in the user interface

One indication of a well designed user interface is that the user is not presented with options for
which they don't have the necessary privileges to use. Seam Security allows conditional rendering
of either 1) sections of a page or 2) individual controls, based upon the privileges of the user,
using the very same EL expressions that are used for component security.

Let's take a look at some examples of interface security. First of all, let's pretend that we
have a login form that should only be rendered if the user is not already logged in. Using the
i dentity.isLoggedl n() property, we can write this:

<h:form class="loginForm" rendered="#{not identity.loggedIn}">

If the user isn't logged in, then the login form will be rendered - very straight forward so far. Now let's
pretend there is a menu on the page that contains some actions which should only be accessible
to users in the nanager role. Here's one way that these could be written:

<h:outputLink action="#{reports.listManagerReports}" rendered="#{s:hasRole('manager')}">
Manager Reports
</h:outputLink>

This is also quite straight forward. If the user is not a member of the manager role, then the
outputLink will not be rendered. The r ender ed attribute can generally be used on the control itself,
or on a surrounding <s: di v> or <s: span> control.

Now for something more complex. Let's say you have a h: dat aTabl e control on a page listing
records for which you may or may not wish to render action links depending on the user's
privileges. The s: hasPer nm ssi on EL function allows us to pass in an object parameter which can
be used to determine whether the user has the requested permission for that object or not. Here's
how a dataTable with secured links might look:

<h:dataTable value="#{clients}" var="cl">
<h:column>
<f:facet name="header">Name</f.facet>
#{cl.name}
</h:column>
<h:column>

279



Chapter 15. Security

<f:.facet name="header">City</f:facet>
#{cl.city}
</h:column>
<h:column>
<f:.facet name="header">Action</f:facet>
<s:link value="Modify Client" action="#{clientAction.modify}"
rendered="#{s:hasPermission(cl,'modify")"/>
<s:link value="Delete Client" action="#{clientAction.delete}"
rendered="#{s:hasPermission(cl,'delete")"/>
</h:column>
</h:dataTable>

15.6.4. Securing pages

Page security requires that the application is using a pages. xni file, however is extremely simple
to configure. Simply include a <restri ct/> element within the page elements that you wish to
secure. If no explicit restriction is specified by the restri ct element, an implied permission of /
vi ew d. xht ni : r ender will be checked when the page is accessed via a non-faces (GET) request,
and a permission of /vi ewl d. xht nl : rest ore will be required when any JSF postback (form
submission) originates from the page. Otherwise, the specified restriction will be evaluated as a
standard security expression. Here's a couple of examples:

<page view-id="/settings.xhtm|">
<restrict/>
</page>

This page has an implied permission of /settings.xhtm :render required for non-faces
requests and an implied permission of / set t i ngs. xht ml : r est or e for faces requests.

<page view-id="/reports.xhtml">
<restrict>#{s:hasRole(‘admin’)}</restrict>
</page>

Both faces and non-faces requests to this page require that the user is a member of the adni n role.

15.6.5. Securing Entities

Seam security also makes it possible to apply security restrictions to read, insert, update and
delete actions for entities.

To secure all actions for an entity class, add a @Rest ri ct annotation on the class itself:

280



Securing Entities

@Entity
@Name("customer")
@Restrict

public class Customer {

If no expression is specified in the @Restrict annotation, the default security check that is
performed is a permission check of entity: acti on, where the permission target is the entity
instance, and the acti on is either r ead, i nsert, updat e or del et e.

Itis also possible to only restrict certain actions, by placing a @Rest ri ct annotation on the relevent
entity lifecycle method (annotated as follows):

e @ost Load - Called after an entity instance is loaded from the database. Use this method to
configure a r ead permission.

e @rePersist - Called before a new instance of the entity is inserted. Use this method to
configure ani nsert permission.

e @relUpdat e - Called before an entity is updated. Use this method to configure an update
permission.

* @reRenpve - Called before an entity is deleted. Use this method to configure a del ete
permission.

Here's an example of how an entity would be configured to perform a security check for anyi nsert
operations. Please note that the method is not required to do anything, the only important thing
in regard to security is how it is annotated:

@PrePersist @Restrict
public void prePersist() {}

Using / NETA- I NF/ or m xni

j=deo

You can also specify the call back method in / META- | NF/ or m xm :

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlns="http://java.sun.com/xml/ns/persistence/orm"

281



Chapter 15. Security

xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/persistence/orm
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"
version="1.0">

<entity class="Customer">
<pre-persist method-name="prePersist" />
</entity>

</entity-mappings>

Of course, you still need to annotate the pr ePer si st () method on Cust oner with
@Restrict

And here's an example of an entity permission rule that checks if the authenticated user is allowed
to insert a new Menber Bl og record (from the seamspace example). The entity for which the
security check is being made is automatically inserted into the working memory (in this case
Menber Bl og):

rule InsertMemberBlog

no-loop

activation-group "permissions”
when

principal: Principal()

memberBlog: MemberBlog(member : member ->
(member.getUsername().equals(principal.getName())))
check: PermissionCheck(target == memberBlog, action == "insert", granted == false)
then
check.grant();
end;

This rule will grant the permission menber Bl og: i nsert if the currently authenticated user
(indicated by the Pri nci pal fact) has the same name as the member for which the blog entry is
being created. The "pri nci pal : Princi pal ()" structure that can be seen in the example code is
a variable binding - it binds the instance of the Pri nci pal object from the working memory (placed
there during authentication) and assigns it to a variable called pri nci pal . Variable bindings
allow the value to be referred to in other places, such as the following line which compares the
member's username to the Pri nci pal name. For more details, please refer to the JBoss Rules
documentation.

Finally, we need to install a listener class that integrates Seam security with your JPA provider.

282



Typesafe Permission Annotations

15.6.5.1. Entity security with JPA

Security checks for EJB3 entity beans are performed with an Entit yLi st ener. You can install
this listener by using the following META- | NF/ or m xni file:

<?xml version="1.0" encoding="UTF-8"?>
<entity-mappings xmlIns="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemal ocation="http://java.sun.com/xml/ns/persistence/orm http://java.sun.com/
xml/ns/persistence/orm_1 0.xsd"
version="1.0">

<persistence-unit-metadata>
<persistence-unit-defaults>
<entity-listeners>
<entity-listener class="org.jboss.seam.security.EntitySecurityListener"/>
</entity-listeners>
</persistence-unit-defaults>
</persistence-unit-metadata>

</entity-mappings>

15.6.5.2. Entity security with a Managed Hibernate Session

If you are using a Hibernate Sessi onFact ory configured via Seam, and are using annotations,
or orm xn , then you don't need to do anything special to use entity security.

15.6.6. Typesafe Permission Annotations

Seam provides a number of annotations that may be used as an alternative to @estri ct, which
have the added advantage of providing compile-time safety as they don't support arbitrary EL
expressions in the same way that @estri ct does.

Out of the box, Seam comes with annotations for standard CRUD-based permissions, however
it is a simple matter to add your own. The following annotations are provided in the

org. j boss. seam annot ati ons. security package:

e @Insert
+ @Read

e @Update

@Delete

283



Chapter 15. Security

To use these annotations, simply place them on the method or parameter for which you wish to
perform a security check. If placed on a method, then they should specify a target class for which
the permission will be checked. Take the following example:

@Insert(Customer.class)
public void createCustomer() {

In this example, a permission check will be performed for the user to ensure that they have the
rights to create new Cust oner objects. The target of the permission check will be Cust oner . cl ass
(the actual j ava. | ang. d ass instance itself), and the action is the lower case representation of
the annotation name, which in this example is i nsert .

It is also possible to annotate the parameters of a component method in the same way. If this is
done, then it is not required to specify a permission target (as the parameter value itself will be
the target of the permission check):

public void updateCustomer(@Update Customer customer) {

To create your own security annotation, you simply need to annotate it with @er ni ssi onCheck,
for example:

@Target({METHOD, PARAMETER})
@Documented
@Retention(RUNTIME)
@Inherited
@PermissionCheck
public @interface Promote {

Class value() default void.class;

}

If you wish to override the default permisison action name (which is the lower case version of the
annotation name) with another value, you can specify it within the @er ni ssi onCheck annotation:

@PermissionCheck("upgrade™)

284



Typesafe Role Annotations

15.6.7. Typesafe Role Annotations

In addition to supporting typesafe permission annotation, Seam Security also provides typesafe
role annotations that allow you to restrict access to component methods based on the role
memberships of the currently authenticated user. Seam provides one such annotation out
of the box, org.jboss.seam annot ati ons. security. Admin, used to restrict access to a
method to users that are a member of the adnin role (so long as your own application
supports such a role). To create your own role annotations, simply meta-annotate them with
org. j boss. seam annot ati ons. securi ty. Rol eCheck, like in the following example:

@Target({METHODY})
@Documented
@Retention(RUNTIME)
@Inherited
@RoleCheck

public @interface User {

}

Any methods subsequently annotated with the @iser annotation as shown in the above example
will be automatically intercepted and the user checked for the membership of the corresponding
role name (which is the lower case version of the annotation name, in this case user).

15.6.8. The Permission Authorization Model

Seam Security provides an extensible framework for resolving application permissions. The
following class diagram shows an overview of the main components of the permission framework:

285



Chapter 15. Security

Identity

- permissionMapper : PermissionMapper

PermissionMapper

- resalverChains @ Map=Class Map=5tring, String==

+ getResolverChaind | ResoklerChain

V4
ResohrerChain

- tesalvers : List=PermissionResaolver=

+ getResolvers( | List=PermissionResoler=

A/

PermissionResolver

+ hasFermissionitarget : Ohject, action : String) ; boolean

The relevant classes are explained in more detail in the following sections.
15.6.8.1. PermissionResolver

This is actually an interface, which provides methods for resolving individual object permissions.
Seam provides the following built-in Per ni ssi onResol ver implementations, which are described
in more detail later in the chapter:

* Rul eBasedPer ni ssi onResol ver - This permission resolver uses Drools to resolve rule-based
permission checks.

* Persi st ent Perni ssi onResol ver - This permission resolver stores object permissions in a
persistent store, such as a relational database.

286



The Permission Authorization Model

15.6.8.1.1. Writing your own PermissionResolver

It is very simple to implement your own permission resolver. The Per ni ssi onResol ver interface
defines only two methods that must be implemented, as shown by the following table. By deploying
your own Per i ssi onResol ver implementation in your Seam project, it will be automatically
scanned during deployment and registered with the default Resol ver Chai n.

Table 15.7. PermissionResolver interface

Return type Method Description

bool ean hasPer m ssion(Object target, String This method
action) must resolve
whether the
currently
authenticated
user
(obtained via
| dentdt gadlet 8ri nci pal ())
has the
permission
specified by
the target
and action
parameters. It
should return
true if the
user has the
permission, or

fal se if they
don't.
voi d filterSetByAction(Set<Object> targets, This method
String action) should

remove any
objects from
the specified
set, that would
return  true
if passed
to the
hasPer m ssi on()
method  with
the same

action

287



Chapter 15. Security

Return type Method Description

parameter
value.

15.6.8.2. ResolverChain

A Resol ver Chai n contains an ordered list of Per mi ssi onResol ver s, for the purpose of resolving
object permissions for a particular object class or permission target.

The default Resol ver Chai n consists of all permission resolvers discovered during application
deployment. The org.j boss. seam security. def aul t Resol ver Chai nCr eat ed event is raised
(and the Resol verChain instance passed as an event parameter) when the default
Resol ver Chai n is created. This allows additional resolvers that for some reason were not
discovered during deployment to be added, or for resolvers that are in the chain to be re-ordered
or removed.

The following sequence diagram shows the interaction between the components of the permission
framework during a permission check (explanation follows). A permission check can originate from
a number of possible sources, for example - the security interceptor, the s: hasPer nmi ssi on EL
function, or via an API call to I dent i ty. checkPer ni ssi on:

288



RuleBasedPermissionResolver

isgion
{

——

[dentity FermissionMapper EesolverChain

FermissionREe:s

|
1. hasPermission) | | |
|

P 1.1: resolvePermissiong|

.""‘ 1.1.1: getResolvers
e — — — — — — —
1.1.2: hasPermissiont)

1. A permission check is initiated somewhere (either in code or via an EL expression) resulting
inacalltoldentity. hasPermission().

1.1. I dentity invokes Per mi ssi onMapper . r esol vePer mi ssi on(), passing in the permission
to be resolved.

1.1.1. Per i ssi onMapper maintains a Map of Resol ver Chai n instances, keyed by class. It uses
this map to locate the correct Resol ver Chai n for the permission's target object. Once it has
the correct Resol ver Chai n, it retrieves the list of Per ni ssi onResol ver s it contains via a call

to Resol ver Chai n. get Resol vers().

1.1.2. For each Per i ssi onResol ver in the Resol ver Chai n, the Per ni ssi onMapper invokes
its hasPer i ssi on() method, passing in the permission instance to be checked. If any of
the Per mi ssi onResol ver s return true, then the permission check has succeeded and the
Per i ssi onMapper alsoreturnstruetol dentity. If none of the Per mi ssi onResol ver s return
true, then the permission check has failed.

15.6.9. RuleBasedPermissionResolver

One of the built-in permission resolvers provided by Seam, Rul eBasedPer ni ssi onResol ver
allows permissions to be evaluated based on a set of Drools (JBoss Rules) security rules. A couple
of the advantages of using a rule engine are 1) a centralized location for the business logic that
is used to evaluate user permissions, and 2) speed - Drools uses very efficient algorithms for
evaluating large numbers of complex rules involving multiple conditions.

289



Chapter 15. Security

15.6.9.1. Requirements

If using the rule-based permission features provided by Seam Security, the following jar files are
required by Drools to be distributed with your project:

« drools-compiler.jar
« drools-core.jar

* janino.jar

antlr-runtime.jar

* mvelld.jar
15.6.9.2. Configuration

The configuration for Rul eBasedPer ni ssi onResol ver requires that a Drools rule base is first
configured in conponent s. xm . By default, it expects that the rule base is named securi t yRul es,
as per the following example:

<components xmlns="http://jboss.com/products/seam/components"
xmlns:core="http://jboss.com/products/seam/core"
xmlns:security="http://jboss.com/products/seam/security"
xmlns:drools="http://jboss.com/products/seam/drools"
xmlins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation=
"http://jboss.com/products/seam/core http://jboss.com/products/seam/core-2.1.xsd
http://jboss.com/products/seam/components http://jboss.com/products/seam/
components-2.1.xsd
http://jboss.com/products/seam/drools http://jboss.com/products/seam/drools-2.1.xsd"
http://jboss.com/products/seam/security http://jboss.com/products/seam/
security-2.1.xsd">

<drools:rule-base name="securityRules">
<drools:rule-files>
<value>/META-INF/security.drl</value>
</drools:rule-files>
</drools:rule-base>

</components>

The default rule base name can be overridden by specifying the securi ty-rul es property for
Rul eBasedPer mi ssi onResol ver:

290



RuleBasedPermissionResolver

<security:rule-based-permission-resolver security-rules="#{prodSecurityRules}"/>

Once the Rul eBase component is configured, it's time to write the security rules.

15.6.9.3. Writing Security Rules

The first step to writing security rules is to create a new rule file in the / META- | NF directory of your
application's jar file. Usually this file would be named something like security. drl, however you
can name it whatever you like as long as it is configured correspondingly in conponent s. xm .

So what should the security rules file contain? At this stage it might be a good idea to at least skim
through the Drools documentation, however to get started here's an extremely simple example:

package MyApplicationPermissions;

import org.jboss.seam.security.permission.PermissionCheck;
import org.jboss.seam.security.Role;

rule CanUserDeleteCustomers

when
c¢: PermissionCheck(target == "customer”, action == "delete")
Role(name == "admin")

then
c.grant();

end

Let's break this down step by step. The first thing we see is the package declaration. A package in
Drools is essentially a collection of rules. The package name can be anything you want - it doesn't
relate to anything else outside the scope of the rule base.

The next thing we can notice is a couple of import statements for the Per i ssi onCheck and Rol e
classes. These imports inform the rules engine that we'll be referencing these classes within our
rules.

Finally we have the code for the rule. Each rule within a package should be given a
uniqgue name (usually describing the purpose of the rule). In this case our rule is called
CanUser Del et eCust oner s and will be used to check whether a user is allowed to delete a
customer record.

Looking at the body of the rule definition we can notice two distinct sections. Rules have what is
known as a left hand side (LHS) and a right hand side (RHS). The LHS consists of the conditional
part of the rule, i.e. a list of conditions which must be satisfied for the rule to fire. The LHS is

291



Chapter 15. Security

represented by the when section. The RHS is the consequence, or action section of the rule that
will only be fired if all of the conditions in the LHS are met. The RHS is represented by the t hen
section. The end of the rule is denoted by the end line.

If we look at the LHS of the rule, we see two conditions listed there. Let's examine the first condition:

c: PermissionCheck(target == "customer”, action == "delete")

In plain english, this condition is stating that there must exist a Per mi ssi onCheck object with a
t ar get property equal to "customer”, and an act i on property equal to "delete" within the working
memory.

So what is the working memory? Also known as a "stateful session” in Drools terminology,
the working memory is a session-scoped object that contains the contextual information that
is required by the rules engine to make a decision about a permission check. Each time the
hasPer m ssi on() method is called, a temporary Per ni ssi onCheck object, or Fact, is inserted
into the working memory. This Per ni ssi onCheck corresponds exactly to the permission that
is being checked, so for example if you call hasPer ni ssi on("account”, "create") then a
Per mi ssi onCheck object with a t ar get equal to "account" and act i on equal to "create" will be
inserted into the working memory for the duration of the permission check.

Besides the Per i ssi onCheck facts, there is also a org. j boss. seam security. Rol e fact for
each of the roles that the authenticated user is a member of. These Rol e facts are synchronized
with the user's authenticated roles at the beginning of every permission check. As a consequence,
any Rol e object that is inserted into the working memory during the course of a permission check
will be removed before the next permission check occurs, if the authenticated user is not actually
a member of that role. Besides the Per ni ssi onCheck and Rol e facts, the working memory also
contains the j ava. security. Princi pal objectthat was created as a result of the authentication
process.

It is also possible to insert additional long-lived facts into the working memory by calling
Rul eBasedPer ni ssi onResol ver. i nstance(). get SecurityContext().insert(), passing the
object as a parameter. The exception to this is Rol e objects, which as already discussed are
synchronized at the start of each permission check.

Getting back to our simple example, we can also notice that the first line of our LHS is prefixed with
c: . Thisis avariable binding, and is used to refer back to the object that is matched by the condition
(in this case, the Per i ssi onCheck). Moving on to the second line of our LHS, we see this:

Role(hame == "admin")

This condition simply states that there must be a Rol e object with a nane of "admin” within the
working memory. As already mentioned, user roles are inserted into the working memory at the
beginning of each permission check. So, putting both conditions together, this rule is essentially

292



RuleBasedPermissionResolver

saying "l will fire if you are checking for the cust oner : del et e permission and the user is a member
of the adni n role".

So what is the consequence of the rule firing? Let's take a look at the RHS of the rule:

c.grant()

The RHS consists of Java code, and in this case is invoking the gr ant () method of the c object,
which as already mentioned is a variable binding for the Per m ssi onCheck object. Besides the
nanme and acti on properties of the Per m ssi onCheck object, there is also a grant ed property
which is initially set to f al se. Calling gr ant () on a Per ni ssi onCheck sets the gr ant ed property
to true, which means that the permission check was successful, allowing the user to carry out
whatever action the permission check was intended for.

15.6.9.4. Non-String permission targets

So far we have only seen permission checks for String-literal permission targets. It is of course
also possible to write security rules for permission targets of more complex types. For example,
let's say that you wish to write a security rule to allow your users to create blog comments. The
following rule demonstrates how this may be expressed, by requiring the target of the permission
check to be an instance of Menber Bl og, and also requiring that the currently authenticated user
is a member of the user role:

rule CanCreateBlogComment
no-loop
activation-group "permissions”
when
blog: MemberBlog()
check: PermissionCheck(target == blog, action == "create", granted == false)
Role(name == "user")
then
check.grant();
end

15.6.9.5. Wildcard permission checks

It is possible to implement a wildcard permission check (which allows all actions for a given
permission target), by omitting the act i on constraint for the Per mi ssi onCheck in your rule, like
this:

rule CanDoAnythingToCustomersifYouAreAnAdmin
when

293



Chapter 15. Security

c¢: PermissionCheck(target == "customer")
Role(hame == "admin")

then
c.grant();

end;

This rule allows users with the adni n role to perform any action for any cust omer permission
check.

15.6.10. PersistentPermissionResolver

Another built-in permission resolver provided by Seam, Per si st ent Per mi ssi onResol ver allows
permissions to be loaded from persistent storage, such as a relational database. This permission
resolver provides ACL style instance-based security, allowing for specific object permissions to be
assigned to individual users and roles. It also allows for persistent, arbitrarily-named permission
targets (not necessarily object/class based) to be assigned in the same way.

15.6.10.1. Configuration

Before it can be used, Persi stent Perni ssi onResol ver must be configured with a valid
Permi ssionStore in conponents. xm . If not configured, it will attempt to use the default
permission store, Jpal denti t ySt or e (see section further down for details). To use a permission
store other than the default, configure the per ni ssi on- st or e property as follows:

<security:persistent-permission-resolver permission-store="#{myCustomPermissionStore}"/>

15.6.10.2. Permission Stores

A permission store is required for Per si st ent Per ni ssi onResol ver to connect to the backend
storage where permissions are persisted. Seam provides one Per ni ssi onSt or e implementation
out of the box, JpaPer mi ssi onSt or e, which is used to store permissions inside a relational
database. Itis possible to write your own permission store by implementing the Per ni ssi onSt or e
interface, which defines the following methods:

Table 15.8. PermissionStore interface

Return type Method Description

Li st <Per mi ssi on> |'i st Permi ssions(Object target) This method
should return
a List of
Per m ssi on
objects
representing

294



PersistentPermissionResolver

Return type

Li st <Per m ssi on>

Li st <Per m ssi on>

bool ean

Method

| i st Perm ssions(Cbject target,

action)

| i st Perm ssi ons(Set <Obj ect >

String action)

gr ant Per mi ssi on( Perni ssi on)

String

targets,

Description

all the
permissions
granted  for
the specified
target object.

This method
should return
a List of
Per mi ssi on

objects
representing
all the
permissions
with the
specified
action,

granted  for
the specified
target object.

This method
should return
a List of
Per m ssi on

objects
representing
all the
permissions
with the
specified
action,

granted  for
the specified
set of target
objects.

This method
should persist
the specified
Per m ssi on
object to the
backend
storage,

295



Chapter 15. Security

Return type

bool ean

bool ean

bool ean

Li st<String>

gr ant Per mi ssi ons( Li st <Per nmi ssi on>

per nmi ssi ons)

r evokePer m ssi on( Per m ssi on

per ni ssi on)

r evokePer m ssi ons( Li st <Per mi ssi on>

per m ssi ons)

| i st Avai | abl eActi ons(Obj ect target)

Method

Description

returning true
if successful.

This method
should persist
all  of the
Per mi ssi on
objects
contained in
the specified
Li st,
returning true
if successful.

This method
should
remove the
specified
Per m ssi on
object  from

persistent
storage.
This method
should
remove all
of the
Per mi ssi on
objects in
the specified
list from
persistent
storage.
This method

should return
a list of all
the available
actions (as
Strings)  for
the class of
the specified
target object.
It is used in
conjunction
with

296



PersistentPermissionResolver

Return type Method Description

permission

management
to build the
user interface
for granting
specific class
permissions

(see section
further down).

15.6.10.3. JpaPermissionStore

This is the default Per nmi ssi onSt or e implementation (and the only one provided by Seam), which
uses a relational database to store permissions. Before it can be used it must be configured with
either one or two entity classes for storing user and role permissions. These entity classes must
be annotated with a special set of security annotations to configure which properties of the entity
correspond to various aspects of the permissions being stored.

If you wish to use the same entity (i.e. a single database table) to store both user and role
permissions, then only the user - per ni ssi on- cl ass property is required to be configured. If you
wish to use separate tables for storing user and role permissions, then in addition to the user -
per mi ssi on- cl ass property you must also configure the r ol e- per mi ssi on- cl ass property.

For example, to configure a single entity class to store both user and role permissions:

<security:jpa-permission-store user-permission-
class="com.acme.model.AccountPermission"/>

To configure separate entity classes for storing user and role permissions:

<security:jpa-permission-store user-permission-class="com.acme.model.UserPermission"
role-permission-class="com.acme.model.RolePermission"/>

15.6.10.3.1. Permission annotations

As mentioned, the entity classes that contain the wuser and role permissions
must be configured with a special set of annotations, contained within the
org.j boss. seam annot ati ons. security. pern ssi on package. The following table lists each
of these annotations along with a description of how they are used:

297



Chapter 15. Security

Table 15.9. Entity Permission annotations

Annotation Target Description
@per mi ssi onTar get Fl ELD, METHOD This
annotation
identifies the
property of the

entity that will
contain  the
permission

target.  The
property

should be

of type
java. |l ang. String.

@er mi ssi onAct i on FI ELD, METHOD This
annotation
identifies the
property of the
entity that will
contain  the
permission
action. The
property
should be
of type
java.l ang. String.

@Per mi ssi onUser Fl ELD, METHOD This
annotation
identifies the
property  of
the entity that
will  contain
the recipient
user for the
permission. It
should be
of type
java.lang. String
and contain
the user's
username.

@er m ssi onRol e FI ELD, METHOD

298



PersistentPermissionResolver

Annotation Target Description
This
annotation
identifies the
property  of
the entity that
will  contain
the recipient
role for the
permission. It
should be
of type
java.lang. String
and contain
the role name.

@ermi ssi onDi scrim nator  Fl ELD, METHOD This
annotation
should be
used when
the same
entity/table is
used to store
both user and
role
permissions.
It identifies the
property of the
entity that is
used to
discriminate
between user
and role
permissions.
By default, if
the  column
value
contains the
string literal
user, then
the record will
be treated
as a user
permission. If

299



Chapter 15. Security

Annotation Target

15.6.10.3.2. Example Entity

Description

it contains the
string literal
rol e, then it
will be treated
as a role
permission. It
is also
possible  to
override these
defaults by
specifying the
user Val ue
and

rol eval ue
properties
within the
annotation.
For example,
to wuse u
and r instead
of user and
rol e, the
annotation
would be
written like
this:

roleValue
np

Here is an example of an entity class that is used to store both user and role permissions. The

following class can be found inside the SeamSpace example:

@Entity
public class AccountPermission implements Serializable {
private Integer permissionid;

300



PersistentPermissionResolver

private String recipient;
private String target;
private String action;
private String discriminator;

@Ild @GeneratedValue
public Integer getPermissionlid() {
return permissionl