
Teiid - Scalable Information Integration

1

Teiid Connector

Developer's Guide
6.0.0 GA

iii

1. Connecting to Your Enterprise Information System .. 1

1.1. The Teiid System ... 1

2. Connectors in the Teiid System .. 3

2.1. Do You Need a New Connector? .. 3

2.2. Required Items to Write a Custom Connector ... 3

3. Connector API ... 5

3.1. Overview .. 5

3.2. Connector Lifecycle .. 6

3.2.1. Initialization .. 6

3.2.2. Starting and Stopping ... 6

3.3. Connections to Source .. 6

3.3.1. Obtaining connections .. 6

3.3.2. Releasing Connections ... 7

3.4. Executing Commands ... 7

3.4.1. Execution Modes ... 7

3.4.2. Synchronous Query Execution .. 8

3.4.3. Asynchronous Query Execution ... 10

3.4.4. Update Execution ... 11

3.4.5. Batched Update / Bulk Insert Execution ... 12

3.4.6. Procedure Execution .. 13

3.4.7. Command Completion .. 14

3.4.8. Command Cancellation ... 14

4. Command Language .. 15

4.1. Language Interfaces ... 15

4.1.1. Expressions ... 15

4.1.2. Criteria ... 17

4.1.3. Joins ... 18

4.1.4. IQuery Structure ... 19

4.1.5. IUnion Structure ... 20

4.1.6. IInsert Structure .. 21

4.1.7. IUpdate Structure ... 22

4.1.8. IDelete Structure .. 23

4.1.9. IProcedure Structure .. 24

4.1.10. IBulkInsert Structure .. 25

4.1.11. IBatchedUpdate Structure .. 25

4.2. Language Utilities ... 25

4.2.1. Data Types .. 26

4.2.2. Language Manipulation ... 27

4.3. Runtime Metadata ... 27

4.3.1. Language Objects .. 27

4.3.2. Access to Runtime Metadata .. 28

4.4. Language Visitors ... 30

4.4.1. Framework ... 30

4.4.2. Provided Visitors .. 32

Teiid - Scalable Information ...

iv

4.4.3. Writing a Visitor ... 32

4.5. Connector Capabilities .. 33

4.5.1. Capability Scope .. 33

4.5.2. Execution Modes .. 33

4.5.3. Capabilities .. 33

4.5.4. Command Form ... 36

4.5.5. Scalar Functions .. 36

4.5.6. Physical Limits ... 37

5. Using the Connector Development Kit .. 39

5.1. Overview .. 39

5.2. Programmatic Utilities ... 39

5.2.1. Language Translation ... 39

5.2.2. Command Execution .. 39

5.3. Connector Environment ... 41

5.4. Command Line Tester ... 41

5.4.1. Using the Command Line Tester ... 41

5.4.2. Loading Your Connector ... 43

5.4.3. Executing Commands ... 44

5.4.4. Scripting .. 45

6. Connector Deployment .. 47

6.1. Overview .. 47

6.2. Connector Type Definition File ... 47

6.2.1. Required Properties .. 47

6.2.2. Connector Properties .. 48

6.3. Extension Modules .. 49

6.3.1. Extension Modules ... 49

6.3.2. Understanding the Connector Classpath .. 49

6.4. Connector Archive File .. 49

6.5. Importing the Connector Archive .. 50

6.5.1. Into Teiid Server .. 50

6.5.2. Into Enterprise or Dimension Designer ... 50

6.6. Creating a Connector Binding .. 51

6.6.1. In Console ... 51

6.6.2. In Designer .. 51

7. Connection Pooling ... 53

7.1. Overview .. 53

7.2. Framework Overview .. 53

7.3. Using Connection Pooling ... 54

7.4. The Connection Lifecycle .. 54

7.4.1. XAConnection Pooling .. 54

7.5. Configuring the Connection Pool .. 55

8. Monitored Connectors ... 57

8.1. Overview .. 57

8.2. Monitored Connector Framework Overview .. 57

v

8.3. Using The Framework ... 58

9. Handling Large Objects ... 59

9.1. Large Objects ... 59

9.1.1. Data Types .. 59

9.1.2. Why Use Large Object Support? ... 59

9.2. Handling Large Objects ... 59

9.3. Inserting or Updating Large Objects ... 61

A. Connector Type Definition Template ... 63

vi

Chapter 1.

1

Connecting to Your Enterprise

Information System
The Teiid System offers your organization a way to manage and describe the information

across your disparate enterprise information systems. You can even integrate these enterprise

information systems into a single, complete data access solution using the Teiid Server.

1.1. The Teiid System

The entire Teiid System is comprised of several interconnected products and services:

Figure 1.1. Teiid System

The Teiid System, when used in its totality, enables your end user applications to process queries

that select (and even update) data from one or more of your enterprise information sources,

regardless of the native physical data storage method used by each enterprise information system.

This means that a single query can access, reference, and return results from multiple integrated

data sources.

Chapter 1. Connecting to Your...

2

Within the Teiid System, the Teiid products (including the Teiid Designer, the Teiid Server), enable

you to create and manage metadata models: representations describing the nature and content

of your enterprise information systems.

Once captured, this valuable metadata can searched, analyzed, and applied by applications

throughout your enterprise.

Chapter 2.

3

Connectors in the Teiid System
In the Teiid System, a connector handles all request-and-response related communications

between the data tier of the Teiid Server and the individual enterprise information sources, which

can include databases, data feeds, flat files, or any other entity you have modeled

In the Teiid Server, a connector is used to:

• Translate a Teiid-specific command into a native command.

• Execute the command.

• Return batches of results to the Teiid Server.

The Teiid Server is responsible for reassembling the results from one or more connectors into an

answer for the user’s command.

For a more detailed workflow, see the chapter “Connector API.”

2.1. Do You Need a New Connector?

Teiid can provide several connectors for common enterprise information system types. If you

can use one of these enterprise information systems, you do not need to develop a custom one.

Instead, you can contact your Teiid Technical Account Manager and ask about purchasing the

connector you need.

Teiid offers the following connectors:

• JDBC: Connects to many relational databases. The JDBC Connector is validated against the

following database systems: Oracle, Microsoft SQL Server, IBM DB2, MySQL and Sybase. In

addition, the JDBC Connector can often be used with other 3rd-party drivers and provides a

wide range of extensibility options to specialize behavior against those drivers.

• Text: Connects to ASCII text files.

• XML Connects to XML files on disk or by invoking Web services on other enterprise systems.

If your enterprise information system can use one of these connectors, you do not need to develop

your own. Instead, you can contact Teiid about acquiring the connector you need.

2.2. Required Items to Write a Custom Connector

To write a connector, follow this procedure:

1. Gather all necessary information about your Enterprise Information System (EIS). You will need

to know:

Chapter 2. Connectors in the ...

4

• API for accessing the system

• Configuration and connection information for the system

• Metadata

• Required properties for the connector, such as URL, user name, etc.

• The CDK development kit (jars and tools).

2. Implement the required interfaces defined by the Connector API.

• Connector – starting point.

• Connection – represents a connection to the source.

• ConnectorCapabilities – specifies what kinds of commands your connector can execute

• Execution (and sub-interfaces) – specifies how to execute each type of command

3. Test your connector with Connector Development Kit (CDK) test utilities.

4. Deploy your connector type into a Teiid Server using the Teiid Console.

• Create your connector type definition file. Import the connector type definition file

• Create a connector binding using the connector type

• Deploy a Virtual Database with metadata corresponding to your EIS

5. Execute queries via the Teiid JDBC API or QueryBuilder

This guide covers how to do each of these steps in detail. It also provides additional information

for advanced topics, such as connection pooling, streaming large objects, and transactions. For

a sample connector code, please check the wiki pages at Teiid community [http://teiid.org]

http://teiid.org
http://teiid.org

Chapter 3.

5

Connector API

3.1. Overview

A component called the Connector Manager is controlling access to your connector. This chapter

reviews the basics of how the Connector Manager interacts with your connector while leaving

reference details and advanced topics to be covered in later chapters.

A custom connector must implement the following interfaces to connect and query an enterprise

Data Source. These interfaces are in package called com.metamatrix.data.api:

• Connector - This interface is the starting point for all interaction with your connector. It allows

the Connector Manager to obtain a connection and perform lifecycle events.

• Connection - This interface represents a connection to your data source. It is used as a starting

point for actual command executions. Connections provided to the Connector Manager will be

obtained and released for each command execution. Teiid provides for extensible automatic

connection pooling, as discussed in the Connection Pooling chapter.

• ConnectorCapabilities - This interface allows a connector to describe the execution

capabilities of the connector. Teiid provides a base implementation of this class called

BasicConnectorCapabilities. You can either extend this basic implementation or implement

your own implementation.

• Execution (and sub-interfaces) - These interfaces represent a command execution with your

Connector. There is a sub-interface for executing each kinds of command: query, update, and

procedure. Your connector can specify via the ConnectorCapabilities which of these command

types it can handle.

• Batch - This interface represents a batch of results being sent to the Teiid Server from the

custom connector. Teiid provides a default implementation of this class called BasicBatch.

The most important interfaces provided by Teiid to the connector are the following:

• ConnectorEnvironment – an interface describing access to external resources for your

connector.

• ConnectorLogger – an interface for writing logging information to Teiid logs.

• SecurityContext / ExecutionContext – interfaces defining the security information and execution

context available to the connector when executing a command.

Chapter 3. Connector API

6

3.2. Connector Lifecycle

3.2.1. Initialization

A Connector will be initialized one time via the initialize() method, which passes in a

ConnectorEnvironment object provided by the Connector Manager . The ConnectorEnvironment

provides the following resources to the connector:

• Configuration properties – name / value pairs as provided by the connector binding in the Teiid

Console

• Logging – ConnectorLogger interface allows a Connector to log messages and errors to Teiid’s

log files.

• Runtime metadata – access to the runtime metadata of the model deployed in the Teiid Server

for your physical source

• Large object replacement – ability to stream the results of large values (such as blobs and clobs)

through the Teiid system

• Type facility – an interface defining runtime datatypes and type conversion facility.

3.2.2. Starting and Stopping

Other methods on the connector allow the Connector Manager to start() or stop() the connector.

Typically the connector is started or stopped in response to system startup, system shutdown,

or an administrator changing these states on connector bindings in the Teiid Console or through

Admin API. A connector should perform whatever actions are necessary in these methods to

create or destroy all connector states, including connections to the actual physical source.

3.3. Connections to Source

3.3.1. Obtaining connections

The connector must implement the getConnection() method to allow the Connector Manager to

obtain a connection. The getConnection() method is passed a SecurityContext, which contains

information about the context in which this query is being executed.

The SecurityContext contains the following information:

• User name

• Virtual database name

• Virtual database version

• Trusted token

The trusted token is used to pass security information specific to your application through the

Teiid Server. The client can pass the trusted token when they connect via JDBC. This token is

Releasing Connections

7

then passed to the Membership Service and may be created, replaced, or modified at that time. In

some cases, you may wish to provide a customer Membership Service implementation to handle

security needs specific to your organization. For more information on implementing a custom

Membership Service, contact Teiid technical support.

3.3.2. Releasing Connections

Once the Connector Manager has obtained a connection, it will use that connection only for the

lifetime of the request. When the request has completed, the release() method will be called on

the connection.

In cases (such as when a connection is stateful and expensive to create), connections should be

pooled. Teiid provides an extensible connection pool for this purpose, as described in chapter

Connection Pooling.

3.4. Executing Commands

3.4.1. Execution Modes

The Connector API uses a connection to obtain an execution interface for the command it is

executing. Connectors may support any subset of the available execution modes. The execution

modes are defined by constants in the ConnectorCapabilities.EXECUTION_MODE class. The

following execution modes are available:

Table 3.1. Types of Execution Modes

Execution Mode Execution

Interface

Command

interface(s)

Description

Synchronous

Query

SynchQueryExecutionIQuery A query, corresponding to a SQL

SELECT statement

Update UpdateExecution IInsert,

IUpdate,

IDelete

An insert, update, or delete,

corresponding to a SQL INSERT,

UPDATE, or DELETE command

Procedure

Execution

ProcedureExecutionIProcedure A procedure execution that may

return a result set and/or output

values.

Asynchronous

Query

AsynchQueryExecutionIQuery Polled asynchronous execution of a

SQL SELECT statement

Batched Update BatchedUpdatesExecutionICommand[] Execute multiple commands in a

batch

Bulk Insert BatchedUpdatesExecutionIInsert Insert a large set of data using the

same INSERT command

Chapter 3. Connector API

8

Following is a class diagram further defining the relationships between the execution interfaces:

Figure 3.1. Execution Interfaces Class Diagram

All of the execution interfaces extend the base execution interface that defines how executions are

cancelled and closed. SynchQueryExecution, AsynchQueryExecution, and ProcedureExecution

all extend the BatchedExecution interface, which defines how batched results are returned from

an execution.

3.4.2. Synchronous Query Execution

Most commands executed against connectors are queries. Queries correspond to the SELECT

statement in SQL. The actual queries themselves are sent to connectors in the form of a set of

objects, which are further described in Chapter Command Language.

Synchronous Query Execution

9

The following diagram represents the typical sequence of events when executing a query:

Figure 3.2. Query Execution Sequence Diagram

While the command is being executed, the connector retrieves results in batches via

the BatchedExecution interface. Each time nextBatch() is called, the SynchQueryExecution

implementation should return a batch of no more than maxBatchSize records. The final batch of

records should set the isLast flag to true.

The maxBatchSize parameter passed to the nextBatch method corresponds to the Connector

Batch Size that can be set on a system-wide bases in the Teiid Console (under System Properties

in the buffer section..) The Connector Batch Size should typically be set in conjunction with the

Chapter 3. Connector API

10

Processor Batch Size from the same category. For more information on these parameters, see

the Teiid Console User Guide.

3.4.3. Asynchronous Query Execution

In some scenarios, a connector needs to execute queries asynchronously and poll for results.

 In this case, your connector should use the asynchronous query execution mode instead of the

synchronous query execution mode. The connector capabilities specify which will be used (only

one can be supported at the same time).

The following diagram represents the typical sequence of events when executing a query

asynchronously:

Figure 3.3. Async Query Execution Sequence Diagram

While the command is being executed, the connector retrieves results in batches via

the BatchedExecution interface. The AsynchQueryExecution interface works similarly to the

Update Execution

11

SynchQueryExecution interface with one important difference. If the nextBatch method returns

an empty batch with the isLast flag set to false, then the Connector Manager interprets this as

no data being available. In this case, the Connector Manager will wait for the poll interval before

asking again for a batch.

The nextBatch() is not expected to sleep or otherwise block for results as this would tie up a

Connector Manager thread which could be doing other work. Instead, the Connector Manager is

designed to avoid tying up worker threads while waiting for the poll interval, so the connector is

expected to return from the nextBatch() method as quickly as possible.

3.4.4. Update Execution

Insert, update, and delete commands correspond to the INSERT, UPDATE, and DELETE

commands in SQL. They are used to insert a single row into a data source, update one or more

rows in a data source, or delete one or more rows in a data source. Each of these commands

returns a count specifying the number of rows updated in the physical source in response to the

command.

The following diagram represents the typical sequence of events when executing an insert,

update, or delete:

Chapter 3. Connector API

12

Figure 3.4. Update Query Execution Sequence Diagram

With an update execution, the execute method is the only call in the execution. No subsequent

interaction will take place.

3.4.5. Batched Update / Bulk Insert Execution

Batched update and bulk insert execution are very similar to update execution except multiple

commands are passed to the connector in a single method call. In the case of a bulk insert, a

single template INSERT command is passed with a set of data rows that need to be inserted with

the command. In the case of batched update, a series of arbitrary commands is sent and the

batch must be executed together for efficiency.

Procedure Execution

13

3.4.6. Procedure Execution

Procedure commands correspond to the execution of a stored procedure or some other functional

construct. A procedure takes zero or more input values and can return a result set and zero or

more output values. Examples of procedure execution would be a stored procedure in a relational

database or a call to a web service.

The following diagram represents the typical sequence of events when executing a procedure:

Figure 3.5. Procedure Query Execution Sequence Diagram

If a result set is expected when a procedure is executed, all rows from it will be retrieved via the

BatchedExecution interface first. Then, if any output values are expected, they will be retrieved

via the getOutputValue() method, which will be called once for each expected output value.

Chapter 3. Connector API

14

3.4.7. Command Completion

All normal command executions end with the calling of close() on the Execution object. Your

implementation of this method should do the appropriate clean-up work for all state in the

Execution object.

3.4.8. Command Cancellation

Commands submitted to Teiid may be aborted in several scenarios:

• Client cancellation via the JDBC API (or other client APIs)

• Administrative cancellation via the Teiid Console or Admin API

• Clean-up during session termination

• Clean-up if a query fails during processing

In these cases, if the command being executed on the connector has not yet finished, Teiid will

call the cancel() method on the execution interface in a separate thread from the thread that may

be blocked calling the execute() method.

Your connector implementation may choose to do nothing in response to this cancellation

message. In this instance, Teiid will call close() on the execution object after current synchronous

processing has completed. Implementing the cancel() method allows for faster termination of

queries being processed and may allow the underlying data source to terminate its operations

faster as well.

Chapter 4.

15

Command Language

4.1. Language Interfaces

Teiid sends commands to your connector in object form. The interfaces for these objects are

all defined in the com.metamatrix.data.language package. These interfaces can be combined to

represent any possible command that Teiid may send to the connector. However, it is possible

to notify the Teiid Server that your connector can only accept certain kinds of commands via

the ConnectorCapabilities class. See the section on using Connector Capabilities for more

information.

The language interfaces all extend from the main interface, ILanguageObject. They are composed

in a tree where each node is a language object that has zero or more child language objects of

types that are dependent on the current node.

All commands sent to your connector are in the form of these language trees, where the root of the

tree is a subclass of ICommand. ICommand has several sub-interfaces, namely: IQuery, IInsert,

IUpdate, IDelete, and IProcedure. These represent the query in SQL form. Important components

of these commands are expressions, criteria, and joins, which are examined in closer detail below.

4.1.1. Expressions

An expression represents a single value in context, although in some cases that value may change

as the query is evaluated. For example, a literal value, such as “5” represents an integer value.

 An element such as “EmployeeName” represents a column in a data source and may take on

many scalar values while the command is being evaluated.

The following diagram shows the IExpression interface and all sub-interfaces in the language

objects.

Chapter 4. Command Language

16

Figure 4.1. Execution Interfaces Class Diagram

These interfaces are explained in greater detail here:

• IExpression – base expression interface

Criteria

17

• IElement – represents an element in the data source

• ILiteral – represents a literal scalar value

• IFunction – represents a scalar function with parameters that are also IExpressions

• IAggregate – represents an aggregate function which holds a single expression

• IScalarSubquery – represents a subquery that returns a single value

• ICaseExpression – represents a CASE expression. The CASE expression evaluates an

expression, then compares with the values in the WHEN clauses to determine the THEN clause

to evaluate.

• ISearchedCaseExpression – represents a searched CASE expression. The searched CASE

expression evaluates the criteria in WHEN clauses till one evaluates to TRUE, then evaluates

the associated THEN clause.

4.1.2. Criteria

A criteria is a combination of expressions and operators that evaluates to true or false. Criteria

are most commonly used in the FROM or HAVING clauses. The following diagram shows the

criteria interfaces present in the language objects.

Figure 4.2. Criteria Interfaces Class Diagram

Chapter 4. Command Language

18

These interfaces are described in greater detail here:

• ICriteria – the base criteria interface

• ILogicalCriteria – used to logically combine other criteria

• INotCriteria – used to NOT another criteria

• ICompoundCriteria – used to combine other criteria via AND or OR

• IPredicateCriteria – a predicate that evaluates to true or false

• ISubuqeryCompareCriteria – represents a comparison criteria with a subquery including a

quantifier such as SOME or ALL

• ICompareCriteria – represents a comparison criteria with =, >, <, etc

• IBaseInCriteria – base class for an IN criteria

• IInCriteria – represents an IN criteria that has a set of expressions for values

• ISubqueryInCriteria – represents an IN criteria that uses a subquery to produce the value set

• IIsNullCriteria – represents an IS NULL criteria

• IExistsCriteria – represents an EXISTS criteria that determines whether a subquery will return

any values

• ILikeCriteria – represents a LIKE criteria that compares string values

4.1.3. Joins

The FROM clause contains a list of IFromItems. Each IFomItem can either represent a group or

a join between two other IFromItems. This allows joins to be composed into a join tree.

IQuery Structure

19

Figure 4.3. IJoin Interface Class Diagram

The IGroup represents a single group, which must be a leaf of the join tree. The IJoin has a left

and right IFromItem and information on the join between the items.

4.1.4. IQuery Structure

The following diagram shows the structure of an IQuery command.

Chapter 4. Command Language

20

Figure 4.4. IQuery Interface Class Diagram

Each IQuery will have an ISelect describing the expressions (typically elements) being selected

and an IFrom specifying the group or groups being selected from, along with any join information.

 The IQuery may optionally also supply an ICriteria (representing a SQL WHERE clause), an

IGroupBy (representing a SQL GROUP BY clause), and an ICriteria (representing a SQL HAVING

clause).

4.1.5. IUnion Structure

The following diagram shows the structure of an IUnion command.

IInsert Structure

21

Figure 4.5. IUnion Interface Class Diagram

IUnion extends from IQuery and allows for one or more additional IQuery objects to be attached

as a UNION query. For each additional IQuery, there is a Boolean “ALL” flag that must be set.

 The ORDER BY clause for the UNION as a whole can also be set on the IUnion object.

4.1.6. IInsert Structure

The following diagram shows the structure of an IInsert command.

Chapter 4. Command Language

22

Figure 4.6. IInsert Interface Class Diagram

Each IInsert will have a single IGroup specifying the group being inserted into. It will also have two

matched lists – one a list of IElement specifying the columns of the IGroup that are being inserted

into and one a list of ILiteral specifying the values that will be inserted into each matching IElement.

4.1.7. IUpdate Structure

The following diagram shows the structure of an IUpdate command.

IDelete Structure

23

Figure 4.7. IUpdate Interface Class Diagram

Each IUpdate will have a single IGroup specifying the group being updated. The list of

ICompareCriteria are used to specify each element that is being modified. Each compare criteria

will be of the form “element = literal”. The IUpdate may optionally provide a criterion specifying

which rows should be updated.

4.1.8. IDelete Structure

The following diagram shows the structure of an IDelete command.

Chapter 4. Command Language

24

Figure 4.8. IDelete Interface Class Diagram

Each IDelete will have a single IGroup specifying the group being deleted from. It may also

optionally have a criteria specifying which rows should be deleted.

4.1.9. IProcedure Structure

The following diagram shows the structure of an IProcedure command.

Figure 4.9. IProcedure Interface Class Diagram

Each IProcedure has zero or more IParameter objects. The IParameter objects describe the input

parameters, the output result set, and the output parameters.

IBulkInsert Structure

25

4.1.10. IBulkInsert Structure

The following diagram shows the structure of an IBulkInsert command.

Figure 4.10. IBulkInsert Interface Class Diagram

Each IBulkInsert extends an IInsert but provides a List of Lists of values that need to be placed

into the VALUES list of the INSERT.

4.1.11. IBatchedUpdate Structure

The following diagram shows the structure of an IBatchedUpdate command.

Figure 4.11. IBatchedUpdate Interface Class Diagram

Each IBatchedUpdate has a list of ICommand objects that compose the batch.

4.2. Language Utilities

This section covers utilities available when using, creating, and manipulating the language

interfaces.

Chapter 4. Command Language

26

4.2.1. Data Types

The Connector API contains an interface TypeFacility that defines data types and provides value

translation facilities.

Figure 4.12. IBatchedUpdate Interface Class Diagram

The table below lists the role of each class in the framework.

Language Manipulation

27

Table 4.1. Types Facility Classes

Class Type Description

ConnectorEnvironment Interface This interface (provided by Teiid) is a factory to

obtain the TypeFacility instance for the connector

using the getTypeFacility() method.

TypeFacility Interface This interface has two methods that support data

type transformation. Generally,transformations

exist for all valid implicit and explicit data type

transformations in the Teiid query engine.

TypeFacility.RUNTIME_TYPESInterface This is an inner interface of TypeFacility that defines

constants for all Teiid runtime data types. All

IExpression instances define a data type based on

this set of types. These constants are often needed

in understanding or creating language interfaces.

4.2.2. Language Manipulation

In connectors that support a fuller set of capabilities (those that generally are translating to a

language of comparable to SQL), there is often a need to manipulate or create language interfaces

to move closer to the syntax of choice. Some utilities are provided for this purpose:

Similar to the TypeFacility, you can use the ConnectorEnvironment to get a reference to the

ILanguageFactory instance for your connector. This interface is a factory that can be used to

create new instances of all the concrete language interface objects.

Some helpful utilities for working with ICriteria objects are provided in the LanguageUtil class.

 This class has methods to combine ICriteria with AND or to break an ICriteria apart based on

AND operators. These utilities are helpful for breaking apart a criteria into individual filters that

your connector can implement.

4.3. Runtime Metadata

Teiid uses a library of metadata, known as “runtime metadata” for each virtual database that is

deployed in the Teiid Server. The runtime metadata is a subset of metadata as defined by models

in the Teiid models that compose the virtual database.

Connectors can access runtime metadata by using the interfaces defined in

com.metamatrix.data.metadata.runtime. This class defines interfaces representing a MetadataID,

a MetadataObject, and ways to navigate those IDs and objects.

4.3.1. Language Objects

One language interface, IMetadataReference describes whether a language object has a

reference to a MetadataID. The following interfaces extend IMetadataReference:

Chapter 4. Command Language

28

• IElement

• IGroup

• IProcedure

• IParameter

Once a MetadataID has been obtained, it is possible to use the RuntimeMetadata interface to

discover metadata about that ID or to find other related IDs or objects.

4.3.2. Access to Runtime Metadata

The following interfaces are defined in the runtime metadata package:

Access to Runtime Metadata

29

Figure 4.13. Runtime MetaData Class Diagram

As mentioned in the previous section, a MetadataID is obtained from one of the language objects.

That MetadataID can then be used directly to obtain information about the ID, such as the full

name or short name.

The RuntimeMetadata interface can be obtained from the ConnectorEnvironment. It provides

the ability to look up MetadataObjects based on MetadataIDs. There are several kinds of

MetadataObjects and they can be used to find more information about the object in runtime

metadata.

Chapter 4. Command Language

30

Currently, only a subset of the most commonly used runtime metadata is available through these

interfaces. In the future, more complete information will be available.

Obtaining MetadataObject Properties Example

The process of getting an element's properties is needed for most connector development For

example to get the NameInSource property or all extension properties:

IMetaDataReference ref = ... //An IGroup in this example

RuntimeMetadata rm = ... //Obtained from the ConnectorEnvironemnt

MetaDataObject group = rm.getObject(ref.getMetadataID());

String contextName = group.getNameInSource();

//The props will contain extension properties

Properties props = group.getProperties();

4.4. Language Visitors

4.4.1. Framework

The Connector API provides a language visitor framework in the

com.metamatrix.data.visitor.framework package. The framework provides utilities useful in

navigating and extracting information from trees of language objects. This diagram describes the

relationships of the various classes in the framework:

Framework

31

Figure 4.14. LanguageObjectVisitor Class Diagram

The visitor framework is a variant of the Visitor design pattern, which is documented in several

popular design pattern references. The visitor pattern encompasses two primary operations:

traversing the nodes of a graph (also known as iteration) and performing some action at each node

of the graph. In this case, the nodes are language interface objects and the graph is really a tree

rooted at some node. The provided framework allows for customization of both aspects of visiting.

The base LanguageObjectVisitor class defines the visit methods for all leaf language interfaces

that can exist in the tree. The LanguageObject interface defines an acceptVisitor() method – this

method will call back on the visit method of the visitor to complete the contract. A base class with

empty visit methods is provided as AbstractLanguageVisitor. The AbstractLanguageVisitor is just

a visitor shell – it performs no actions when visiting nodes and does not provide any iteration.

The HierarchyVisitor provides the basic code for walking a language object tree. The

HierarchyVisitor performs no action as it walks the tree – it just encapsulates the knowledge of

how to walk it. If your connector wants to provide a custom iteration that walks the objects in a

special order (to exclude nodes, include nodes multiple times, conditionally include nodes, etc)

then you must either extend HierarchyVisitor or build your own iteration visitor. In general, that

is not necessary.

The DelegatingHierarchyVisitor is a special subclass of the HierarchyVisitor that provides the

ability to perform a different visitor’s processing before and after iteration. This allows users of

this class to implement either pre- or post-order processing based on the HierarchyVisitor. Two

Chapter 4. Command Language

32

helper methods are provided on DelegatingHierarchyVisitor to aid in executing pre- and post-order

visitors.

4.4.2. Provided Visitors

The SQLStringVisitor is a special visitor that can traverse a tree of language interfaces and output

the equivalent Teiid SQL. This visitor can be used to print language objects for debugging and

logging. The SQLStringVisitor does not use the HierarchyVisitor described in the last section; it

provides both iteration and processing type functionality in a single custom visitor.

The CollectorVisitor is a handy utility to collect all language objects of a certain type in a tree.

Some additional helper methods exist to do common tasks such as retrieving all elements in a

tree, retrieving all groups in a tree, and so on.

4.4.3. Writing a Visitor

Writing your own visitor can be quite easy if you use the provided facilities. If the normal method

of iterating the language tree is sufficient, then just follow these steps:

Create a subclass of AbstractLanguageVisitor. Override any visit methods needed for your

processing. For instance, if you wanted to count the number of elements in the tree, you need

only override the visit(IElement) method. Collect any state in local variables and provide accessor

methods for that state.

Decide whether to use pre-order or post-order iteration. In many cases, it doesn’t matter, so if

you’re not sure, use pre-order processing.

Write code to execute your visitor using the utility methods on DelegatingHierarchyVisitor:

// Get object tree

LanguageObject objectTree = …

// Create your visitor initialize as necessary

MyVisitor visitor = new MyVisitor();

// Call the visitor using pre-order visitation

DelegatingHierarchyVisitor.preOrderVisit(visitor, objectTree);

// Retrieve state collected while visiting

int count = visitor.getCount();

Often it’s useful to create a static method implementing this sequence of calls within your visitor.

Connector Capabilities

33

4.5. Connector Capabilities

All connectors must return a ConnectorCapabilities class from the Connection.getCapabilities()

method. This class is used by the Connector Manager to determine what kinds of commands

the connector is capable of executing. A basic implementation of the ConnectorCapabilities

interface is supplied at com.metamatrix.data.basic.BasicConnectorCapabilities. This capabilities

class specifies that the connector only executes queries and does not support any capability. Teiid

recommends that you extend this class and override the necessary methods to specify which

capabilities your connector supports.

4.5.1. Capability Scope

The method ConnectorCapabilities.getScope() specifies the scope of a capabilities set. Currently,

two scope modes are defined in ConnectorCapabilities.SCOPE: global and per user. Specifying

the scope as global means that the capabilities are the same for all connections to this source.

Specifying the scope as per user means that the capabilities are potentially different for each user,

so capabilities cannot be cached between users.

The per user mode is significantly slower and usually not necessary, therefore Teiid recommends

using the global mode if capabilities of a source are the same across all connections. The

BasicConnectorCapabilities implementation specifies global scope.

4.5.2. Execution Modes

The method ConnectorCapabilities.supportsExecutionMode() is used by the Connector Manager

to discover what kinds of commands the connector can support. Constants defining the

available execution modes are specified in ConnectorCapabilities.EXECUTION_MODE. Your

implementation of ConnectorCapabilities should return true from this method for each execution

mode your connector supports.

The BasicConnectorCapabilities implementation specifies only that it supports the

SYNCH_QUERY execution mode.

4.5.3. Capabilities

The following table lists the capabilities that can be specified in the ConnectorCapabilities class.

Table 4.2. Available Connector Capabilities

Capability Requires Description

SelectDistinct Connector can support SELECT DISTINCT in

queries.

Joins Connector can support joins.

OuterJoins Joins Connector can support LEFT and RIGHT

OUTER JOIN.

FullOuterJoins Joins, OuterJoins Connector can support FULL OUTER JOIN.

Chapter 4. Command Language

34

Capability Requires Description

AliasedGroup Connector can support groups in the FROM

clause that have an alias.

SelfJoins Joins, AliasedGroups Connector can support a self join between

two aliased versions of the same group.

InlineViews AliasedGroup Connector can support a named subquery in

the FROM clause.

Criteria Connector can support WHERE and HAVING

clauses.

RowLimit Connector can support the limit portion of the

limit clause

RowOffset Connector can support the offset portion of

the limit clause

AndCriteria Criteria Connector can support AND criteria in join

conditions of the FROM clause, the WHERE

clause, and the HAVING clause.

OrCriteria Criteria Connector can support the OR logical criteria.

NotCriteria Criteria Connector can support the NOT logical

criteria.

BetweenCriteria Criteria Connector can support the BETWEEN

predicate criteria.

CompareCriteria Criteria Connector can support comparison criteria

such as “age > 10”.

CompareCriteriaEquals Criteria,

CompareCriteria

Connector can support comparison criteria

with the operator “=”.

CompareCriteriaGreaterThanCriteria,

CompareCriteria

Connector can support comparison criteria

with the operator “>”.

CompareCriteriaGreaterThanOrEqualCriteria,

CompareCriteria

Connector can support comparison criteria

with the operator “>=”.

CompareCriteriaLessThanCriteria,

CompareCriteria

Connector can support comparison criteria

with the operator “<”.

CompareCriteriaLessThanOrEqualCriteria,

CompareCriteria

Connector can support comparison criteria

with the operator “<=”.

CompareCriteriaNotEqualsCriteria,

CompareCriteria

Connector can support comparison criteria

with the operator “<>”.

ExistsCriteria Criteria Connector can support EXISTS predicate

criteria.

InCriteria Criteria Connector can support IN predicate criteria.

Capabilities

35

Capability Requires Description

InCriteriaSubquery Criteria, InCriteria Connector can support IN predicate criteria

where values are supplied by a subquery.

IsNullCriteria Criteria Connector can support IS NULL predicate

criteria.

LikeCriteria Criteria Connector can support LIKE criteria.

LikeCriteriaEscapeCharacterCriteria, LikeCriteria Connector can support LIKE criteria with an

ESCAPE character clause.

QuantifiedCompareCriteriaCriteria,

CompareCriteria

Connector can support a quantified

comparison criteria with a subquery on the

right side.

QuantifiedCompareCriteriaAllCriteria,

CompareCriteria, QuantifiedCompareCriteria

Connector can support a quantified

comparison criteria using the ALL quantifier.

QuantifiedCompareCriteriaSomeCriteria,

CompareCriteria, QuantifiedCompareCriteria

Connector can support a quantified

comparison criteria using the SOME or ANY

quantifier.

OrderBy Connector can support the ORDER BY clause

in queries.

Aggregates Connector can support GROUP BY and

HAVING clauses in queries.

AggregatesAvg Aggregates Connector can support the AVG aggregate

function.

AggregatesCount Aggregates Connector can support the COUNT aggregate

function.

AggregatesCountStar Aggregates,

AggregatesCount

Connector can support the COUNT(*)

aggregate function.

AggregatesDistinct Aggregates Connector can support the keyword

DISTINCT inside an aggregate function. This

keyword indicates that duplicate values within

a group of rows will be ignored.

AggregatesMax Aggregates Connector can support the MAX aggregate

function.

AggregatesMin Aggregates Connector can support the MIN aggregate

function.

AggregatesSum Aggregates Connector can support the SUM aggregate

function.

ScalarFunctions Connector can support scalar functions

wherever expressions are accepted.

Chapter 4. Command Language

36

Capability Requires Description

CaseExpressions Connector can support “unsearched” CASE

expressions anywhere that expressions are

accepted.

SearchedCaseExpressions Connector can support “searched” CASE

expressions anywhere that expressions are

accepted.

ScalarSubqueries Connector can support the use of a subquery

in a scalar context (wherever an expression is

valid).

CorrelatedSubqueries ScalarSubqueries or QuantifiedCompareCriteria

or ExistsCriteria or

InCriteriaSubquery

Connector can support a correlated subquery

that refers back to an element in the outer

query.

SelectLiterals Connector can support literals in the SELECT

clause

Unions Connector support UNIONs

Intersect Connector supports INTERSECT

Except Connector supports Except

SetQueryOrderBy Unions, Intersect, or

Except

Connector supports set queries with an

ORDER BY

FunctionsInGroupBy ScalarFunctions,

Aggregates

Connector supports functions in the GROUP

BY list

FunctionsInGroupBy ScalarFunctions,

Aggregates

Connector supports functions in the GROUP

BY list

4.5.4. Command Form

The method ConnectorCapabilities.useAnsiJoin() should return true if the Connector prefers the

use of ANSI style join structure for INNER and CROSS joins that are pushed down.

The method ConnectorCapabilities.requiresCriteria() should return true if the Connector requires

criteria for any Query, Update, or Delete. This is a replacement for the model support property

"Where All".

4.5.5. Scalar Functions

The method ConnectorCapabilities.getSupportedFunctions() can be used to specify which scalar

functions the connector supports. The set of possible functions is based on the set of functions

supported by Teiid. This set can be found in the Query Support Booklet documentation. If the

connector states that it supports a function, it must support all type combinations and overloaded

forms of that function.

There are five operators that can also be specified in the supported function list: +, -, *, /, and ||.

Physical Limits

37

4.5.6. Physical Limits

The method ConnectorCapabilities.getMaxInCriteriaSize() can be used to specify the maximum

number of values that can be passed in an IN criteria. This is an important constraint as an IN

criteria is frequently used to pass criteria between one source and another using a dependent join.

The method ConnectorCapabilities.getMaxFromGroups() can be used to specify the maximum

number of FROM Clause groups that can used in a join. -1 indicates there is no limit.

38

Chapter 5.

39

Using the Connector Development

Kit

5.1. Overview

The Connector Developer Kit (CDK) is a set of programmatic and command line utilities for testing

connectors. The programmatic components of the CDK are useful for unit testing your connector

and the command line utilities is useful for integration testing and regression testing (due to

scripting abilities).

This chapter covers usage of both aspects of the CDK. For more detailed information about

the CDK programmatic utilities, please see the Connector API Javadoc, which include the CDK

Javadoc.

5.2. Programmatic Utilities

All components provided by the CDK are in the package com.metamatrix.cdk.api.

5.2.1. Language Translation

Commands are sent to the Connector API in terms of the language interfaces discussed earlier

in this guide. Typically, a connector must write logic to read and sometimes manipulate these

objects. The CDK language translation utilities can be used to write unit tests for translation code

or command execution.

The utilities are provided in the class TranslationUtility. This class has the following methods:

Table 5.1. Language Translation

Method Name Description

TranslationUtility(String

vdbFile)

Constructor – takes the path to a file which is a valid metadata

archive created by the Teiid Designer. These files have the

suffix “.vdb”.

createRuntimeMetadata() Creates an instance of RuntimeMetadata that can be used

to test code that uses runtime metadata when translating or

executing commands.

parseCommand(String sql) Take a single-source command and return an ICommand that

can be used to test translation or execution of commands.

5.2.2. Command Execution

The primary purpose of a Connector is to execute commands against an information source. The

query execution utilities allow you to test the execution of commands programmatically. This

Chapter 5. Using the Connecto...

40

utility does not run the Teiid query engine or the connector manager although does simulate what

happens when those components use a Connector to execute a command.

The command execution utilities are provided in the class ConnectorHost. This class has the

following methods:

Table 5.2. Command Execution

Method Name Description

ConnectorHost Constructor – takes a Connector instance, a set of connector

property values, and the path to a VDB archive file

setBatchSize Sets the batch size to use when executing commands.

setSecurityContext Sets the security context values currently being used to

execute commands. This method may be called multiple

times during the use of a single instance of ConnectorHost to

change the current context.

getConnectorEnvironmentPropertiesHelper method to retrieve the properties passed to the

ConnectorHost constructor.

executeCommand Execute a command and return the results using this

connector.

executeBatchedUpdates Execute a set of commands as a batched update.

getCommand Use the host metadata to get the ICommand for a SQL string.

Here is some example code showing how to use ConnectorHost to test a connector:

// Prepare state for testing

MyConnector connector = new MyConnector();

Properties props = new Properties();

props.setProperty(“user”, “myuser”);

props.setProperty(“password”, “mypassword”);

String vdbFile = “c:/mymetadata.vdb”;

// Create host

ConnectorHost host = new ConnectorHost(connector, props, vdbFile);

// Execute query

List results = host.executeCommand(“SELECT col FROM group WHERE col = 5”);

// Compare actual results to expected results

// . . .

Connector Environment

41

The executeCommand() method will return results as a List of rows. Each row is itself a List of

objects in column order. So, each row should have the same number of items corresponding to

the columns in the SELECT clause of the query. In the case of an INSERT, UPDATE, or DELETE,

a single “row” will be returned with a single column that contains the update count.

5.3. Connector Environment

Many parts of the Connector API require use of the Connector Environment. The

EnvironmentUtility can be used to obtain and control a Connector Environment instance.

Table 5.3. Command Execution

Method Name Description

createSecurityContext Creates a securityContext instance.

createStdoutLogger Creates an instance of ConnectorLogger that prints log

messages to system.out()

createEnvironment Creates an instance of connectorEnvironment for use in your

testing environment.

createExecutionContext Creates an ExecutionContext instance.

In addition, some implementations of ConnectorLogger are provided which can be used as needed

to build a custom logger for testing. BaseLogger is a base logger class that can be extended

to create your own ConnectorLogger implementation. SysLogger is a utility implementation that

logs to System.out.

5.4. Command Line Tester

5.4.1. Using the Command Line Tester

The command line tester is available in the mmtools kit along with the other Teiid products in the

tools directory. The tester can be executed in interactive mode by running

 <unzipped folder>S\cdk\cdk.bat

Typing “help” in the command line tester provides a list of all available options. These options

are listed here with some additional detail:

Table 5.4. Connector Lifecycle

Option Arguments Description

Load Archive PathToArchiveFileName

Chapter 5. Using the Connecto...

42

Option Arguments Description

Load the Connector archive file, which loads

the Connector type definition file and all the

extension modules into the CDK shell.

Load ConnectorClass

vdbFile

Load a connector by specifying the connector

class name and the VDB metadata archive

file

LoadFromScript ScriptFile Load a connector from a script

LoadProperties PathToPropertyFile Load a set of properties for your connector

from a file

SetProperty PropertyName

PropertyValue

Set the value of a property

GetProperties List all properties currently set on the

connector

Start Start the connector

Stop Stop the connector

Table 5.5. Command Execution

Option Arguments Description

Select Sql Run a SELECT statement. This option takes

multi-line input terminated with “;”

Insert Sql Execute an INSERT statement. This option

takes multi-line input terminated with a “;”.

Update Sql Execute an UPDATE statement. This option

takes multi-line input terminated with “;”

Delete Sql Execute a DELETE statement. This option

takes multi-line input terminated with a “;”.

SetBatchSize BatchSize Set the batch size used when retrieving

results

SetSecurityContext VDBName

VDBVersion

UserName

Set the properties of the current security

context

SetPrintStackOnError PrintStackOnError Set whether to print the stack trace when an

error is received

Table 5.6. Scripting

Option Arguments Description

SetScriptFile PathToScriptFile Set the script file to use

Loading Your Connector

43

Option Arguments Description

Run ScriptName Run a script with the file name

Runall Run all scripts loaded by loadFromScript

RunScript PathToScriptFile

ScriptNameWithinFile

Run a particular script in a script file

SetFailOnError FailOnError Set whether to fail a script when an error is

encountered or continue on

Result ExpectedResults Compares actual results from the previous

command with the expected results. This

command is only available when using the

command line tester in script mode.

Table 5.7. Miscellaneous

Option Arguments Description

CreateArchive PathTOArchiveFileName

PathToCDKFileName

PathToDirectoryForExtensionModules

Creates a connector archive file based on the

properties supplied.

CreateTemplate PathToTemplateFile Create a template connector type file at the

given file name.

Help List all options

Quit Quit the command line tester

5.4.2. Loading Your Connector

Preparing your connector to execute commands consists of the following steps:

1. Add your connector code to the CDK classpath. The cdk.bat script looks for this code in

the CONNECTORPATH environment variable. This variable can be set with the DOS shell

command “SET CONNECTORPATH=c:\path\to\connector.jar”. Alternately, you can modify the

value of the CONNECTORPATH environment variable in the cdk.bat file.

2. Start the command line tester. You can start the tester by executing the cdk.bat file in the cdk

directory of the Teiid Tools installation.

3. Load your connector class and the associated runtime metadata. You can load your connector

by using the “load” command and specifying the fully-qualified class name of your Connector

implementation and the path to a VDB file. The VDB runtime metadata archive should contain

the metadata you want to use while testing.

4. Set any properties required by your connector. This can be accomplished with the setProperty

command for individual properties or the loadProperties command to load a set of properties

Chapter 5. Using the Connecto...

44

from either a properties file or a connector binding file. You can use the “getProperties”

command to view the current property settings.

5. Start the connector. Use the “start” command in the command-line tester to start your

connector.

Following is an example transcript of how this process might look in a DOS command window.

 User input is in bold.

D:\metamatrix\console\cdk> set CONNECTORPATH=D:\myconn\myconn.jar

D:\metamatrix\console\cdk> cdk

========================== ENV SETTINGS ==========================

MM_ROOT = D:\metamatrix\console

MM_JAVA = D:\metamatrix\console\jre

CONNECTORPATH = D:\myconn\myconn.jar

CLASSPATH = ;D:\metamatrix\console\cdk\metamatrix-cdk.jar;D:\myconn\myconn.jar;

==

D:\metamatrix\console>D:\metamatrix\tools400wl7\console\jre\bin\java -Xmx256m -

Dmetamatrix.config.none -Dmetamatrix.log=4 com.metamatrix.cdk.ConnectorShell

Starting

Started

>load com.metamatrix.myconn.MyConnector d:\myconn\myconn.vdb

>setproperty user joe

>start

>

5.4.3. Executing Commands

Commands can be executed against your connector using the SELECT, INSERT, UPDATE, and

DELETE commands. Procedure execution is not currently supported via the command line tester.

 Commands may span multiple lines and should be terminated with a “;”.

When a command is executed, the results are printed to the console. Following is an example

session executing a SELECT command with the command line tester. User input is in bold.

>SELECT Name, Value FROM MyModel.MyGroup WHERE Name = ‘xyz’;

String Integer

xyz 5

xyz 10

>

Scripting

45

5.4.4. Scripting

One of the most useful capabilities of the command-line tester is the ability to capture a sequence

of commands in a script and automate the execution of the script. This allows for the rapid creation

of regression and acceptance tests.

A script file may contain multiple scripts, where each script is grouped together with { } and a name.

 Following is an example of a script file. This script file also uses the special script-only command

RESULTS that will compare the results of the last execution with the specified expected results.

test {

 load com.metamatrix.myconn.MyConnector d:\myconn\myconn.vdb

 setproperty user joe

 start

 SELECT Name, Value FROM MyModel.MyGroup WHERE Name = ‘xyz’;

 results [

 String Integer

 xyz 5

 xyz 10

]

}

To execute this file, run the command line tester in scripting mode and specify the script file and

the script within the file:

D:\metamatrix\console\cdk>cdk runscript d:\myconn\my.script test

========================== ENV SETTINGS ==========================

MM_ROOT = D:\metamatrix\console

MM_JAVA = D:\metamatrix\console\jre

CONNECTORPATH = D:\myconn\myconn.jar

CLASSPATH = ;D:\metamatrix\console\cdk\metamatrix-cdk.jar;D:\myconn\myconn.jar;

==

Chapter 5. Using the Connecto...

46

D:\metamatrix\console>D:\metamatrix\tools400wl7\console\jre\bin\java -Xmx256m -

Dmetamatrix.config.none -Dmetamatrix.log=4 com.metamatrix.cdk.ConnectorShell runscript

 my.script

Starting

Started

>Executing: load com.metamatrix.myconn.MyConnector d:\myconn\myconn.vdb

>Executing: setproperty user joe

>Executing: start

>Executing: select Name, Value from MyModel.MyGroup where Name = ‘xyz’;

String Integer

xyz 5

xyz 15

>Test /metamatrix/tools400wl7/console/cdk/yahoo.script.test failed. CompareResults Error:

 Value mismatch at row 2 and column 2: expected = 10, actual = 15

>Finished

D:\metamatrix\console\cdk>

The script run above illustrates the output when the test result fails due to differences between

expected and actual results. In this case the value was expected to be 10 in the script but was

actually 15. The setFailOnError command can be used to fail the execution of the entire script

if an error occurs.

Scripts can also be run in interactive mode by using the setScriptFile and run commands. This

can be useful to record portions of your interactive testing to avoid re-typing later.

Chapter 6.

47

Connector Deployment

6.1. Overview

Once you have written and compiled the code for your connector, there are several steps to deploy

your connector to a Teiid Server:

• Creating a Connector Type Definition file that defines the properties required to initialize your

connector.

• Identifying the Extension Modules (jars and resources) required for the Connector to run.

• Creating the Connector Archive file to bundle the Connector Type Definition file and the

Extension Modules.

• Importing the Connector Archive file in the Teiid Console.

• Creating a Connector Binding using your Connector Type.

This chapter will help you perform these steps.

6.2. Connector Type Definition File

A Connector Type Definition file defines a connector in the Teiid Server. The Connector Type

Definition file defines some key properties that allow the Teiid Server to use your connector as

well as specifying other properties your connector might need.

A Connector Type Definition file is in XML format and typically has the extension “.cdk”. It defines

a default name for the connector type, the properties expected by the connector, and other

information that allows the properties to be displayed correctly in the Console when a Connector

Binding is created from the Connector Type.

An example of this file can be found in Appendix A. It may be helpful to refer to this file while

reading this section. The template file can also be created using the Connector Development Kit.

6.2.1. Required Properties

The Connector API requires the following properties for the Teiid Server to load and use your

connector.

Table 6.1. Required Connector Properties

Property Attribute Example Value Description

ConnectorClass com.my.connector.MyConnectorFully-qualified name of class implementing

the Connector interface.

ConnectorClassPath extensionjar:mycode.jar;Semi-colon delimited list of jars defining the

classpath of this connector. Typically this

Chapter 6. Connector Deployment

48

Property Attribute Example Value Description

includes the actual code for your connector as

well as any 3rd party dependencies.

For more information on the Connector Classpath, see the section Understanding the Connector

Classpath

6.2.2. Connector Properties

Most connectors will require some initialization parameters to connect to the underlying enterprise

information system. These properties can be defined in the Connector Type Definition file along

with their default values and other property metadata. The actual property values can be changed

when the connector is deployed in the Teiid Console.

Each connector property carries with it several attributes that are used by the Teiid Console to

integrate the connector seamlessly into the Teiid Server.

Table 6.2. All Properties

Property Name Example Value Description

Name ExampleProperty Property name – should only contain letters,

no spaces or other punctuation. This is the

name of the property as it will be passed to

the connector in the ConnectorEnvironment.

DisplayName Example property The property name as displayed in the

Console. Typically this is a nicely formatted

version of the Name attribute.

ShortDescription The example property

is used to control

something.

A short description that is displayed as a

tooltip of the property in the Teiid Console.

DefaultValue Xyz A default value for the property. This value

will be auto-filled when a connector binding is

created from the Connector Type.

IsRequired false If true, then this property is required. Any

required property without a value is displayed

in red in the connector binding properties

panel.

IsModifiable true If set to “false”, the property is visible only

when viewing all properties and is not

modifiable in the properties panel.

IsMasked false If set to “true”, the property will be masked

with *’s when it is entered and saved in an

encrypted form. This attribute is typically

used with passwords.

Extension Modules

49

Property Name Example Value Description

IsExpert true Depending on the property display, the

property can be optionally displayed for

advanced users.

PropertyType String The short name of a built-in Java primitive

wrapper Object type. Other possible values

include Integer, Boolean, etc.

A property may also be constrained to a set of allowed values by adding child AllowedValue

elements, i.e. <AllowedValue>value</AllowedValue>. Adding allowed values will cause the

property to be displayed with a dropdown that limits the user selection to the allowed values.

6.3. Extension Modules

6.3.1. Extension Modules

Extension Modules are used in the Teiid Server to store code that extends the Teiid Server in a

central managed location. Extension Module JAR files are stored in the repository database and

all Teiid processes access this database to obtain extension code. Custom connector code is

typically deployed as extension models.

6.3.2. Understanding the Connector Classpath

Each connector is started in an isolated classloader instance. This classloader loads classes via

the Teiid Extension Modules before loading classes from the Teiid system classpath. Ideally, all

of your connector classes should be loaded from extension modules, which are configured in the

Teiid Console.

The ConnectorClasspath property of your connector defines the extension module jars that are

included in your connector’s classpath. The connector classpath is defined as a semi-colon

delimited list of extension modules. Extension module jar files must be prefixed with “extensionjar:”

6.4. Connector Archive File

The Connector Archive file is a bundled version of all files needed by this Connector to execute in

the Teiid server. This file includes the Connector Type Definition file and all the Extension Modules

required by the Connector to create a connector archive file (CAF)..

• The archive is a standard zip file.

• Start the CDK tool by executing cdk.bat

• Execute “CreateArchive” command by supplying:

1. Path to the name of the archive file to create

Chapter 6. Connector Deployment

50

2. Path to the Connector Type Definition file

3. Path to the directory where the required Extension Modules (jar files) are stored (note that

only .jar files specified in the ConnectorClassPath property of the Connector Type definition

file are bundled.

The file created by the CDK can be opened with any zip file utility to verify the required files are

included.

The archive file can be tested in the CDK tool by loading it using the command “loadArchive”.

 Refer to Chapter 4 for more information on the CDK tool

6.5. Importing the Connector Archive

6.5.1. Into Teiid Server

To use a new connector type definition in the Teiid Server, the Connector Archive file must be

imported in the Teiid Console or using the Admin API. To perform this task, perform the following

steps:

1. Start the Teiid Console and connect to your Teiid Server.

2. Select Connector Types from the tree at the left of the Console. This will display a list of existing

Connector Types on the right.

3. Click the Import… button on the bottom of the Connector Type list. This will open the Import

Connector Type Wizard.

4. Select your Connector Archive file and click the Next button.

5. Click Finish to create the Connector Type. At this point you will see the new Connector Type

in the list of Connector Types.

6. Select Extension Modules from the tree at the left of the Console, and make sure all the required

Extension Modules are added.

6.5.2. Into Enterprise or Dimension Designer

To use the new connector type during the development of the VDB for testing using the

SQLExplorer, Connector Archive File must be imported into the Designer tools. To perform this

task, perform the following steps.

1. Start the Enterprise or Dimension designer

2. Open the project and in the “vdb” execute panel, click on the “Open the Configuration Manager”

link. For more information consult the designer’s guide.

1. In the result window, click “Import a Connector Type (.cdk,.caf)” link and follow directions.

Creating a Connector Binding

51

The Connector Type can now be used to create Connector Bindings.

6.6. Creating a Connector Binding

6.6.1. In Console

To actually use your connector in the Teiid System, you must create a Connector Binding that

specifies the specific property values for an instance of the Connector Type. To create a

Connector Binding, perform the following steps:

1. Start the Teiid Console and connect to your Teiid Server.

2. Select Connector Bindings from the tree at the left of the Console. This will display a list of

existing Connector Bindings on the right.

3. Click the New… button below the list of Connector Bindings. This will launch the Create New

Connector Binding Wizard.

4. In Step 1, you must specify a name for your connector binding and select your connector type

from the Connector Type list. Click the Next button to continue.

5. In Step 2, the connector properties from your connector type definition file will be displayed.

 Default values are used to pre-fill the value fields if they exist. Required properties are

displayed with bold text. Required properties with no value specified are displayed in red text.

 These fields must be completed before the Next button will enable. Optional properties may

be displayed by checking the Optional Properties checkbox. When you have completed all

required values, click the Next button.

6. In Step 3, you are given the opportunity to set the enabled state of the new binding in each PSC.

 Typically, no modifications need to be made. For more information, see the Teiid Console

User’s Guide. Click the Finish button to complete the wizard and create your connector binding.

 The Connector Binding list now displays your new connector binding.

To actually start your connector binding, please consult the Teiid Console User’s Guide for detailed

information.

6.6.2. In Designer

Connector Binding properties can also be defined in the Designer for the given Connector Type,

if the corresponding Connector Archive File is imported into the Designer. If you try to execute

your VDB with SQLExplorer in the Designer, this tool will present you with a window to specify

such Connector Bindings. The user is required specify these binding properties before they can

test using the SQLExplorer. For more information on how this can be accomplished please refer

to the Enterprise Designer User’s Guide.

Also, note that the bindings specified in the Designer tool are automatically bundled into the

VDB for deployment, so if there are any properties that needs to be changed from development

Chapter 6. Connector Deployment

52

environment to the production environment, those properties need to be modified when a VDB is

deployed to the Teiid Server using the Console to correct resources.

Chapter 7.

53

Connection Pooling

7.1. Overview

The Query Engine logically obtains and releases a connection for each command that is executed.

However many enterprise sources maintain persistent connections that are expensive to create.

For these situaions, Teiid provides a transparent connection pool to reuse rather than constantly

release connections. The connection pool is highly configurable through configuration properties

and extension APIs for Connections and Connectors

Many built-in connector types take advantage of pooling, including JDBC, Salesforce, and LDAP

connectors.

7.2. Framework Overview

The table below lists the role of each class in the framework.

Table 7.1. Responsibilities of Connection Pool Classes

Class Type Description

PoolAwareConnection Interface This interface is an extension of the Connection

interface and provides hooks to better interact with

Connection pooling.

ConnectorIdentityFactory Interface Defines a factory for creating ConnectorIdentities.

This can optionally be implemented by the concrete

Connector class to properly segregate Connections

in the pool. If this class is not implemented by

the Connector, then SingleIdentity support will be

assumed.

ConnectorIdentity Interface This interface corresponds to an identifier for a

connection in the pool. Changing the identity

implementation changes the basis on which

connections are pooled. Connections that have

equal identity objects (based on the equals()

method) will be in the same pool.

SingleIdentity Class This implementation of the identity class makes all

connections equivalent, thus creating a single pool.

UserIdentity Class This implementation of the identity class makes all

connections equivalent for a particular user, thus

creating a set of per-user connection pools.

ConnectionPooling Annotation This optional Annotation can be used on the

Connector implementation class to indicate configure

Chapter 7. Connection Pooling

54

Class Type Description

pooling. This can be especially useful to indicate

that automatic ConnectionPooing should not be

used regardless of the connector binding property

settings.

7.3. Using Connection Pooling

Automatic connection pooling does not require any changes to basic Connector development.

It can be enabled by setting the Connector binding Property ConnectionPoolEnabled=true or

by adding the ConnectionPooling annotation, which defaults to enabled=true, to the Connector

implementation class. Automatic Connection pooling can be disabled if either setting is false.

Connector developers can optionally utilize the PoolAwareConnection and

ConnectorIdentityFactory interfaces to refine the Connector's interactions with Connection

pooling. It is important to consider providing an implementation for PoolAwareConnection.isAlive

to indicate that a Connection is no longer viable and should be purged from the pool. Connection

testing is performed upon leases from the pool and optionally at a regular interval that will purge

idle Connections. It is also important to consider having the concrete Connector class implement

ConnectorIdentity factory if Connections are made under more than just a single identity.

7.4. The Connection Lifecycle

These steps occur when connection pooling is enabled:

1. If the Connector implements ConnectorIdentityFactory, the ConnectorManager asks the

Connector to generate a ConnectorIdentity for the given SecurityContext, else SingleIdentity is

assumed. The ConnectorIdentity is then stored on the SecurityContext.

2. The ConnectorManager asks for a Connection from the pool that pertains to the

ConnectorIdentity.

3. The ConnectionPool returns a Connection that was either pulled from the pool (and passes the

isAlive check) or was created by the Connector if necessary.

4. After the ConnectorManager has used the Connection to execute a command, it

releases the Connection. This call is intercepted by the pool and the method

PoolAwareConnection.releaseCalled is invoked on the Connection instead. If the Connection

does not implement PoolAwareConnection, it is assumed no action is needed.

5. When the Connection fails an isAlive check or becomes too old with pool shrinking enabled, it

is purged from the pool and Connection.release is called.

7.4.1. XAConnection Pooling

The usage of XAConnections (that provide XAResources) typically come with additional limitations

about how those Connections can be used once they are enlisted in a transaction. When enabled,

automatic connection pooling will perform these additional features with XAConnections:

Configuring the Connection Pool

55

• The pool will return the same XAConnection for all executions under a given transaction until

that transaction completes. This implies that all executions to a given XAConnector under the

same connection will happen serially.

• XAConnections enlisted in a transaction will return to the pool once a transaction completes.

• Two separate pools will be maintained. One for Connections that have not and will not be used

in a transaction, and one for XAConnections that have an will be used in a transaction. Each

pool will be configured based upon the same set of configuration properties - it is not possible

to independently control pool sizes, etc.

7.5. Configuring the Connection Pool

The ConnectionPool has a number of properties that can be configured via the connector binding

expert properties.

Table 7.2. Connection Pool Properties

Name Key Default

Value

Description

Connection

Pool Enabled

ConnectionPoolEnabled Explicitly enables or disables

connection pooling.

Data Source

Test Connect

Interval

(seconds)

SourceConnectionTestInterval 600 How often (in seconds) to

create test connections to the

underlying source to see if it is

available.

Pool Maximum

Connections

com.metamatrix.data.

~pool.max_connections

20 Maximum number of

connections total in the pool.

 This value should be greater

than 0.

Pool Maximum

Connections

for Each ID

com.metamatrix.data. ~pool.max_connections_for_each_id20 Maximum number

of connections per

ConnectorIdentity object. This

value should be greater than 0.

Pool

Connection

Idle Time

(seconds)

com.metamatrix.data.

~pool.live_and_unused_time

60 Maximum idle time (in seconds)

before a connection is closed if

shrinking is enabled.

Pool

Connection

Waiting Time

(milliseconds)

com.metamatrix.data.

~pool.wait_for_source_time

120000 Maximum time to wait (in

milliseconds) for a connection to

become available.

com.metamatrix.data.

~pool.cleaning_interval

60

Chapter 7. Connection Pooling

56

Name Key Default

Value

Description

Pool cleaning

Interval

(seconds)

Interval (in seconds) between

checking for idle connections if

shrinking is enabled.

Enable Pool

Shrinking

com.metamatrix.data.

~pool.enable_shrinking

true Indicate whether the pool is

allowed to shrink.

Chapter 8.

57

Monitored Connectors

8.1. Overview

The Teiid Connector API contains an optional interface that allows connectors to be automatically

monitored by the Teiid Enterprise Server or checked via the Teiid Admin API.

8.2. Monitored Connector Framework Overview

This UML diagram shows the classes involved in the monitored connector classes.

Figure 8.1. Monitored Connector Class Diagram

Chapter 8. Monitored Connectors

58

The table below lists the role of each class in the framework.

Table 8.1. Monitored Connector Classes

Class Type Description

MonitoredConnector Interface This interface can be added to the Connector

implementation to indicate that the connector

supports monitoring.

ConnectionStatus Class

AliveStatus Class This class defines an enumeration for valid

status values for a ConnectionStatus.

8.3. Using The Framework

To support connector monitoring, your Connector implementation must extend the

MonitoredConnector interface and implement the single getStatus() method to return a

ConnectionStatus.

A monitored connector will be polled for status in the Teiid Enterprise Server (connector monitoring

is not supported on Teiid Query or Dimension products). The poll rate is the value of the

metamatrix.server.serviceMonitorInterval system property, which can be set in the Teiid Console.

 This property defaults to 60 seconds. If the ConnectionStatus indicates an AliveStatus of

DEAD, then the connector is marked in the service registry as “data source unavailable”. If the

ConnectionStatus indicates an AliveStatus of ALIVE, the connector is marked as “open”. An

AliveStatus of UNKNOWN does not change the state of the registry.

In addition, the Admin API can be used in Teiid Query and Teiid Enterprise to obtain the status of

connectors at runtime. For more information, see the Admin API Javadoc.

Chapter 9.

59

Handling Large Objects
This chapter examines how to use facilities provided by the Teiid Connector API to use large

objects such as blobs, clobs, and xml in your connector.

9.1. Large Objects

9.1.1. Data Types

Teiid supports three large object runtime data types: blob, clob, and xml. A blob is a “binary large

object”, a clob is a “character large object”, and “xml” is a “xml document”. Columns modeled

as a blob, clob, or xml are treated similarly by the connector framework to support memory-safe

streaming.

9.1.2. Why Use Large Object Support?

The Teiid Server allows a Connector to return a large object through the Teiid Connector API by

just returning a reference to the actual large object. The Teiid Server or JDBC Driver can then

access the data via a stream rather than retrieving the data all at once. This is useful for several

reasons:

1. Reduces memory usage when returning the result set to the user.

2. Improves performance by passing less data in the result set.

3. Allows access to large objects when needed rather than assuming that users will always use

the large object data.

4. Allows the passing of arbitrarily large data values within a fixed Teiid memory usage.

However, these benefits can only truly be gained if the Connector itself does not materialize an

entire large object all at once. For example, the JDBC API supports a streaming interface for

blob and clob data.

9.2. Handling Large Objects

The Connector API supports the handling of the large objects (Blob/Clob/SQLXML) through the

creation of special purpose wrapper “type” objects. Each type of LOB object has a respective

wrapper object.

Table 9.1. Lob Types

Java SQL Type Runtime Type

java.sql.Blob com.metamatrix.common.types.BlobType

Chapter 9. Handling Large Objects

60

Java SQL Type Runtime Type

java.sql.Clob com.metematrix.common.types.ClobType

com.metamatrix.core.sql.SQLXML com.metematrix.common.types.XMLType

In the example below, the physical source returns an object type of Clob, then the connector

should return the corresponding ClobType object.

//Example BatchedExecution.execute method

List columnValues = new ArrayList();

// building the reference

Clob clob = results.getClob();

ClobType clobReference = new ClobType(clob);

…

// this is needed to keep the connection open.

executionContext.keepExecutionAlive(true);

// adding the reference to batch of results

columnValues.add(clobReference);

batch.addRow(columnValues);

Once the wrapped object is returned, the streaming of LOB is automatically supported. These

LOB objects then can be used to serve to client results, used in server for query processing, or

used in user defined functions.

A connector execution is usually closed and the underlying connection is either closed/released

as soon as all rows for that execution have been retrieved. However, LOB objects may need to

be read after their initial retrieval of results. It is very important that the default closing behavior

should be prevented to correctly stream the contents of the LOB based data. This behavior is

communicated to the server through setting a flag in “ExecutionContext” interface by invoking

 executionContext.keepExecutionAlive(true);

with this call, the server will close the connector execution object only after all returned LOB

objects can no longer be read. i.e. when user Statement object is closed. Note that single call

to keepExecutionAlive is needed per execution – and it must be called before the first batch is

returned from connector

Inserting or Updating Large Objects

61

The SQLXML interface allows large xml documents to be processed by the server without creating

memory issues. XML Source Connectors also use this interface to supply documents to the Teiid

XQuery engine.

A new, and important, limitation of using the LOB type objects introduced in the 5.5 version of

the Teiid Server is that streaming is not supported from remote connectors. This is an issue in

clustered environments if connectors intended to return LOBs are deployed on only a subset of

the hosts or in failover situations. The most appropriate workaround to this limitation is to deploy

connectors intended to return LOBs on each host in the cluster. There is currently no workaround

to support streaming LOBs from connectors in remote failover situations.

9.3. Inserting or Updating Large Objects

The Teiid JDBC API also allows the insertion or update of large objects. However, the JDBC API

does not currently stream large objects on insert or update. So, the Teiid JDBC API will read all

of the data and pass it back to the connector in a single materialized value.

In these cases LOBs will be passed to the Connector in the language objects as an ILiteral

containing a java.sql.Blob, java.sql.Clob, or java.sql.SQLXML. You can use these interfaces to

retrieve the data in the large object and use it for insert or update.

62

63

Appendix A. Connector Type

Definition Template
This appendix contains an example of the Connector Type Definition file that can be used as a

template when creating a new Connector Type Definition.

<?xml version="1.0" encoding="UTF-8"?>

<ConfigurationDocument>

 <Header>

 <ApplicationCreatedBy>Connector Development Kit</ApplicationCreatedBy>

 <ApplicationVersionCreatedBy>4.0:1681</ApplicationVersionCreatedBy>

 <UserCreatedBy>MetaMatrixAdmin</UserCreatedBy>

 <DocumentTypeVersion>1.0</DocumentTypeVersion>

 <MetaMatrixSystemVersion>4.0</MetaMatrixSystemVersion>

 <Time>2008-01-30T15:22:05.296-06:00</Time>

 </Header>

 <ComponentTypes>

 <ComponentType Name="My Connector" ComponentTypeCode="2"

 Deployable="true" Deprecated="false" Monitorable="false" SuperComponentType="Connector"

 ParentComponentType="Connectors">

 <!-- Required by Connector API -->

 <ComponentTypeDefn Deprecated="false">

 <PropertyDefinition Name="ConnectorClass"

 DisplayName="Connector Class" ShortDescription="" DefaultValue="com.mycode.Connector"

 IsRequired="true" IsMasked="false" IsModifiable="false" />

 </ComponentTypeDefn>

 <ComponentTypeDefn Deprecated="false">

 <PropertyDefinition Name="ConnectorClassPath"

 DisplayName="Class Path" ShortDescription="" DefaultValue="extensionjar:mycode.jar"

 IsRequired="true" IsMasked="false" />

 </ComponentTypeDefn>

 <!-- Example properties - replace with custom properties -->

 <ComponentTypeDefn Deprecated="false">

 <PropertyDefinition Name="ExampleOptional" DisplayName="Example Optional

 Property" ShortDescription="This property is optional due to not being marked as IsRequired"

 IsMasked="false" />

 </ComponentTypeDefn>

 <ComponentTypeDefn Deprecated="false">

Appendix A. Connector Type De...

64

 <PropertyDefinition Name="ExampleDefaultValue" DisplayName="Example Default Value

 Property" ShortDescription="This property has a default value" DefaultValue="Default value"

 IsRequired="true" IsMasked="false" />

 </ComponentTypeDefn>

 <ComponentTypeDefn Deprecated="false">

 <PropertyDefinition Name="ExampleEncrypted" DisplayName="Example Encrypted

 Property" ShortDescription="This property is encrypted in storage due to Masked=true"

 IsRequired="true" IsMasked="true" />

 </ComponentTypeDefn>

 <ChangeHistory>

 <Property Name="LastChangedBy">ConfigurationStartup</Property>

 <Property Name="CreatedBy">ConfigurationStartup</Property>

 </ChangeHistory>

 </ComponentType>

 </ComponentTypes>

</ConfigurationDocument>

	Teiid - Scalable Information Integration
	Table of Contents
	Chapter 1. Connecting to Your Enterprise Information System
	1.1. The Teiid System

	Chapter 2. Connectors in the Teiid System
	2.1. Do You Need a New Connector?
	2.2. Required Items to Write a Custom Connector

	Chapter 3. Connector API
	3.1. Overview
	3.2. Connector Lifecycle
	3.2.1. Initialization
	3.2.2. Starting and Stopping

	3.3. Connections to Source
	3.3.1. Obtaining connections
	3.3.2. Releasing Connections

	3.4. Executing Commands
	3.4.1. Execution Modes
	3.4.2. Synchronous Query Execution
	3.4.3. Asynchronous Query Execution
	3.4.4. Update Execution
	3.4.5. Batched Update / Bulk Insert Execution
	3.4.6. Procedure Execution
	3.4.7. Command Completion
	3.4.8. Command Cancellation

	Chapter 4. Command Language
	4.1. Language Interfaces
	4.1.1. Expressions
	4.1.2. Criteria
	4.1.3. Joins
	4.1.4. IQuery Structure
	4.1.5. IUnion Structure
	4.1.6. IInsert Structure
	4.1.7. IUpdate Structure
	4.1.8. IDelete Structure
	4.1.9. IProcedure Structure
	4.1.10. IBulkInsert Structure
	4.1.11. IBatchedUpdate Structure

	4.2. Language Utilities
	4.2.1. Data Types
	4.2.2. Language Manipulation

	4.3. Runtime Metadata
	4.3.1. Language Objects
	4.3.2. Access to Runtime Metadata

	4.4. Language Visitors
	4.4.1. Framework
	4.4.2. Provided Visitors
	4.4.3. Writing a Visitor

	4.5. Connector Capabilities
	4.5.1. Capability Scope
	4.5.2. Execution Modes
	4.5.3. Capabilities
	4.5.4. Command Form
	4.5.5. Scalar Functions
	4.5.6. Physical Limits

	Chapter 5. Using the Connector Development Kit
	5.1. Overview
	5.2. Programmatic Utilities
	5.2.1. Language Translation
	5.2.2. Command Execution

	5.3. Connector Environment
	5.4. Command Line Tester
	5.4.1. Using the Command Line Tester
	5.4.2. Loading Your Connector
	5.4.3. Executing Commands
	5.4.4. Scripting

	Chapter 6. Connector Deployment
	6.1. Overview
	6.2. Connector Type Definition File
	6.2.1. Required Properties
	6.2.2. Connector Properties

	6.3. Extension Modules
	6.3.1. Extension Modules
	6.3.2. Understanding the Connector Classpath

	6.4. Connector Archive File
	6.5. Importing the Connector Archive
	6.5.1. Into Teiid Server
	6.5.2. Into Enterprise or Dimension Designer

	6.6. Creating a Connector Binding
	6.6.1. In Console
	6.6.2. In Designer

	Chapter 7. Connection Pooling
	7.1. Overview
	7.2. Framework Overview
	7.3. Using Connection Pooling
	7.4. The Connection Lifecycle
	7.4.1. XAConnection Pooling

	7.5. Configuring the Connection Pool

	Chapter 8. Monitored Connectors
	8.1. Overview
	8.2. Monitored Connector Framework Overview
	8.3. Using The Framework

	Chapter 9. Handling Large Objects
	9.1. Large Objects
	9.1.1. Data Types
	9.1.2. Why Use Large Object Support?

	9.2. Handling Large Objects
	9.3. Inserting or Updating Large Objects

	Appendix A. Connector Type Definition Template

