
Teiid - Scalable Information Integration

1

Teiid Reference

Documentation
6.0.0

iii

Preface .. vii

1. SQL Support .. 1

1.1. Identifiers ... 1

1.2. Expressions .. 2

1.2.1. Column Identifiers .. 2

1.2.2. Literals .. 2

1.2.3. Aggregate Functions .. 3

1.2.4. Case and searched case .. 4

1.2.5. Scalar subqueries .. 4

1.2.6. Parameter references ... 4

1.3. Criteria ... 4

1.4. SQL Commands ... 5

1.4.1. SELECT Command .. 5

1.4.2. INSERT Command .. 7

1.4.3. UPDATE Command ... 7

1.4.4. DELETE Command .. 7

1.4.5. EXECUTE Command ... 7

1.4.6. Procedural Relational Command ... 8

1.5. Temp Tables .. 9

1.6. SQL Clauses .. 10

1.6.1. SELECT Clause ... 10

1.6.2. FROM Clause .. 10

1.6.3. WHERE Clause ... 11

1.6.4. GROUP BY Clause .. 11

1.6.5. HAVING Clause ... 12

1.6.6. ORDER BY Clause .. 12

1.6.7. LIMIT Clause ... 12

1.6.8. INTO Clause .. 13

1.6.9. OPTION Clause ... 13

1.7. Set Operations .. 14

1.8. Subqueries ... 14

1.8.1. Inline views .. 15

1.8.2. Subqueries in the WHERE and HAVING clauses 15

2. XML SELECT Command .. 17

2.1. Overview .. 17

2.2. Query Structure .. 17

2.2.1. FROM Clause .. 17

2.2.2. SELECT Clause ... 17

2.2.3. WHERE Clause ... 18

2.2.4. ORDER BY Clause .. 20

2.3. Document Generation ... 20

2.3.1. Document Validation .. 20

3. Datatypes ... 21

3.1. Supported Types .. 21

Teiid - Scalable Information ...

iv

3.2. Type Conversions ... 22

3.3. Special Conversion Cases ... 24

3.3.1. Conversion of String Literals ... 24

3.3.2. Converting to Boolean .. 24

3.3.3. Date/Time/Timestamp Type Conversions .. 24

3.4. Escaped Literal Syntax .. 25

4. Scalar Functions .. 27

4.1. Numeric Functions .. 27

4.1.1. Parsing Numeric Datatypes from Strings .. 29

4.1.2. Formatting Numeric Datatypes as Strings .. 30

4.2. String Functions .. 30

4.3. Date/Time Functions ... 32

4.3.1. Parsing Date Datatypes from Strings ... 35

4.3.2. Specifying Time Zones ... 35

4.4. Type Conversion Functions ... 36

4.5. Choice Functions .. 36

4.6. Decode Functions ... 36

4.7. Lookup Function ... 38

4.7.1. Clearing the Cache .. 39

4.8. System Functions ... 39

4.9. XML Functions .. 40

4.10. Security Functions ... 40

4.11. User Defined Functions ... 41

4.11.1. UDF Definition .. 41

4.11.2. Source Supported UDF ... 41

4.11.3. Non-pushdown Support for User-Defined Functions 42

4.11.4. Installing user-defined functions ... 43

5. Procedures .. 45

5.1. Procedure Language ... 45

5.1.1. Command Statement .. 45

5.1.2. Dynamic SQL Command .. 45

5.1.3. Declaration Statement .. 48

5.1.4. Assignment Statement .. 49

5.1.5. If Statement ... 49

5.1.6. Loop Statement .. 50

5.1.7. While Statement ... 50

5.1.8. Continue Statement .. 50

5.1.9. Break Statement .. 50

5.1.10. Error Statement .. 50

5.2. Virtual Procedures .. 51

5.2.1. Virtual Procedure Definition ... 51

5.2.2. Procedure Input Parameters ... 51

5.2.3. Examle Virtual Procedures .. 52

5.2.4. Executing Virtual Procedures .. 53

v

5.3. Update Procedures ... 53

5.3.1. Update Procedure Definition ... 54

5.3.2. Special Variables ... 54

5.3.3. Update Procedure Command Criteria .. 55

5.3.4. Update Procedure Processing ... 57

6. Transaction Support .. 59

6.1. AutoWrap Execution Property .. 59

6.2. Updating Model Count .. 60

6.3. JDBC and Transactions .. 60

6.3.1. JDBC API Functionality .. 60

6.3.2. J2EE Usage Models ... 61

6.4. Limitations and Workarounds ... 61

7. System Tables ... 63

7.1. VDB and Model Metadata ... 63

7.1.1. System.VirtualDatabases .. 63

7.1.2. System.Models ... 63

7.1.3. System.ModelProperties ... 64

7.2. Table Metadata ... 64

7.2.1. System.Groups .. 64

7.2.2. System.GroupProperties ... 64

7.2.3. System.Elements ... 65

7.2.4. System.ElementProperties .. 66

7.2.5. System.Keys .. 66

7.2.6. System.KeyProperties ... 67

7.2.7. System.KeyElements .. 67

7.3. Procedure Metadata .. 68

7.3.1. System.Procedures .. 68

7.3.2. System.ProcedureProperties .. 68

7.3.3. System.ProcedureParams ... 69

7.4. Datatype Metadata .. 69

7.4.1. System.DataTypes ... 69

7.4.2. System.DataTypeProperties .. 70

8. Connectors .. 71

8.1. Common Connector Properties .. 71

8.2. Source Security .. 72

8.2.1. Specific Source Credentials .. 72

8.2.2. Using Session Credentials .. 73

8.2.3. Session and Specific Source Credentials ... 73

8.2.4. Configuring Connectors For Source Security .. 73

9. Federated Planning .. 75

9.1. Overview .. 75

9.2. Federated Optimizations .. 77

9.2.1. Access Patterns ... 77

9.2.2. Pushdown .. 77

Teiid - Scalable Information ...

vi

9.2.3. Dependent Joins .. 77

9.2.4. Copy Criteria .. 78

9.2.5. Projection Minimization ... 78

9.2.6. Partial Aggregate Pushdown ... 78

9.2.7. Optional Join .. 78

9.2.8. Standard Relational Techniques .. 79

9.3. Federated Failure Modes .. 79

9.3.1. Partial Results .. 79

9.4. Query Plans ... 81

9.4.1. Getting a Query Plan ... 81

9.4.2. Analyzing a Query Plan .. 81

9.4.3. Relational Plans ... 82

9.5. Query Planner .. 84

9.5.1. Relational Planner .. 84

9.5.2. Procedure Planner ... 89

9.5.3. XML Planner .. 89

9.5.4. XQuery Planner ... 90

10. Architecture ... 91

10.1. Terminology .. 91

10.2. Data Management ... 91

10.2.1. Cursoring and Batching .. 91

10.2.2. Buffer Management .. 92

10.2.3. Cleanup ... 92

10.3. Query Termination .. 93

10.3.1. Canceling Queries .. 93

10.3.2. Timeouts .. 93

10.4. Processing .. 93

10.4.1. Join Algorithms .. 93

10.4.2. Sort Based Algorithms .. 94

A. BNF Grammar .. 95

A.1. Terminals ... 95

A.2. Non-Terminals .. 96

vii

Preface

Teiid offers a highly scalable and high performance solution to information integration. By allowing

integrated and enriched data to be consumed relationally or as XML over multiple protocols, Teiid

simplifies data access for developers and consuming applications.

Commercial development support, production support, and training for Teiid is available through

JBoss Inc. Teiid is a Professional Open Source project and a critical component of the JBoss

Enterprise Data Services Platform.

viii

Chapter 1.

1

SQL Support
Teiid supports SQL for issuing queries and for defining view transformations; see also Procedure

Language for how SQL is used in virtual procedures and update procedures.

Teiid provides nearly all of the functionality of SQL-92 DML. SQL-99 and later features are

constantly being added based upon community need. The following does not attempt to cover

SQL exhaustively, but rather highlights SQL's usage within Teiid. See the grammar for the exact

form of SQL accepted by Teiid.

1.1. Identifiers

SQL commands contain references to tables and columns. These references are in the form of

identifiers, which uniquely identify the tables and columns in the context of the command. All

queries are processed in the context of a virtual database, or VDB. Because information can be

federated across multiple sources, tables and columns must be scoped in some manner to avoid

conflicts. This scoping is provided by models, which contain the information for each data source

or set of views.

Fully-qualified table and column names are of the following form, where the separate 'parts' of the

identifier are delimited by periods.

• TABLE: <model_name>.<table_spec>

• COLUMN: <model_name>.<table_spec>.<column_name>

Syntax Rules:

• Identifiers can consist of alphanumeric characters, or the underscore (_) character, and must

begin with an alphabetic character. Any Unicode character may be used in an identifier.

• Because different data sources organize tables in different ways, some prepending catalog or

schema or user information, Teiid allows the 'table_spec' to be a dot-delimited construct.

• Identifiers are not case-sensitive in Teiid.

• The separate parts of an identifier can be quoted, with double quotes. This is not required, but

some tools do this automatically. Quotes establish another level of grouping, in addition to the

dot delimiters. Quotes should not be used in such a way that the table specification, which may

itself have multiple parts, is split between two quoted sections.

Some examples of valid fully-qualified table identifiers are:

• MyModel.MySchema.Portfolios

• "MyModel"."MySchema.Portfolios"

Chapter 1. SQL Support

2

• MyModel.Inventory

• MyModel.MyCatalog.dbo.Authors

Some examples of valid fully-qualified column identifiers are:

• MyModel.MySchema.Portfolios.portfolioID

• "MyModel"."MySchema.Portfolios"."portfolioID"

• MyModel.Inventory.totalPallets

• MyModel.MyCatalog.dbo.Authors.lastName

Fully-qualified identifiers can always be used in SQL commands. Partially- or unqualified forms

can also be used, as long as the resulting names are unambiguous in the context of the command.

Different forms of qualification can be mixed in the same query.

1.2. Expressions

Identifiers, literals, and functions can be combined into expressions. Expressions can be used

almost anywhere in a query -- SELECT, FROM (if specifying join criteria, WHERE, GROUP BY,

HAVING. However you currently cannot use expressions in an ORDER BY clause.

Teiid supports the following types of expressions:

• Column identifiers

• Literals

• Scalar functions

• Aggregate functions

• Case and searched case

• Scalar subqueries

• Parameter references

1.2.1. Column Identifiers

Column identifiers are used to specify the output columns in SELECT statements, the columns

and their values for INSERT and UPDATE statements, and criteria used in WHERE and FROM

clauses. They are also used in GROUP BY, HAVING, and ORDER BY clauses. The syntax for

column identifiers was defined in the Identifiers section above.

1.2.2. Literals

Literal values represent fixed values. These can any of the 'standard' data types.

Aggregate Functions

3

Syntax Rules:

• Integer values will be assigned an integral data type big enough to hold the value (integer, long,

or biginteger).

• Floating point values will always be parsed as a double.

• The keyword 'null' is used to represent an absent or unknown value and is inherently untyped. In

many cases, a null literal value will be assigned an implied type based on context. For example,

in the function '5 + null', the null value will be assigned the type 'integer' to match the type of

the value '5'. A null literal used in the SELECT clause of a query with no implied context will

be assigned to type 'string'.

Some examples of simple literal values are:

• ‘abc’

• ‘isn’’t true’ - use an extra single tick to escape a tick in a string with single ticks

• 5

• -37.75e01 - scientific notation

• 100.0 - parsed as double

• true

• false

• '\u0027' - unicode character

1.2.3. Aggregate Functions

Aggregate functions take sets of values from a group produced by an explicit or implicit GROUP

BY and return a single scalar value computed from the group.

Teiid supports the following aggregate functions:

• COUNT(*) – count the number of values (including nulls and duplicates) in a group

• COUNT(expression) – count the number of values (excluding nulls) in a group

• SUM(expression) – sum of the values (excluding nulls) in a group

• AVG(expression) – average of the values (excluding nulls) in a group

• MIN(expression) – minimum value in a group (excluding null)

• MAX(expression) – maximum value in a group (excluding null)

Syntax Rules:

Chapter 1. SQL Support

4

• Some aggregate functions may contain a keyword 'DISTINCT' before the expression, indicating

that duplicate expression values should be ignored. DISTINCT is not allowed in COUNT(*) and

is not meaningful in MIN or MAX (result would be unchanged), so it can be used in COUNT,

SUM, and AVG.

• Aggregate functions may only be used in the HAVING or SELECT clauses and may not be

nested within another aggregate function.

• Aggregate functions may be nested inside other functions.

For more information on aggregates, see the sections on GROUP BY or HAVING.

1.2.4. Case and searched case

Teiid supports two forms of the CASE expression which allows conditional logic in a scalar

expression.

Supported forms:

• CASE <expr> (WHEN <expr> THEN <expr>)+ [ELSE expr] END

• CASE (WHEN <criteria> THEN <expr>)+ [ELSE expr] END

Each form allows for an output based on conditional logic. The first form starts with an initial

expression and evaluates WHEN expressions until the values match, and outputs the THEN

expression. If no WHEN is matched, the ELSE expression is output. If no WHEN is matched

and no ELSE is specified, a null literal value is output. The second form (the searched case

expression) searches the WHEN clauses, which specify an arbitrary criteria to evaluate. If any

criteria evaluates to true, the THEN expression is evaluated and output. If no WHEN is true, the

ELSE is evaluated or NULL is output if none exists.

1.2.5. Scalar subqueries

Subqueries can be used to produce a single scalar value in the SELECT, WHERE, or HAVING

clauses only. A scalar subquery must have a single column in the SELECT clause and should

return either 0 or 1 row. If no rows are returned, null will be returned as the scalar subquery value.

For other types of subqueries, see the Subqueries section below.

1.2.6. Parameter references

Parameters are specified using a '?' symbol. Parameters may only be used with

PreparedStatement or CallableStatements in JDBC. Each parameter is linked to a value specified

by 1-based index in the JDBC API.

1.3. Criteria

Criteria are of two basic forms:

SQL Commands

5

• Predicates that evaluate to true or false

• Logical criteria that combine predicates (AND, OR, NOT)

Syntax Rules:

• expression (=|<>|!=|<|>|<=|>=) (expression|((ANY|ALL|SOME) subquery))

• expression [NOT] IS NULL

• expression [NOT] IN (expression[,expression]*)|subquery

• expression [NOT] LIKE expression [ESCAPE char]

• EXISTS(subquery)

• expression BETWEEN minExpression AND maxExpression

• criteria AND|OR criteria

• NOT criteria

• Criteria may be nested using parenthesis.

Some examples of valid criteria are:

• (balance > 2500.0)

• 100*(50 - x)/(25 - y) > z

• concat(areaCode,concat('-',phone)) LIKE '314%1'

Comparing null Values

Null values represent an unknown value. Comparison with a null value will evaluate

to 'unknown', which can never be true even if 'not' is used.

1.4. SQL Commands

There are 4 basic commands for manipulating data in SQL, corresponding to the CRUD create,

read, update, and delete operations: INSERT, SELECT, UPDATE, and DELETE. In addition,

procedures can be executed using the EXECUTE command or through a procedural relational

command.

1.4.1. SELECT Command

The SELECT command is used to retrieve records any number of relations.

Chapter 1. SQL Support

6

A SELECT command has a number of clauses:

• SELECT ...

• [FROM ...]

• [WHERE ...]

• [GROUP BY ...]

• [HAVING ...]

• [ORDER BY ...]

• [LIMIT [offset,] limit]

• [OPTION ...]

All of these clauses other than OPTION are defined by the SQL specification. The specification

also specifies the order that these clauses will be logically processed. Below is the processing

order where each stage passes a set of rows to the following stage. Note that this processing

model is logical and does not represent the way any actual database engine performs the

processing, although it is a useful model for understanding questions about SQL.

• FROM stage - gathers all rows from all tables involved in the query and logically joins them with

a Cartesian product, producing a single large table with all columns from all tables. Joins and

join criteria are then applied to filter rows that do not match the join structure.

• WHERE stage - applies a criteria to every output row from the FROM stage, further reducing

the number of rows.

• GROUP BY stage - groups sets of rows with matching values in the group by columns.

• HAVING stage - applies criteria to each group of rows. Criteria can only be applied to columns

that will have constant values within a group (those in the grouping columns or aggregate

functions applied across the group).

• SELECT stage - specifies the column expressions that should be returned from the query.

Expressions are evaluated, including aggregate functions based on the groups of rows, which

will no longer exist after this point. The output columns are named using either column aliases

or an implicit name determined by the engine. If SELECT DISTINCT is specified, duplicate

removal will be performed on the rows being returned from the SELECT stage.

• ORDER BY stage - sorts the rows returned from the SELECT stage as desired. Supports sorting

on multiple columns in specified order, ascending or descending. The output columns will be

identical to those columns returned from the SELECT stage and will have the same name.

• LIMIT stage - returns only the specified rows (with skip and limit values).

INSERT Command

7

This model can be used to understand many questions about SQL. For example, columns

aliased in the SELECT clause can only be referenced by alias in the ORDER BY clause. Without

knowledge of the processing model, this can be somewhat confusing. Seen in light of the model,

it is clear that the ORDER BY stage is the only stage occurring after the SELECT stage, which is

where the columns are named. Because the WHERE clause is processed before the SELECT,

the columns have not yet been named and the aliases are not yet known.

1.4.2. INSERT Command

The INSERT command is used to add a record to a table.

Example Syntax

• INSERT INTO table (column,...) VALUES (value,...)

• INSERT INTO table (column,...) query

1.4.3. UPDATE Command

The UPDATE command is used to modify records in a table. The operation may result in 1 or

more records being updated, or in no records being updated if none match the criteria.

Example Syntax

• UPDATE table SET (column=value,...) [WHERE criteria]

1.4.4. DELETE Command

The DELETE command is used to remove records from a table. The operation may result in 1 or

more records being deleted, or in no records being deleted if none match the criteria.

Example Syntax

• DELETE FROM table [WHERE criteria]

1.4.5. EXECUTE Command

The EXECUTE command is used to execute a procedure, such as a virtual procedure or a stored

procedure. Procedures may have zero or more scalar input parameters. The return value from a

procedure is a result set, the same as is returned from a SELECT. Note that EXEC can be used

as a short form of this command.

Example Syntax

• EXECUTE proc()

Chapter 1. SQL Support

8

• EXECUTE proc(value, ...)

• EXECUTE proc(name1=value1,name4=param4, ...) - named parameter syntax

Syntax Rules:

• The default order of parameter specification is the same as how they are defined in the

procedure definition.

• You can specify the parameters in any order by name. Parameters that are have default values

and/or are nullable in the metadata, can be omitted from the named parameter call and will

have the appropriate value passed at runtime.

• If the procedure does not return a result set, the values from the RETURN, OUT, and IN_OUT

parameters will be returned as a single row.

1.4.6. Procedural Relational Command

Procedural relational commands use the syntax of a SELECT to emulate an EXEC. In a procedural

relational command a procedure group names is used in a FROM clause in place of a table. That

procedure will be executed in place of a normal table access if all of the necessary input values

can be found in criteria against the procedure. Each combination of input values found in the

criteria results in an execution of the procedure.

Example Syntax

• select * from proc

• select output_param1, output_param2 from proc where input_param1 = 'x'

• select output_param1, output_param2 from proc, table where input_param1 = table.col1 and

input_param2 = table.col2

Syntax Rules:

• The procedure as a table projects the same columns as an exec with the addition of the input

parameters. For procedures that do not return a result set, IN_OUT columns will be projected

as two columns, one that represents the output value and one named {column name}_IN that

represents the input of the parameter.

• Input values are passed via criteria. Values can be passed by '=','is null', or 'in' predicates.

• The procedure virtual group automatically has an access pattern on its IN and IN_OUT

parameters which allows it to be planned correctly as a dependent join when necessary or fail

when sufficient criteria cannot be found.

• Procedures containing duplicate names between the parameters (IN, IN_OUT, OUT, RETURN)

and result set columns cannot be used in a procedural relational command.

Temp Tables

9

• Default values for IN, IN_OUT parameters are not used if there is no criteria present for a given

input. Default values are only valid for named procedure syntax.

Multiple Execution

The usage of 'in' or join criteria can result in the procedure being executed multiple

times.

1.5. Temp Tables

Teiid supports creating temporary,or "temp", tables. Temp tables are dynamically created, but are

treated as any other physical table.

Temp tables can be defined implicitly by referencing them in a SELECT INTO or in an INSERT

statement or explicitly with a CREATE TABLE statement. Implicitly created temp tables must have

a name that starts with '#'.

Creation syntax:

• CREATE LOCAL TEMPORARY TABLE<temporary table name> (<column name> <data

type>,...)

• SELECT <element name>,...INTO <temporary table name> FROM <table name>

• INSERT INTO <temporary table name> ((<column name>,...)VALUES (<value>,...)

Drop syntax:

• DROP TABLE <temporary table name>

Limitations:

• With the CREATE TABLE syntax only basic table definition (column name and type information)

is supported.

• The "ON COMMIT" clause is not supported in the CREATE TABLE statement.

• "drop behavior" option is not supported in the drop statement.

• Only local temporary tables are supported. This implies that the scope of temp table will be

either to the sesssion or the block of a virtual procedure that creates it.

• Session level temp tables are not fail-over safe.

• temp tables are non-transactional.

• Temp tables do not support update or delete operations.

Chapter 1. SQL Support

10

The following example is a series of statements that loads a temporary table with data from 2

sources, and with a manually inserted record, and then uses that temp table in a subsequent query.

...

CREATE LOCAL TEMPORARY TABLE TEMP (a integer, b integer, c integer);

SELECT * INTO temp FROM Src1; SELECT * INTO temp FROM Src2;

INSERT INTO temp VALUES (1,2,3);

SELECT a,b,c FROM Src3, temp WHERE Src3.a = temp.b;

...

See virtual procedures for more on temp table usage.

1.6. SQL Clauses

This section describes the clauses that are used in the various SQL commands described in the

previous section. Nearly all these features follow standard SQL syntax and functionality, so any

SQL reference can be used for more information.

1.6.1. SELECT Clause

SQL queries start with the SELECT keyword and are often referred to as "SELECT statements".

Teiid supports most of the standard SQL query constructs.

Usage:

SELECT [DISTINCT|ALL] ((expression [[AS] name])|(group

 identifier.STAR))*|STAR ...

Syntax Rules:

• Aliased expressions are only used as the output column names and in the ORDER BY clause.

They cannot be used in other clauses of the query.

• DISTINCT may only be specified if the SELECT symbols are comparable.

1.6.2. FROM Clause

The FROM clause specifies the target table(s) for SELECT, UPDATE, and DELETE statements.

Example Syntax:

• FROM {table [AS alias]}

• FROM table1 [INNER|LEFT OUTER|RIGHT OUTER|FULL OUTER] JOIN table1 ON join-

criteria

WHERE Clause

11

• FROM table1 CROSS JOIN table1

• FROM (subquery) [AS alias]

• FROM table1 JOIN table2 MAKEDEP ON join-criteria

• FROM table1 JOIN table2 MAKENOTDEP ON join-criteria

• FROM table1 left outer join /* optional */ table2 ON join-criteria

DEP Hints

MAKEDEP and MAKENOTDEP are hints used to control dependent join behavior.

They should only be used in situations where the optimizer does not chose the

most optimal plan based upon query structure, metadata, and costing information.

1.6.3. WHERE Clause

The WHERE clause defines the criteria to limit the records affected by SELECT, UPDATE, and

DELETE statements.

The general form of the WHERE is:

• WHERE criteria

1.6.4. GROUP BY Clause

The GROUP BY clause denotes that rows should be grouped according to the specified

expression values. One row will be returned for each group, after optionally filtering those

aggregate rows based on a HAVING clause.

The general form of the GROUP BY is:

• GROUP BY expression (,expression)*

Syntax Rules:

• Column references in the group by clause must by to unaliased output columns.

• Expressions used in the group by must appear in the select clause.

• Column references and expessions in the select clause that are not used in the group by clause

must appear in aggregate functions.

• If an aggregate function is used in the SELECT clause and no GROUP BY is specified, an

implicit GROUP BY will be performed with the entire result set as a single group. In this case,

Chapter 1. SQL Support

12

every column in the SELECT must be an aggregate function as no other column value will be

fixed across the entire group.

• The group by columns must be of a comparable type.

1.6.5. HAVING Clause

The HAVING clause operates exactly as a WHERE clause although it operates on the output of

a GROUP BY. It supports the same syntax as the WHERE clause.

Syntax Rules:

• Expressions used in the group by clause must either contain an aggregate function: COUNT,

AVG, SUM, MIN, MAX. or be one of the grouping expressions.

1.6.6. ORDER BY Clause

The ORDER BY clause specifies how the returned records from a SELECT should be sorted. The

options are ASC (ascending) and DESC (descending).

Usage:

ORDER BY column1 [ASC|DESC], ...

Syntax Rules:

• Column references in the order by must appear in the select clause.

• The order by columns must be of a comparable type.

• If an order by is used in an inline view or view definition without a limit clause, it will be removed

by the Teiid optimizer.

1.6.7. LIMIT Clause

The LIMIT clause specifies a limit on the number of records returned from the SELECT command.

An optional offset (the number of rows to skip) can be specified.

Usage:

LIMIT [offset,] limit

Examples:

• LIMIT 100 - returns the first 100 records (rows 1-100)

• LIMIT 500, 100 - skips 500 records and returns the next 100 records (rows 501-600)

INTO Clause

13

1.6.8. INTO Clause

Warning

Usage of the INTO Clause for inserting into a table has been been deprecated. An

INSERT with a query command should be used instead.

When the into clause is specified with a SELECT, the results of the query are inserted into the

specified table. This is often used to insert records into a temporary table. The INTO clause

immediately precedes the FROM clause.

Usage:

INTO table FROM ...

Syntax Rules:

• The INTO clause is logically applied last in processing, after the ORDER BY and LIMIT clauses.

• Teiid's support for SELECT INTO is similar to MS SQL Server. The target of the INTO clause

is a table where the result of the rest select command will be inserted. SELECT INTO should

not be used UNION query.

1.6.9. OPTION Clause

The OPTION keyword denotes options the user can pass in with the command. These options

are Teiid-specific and not covered by any SQL specification.

Usage:

OPTION option, (option)*

Supported options:

• SHOWPLAN - returns the query plan along with the results

• PLANONLY - returns the query plan, but does not execute the command

• MAKEDEP [table, (table)*] - specifies source tables that should be made dependent in the join

• MAKENOTDEP [table, (table)*] - prevents a dependent join from being used

• DEBUG - prints query planner debug information in the log and returns it through the JDBC API

Examples:

Chapter 1. SQL Support

14

• LIMIT 100 - returns the first 100 records (rows 1-100)

• LIMIT 500, 100 - skips 500 records and returns the next 100 records (rows 501-600)

1.7. Set Operations

Teiid supports the UNION, UNION ALL, INTERSECT, EXCEPT set operation as a way of

combining the results of commands.

Usage:

command (UNION|INTERSECT|EXCEPT) [ALL] command [ORDER BY...]

Syntax Rules:

• The output columns will be named by the output columns of the first set operation branch.

• Each SELECT must have the same number of output columns and compatible data types for

each relative column. Data type conversion will be performed if data types are inconsistent and

implicit conversions exist.

• If UNION, INTERSECT, or EXCEPT is specified without all, then the output columns must be

comparable types.

• INTERSECT ALL, and EXCEPT ALL are currently not supported.

1.8. Subqueries

A subquery is a SQL query embedded within another SQL query. The query containing the

subquery is the outer query.

Supported subquery types:

• Scalar subquery - a subquery that returns only a single column with a single value. Scalar

subqueries are a type of expression and can be used where single valued expressions are

expected.

• Correlated subquery - a subquery that contains a column reference to from the outer query.

• Uncorrelated subquery - a subquery that contains no references to the outer sub-query.

Supported subquery locations:

• Subqueries in the FROM clause

• Subqueries in the WHERE/HAVING Clauses

• Subqueries may be used in any expression or CASE CRITERIA in the SELECT clasue.

Inline views

15

1.8.1. Inline views

Subqueries in the FROM clause of the outer query (also known as "inline views") can return any

number of rows and columns. This type of subquery must always be given an alias.

Example 1.1. Example Subquery in FROM Clause (Inline View)

SELECT a FROM (SELECT Y.b, Y.c FROM Y WHERE Y.d = ‘3’) AS X WHERE a = X.c AND

 b = X.b

1.8.2. Subqueries in the WHERE and HAVING clauses

Subqueries supported in the criteria of the outer query include subqueries in an IN clause,

subqueries using the ANY/SOME or ALL predicate quantifier, and subqueries using the EXISTS

predicate.

Example 1.2. Example Subquery in WHERE Using EXISTS

SELECT a FROM X WHERE EXISTS (SELECT b, c FROM Y WHERE c=3)

The following usages of subqueries must each select only one column, but can return any number

of rows.

Example 1.3. Example Subqueries in WHERE Clause

SELECT a FROM X WHERE a IN (SELECT b FROM Y WHERE c=3)

SELECT a FROM X WHERE a >= ANY (SELECT b FROM Y WHERE c=3)

SELECT a FROM X WHERE a < SOME (SELECT b FROM Y WHERE c=4)

SELECT a FROM X WHERE a = ALL (SELECT b FROM Y WHERE c=2)

16

Chapter 2.

17

XML SELECT Command

2.1. Overview

XML documents can be dynamically constructed by Teiid. The structure of the document is defined

by a document model, which is generally created from a schema. The document model is bound to

relevant SQL statements through mapping classes. See the Designer guide for more on creating

document models.

Querying XML documents is similar to querying relational tables. An idiomatic SQL variant with

special scalar functions gives control over which parts of a given document to return.

2.2. Query Structure

A valid XML SELECT Command against a document model is of the form SELECT ... FROM ...

[WHERE ...] [ORDER BY ...] . The use of any other SELECT command clause is not allowed.

The fully qualified name for an XML element is: "model"."document name".[path to

element]."element name" .

The fully qualified name for an attribute is: "model"."document name".[path to

element]."element name".[@]"attribute name"

Partially qualified names for elements and attributes can be used as long as the partial name is

unique.

2.2.1. FROM Clause

Specifies the document to generate. Document names resemble other virtual groups -

"model"."document name".

Syntax Rules:

• The from may only contain one unary clause specifying the desired document.

2.2.2. SELECT Clause

The select clause determines which parts of the XML document are generated for output.

Example Syntax:

• select * from model.doc

• select model.doc.root.parent.element.* from model.doc

• select element, element1.@attribute from model.doc

Syntax Rules:

Chapter 2. XML SELECT Command

18

• SELECT * and SELECT "xml" are equivalent and specify that every element and attribute of

the document should be output.

• The SELECT clause of an XML Query may only contain *, "xml", or element and attribute

references from the specified document. Any other expressions are not allowed.

• If the SELECT clause contains an element or attribute reference (other than * or "xml") then

only the specified elements, attributes, and their ancestor elements will be in the generated

document.

• element.* specifies that the element, it's attribute, and all child content should be output.

2.2.3. WHERE Clause

The where clause specifies how to filter content from the generated document based upon values

contained in the underlying mapping classes. Most predicates are valid in an XML SELECT

Command, however combining value references from different parts of the document may not

always be allowed.

Criteria is logically applied to a context which is directly related to a mapping class. Starting with

the root mapping class, there is a root context that describes all of the top level repeated elements

that will be in the output document. Criteria applied to the root or any other context will change

the related mapping class query to apply the affects of the criteria, which can include checking

values from any of the descendant mapping classes.

Example Syntax:

• select element, element1.@attribute from model.doc where element1.@attribute = 1

• select element, element1.@attribute from model.doc where context(element1,

element1.@attribute) = 1

Syntax Rules:

• Each criteria conjunct must refer to a single context and can be criteria that applies to a mapping

class, contain a rowlimit function, or contain rowlimitexception function.

• Criteria that applies to a mapping class is associated to that mapping class via the context

function. The absence of a context function implies the criteria applies to the root context.

• At a given context the criteria can span multiple mapping classes provided that all mapping

classes involved are either parents of the context, the context itself, or a descendant of the

context.

Sibling Root Mapping Classes

Implied root context user criteria against a document model with sibling root

mapping classes is not generally semantically correct. It is applied as if each of the

WHERE Clause

19

conjuncts is applied to only a single root mapping class. This behavior is the same

as prior releases but may be fixed in a future release.

2.2.3.1. XML SELECT Command Specific Functions

XML SELECT Command functions are resemble scalar functions, but act as hints in the WHERE

clause. These functions are only valid in an XML SELECT Command.

2.2.3.1.1. Context Function

CONTEXT(arg1, arg2)

Select the context for the containing conjunct.

Syntax Rules:

• Context functions apply to the whole conjunct.

• The first argument must be an element or attribute reference from the mapping class whose

context the criteria conjunct will apply to.

• The second parameter is the return value for the function.

2.2.3.1.2. Rowlimit Function

ROWLIMIT(arg)

Limits the rows processed for the given context.

Syntax Rules:

• The first argument must be an element or attribute reference from the mapping class whose

context the row limit applies.

• The rowlimit function must be used in equality comparison criteria with the right hand expression

equal to an positive integer number or rows to limit.

• Only one row limit or row limit exception may apply to a given context.

2.2.3.1.3. Rowlimitexception Function

Limits the rows processed for the given context and throws an exception if the given number of

rows is exceeded.

ROWLIMITEXCEPTION(arg)

Syntax Rules:

Chapter 2. XML SELECT Command

20

• The first argument must be an element or attribute reference from the mapping class whose

context the row limit exception applies.

• The rowlimitexception function must be used in equality comparison criteria with the right hand

expression equal to an positive integer number or rows to limit.

• Only one row limit or row limit exception may apply to a given context.

2.2.4. ORDER BY Clause

The XML SELECT Command ORDER BY Clause specifies ordering for the referenced mapping

class queries.

Syntax Rules:

• Each order by item must be an element or attribute reference tied a output value from a mapping

class.

• The order or the order by items is the relative order they will be applied to their respective

mapping classes.

2.3. Document Generation

Document generation starts with the root mapping class and proceeds iteratively and hierarchically

over all of the child mapping classes. This can result in a large number of query executions. For

example if a document has a root mapping class with 3 child mapping classes. Then for each row

selected by the root mapping class after the application of the root context criteria, each of the

child mapping classes queries will also be executed.

Document Correctness

By default XML generated XML documents are not checked for correctness vs. the

relevant schema. It is possible that the mapping class queries, the usage of specific

SELECT or WHERE clause values will generated a document that is not valid with

respect to the schema. See document validation on how to ensure correctness.

Sibling or cousin elements defined by the same mapping class that do not have a common

parent in that mapping class will be treated as independent mapping classes during planning and

execution. This allows for a more document centric approach to applying criteria and order bys

to mapping classes.

2.3.1. Document Validation

The execution property XMLValidation should be set to 'true' to indicate that generated documents

should be checked for correctness. Correctness checking will not prevent invalid documents from

being generated, since correctness is checked after generation and not during.

Chapter 3.

21

Datatypes

3.1. Supported Types

Teiid supports a core set of runtime types. Runtime types can be different than semantic types

defined in type fields at design time. The runtime type can also be specified at design time or it

will be automatically chosen as the closest base type to the semantic type.

Table 3.1. Teiid Runtime Types

Type Description Java Runtime Class JDBC Type ODBC

Type

string variable length character

string with a maximum

length of 4000

java.lang.String VARCHAR VARCHAR

char a single Unicode

character

java.lang.Character CHAR CHAR

boolean a single bit, or Boolean,

with two possible values

java.lang.Boolean BIT SMALLINT

byte numeric, integral type,

signed 8-bit

java.lang.Byte TINYINT SMALLINT

short numeric, integral type,

signed 16-bit

java.lang.Short SMALLINT SMALLINT

integer numeric, integral type,

signed 32-bit

java.lang.Integer INTEGER INTEGER

long numeric, integral type,

signed 64-bit

java.lang.Long BIGINT NUMERIC

biginteger numeric, integral type,

arbitrary precision of up to

1000 digits

java.lang.BigInteger NUMERIC NUMERIC

float numeric, floating point

type, 32-bit IEEE 754

floating-point numbers

java.lang.Float REAL FLOAT

double numeric, floating point

type, 64-bit IEEE 754

floating-point numbers

java.lang.String DOUBLE DOUBLE

bigdecimal numeric, floating point

type, arbitrary precision of

up to 1000 digits

java.math.BigDecimal NUMERIC NUMERIC

date java.sql.Date DATE DATE

Chapter 3. Datatypes

22

Type Description Java Runtime Class JDBC Type ODBC

Type

datetime, representing a

single day (year, month,

day)

time datetime, representing

a single time (hours,

minutes, seconds,

milliseconds)

java.sql.Time TIME TIME

timestamp datetime, representing

a single date and

time (year, month,

day, hours, minutes,

seconds, milliseconds,

nanoseconds)

java.sql.Timestamp TIMESTAMP TIMESTAMP

object any arbitrary Java

object, must implement

java.lang.Serializable

Any JAVA_OBJECT VARCHAR

blob binary large object,

representing a stream of

bytes

java.sql.Blob a BLOB VARCHAR

clob character large object,

representing a stream of

characters

java.sql.Clob b CLOB VARCHAR

xml XML document java.sql.SQLXML c JAVA_OBJECT VARCHAR

aThe concrete type is expected to be com.metamatrix.common.types.BlobType

bThe concrete type is expected to be com.metamatrix.common.types.ClobType

cThe concrete type is expected to be com.metamatrix.common.types.XMLType

3.2. Type Conversions

Data types may be converted from one form to another either explicitly or implicitly. Implicit

conversions automatically occur in criteria and expressions to ease development. Explicit datatype

conversions require the use of the CONVERT function or CAST keyword.

Type Conversion Considerations

• Any type may be implicitly converted to the OBJECT type.

• The OBJECT type may be explicitly converted to any other type.

• The NULL value may be converted to any type.

Type Conversions

23

• Any valid implicit conversion is also a valid explicit conversion.

• Situations involving literal values that would normally require explicit conversions may have the

explicit conversion applied implicitly if no loss of information occurs.

• When Teiid detects that an explicit conversion can not be applied implicitly in criteria, the criteria

will be treated as false. For example:

SELECT * FROM my.group WHERE created_by = ‘not a date’

Given that created_by is typed as date, rather than converting 'not a date' to a date value,

the criteria will remain as a string comparison and therefore be false.

• Explicit conversions that are not allowed between two types will result in an exception before

execution. Allowed explicit conversions may still fail during processing if the runtime values are

not actually convertable.

Table 3.2. Type Conversions

Source Type Valid Implicit Target Types Valid Explicit Target Types

string clob char, boolean, byte, short, integer,

long, biginteger, float, double,

bigdecimal, xml

char string

boolean string, byte, short, integer, long,

biginteger, float, double, bigdecimal

byte string, short, integer, long, biginteger,

float, double, bigdecimal

boolean

short string, integer, long, biginteger, float,

double, bigdecimal

boolean, byte

integer string, long, biginteger, float, double,

bigdecimal

boolean, byte, short

long string, biginteger, bigdecimal boolean, byte, short, integer, float,

double

biginteger string, bigdecimal boolean, byte, short, integer, long,

float, double

bigdecimal string boolean, byte, short, integer, long,

biginteger, float, double

date string, timestamp

time string, timestamp

timestamp string date, time

Chapter 3. Datatypes

24

Source Type Valid Implicit Target Types Valid Explicit Target Types

clob string

xml string

3.3. Special Conversion Cases

3.3.1. Conversion of String Literals

Teiid automatically converts string literals within a SQL statement to their implied types. This

typically occurs in a criteria comparison where an element with a different datatype is compared

to a literal string:

SELECT * FROM my.group WHERE created_by = ‘2003-01-02’

Here if the created_by element has the datatype of date, Teiid automatically converts the string

literal to a date datatype as well.

3.3.2. Converting to Boolean

Teiid can automatically convert literal strings and numeric type values to Boolean values as

follows:

Type Literal Value Boolean Value

'true' true

'false' false

String

other false

1 true

0 false

Numeric

other error

3.3.3. Date/Time/Timestamp Type Conversions

Teiid can implicitly convert properly formatted literal strings to their associated date-related

datatypes as follows:

String Literal Format Possible Implicit Conversion Type

yyyy-mm-dd DATE

hh:mm:ss TIME

yyyy-mm-dd hh:mm:ss.fffffffff a TIMESTAMP

afractional seconds are optional

Escaped Literal Syntax

25

The formats above are those expected by the JDBC date types. To use other formats see the

functions PARSEDATE , PARSETIME , PARSETIMESTAMP .

3.4. Escaped Literal Syntax

Rather than relying on implicit conversion, datatype values may be expressed directly in SQL using

escape syntax to define the type. Note that the supplied string value must match the expected

format exactly or an exception will occur.

Table 3.3. Escaped Literal Syntax

Datatype Escaped Syntax

BOOLEAN {b'true'} or {b'false'}

DATE {d'yyyy-mm-dd'}

TIME {t'hh-mm-ss'}

TIMESTAMP {ts'yyyy-mm-dd hh:mm:ss.fffffffff'} a

afractional seconds are optional

26

Chapter 4.

27

Scalar Functions
Teiid provides an extensive set of built-in scalar functions. See also SQL Support and Datatypes

. In addition, Teiid provides the capability for user defined functions or UDFs .

4.1. Numeric Functions

Numeric functions return numeric values (integer, long, float, double, biginteger, bigdecimal). They

generally take numeric values as inputs, though some take strings.

Function Definition Datatype Constraint

+ - * / Standard numeric operators x in {integer, long,

float, double, biginteger,

bigdecimal}, return type is

same as x

ABS(x) Absolute value of x See standard numeric

operators above

ACOS(x) Arc cosine of x x in {double}, return type is

double

ASIN(x) Arc sine of x x in {double}, return type is

double

ATAN(x) Arc tangent of x x in {double}, return type is

double

ATAN2(x,y) Arc tangent of x and y x, y in {double}, return type is

double

CEILING(x) Ceiling of x x in {double, float}, return type

is double

COS(x) Cosine of x x in {double}, return type is

double

COT(x) Cotangent of x x in {double}, return type is

double

DEGREES(x) Convert x degrees to radians x in {double}, return type is

double

EXP(x) e^x x in {double, float}, return type

is double

FLOOR(x) Floor of x x in {double, float}, return type

is double

FORMATBIGDECIMAL(x, y) Formats x using format y x is bigdecimal, y is string,

returns string

FORMATBIGINTEGER(x, y) Formats x using format y

Chapter 4. Scalar Functions

28

Function Definition Datatype Constraint

x is biginteger, y is string,

returns string

FORMATDOUBLE(x, y) Formats x using format y x is double, y is string, returns

string

FORMATFLOAT(x, y) Formats x using format y x is float, y is string, returns

string

FORMATINTEGER(x, y) Formats x using format y x is integer, y is string, returns

string

FORMATLONG(x, y) Formats x using format y x is long, y is string, returns

string

LOG(x) Natural log of x (base e) x in {double, float}, return type

is double

LOG10(x) Log of x (base 10) x in {double, float}, return type

is double

MOD(x, y) Modulus (remainder of x / y) x in {integer, long, float,

double, biginteger}, return type

is same as x

PARSEBIGDECIMAL(x, y) Parses x using format y x, y are strings, returns

bigdecimal

PARSEBIGINTEGER(x, y) Parses x using format y x, y are strings, returns

biginteger

PARSEDOUBLE(x, y) Parses x using format y x, y are strings, returns double

PARSEFLOAT(x, y) Parses x using format y x, y are strings, returns float

PARSEINTEGER(x, y) Parses x using format y x, y are strings, returns integer

PARSELONG(x, y) Parses x using format y x, y are strings, returns long

PI() Value of Pi return is double

POWER(x,y) x to the y power x in {integer, long, float,

double, biginteger}, if x is

biginteger then return type is

biginteger, else double

RADIANS(x) Convert x radians to degrees x in {double}, return type is

double

RAND() Returns a random number,

using generator established so

far in the query or initializing

with system clock if necessary.

Returns double.

Parsing Numeric Datatypes from Strings

29

Function Definition Datatype Constraint

RAND(x) Returns a random number,

using new generator seeded

with x.

x is integer, returns double.

ROUND(x,y) Round x to y places; negative

values of y indicate places to

the left of the decimal point

x in {integer, float, double,

bigdecimal} y is integer, return

is same type as x

SIGN(x) 1 if x > 0, 0 if x = 0, -1 if x < 0 x in {integer, long,

float, double, biginteger,

bigdecimal}, return type is

integer

SIN(x) Sine value of x x in {double}, return type is

double

SQRT(x) Square root of x x in {double, float}, return type

is double

TAN(x) Tangent of x x in {double}, return type is

double

BITAND(x, y) Bitwise AND of x and y x, y in {integer}, return type is

integer

BITOR(x, y) Bitwise OR of x and y x, y in {integer}, return type is

integer

BITXOR(x, y) Bitwise XOR of x and y x, y in {integer}, return type is

integer

BITNOT(x) Bitwise NOT of x x in {integer}, return type is

integer

4.1.1. Parsing Numeric Datatypes from Strings

Teiid offers a set of functions you can use to parse numbers from strings. For each string, you

need to provide the formatting of the string. These functions use the convention established

by the java.text.DecimalFormat class to define the formats you can use with these functions.

You can learn more about how this class defines numeric string formats by visiting the Sun

Java Web site at the following URL for Sun Java [http://java.sun.com/j2se/1.4.2/docs/api/java/text/

DecimalFormat.html] .

For example, you could use these function calls, with the formatting string that adheres to the

java.text.DecimalFormat convention, to parse strings and return the datatype you need:

Input String Function Call to

Format String

Output Value Output Datatype

'$25.30' parseDouble(cost,

'$#,##0.00;($#,##0.00)')

25.3 double

http://java.sun.com/j2se/1.4.2/docs/api/java/text/DecimalFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/DecimalFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/DecimalFormat.html

Chapter 4. Scalar Functions

30

Input String Function Call to

Format String

Output Value Output Datatype

'25%' parseFloat(percent,

'#,##0%')

25 float

'2,534.1' parseFloat(total,

'#,##0.###;-

#,##0.###')

2534.1 float

'1.234E3' parseLong(amt,

'0.###E0')

1234 long

'1,234,567' parseInteger(total,

'#,##0;-#,##0')

1234567 integer

4.1.2. Formatting Numeric Datatypes as Strings

Teiid offers a set of functions you can use to convert numeric datatypes into strings. For each

string, you need to provide the formatting. These functions use the convention established within

the java.text.DecimalFormat class to define the formats you can use with these functions. You

can learn more about how this class defines numeric string formats by visiting the Sun Java

Web site at the following URL for Sun Java [http://java.sun.com/j2se/1.4.2/docs/api/java/text/

DecimalFormat.html] .

For example, you could use these function calls, with the formatting string that adheres to the

java.text.DecimalFormat convention, to format the numeric datatypes into strings:

Input Value Input Datatype Function Call to

Format String

Output String

25.3 double formatDouble(cost,

'$#,##0.00;($#,##0.00)')

'$25.30'

25 float formatFloat(percent,

'#,##0%')

'25%'

2534.1 float formatFloat(total,

'#,##0.###;-

#,##0.###')

'2,534.1'

1234 long formatLong(amt,

'0.###E0')

'1.234E3'

1234567 integer formatInteger(total,

'#,##0;-#,##0')

'1,234,567'

4.2. String Functions

String functions generally take strings as inputs and return strings as outputs.

Unless specified, all of the arguments and return types in the following table are strings and all

indexes are 1-based. The 0 index is considered to be before the start of the string.

http://java.sun.com/j2se/1.4.2/docs/api/java/text/DecimalFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/DecimalFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/DecimalFormat.html

String Functions

31

Function Definition Datatype Constraint

x || y Concatenation operator x,y in {string}, return type is

string

ASCII(x) Provide ASCII value of

character x

return type is integer

CHR(x) CHAR(x) Provide the character for

ASCII value x

x in {integer}

CONCAT(x, y) Concatenates x and y with

ANSI semantics. If x and/or y

is null, returns null.

x, y, is string

CONCAT2(x, y) Concatenates x and y with

non-ANSI null semantics. If x

and y is null, returns null. If only

x or y is null, returns the other

value.

x, y, is string

INITCAP(x) Make first letter of each word

in string x capital and all others

lowercase

x in {string}

INSERT(str1, start, length,

str2)

Insert string2 into string1 str1 in {string}, start in

{integer}, length in {integer},

str2 in {string}

LCASE(x) Lowercase of x x in {string}

LEFT(x, y) Get left y characters of x x in {string}, y in {string}, return

string

LENGTH(x) Length of x return type is integer

LOCATE(x, y) Find position of x in y starting

at beginning of y

x in {string}, y in {string}, return

integer

LOCATE(x, y, z) Find position of x in y starting

at z

x in {string}, y in {string}, z in

{integer}, return integer

LPAD(x, y) Pad input string x with spaces

on the left to the length of y

x in {string}, y in {integer},

return string

LPAD(x, y, z) Pad input string x on the left to

the length of y using character

z

x in {string}, y in {string}, z in

{character}, return string

LTRIM(x) Left trim x of white space x in {string}, return string

REPEAT(str1,instances) Repeat string1 a specified

number of times

str1 in {string}, instances in

{integer} return string

REPLACE(x, y, z) Replace all y in x with z x,y,z in {string}, return string

Chapter 4. Scalar Functions

32

Function Definition Datatype Constraint

RIGHT(x, y) Get right y characters of x x in {string}, y in {string}, return

string

RPAD(input string x, pad

length y)

Pad input string x with spaces

on the right to the length of y

x in {string}, y in {integer},

return string

RPAD(x, y, z) Pad input string x on the

right to the length of y using

character z

x in {string}, y in {string}, z in

{character}, return string

RTRIM(x) Right trim x of white space x is string, return string

SUBSTRING(x, y) Get substring from x, from

position y to the end of x

y in {integer}

SUBSTRING(x, y, z) Get substring from x from

position y with length z

y, z in {integer}

TRANSLATE(x, y, z) Translate string x by replacing

each character in y with the

character in z at the same

position

x in {string}

UCASE(x) Uppercase of x x in {string}

4.3. Date/Time Functions

Date and time functions return dates, times, or timestamps.

Function Definition Datatype Constraint

CURDATE() Return current date returns date

CURTIME() Return current time returns time

NOW() Return current timestamp

(date and time)

returns timestamp

DAYNAME(x) Return name of day x in {date, timestamp}, returns

string

DAYOFMONTH(x) Return day of month x in {date, timestamp}, returns

integer

DAYOFWEEK(x) Return day of week

(Sunday=1)

x in {date, timestamp}, returns

integer

DAYOFYEAR(x) Return Julian day number x in {date, timestamp}, returns

integer

FORMATDATE(x, y) Format date x using format y x is date, y is string, returns

string

FORMATTIME(x, y) Format time x using format y x is time, y is string, returns

string

Date/Time Functions

33

Function Definition Datatype Constraint

FORMATTIMESTAMP(x, y) Format timestamp x using

format y

x is timestamp, y is string,

returns string

HOUR(x) Return hour (in military 24-

hour format)

x in {time, timestamp}, returns

integer

MINUTE(x) Return minute x in {time, timestamp}, returns

integer

MONTH(x) Return month x in {date, timestamp}, returns

integer

MONTHNAME(x) Return name of month x in {date, timestamp}, returns

string

QUARTER(x) Return quarter x in {date, timestamp}, returns

integer

PARSEDATE(x, y) Parse date from x using format

y

x, y in {string}, returns date

PARSETIME(x, y) Parse time from x using format

y

x, y in {string}, returns time

PARSETIMESTAMP(x,y) Parse timestamp from x using

format y

x, y in {string}, returns

timestamp

SECOND(x) Return seconds x in {time, timestamp}, returns

integer

TIMESTAMPCREATE(date,

time)

Create a timestamp from a

date and time

date in {date}, time in {time},

returns timestamp

TIMESTAMPADD(interval,

count, timestamp)

Add a specified interval (hour,

day of week, month) to the

timestamp, where intervals

can have the following

definition:

1. SQL_TSI_FRAC_SECOND

- fractional seconds

(billionths of a second)

2. SQL_TSI_SECOND -

seconds

3. SQL_TSI_MINUTE -

minutes

4. SQL_TSI_HOUR - hours

5. SQL_TSI_DAY - days

The interval constant may be

specified either as a string

literal or a constant value.

Interval in {string}, count in

{integer}, timestamp in {date,

time, timestamp}

Chapter 4. Scalar Functions

34

Function Definition Datatype Constraint

6. SQL_TSI_WEEK - weeks

7. SQL_TSI_MONTH -

months

8. SQL_TSI_QUARTER -

quarters (3 months)

9. SQL_TSI_YEAR - years

TIMESTAMPDIFF(interval,

startTime, endTime)

Calculate the approximate

number of whole intervals in

(endTime - startTime) using

a specific interval type (as

defined by the constants

in TIMESTAMPADD). If

(endTime > startTime), a

positive number will be

returned. If (endTime <

startTime), a negative number

will be returned. Calculations

are approximate and may be

less accurate over longer time

spans.

Interval in {string}; startTime,

endTime in {date, time,

timestamp}, returns a long.

WEEK(x) Return week in year x in {date, timestamp}, returns

integer

YEAR(x) Return four-digit year x in {date, timestamp}, returns

integer

MODIFYTIMEZONE

(timestamp, startTimeZone,

endTimeZone)

Returns a timestamp based

upon the incoming timestamp

adjusted for the differential

between the start and end

time zones. i.e. if the

server is in GMT-6, then

modifytimezone({ts '2006-

01-10 04:00:00.0'},'GMT-7',

'GMT-8') will return the

timestamp {ts '2006-01-10

05:00:00.0'} as read in GMT-

6. The value has been

adjusted 1 hour ahead to

compensate for the difference

between GMT-7 and GMT-8.

startTimeZone and

endTimeZone are strings,

returns a timestamp

Parsing Date Datatypes from Strings

35

Function Definition Datatype Constraint

MODIFYTIMEZONE

(timestamp, endTimeZone)

Return a timestamp in the

same manner as

modifytimezone(timestamp,

startTimeZone,

endTimeZone), but will

assume that the

startTimeZone is the same as

the server process.

Timestamp is a timestamp;

endTimeZone is a string,

returns a timestamp

FROM_UNIXTIME

(unix_timestamp)

Return the Unix timestamp

(in seconds) as a Timestamp

value

Unix timestamp (in seconds)

4.3.1. Parsing Date Datatypes from Strings

Teiid does not implicitly convert strings that contain dates presented in different formats, such

as ‘19970101’ and ‘31/1/1996’ to date-related datatypes. You can, however, use the parseDate,

parseTime, and parseTimestamp functions, described in the next section, to explicitly convert

strings with a different format to the appropriate datatype. These functions use the convention

established within the java.text.SimpleDateFormat class to define the formats you can use

with these functions. You can learn more about how this class defines date and time string

formats by visiting the Sun Java Web site [http://java.sun.com/j2se/1.4.2/docs/api/java/text/

SimpleDateFormat.html] .

For example, you could use these function calls, with the formatting string that adheres to the

java.text.SimpleDateFormat convention, to parse strings and return the datatype you need:

String Function Call To Parse String

'1997010' parseDate(myDateString, 'yyyyMMdd')

'31/1/1996' parseDate(myDateString, 'dd''/''MM''/''yyyy')

'22:08:56 CST' parseTime (myTime, 'HH:mm:ss z')

'03.24.2003 at 06:14:32' parseTimestamp(myTimestamp, 'MM.dd.yyyy

''at'' hh:mm:ss')

4.3.2. Specifying Time Zones

Time zones can be specified in several formats. Common abbreviations such as EST for "Eastern

Standard Time" are allowed but discouraged, as they can be ambiguous. Unambiguous time

zones are defined in the form continent or ocean/largest city. For example, America/New_York,

America/Buenos_Aires, or Europe/London. Additionally, you can specify a custom time zone by

GMT offset: GMT[+/-]HH:MM.

For example: GMT-05:00

http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html
http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html

Chapter 4. Scalar Functions

36

4.4. Type Conversion Functions

Within your queries, you can convert between datatypes using the CONVERT or CAST keyword.

See also Data Type Conversions .

Function Definition

CONVERT(x, type) Convert x to type, where type is a Teiid Base

Type

CAST(x AS type) Convert x to type, where type is a Teiid Base

Type

These functions are identical other than syntax; CAST is the standard SQL syntax, CONVERT is

the standard JDBC/ODBC syntax.

4.5. Choice Functions

Choice functions provide a way to select from two values based on some characteristic of one

of the values.

Function Definition Datatype Constraint

IFNULL(x,y) If x is null, return y; else return

x

x, y, and the return type must

be the same type but can be

any type

NVL(x,y) If x is null, return y; else return

x

x, y, and the return type must

be the same type but can be

any type

NULLIF(param1, param2) Equivalent to case when

(param1 = param2) then null

else param1

param1 and param2 must be

compatable comparable types

COALESCE(x,y+) Returns the first non-null

parameter

x and all y's can be any

compatible types

IFNULL and NVL are aliases of each other. They are the same function.

4.6. Decode Functions

Decode functions allow you to have the Teiid Server examine the contents of a column in a result

set and alter, or decode, the value so that your application can better use the results.

Function Definition Datatype Constraint

DECODESTRING(x, y) all string

Decode Functions

37

Function Definition Datatype Constraint

Decode column x using string

of value pairs y and return the

decoded column as a string

DECODESTRING(x, y, z) Decode column x using string

of value pairs y with delimiter

z and return the decoded

column as a string

all string

DECODEINTEGER(x, y) Decode column x using string

of value pairs y and return the

decoded column as an integer

all string parameters, return

integer

DECODEINTEGER(x,y,z) Decode column x using string

of value pairs y with delimiter

z and return the decoded

column as an integer

all string parameters, return

integer

Within each function call, you include the following arguments:

1. x is the input value for the decode operation. This will generally be a column name.

2. y is the literal string that contains a delimited set of input values and output values.

3. z is an optional parameter on these methods that allows you to specify what delimiter the string

specified in y uses.

For example, your application might query a table called PARTS that contains a column called

IS_IN_STOCK which contains a Boolean value that you need to change into an integer for your

application to process. In this case, you can use the DECODEINTEGER function to change the

Boolean values to integers:

SELECT DECODEINTEGER(IS_IN_STOCK, 'false, 0, true, 1') FROM PartsSupplier.PARTS;

When the Teiid System encounters the value false in the result set, it replaces the value with 0.

If, instead of using integers, your application requires string values, you can use the

DECODESTRING function to return the string values you need:

SELECT DECODESTRING(IS_IN_STOCK, 'false, no, true, yes, null') FROM

 PartsSupplier.PARTS;

In addition to two input/output value pairs, this sample query provides a value to use if the column

does not contain any of the preceding input values. If the row in the IS_IN_STOCK column does

not contain true or false, the Teiid Server inserts a null into the result set.

Chapter 4. Scalar Functions

38

When you use these DECODE functions, you can provide as many input/output value pairs if you

want within the string. By default, the Teiid System expects a comma delimiter, but you can add

a third parameter to the function call to specify a different delimiter:

SELECT DECODESTRING(IS_IN_STOCK, 'false:no:true:yes:null',’:’) FROM

 PartsSupplier.PARTS;

You can use keyword null in the DECODE string as either an input value or an output value to

represent a null value. However, if you need to use the literal string null as an input or output

value (which means the word null appears in the column and not a null value) you can put the

word in quotes: "null".

SELECT DECODESTRING(IS_IN_STOCK, 'null,no,"null",no,nil,no,false,no,true,yes') FROM

 PartsSupplier.PARTS;

If the DECODE function does not find a matching output value in the column and you have not

specified a default value, the DECODE function will return the original value the Teiid Server found

in that column.

4.7. Lookup Function

The Lookup function allows you to cache a group’s data in memory and access it through a scalar

function. This caching accelerates response time to queries that use the lookup groups, known in

business terminology as lookup tables or code groups.

A StatePostalCodes group used to translate postal codes to complete state names might

represent an example of this type of lookup group. One element, PostalCode, represents a

key element. Other groups within the model refer to this two-letter code. A second element,

StateDisplayName, would represent the complete name of the state. Hence, a query to this lookup

group would typically provide the PostalCode and expect the StateDisplayName in response.

When you call this function for any combination of codeGroup, returnElement, and keyElement

for the first time, the Teiid System caches the result. The Teiid System uses this cached map for

all queries, in all sessions, that later access this lookup group. The codeGroup requires use of the

fully-qualified name, and the returnElement and keyElement parameters should use shortened

column names.

Because the Teiid System caches and indexes this information in memory, this function provides

quick access after the Teiid System initially caches the lookup group. The Teiid System unloads

these cached lookup groups when you stop and restart the Teiid System. Thus, you should not

use this function for data that is subject to updates. Instead, you can use it against static data

that does not change over time.

Clearing the Cache

39

Note

• The keyElement column is expected to contain unique key values. If the column

contains duplicate values, only the last loaded value will be used for lookup

purposes. In some cases, this may cause unexpected results, so it is strongly

recommended that only columns without duplicate values be used as the

keyElement. The lookup caches can be flushed via the svcmgr.

• Cached lookup groups might consume significant memory. You can limit the

number and maximum size of these code groups by setting properties of the

QueryService through the Teiid Console.

Function Definition Datatype Constraint

LOOKUP(codeGroup,

returnElement, keyElement,

keyValue)

In the lookup group

codeGroup, find the row

where keyElement has the

value keyValue and return the

associated returnElement

codeGroup must be

a fully-qualified string

literal containing metadata

identifiers, keyValue datatype

must match datatype of

the keyElement, return

datatype matches that of

returnElement. returnElement

and keyElement parameters

should use their shortened

names.

4.7.1. Clearing the Cache

You can force a cache clearing by using the expert mode of the svcmgr command, found under

the \bin directory of your Teiid server installation.

Launch the appropriate command:

1. svcmgr.cmd (Windows)

2. svcmgr.sh (Solaris or Linux)

From the command line enter ClearCodeTableCaches.

4.8. System Functions

System functions provide access to information in the Teiid system from within a query.

Function Definition Datatype Constraint

USER() return is string

Chapter 4. Scalar Functions

40

Function Definition Datatype Constraint

Retrieve the name of the user

executing the query

ENV(key) Retrieve an environment

property. The only key

currently allowed is

‘sessionid’, although this will

expand in the future.

key in {string}, return is string

COMMANDPAYLOAD() Retrieve the string form of

the command payload or

null if no command payload

was specified. The command

payload is set by a method on

the Teiid JDBC API extensions

on a per-query basis.

Returns a string

COMMANDPAYLOAD(key) Cast the command payload

object to a java.util.Properties

object and look up the

specified key in the object

key in {string}, return is string

4.9. XML Functions

XML functions provide functionality for working with XML data.

Function Definition Datatype Constraint

XPATHVALUE(doc, xpath) Takes a document and an

XPATH query and returns a

string value for the result. An

attempt is made to provide a

meaningful result for non-text

nodes.

Doc in {string, xml} and xpath

in {string}. Return value is a

string.

4.10. Security Functions

Security functions provide the ability to interact with the security system.

Function Definition Datatype Constraint

hasRole(roleType,

roleName)

Whether the current caller has

the role roleName of roleType.

roleType must be one of

('data','admin' , 'repository')

and roleName must be a

string, the return type is

Boolean.

User Defined Functions

41

4.11. User Defined Functions

If you need to extends Teiid's scalar function library, then Teiid provides a means to define custom

scalar functions or User Defined Functions(UDF). The following steps need to be taken in creating

a UDF.

4.11.1. UDF Definition

The FunctionDefinition.xmi file provides metadata to the query engine on User Defined Functions.

See our product document on "Creating User-defined Functions" for a more extensive reference

on creating that file through the Designer Tool.

The following are used to define a UDF.

• Function Name When you create the function name, keep these requirements in mind:

• You cannot use a reserved word, which includes existing Teiid System function names. You

cannot overload existing Teiid System functions.

• The function name must be unique among user-defined functions for the number of

arguments. You can use the same function name for different numbers of types of arguments.

 Hence, you can overload your user-defined functions.

• The function name can only contain letters, numbers, and the underscore (_). Your function

name must start with a letter.

• The function name cannot exceed 128 characters.

• Input Parameters - defines a type specific signature list. All arguments are considered required.

• Return Type - the expected type of the returned scalar value.

• Pushdown - can be one of REQUIRED, NEVER, ALLOWED. Indicates the expected pushdown

behavior. If NEVER or ALLOWED are specified then a Java implementation of the function

should be supplied.

• invocationClass/invocationMethod - optional properties indicating the static method to invoke

when the UDF is not pushed down.

• Deterministic - if the method will always return the same result for the same input parameters.

4.11.2. Source Supported UDF

While Teiid provides an extensive scalar function library, it contains only those functions that can

be evaluated within the query engine. In many circumstances, especially for performance, a user

defined function allows for calling a source specific function.

For example, suppose you want to use the Oracle-specific functions score and contains:

Chapter 4. Scalar Functions

42

SELECT score(1), ID, FREEDATA FROM Docs WHERE contains(freedata, 'nick', 1) > 0

The score and contains functions are not part of built-in scalar function library. While you could

write your own custom scalar function to mimic their behavior, it's more likely that you would want

to use the actual Oracle functions that are provided by Oracle when using the Oracle Free Text

functionality.

In addition to the normal steps outlined in the section to create and install a function model

(FunctionDefinitions.xmi), you will need to extend the appropriate connector(s).

For example, to extend the Oracle Connector

• Required - extend OracleCapabilities and set up SCORE and CONTAINS as supported

functions (this lets Teiid know that the connector can accept these functions).

• Optionally extend the OracleSQLTranslator to insert new FunctionModifiers to handle

translation of these functions. Given that the syntax of these functions is same as other typical

functions, this probably isn't needed - the default translation should work.

• Create a new connector type - the easiest way is to export the Oracle ANSI connector type from

the Console and just modify the properties such as the connector name (to differentiate it from

base Oracle connector) and the capabilities class (to use the extended version) and possibly

the translation class (if that was extended for b. Also, connector classpath needs to be extended

to include a new jar of your changes above.

• Install the code as an extension module and add your new connector type in the Console.

4.11.3. Non-pushdown Support for User-Defined Functions

Non-pushdown support requires a Java function that matches the metadata supplied in the

FunctionDefinitions.xmi file. You must create a Java method that contains the function’s logic.

This Java method should accept the necessary arguments, which the Teiid System will pass to it

at runtime, and function should return the calculated or altered value.

4.11.3.1. Java Code

Code Requirements

• The java class containing the function method must be defined public.

• The function method must be public and static.

• Number of input arguments must match the function metadata defined in section Install user-

defined functions

• Any exception can be thrown, but Teiid will rethrow the exception as a

FunctionExecutionException.

Installing user-defined functions

43

Example 4.1. Sample code

package userdefinedfunctions;

public class TempConv {

 /**

 * Converts the given Celsius temperature to Fahrenheit, and returns the

 * value.

 * @param doubleCelsiusTemp

 * @return Fahrenheit

 */

 public static Double celsiusToFahrenheit(Double doubleCelsiusTemp){

 if (doubleCelsiusTemp == null) {

 return null;

 }

 return (doubleCelsiusTemp)*9/5 + 32;

 }

}

4.11.3.2. Post Code Activities

1. After coding the functions you should compile the Java code into a Java Archive (JAR) file, so

that you can add it to the Teiid System as an Extension Module.

2. After adding the jar file as an extension module, the name of jar file need to be added to user

defined functions classpath using Console tool.

4.11.4. Installing user-defined functions

Once a user-defined function model (FunctionDefinitions.xmi) has been created in in the Designer

Tool, it should be installed by replacing the existing version under the Extension Modules (for the

Enterprise product this will be done through the Console). That will allow the query engine to know

about and use functions

44

Chapter 5.

45

Procedures

5.1. Procedure Language

Teiid supports a procedural language for defining virtual procedures . These are similar to stored

procedures in relational database management systems. You can use this language to define the

transformation logic for decomposing INSERT, UPDATE, and DELETE commands against virtual

tables; these are known as update procedures .

5.1.1. Command Statement

A command statement executes a SQL command , such as SELECT, INSERT, UPDATE,

DELETE, or EXECUTE, against one or more other models (and their underlying data sources).

Example 5.1. Example Command Statements

SELECT * FROM MyModel.MyTable WHERE ColA > 100;

INSERT INTO MyModel.MyTable (ColA,ColB) VALUES (50, 'hi');

5.1.2. Dynamic SQL Command

Dynamic SQL allows for the execution of an arbitrary SQL command in a virtual procedure.

Dynamic SQL is useful in situations where the exact command form is not known prior to

execution.

Usage:

EXECUTE STRING <expression> [AS <variable> <type> [, <variable> <type>]*

 [INTO <variable>]]

[USING <variable>=<expression> [,<variable>=<expression>]*] [UPDATE

 <literal>]

Syntax Rules:

• The "AS" clause is used to define the projected symbols names and types returned by the

executed SQL string. The "AS" clause symbols will be matched positionally with the symbols

returned by the executed SQL string. Non-convertible types or too few columns returned by the

executed SQL string will result in an error.

• The "INTO" clause will project the dynamic SQL into the specified temp table. With the "INTO"

clause specified, the dynamic command will actually execute a statement that behaves like an

Chapter 5. Procedures

46

INSERT with a QUERY EXPRESSION. If the dynamic SQL command creates a temporary table

with the "INTO" clause, then the "AS" clause is required to define the table’s metadata.

• The "USING" clause allows the dynamic SQL string to contain special element symbols that

are bound at runtime to specified values. This allows for some independence of the SQL string

from the surrounding procedure variable names and input names. In the dynamic command

"USING" clause, each variable is specified by short name only. However in the dynamic SQL

the "USING" variable must be fully qualified to "USING.". The "USING" clause is only for values

that will be used in the dynamic SQL as legal expressions. It is not possible to use the "USING"

clause to replace table names, keywords, etc. This makes using symbols equivalent in power

to normal bind (?) expressions in prepared statements. The "USING" clause helps reduce the

amount of string manipulation needed. If a reference is made to a USING symbol in the SQL

string that is not bound to a value in the "USING" clause, an exception will occur.

• The "UPDATE" clause is used to specify the updating model count. Accepted values are (0,1,*).

0 is the default value if the clause is not specified.

Example 5.2. Example Dynamic SQL

...

/* Typically complex criteria would be formed based upon inputs to the procedure.

 In this simple example the criteria is references the using clause to isolate

 the SQL string from referencing a value from the procedure directly */

DECLARE string criteria = 'Customer.Accounts.Last = USING.LastName';

/* Now we create the desired SQL string */

DECLARE string sql_string = 'SELECT ID, First || ‘‘ ‘‘ || Last AS Name, Birthdate FROM

 Customer.Accounts WHERE ' || criteria;

/* The execution of the SQL string will create the #temp table with the columns (ID, Name,

 Birthdate).

 Note that we also have the USING clause to bind a value to LastName, which is referenced in

 the criteria. */

EXECUTE STRING sql_string; AS ID integer, Name string, Birthdate date INTO #temp USING

 LastName='some name';

/* The temp table can now be used with the values from the Dynamic SQL */

loop on (SELCT ID from #temp) as myCursor

...

Here is an example showing a more complex approach to building criteria for the dynamic SQL

string. In short, the virtual procedure AccountAccess.GetAccounts has inputs ID, LastName, and

bday. If a value is specified for ID it will be the only value used in the dynamic SQL criteria.

Otherwise if a value is specified for LastName the procedure will detect if the value is a search

string. If bday is specified in addition to LastName, it will be used to form compound criteria with

LastName.

Dynamic SQL Command

47

Example 5.3. Example Dynamic SQL with USING clause and dynamically

built criteria string

...

DECLARE string crit = null;

IF (AccountAccess.GetAccounts.ID IS NOT NULL)

 crit = ‘(Customer.Accounts.ID = using.ID)’;

ELSE IF (AccountAccess.GetAccounts.LastName IS NOT NULL)

BEGIN

 IF (AccountAccess.GetAccounts.LastName == ‘%’)

 ERROR "Last name cannot be %";

 ELSE IF (LOCATE(‘%’, AccountAccess.GetAccounts.LastName) < 0)

 crit = ‘(Customer.Accounts.Last = using.LastName)’;

 ELSE

 crit = ‘(Customer.Accounts.Last LIKE using.LastName)’;

 IF (AccountAccess.GetAccounts.bday IS NOT NULL)

 crit = ‘(‘ || crit || ‘ and (Customer.Accounts.Birthdate = using.BirthDay))’;

END

ELSE

 ERROR "ID or LastName must be specified.";

EXECUTE STRING ‘SELECT ID, First || ‘‘ ‘‘ || Last AS

 Name, Birthdate FROM Customer.Accounts WHERE ’ || crit USING

 ID=AccountAccess.GetAccounts.ID, LastName=AccountAccess.GetAccounts.LastName,

 BirthDay=AccountAccess.GetAccounts.Bday;

...

Known Limitations and Work-Arounds

• The use of dynamic SQL command results in an assignment statement requires the use of a

temp table.

Example 5.4. Example Assignment

EXECUTE STRING <expression> AS x string INTO #temp;

DECLARE string VARIABLES.RESULT = SEELCT x FROM #temp;

• The construction of appropriate criteria will be cumbersome if parts of the criteria are not present.

For example if "criteria" were already NULL, then the following example results in "criteria"

remaining NULL.

Chapter 5. Procedures

48

Example 5.5. Example Dangerous NULL handling

...

criteria = ‘(‘ || criteria || ‘ and (Customer.Accounts.Birthdate = using.BirthDay))’;

The preferred approach is for the user to ensure the criteria is not NULL prior its usage. If this

is not possible, a good approach is to specify a default as shown in the following example.

Example 5.6. Example NULL handling

...

criteria = ‘(‘ || nvl(criteria, ‘(1 = 1)’) || ‘ and (Customer.Accounts.Birthdate = using.BirthDay))’;

• If the dynamic SQL is an UPDATE, DELETE, or INSERT command, and the user needs to

specify the "AS" clause (which would be the case if the number of rows effected needs to be

retrieved). The user will still need to provide a name and type for the return column if the into

clause is specified.

Example 5.7. Example with AS and INTO clauses

/* This name does not need to match the expected update command symbol "count". */

EXECUTE STRING <expression> AS x integer INTO #temp;

• Unless used in other parts of the procedure, tables in the dynamic command will not be seen

as sources in the Designer.

• When using the "AS" clause only the type information will be available to the Designer. ResultSet

columns generated from the "AS" clause then will have a default set of properties for length,

precision, etc.

5.1.3. Declaration Statement

A declaration statement declares a variable and its type. After you declare a variable, you can use

it in that block within the procedure and any sub-blocks. A variable is initialized to null by default,

but can also be assigned the value of an expression as part of the declaration statement.

Usage:

DECLARE <type> [VARIABLES.]<name> [= <expression>];

Example Syntax

Assignment Statement

49

• declare integer x;

• declare string VARIABLES.myvar = 'value';

Syntax Rules:

• You cannot redeclare a variable with a duplicate name in a sub-block

• The VARIABLES group is always implied even if it is not specified.

5.1.4. Assignment Statement

An assignment statement assigns a value to a variable by either evaluating an expression or

executing a SELECT command that returns a column value from a single row.

Usage:

<variable reference> = <expression>;

Example Syntax

• myString = 'Thank you';

• VARIABLES.x = SELECT Column1 FROM MyModel.MyTable;

5.1.5. If Statement

An IF statement evaluates a condition and executes either one of two blocks depending on

the result. You can nest IF statements to create complex branching logic. A dependent ELSE

statement will execute its block of code only if the IF statement evaluates to false.

Example 5.8. Example If Statement

IF (var1 = 'North America')

BEGIN

 ...statement...

END ELSE

BEGIN

 ...statement...

END

Note

NULL values should be considered in the criteria of an IF statement. IS NULL

criteria can be used to detect the presense of a NULL value.

Chapter 5. Procedures

50

5.1.6. Loop Statement

A LOOP statement is an iterative control construct that is used to cursor through a result set.

Usage:

LOOP ON <select statement> AS <cursorname>

BEGIN

 ...

END

5.1.7. While Statement

A WHILE statement is an iterative control construct that is used to execute a set of statements

repeatedly whenever a specified condition is met.

Usage:

WHILE <criteria>

BEGIN

 ...

END

5.1.8. Continue Statement

A CONTINUE statement is used inside a LOOP or WHILE construct to continue with the next

loop by skipping over the rest of the statements in the loop. It must be used inside a LOOP or

WHILE statement.

5.1.9. Break Statement

A BREAK statement is used inside a LOOP or WHILE construct to break from the loop. It must

be used inside a LOOP or WHILE statement.

5.1.10. Error Statement

An ERROR statement declares that the procedure has entered an error state and should abort.

This statement will also roll back the current transaction, if one exists. Any valid expression can

be specified after the ERROR keyword.

Example 5.9. Example Error Statement

ERROR 'Invalid input value: ' || nvl(Acct.GetBalance.AcctID, 'null');

Virtual Procedures

51

5.2. Virtual Procedures

Virtual procedures are defined using the Teiid procedural language. A virtual procedure has zero

or more input parameters, and a result set return type. Virtual procedures support the ability to

execute queries and other SQL commands, define temporary tables, add data to temporary tables,

walk through result sets, use loops, and use conditional logic.

5.2.1. Virtual Procedure Definition

Usage:

CREATE VIRTUAL PROCEDURE

BEGIN

 ...

END

The CREATE VIRTUAL PROCEDURE line demarcates the beginning of the procedure. The

BEGIN and END keywords are used to denote block boundaries. Within the body of the procedure,

any valid statement may be used.

The last command statement executed in the procedure will be return as the result. The output of

that statement must match the expected result set and parameters of the procedure.

5.2.2. Procedure Input Parameters

Virtual procedures can take zero or more input parameters. Each input has the following

information that is used during runtime processing:

• Name - The name of the input parameter

• Datatype - The design-time type of the input parameter

• Default value - The default value if the input parameter is not specified

• Nullable - NO_NULLS, NULLABLE, NULLABLE_UNKNOWN; parameter is optional if nullable,

and is not required to be listed when using named parameter syntax

You reference an input to a virtual procedure by using the fully-qualified name of the param (or

less if unambiguous). For example, MyModel.MyProc.Param1.

Example 5.10. Example of Referencing an Input Parameter for 'GetBalance'

Procedure

CREATE VIRTUAL PROCEDURE

BEGIN

Chapter 5. Procedures

52

 SELECT Balance FROM MyModel.Accts WHERE MyModel.Accts.AccountID =

 MyModel.GetBalance.AcctID;

END

5.2.3. Examle Virtual Procedures

This example is a LOOP that walks through a cursored table and uses CONTINUE and BREAK.

Example 5.11. Virtual Procedure Using LOOP, CONTINUE, BREAK

CREATE VIRTUAL PROCEDURE

BEGIN

 DECLARE double total;

 DECLARE integer transactions;

 LOOP ON (SELECT amt, type FROM CashTxnTable) AS txncursor

 BEGIN

 IF(txncursor.type <> 'Sale')

 BEGIN

 CONTINUE;

 END ELSE

 BEGIN

 total = (total + txncursor.amt);

 transactions = (transactions + 1);

 IF(transactions = 100)

 BEGIN

 BREAK;

 END

 END

 END

 SELECT total, (total / transactions) AS avg_transaction;

END

This example is uses conditional logic to determine which of two SELECT statements to execute.

Example 5.12. Virtual Procedure with Conditional SELECT

CREATE VIRTUAL PROCEDURE

BEGIN

 DECLARE string VARIABLES.SORTDIRECTION;

Executing Virtual Procedures

53

 VARIABLES.SORTDIRECTION = PartsVirtual.OrderedQtyProc.SORTMODE;

 IF (ucase(VARIABLES.SORTDIRECTION) = 'ASC')

 BEGIN

 SELECT * FROM PartsVirtual.SupplierInfo WHERE QUANTITY >

 PartsVirtual.OrderedQtyProc.QTYIN ORDER BY PartsVirtual.SupplierInfo.PART_ID;

 END ELSE

 BEGIN

 SELECT * FROM PartsVirtual.SupplierInfo WHERE QUANTITY >

 PartsVirtual.OrderedQtyProc.QTYIN ORDER BY PartsVirtual.SupplierInfo.PART_ID DESC;

 END

END

5.2.4. Executing Virtual Procedures

You execute procedures using the SQL EXECUTE command. If the procedure has defined inputs,

you specify those in a sequential list, or using "name=value" syntax. You must use the name of

the input parameter, scoped by the full procedure name if the parameter name is ambiguous in

the context of other elements or variables in the procedure.

A virtual procedure call will return a result set just like any SELECT, so you can use this in many

places you can use a SELECT. However, within a virtual procedure itself you cannot always use

an EXEC directly. Instead, you use the following syntax:

SELECT * FROM (EXEC ...) AS x

The following are some examples of how you can use the results of a virtual procedure call within

a virtual procedure definition:

• LOOP instruction - you can walk through the results and do work on a row-by-row basis

• Assignment instruction - you can run a command and set the first column / first row value

returned to a variable

• SELECT * INTO #temp FROM (EXEC ...) AS x - you can select the results from a virtual

procedure into a temp table, which you can then query against as if it were a physical table.

5.3. Update Procedures

Virtual tables are abstractions above physical sources. They typically union or join information

from multiple tables, often from multiple data sources or other views. Teiid can perform update

operations against virtual tables. Update commands - INSERT, UPDATE, or DELETE - against

a virtual table require logic to define how the tables and views integrated by the virtual table

Chapter 5. Procedures

54

are affected by each type of command. This transformation logic is invoked when an update

command is issued against a virtual table. Update procedures define the logic for how a user's

update command against a virtual table should be decomposed into the individual commands

to be executed against the underlying physical sources. Similar to virtual procedures , update

procedures have the ability to execute queries or other commands, define temporary tables, add

data to temporary tables, walk through result sets, use loops, and use conditional logic.

5.3.1. Update Procedure Definition

Usage:

CREATE PROCEDURE

BEGIN

 ...

END

The CREATE VIRTUAL PROCEDURE line demarcates the beginning of the procedure. The

BEGIN and END keywords are used to denote block boundaries. Within the body of the procedure,

any valid statement may be used.

5.3.2. Special Variables

You can use a number of special variables when defining your update procedure.

5.3.2.1. INPUT Variables

Every attribute in the virtual table whose UPDATE and INSERT transformations you are defining

has an equivalent variable named INPUT.<column_name>

When an INSERT or an UPDATE command is executed against the virtual table, these variables

are initialized to the values in the INSERT VALUES clause or the UPDATE SET clause

respectively.

In an UPDATE procedure, the default value of these variables, if they are not set by the command,

is null. In an INSERT procedure, the default value of these variables is the default value of the

virtual table attributes, based on their defined types. See CHANGING Variables for distinguishing

defaults from passed values.

5.3.2.2. CHANGING Variables

Similar to INPUT Variables, every attribute in the virtual table whose UPDATE and INSERT

transformations you are defining has an equivalent variable named CHANGING.<column_name>

When an INSERT or an UPDATE command is executed against the virtual table, these variables

are initialized to true or false depending on whether the INPUT variable was set by the

command.

For example, for a virtual table with columns A, B, C:

Update Procedure Command Criteria

55

If User Executes... Then...

INSERT INTO VT (A, B) VALUES (0, 1) CHANGING.A = true, CHANGING.B = true,

CHANGING.C = false

UPDATE VT SET C = 2 CHANGING.A = false, CHANGING.B = false,

CHANGING.C = true

5.3.2.3. ROWS_UPDATED Variable

Teiid returns the value of the VARIABLES.ROWS_UPDATED variable as a response to an update

command executed against the virtual table. Your procedure must set the value that returns when

an application executes an update command against the virtual table, which triggers invocation

of the update procedure. For example, if an UPDATE command is issued that affects 5 records,

the ROWS_UPDATED should be set appropriately so that the user will receive '5' for the count

of records affected.

5.3.3. Update Procedure Command Criteria

You can use a number of special SQL clauses when defining UPDATE or DELETE procedures.

These make it easier to do variable substitutions in WHERE clauses or to check on the change

state of variables without using a lot of conditional logic.

5.3.3.1. HAS CRITERIA

You can use the HAS CRITERIA clause to check whether the user’s command has a particular

kind of criteria on a particular set of attributes. This clause evaluates to either true or false. You

can use it anywhere you can use a criteria within a procedure.

Usage:

HAS [criteria operator] CRITERIA [ON (element list)]

Syntax Rules

• The criteria operator, can be one of =, <, >, <=, >=, <>, LIKE, IS NULL, or IN.

• If the ON clause is present, HAS CRITERIA will return true only if criteria was present on all

of the specified elements.

• The elements in a HAS CRITERIA ON clause always refer to virtual elements.

Some samples of the HAS CRITERIA clause:

SQL Result

HAS CRITERIA Checks simply whether there was any criteria

at all.

Chapter 5. Procedures

56

SQL Result

HAS CRITERIA ON (element1, element2) Checks whether the criteria uses element1 and

element2.

HAS = CRITERIA ON (element1) Checks whether the criteria has a comparison

criteria with = operator.

HAS LIKE CRITERIA Checks whether the criteria has a match

criteria using LIKE.

The HAS CRITERIA predicate is most commonly used in an IF clause, to determine if the user

issued a particular form of command and to respond appropriately.

5.3.3.2. TRANSLATE CRITERIA

You can use the TRANSLATE CRITERIA clause to convert the criteria from the user application’s

SQL command into the form required to interact with the target source or view tables. The

TRANSLATE CRITERIA statement uses the SELECT transformation to infer the element

mapping. This clause evaluates to a translated criteria that is evaluated in the context of a

command.

Usage:

TRANSLATE [criteria operator] CRITERIA [ON (element list)] [WITH (mapping

 list)]

Syntax Rules

• The criteria operator, can be one of =, <, >, <=, >=, <>, LIKE, IS NULL, or IN.

• If the ON clause is present, TRANSLATE CRITERIA will only form criteria using the specified

elements.

• The elements in a TRANSLATE CRITERIA ON clause always refer to virtual elements.

You can use these mappings either to replace the default mappings generated from the SELECT

transformation or to specify a reverse expression when a virtual element is defined by an

expression.

Some samples of the HAS TRANSLATE clause:

SQL Result

TRANSLATE CRITERIA Translates any user criteria using the default

mappings.

TRANSLATE CRITERIA WITH (element1 = 'A',

element2 = INPUT.element2 + 2)

Translates any criteria with some additional

mappings: element1 is always mapped to 'A'

and element2 is mapped to the incoming

element2 value + 2.

Update Procedure Processing

57

SQL Result

TRANSLATE = CRITERIA ON (element1) Translates only criteria that have = comparison

operator and involve element1.

The TRANSLATE CRITERIA, ON clause always refers to virtual elements. The WITH clause

always has items with form <elem> = <expression>, where the <elem> is a virtual element and

the <expression> specifies what that virtual element should be replaced with when TRANSLATE

CRITERIA translates the virtual criteria (from UPDATE or DELETE) into a physical criteria in

the command. By default, a mapping is created based on the SELECT clause of the SELECT

transformation (virtual column gets mapped to expression in SELECT clause at same position).

5.3.4. Update Procedure Processing

1. The user application submits the SQL command through one of SOAP, JDBC, or ODBC.

2. The virtual table that this SQL command is executed against is detected.

3. The correct procedure is chosen depending upon whether the command is an INSERT,

UPDATE, or DELETE.

4. The procedure is executed. The procedure itself can contain SQL commands of its own which

can be of different types than the command submitted by the user application that invoked the

procedure.

5. Commands, as described in the procedure, as issued to the individual physical data sources

or other views.

6. A value representing the number of rows changed is returned to the calling application.

58

Chapter 6.

59

Transaction Support
Teiid utilizes XA transactions for both participating in global transactions and for demarcating its

own local and command scoped transactions. JBoss Transactions [http://www.jboss.org/jbosstm/]

is used by Teiid as its internal transaction manager. See this documentation [http://www.jboss.org/

jbosstm/docs/index.html] for the advanced features provided by JBoss Transactions.

Table 6.1. Teiid Transaction Scopes

Scope Description

Command Treats the user command as if all source

commands are executed within the scope of

the same transaction. The AutoWrap execution

property controls the behavior of command

level transactions.

Local The transaction boundary is local defined by a

single client session.

Global Teiid participates in a global transaction as an

XA Resource.

6.1. AutoWrap Execution Property

Since user level commands may execute multiple source commands, users can specify the

AutoWrap execution property to control the transactional behavior of a user command when not

in a local or global transaction.

Table 6.2. AutoWrap Settings

Setting Description

OFF Do not wrap each command in a transaction. Individual source

commands may commit or rollback regardless of the success or failure

of the overall command.

ON Wrap each command in a transaction. This mode is the safest, but may

be burdonsome on performance.

OPTIMISTIC This is the default setting. Will not automatically wrap a command in

a transaction, instead throw an exception if the command executed is

transactionally unsafe. to execute outside of a transaction.

PESSIMITIC Will automatically wrap commands in a transaction, but only if the

command seems to be transactionally unsafe.

The concept of command safety with respect to a transaction is determined by Teiid based

upon command type and available metadata. Whenever any INSERT, UPDATE, DELETE, or

http://www.jboss.org/jbosstm/
http://www.jboss.org/jbosstm/
http://www.jboss.org/jbosstm/docs/index.html
http://www.jboss.org/jbosstm/docs/index.html
http://www.jboss.org/jbosstm/docs/index.html

Chapter 6. Transaction Support

60

EXECUTE (with update count greater than 0) command is detected and the success or failure of

that command is not the same as the user level command, then the command is deemed unsafe

without a transaction.

The update count may be set on dynamic SQL as part of the command and on all other procedures

as part of the procedure metadata in the model.

6.2. Updating Model Count

The term "updating model count" refers to the number of times any model is updated during the

execution of a command. It is used to determine whether a transaction, of any scope, is required

to safely execute the command.

Table 6.3. Updating Model Count Settings

Count Description Default For

0 No updates are performed by this command. Dynamic SQL instructions

1 Indicates that only one model is updated by this

command (and its subcommands). Also the success

or failure of that update corresponds to the success

of failure of the command. It should not be possible

for the update to succeed while the command fails.

Execution is not considered transactionally unsafe.

Physical procedures,

inserts, updates, and

deletes

* Any number greater than 1 indicates that exection is

transactionally unsafe and an XA transaction will be

required.

XQuery commands

By default Teiid will calculate the updating model count for a user query (which may be composed

of many subcommands) given the above table. Thus a command with a single update as a

subcommand may still require a transaction if the update is not tied to the success of the command.

Explicit values for updating model count may be set using Teiid Designer and directly in the

dynamic SQL command .

6.3. JDBC and Transactions

6.3.1. JDBC API Functionality

The transaction scopes above map to these JDBC modes:

• Command - Connection autoCommit property set to true.

• Local - Connection autoCommit property set to false. The transaction is committed by setting

autoCommit to true or calling java.sql.Connection.commit . The transaction can be rolled

back by a call to java.sql.Connection.rollback

J2EE Usage Models

61

• Global - the XAResource interface provided by an XAConnection is used to control the

transaction. Note that XAConnections are available only if Teiid is consumed through its

XADataSource, com.metamatrix.jdbc.MMDataSource . JEE containers or data access APIs

typically control XA transactions on behalf of application code.

6.3.2. J2EE Usage Models

J2EE provides three ways to manage transactions for beans:

• Client-controlled – the client of a bean begins and ends a transaction explicitly.

• Bean-managed – the bean itself begins and ends a transaction explicitly.

• Container-managed – the app server container begins and ends a transaction automatically.

In any of these cases, transactions may be either local or XA transactions, depending on how the

code and descriptors are written. Some kinds of beans (stateful session beans and entity beans)

are not required by the spec to support non-transactional sources, although the spec does allow

an app server to optionally support this with the caution that this is not portable or predictable.

Generally speaking, to support most typical EJB activities in a portable fashion requires some

kind of transaction support.

6.4. Limitations and Workarounds

• The client setting of transaction isolation level is not used. The transaction isolation level can

be set on each XA connector, however this isolation level is fixed and cannot be changed at

runtime for specific connections/commands.

• Since the client transaction isolation level is not used, Teiid internally assumes a level of

READ_COMMITTED. This implies that explicit transactions are not required for user level

commands performing multiple reads.

• Temporary tables are not transactional. For example, a global temporary table will retain all

inserts performed during a local transaction that was rolled back.

• Connectors may be set to immutable to prevent their participation in transactions. This is

useful in situations where update commands are being issued against a source that lacks XA

transaction capabilities.

62

Chapter 7.

63

System Tables

7.1. VDB and Model Metadata

7.1.1. System.VirtualDatabases

This table supplies information about the currently connected virtual database, of which there is

always exactly one (in the context of a connection).

Column Name Type Description

Name string The name of the VDB

Version string The version of the VDB

7.1.2. System.Models

This table supplies information about all the models in the virtual database, including the system

model itself (System).

Column Name Type Description

Name string Model name

Version string Model version

IsPhysical boolean True if source model, false for

view

SupportsWhereAll boolean Model supports queries with

no criteria

SupportsOrderBy boolean Model supports ORDER BY

queries

SupportsJoin boolean Model supports queries with

joins

SupportsDistinct boolean Model supports SELECT

DISTINCT queries

SupportsOuterJoin boolean Model supports queries with

outer joins

MaxSetSize integer Max number of values to pass

in an IN value set for a

dependent join

UID string Unique ID

Description string Description

PrimaryMetamodelURI string URI for the primary metamodel

describing this model

Chapter 7. System Tables

64

7.1.3. System.ModelProperties

This table supplies user-defined properties on models based on metamodel extensions. Normally,

this table is empty if no metamodel extensions are being used.

Column Name Type Description

ModelName string Model name

Name string Property name

Value string Property value

UID string Model unique ID

7.2. Table Metadata

7.2.1. System.Groups

This table supplies information about all the groups (tables, views, documents, etc) in the virtual

database.

Column Name Type Description

ModelName string Model name

FullName string Full group name

Name string Short group name

Type string Table type (Table, View,

Document, ...)

NameInSource string Name of this group in the

source

IsPhysical boolean True if this is a source model

UpperName string Upper-case full group name

for easier matching

SupportsUpdates boolean True if group can be updated

UID string Group unique ID

Cardinality integer Approximate number of rows

in the group

Description string Description

IsSystem boolean True if in system model

7.2.2. System.GroupProperties

This table supplies user-defined properties on groups based on metamodel extensions. Normally,

this table is empty if no metamodel extensions are being used.

System.Elements

65

Column Name Type Description

ModelName string Model name

GroupFullName string Full group name

Name string Property name

Value string Property value

GroupName string Short group name

GroupUpperName string Full upper-case group name

ID string Group unique ID

7.2.3. System.Elements

This table supplies information about all the elements (columns, tags, attributes, etc) in the virtual

database.

Column Name Type Description

ModelName string Model name

GroupName string Short group name

GroupFullName string Full group name

Name string Element name (not qualified)

Position integer Position in group (1-based)

NameInSource string Name of element in source

DataType string Teiid runtime data type name

Scale integer Number of digits after the

decimal point

ElementLength integer Element length (mostly used

for strings)

sLengthFixed boolean Whether the length is fixed or

variable

SupportsSelect boolean Element can be used in

SELECT

SupportsUpdates boolean Values can be inserted or

updated in the element

IsCaseSensitive boolean Element is case-sensitive

IsSigned boolean Element is signed numeric

value

IsCurrency boolean Element represents monetary

value

IsAutoIncremented boolean Element is auto-incremented

in the source

Chapter 7. System Tables

66

Column Name Type Description

NullType string Nullability: "Nullable", "No

Nulls", "Unknown"

MinRange string Minimum numeric value

MaxRange string Maximum numeric value

SearchType string Searchability: "Searchable",

"All Except Like", "Like Only",

"Unsearchable"

Format string Format of string value

DefaultValue string Default value

JavaClass string Java class that will be returned

Precision integer Number of digits in numeric

value

CharOctetLength integer Measure of return value size

Radix integer Radix for numeric values

GroupUpperName string Upper-case full group name

UpperName string Upper-case element name

UID string Element unique ID

Description string Description

7.2.4. System.ElementProperties

This table supplies user-defined properties on groups based on metamodel extensions. Normally,

this table is empty if no metamodel extensions are being used.

Column Name Type Description

ModelName string Model name

GroupFullName string Full group name

ElementName string Element name

Name string Property name

Value string Property value

GroupName string Short group name

ElementUpperName string Upper-case element name

GroupUpperName string Upper-case group name

UID string Element unique ID

7.2.5. System.Keys

This table supplies information about primary, foreign, and unique keys.

System.KeyProperties

67

Column Name Type Description

ModelName string Model name

GroupFullName string Full group name

Name string Key name

Description string Description

NameInSource string Name of key in source system

Type string Type of key: "Primary",

"Foreign", "Unique", etc

IsIndexed boolean True if key is indexed

GroupName string Short group name

GroupUpperName string Upper-case full group name

RefKeyUID string Referenced key UID (if foreign

key)

UID string Key unique ID

7.2.6. System.KeyProperties

This table supplies user-defined properties on keys based on metamodel extensions. Normally,

this table is empty if no metamodel extensions are being used.

Column Name Type Description

Column Name Type Description

ModelName string Model name

GroupFullName string Full group name

KeyName string Key name

Name string Extension property name

Value string Extension property value

GroupName string Short group name

GroupUpperName string Upper-case full group name

UID string Key unique ID

7.2.7. System.KeyElements

This table supplies information about the elements referenced by a key.

Column Name Type Description

ModelName string Model name

GroupFullName string Full group name

Chapter 7. System Tables

68

Column Name Type Description

Name string Element name

KeyName string Key name

KeyType string Key type: "Primary", "Foreign",

"Unique", etc

GroupName string Short group name

GroupUpperName string Upper case full group name

RefKeyUID string Referenced key UID

UID string Key UID

Position integer Position in key

7.3. Procedure Metadata

7.3.1. System.Procedures

This table supplies information about the procedures in the virtual database.

Column Name Type Description

ModelName string Model name

Name string Procedure name

NameInSource string Procedure name in source

system

ReturnsResults boolean Returns a result set

ModelUID string Model UID

UID string Procedure UID

Description string Description

FullName string Full procedure name

7.3.2. System.ProcedureProperties

This table supplies user-defined properties on procedures based on metamodel extensions.

Normally, this table is empty if no metamodel extensions are being used.

Column Name Type Description

ModelName string Model name

ProcedureName string Procedure name

Name string Property name

Value string Property value

UID string Procedure UID

System.ProcedureParams

69

7.3.3. System.ProcedureParams

This supplies information on procedure parameters.

Column Name Type Description

ModelName string Model name

ProcedureName string Procedure name

Name string Parameter name

DataType string Teiid runtime data type name

Position integer Position in procedure args

Type string Parameter direction: "In",

"Out", "InOut", "ResultSet",

"ReturnValue"

Optional boolean Parameter is optional

Precision integer Precision of parameter

TypeLength integer Length of parameter value

Scale integer Scale of parameter

Radix integer Radix of parameter

NullType string Nullability: "Nullable", "No

Nulls", "Unknown"

7.4. Datatype Metadata

7.4.1. System.DataTypes

This table supplies information on datatypes.

Column Name Type Description

Name string Teiid design-time type name

IsStandard boolean Always false

IsPhysical boolean Always false

TypeName string Design-time type name (same

as Name)

JavaClass string Java class returned for this

type

Scale integer Max scale of this type

TypeLength integer Max length of this type

NullType string Nullability: "Nullable", "No

Nulls", "Unknown"

Chapter 7. System Tables

70

Column Name Type Description

IsSigned boolean Is signed numeric?

IsAutoIncremented boolean Is auto-incremented?

IsCaseSensitive boolean Is case-sensitive?

Precision integer Max precision of this type

Radix integer Radix of this type

SearchType string Searchability: "Searchable",

"All Except Like", "Like Only",

"Unsearchable"

UID string Data type unique ID

RuntimeType string Teiid runtime data type name

BaseType string Base type

Description string Description of type

7.4.2. System.DataTypeProperties

This table supplies user-defined properties on data types based on metamodel extensions.

Normally, this table is empty if no metamodel extensions are being used.

Column Name Type Description

DataType string Data type name

Name string Property name

Value string Property value

UID string Data type UID

Chapter 8.

71

Connectors

8.1. Common Connector Properties

These properties are common to all connectors.

Property Description Type Default

ConnectorBindingName The name of the connector

binding. Must be unique

across all connector bindings.

This property is not editable,

and is not seen in the Designer

in the connector properties

table.

string

ConnectorClass The class name of the custom

connector class that connects

to the data source. Required.

Not editable.

string

ConnectorClassPath The class path of the custom

connector class that connects

to the data source. Required.

string

ConnectorMaxThreads The maximum number of

connector worker threads.

Required.

integer

ConnectorThreadTTL The maximum length of time

a connector thread may live in

idle state. Required.

integer - milliseconds

ExceptionOnMaxRows Specifies whether or not an

exception is thrown when

the number of rows for a

query exceeds the value of

MaxResultRows. If this flag is

set to false, then no more rows

than MaxResultRows will be

returned, but no exception will

be thrown.

boolean

MaxResultRows The maximum number of

rows to be processed by

the connector from a source.

A custom connector should

stop adding rows to the

ResultsCollector when the

integer

Chapter 8. Connectors

72

Property Description Type Default

number of rows reaches this

value. Optional – if not

specified, all rows will be

processed.

8.2. Source Security

Teiid can use the security mechanisms of individual data sources during execution.

The use of source security is driven off the credentials JDBC property.

There are 3 basic use cases:

1. Specify the credentials for all sources

2. Pass the session logon credentials to all sources

3. Some combination of the previous two

8.2.1. Specific Source Credentials

This use case is for when you want to specify the logon credentials for all the source systems in

the JDBC URL. The form of the credentials property is:

credentials=(system=<sys1>,user=<uname>, password=<pwd>/system=<sys2>,...)

Note

Any property can be specified for a system, using the name=value syntax, as long

as the connector associated with the source understands the property or can pass

it to the source.

The following properties are "well-known" and required:

• system - The name of the system; this must correspond to the connector binding name

• user - The username that can be used to connect to the system; must be valid user of the

system being accessed

• password - The password for the user in the target system; the user and password are used

to authenticate to the target system.

Example 8.1. Example URL With Two Source Credentials

jdbc:metamatrix:MyVDB@mm://

HostA:5001;credentials=(system=s1,user=u1,password=p1/

system=s2,user=u2,password=p2)

Using Session Credentials

73

8.2.2. Using Session Credentials

This use case uses the session credentials for all source systems.

Example 8.2. Example URL With Session Credentials

jdbc:metamatrix:MyVDB@mm://HostA:5001;credentials=defaultToLogon

8.2.3. Session and Specific Source Credentials

The above techniques can be used in combination with one another as needed.

Example 8.3. Combination of Source Credential Approaches

jdbc:metamatrix:MyVDB@mm://HostA:5001;

credentials=defaultToLogon,(system=s1,user=u1,password=p1)

8.2.4. Configuring Connectors For Source Security

When source security is used, the connector bindings for the sources must be configured

appropriately.

• Connector binding name - this is the name used in the system part of the credentials property

• For JDBC connectors, the extension connection factory class name must be set for

user instead of single identity. For example the Oracle JDBC connector would use

com.metamatrix.connector.jdbc.oracle.OracleUserIdentityConnectionFactory

74

Chapter 9.

75

Federated Planning
Teiid at its core is a federated relational query engine. This query engine allows you to treat all of

your data sources as one virtual database and access them in a single SQL query. This allows you

to focus on building your application, not on hand-coding joins, and other relational operations,

between data sources.

9.1. Overview

When the query engine receives an incoming SQL query it performs the following operations:

1. Parsing - validate syntax and convert to internal form

2. Resolving - link all identifiers to metadata and functions to the function library

3. Validating - validate SQL semantics based on metadata references and type signatures

4. Rewriting - rewrite SQL to simplify expressions and criteria

5. Logical plan optimization - the rewritten canonical SQL is converted into a logical plan for in-

depth optimization. The Teiid optimizer is predominantly rule-based. Based upon the query

structure and hints a certain rule set will be applied. These rules may trigger in turn trigger the

execution of more rules. Within several rules, Teiid also takes advantage of costing information.

The logical plan optimization steps can be seen by using the OPTION DEBUG clause and are

described in the query planner section.

6. Processing plan conversion - the logic plan is converted into an executable form where the

nodes are representative of basic processing operations. The final processing plan is displayed

as the query plan .

The logical query plan is a tree of operations used to transform data in source tables to the

expected result set. In the tree, data flows from the bottom (tables) to the top (output). The primary

logical operations are select (select or filter rows based on a criteria), project (project or compute

column values), join , source (retrieve data from a table), sort (ORDER BY), duplicate removal

(SELECT DISTINCT), group (GROUP BY), and union (UNION).

For example, consider the following query that retrieves all engineering employees born since

1970.

Example 9.1. Example query

SELECT e.title, e.lastname FROM Employees AS e JOIN

Departments AS d ON e.dept_id = d.dept_id WHERE year(e.birthday) >= 1970 AND d.dept_name

 = 'Engineering'

Chapter 9. Federated Planning

76

Logically, the data from the Employees and Departments tables are retrieved, then joined, then

filtered as specified, and finally the output columns are projected. The canonical query plan thus

looks like this:

Data flows from the tables at the bottom upwards through the join, through the select, and finally

through the project to produce the final results. The data passed between each node is logically

a result set with columns and rows.

Of course, this is what happens logically , not how the plan is actually executed. Starting

from this initial plan, the query planner performs transformations on the query plan tree to

produce an equivalent plan that retrieves the same results faster. Both a federated query planner

and a relational database planner deal with the same concepts and many of the same plan

transformations. In this example, the criteria on the Departments and Employees tables will be

pushed down the tree to filter the results as early as possible.

In both cases, the goal is to retrieve the query results in the fastest possible time. However, the

relational database planner does this primarily by optimizing the access paths in pulling data from

storage.

In contrast, a federated query planner is less concerned about storage access because it is

typically pushing that burden to the data source. The most important consideration for a federated

query planner is minimizing data transfer.

Federated Optimizations

77

9.2. Federated Optimizations

9.2.1. Access Patterns

Access patterns are used on both physical and virtual sources to specify the need for criteria

against a set of elements. Failure to supply the criteria will result in a planning error, rather than a

run-away source query. Access patterns can be applied in a set such that only one of the access

patterns is required to be satisfied.

Currently any form of criteria may satisfy an access pattern as long as it contains references to

affect elements.

9.2.2. Pushdown

In federated database systems pushdown refers to decomposing the user level query into source

queries that perform as much work as possible on their respective source system. Pushdown

analysis requires knowledge of source system capabilities, which is provided to Teiid though the

Connector API. Any work not performed at the source is then processed in Federate's relational

engine.

Based upon capabilities, Teiid will manipulate the query plan to ensure that each source performs

as much joining, filtering, grouping, etc. as possible. In may cases, such as with join ordering,

planning is a combination of standard relational techniques and, cost based and heuristics for

pushdown optimization.

Criteria and join push down are typically the most important aspects of the query to push down

when performance is a concern. See Query Plans on how to read a plan to ensure that source

queries are as efficient as possible.

9.2.3. Dependent Joins

A special optimization called a dependent join is used to reduce the rows returned from one of the

two relations involved in a multi-source join. In a dependent join, queries are issued to each source

sequentially rather than in parallel, with the results obtained from the first source used to restrict

the records returned from the second. Dependent joins can perform some joins much faster by

drastically reducing the amount of data retrieved from the second source and the number of join

comparisons that must be performed.

The conditions when a dependent join is used are determined by the query planner based on

access patterns, hints, and costing information.

Teiid supports the MAKEDEP and MAKENOTDEP hints. Theses are can be placed in either the

OPTION clause or directly in the FROM clause . As long as all can be met, the MAKEDEP and

MAKENOTDEP hints override any use of costing information.

Chapter 9. Federated Planning

78

Tip

The MAKEDEP hint should only be used if the proper query plan is not chosen by

default. You should ensure that your costing information is representative of the

actual source cardinality. An inappropriate MAKEDEP hint can force an inefficient

join structure and may result in many source queries.

9.2.4. Copy Criteria

Copy criteria is an optimization that creates additional predicates based upon combining

join and where clause criteria. For example, equi-join predicates (source1.table.column =

source2.table.column) are used to create new predicates by substituting source1.table.column

for source2.table.column and vice versa. In a cross source scenario, this allows for where criteria

applied to a single side of the join to be applied to both source queries

9.2.5. Projection Minimization

Teiid ensures that each pushdown query only projects the symbols required for processing the

user query. This is especially helpful when querying through large intermediate view layers.

9.2.6. Partial Aggregate Pushdown

Partial aggregate pushdown allows for grouping operations above multi-source joins to be

decomposed so that some of the grouping and aggregate functions may be pushed down to the

sources.

9.2.7. Optional Join

The optional join hint indicates to the optimizer that a join clause should be omitted if none of its

columns are used in either user criteria or output columns in the result. This hint is typically only

used in view layers containing multi-source joins.

The optional join hint is applied as a comment on a join clause.

Example 9.2. Example Optional Join Hint

select a.column1, b.column2 from a inner join /* optional */ b on a.key = b.key

Suppose that the preceding example defined a view layer X. If X is queried in such a way as to

not need b.column2, then the optional join hint will cause b to be omitted from the query plan. The

result would be the same as if X were defined as:

select a.column1 from a

Standard Relational Techniques

79

Tip

When a join clause is omitted, the relevant join criteria is not applied. Thus it is

possible that the query results may not have the same cardinality or even the same

row values as when the join is fully applied.

9.2.8. Standard Relational Techniques

Teiid also incorporates many standard relational techniques to ensure efficient query plans.

• Rewrite analysis for function simplification and evaluation.

• Boolean optimizations for basic criteria simplification.

• Removal of unnecessary view layers.

• Removal of unnecessary sort operations.

• Advanced search techniques through the left-linear space of join trees.

• Parallelizing of source access during execution.

9.3. Federated Failure Modes

9.3.1. Partial Results

Teiid provides the capability to obtain "partial results" in the event of data source unavailability.

This is especially useful when unioning information from multiple sources, or when doing a left

outer join, where you are 'appending' columns to a master record but still want the record if the

extra info is not available.

If one or more data sources are unavailable to return results, then the result set obtained from

the remaining available sources will be returned. In the case of joins, an unavailable data source

essentially contributes zero tuples to the result set.

9.3.1.1. Setting Partial Results Mode

Partial results mode is off by default but can be turned on by default for all queries in a Connection

with either setPartialResultsMode("true") on a DataSource or partialResultsMode=true on a JDBC

URL. In either case, partial results mode may be overridden on a per-query basis by setting the

execution property on the Statement. To set this property, cast to the Teiid Statement JDBC API

extension interface com.metamatrix.jdbc.api.Statement

Example 9.3. Example - Setting Partial Results Mode

Statement statement = ...obtain statement from Connection...

Chapter 9. Federated Planning

80

com.metamatrix.jdbc.api.Statement mmStatement =

 (com.metamatrix.jdbc.api.Statement) statement;

mmStatement.setExecutionProperty(

 ExecutionProperties.PROP_PARTIAL_RESULTS_MODE, "true");

This property can be set before each execution (via an execute method) on a Statement (or

PreparedStatement or CallableStatement).

9.3.1.2. Source Unavailability

A source is considered to be 'unavailable' if the connector binding associated with the source

issues an exception in response to a query. The exception will be propagated to the query

processor, where it will become a warning in the result set.

Warning

Since Teiid supports multi-source cursoring, it is possible that the unavailability of

a data source will not be determined until after the first batch of results have been

returned to the client. This can happen in the case of unions, but not joins. In this

situation, there will be no warnings in the result set when the client is processing

the first batch of results. The client will be responsible for periodically checking the

status of warnings in the results object as results are being processed, to see if a

new warning has been added due to the detection of an unavailable source. [Note

that client applications have no notion of ‘batches’, which are purely a server-side

entity. Client apps deal only with records.]

For each source that is excluded from a query, a warning will be generated describing the source

and the failure. These warnings can be obtained from the Statement.getWarnings() method. This

method returns a SQLWarning object but in the case of "partial results" warnings, this will be an

object of type com.metamatrix.jdbc.api.PartialResultsWarning. This class can be used to obtain

a list of all the failed connectors by name and to obtain the specific exception thrown by each

connector.

Example 9.4. Example - Printing List of Failed Sources

statement.setExecutionProperty(PROP_PARTIAL_RESULTS_MODE, "true");

ResultSet results = statement.executeQuery("SELECT Name FROM Accounts");

SQLWarning warning = statement.getWarnings();

if(warning instanceof PartialResultsWarning) {

 PartialResultsWarning partialWarning = (PartialResultsWarning)warning;

 Collection failedConnectors = partialWarning.getFailedConnectors();

Query Plans

81

 Iterator iter = failedConnectors.iterator();

 while(iter.hasNext()) {

 String connectorName = (String) iter.next();

 SQLException connectorException = partialWarning.getConnectorException(connectorName);

 System.out.println(connectorName + ": " + ConnectorException.getMessage();

 }

}

9.4. Query Plans

When integrating information using a federated query planner, it is useful to be able to view

the query plans that are created, to better understand how information is being accessed and

processed, and to troubleshoot problems.

A query plan is a set of instructions created by a query engine for executing a command submitted

by a user or application. The purpose of the query plan is to execute the user's query in as efficient

a way as possible.

9.4.1. Getting a Query Plan

You can get a query plan any time you execute a command. The SQL options available are as

follows:

• OPTION SHOWPLAN - Returns the plan in addition to any results

• OPTION PLANONLY - Returns the plan, does not execute the command though

With the above options, the query plan is available from the Statement object by casting to the

com.metamatrix.jdbc.api.Statement interface.

Example 9.5. Retrieving a Query Plan

ResultSet rs = statement.executeQuery("select ...");

com.metamatrix.jdbc.api.Statement mmstatement =

 (com.metamatrix.jdbc.api.Statement)statement;

PlanNode queryPlan = mmstatement.getPlanDescription();

System.out.println(XMLOutputVisitor.convertToXML(queryPlan);

The query plan is made available automatically in several of Teiid's tools.

9.4.2. Analyzing a Query Plan

Once a query plan has been obtained you will most commonly be looking for:

• Source pushdown -- what parts of the query that got pushed to each source

Chapter 9. Federated Planning

82

• Join ordering

• Join algorithm used - merge or nested loop.

• Presence of federated optimizations, such as dependent joins.

• Join criteria type mismatches.

All of these issues presented above will be present subsections of the plan that are specific to

relational queries. If you are executing a procedure or generating an XML document, the overall

query plan will contain additional information related the surrounding procedural execution.

A query plan consists of a set of nodes organized in a tree structure. As with the above example,

you will typically be interested in analyzing the textual form of the plan.

In a procedural context the ordering of child nodes implies the order of execution. In most other

situation, child nodes may be executed in any order even in parallel. Only in specific optimizations,

such as dependent join, will the children of a join execute serially.

9.4.3. Relational Plans

Relational plans represent the actually processing plan that is composed of nodes that are the

basic building blocks of logical relational operations. Physical relational plans differ from logical

relational plans in that they will contain additional operations and execution specifics that were

chosen by the optimizer.

The nodes for a relational query plan are:

• Access - Access a source. A source query is sent to the connector binding associated with the

source. [For a dependent join, this node is called Dependent Select.]

• Project - Defines the columns returned from the node. This does not alter the number of records

returned. [When there is a subquery in the Select clause, this node is called Dependent Project.]

• Project Into - Like a normal project, but outputs rows into a target table.

• Select - Select is a criteria evaluation filter node (WHERE / HAVING). [When there is a subquery

in the criteria, this node is called Dependent Select.]

• Join - Defines the join type, join criteria, and join strategy (merge or nested loop).

• Union - There are no properties for this node, it just passes rows through from it's children

• Sort - Defines the columns to sort on, the sort direction for each column, and whether to remove

duplicates or not.

• Dup Removal - Same properties as for Sort, but the removeDups property is set to true

Relational Plans

83

• Group - Groups sets of rows into groups and evaluates aggregate functions.

• Null - A node that produces no rows. Usually replaces a Select node where the criteria is always

false (and whatever tree is underneath). There are no properties for this node.

• Plan Execution - Executes another sub plan.

• Limit - Returns a specified number of rows, then stops processing. Also processes an offset

if present.

• Dependent Feeder - This node accepts its input stream and forwards to its parent unchanged

but also feeds all dependent sources that need the stream of data. Thus, this node actually

performs no work within the tree, just diverts a copy of the tuple stream to listening nodes.

• Dependent Wait - This node waits until a criteria requiring dependent values below this node

has the necessary data to continue. At that point, it continues processing on it's subplan and

merely forwards data from the child to the parent.

9.4.3.1. Node Statistics

Every node has a set of statistics that are output. These can be used to determine the amount

of data flowing through the node.

Statistic Description Units

Node Output Rows Number of records output from

the node

count

Node Process Time Time processing in this node

only

millisec

Node Cumulative Process

Time

Elapsed time from beginning

of processing to end

millisec

Node Cumulative Next Batch

Process Time

Time processing in this node +

child nodes

millisec

Node Next Batch Calls Number of times a node was

called for processing

count

Node Blocks Number of times a blocked

exception was thrown by this

node or a child

count

In addition to node statistics, some nodes display cost estimates computed at the node.

Cost Estimates Description Units

Estimated Node Cardinality Estimated number of records

that will be output from the

node; -1 if unknown

count

Chapter 9. Federated Planning

84

9.5. Query Planner

For each sub-command in the user command an appropriate kind of sub-planner is used

(relational, XML, XQuery, procedure, etc).

Each planner has three primary phases:

1. Generate canonical plan

2. Optimization

3. Plan to process converter - converts plan data structure into a processing form

9.5.1. Relational Planner

The GenerateCanonical class generates the initial (or “canonical” plan). This plan is based on

the typical logical order that a SQL query gets executed. A SQL select query has the following

possible clauses (all but SELECT are optional): SELECT, FROM, WHERE, GROUP BY, HAVING,

ORDER BY, LIMIT. These clauses are logically executed in the following order:

1. FROM (read and join all data from tables)

2. WHERE (filter rows)

3. GROUP BY (group rows into collapsed rows)

4. HAVING (filter grouped rows)

5. SELECT (evaluate expressions and return only requested columns)

6. INTO

7. ORDER BY (sort rows)

8. LIMIT (limit result set to a certain range of results)

These clause translate into the following types of planning nodes:

• FROM: Source node for each from clause item, Join node (if >1 table)

• WHERE: Select node

• GROUP BY: Group node

• GROUP BY: Group node

• SELECT: Project node and DupRemoval node (for SELECT DISTINCT)

• INTO: Project node with a SOURCE Node

• INTO: Project node with a SOURCE Node

• LIMIT: Limit node

Relational Planner

85

• UNION, EXCEPT, INTERSECT: SetOp Node

There is also a Null Node that can be created as the result of rewrite or planning optimizations.

It represents a node that produces no rows

Relational optimization is based upon rule execution that evolves the initial plan into the execution

plan. There are a set of pre-defined rules that are dynamically assembled into a rule stack for

every query. The rule stack is assembled based on the contents of the user’s query and its

transformations. For example, if there are no virtual layers, then RuleMergeVirtual, which merges

virtual layers together, is not needed and will not be added to the stack. This allows the rule stack

to reflect the complexity of the query.

Logically the plan node data structure represents a tree of nodes where the source data comes

up from the leaf nodes (typically Access nodes in the final plan), flows up through the tree and

produces the user’s results out the top. The nodes in the plan structure can have bidirectional

links, dynamic properties, and allow any number of child nodes. Processing plan nodes in contrast

typical have fixed properties, and only allow for binary operations - due to algorithmic limitations.

Below are some of the rules included in the planner:

• RuleRemoveSorts - removes sort nodes that do not have an effect on the result. This most

common when a view has an non-limited ORDER BY.

• RulePlaceAccess - insert an Access node above every physical Source node. The source node

represents a table typically. An access node represents the point at which everything below

the access node gets pushed to the source. Later rules focus on either pushing stuff under the

access or pulling the access node up the tree to move more work down to the data sources.

 This rule is also responsible for placing .

• RulePushSelectCriteria - pushes select criteria down through unions, joins, and views into the

source below the access node. In most cases movement down the tree is good as this will filter

rows earlier in the plan. We currently do not undo the decisions made by PushSelectCriteria.

 However in situations where criteria cannot be evaluated by the source, this can lead to sub

optimal plans.

One of the most important optimization related to pushing criteria, is how the criteria will be

pushed trough join. Consider the following plan tree that represents a subtree of the plan for

the query "select ... from A inner join b on (A.x = B.x) where A.y = 3"

 SELECT (B.y = 3)

 |

 JOIN - Inner Join on (A.x = B.x

 / \

 SRC (A) SRC (B)

Note: SELECT nodes represent criteria, and SRC stands for SOURCE.

Chapter 9. Federated Planning

86

It is always valid for inner join and cross joins to push (single source) criteria that are above the

join, below the join. This allows for criteria originating in the user query to eventually be present

in source queries below the joins. This result can be represented visually as:

 JOIN - Inner Join on (A.x = B.x)

 / \

 / SELECT (B.y = 3)

 | |

 SRC (A) SRC (B)

The same optimization is valid for criteria specified against the outer side of an outer join. For

example:

 SELECT (B.y = 3)

 |

 JOIN - Right Outer Join on (A.x = B.x)

 / \

 SRC (A) SRC (B)

Becomes

 JOIN - Right Outer Join on (A.x = B.x)

 / \

 / SELECT (B.y = 3)

 | |

 SRC (A) SRC (B)

However criteria specified against the inner side of an outer join needs special consideration.

 The above scenario with a left or full outer join is not the same. For example:

 SELECT (B.y = 3)

 |

 JOIN - Left Outer Join on (A.x = B.x)

 / \

 SRC (A) SRC (B)

Can become (available only after 5.0.2):

Relational Planner

87

 JOIN - Inner Join on (A.x = B.x)

 / \

 / SELECT (B.y = 3)

 | |

 SRC (A) SRC (B)

Since the criterion is not dependent upon the null values that may be populated from the inner

side of the join, the criterion is eligible to be pushed below the join – but only if the join type is

also changed to an inner join.

On the other hand, criteria that are dependent upon the presence of null values CANNOT be

moved. For example:

 SELECT (B.y is null)

 |

 JOIN - Left Outer Join on (A.x = B.x)

 / \

 SRC (A) SRC (B)

This plan tree must have the criteria remain above the join, since the outer join may be

introducing null values itself. This will be true regardless of which version of Teiid is used.

• RulePushNonJoinCriteria – this rule will push criteria out of an on clause if it is not necessary

for the correctness of the join.

• RuleRaiseNull – this rule will raise null nodes to their highest possible point. Raising a null node

removes the need to consider any part of the old plan that was below the null node.

• RuleMergeVirtual - merges virtual layers together. Virtual layers are connected by nesting

canonical plans under source leaf nodes of the parent plan. Each canonical plan is also

sometimes referred to as a “query frame”. Merge virtual attempts to merge child frames into

the parent frame. The merge involves renaming any symbols in the lower frame that overlap

with symbols in the upper frame. It also involves merging the join information together.

• RuleRemoveOptionalJoins – removes optional join nodes form the plan tree as soon as possible

so that planning will be more optimal.

• RulePlanJoins – this rule attempts to find an optimal ordering of the joins performed in the

plan, while ensuring that dependencies are met. This rule has three main steps. First it must

determine an ordering of joins that satisfy the present. Second it will heuristically create joins

that can be pushed to the source (if a set of joins are pushed to the source, we will not attempt

to create an optimal ordering within that set. More than likely it will be sent to the source in

the non-ANSI multi-join syntax and will be optimized by the database). Third it will use costing

Chapter 9. Federated Planning

88

information to determine the best left-linear ordering of joins performed in the processing engine.

 This third step will do an exhaustive search for 6 or less join sources and is heuristically driven

by join selectivity for 7 or more sources.

• RuleCopyCriteria - this rule copies criteria over an equality criteria that is present in the criteria

of a join. Since the equality defines an equivalence, this is a valid way to create a new criteria

that may limit results on the other side of the join (especially in the case of a multi-source join).

• RuleCleanCriteria - this rule cleans up criteria after all the other rules.

• RuleMergeCriteria - looks for adjacent criteria nodes and merges them together. It looks for

adjacent identical conjuncts and removes duplicates.

• RuleRaiseAccess - this rule attempts to raise the Access nodes as far up the plan as possible.

 This is mostly done by looking at the source’s capabilities and determining whether the

operations can be achieved in the source or not.

• RuleChooseDependent - this rule looks at each join node and determines whether the join

should be made dependent and in which direction. Cardinality, the number of distinct values,

and primary key information are used in several formulas to determine whether a dependent

join is likely to be worthwhile. The dependent join differs in performance ideally because a

fewer number of values will be returned from the dependent side. Also, we must consider the

number of values passed from independent to dependent side. If that set is larger than the max

number of values in an IN criteria on the dependent side, then we must break the query into

a set of queries and combine their results. Executing each query in the connector has some

overhead and that is taken into account. Without costing information a lot of common cases

where the only criteria specified is on a non-unique (but strongly limiting) field are missed. A

join is eligible to be dependent if:

1. there is at least one equi-join criterion, i.e. tablea.col = tableb.col

2. the join is not a full outer join and the dependent side of the join is on the inner side of the join

The join will be made dependent if one of the following conditions, listed in precedence order,

holds:

1. There is an unsatisfied access pattern that can be satisfied with the dependent join criteria

2. The potential dependent side of the join is marked with an option makedep

3. (4.3.2) if costing was enabled, the estimated cost for the dependent join (5.0+ possibly in

each direction in the case of inner joins) is computed and compared to not performing the

dependent join. If the costs were all determined (which requires all relevant table cardinality,

column ndv, and possibly nnv values to be populated) the lowest is chosen.

4. If key metadata information indicates that the potential dependent side is not “small” and

the other side is “not small” or (5.0.1) the potential dependent side is the inner side of a left

outer join.

Procedure Planner

89

Dependent join is the key optimization we use to efficiently process multi-source joins.

Instead of reading all of source A and all of source B and joining them on A.x = B.x, we read all

of A then build a set of A.x that are passed as a criteria when querying B. In cases where A is

small and B is large, this can drastically reduce the data retrieved from B, thus greatly speeding

the overall query.

• RuleChooseJoinStrategy – Determines the base join strategy. Currently this is a decision as

to whether to use a merge join rather than the default strategy, which is a nested loop join.

 Ideally the choice of a hash join would also be evaluated here. Also costing should be used

to determine the strategy cost.

• - RuleCollapseSource - this rule removes all nodes below an Access node and collapses them

into an equivalent query that is placed in the Access node.

• RuleAssignOutputElements - this rule walks top down through every node and calculates the

output columns for each node. Columns that are not needed are dropped at every node. This

is done by keeping track of both the columns needed to feed the parent node and also keeping

track of columns that are “created” at a certain node.

• RuleValidateWhereAll - this rule validates a rarely used model option.

• RuleAccessPatternValidation – validates that all access patterns have been satisfied.

9.5.2. Procedure Planner

The procedure planner is fairly simple. It converts the statements in the procedure into instructions

in a program that will be run during processing. This is mostly a 1-to-1 mapping and very little

optimization is performed.

9.5.3. XML Planner

The XML Planner creates an XML plan that is relatively close to the end result of the Procedure

Planner – a program with instructions. Many of the instructions are even similar (while loop,

execute SQL, etc). Additional instructions deal with producing the output result document (adding

elements and attributes).

The XML planner does several types of planning (not necessarily in this order):

- Document selection - determine which tags of the virtual document should be excluded from

the output document. This is done based on a combination of the model (which marks parts of

the document excluded) and the query (which may specify a subset of columns to include in the

SELECT clause).

- Criteria evaluation - breaks apart the user’s criteria, determine which result set the criteria should

be applied to, and add that criteria to that result set query.

- Result set ordering - the query’s ORDER BY clause is broken up and the ORDER BY is applied

to each result set as necessary

Chapter 9. Federated Planning

90

- Result set planning - ultimately, each result set is planned using the relational planner and taking

into account all the impacts from the user’s query

- Program generation - a set of instructions to produce the desired output document is produced,

taking into account the final result set queries and the excluded parts of the document. Generally,

this involves walking through the virtual document in document order, executing queries as

necessary and emitting elements and attributes.

XML programs can also be recursive, which involves using the same document fragment for both

the initial fragment and a set of repeated fragments (each a new query) until some termination

criteria or limit is met.

9.5.4. XQuery Planner

XQuery planning uses the embedded Saxon XQuery engine to compile the query. There is no

direct optimization by Teiid.

Chapter 10.

91

Architecture

10.1. Terminology

• VM or Process – a processing node and Java VM. Now typically called a Process or “node”

depending on context.

• Host – a machine that is “hosting” one or more VMs.

• Host controller – an app that runs on a host and can stop/start/control a VM

• VM controller – the component of a VM that starts up the VM, connects to the distributed

message bus and registry, and triggers the service controller to start all the services for this VM.

• Service – a subsystem running in a VM (often in many VMs) and providing a related set of

functionality

• Registry – a distributed service registry (one instance in each VM and host controller) that shares

the status of current system (existence of VMs and services), and provides remote access to

other services via RMI

• Service Controller – a component within the VM that the registry uses to start/stop/control

services

• Repository database – the repository database stores the system configuration and other

service-specific information (sessions, users, entitlements, vdbs, etc).

In addition to these main components, the service platform provides a core set of services available

to applications built on top of the service platform. These services are:

• Session – the Session service manages active session information. Active sessions are stored

in a distributed cache and shared between Session services in each VM. Sessions are also

persisted in the server repository database.

• Membership – the Membership service manages authentication, users, and groups. This

was redesigned in the 5.5 release to provide primary support for LDAP authentication and

authorization. Custom membership modules can allow be developed as needed.

• Authorization – the Authorization service manages user entitlements. This service persists

entitlements information in the repository database. Entitlements use is optional (as specified

in the configuration) and off by default.

10.2. Data Management

10.2.1. Cursoring and Batching

Teiid cursors all results, regardless of whether they are from one source or many sources, and

regardless of what type of processing (joins, unions, etc.) have been performed on the results.

Chapter 10. Architecture

92

Teiid processes results in batches. A batch is simply a set of records. The number of rows in a

batch is determined by the buffer system properties Processor Batch Size (within query engine)

and Connector Batch Size (created at connectors).

Client applications have no direct knowledge of batches or batch sizes, but rather specify

fetch size. However the first batch, regardless of fetch size is always proactively returned to

synchronous clients. Subsequent batches are returned based on client demand for the data. Pre-

fetching is utilized at both the client and connector levels.

10.2.2. Buffer Management

The buffer manager manages memory for all result sets used in the query engine. That includes

result sets read from a connector binding, result sets used temporarily during processing, and

result sets prepared for a user. Each result set is referred to in the buffer manager as a tuple

source.

When retrieving batches from the buffer manager, the size of a batch in bytes is estimated and

then allocated against the max and session session limits. If a limit is exceeded and memory space

cannot be cleared for the batch, then processing can optionally give up its timeslice and try again.

10.2.2.1. Memory Management

The buffer manager has two storage managers - a memory manager and a disk manager. The

buffer manager maintains the state of all the batches, and determines when batches must be

moved from memory to disk.

10.2.2.2. Disk Management

Each tuple source has a dedicated file (named by the ID) on disk. This file will be created only

if at least one batch for the tuple source had to be swapped to disk. The file is random access.

The connector batch size and processor batch size properties define how many rows can exist

in a batch and thus define how granular the batches are when stored into the storage manager.

Batches are NOT removed from the file when they are swapped back into memory because that

would require removing data out of the middle of the file and updating all the indexes which would

be very expensive. Thus the disk storage manager never removes a particular batch. Batches are

always read and written from the storage manager whole.

The disk storage manager has a cap on the maximum number of open files to prevent running

out of file handles. In cases with heavy buffering, this can cause wait times while waiting for a file

handle to become available - customers may want to increase the number of open files allowed

(a configuration parameter defaulted to 10).

10.2.3. Cleanup

When a tuple source is no longer needed, it is removed from the buffer manager. The buffer

manager will remove it from both the memory storage manager and the disk storage manager.

The disk storage manager will delete the file. In addition, every tuple source is tagged with a "group

Query Termination

93

name" which is typically the session ID of the client. When the client's session is terminated (by

closing the connection, server detecting client shutdown, or administrative termination), a call is

sent to the buffer manager to remove all tuple sources for the session. This is a final cleanup

mechanism that removes all state associated with a session.

In addition, when the query engine is shutdown, the buffer manager is shut down, which will

remove all state from the disk storage manager and cause all files to be closed. In general, these

mechanisms mean that the engine should always shut down with 0 open files. When the query

engine is stopped, it is safe to delete any files in the buffer directory as they are not used across

query engine restarts and must be due to a system crash where buffer files were not cleaned up.

10.3. Query Termination

10.3.1. Canceling Queries

If the client issues a ‘cancel’ command, then no results from the batch currently being processed

in the server will be returned to the client.

When a query is canceled, processing will be stopped in the query engine and in all connectors

involved in the query. The semantics of what a connector does in response to a cancellation

command is dependent on the connector implementation. For example, JDBC connectors will

asynchronously call cancel on the underlying JDBC driver, which may or may not actually support

this method.

10.3.2. Timeouts

Timeouts in Teiid are managed on the client-side, in the JDBC API (which underlies both SOAP

and ODBC access). Timeouts are only relevant for the first record returned. If the first record has

not been received by the client within the specified timeout period, a ‘cancel’ command is issued

to the server for the request and no results are returned to the client. The cancel command is

issued by the JDBC API without the client’s intervention.

10.4. Processing

10.4.1. Join Algorithms

Nested loop does the most obvious processing – for every row in the outer source, it compares

with every row in the inner source. Nested loop is only used when the join criteria has no equi-join

predicates.

Merge join first sorts the input sources on the joined columns. You can then walk through each

side in parallel (effectively one pass through each sorted source) and when you have a match,

emit a row. Because the inputs are sorted, you can skip through large portions of the input without

comparing if one side is less than the other. In general, merge join is on the order of n+m rather

than n*m in nested loop. When n and m are large, this makes a huge difference. Merge join is

the default algorithm. It cannot support full outer join or non-equality criteria, but other than that

handles almost all common cases well.

Chapter 10. Architecture

94

Any of the Join Algorithms above can be made into a dependent join (however hash joins would

need new logic). The decision to implement a dependent join is considered after the join algorithm

is chosen, and does not currently influence the algorithm selection.

10.4.2. Sort Based Algorithms

Sorting is used as the basis of the Sort (ORDER BY), Grouping (GROUP BY), and DupRemoval

(SELECT DISTINCT) operations. The sort algorithm is a multi-pass merge-sort that does not

require all of the result set to ever be in memory yet uses the maximal amount of memory allowed

by the buffer manager.

It consists of two phases. The first phase (“sort”) will take an unsorted input stream and produce

one or more sorted input streams. Each pass reads as much of the unsorted stream as possible,

sorts it, and writes it back out as a new stream. Since the stream may be more than can fit in

memory, this may result in many sorted streams.

The second phase (“merge”) consists of a set of phases that grab the next batch from as many

sorted input streams as will fit in memory. It then repeatedly grabs the next tuple in sorted order

from each stream and outputs merged sorted batches to a new sorted stream. At completion of

the pass, all input streams are dropped. In this way, each pass reduces the number of sorted

streams. When only one stream remains, it is the final output.

95

Appendix A. BNF Grammar

A.1. Terminals

<DEFAULT> SKIP : {" "| "\t"| "\n"| "\r"}

<DEFAULT> MORE : {"/*" : IN_MULTI_LINE_COMMENT}

<IN_MULTI_LINE_COMMENT> SPECIAL : {<MULTI_LINE_COMMENT: "*/"> : DEFAULT}

<IN_MULTI_LINE_COMMENT> MORE : {<~[]>}

<DEFAULT> TOKEN : {<STRING: "string">| <BOOLEAN: "boolean">| <BYTE: "byte">|

<SHORT: "short">| <CHAR: "char">| <INTEGER: "integer">| <LONG: "long">| <BIGINTEGER:

"biginteger">| <FLOAT: "float">| <DOUBLE: "double">| <BIGDECIMAL: "bigdecimal">| <DATE:

"date">| <TIME: "time">| <TIMESTAMP: "timestamp">| <OBJECT: "object">| <BLOB: "blob">|

<CLOB: "clob">| <XML: "xml">}

<DEFAULT> TOKEN : {<CAST: "cast">| <CONVERT: "convert">| <TIMESTAMPADD:

"timestampadd">| <TIMESTAMPDIFF: "timestampdiff">| <COUNT: "count">| <SUM: "sum">|

<AVG: "avg">| <MIN: "min">| <MAX: "max">}

<DEFAULT> TOKEN : {<ALL: "all">| <AND: "and">| <ANY: "any">| <AS: "as">| <ASC:

"asc">| <BEGIN: "begin">| <BETWEEN: "between">| <BREAK: "break">| <BY: "by">| <CASE:

"case">| <CONTINUE: "continue">| <CREATE: "create">| <CRITERIA: "criteria">| <CROSS:

"cross">| <DEBUG: "debug">| <DECLARE: "declare">| <DELETE: "delete">| <DESC: "desc">|

<DISTINCT: "distinct">| <DROP: "drop">| <ELSE: "else">| <END: "end">| <ERROR: "error">|

<ESCAPE: "escape">| <EXCEPT: "except">| <EXEC: "exec">| <EXECUTE: "execute">|

<EXISTS: "exists">| <FALSE: "false">| <FN: "fn">| <FOR: "for">| <FROM: "from">| <FULL:

"full">| <GROUP: "group">| <HAS: "has">| <HAVING: "having">| <IF: "if">| <IN: "in">| <INNER:

"inner">| <INSERT: "insert">| <INTERSECT: "intersect">| <INTO: "into">| <IS: "is">| <JOIN:

"join">| <LEFT: "left">| <LIKE: "like">| <LIMIT: "limit">| <LOCAL: "local">| <LOOP: "loop">|

<MAKEDEP: "makedep">| <MAKENOTDEP: "makenotdep">| <NOCACHE: "nocache">| <NOT:

"not">| <NULL: "null">| <ON: "on">| <OJ: "oj">| <OPTION: "option">| <OR: "or">| <ORDER:

"order">| <OUTER: "outer">| <PLANONLY: "planonly">| <PROCEDURE: "procedure">|

<RIGHT: "right">| <SELECT: "select">| <SET: "set">| <SHOWPLAN: "showplan">| <SOME:

"some">| <TABLE: "table">| <TEMPORARY: "temporary">| <THEN: "then">| <TRANSLATE:

"translate">| <TRUE: "true">| <UNION: "union">| <UNKNOWN: "unknown">| <UPDATE:

"update">| <USING: "using">| <VALUES: "values">| <VIRTUAL: "virtual">| <WHEN: "when">|

<WHERE: "where">| <WITH: "with">| <WHILE: "while">}

<DEFAULT> TOKEN : {<SQL_TSI_FRAC_SECOND: "SQL_TSI_FRAC_SECOND">|

<SQL_TSI_SECOND: "SQL_TSI_SECOND">| <SQL_TSI_MINUTE: "SQL_TSI_MINUTE">|

<SQL_TSI_HOUR: "SQL_TSI_HOUR">| <SQL_TSI_DAY: "SQL_TSI_DAY">|

<SQL_TSI_WEEK: "SQL_TSI_WEEK">| <SQL_TSI_MONTH: "SQL_TSI_MONTH">|

<SQL_TSI_QUARTER: "SQL_TSI_QUARTER">| <SQL_TSI_YEAR: "SQL_TSI_YEAR">}

<DEFAULT> TOKEN : {<ALL_IN_GROUP: (<GROUP_PART> | <MMUUID_PART>)

<PERIOD> <STAR>>| <VARIABLE: <ID> | <MMUUID>>| <#ID: <GROUP_PART> ((<PERIOD>

Appendix A. BNF Grammar

96

| <SLASH>) (<QUOTED_ID> | <MMUUID_PART>))?>| <#ELEMENT: <GROUP_PART>

(<PERIOD> | <SLASH>) <QUOTED_ID>>| <#GROUP_PART: ("#")? (<QUOTED_ID>

(<PERIOD> | <SLASH>))? <QUOTED_ID>>| <#QUOTED_ID: <DOTTED_ID> | "\""

<DOTTED_ID> "\"">| <#DOTTED_ID: <ID_PART> ((<PERIOD> | <SLASH>) <ID_PART>)*>|

<#ID_PART: ("@")? <LETTER> (<ID_CHAR>)*>| <#ID_CHAR: <LETTER> | "_" | <DIGIT>>|

<#MMUUID: <MMUUID_PART> (<PERIOD> <MMUUID_PART>)?>| <#MMUUID_PART:

"mmuuid:" (<MMUUID_CHAR>)*>| <#MMUUID_CHAR: ["a"-"f"] | ["0"-"9"] | "-">| <DATETYPE:

"{" "d">| <TIMETYPE: "{" "t">| <TIMESTAMPTYPE: "{" "ts">| <BOOLEANTYPE: "{"

"b">| <INTEGERVAL: (<MINUS>)? (<DIGIT>)+>| <FLOATVAL: (<MINUS>)? (<DIGIT>)*

<PERIOD> (<DIGIT>)+ (["e","E"] (["+","-"])? (<DIGIT>)+)?>| <STRINGVAL: ("N")? (<STRINGA>

| <STRINGB>)>| <#STRINGA: "\'" (~["\'"])* ("\'\'" (~["\'"])*)* "\'">| <#STRINGB: "\"" (~["\""])*

("\"\"" (~["\""])*)* "\"">| <#LETTER: ["a"-"z","A"-"Z"] | ["\u0153"-"\ufffd"]>| <#DIGIT: ["0"-"9"]>|

<#COLON: ":">}

<DEFAULT> TOKEN : {<COMMA: ",">| <PERIOD: ".">| <LPAREN: "(">| <RPAREN: ")">|

<LBRACE: "{">| <RBRACE: "}">| <EQ: "=">| <NE: "<>">| <NE2: "!=">| <LT: "<">| <LE: "<=">|

<GT: ">">| <GE: ">=">| <STAR: "*">| <SLASH: "/">| <PLUS: "+">| <MINUS: "-">| <QMARK: "?">|

<DOLLAR: "$">| <SEMICOLON: ";">| <CONCAT_OP: "||">}

A.2. Non-Terminals

command ::= ((createUpdateProcedure) | userCommand |

callableStatement) (<SEMICOLON>)? <EOF>

userCommand ::= (queryExpression | storedProcedure | insert | update | delete |

dropTable | createTempTable)

dropTable ::= <DROP> <TABLE> <VARIABLE>

createTempTable ::= <CREATE> <LOCAL> <TEMPORARY> <TABLE>

<VARIABLE> <LPAREN> createElementsWithTypes

<RPAREN>

errorStatement ::= <ERROR> expression

statement ::= (ifStatement | loopStatement | whileStatement |

delimitedStatement)

delimitedStatement ::= (sqlStatement | errorStatement | assignStatement |

declareStatement | continueStatement | breakStatement)

<SEMICOLON>

block ::= (statement | (<BEGIN> (statement)* <END>))

breakStatement ::= <BREAK>

continueStatement ::= <CONTINUE>

whileStatement ::= <WHILE> <LPAREN> criteria <RPAREN> block

loopStatement ::= <LOOP> <ON> <LPAREN> queryExpression <RPAREN>

<AS> <VARIABLE> block

ifStatement ::= <IF> <LPAREN> criteria <RPAREN> block (<ELSE> block)?

Non-Terminals

97

criteriaSelector ::= ((<EQ> | <NE> | <NE2> | <LE> | <GE> | <LT> | <GT> | <IN>

| <LIKE> | (<IS> <NULL>) | <BETWEEN>))? <CRITERIA>

(<ON> <LPAREN> <VARIABLE> (<COMMA> <VARIABLE>

)* <RPAREN>)?

hasCriteria ::= <HAS> criteriaSelector

declareStatement ::= <DECLARE> dataType <VARIABLE> (<EQ>

assignStatementOperand)?

assignStatement ::= <VARIABLE> <EQ> assignStatementOperand

assignStatementOperand ::= ((insert) | update | delete | storedProcedure | (expression) |

queryExpression)

sqlStatement ::= ((dynamicCommand) | userCommand)

translateCriteria ::= <TRANSLATE> criteriaSelector (<WITH> <LPAREN>

<VARIABLE> <EQ> expression (<COMMA> <VARIABLE>

<EQ> expression)* <RPAREN>)?

createUpdateProcedure ::= <CREATE> (<VIRTUAL>)? (<UPDATE>)?

<PROCEDURE> block

dynamicCommand ::= (<EXECUTE> | <EXEC>) <STRING> expression (<AS>

createElementsWithTypes (<INTO> <VARIABLE>)?)? (

<USING> setClauseList)? (<UPDATE> ((<INTEGERVAL>)

| (<STAR>)))?

setClauseList ::= <VARIABLE> <EQ> (<COMMA> <VARIABLE> <EQ>)*

createElementsWithTypes ::= <VARIABLE> dataType (<COMMA> <VARIABLE> dataType

)*

callableStatement ::= <LBRACE> (<QMARK> <EQ>)? <VARIABLE>

<VARIABLE> (<LPAREN> (executeUnnamedParams)

<RPAREN>)? <RBRACE> (option)?

storedProcedure ::= ((<EXEC> | <EXECUTE>) <VARIABLE> <LPAREN>

(executeNamedParams | executeUnnamedParams)

<RPAREN>) (option)?

executeUnnamedParams ::= (expression (<COMMA> expression)*)?

executeNamedParams ::= (paramName <EQ> expression (<COMMA> paramName

<EQ> expression)*)

paramName ::= <VARIABLE>

insert ::= <INSERT> <INTO> <VARIABLE> (<LPAREN> <VARIABLE>

(<COMMA> <VARIABLE>)* <RPAREN>)? ((<VALUES>

rowValues) | (queryExpression)) (option)?

rowValues ::= <LPAREN> expression (<COMMA> expression)*

<RPAREN>

Appendix A. BNF Grammar

98

update ::= <UPDATE> <VARIABLE> <SET> setClauseList (where)? (

option)?

delete ::= <DELETE> <FROM> <VARIABLE> (where)? (option)?

queryExpression ::= queryExpressionBody

queryExpressionBody ::= queryTerm ((<UNION> | <EXCEPT>) (<ALL> |

<DISTINCT>)? queryTerm)* (orderby)? (limit)? (option)?

queryTerm ::= queryPrimary (<INTERSECT> (<ALL> | <DISTINCT>)?

queryPrimary)*

queryPrimary ::= (query | (<LPAREN> queryExpressionBody <RPAREN>))

query ::= select (into)? (from (where)? (groupBy)? (having)?)?

into ::= <INTO> (<VARIABLE>)

select ::= <SELECT> (<ALL> | (<DISTINCT>))? (<STAR> | (

selectSymbol (<COMMA> selectSymbol)*))

selectSymbol ::= ((<ALL_IN_GROUP>) | (expression) ((<AS>)? (

<VARIABLE> | <STRINGVAL>))?)

aggregateSymbol ::= ((<COUNT> <LPAREN> <STAR> <RPAREN>) | ((

<COUNT> | <SUM> | <AVG> | <MIN> | <MAX>) <LPAREN>

(<DISTINCT>)? expression <RPAREN>))

from ::= <FROM> (tableReference (<COMMA> tableReference)*)

tableReference ::= ((<LBRACE> <OJ> tableReferenceUnescaped <RBRACE>)

| tableReferenceUnescaped)

tableReferenceUnescaped ::= (joinedTable | tablePrimary)

joinedTable ::= tablePrimary ((crossJoin | qualifiedJoin))+

crossJoin ::= ((<CROSS> | <UNION>) <JOIN> tablePrimary)

qualifiedJoin ::= (((<RIGHT> (<OUTER>)?) | (<LEFT> (<OUTER>

)?) | (<FULL> (<OUTER>)?) | <INNER>)? <JOIN>

tableReference <ON> criteria)

tablePrimary ::= (unaryFromClause | subqueryFromClause | (<LPAREN>

joinedTable <RPAREN>)) ((<MAKEDEP>) | (

<MAKENOTDEP>))?

subqueryFromClause ::= <LPAREN> (queryExpression | storedProcedure)

<RPAREN> (<AS>)? <VARIABLE>

unaryFromClause ::= (<VARIABLE> ((<AS>)? <VARIABLE>)?)

where ::= <WHERE> criteria

criteria ::= compoundCritOr

compoundCritOr ::= compoundCritAnd (<OR> compoundCritAnd)*

compoundCritAnd ::= notCrit (<AND> notCrit)*

Non-Terminals

99

notCrit ::= (<NOT>)? primary

primary ::= (predicate | (<LPAREN> criteria <RPAREN>))

predicate ::= (subqueryCompareCriteria | compareCrit | matchCrit

| betweenCrit | setCrit | existsCriteria | hasCriteria |

translateCriteria | isNullCrit)

compareCrit ::= expression (<EQ> | <NE> | <NE2> | <LT> | <LE> | <GT> |

<GE>) expression

subquery ::= <LPAREN> (queryExpression | storedProcedure)

<RPAREN>

subqueryCompareCriteria ::= expression (<EQ> | <NE> | <NE2> | <LT> | <LE> | <GT> |

<GE>) (<ANY> | <SOME> | <ALL>) subquery

matchCrit ::= (expression (<NOT>)? <LIKE> expression (escapeChar | (

<LBRACE> escapeChar <RBRACE>))?)

escapeChar ::= <ESCAPE> <STRINGVAL>

betweenCrit ::= expression (<NOT>)? <BETWEEN> expression <AND>

expression

isNullCrit ::= expression <IS> (<NOT>)? <NULL>

setCrit ::= expression (<NOT>)? <IN> ((subquery) | (<LPAREN>

expression (<COMMA> expression)* <RPAREN>))

existsCriteria ::= <EXISTS> subquery

groupBy ::= <GROUP> <BY> (groupByItem (<COMMA> groupByItem)*

)

groupByItem ::= expression

having ::= <HAVING> criteria

orderby ::= <ORDER> <BY> (<VARIABLE> | <STRINGVAL> |

<INTEGERVAL>) (<ASC> | <DESC>)? (<COMMA> (

<VARIABLE> | <STRINGVAL> | <INTEGERVAL>) (<ASC> |

<DESC>)?)*

limit ::= <LIMIT> (<INTEGERVAL> | <QMARK>) (<COMMA> (

<INTEGERVAL> | <QMARK>))?

option ::= <OPTION> (<SHOWPLAN> | <PLANONLY> | <DEBUG> |

<MAKEDEP> <VARIABLE> (<COMMA> <VARIABLE>)* |

<MAKENOTDEP> <VARIABLE> (<COMMA> <VARIABLE>

)* | <NOCACHE> (<VARIABLE> (<COMMA> <VARIABLE>

)*)?)*

expression ::= concatExpression

concatExpression ::= (plusExpression (<CONCAT_OP> plusExpression)*)

plusExpression ::= (timesExpression (plusOperator timesExpression)*)

Appendix A. BNF Grammar

100

plusOperator ::= (<PLUS> | <MINUS>)

timesExpression ::= (basicExpression (timesOperator basicExpression)*)

timesOperator ::= (<STAR> | <SLASH>)

basicExpression ::= (<QMARK> | literal | (<LBRACE> <FN> function <RBRACE>

) | (aggregateSymbol) | (function) | (<VARIABLE>

) | (<LPAREN> expression <RPAREN>) | subquery |

caseExpression | searchedCaseExpression)

caseExpression ::= <CASE> expression (<WHEN> expression <THEN>

expression)+ (<ELSE> expression)? <END>

searchedCaseExpression ::= <CASE> (<WHEN> criteria <THEN> expression)+ (<ELSE>

expression)? <END>

function ::= ((<CONVERT> <LPAREN> expression <COMMA>

dataType <RPAREN>) | (<CAST> <LPAREN> expression

<AS> dataType <RPAREN>) | ((<TIMESTAMPADD> |

<TIMESTAMPDIFF>) <LPAREN> intervalType <COMMA>

expression <COMMA> expression <RPAREN>) | ((<LEFT>

| <RIGHT> | <CHAR>) <LPAREN> (expression (<COMMA>

expression)*)? <RPAREN>) | ((<INSERT>) <LPAREN>

(expression (<COMMA> expression)*)? <RPAREN>) |

((<TRANSLATE>) <LPAREN> (expression (<COMMA>

expression)*)? <RPAREN>) | (<VARIABLE> <LPAREN> (

expression (<COMMA> expression)*)? <RPAREN>))

dataType ::= (<STRING> | <BOOLEAN> | <BYTE> | <SHORT> | <CHAR>

| <INTEGER> | <LONG> | <BIGINTEGER> | <FLOAT>

| <DOUBLE> | <BIGDECIMAL> | <DATE> | <TIME> |

<TIMESTAMP> | <OBJECT> | <BLOB> | <CLOB> | <XML>)

intervalType ::= (<SQL_TSI_FRAC_SECOND> | <SQL_TSI_SECOND>

| <SQL_TSI_MINUTE> | <SQL_TSI_HOUR>

| <SQL_TSI_DAY> | <SQL_TSI_WEEK> |

<SQL_TSI_MONTH> | <SQL_TSI_QUARTER> |

<SQL_TSI_YEAR>)

literal ::= (<STRINGVAL> | <INTEGERVAL> | <FLOATVAL> |

<FALSE> | <TRUE> | <NULL> | (<BOOLEANTYPE>

<STRINGVAL> <RBRACE>) | (<TIMESTAMPTYPE>

<STRINGVAL> <RBRACE>) | (<DATETYPE>

<STRINGVAL> <RBRACE>) | (<TIMETYPE>

<STRINGVAL> <RBRACE>))

	Teiid - Scalable Information Integration
	Table of Contents
	Preface
	Chapter 1. SQL Support
	1.1. Identifiers
	1.2. Expressions
	1.2.1. Column Identifiers
	1.2.2. Literals
	1.2.3. Aggregate Functions
	1.2.4. Case and searched case
	1.2.5. Scalar subqueries
	1.2.6. Parameter references

	1.3. Criteria
	1.4. SQL Commands
	1.4.1. SELECT Command
	1.4.2. INSERT Command
	1.4.3. UPDATE Command
	1.4.4. DELETE Command
	1.4.5. EXECUTE Command
	1.4.6. Procedural Relational Command

	1.5. Temp Tables
	1.6. SQL Clauses
	1.6.1. SELECT Clause
	1.6.2. FROM Clause
	1.6.3. WHERE Clause
	1.6.4. GROUP BY Clause
	1.6.5. HAVING Clause
	1.6.6. ORDER BY Clause
	1.6.7. LIMIT Clause
	1.6.8. INTO Clause
	1.6.9. OPTION Clause

	1.7. Set Operations
	1.8. Subqueries
	1.8.1. Inline views
	1.8.2. Subqueries in the WHERE and HAVING clauses

	Chapter 2. XML SELECT Command
	2.1. Overview
	2.2. Query Structure
	2.2.1. FROM Clause
	2.2.2. SELECT Clause
	2.2.3. WHERE Clause
	2.2.3.1. XML SELECT Command Specific Functions
	2.2.3.1.1. Context Function
	2.2.3.1.2. Rowlimit Function
	2.2.3.1.3. Rowlimitexception Function

	2.2.4. ORDER BY Clause

	2.3. Document Generation
	2.3.1. Document Validation

	Chapter 3. Datatypes
	3.1. Supported Types
	3.2. Type Conversions
	3.3. Special Conversion Cases
	3.3.1. Conversion of String Literals
	3.3.2. Converting to Boolean
	3.3.3. Date/Time/Timestamp Type Conversions

	3.4. Escaped Literal Syntax

	Chapter 4. Scalar Functions
	4.1. Numeric Functions
	4.1.1. Parsing Numeric Datatypes from Strings
	4.1.2. Formatting Numeric Datatypes as Strings

	4.2. String Functions
	4.3. Date/Time Functions
	4.3.1. Parsing Date Datatypes from Strings
	4.3.2. Specifying Time Zones

	4.4. Type Conversion Functions
	4.5. Choice Functions
	4.6. Decode Functions
	4.7. Lookup Function
	4.7.1. Clearing the Cache

	4.8. System Functions
	4.9. XML Functions
	4.10. Security Functions
	4.11. User Defined Functions
	4.11.1. UDF Definition
	4.11.2. Source Supported UDF
	4.11.3. Non-pushdown Support for User-Defined Functions
	4.11.3.1. Java Code
	4.11.3.2. Post Code Activities

	4.11.4. Installing user-defined functions

	Chapter 5. Procedures
	5.1. Procedure Language
	5.1.1. Command Statement
	5.1.2. Dynamic SQL Command
	5.1.3. Declaration Statement
	5.1.4. Assignment Statement
	5.1.5. If Statement
	5.1.6. Loop Statement
	5.1.7. While Statement
	5.1.8. Continue Statement
	5.1.9. Break Statement
	5.1.10. Error Statement

	5.2. Virtual Procedures
	5.2.1. Virtual Procedure Definition
	5.2.2. Procedure Input Parameters
	5.2.3. Examle Virtual Procedures
	5.2.4. Executing Virtual Procedures

	5.3. Update Procedures
	5.3.1. Update Procedure Definition
	5.3.2. Special Variables
	5.3.2.1. INPUT Variables
	5.3.2.2. CHANGING Variables
	5.3.2.3. ROWS_UPDATED Variable

	5.3.3. Update Procedure Command Criteria
	5.3.3.1. HAS CRITERIA
	5.3.3.2. TRANSLATE CRITERIA

	5.3.4. Update Procedure Processing

	Chapter 6. Transaction Support
	6.1. AutoWrap Execution Property
	6.2. Updating Model Count
	6.3. JDBC and Transactions
	6.3.1. JDBC API Functionality
	6.3.2. J2EE Usage Models

	6.4. Limitations and Workarounds

	Chapter 7. System Tables
	7.1. VDB and Model Metadata
	7.1.1. System.VirtualDatabases
	7.1.2. System.Models
	7.1.3. System.ModelProperties

	7.2. Table Metadata
	7.2.1. System.Groups
	7.2.2. System.GroupProperties
	7.2.3. System.Elements
	7.2.4. System.ElementProperties
	7.2.5. System.Keys
	7.2.6. System.KeyProperties
	7.2.7. System.KeyElements

	7.3. Procedure Metadata
	7.3.1. System.Procedures
	7.3.2. System.ProcedureProperties
	7.3.3. System.ProcedureParams

	7.4. Datatype Metadata
	7.4.1. System.DataTypes
	7.4.2. System.DataTypeProperties

	Chapter 8. Connectors
	8.1. Common Connector Properties
	8.2. Source Security
	8.2.1. Specific Source Credentials
	8.2.2. Using Session Credentials
	8.2.3. Session and Specific Source Credentials
	8.2.4. Configuring Connectors For Source Security

	Chapter 9. Federated Planning
	9.1. Overview
	9.2. Federated Optimizations
	9.2.1. Access Patterns
	9.2.2. Pushdown
	9.2.3. Dependent Joins
	9.2.4. Copy Criteria
	9.2.5. Projection Minimization
	9.2.6. Partial Aggregate Pushdown
	9.2.7. Optional Join
	9.2.8. Standard Relational Techniques

	9.3. Federated Failure Modes
	9.3.1. Partial Results
	9.3.1.1. Setting Partial Results Mode
	9.3.1.2. Source Unavailability

	9.4. Query Plans
	9.4.1. Getting a Query Plan
	9.4.2. Analyzing a Query Plan
	9.4.3. Relational Plans
	9.4.3.1. Node Statistics

	9.5. Query Planner
	9.5.1. Relational Planner
	9.5.2. Procedure Planner
	9.5.3. XML Planner
	9.5.4. XQuery Planner

	Chapter 10. Architecture
	10.1. Terminology
	10.2. Data Management
	10.2.1. Cursoring and Batching
	10.2.2. Buffer Management
	10.2.2.1. Memory Management
	10.2.2.2. Disk Management

	10.2.3. Cleanup

	10.3. Query Termination
	10.3.1. Canceling Queries
	10.3.2. Timeouts

	10.4. Processing
	10.4.1. Join Algorithms
	10.4.2. Sort Based Algorithms

	Appendix A. BNF Grammar
	A.1. Terminals
	A.2. Non-Terminals

