jBPM Tools Reference Guide

Version: 3.1.7.GA

IO [N A e Yo T w3 1o Y o T 1

I = - (o PP 1

R T LT I 1) S PR 1

1.3. Other relevant resources 0N the tOPICcccuuiiiiiiiiiiiii e 2

2. JB0oss JBPM Runtime InStallationcoiiiiiiiii e 3
G T I =YY PSRN 5
3.1. The OULIINE VIBW ...t e e e e et e e e e et e eeeens 6

R T I T T @ A = V= PP 6

3.3. The Properti€S VIBWciiiuieiiiieiiie et e e e e e e e e e e e e e e et e eean e eeaes 6

3.4. The jBPM Graphical Process Designer editor.ocoeuueiiieeiinieiiiiiiieeeiiineeeenenn 8
3.4.1. The Diagram MOAEcccuiiiiiieiiii et e e e 8

3.4.2. The SOUICE MOAE ... e e 9

3.4.3. The DESIGN MOOE ...couuiiiiiieii e e e e e e e e e aae e 9

3.4.4. The Deployment MOoooiiiiiiiiiiii e 12

4. Test Driven Process DeVEIOPMENTcouiiiiiiiii it e e 15
5. Actions : The JBoss jBPM Integration Mechanismccccooviiiiiiiiiiiiinnec, 23
5.1. Creating a Hello WOrld ACHIONooiuiiiiii e e 23

5.2. Integrating the Hello WOorld ACHONcoouuuiiiiiiiii e 25

5.3, INtEGration POINESuiiiiiiii e e e e e e e e e e e e 29

6. QUICK HOWLO GUITE ..ot e e e e e e e e e 31
6.1. Change the Default Core JBPM Installationcccoceuiieiiiiiiiiiiiii e 31

6.2. Configuring Task NOUESiiiiii e 31

Chapter 1.

Introduction

All developers and process analysts who are beginning to use JBoss jBPM should read this
Getting Started guide. It will give them a jumpstart showing how to create a process definition.

1.1. Preface

This document introduces the use of the JBoss jBPM Graphical Process Designer (GPD) to create
workflow processes. It will help first time users with the following tasks :

Install the JBoss jBPM GPD Eclipse plugin available from the JBoss jBPM download area
« Set up a Java project in Eclipse and prepare it to do test driven process development

» Using the creation wizard to create an empty process definition

» Use the designer palette to draw the first processdefinition

« Show how the xml processdefinition can be inspected as an xml file

« Set up a Java project in Eclipse and prepare it to do test driven process development

» Write an example process test case

If you have questions, please feel free to contact Koen Aers [mailto:koen.aers@jboss.com] or
Tom Baeyens [mailto:tom.baeyens@jboss.com] for more information.

1.2. Feature list

JBoss JBPM is a workflow that enables creating and automatization business processes. Look at
the list of features below to understand its main functionality.

Table 1.1. Key Functionality for JBoss jBPM

Feature Benefit

jBDL support Enables managing workflow processes as well
as human tasks and interactions between
them. jBDL combines the best both Java and
declarative process techniques.

Support of Graphical Process Designer (GPD) Is used for simplifying declarative process
development and visualizations of all actions.

Project Creation wizard Allows to create a new jBPM template project
that already includes all advanced artifacts and
core jBPM libraries.

mailto:koen.aers@jboss.com
mailto:koen.aers@jboss.com
mailto:tom.baeyens@jboss.com
mailto:tom.baeyens@jboss.com

Chapter 1. Introduction

Feature Benefit

Rich palette of pre-build process nodes Provides process-building functionality and
gives opportunity even non-programmers to
develop processes.

Support of XML code view Shows the corresponding XML that's
generated automatically in the Source view of
the process definition editor when developing
the process.

Properties view Facilitates configuring and editing of all nodes
properties.

Interaction with all of the J2EE based Enables implementation, provides better
integration technologies including Web functionality and flexibility.

Services, Java Messaging, J2EE Connectors,

JBDC, EJBs.

Integration with jBoss Seam Allows to write applications with complex
workflows and provides easier interactions
between them.

1.3. Other relevant resources on the topic

All JBoss Developer Studio/JBoss Tools release documentation you can find at http://
docs.jboss.org/tools in the corresponding release directory.

The latest documentation builds are available at http://download.jboss.org/jbosstools/nightly-docs
[http://download.jboss.org/jbosstools/nightly-docs/].

http://download.jboss.org/jbosstools/nightly-docs/
http://download.jboss.org/jbosstools/nightly-docs/

Chapter 2.

JBoss |BPM Runtime Installation

The main purpose of this chapter is to let you know how to launch the JBoss jBPM (business
process management).

The jBPM plugin (jBPM Designer) is already included in the JBoss Tools. To make it work, you
should only download the jBPM runtime (jopm-jpdI-3.2.3 currently) and specify the directory where
you extracted the runtime either when you create a jBPM project or by using the jBPM preference
pages.

Navigate to Window > Preferences > JBoss jJBPM > Runtime Locations. Here you can add, edit
and remove JBoss jBPM installation locations. Click Add button. In the dialog that appeared
enter a name for a newly added jBPM runtime and point to the correct location of this package
on your harddrive. Click OK then click OK again.

Chapter 2. JBoss jBPM Runtime...

=] Preferences @ﬁ
[m ' Runtime Locations Ga -
b General || Add. remove or edit |Boss jBPM installation locations.
P Agent Controller The checked location will be used by the [BPM creation wizards.
B ARt |BPM Installation Locations:
1 1

P Data Management Marne Version Lacation Add... |
I Drools

Drools Task

FreeMarker Editor

Guvnor
P Help

HQL editor
b installlUpdate £ Add Location x
B Java .

! Name: [igpm_runtime |
P JawvaScript -
< |Boss [BPM Location : [Iopmbpmvjpdl-a.z,a] {search...|

Assignment Types
Jpdl Templates

Funtime Locations

Server Deployment

ok || cancel

&

I+ JBoss Tools
JPA E
I Plug-in Development

I+ Profiling and Logging
Project Archives
I+ Report Design
P Fun/Debug
b Server ~
| B

|H.esture QEFaults\ [Apply]

& [oK] [Cancel

Figure 2.1. Adding jBPM Location

Now, when you have a runtime installed, we are going to demonstrate some powerful features
of the jBPM.

Chapter 3.

The views

Here, it will be explained how to work with views and editors provided by JBDS.

The views are used for representation and navigation the resources you are working on at the
moment. One of the advantages of all the views is that all modifications made in the current active
file are immediately displayed in them. Let's get acquainted more closely with those that the jPDL

perspective provides.

f JBFM |PDL - HelloJBPM/bin/hello/processdefinition.xml - Eclipse Platform
File Edit View MNavigate Search Project Bun Window Help

3= @ (-0 Q- | EHEG | &SSP PR

ifjePMJPDL *

| e
™ swimlanes E' L% Process Definition

¥ soNodes The Qutline View meral Mame heflo
= (3 start-statel | Exceptions Description
G Events Tasks
— = Transitions Actions
—+ transition L Swimlanes
[T+ =

)
r

=R
'% Package Explorer &3 =8 i The iPDL cfi — =l
1 ej perspective
=B 7| L select
i_i Marquee
ST
. : Start 0 <<Start Stale=>
I (% sre/mainfjava e State startstated
I (% sre/mainiconfig ® End
(2 sre/mainjpdl *(3 Fork
P (% sreftestjava &= Join o <Statesx
)) 2 Decision =
I» = JRE System Library [jakl state1
]))) £ Node
I =4 jBPM Library [jBPM_runtir ¥\ Task Node
b = sre @ Mail Node
< Process w<End Statexx>
Il [I»] State end-state1
~ 55 Super State
7 overview 2 = g|[*==4F
1| —+ Transition
o=
The jBPM GPD Editor
s The Overview
lDiagram Deployment Design | Source
o ; = [Properties 2)) =8
5 outiine 1 = The Properties View -

Figure 3.1. The jPDL Perspective Views and Editors

As you can see in the picture above, the JPDL perspective contains a complete set of functionality

that's necessary for working on the jBPM project.

Chapter 3. The views

3.1. The Outline View

To have a way to quickly see an outline of the process use the Outline view that is presented as
the classical tree. If it is not visible select Window > Show view > Oultline.

oF Outline 2 ¥ =0
™ swimlanes
+ ap Nodes
= {J start-statel
Y& Events
w = Transitions
—¢ transition
= o= ghatel
Y& Events
= =& Transitions
—+ transition
[B end-statel
@ Events
%5 Action Elaments

k] Tasks

Figure 3.2. The Overview View

3.2. The Overview

The main advantage of this view is that it gives visual representation of the whole current
developing process. Besides, the Overview comes as a scrollable thumbnail which enables a
better navigation of the process structure if it's too large.

f overvie . 8 Outine = O

[E—

Figure 3.3. The Overview

3.3. The Properties View

Here, we dwell on the JBDS Properties view.

The Properties View

Notice if it's not visible you can access it by navigating Window > Show view > Properties.

The view shows the relevant properties of the selected item in the tabbed form. Every item has
its own set of properties, which can be directly editable in the Properties view or by brining up

the context menu.

P *hallo E5

[+ select
i Marguee

3 Start

~# State

& End

3 Fork

2= Join

7 Decision
i Node

"f’ Task
Node

Mail Node

i Process
State

= Super
State

—+ Transition

G oSt Slatesx
etart-gtate

Sto_auction
.
e o Siale s
atate

™ ccEnd State s
end-state

Diagram Deployment Design | Source

] Properties

¢ Transition

General Name to_auction
Condition Description

Exceptions

Actions

Figure 3.4. The Properties View of selected Transition

For example, on the picture above the Properties view displays all the properties for a selected
transition. Its name has been changed to to_auction. We've done it directly in active General tab
of the view. The same way let's change the name for the second transition to to_end.

If no one item is selected, the view represents the properties of the whole process definition.

Chapter 3. The views

[l Properties & T =0

% Process Definition

General Name hello
Exceptions Description

Tasks

Actions

b

Figure 3.5. The Properties View of Process Definition

In this case, it contains six tabs. The first one is the General. It allows to specify a process name
and add necessary description. To illustrate let's change the process definition name to jbay.

3.4. The jBPM Graphical Process Designer editor.

The BPM GPD editor includes four modes: Diagram, Deployment, Design and Source, which are
available as switchable tabs at the bottom of the editor. Let's dwell on each of them.

3.4.1. The Diagram mode

In this mode we define the process in the form of a diagram by means of tools provided on the
left-hand side of the jBPM GPD.

|F) *hallo 22 ~°

[+ Selact
i Marques
0 start
= State

ﬁ <= Stan Siaie==
E Eﬂd start
o Fork
1 i to_auction
3 Decision %

- e s _ra!'e_'.:.

£} Node oI
¥ Task Node
o Mail Mode to-end
5 ESB Senvice <= End Stawes=
“E Process State —_—
ik Super State
— Transition

Diagram | Deployrment | Design | Source

Figure 3.6. The Diagram mode

The Source Mode

Besides, some properties can be directly edited in the Diagram mode of the graphical editor. One
example of this is the name property of nodes. You can edit this directly by selecting the node of
which you want to change the name and then click once inside this node. This enables an editor
in the node. We change the name of the node to auction.

3.4.2. The Source Mode

Now, that we have defined a simple process definition, we can have a look at the XML that is being
generated under the covers. To see this XML click on the Source tab of the graphical process
designer editor.

[P hella 22 =0

=?xml version="1.0" encoding="UTF-8"1>

<process-definition xmlns="urn:jbpm.org:jpdl-3.2" name="jbay">

<start-state name="start">
=transition to="auciion® name="to_auction"=</transition=

</start-stata>

=gtate names="auction”=
<transition to="end” name="te_end"s</transition=
<fstatex

<gnd-state name="end"s</end-states

=/process-definiltions

| |
Diagram Deployment Design |Source

Figure 3.7. The Source Mode

The Source mode enables to easily manipulate our XML. That is manually inserting and editing
necessary elements or attributes. In addition, here you can take advantage of content assist.

3.4.3. The Design Mode

One more way to edit your file is to use Design mode. You can see it in the next picture:

Chapter 3. The views

@ xmins
@ name
= [e] start-state
@ name

@ to

w [e] state

@ name

= =] end-state

@ name

-~ [process-definition

= [e] transition

@ name

[+ [e] transition

Diagram 'Ueplnyment- Design Source

version="1.0" encoding="UTF-8"

wWirmilamne

urm:joprm.org:jpdi-3.2

[pay

auction

to_auction

auction

tart-state

({acton

Figure 3.8. The Design Mode

As you can see above, this mode looks like a table in the first column of which the process structure
is performed. Here, you can also insert, remove and edit elements or attributes, moreover add
comments and instructions. Their values can be directly edited in the second column of the Design

mode table.

For instance, let's add a comment on the second transition. For that, you should bring up the

context menu for it and choose Add Before > Comment.

10

The Design Mode

_. i -

=7 xmil version="1.0" encoding="UTF-8"
= [€] process-definition {description | swimlane | start-state | ((node | state | task-node
@ =mins umn: jbpm.org:jpdl-3.2
@ name jbay
- E m_sm l:(|l'_-"_'.ITI'I!'itIf"iI'I | task transition | event | exception-handler)®
@ name start
= [g] transition {description | condition | {({(action | script | create-timer | cancel-ti
@ to auction
@ name to_auction
= [&] state {{{description | event | exception-handler | timer | transition)))*
@ name auction
m R,emuve fcription | condition | ({action | script | create-btimer | cancel-t
@ to Add DTD Infarmation..
@ name Edit Namespaces... "d
- E enu.im Add ;h'd ® FCrption | event exception-handler)®*
@ name Add Before [e] description
Diagram |Deplnyment De Add After *| [event
== Replace With * | [E] exception-handler
. (=] timner
[e] transition

T Add Processing Instruction |

Figure 3.9. Adding a Comment

Then, we can put the text This transition leads to the end state in the right column as its value.

11

Chapter 3. The views

e B "o
—
=7 xmil version="1.0" encoding="UTF-8" =
- E pmcesg-ﬂeﬁniﬁﬁn {description | swimlane | start-state | {((node | state task-node
@ xmins umn: jbpm.org:jpdl-3.2
@ name jbay
- E shart-state {descrnpiion | task transition | event exception-nandler)*
@ name start
- E transition {descnpiion | conaition | ({action | sCrpt | create-oimer | cance
@ to auction
@ name to_auction =
= [e] state {{{description | event | exception-handler | timer | transition)))”
@ name auction
_ his transition leads to tha end state
- E transition fdescnption | conaition | {{action | sCcrpt | create-oimer | cance
@ to and
@ name to_end
= [g] end-state {description | event | exception-handler)*
@ name end E
Diagram |Deployment Design 5aun:e|

Figure 3.10. Comment is added

3.4.4. The Deployment Mode

Finally, to adjust the deployment settings of the project you should switch on to the tab that opens
the Deployment mode. On the picture below the Deployment mode is performed with default
settings. Here, you can easily modify them or, if the settings won't match your needs, to reset
defaults.

12

The Deployment Mode

(Einho B - °

Deployment
Files and Java Classes and Resources
Select the files and folders to include in Select the Java classes and resources
the process archive. to include in the process archive.
& gpd.xmi I [& srocfmainjava
X processdefinition.xmi B O &% srofmainfconfig
9 processimage jpg [O & sroimaingpdi
Reset Deraults
Local Save Settings Deployment Server Settings
Choose if and where you wish to save Specify the settings of the server you
the process archive lacally. wish to deplay to.
[] save Process Archive Locally Server Name: localhost
Location Server Port: BO80
server Deployer: fjbpm-consolefuple
Test Connection...
Deploy Process Archive...
Diagram ' Deployment - Deslgn. Source

Figure 3.11. The Deployment Mode

The button Test Connections is necessary to make sure whether all your settings are valid before
deploying the process.

Now that we've seen how to work with jPDL perspective, let's pass on to the project testing.

13

Chapter 4.

Test Driven Process Development

One of the most important advantages of JBoss jBPM's lightweight approach to BPM and workflow
management is that developers can easily leverage their usual programming skills and techniques.
One of these well-known techniques is Unit Testing and Test Driven Development.

In this chapter we will show how developers, making use of the JBoss jBPM GPD, can use a
technique we have baptized Test Driven Process Development to create process definitions and
test their correctness.

When creating the HellojBPM project the Project Creation wizard has already put in place all the
library requirements we need to start writing the jBPM unit tests. They are contained in the jBPM
Library container and the most important of them is the .jar file containing the core jBPM classes.
While working on the project you could find them all in the Package Explorer.

[Package Explorer 33 = i =

1

I+ = JRE System Library [java-1.5.0-5un-1.5.0.16]

= m JBPM Library [[BPM_runtime]
P e commons-collections.jar

=i sendet-apijar

= l0gdj.jar

= il jar

wd Cr-1.0jar

=i antlr-2.7 .6 jar

= hsgldb.jar

= cglibjar

= [hoss-j2ee jar

= UMt jar

(2= jbpr-identityjar

4 jbpm-jpdl jar

=4 activation.jar

wd ASMJAr

= bsh.jar

=4 hibernate3 jar

= dormd).jar

= A A A~ A = A~ A~ A = A A

=4 cormnmeons-logging.jar - fopt/bpr |

Figure 4.1. The jBPM Libraries

It must be noted that it is possible to change the location of the core jBPM installation by changing
the preference settings. More on this see later in this book.

15

Chapter 4. Test Driven Proces...

With that extra knowledge on the project settings, you can create your first test. To do this, we
create the com.jbay package in the test/java source folder. Then we bring up the context menu
on this package and select New > Other...

= 1= HellgjBPM
B srejmainfjava
b (B sre/main/config
BB srefmaingjpd

= [sreftestjava

b com.sample

| s compay [

b mi JRE System Lirz OPen in New Window i Package
b i [BPM Library [j8P Open Type Hierarchy F4 | (& Class
B Show In Shift+AIL+W * | F Interface
B = sre i
e e & Enum
i= 4
- Cﬂp'_r =t (@ Annotation
A= Co ualified Narme B
? Py Q & Source Folder
" Paste Ctri+v |
) 7 Folder
¥ Delete Delete |
LT File
[F Untitled Text File
al Build Path Pl
™ Example. ..
Source Shift4+AlL+S *
Refactor Shift+AIL+T »
g2 [mport...
2% Expaort...
< Refresh F5

Assign Working Sets...

Bun As r
Debug As ¥
Profile As 3
Validate

Team k
Compare With ¥

Restore from Local Hislorr_..

Properties Alt+Enter

Figure 4.2. Call the JUnit Test Case Creation wizard

And then Java > JUnit > JUnit Test Case to call the specialized JUnite Test case creation wizard.

16

Select a wizard —
Create a JUnit Test Case r_

Wizards:
= = Java
@ Annotation
& Class
& Enum
& Interface
14 Java Project
% Java Project from Existing Ant Buildfile

[»]

Package
& Source Folder
I+ = DbUnit

= Java Run/Debug
= = JUnit
B |Unit Test Case

FE Unit Test Suite

|EY Serviet Test Case

I = Java Emitter Templates

(4]

@ : [mext> | " || cancel |

Figure 4.3. Call the JUnit Test Case Creation wizard

The wizard looks as follows:

17

Chapter 4. Test Driven Proces...

£ New |Unit Test Case x

JUnit Test Case
Ay Type name is discouraged. By convention. Java type names usually EZ
start with an uppercase letter

@ Mew JUnit 3 test () New JUnit 4 test

Source folder: [Hellajamfsrcnest.ﬂaua ” Browse. ..
Package: [:nm.iha-,r | Browse. .

Name: [henoTest]

Superclass: [junit.framewurk.Te:‘;tCa*se][Browseg... I

Which method stubs would you like to

] setlp() [] tearDown()
] constructor
Do you want to add comments as configured in the properties of the current projecty

[l Generate comments

Class under test:] [Browse...

(il I Finish | l Cancel

Figure 4.4. Create Test Dialog

By default JUnite 3 version of testing framework is selected. Of course, you can choose new
advanced JUnit 4 version. In this case you'll be prompted to add new JUnit Library to your build
path. To add it automatically just click on the appropriate link. In the Class under test section
you can specify the class to test.

18

¢ New |Unit Test Case
JUnit Test Case

Select the name of the new |Unit test case. You have the options to
specify

) Mew JUnit 3 test (3 New JUnit 4 test

Source folder: [HellojBPwsrcnesmaua] Browse. ..

i =

Package: lcnr‘n Jjbay I Browse...

Mame: [HeuaTest |

Which method stubs would you like to
[] setUpBeforeClass()] tearDownAfterClass()

[setlp()] tearDown()

Do you want to add comments as configured in the properties of the current project?

[l Generate comments

Class under test: [] Browse...
/4 JUnit 4 is not on the build path of project 'I-IeIujBF‘I'-'I' add |Unit 4 to

the build path and open the build path dialog.

® i) (o) oo

Figure 4.5. A First Test Scenario

Then, we call the test class HelloTest and press Finish button to complete.

Next, we should write a simple test scenario as shown on the next figure. Let's study the code

of this test case.

19

Chapter 4. Test Driven Proces...

JBPM JPDL - HellojBPM/src/test/javalcom/|bay/HelloTest. jJava - Eclipse Platform
File Edit Source Refactor Mavigate Search Project Run Window Help

e L@ pr0ra [Bee ey e|[4e]Ba e n o [22jepm jeoL] ”

| $l- Bl = &

- [F] hello [J] HelloTest java &2 =8

B | #isport junit.framework.TestCase;l]]
public class HelloTest extends TestCase {
=R public woid testProcess() throws Exception {

ProcessDefinition definition = ProcessDefinition.parseXmlResource("hello/processdefinition. xml™);
assertNotNull ("Definition should not be pull®, definition);

FProcessInstance instance = nmew ProcessInstance(definition);
assertEquals(
"Definition is in start state”,
instance. getRootToken (). getNode(). getName(),
"start®);

instance. signal();

assertEquals|(
“Definition is in auction state~,
instance.getRootToken (). getNode (). getName(),
"auction”®);

instance, signal();

assertEquals(
"Definition is in end state®,
instance.getRootToken().getNode(). getName(),
“end®);

assertTrue("Instance has ended”, instance.hasEnded(}));

=g Writable Smartinsert 38:1 5 O 5 B

Figure 4.6. A First Test Scenario

In the first line of the method, a jBPM process archive object is created. We use a constructor
accepting the filename of the archive. In our case it is the hello file we created earlier and which
lives in the src/main/jpd| folder of our project. After asserting that this object is really created, we
extract a process definition object from it. This object is fed to the constructor of a process instance
object. We have a process instance object, but this process is not yet started, so we can safely
assert that its root token still resides in the start node. After signalling the token will move to the
next state and the process will be in the auction state. Finally another signal will end the process.

After writing this test we can check whether it works as expected by running it .

20

= =2 Hello|BPM

P = sresm

P (= srefm

= B srcfte

- i col

¥

b g col

[= JRE Sy

b omhjEPML
b sre

4 [l
7 overview ¥
No view availa’

I (@ srefmainfjava

JBPM JPDL - HellojBPM/src/test/java/com/|bay/HelloTest. Java - Eclipse Platform

[g~0rQ- |2 we- @y |98 2 v 8
- -t;:'c:" -

New

Open

Open With

Open Type Hierarchy
Show In

[Copy

= Copy Qualified Name
[T Paste

M Delete

Build Path
Source
Refactor

£ Import...
&y Export...

References
Declarations

< Refresh
Assign Working Sets. .

2 on serer st

Debug As
Profile As
Validate
oy Deploy To Server
Team
Compare With
Replace With
Restore from Local History...
Web Services

package com.)bay;
#import junit.framework. TestCase;|]

. public class HelloTest extends TestCase {

File Edit Source Refacter Navigate Search Project Bun Window Help

»
tProcess() throws Exception {
F3
inition definition = ProcessDefinition.parseXmilResource("hello/processdef
Mi{"Definition should not be null”, definition);
F4
Shift+Alt+W + [@nce instance = new ProcessInstance(definition);
s
ctri4+c (finition is in start state®, =
itance.getRootToken () .getNode().getName(),
arty;
Ctrl+W
Delete 0aL{);
s(

, fTinition is in auction state",

itance.getRootToken (). getNode (). getName(),
Shift+Alt+5 * ction®);

SHift+AIL+T * L=

F5
712:08:14 PM

[4]

| = &

] 2 JUnit Test Shift+Alt+X

*
3 Open Run Dialeg...

Figure 4.7. Running the Process Test

All went well as we have a green light:

21

Chapter 4. Test Driven Proces...

JBPM JPDL - Hello|BPM/src/test/java/com/|bay/HelloTest. java - Eclipse Platform
File Edit Source Refacter Navigate Search Project Bun Window Help

L@ |sse | eveld o]z r = (22w oL |

| 81~ i~ % o~

I Package Explorer 2 =0
S package com. jbay;
= 1= HellojaPM #import junit.framework. TestCase;|]
P (= srefmainjjava -
& sre/mainy public class HelloTest extends TestCase {

P (2 srefmainjconfig

P (2 srefmainfjpd|
= [# srcftestfjava ProcessDefinition definition = ProcessDefinition.parsexmlResource(“hello/processdef
assertNotNull("Definition should not be null™, definitien);

public void testProcess() throws Exception {

= # com jbay

+ [HelloTest java ProcessInstance instance = new ProcessInstance(definition);

b com.sample assertbquals(

“Definition is in start state",
b m JRE System Library [jdk1.5. instance.getRootToken () .getNode().getName(),
b @i |BPM Library [jopm-jpel-3.2. Tstart’);
b sre instance. signal();
assertEquals|

"Definition is in auction state",
instance. getRootToken (). getNode (). getName(),
a [D] Tauction”);

“® Overview b2 = G | |r]u

Mo view available

[properties |fu Junit 52 . Bl Console g &l
Finished after 2 316 seconds .

Runs: 171 o Errors: 0 B Failures: 0 e

v+ % com jbay HelloTest [Runner: jUnit 3] = Fallure Trace

ik Writable Smart Insert 38:1 &5 B

Figure 4.8. Successful Test Run

Of course, this simple scenario was not very interesting, but the purpose of it was to show how you
can reuse your development skills in a very straightforward way when doing process development.
To see how more interesting processes and process test scenario's can be developed, we suggest
you to read the JBoss |BPM User Guide [http://docs.jboss.com/jbpm/v3/userguide/] and to study
the API reference. You can find it in the jBPM download folder. (To get started we downloaded
jbpm-jpdI-3.2.2 in the second chapter. You should just remember where you extracted it.) All we've
mentioned are in the 'javadoc- *' subfolders of the 'doc' folder. Moreover, some more examples

will be given later in this book.

22

http://docs.jboss.com/jbpm/v3/userguide/
http://docs.jboss.com/jbpm/v3/userguide/

Chapter 5.

Actions : The JBoss |BPM
Integration Mechanism

In this chapter we will show how to do software integration with JBoss jBPM. The standard
mechanism to implement this is to wrap the functionality you want to integrate in a class that
implements the ActionHandler interface. In order to demonstrate it let's specify Hello World action
for our process.

5.1. Creating a Hello World Action

Each Hello World process should integrate one or more Hello World actions, so this is what we
will be doing. We can integrate custom code at different points in the process definition. To do this
we have to specify an action handler, represented by an implementation of the ActionHandler
interface, and attach this piece of code to a particular event. These events are amongst others,
going over a transition, leaving or entering nodes, after and before signalling.

To make things a little bit more concrete, let's create a new class called HelloActionHandler. For
that firstly we'll create a new package com.jbay.action inthe src/java/main folder of our project.
Then, we should call New Class Creation wizard as usual by right-clicking and navigating New
> Class.

23

Chapter 5. Actions : The JBos...

¢ New Java Class x

java Class
Create a new Java class. Q

Source folder: [HellujBPM.ﬁsrc!main.fiava][Browse... I

Package: [cum.ibay.acﬁnn | Browse.. .

[] Enclosing type:

Mame: [Helloﬁ.cl:lunHandler
Madifiers: 3 public () default

[] abstract [] final

Superclass: [jaua.lang.obj-ect][Browseg... I

Interfaces: 1. org jbpr graph def ActionHandler | Add ...

| l Remove

Which method stubs. would you like to
[] public static void main(String[] args)
[] Constructors from superclass
Inherited absiract methods
Do you want to add comments as configured in the properties of the current project?
Generate Comments

[id] [Finlsh || Cancel

Figure 5.1. Creating HelloActionHendler Class

Notice that two first gaps have been filled automatically. Here, instead of Package option Enclose
type option can be selected where a type in which to enclose a new class should be specified.

In our case, we leave everything as it is, just type HelloActionHandler as a name of new class
and add org.jbpm.graph.ActionHendler interface as it's shown in the picture above.

Thus, our HelloActionHandler implements the ActionHandler interface including the execute
method as shown in the next figure. Here, we add a variable named greeting to the collection of

process variables and put a message in it : "Hello from ActionHandler".

24

Integrating the Hello World Action

P hella |.'i_‘, HelloTest java =8
1 package com.)bay.action; =]
2
s#import org.jbpm.graph.def.actionHandler;[]
5
& public class HelloActionHandler implements ActionHandler {
7
s public static final long serialversionuID = 1L;
=] =
102 public void execute({ExecutionContext context) throws Exception {
11
12 context.getContextInstance() .createVariable("greeting®, "Hello from ActionHandler");
13 1
14
15 }
16 L
] I 12

Figure 5.2. A Simple Hello Action

Now, as we have HelloActionHandler class defined, let's explore how we can handle it.

5.2. Integrating the Hello World Action

The main purpose of this chapter is to provide you with the steps associating our Hello World
action with a particular event and test the correctness of our actions as well.

As good Testcity citizens we will first create a Unit Test that proves the behaviour we want to
achieve by adding the ActionHandler to the process. So we implement another test.

At first, let's return to the code we already saw in the previous chapter and add new test method
testActionHendler to it.

W” [hella | [HelloTest java ﬁ\ﬁj HelloActionHandler.java = 5|
= = D ATSTT LMLMIL LY LTI LIIL LAV DIVM LY L U ThLh , T LIIL LA, e
S = 12 T
= 1 Hellojgem =] 3 ProcessInstance instance = new ProcessInstance(definmition);
g 14 assertEquals("Definition 1s in start state", instance.getRootToken().getNode().getName(), "=
= @ srefmainfjava 15
= @ comjbayaction 16 instance.signall(l; o))
17 assertEquals("Definition is in auction state®, instance.getRootToken().getNode().getmMame(), | |
B [1] HelloActionHandler.j: 18
b g com.sample.action 19 instance.signalll; .
20 assertEquals("Definition 1s in end state", instance.getRootToken{).getNode().getName(), "enc
b @@ srefrnainfeonfig 21
= @ srejrnaingipd| 22 assertTrue("Instance has ended.", instance.hasEnded());
= 2 hells =
¥ gpd.xml public void testActionHandler ()} throws Exception{
- ProcessDefinition definition = ProcessDefinition.parseXmiResource(®hello/processdefinition.)
processdefinition.xm
& processimage.jpg Processinstance instance = new ProcessInstance({definition);
) asserthull(*The greeting variabl ould not exist",
b £ simple instance.getContextInst }.getvariablae{*greeting®*));
= #Barcftestfjava
- N lnstance.signal();
& com.jbay assertEquals(*"The greeting variable is created®,
instance.getContextInstance().getVariable{"greeting®), "Hello from ActionHandler"};
I g corm.sample)
I m&JRE System Library [java-1[«} 37 -]
al] [@) I 1)

Figure 5.3. Create the Hello Action Test

We assert that no variable called greeting exist. Then we give the process a signal to move
it to the auction state. We want to associate the execution of the action with the event of going
over the transition from the start state to the auction state. So after the signal, the process should

25

Chapter 5. Actions : The JBos...

be in the auction state as in the previous scenario. But moreover, the greeting variable should
exist and contain the string "Hello from ActionHandler". That's what we assert in the last lines of
the test method.

Running the tests now results in a failure. The point is that we did not associate the action with
any particular event in the process definition, so the process variable did not get set.

[# Package Explorer = = 8 [F hello j [1] HelloactionHandler java =8|
1e

Be v instance.signal(); =
N : =il 17 assertEquals(*Definition 1s 1n auction state", instance.getRootToken().getNode(]
+ 22 HellojaPM =
= @ srejrainfjava 19 instance.signal();
< @ com.bayaction jc: assertEquals(*Definition is in end state", instance.getRootToken().getNode().ged
B [1] HelloActionHandler.j: 22 assertTrue(*Instance has ended.®, instance.hasEnded());

3 } -

I @ com.sample action
b @ srefmainfeonfig
= (@ srefmaingjpdl
<+ i helle
¥ gpdxml

public void testactionHandler() throws Exception{
ProcessDefinition definition = ProcessDefinition.parseXmlResource({*hello/process:

ProcessInstance instance = new Processinstance(definition);
assertiull(*The greeting variable should not exist",
instance.getContextInstance().getVariable("greeting"));
[P processdefinition xrm
#§ processimage.jog instance.signal(};)))
assertEquals("The greeting variable is created-,

b gz simple instance.getContextInstance().getVariable("greeting”), *Hello from Actic
= (@ sreftestfjava - }
= B comjbay
[y HelloTest java [[>]
b @ com.sample ¥ | 1 properties |'[gE Junit & Console 4 ¢ @ B g~ =08
[BN - 1
L = I Finished after 0.948 seconds
5= outline 22 =8)
~ || PRuns: 22 8 Errors; 0 B Failures: 1 |
L L
& comjbay = g com.jbayHellaTest [Funner: JUnit 3] (0.876 5) = Failure Trace
b “: import declarations gl testProcess (0.794 s) ¥ junit framework.AssartionFailedError: The greeting variable

+ @ HelloTest B testActionHandler (0.082 5) = at com jbayHelloTest testactionHandler{HelloTest java:33)

o testProcess()

- testActionHandler()

G])|

Figure 5.4. Test Results Before Integration

Let's do something about it and add an action to the first transition of our sample process. To do
this you can use the Actions tab in the Properties Editor that is under the graphical canvas. Bring
up the popup menu of the action element container and chose New Action as it's shown on the
figure below. The other way to add an action to the transition is simply to use the dropdown menu
that is available under the action icon in the right upper corner of the Properties View.

.——.i I ﬁ Q"'vl = =8

—+ Transition

General | _

Condition

Exceptions | %’ New Script

% Actlons % New Create Timer [
#: New Cancel Timer

|—|— @ New Mail)

Figure 5.5. Adding an Action to a Transition

26

Integrating the Hello World Action

After adding the action a tabbed view with three pages will appear.

T Properties i3 S| % =0
%2 Process Definition

General m General Details Advanced

Exceptions
Tasks

* Actions
Swimlanes

Narne

= [

Figure 5.6. Configuration Dialog for an Action

The first of these three pages allows you to give the Action a name. The last page contains some
advanced attributes such as whether the Action is asynchronous. The Details page is the most
important. It allows to choose and configure the actual action handler implementation.

[Properties &

¢ R

2% Process Definition

Ganeral B |General|Details | Advanced

Exceptions Handler | i I Class Name Search...| Config Type FEE | -
Task

ks The class does not exist on the project classpath.
Actions
Swimlanes

hod

Figure 5.7. The Details page of an Action Configuration Dialog

Clicking on the Search... button brings us to a Choose Class dialog.

27

Chapter 5. Actions : The JBos...

F Choose Action Handler *»
Choose an action handler from the list -
[hEIIu]
Matching itermns:

'€ HelloActionHandler - comn jbay action

. f# com jbay.action - HellojBPM/src/imainfjava

(il | OK I[Cancel I

Figure 5.8. The Choose Action Handler Dialog

We choose our previously created 'HelloActionHandler' class and push the OK button. After the
selection of the action handler for the action, we can run the test and observe it gives us a green
light.

28

Integration Points

[Package Explorer 32 =0 [P hello [3] HelloTest java 2 1) HelloActionHandler java =0
B & v |11 asserthotMulli*Detinition should not be null®, detimtion); =) |
= 12]

- @ Hellojgpm Ell 13 ProcessInstance instance = new ProcessInstance(definitien);

o 14 assertEquals(*Definition 1s in start state", instance.getRootToken().getNode().ge
< @ srefmainjfjava 15
= @ com jbayaction 16 instance.signal(); ||
17 assertEquals(*Definition 1s 1n auction state”, instance.getRootToken().getNode().

b [1] HelloActionHandler j:

P @ com.sample.action instance.signal();

assert Is(*Definition 1s in end state", instance.getRootTeoken().getNode().geth
b @ srefmainjconfig Equalsl , =] ().g (1.g

= (@ srefmainfjpd assertTrue(*Instance has ended.”, instance.hasEnded());

= B hello

% gpd.xml public void testictionHandler() throws Exception{

@) processdefinition xm ProcessDefinition definition = ProcessDefinition.parsexmlAesource(*hello/processc

g processimage jpg ProcessInstance instance = new ProcessInstance(definition);

asserthull{*The greeting variable should not exist®,

b B simple instance.getContextInstance() getVarisble("gresting"));
= 8 sreftestfjava
= {§ com.jbay instance.signal();

assertEquals(*The greeting variable 1s created-®,
instance.getContextInstance().getVariable("greeting"), *Hello from Actior

+ I HelloTest java

b @ com.sample } =
@) |)
E= putline 2 =0) properties g jUnit 5 B Console | o B X El~ ¥ =0

B W W e ¥ T Finished after 0.937 seconds

Runs: 2j2 8 Errors: 0 B Failures: 0 I

@ G com jbayHelloTest [Funner: JUnit 2] (0.904) = Failure Trace

i testProcess (0,811 5)

comgbay
P “z import declarations
= @ HelloTest

o testProcess()

43 testActionHandler (0,053 s)

Figure 5.9. Test Results

There we are. The above objective has been achieved.

5.3. Integration Points

The different integration points in a process definition are thoroughly documented in the JBoss
JBPM User Guide [http://docs.jboss.com/jbpm/v3/userguide/]. Instance nodes can contain many
action elements. Each of these will appear in the Action element list of the Actions tab. But each
Action also has a properties view of itself. You can navigate to this view by selecting the added
Action in the outline view.

29

http://docs.jboss.com/jbpm/v3/userguide/
http://docs.jboss.com/jbpm/v3/userguide/
http://docs.jboss.com/jbpm/v3/userguide/

Chapter 6.

Quick Howto Guide

This chapter contains additional information related to the JBoss jBPM.

6.1. Change the Default Core jBPM Installation

You can change the default jBPM installation by means of the Eclipse preference mechanism.
Open the Preferences dialog by selecting Window > Preferences and select the JBoss jBPM >
Runtime Location category. Using this page you can add multiple [BPM installation locations and
change the default one. The default installation is used for the classpath settings when creating
a new Process Project. Changing the preferences has no influence on already created projects.
Getting rid of a jBPM installation that's being referenced by a project however will cause the
classpath to contain errors.

¢ Preferences x
|_-t5.rpe filter text] Runtime Locations Sow
¥ General = Add, remove or edit [Boss JBPM installation locations.,
b Ant The checked lacation will be used by the jBPM creation wizards.
b Connectivity jBPM Installation Locations:
FreeMarker Editor . Marme Viersion Loc ation . Add.
HGL editor
I InstalUpdate
B Internet
I Java g
= |Boss |BPM
Assignment Types
Jpd! Templates

server Deployime

b |Boss Tools

| | m Restore Qeraults” Apply
3

@ [oK I | Cancel

Figure 6.1. The jBPM Preferences Page

6.2. Configuring Task Nodes

Here, we'll examine how you can configure the Task nodes in jBPM jPDL GPD.

You can add Tasks to Task nodes and then configure them in a similar manner as the Action
configuration mechanism. Let's consider the process definition similar to the previous one that

31

Chapter 6. Quick Howto Guide

contains three nodes: Start state, Task node and End state. The Properties view for selected Task
node includes several tabs.

JBPM JPDL - Hello]JBPM/src/main/|pdi/task/processdefinition.xml - Eclipse Platform
File Edit View Navigate Search Project Bun Window Help

v [0 | BEE @y o083 K - Gl ® G O m [22eem o] ”

[Package Explorer i =8 | B rtask 2 =0
2 & 7|l select
i Marguee
= 1=} Hello[BPM |
) start
[[sro/mainfjava e Stata 0 <<Sitart Statas>
P (# sre/mainiconfig @ End st
= [® srofmainfpd «3 Fork
b {2 hello & Join . <<Task Nodes>
b & simple .7 Decision =l
¥ Node
= B task % Task Node
¥ Forms.xmi & Mail Node
® gpd.xmi ¢S Procese State ™ <<End Stale=>
end
b processdefinition. xmi 2% Super State
& processimage jpg —PUEIEL
B (® srctestjava
I» ®h JRE System Library [jokl.5.
I ® jBPM Library [JBPM_runtime]

Diagrarm [Deployment Design Source

b = sre
'l I D [Properties 52 a =T
2 ®overvie | = O T Task Node
M swimlanes =] | General
= gg MNodes Exceptions
b Q) start ¥ Tasks
= i task-node Events
& Events Timers
b = Transitions —1 | Advanced
5 Tasks]
[® end =]] : :

-

Figure 6.2. The Properties View of the selected Task Node

We should choose the Task tab and then bring up the context menu or click the button in the top
right corner of the view to add a Task to our Task node.

¥ Task Node

General |
Exceptions
Sneks |
Events i

Timers

Advanced

- : o

Figure 6.3. Adding a Task to the Task Node

32

Configuring Task Nodes

Every added Task has its own configuration possibilities. You can access them through the
Properties view as well.

[l Properties i3 ¢ % ¥=0
¥ Task Mode

e General Details| Assignmnent Controller| Reminder
Exceptions Mame

¥ Tasks

Events

Description

Timers

Advanced

4]

Figure 6.4. The Task properties

The General page is a place where you can specify the name of a Task and its description. For
instance, let it be approve oder with appropriate description that you can see in the figure below.

[l Properties £2 R S =
¥ Task Node

General ﬂapprgve oder General Details | Assignmnent| Controller| Reminder

Exceptions Name approve oder
¥ Tasks Description This task shows the approval form to the approver [=
Events

Timers

Advanced

Figure 6.5. The Task General Page

Now, look at Details page. First, you should specify the due date that is a mandatory property for
the Task. The due date is the date on which the task should be accomplished. Here you can also
set a Task priority as well as signalling, notifying or blocking. The Blocking attribute indicates that
the process will not be able to continue if this task is still unaccomplished. The Generate Form...
button is for creating a simple task form that can be rendered by the jBPM console.

T Properties & ¢ ® ¥ =0
¥ Task Node

General ﬂwpru\ae oder General Details Assignmnent Controller Reminder

Exceptions Due Date |3 business days
] Tasks Priority high -] Blocking [Signalling [Notify
Events — _
| Generate Form...
Timers)
Advanced

[0

Figure 6.6. The Task Details Page

33

Chapter 6. Quick Howto Guide

For our example, we specify the due date as 2 business days, choose the high priority and also
check the Signalling and Notify attributes. It means that the Task should be accomplished in
2 business days and the assignee will be notified by email when the task is assigned. To specify
how the Task should be assigned switch on to the Assignment page.

Tl Properties £2 & ® =0
¥ Task Mode

— General | Details | Assignmnent| Controller| Reminder

Exceptions
¥ Tasks
Events

Actor |" | Actor gjl

Timers

Advanced

Figure 6.7. The Task Assignment Page

On the Reminder page you can specify whether the assignee will be reminded of the task that
awaits him.

T Properties £3 B S =
¥ Task Node

General

General Details Assignmnent Controller Reminder

Exceptions | il :Configl.lre Reminder

<] Tasks Due Date 2 business hours
Events Repeat 1 business hour
Timers

Advanced

Figure 6.8. The Task Reminder Page

In our case, the assignee will be reminded by email after two business hours and continue to get
reminding every business hour after that.

In the next figure you can see our configuring generated into XML.

34

Configuring Task Nodes

=?xml version="1.8" encoding="UTF-87=

<process-definition xmlns="urn:jbpm.org: jpdl-3.2" name="task">

=start.state name="start">
=transition to="task-node"=</transition=
</start-statex

=task-node name="task-node”>
=task name="approve oder" priority="high" duedate="3 business days" notify="true"=
<gescriptions =
This task shows the approval form to the approver
<fdescription>
=assignment actor-id="Bill"></assignment=
scontroller class=""=>=</controller>
<reminder duedate=""/>
</task=
<transition to="end"=</transition>
=/task-node>

<end-state name="end"></end-states>

=/process-definition=

(<] i [+]
Diagram Deployment Design | Source

[4]

Figure 6.9. The Task Reminder Page

We hope, our guide will help you to get started with the jPDL process language and jBPM workflow
on the whole. Besides, for additional information you are welcome on JBoss forum

35

	jBPM Tools Reference Guide
	Table of Contents
	Chapter 1. Introduction
	1.1. Preface
	1.2. Feature list
	1.3. Other relevant resources on the topic

	Chapter 2. JBoss jBPM Runtime Installation
	Chapter 3. The views
	3.1. The Outline View
	3.2. The Overview
	3.3. The Properties View
	3.4. The jBPM Graphical Process Designer editor.
	3.4.1. The Diagram mode
	3.4.2. The Source Mode
	3.4.3. The Design Mode
	3.4.4. The Deployment Mode

	Chapter 4. Test Driven Process Development
	Chapter 5. Actions : The JBoss jBPM Integration Mechanism
	5.1. Creating a Hello World Action
	5.2. Integrating the Hello World Action
	5.3. Integration Points

	Chapter 6. Quick Howto Guide
	6.1. Change the Default Core jBPM Installation
	6.2. Configuring Task Nodes

