Introduction to Web Beans

The new Java standard for dependency injection and contextual state
management

Gavin King

Web Beans (JSR-299) specification lead
Red Hat Middleware LLC

Table of Contents

I, USING CONEEXTUAl ODJECES ... ettt et ettt ettt e e et e e et et e e e eebereeeeebaneeeenes 1
1. Getting started With Weh BEANS ...t 3
L2 Your first WED BEENoe e 3

1.2. What iISAWED BEANT ...ttt ettt e et e e et e e e et e eeeee 4
1.2.1. API types, binding types and dependency iNjeCtionccoouiiieiiiiineiiii e 5

1.2.2. DEPIOYIMENE LYPIES ..eetiieeeiti ettt ettt ettt e e ettt e e et et e et e et e e e entereeeenbaneeeene 5

R S oo o= PP 6

1.2.4. Web Bean names and Unified ELcooooiiiiiiiiiiii e 6

1.2.5. Interceptor DINAING TYPESneiiiie e e 6

1.3. What kinds of objectscan be Weh Beans?oooiiiiiiiiiiiie e 7

131 SIMPIEWED BEANSuiiiiiiiieeeeet et et e 7

1.3.2. ENterpriSE WED BEANSceeviieiiii et et 7

1.3.3. ProducCer MELNOGSooiiieiieiiii e e e e e e eeees 8

1.3.4. IMS ENUPOINES ... eeeetie ettt ettt e et e e et et e e e e et e e e e et e e e eete e e e enba e eeene 8

2. JSF web application EXAMPIEii e 9
3. DEPENAENCY INJECLION ...ttt et e e e e e e et et e e e b e e e e ban s 11
3.1 BiNiNG @NNOLALTIONSceeetieieeii ettt et e e e et e e e et eeeeba s 12
3.1.1. Binding annotations With MEMDENSiiiiiiiiiii e 12

3.1.2. Combinations of binding aNNNOLELIONSc..uiiiiiiiiieiei e 13

3.1.3. Binding annotations and producer Methodsc.uiviiiiiiiiiiiiiiee e 13

3.1.4. The default BINAING tYPE .. .cevriiiieiii e 13

3.2, DEPIOYMENE LYPES .eveeeeeii ettt ettt ettt ettt et 13
3.2.1. Enabling deplOoymMENt tYPESuniiiiiieeeei et 14

3.2.2. Deployment tYPe PreCEUBNCE ... iiivei ittt ettt 14

3.2.3. Example deployMENt TYPESuiiiiii ettt et 15

3.3. Fixing unsatisfied dependenCiesiiieii i 15

R O T 0| o (0 (=S TP PR RTPPPTTR 15

3.5. Obtaining a Web Bean by programatic I00KUDccuuuiiiiiiiiieiii e 16

3.6. Lifecycle callbacks, @Resource, @EJIB and @PersistenceConteXtccoevevnveeeiveiiierenneennnn. 16

4. SCOPES ANG CONTEXES ...ieitii ettt ettt ettt ettt ettt e et et e et e eb e et e et e et et e et e bt e e e eban s 17
4.0, SCOPBEYIIES ettt ettt ettt ettt et et et 17

4.2, BUIT-IN SCOPES ..ttt ettt e et e et e e e et n e e e b 17

4.3. The CONVEISAION SCOPE ...vvuuiiieti i eieiii ettt e et e e ettt e et e et bt e e e et e e e e b e e e era s 18
4.3.1. CoNVersation eMarCaIIONcccuvuueiieii ettt ettt e e et e e e e e e eran s 18

4.3.2. CONVErsation PrOPAJELIONeieeruueeeeiieeeeti e et e et et et e e e b e e ert e e eran s 19

4.3.3. CONVErSAiON THMEOULiiiiii ettt e et e e eeeba s 19

4.4. The dependent PSEUAO-SCOPEu.ieerun ettt et e et e e et e et e et et e e et e e e b e e eran s 19
4.4.1. The @NEW ANNOLBEIONeuiieiieiie e e e e e e e e e e aeaeaneanen 19

5. Producer MELNOAS ... et 21
5.1. Scope of aproducer MELNOcoiiii e 21

5.2. Injection into Producer MELNOASiiiiiiiii e 22

5.3. Use of @New with producer MethOdSiiiiiiiiiii e 22

I1. Developing 100SalY-COUPIEA COURiiiiiii e e ettt e et e e e e eees 23
O N a1 0= = o] o PP PPPT 24
6. 1. INLErCEPLOr DINAINGS ettt ettt e et e e e e eaans 24

6.2. IMPIEMENtING INTEICEPIONS ...\ ettt e e e e et e e e eeaans 24

6.3. ENADIING INTEICEPLOIS ... ieeitieeeeet ettt e e et e e et e eeana e eeaens 25

6.4. Interceptor bindingS With MEMDErSiiiii e 25

6.5. Multiple interceptor binding aNNOLELIONSiiieieiiiieii e 26

6.6. Interceptor binding type iNhEMTANCEiiiiii e 26

A S Y o) (o g1 = o= o) £ PP 26

A D= ol = Lo TP PPPT 28
7.1, DElEQALE AIIDULES ... ettt e 28

7.2. ENADIING GECOIIOIS ... ettt et ettt e e et e e e e e et e e e aaa e e eeaans 29

S I Y= 01 PP PTRPPP 30
8.1 EVENE ODSEIVENS ..ttt ettt ettt ettt e 30

8.2, EVENE PIOUUCENS ...ttt ettt ettt ettt e ettt e ettt e e e e b e e e eba s 30

Introduction to Web Beans

8.3. Registering observers dynamiCallyoooeuuiiiiiii e 31

8.4. Event bindingS With MemDErSoooiii e 31

8.5. MUItIPIE BVENE DINAINGSvuieiii e e et e e e e b 32

8.6. Transactional ODSEIVEIS ... e 32

I11. Making the most Of SIFONG TYPINGvu ettt et e e et e e e et e e e eab e e e eebeaaeeees 34
S 1= 01 o[TP PPPT 35
9.1. Default scope and deployment type for aStEreotYPeccuvuiiiiiiieieei e 35

9.2. Restricting scope and type With SErEOtYPEoviieeiiiiiii e 35

9.3. Interceptor bindiNgS fOr SLEMEOLYPES ...cevviiiiiiii e 36

9.4. Name defaulting With SLEFEOLYPEScoeveiiieii e 36

O.5. StaNard SLEMEOLYPES ... eieetiie ettt ettt aaan 36

10. SPECIAIIZALION ...eeviiee et et ettt e et e et e e et e e et e e ea e aae 37
10.1. USING SPECTAIIZALION ..vuiieeiiiiiee ettt et e e e e et e e e e et e e e eeba e aees 37

10.2. Advantages of SPECIAlIZALIONveiiiiii e 38

11. Defining Web BeanS USING XML ..ouuiiiiiiec e e 39
11.1. Declaring WED BEaN CIASSESoovuiiiiiiiiieeeiii e et e eaa e e 39

11.2. Declaring Web Bean MEtatatacoouuiiiiiiiiieiiii et 39

11.3. Declaring Web Bean MEmMErSoiiiiiiiiii e e 40

11.4. Declaring inliNE WED BEENScoovuiiiiiiiiieecii et 40

115, USING @SCREITIA ... ittt ettt ettt e e et et e e e e et r e e e eate e e e eatnneeeens 40

V. Web Beans and the Java EE €COSYSIEMiiiiiiiiiiii e et 42
12. JAVA EE INTEOratioNuiiiiiii i et 43
12.1. Injecting Java EE resources into aWeD Beanooviiiiiiiiiiiiiiicc e 43

12.2. Calling aWeb Bean from aSErVIELiiiiiiiiiiii e 43

12.3. Calling aWeb Bean from aMessage-Driven Beancovevviiiiiiiiiiiiiiiiiieec e 43

12,4, IMS ENAPOINES ...ttt ettt e et e e et e et e et e e e e et e e e eat e e e eaba e aee 44

13 EXEENAING WED BEANS ...ttt ettt e e et e e et e e et e e ea e aee 45
13.1. The MaNagEr ODJECE i e et e e e e e e 45

13.2. TREBEAN CIESS ... ittt ettt e e et e e e et e e e eata e eeees 46

13.3. The CoNtEXt INLEITACEciiiei e e ees 46
L < o S T 47

Part I. Using contextual objects

The Web Beans (JSR-299) specification defines a set of services for the Java EE environment that makes applications
much easier to develop. Web Beans layers an enhanced lifecycle and interaction model over existing Java component
types including JavaBeans and Enterprise Java Beans. As a complement to the traditional Java EE programming model,
the Web Beans services provide:

« animproved lifecycle for stateful components, bound to well-defined contexts,
» atypesafe approach to dependency injection,
< interaction viaan event notification facility, and

« abetter approach to binding interceptors to components, along with a new kind of interceptor, called a decorator, that
is more appropriate for use in solving business problems.

Dependency injection, together with contextual lifecycle management, saves the user of an unfamiliar API from having to
ask and answer the following questions:

* what isthelifecycle of this object?

* how many simultaneous clients can it have?

* isit multithreaded?

e wherecan | get one from?

e dol need to explicitly destroy it?

» where should | keep my reference to it when I'm not using it directly?

* how can | add anindirection layer, so that the implementation of this object can vary at deployment time?
« how should | go about sharing this object between other objects?

A Web Bean specifies only the type and semantics of other Web Beans it depends upon. It need not be aware of the actual
lifecycle, concrete implementation, threading model or other clients of any Web Bean it depends upon. Even better, the
concrete implementation, lifecycle and threading model of a Web Bean it depends upon may vary according to the deploy-
ment scenario, without affecting any client.

Events, interceptors and decorators enhance the loose-coupling that is inherent in this model:

« event notifications decouple event producers from event consumers,
« interceptors decouple technical concerns from business logic, and
e decorators allow business concerns to be compartmentalized.

Most importantly, Web Beans provides all these facilities in a typesafe way. Web Beans never uses string-based identifiers
to determine how collaborating objects fit together. And XML, though it remains an option, is rarely used. Instead, Web
Beans uses the typing information that is already available in the Java object model, together with a new pattern, caled
binding annotations, to wire together Web Beans, their dependencies, their interceptors and decorators and their event con-
sumers.

The Web Beans services are general and apply to the following types of components that exist in the Java EE environ-
ment:

¢ all JavaBeans,
« dl EJBs, and

o al Servlets.

Web Beans even provides the necessary integration points so that other kinds of components defined by future Java EE
specifications or by non-standard frameworks may be cleanly integrated with Web Beans, take advantage of the Web
Beans services, and interact with any other kind of Web Bean.

Web Beans was influenced by a number of existing Java frameworks, including Seam, Guice and Spring. However, Web
Beans has its own very distinct character: more typesafe than Seam, more stateful and less XML-centric than Spring, more
web and enterprise-application capable than Guice.

Most importantly, Web Beans is a JCP standard that integrates cleanly with Java EE, and with any Java SE environment
where embeddable EJB Liteis available.

Chapter 1. Getting started with Web Beans

So you're already keen to get started writing your first Web Bean? Or perhaps you're skeptical, wondering what kinds of
hoops the Web Beans specification will make you jump through! The good news is that you've probably aready written
and used hundreds, perhaps thousands of Web Beans. Y ou might not even remember the first Web Bean you wrote.

1.1. Your first Web Bean

With certain, very special exceptions, every Java class with a constructor that accepts no parameters is a Web Bean. That
includes every JavaBean. Furthermore, every EJB 3-style session or singleton bean is a Web Bean. Sure, the JavaBeans
and EJBs you've been writing every day have not been able to take advantage of the new services defined by the Web
Beans specification, but you'll be able to use every one of them as Web Beans—injecting them into other Web Beans, con-
figuring them via the Web Beans XML configuration facility, even adding interceptors and decorators to them—without
touching your existing code.

Suppose that we have two existing Java classes, that we've been using for years in various applications. The first class
parsesastring into alist of sentences:

public class SentenceParser {
public List<String> parse(String text) { ... }
}

The second existing classis a stateless session bean front-end for an external system that is able to trandate sentences from
one language to another:

@t at el ess

public class SentenceTransl ator inplenents Translator {
public String translate(String sentence) { ... }

}

Where Tr ansl at or isthelocal interface:

@ocal
public interface Translator {

public String translate(String sentence);
}

Unfortunately, we don't have a pre-existing class that translates whole text documents. So let's write a Web Bean that does
thisjob:

public class TextTransl ator {

private SentenceParser sentenceParser;
private Transl ator sentenceTransl ator;

@nitializer

Text Tr ansl at or (Sent encePar ser sentenceParser, Transl ator sentenceTranslator) {
thi s. sent enceParser = sentenceParser;
thi s.sentenceTransl ator = sentenceTransl ator;

}

public String translate(String text) {
StringBuilder sb = new StringBuilder();
for (String sentence in sentenceParser.parse(text)) {
sb. append(sentenceTransl ator.transl at e(sent ence));

return sh.toString();

}

We may obtain an instance of Text Transl at or by injecting it into aWeb Bean, Servlet or EJB:

@nitializer

publ i c set Text Transl at or (Text Transl at or text Transl ator) {
this.textTransl ator = textTransl ator;

}

Alternatively, we may obtain an instance by directly calling a method of the Web Bean manager:

Getting started with Web Beans

Text Transl ator tt = nanager. getl nst anceByType(Text Transl at or. cl ass);

But wait: Text Transl at or does not have a constructor with no parameters! Is it still a Web Bean? Well, a class that does
not have a constructor with no parameters can still be aWeb Bean if it has a constructor annotated @ ni ti al i zer.

As you've guessed, the @ni ti al i zer annotation has something to do with dependency injection! @nitial i zer may be
applied to a constructor or method of a Web Bean, and tells the Web Bean manager to call that constructor or method
when instantiating the Web Bean. The Web Bean manager will inject other Web Beans to the parameters of the construct-
or or method.

At system initialization time, the Web Bean manager must validate that exactly one Web Bean exists which satisfies each
injection point. In our example, if no implementation of Transl at or available—if the Sent enceTr ansl at or EJB was not
deployed—the Web Bean manager would throw an Unsat i sfi edDependencyExcept i on. |f more than one implementation
of Transl at or was available, the Web Bean manager would throw an Anbi guousDependencyExcept i on.

1.2. What is a Web Bean?

So what, exactly, isaWeb Bean?

A Web Bean is an application class that contains business logic. A Web Bean may be called directly from Java code, or it
may be invoked via Unified EL. A Web Bean may access transactional resources. Dependencies between Web Beans are
managed automatically by the Web Bean manager. Most Web Beans are stateful and contextual. The lifecycle of a Web
Bean is always managed by the Web Bean manager.

Let's back up a second. What does it really mean to be "contextual"? Since Web Beans may be stateful, it matters which
bean instance | have. Unlike a stateless component model (for example, stateless session beans) or a singleton component
model (such as servlets, or singleton beans), different clients of a Web Bean see the Web Bean in different states. The cli-
ent-visible state depends upon which instance of the Web Bean the client has areference to.

However, like a stateless or singleton model, but unlike stateful session beans, the client does not control the lifecycle of
the instance by explicitly creating and destroying it. Instead, the scope of the Web Bean determines:

» thelifecycle of each instance of the Web Bean and
« which clients share areference to a particular instance of the Web Bean.

For a given thread in a Web Beans application, there may be an active context associated with the scope of the Web Bean.
This context may be unique to the thread (for example, if the Web Bean is request scoped), or it may be shared with cer-
tain other threads (for example, if the Web Bean is session scoped) or even al other threads (if it is application scoped).

Clients (for example, other Web Beans) executing in the same context will see the same instance of the Web Bean. But cli-
entsin adifferent context will see a different instance.

One great advantage of the contextual model is that it allows stateful Web Beans to be treated like services! The client
need not concern itself with managing the lifecycle of the Web Bean it is using, nor does it even need to know what that li-
fecyle is. Web Beans interact by passing messages, and the Web Bean implementations define the lifecycle of their own
state. The Web Beans are |oosely coupled because:

» they interact viawell-defined public APIs
» their lifecycles are completely decoupled

We can replace one Web Bean with a different Web Bean that implements the same API and has a different lifecycle (a
different scope) without affecting the other Web Bean implementation. In fact, Web Beans defines a sophisticated facility
for overriding Web Bean implementations at deployment time, as we will seein Section 3.2, “Deployment types’.

Note that not all clients of a Web Bean are Web Beans. Other objects such as Servlets or Message-Driven Beans—which
are by nature not injectable, contextual objects—may also obtain references to Web Beans by injection.

Enough hand-waving. More formally, according to the spec:

A Web Bean comprises:

Getting started with Web Beans

e A (nonempty) set of API types

* A (nonempty) set of binding annotation types
» A scope

e A deployment type

e Optionaly, aWeb Bean name

e A set of interceptor binding types

¢ A Web Bean implementation

Let's see what some of these terms mean, to the Web Bean devel oper.

1.2.1. APl types, binding types and dependency injection

Web Beans usualy acquire references to other Web Beans via dependency injection. Any injected attribute specifies a
"contract” that must be satisfied by the Web Bean to be injected. The contract is:

e an APl type, together with
e aset of binding types.

An APl is a user-defined class or interface. (If the Web Bean is an EJB session bean, the APl type isthe @ocal interface
or bean-classlocal view). A binding type represents some client-visible semantic that is satisfied by some implementations
of the API and not by others.

Binding types are represented by user-defined annotations that are themselves annotated @i ndi ngType. For example, the
following injection point has API type Paynent Processor and binding type @ edi t Car d:

@Cr edi t Card Paynent Processor paynent Processor

If no binding type is explicitly specified at an injection point, the default binding type @ur r ent isassumed.

For each injection point, the Web Bean manager searches for a Web Bean which satisfies the contract (implements the
API, and has all the binding types), and injects that Web Bean.

The following Web Bean has the binding type @r edi t Card and implements the API type Paynent Processor . It could
therefore be injected to the example injection point:

@reditCard
public class CreditCardPaynent Processor
i mpl enents Payment Processor { ... }

If a Web Bean does not explicitly specify a set of binding types, it has exactly one binding type: the default binding type
@current.

Web Beans defines a sophisticated but intuitive resolution algorithm that helps the container decide what to do if thereis
more than one Web Bean that satisfies a particular contract. We'll get into the details in Chapter 3, Dependency injection.

1.2.2. Deployment types

Deployment types let us classify our Web Beans by deployment scenario. A deployment type is an annotation that repres-
ents a particular deployment scenario, for example @bck, @t agi ng or @ust ral i anTaxLaw. We apply the annotation to
Web Beans which should be deployed in that scenario. A deployment type allows a whole set of Web Beans to be condi-
tionally deployed, with ajust single line of configuration.

Many Web Beans just use the default deployment type @r oduct i on, in which case no deployment type need be explicitly
specified. All three Web Bean in our example have the deployment type @r oduct i on.

In atesting environment, we might want to replace the Sent enceTr ansl at or Web Bean with a"mock object":

Getting started with Web Beans

@mbck
public class MockSent enceTransl ator inplenments Transl ator {
public String translate(String sentence) {
return "Loremipsumdolor sit anet";
}

}

We would enable the deployment type @ubck in our testing environment, to indicate that MockSent enceTr ansl at or and
any other Web Bean annotated @wbck should be used.

Well talk more about this unique and powerful feature in Section 3.2, “ Deployment types’.

1.2.3. Scope

The scope defines the lifecycle and visibility of instances of the Web Bean. The Web Beans context model is extensible,
accommodating arbitrary scopes. However, certain important scopes are built-in to the specification, and provided by the
Web Bean manager. A scope is represented by an annotation type.

For example, any web application may have session scoped Web Beans:

@bessi onScoped
public class ShoppingCart { ... }

An instance of a session scoped Web Bean is bound to a user session and is shared by all requests that execute in the con-
text of that session.

By default, Web Beans belong to a special scope called the dependent pseudo-scope. Web Beans with this scope are pure
dependent objects of the object into which they are injected, and their lifecycle is bound to the lifecycle of that object.

We'll talk more about scopes in Chapter 4, Scopes and contexts.

1.2.4. Web Bean names and Unified EL

A Web Bean may have a name, allowing it to be used in Unified EL expressions. It's easy to specify the name of a Web
Bean:

@Bessi onScoped @laned("cart")
public class ShoppingCart { ... }

Now we can easily use the Web Bean in any JSF or JSP page:
<h: dat aTabl e val ue="#{cart.lineltens}" var="iteni>
</ h: dat aTabl e>
It's even easier to just let the name be defaulted by the Web Bean manager:

@sessi onScoped @aned
public class ShoppingCart { ... }

In this case, the name defaults to shoppi ngCar t —the unqualified class name, with the first character changed to lower-
case.

1.2.5. Interceptor binding types

Web Beans supports the interceptor functionality defined by EJB 3, not only for EJB beans, but also for plain Java classes.
In addition, Web Beans provides a new approach to binding interceptors to EJB beans and other Web Beans.

It remains possible to directly specify the interceptor class via use of the @ nt er cept or s annotation:

@essi onScoped
@nt erceptors(Transacti onl nterceptor. cl ass)
public class ShoppingCart { ... }

Getting started with Web Beans

However, it is more elegant, and better practice, to indirect the interceptor binding through an interceptor binding type:

@bessi onScoped @ ansacti ona
public class ShoppingCart { ... }

Welll discuss Web Beans interceptors and decorators in Chapter 6, Interceptors and Chapter 7, Decorators.

1.3. What kinds of objects can be Web Beans?

We've aready seen that JavaBeans, EJBs and some other Java classes can be Web Beans. But exactly what kinds of ob-
jects are Web Beans?

1.3.1. Simple Web Beans

The Web Beans specification says that a concrete Java classis a simple Web Bean if:

e itisnot an EE container-managed component, like an EJB, a Servlet or a JPA entity,
* itisnot anon-static static inner class,

e itisnot aparameterized type, and

« it hasaconstructor with no parameters, or a constructor annotated @ni ti al i zer .
Thus, almost every JavaBean is asimple Web Bean.

Every interface implemented directly or indirectly by a simple Web Bean is an APl type of the simple Web Bean. The
class and its superclasses are also API types.

1.3.2. Enterprise Web Beans

The specification says that al EJB 3-style session and singleton beans are enterprise Web Beans. Message driven beans
are not Web Beans—since they are not intended to be injected into other objects—but they can take advantage of most of
the functionality of Web Beans, including dependency injection and interceptors.

Every local interface of an enterprise Web Bean that does not have a wildcard type parameter or type variable, and every
one of its superinterfaces, is an APl type of the enterprise Web Bean. If the EJB bean has a bean class local view, the bean
class, and every one of its superclasses, is also an API type.

Stateful session beans should declare a remove method with no parameters or a remove method annotated @est r uct or .
The Web Bean manager calls this method to destroy the stateful session bean instance at the end of its lifecycle. This
method is called the destructor method of the enterprise Web Bean.

@5t at ef ul @bessi onScoped
public class ShoppingCart {

@Renove
public void destroy() {}

}

So when should we use an enterprise Web Bean instead of a simple Web Bean? Well, whenever we need the advanced en-
terprise services offered by EJB, such as:

method-level transaction management and security,
« concurrency management,
e instance-level passivation for stateful session beans and instance-pooling for statel ess session beans,

* remote and web service invocation, and

Getting started with Web Beans

¢ timers and asynchronous methods,
we should use an enterprise Web Bean. When we don't need any of these things, a simple Web Bean will serve just fine.

Many Web Beans (including any session or application scoped Web Bean) are available for concurrent access. Therefore,
the concurrency management provided by EJB 3.1 is especially useful. Most session and application scoped Web Beans
should be EJBs.

Web Beans which hold references to heavy-weight resources, or hold a lot of internal state benefit from the advanced con-
tainer-managed lifecycle defined by the EJB @t at el ess/@t at ef ul /@i ngl et on model, with its support for passivation
and instance pooling.

Finally, it's usually obvious when method-level transaction management, method-level security, timers, remote methods or
asynchronous methods are needed.

It's usually easy to start with simple Web Bean, and then turn it into an EJB, just by adding an annotation: @t at el ess,
@5t at ef ul Or @i ngl et on.

1.3.3. Producer methods

A producer method is a method that is called by the Web Bean manager to obtain an instance of the Web Bean when no
instance exists in the current context. A producer method lets the application take full control of the instantiation process,
instead of leaving instantiation to the Web Bean manager. For example:

public class Generator {
private Random random = new Random(SystemcurrentTimeMIlis());

@°roduces @Random int next() {
return random next | nt (100);
}

}

The result of a producer method isinjected just like any other Web Bean.

@Random i nt randomNunber

The method return type and al interfaces it extends/implements directly or indirectly are APl types of the producer meth-
od. If thereturn typeisaclass, all superclasses are also APl types.

Some producer methods return objects that require explicit destruction:

@°r oduces @Request Scoped Connection connect (User user) {
return createConnection(user.getld(), user.getPassword());
}

These producer methods may define matching disposal methods:

voi d cl ose(@i sposes Connection connection) {
connection. cl ose();
}

This disposal method is called automatically by the Web Bean manager at the end of the request.

Well talk much more about producer methods in Chapter 5, Producer methods.

1.3.4. JMS endpoints

Finally, a JM S queue or topic can be a Web Bean. Web Beans relieves the developer from the tedium of managing the life-
cycles of al the various IMS objects required to send messages to queues and topics. We'll discuss IMS endpoints in Sec-
tion 12.4, “IMS endpoints’.

Chapter 2. JSF web application example

Let'sillustrate these ideas with afull example. We're going to implement user login/logout for an application that uses JSF.
First, we'll define a Web Bean to hold the username and password entered during login:

@\anmed

public class Credentials {

private String usernang;
private String password;

public String getUsernane() { return usernane;
public void setUsername(String usernane) { this.usernane = usernane; }

public String getPassword() { return password; }
public void setPassword(String password) { this.password = password; }

This Web Bean is bound to the login prompt in the following JSF form:

<f:formp
<h: panel Gid col ums="2" rendered="#{!1ogin.| oggedl n}">
<h: out put Label for="usernanme">User nane: </ h: out put Label >
<h:input Text id="usernanme" val ue="#{credenti al s. usernane}"/>
<h: out put Label for="passwor d">Password: </ h: out put Label >
<h: i nput Text id="password" val ue="#{credential s. password}"/>
</ h: panel G'i d>
<h: commandBut t on val ue="Logi n" action="#{login.login}" rendered="#{!1ogin.|oggedln}"/>
<h: commandBut t on val ue="Logout" aci on="#{| ogin.|ogout}" rendered="#{l ogi n.| oggedl n}"/>
</f:form

The actual work is done by a session scoped Web Bean that maintains information about the currently logged-in user and
exposesthe User entity to other Web Beans:

@Bessi onScoped @aned
public class Login {

@urrent Credentials credentials;
@Per si st enceCont ext EntityManager user Dat abase;

private User user;
public void login() {

Li st <User > results = userDat abase. creat eQuery(
"select u from User u where u.usernane=:usernane and u. passwor d=: password")
. set Paranet er ("usernanme”, credentials.getUsernane())
. set Paranet er ("password", credentials.getPassword())
.getResul tList();

if ('results.isEnpty()) {
user = results.get(0);

}

}

public void | ogout() {
user = null;

}

publ i c bool ean i sLoggedl n() {
return user!=null;
}

@r oduces @uoggedln User getCurrentUser() {
return user;
}

Of course, @ogged! n is abinding annotation:

@Ret ent i on(RUNTI MVE)

@rarget ({ TYPE, METHOD, FIELD})
@i ndi ngType

public @nterface Loggedln {}

JSF web application example

Now, any other Web Bean can easily inject the current user:

public class Docunent Editor {

@urrent Docunent docunent;
@oggedl n User current User;
@er si st enceCont ext EntityManager docDat abase;

public void save() {
docunent . set Cr eat edBy(current User) ;
docDat abase. persi st (docunent) ;

Hopefully, this example gives aflavor of the Web Bean programming model. In the next chapter, we'll explore Web Beans
dependency injection in greater depth.

10

Chapter 3. Dependency injection
Web Beans supports three primary mechanisms for dependency injection:
Constructor parameter injection:

public class Checkout {
private final ShoppingCart cart;
@nitializer

publ i ¢ Checkout (Shoppi ngCart cart) {
this.cart = cart;
}

}

Initializer method parameter injection:

public class Checkout ({
private ShoppingCart cart;

@nitializer

voi d set Shoppi ngCart (Shoppi ngCart cart) {
this.cart = cart;

}

}

And direct field injection:

public class Checkout {

private @urrent ShoppingCart cart;
}

Dependency injection always occurs when the Web Bean instance is first instantiated.

» Firgt, the Web Bean manager calls the Web Bean constructor, to obtain an instance of the Web Bean.
« Next, the Web Bean manager initializes the values of all injected fields of the Web Bean.

¢ Next, the Web Bean manager calls all initializer methods of Web Bean.

* Finaly, the @ost Const ruct method of the Web Bean, if any, is called.

Constructor parameter injection is not supported for EJB beans, since the EJB is instantiated by the EJB container, not the
Web Bean manager.

Parameters of constructors and initializer methods need not be explicitly annotated when the default binding type
@urrent applies. Injected fields, however, must specify a binding type, even when the default binding type applies. If the
field does not specify abinding type, it will not be injected.

Producer methods also support parameter injection:

@r oduces Checkout createCheckout (ShoppingCart cart) {
return new Checkout (cart);
}

Finally, observer methods (which we'll meet in Chapter 8, Events), disposal methods and destructor methods all support
parameter injection.

The Web Beans specification defines a procedure, called the typesafe resolution algorithm, that the Web Bean manager
follows when identifying the Web Bean to inject to an injection point. This algorithm looks complex at first, but once you
understand it, it's really quite intuitive. Typesafe resolution is performed at system initialization time, which means that the
manager will inform the user immediately if a Web Bean's dependencies cannot be satisfied, by throwing a Unsat i sf i ed-

DependencyExcepti on OF Ambi guousDependencyExcepti on.

11

Dependency injection

The purpose of this algorithm isto allow multiple Web Beans to implement the same API type and either:

e alow the client to select which implementation it requires using binding annotations,

e dlow the application deployer to select which implementation is appropriate for a particular deployment, without
changes to the client, by enabling or disabling deployment types, or

« alow one implementation of an API to override another implementation of the same API at deployment time, without
changes to the client, using deployment type precedence.

Let's explore how the Web Beans manager determines a\Web Bean to be injected.

3.1. Binding annotations

If we have more than one Web Bean that implements a particular API type, the injection point can specify exactly which
Web Bean should be injected using a binding annotation. For example, there might be two implementations of Paynent -
Processor:

@PayByCheque

public class ChequePaynent Processor inplenments Paynent Processor {
public void process(Paynent payment) { ... }

}

@rayByCredi t Card
public class CreditCardPaynment Processor inplenments Paynment Processor {
public void process(Paynent payment) { ...

Where @ayByCheque and @ayByCr edi t Car d are binding annotations:

@Ret ent i on(RUNTI MVE)

@arget ({ TYPE, METHOD, FIlELD, PARAMETER})
@Bi ndi ngType

public @nterface PayByCheque {}

@Ret ent i on(RUNTI ME)

@ar get ({ TYPE, METHOD, FIELD, PARAVETER})
@i ndi ngType

public @nterface PayByCreditCard {}

A client Web Bean devel oper uses the binding annotation to specify exactly which Web Bean should be injected.
Using field injection:

@rayByCheque Payment Processor chequePaynent Processor;
@PayByCredi t Card Payment Processor creditCardPaynment Processor;

Using initializer method injection:

@nitializer
public void setPayment Processor s(@ayByCheque Paynent Processor chequePaynent Processor,
@PayByCredit Card Paynent Processor credit CardPaynent Processor) {
t hi s. chequePaynent Processor = chequePaynent Processor;
thi s. creditCardPaynment Processor = creditCardPaynent Processor;

}

Or using constructor injection:

@nitializer
publ i ¢ Checkout (@ayByCheque Paynent Processor chequePaynent Processor,
@PayByCredi t Card Paynent Processor credit CardPaynment Processor) {
t hi s. chequePaynent Processor = chequePaynent Processor;
thi s. creditCardPayment Processor = credit CardPaynment Processor;

}

3.1.1. Binding annotations with members

12

Dependency injection

Binding annotations may have members:

@Ret ent i on(RUNTI MVE)
@ar get ({ TYPE, METHOD, FIELD, PARAVETER})

@i ndi ngType
public @nterface PayBy {
Paynment Type val ue();
}
In which case, the member value is significant:

@PayBy(CHEQUE) Paynent Processor chequePaynent Processor;
@PayBy(CREDI T_CARD) Paynent Processor credit CardPaynent Processor;

You can tell the Web Bean manager to ignore a member of a binding annotation type by annotating the member
@\onBi ndi ng.

3.1.2. Combinations of binding annnotations
An injection point may even specify multiple binding annotations:
@\synchronous @PayByCheque Paynent Processor payment Processor

In this case, only a Web Bean which has both binding annotations would be eligible for injection.

3.1.3. Binding annotations and producer methods
Even producer methods may specify binding annotations:

@r oduces

@\synchronous @PayByCheque

Paynent Processor creat eAsyncPaynent Processor (@PayByCheque Paynent Processor processor) {
return new Asynchr onousPaynent Processor (processor);

}

3.1.4. The default binding type

Web Beans defines a binding type @cur rent that is the default binding type for any injection point or Web Bean that does
not explicitly specify abinding type.

There are two common circumstances in which it is necessary to explicitly specify @urrent :

« onafield, in order to declare it as an injected field with the default binding type, and

« on aWeb Bean which has another binding type in addition to the default binding type.

3.2. Deployment types

All Web Beans have a deployment type. Each deployment type identifies a set of Web Beans that should be conditionally
installed in some deployments of the system.

For example, we could define a deployment type named @wbck, which would identify Web Beans that should only be in-
stalled when the system executes inside an integration testing environment:

@Ret ent i on(RUNTI MVE)
@rar get ({ TYPE, METHOD})
@epl oynent Type
public @nterface Mck {}

Suppose we had some Web Bean that interacted with an external system to process payments:

public cl ass External Paynent Processor {

public void process(Paynent p) {

13

Dependency injection

}

Since this Web Bean does not explicitly specify a deployment type, it has the default deployment type @r oduct i on.
For integration or unit testing, the external system is slow or unavailable. So we would create a mock object:

@mbck
public class MdckPaynment Processor inplenments Paynment Processor {

@verride

public void process(Paynent p) {
p. set Successful (true);

}

}

But how does the Web Bean manager determine which implementation to use in a particular deployment?

3.2.1. Enabling deployment types

Web Beans defines two built-in deployment types. @r oducti on and @t andar d. By default, only Web Beans with the
built-in deployment types are enabled when the system is deployed. We can identify additional deployment types to be en-
abled in a particular deployment by listing them in web- beans. xm .

Going back to our example, when we deploy our integration tests, we want all our @wbck objectsto beinstalled:

<WebBeans>
<Depl oy>
<St andar d/ >
<Producti on/ >
<t est : Mock/ >
</ Depl oy>
</ WbBeans>

Now the Web Bean manager will identify and install all Web Beans annotated @r oduct i on, @t andard oOr @bck at de-
ployment time.

The deployment type @t andar d is used only for certain special Web Beans defined by the Web Beans specification. We
can't useit for our own Web Beans, and we can't disable it.

The deployment type @ oduct i on is the default deployment type for Web Beans which don't explicitly declare a deploy-
ment type, and may be disabled.

3.2.2. Deployment type precedence

If you've been paying attention, you're probably wondering how the Web Bean manager decides which
implementation—Ext er nal Paynent Processor Or MockPaynent Processor —to choose. Consider what happens when the
manager encounters this injection point:

@Current Paynent Processor payment Processor

There are now two Web Beans which satisfy the payment Processor contract. Of course, we can't use a binding annotation
to disambiguate, since binding annotations are hard-coded into the source at the injection point, and we want the manager
to be able to decide at deployment time!

The solution to this problem is that each deployment type has a different precedence. The precedence of the deployment
types is determined by the order in which they appear in web-beans. xni . In our example, @bck appears later than
@r oduct i on S0 it has a higher precedence.

Whenever the manager discovers that more than one Web Bean could satisfy the contract (API type plus binding annota-
tions) specified by an injection point, it considers the relative precedence of the Web Beans. If one has a higher precedence
than the others, it chooses the higher precedence Web Bean to inject. So, in our example, the Web Bean manager will in-
ject MockPaynent Processor When executing in our integration testing environment (which is exactly what we want).

14

Dependency injection

It's interesting to compare this facility to today's popular manager architectures. Various "lightweight" containers also al-
low conditional deployment of classes that exist in the classpath, but the classes that are to be deployed must be explicity,
individually, listed in configuration code or in some XML configuration file. Web Beans does support Web Bean defini-
tion and configuration via XML, but in the common case where no complex configuration is required, deployment types
allow awhole set of Web Beans to be enabled with a single line of XML. Meanwhile, a developer browsing the code can
easily identify what deployment scenarios the Web Bean will be used in.

3.2.3. Example deployment types

Deployment types are useful for all kinds of things, here's some examples:

e @nbck and @t agi ng deployment types for testing

e @ustralianTaxLaw for site-specific Web Beans

e @eanfranewor k, @ui ce for third-party frameworks which build on Web Beans
e @t andar d for standard Web Beans defined by the Web Beans specification

I'm sure you can think of more applications...

3.3. Fixing unsatisfied dependencies

The typesafe resolution algorithm fails when, after considering the binding annotations and and deployment types of all
Web Beans that implement the API type of an injection point, the Web Bean manager is unable to identify exactly one
Web Bean to inject.

It'susually easy to fix an Unsat i sfi edDependencyExcept i on OF Anbi guousDependencyExcept i on.

To fix an Unsati sfi edDependencyExcept i on, sSimply provide a Web Bean which implements the API type and has the
binding types of the injection point—or enable the deployment type of a Web Bean that already implements the API type
and has the binding types.

To fix an Anbi guousDependencyExcept i on, introduce a binding type to distinguish between the two implementations of
the API type, or change the deployment type of one of the implementations so that the Web Bean manager can use deploy-
ment type precedence to choose between them. An Anbi guousDependencyExcept i on can only occur if two Web Beans
share a binding type and have exactly the same deployment type.

There's one more issue you need to be aware of when using dependency injection in Web Beans.

3.4. Client proxies

Clients of an injected Web Bean do not usually hold a direct reference to a Web Bean instance.

Imagine that a Web Bean bound to the application scope held a direct reference to a Web Bean bound to the request scope.
The application scoped Web Bean is shared between many different requests. However, each request should see a different
instance of the request scoped Web bean!

Now imagine that a Web Bean bound to the session scope held a direct reference to a Web Bean bound to the application
scope. From time to time, the session context is serialized to disk in order to use memory more efficiently. However, the
application scoped Web Bean instance should not be serialized along with the session scoped Web Bean!

Therefore, unless a Web Bean has the default scope @ependent , the Web Bean manager must indirect all injected refer-
ences to the Web Bean through a proxy object. This client proxy is responsible for ensuring that the Web Bean instance
that receives a method invocation is the instance that is associated with the current context. The client proxy aso alows
Web Beans bound to contexts such as the session context to be serialized to disk without recursively serializing other in-
jected Web Beans.

Unfortunately, due to limitations of the Java language, some Java types cannot be proxied by the Web Bean manager.
Therefore, the Web Bean manager throws an unpr oxyabl eDependencyExcept i on if the type of an injection point cannot
be proxied.

15

Dependency injection

The following Java types cannot be proxied by the Web Bean manager:

» classeswhich are declared fi nal or have afinal method,
» classes which have no non-private constructor with no parameters, and
e arraysand primitive types.

It's usually very easy to fix an Unpr oxyabl eDependencyExcept i on. Simply add a constructor with no parameters to the in-
jected class, introduce an interface, or change the scope of the injected Web Bean to @ependent .

3.5. Obtaining a Web Bean by programatic lookup

The application may obtain an instance of the interface Manager by injection:

@Current Manager manager;

The Manager object provides a set of methods for obtaining a Web Bean instance programatically.

Payment Processor p = manager. getl nst anceByType(Paynment Processor. cl ass);

Binding annotations may be specified by subclassing the helper class Annot ati onLi t eral , Since it is otherwise difficult to
instantiate an annotation typein Java.

Payment Processor p = manager. get | nst anceByType(Paynent Processor. cl ass,
new Annot ationLiteral <CreditCard>(){});

If the binding type has an annotation member, we can't use an anonymous subclass of Annot at i onLi t er al —instead we'll
need to create a named subclass:

abstract class CreditCardBindi ng
ext ends Annot ati onLiteral <Credit Card>
impl enents CreditCard {}

Payment Processor p = manager. get | nst anceByType(Paynent Processor. cl ass,
new Credit Car dBi ndi ng() {
public void value() { return paynent Type; }
)i

3.6. Lifecycle callbacks, @esource, @JB and @er si st enceCont ext

Enterprise Web Beans support all the lifecycle callbacks defined by the EJB specification: @ost Const ruct , @r eDest r oy,
@r ePassi vat e and @ost Act i vat e.

Simple Web Beans support only the @ost Const ruct and @r eDest r oy callbacks.

Both enterprise and simple Web Beans support the use of @esour ce, @JB and @er si st enceCont ext for injection of Java
EE resources, EJBs and JPA persistence contexts, respectively. Simple Web Beans do not support the use of
@er si st enceCont ext (t ype=EXTENDED) .

The @ost Const ruct callback always occurs after all dependencies have been injected.

16

Chapter 4. Scopes and contexts

So far, we've seen a few examples of scope type annotations. The scope of a Web Bean determines the lifecycle of in-
stances of the Web Bean. The scope also determines which clients refer to which instances of the Web Bean. According to
the Web Beans specification, a scope determines:

* When anew instance of any Web Bean with that scope is created
« When an existing instance of any Web Bean with that scope is destroyed
* Which injected references refer to any instance of a Web Bean with that scope
For example, if we have a session scoped Web Bean, current User, al Web Beans that are caled in the context of the

same Ht t pSessi on Will see the same instance of current User . This instance will be automatically created the first time a
Current User isneeded in that session, and automatically destroyed when the session ends.

4.1. Scope types

Web Beans features an extensible context model. It is possible to define new scopes by creating a new scope type annota-
tion:

@Ret ent i on(RUNTI MVE)

@arget ({ TYPE, METHOD})

@copeType

public @nterface C usterScoped {}

Of course, that's the easy part of the job. For this scope type to be useful, we will also need to define a Cont ext object that
implements the scope! Implementing a Cont ext is usually a very technical task, intended for framework development
only.

We can apply a scope type annotation to a Web Bean implementation class to specify the scope of the Web Bean:

@l ust er Scoped
public class SecondLevel Cache { ... }

Usually, you'll use one of Web Beans' built-in scopes.

4.2. Built-in scopes

Web Beans defines four built-in scopes:

* @Rrequest Scoped

* @essi onScoped

* (@\pplicationScoped
® (@onversati onScoped

For aweb application that uses Web Beans:

e any servlet request has access to active request, session and application scopes, and, additionally
* any JSF request has access to an active conversation scope.

The request and application scopes are also active:

¢ during invocations of EJB remote methods,

e during EJB timeouts,

17

Scopes and contexts

¢ during message delivery to a message-driven bean, and
e during web service invocations.

If the application tries to invoke a Web Bean with a scope that does not have an active context, a Cont ext Not Act i veEx-
cepti on isthrown by the Web Bean manager at runtime.

Three of the four built-in scopes should be extremely familiar to every Java EE developer, so let's not waste time discuss-
ing them here. One of the scopes, however, is new.

4.3. The conversation scope

The Web Beans conversation scope is a bit like the traditional session scope in that it holds state associated with a user of
the system, and spans multiple requests to the server. However, unlike the session scope, the conversation scope:

» isdemarcated explicitly by the application, and
* holds state associated with a particular web browser tab in a JSF application.

A conversation represents a task, a unit of work from the point of view of the user. The conversation context holds state
associated with what the user is currently working on. If the user is doing multiple things at the same time, there are mul-
tiple conversations.

The conversation context is active during any JSF request. However, most conversations are destroyed at the end of the re-
quest. If a conversation should hold state across multiple requests, it must be explicitly promoted to a long-running con-
ver sation.

4.3.1. Conversation demarcation

Web Beans provides a built-in Web Bean for controlling the lifecyle of conversations in a JSF application. This Web Bean
may be obtained by injection:

@urrent Conversation conversation;

To promote the conversation associated with the current request to a long-running conversation, call the begi n() method
from application code. To schedule the current long-running conversation context for destruction at the end of the current
reguest, call end() .

In the following example, a conversation-scoped Web Bean controls the conversation with which it is associated:

@Conver sati onScoped @5t at ef ul
public class OderBuilder {

private Order order;
private @urrent Conversation conversation;
private @ersistenceContext(type=EXTENDED) EntityManager em

@°r oduces public Order getOrder() {
return order;
}

public Order createOder() {
order = new Order();
conversation. begi n();
return order;

}

public void addLi nel ten{Product product, int quantity) {
order.add(new Linelten(product, quantity));
}

public void saveOrder (Order order) {
em per si st (order);
conversation. end();

}

@renove
public void destroy() {}

18

Scopes and contexts

This Web Bean is able to control its own lifecycle through use of the Conver sati on API. But some other Web Beans have
alifecycle which depends completely upon another object.

4.3.2. Conversation propagation

The conversation context automatically propagates with any JSF faces request (JSF form submission). It does not automat-
ically propagate with non-faces requests, for example, navigation viaalink.

We can force the conversation to propagate with a non-faces request by including the unique identifier of the conversation
as a request parameter. The Web Beans specification reserves the request parameter named ci d for this use. The unique
identifier of the conversation may be obtained from the Conver sati on object, which has the Web Beans name conver sa-

tion.

Therefore, the following link propagates the conversation:

Add Product

The Web Bean manager is also required to propagate conversations across any redirect, even if the conversation is not
marked long-running. This makes it very easy to implement the common POST -then-redirect pattern, without resort to fra-
gile constructs such as a "flash" object. In this case, the Web Bean manager automatically adds a request parameter to the
redirect URL.

4.3.3. Conversation timeout

The Web Bean manager is permitted to destroy a conversation and all state held in its context at any time in order to pre-
serve resources. A Web Bean manager implementation will normally do this on the basis of some kind of timeout—though
thisis not required by the Web Beans specification. The timeout is the period of inactivity before the conversation is des-
troyed.

The conver sat i on object provides a method to set the timeout. This is a hint to the Web Bean manager, which is free to
ignore the setting.

conversation. set Ti meout (ti meoutInMI1lis);

4.4. The dependent pseudo-scope

In addition to the four built-in scopes, Web Beans features the so-called dependent pseudo-scope. Thisis the default scope
for a Web Bean which does not explicitly declare a scope type.

For example, this Web Bean has the scope type @ependent :

public class Calculator { ... }

When an injection point of a Web Bean resolves to a dependent Web Bean, a new instance of the dependent Web Bean is
created every time the first Web Bean is instantiated. Instances of dependent Web Beans are never shared between differ-
ent Web Beans or different injection points. They are dependent objects of some other Web Bean instance.

Dependent Web Bean instances are destroyed when the instance they depend upon is destroyed.

Web Beans makes it easy to obtain a dependent instance of a Java class or EJB bean, even if the class or EJB bean is
aready declared as a Web Bean with some other scope type.

4.4.1. The @aewannotation

The built-in @ew binding annotation allows implicit definition of a dependent Web Bean at an injection point. Suppose we
declare the following injected field:

@\ew Cal cul ator cal cul ator;

Then a Web Bean with scope @ependent , binding type @ew, APl type cal cul at or, implementation class cal cul at or

19

Scopes and contexts

and deployment type @t andar d isimplicitly defined.
Thisistrue evenif cal cul at or isalready declared with a different scope type, for example:

@Conver sat i onScoped
public class Calculator { ... }

So the following injected attributes each get a different instance of cal cul at or :

public class PaynmentCal c {

@urrent Cal cul ator cal cul ator;
@\ew Cal cul at or newcCal cul at or;

}

Thecal cul at or field has a conversation-scoped instance of Cal cul at or injected. The newcal cul at or field has anew in-
stance of cal cul at or injected, with alifecycle that is bound to the owning Paynent Cal c.

Thisfeature is particularly useful with producer methods, as we'll see in the next chapter.

20

Chapter 5. Producer methods

Producer methods let us overcome certain limitations that arise when the Web Bean manager, instead of the application, is
responsible for instantiating objects. They're also the easiest way to integrate objects which are not Web Beans into the
Web Beans environment. (We'll meet a second approach in Chapter 11, Defining Web Beans using XML.)

According to the spec:

A Web Beans producer method acts as a source of objects to be injected, where:

« theobjectsto beinjected are not required to be instances of Web Beans,
» the concrete type of the objects to be injected may vary at runtime or

» the objects require some custom initialization that is not performed by the Web Bean constructor

For example, producer methods let us:

e expose a JPA entity asaWeb Bean,

e expose any JDK class asaWeb Bean,

» define multiple Web Beans, with different scopes or initialization, for the same implementation class, or
* vary theimplementation of an APl type at runtime.

In particular, producer methods let us use runtime polymorphism with Web Beans. As we've seen, deployment types are a
powerful solution to the problem of deployment-time polymorphism. But once the system is deployed, the Web Bean im-
plementation isfixed. A producer method has no such limitation:

@sessi onScoped
public class Preferences {

private Paynent StrategyType paynent Strat egy;

@roduces @referred
public Paynment Strategy getPaynent Strategy() {
switch (paynent Strategy) {
case CREDI T_CARD: return new CreditCardPaynent Strategy();
case CHEQUE: return new ChequePaynent Strategy();
case PAYPAL: return new PayPal Payrment Strategy();
default: return null;

}
Consider an injection point:

@referred Paynment Strategy paynment Strat ;

This injection point has the same type and binding annotations as the producer method, so it resolves to the producer meth-
od using the usual Web Beans injection rules. The producer method will be called by the Web Bean manager to obtain an
instance to service this injection point.

5.1. Scope of a producer method

The scope of the producer method defaults to @ependent , and so it will be called every time the Web Bean manager in-
jectsthis field or any other field that resolves to the same producer method. Thus, there could be multiple instances of the
Payment St r at egy object for each user session.

To change this behavior, we can add a @essi onScoped annotation to the method.

@r oduces @referred @essi onScoped

21

Producer methods

public Paynent Strategy getPaynent Strategy() {
}

Now, when the producer method is called, the returned Payrent St r at egy Will be bound to the session context. The produ-
cer method won't be called again in the same session.

5.2. Injection into producer methods

There's one potentia problem with the code above. The implementations of Cr edi t Car dPaynent St r at egy are instantiated
using the Java new operator. Objects instantiated directly by the application can't take advantage of dependency injection
and don't have interceptors.

If thisisn't what we want we can use dependency injection into the producer method to obtain Web Bean instances:

@r oduces @referred @essi onScoped
public Paynent Strategy getPaynent Strategy(CreditCardPaynent Strategy ccps,
ChequePaynent Strat egy cps,
PayPal Paynent St rat egy ppps) {
switch (paynent Strategy) {
case CREDI T_CARD: return ccps;
case CHEQUE: return cps;
case PAYPAL: return ppps;
default: return null;

}

Wait, what if Credit Car dPayment Str at egy iS a request scoped Web Bean? Then the producer method has the effect of
"promoting” the current request scoped instance into session scope. Thisis amost certainly a bug! The request scoped ob-
ject will be destroyed by the Web Bean manager before the session ends, but the reference to the object will be left
"hanging" in the session scope. This error will not be detected by the Web Bean manager, so please take extra care when
returning Web Bean instances from producer methods!

There's at least three ways we could go about fixing this bug. We could change the scope of the cr edi t Car dPaynent -
Strategy implementation, but this would affect other clients of that Web Bean. A better option would be to change the
scope of the producer method to @ependent or @equest Scoped.

But a more common solution is to use the special @ew binding annotation.

5.3. Use of @ewwith producer methods

Consider the following producer method:

@r oduces @referred @essi onScoped
public Paynent Strategy getPaynent Strategy(@ew Credit Car dPaynent St rat egy ccps,
@New ChequePaynent Strat egy cps,
@New PayPal Paynment Strat egy ppps) {
switch (paynent Strategy) {
case CREDI T_CARD: return ccps;
case CHEQUE: return cps;
case PAYPAL: return ppps;
default: return null;

}

Then a new dependent instance of Credi t Car dPaynent St r at egy Will be created, passed to the producer method, returned
by the producer method and finally bound to the session context. The dependent object won't be destroyed until the pr ef -
erences object is destroyed, at the end of the session.

22

Part Il. Developing loosely-coupled code

The first major theme of Web Beansis loose coupling. We've aready seen three means of achieving loose coupling:

* deployment types enable deployment time polymorphism,
» producer methods enable runtime polymorphism, and
« contextual lifecycle management decouples Web Bean lifecycles.

These techniques serve to enable loose coupling of client and server. The client is no longer tightly bound to an imple-
mentation of an API, nor is it required to manage the lifecycle of the server object. This approach lets stateful objects in-
teract asif they were services.

Loose coupling makes a system more dynamic. The system can respond to change in a well-defined manner. In the past,
frameworks that attempted to provide the facilities listed above invariably did it by sacrificing type safety. Web Beans is
the first technology that achievesthislevel of loose coupling in atypesafe way.

Web Beans provides three extraimportant facilities that further the goal of loose coupling:

« interceptors decouple technical concerns from businesslogic,
» decorators may be used to decouple some business concerns, and
< event notifications decouple event producers from event consumers.

Let's explore interceptors first.

Chapter 6. Interceptors

Web Beans re-uses the basic interceptor architecture of EJB 3.0, extending the functionality in two directions:

« Any Web Bean may have interceptors, not just session beans.
« Web Beans features a more sophisticated annotation-based approach to binding interceptors to Web Beans.

The EJB specification defines two kinds of interception points:

* business method interception, and
 lifecycle callback interception.
A business method interceptor applies to invocations of methods of the Web Bean by clients of the Web Bean:
public class Transactionlnterceptor {
@\r oundl nvoke public Object manageTransaction(lnvocationContext ctx) { ... }
}
A lifecycle callback interceptor appliesto invocations of lifecycle callbacks by the container:
public cl ass Dependencyl nj ectionl nterceptor {
@Post Construct public void injectDependenci es(lnvocationContext ctx) { ... }
}

An interceptor class may intercept both lifecycle callbacks and business methods.

6.1. Interceptor bindings

Suppose we want to declare that some of our Web Beans are transactional. The first thing we need is an interceptor bind-
ing annotation to specify exactly which Web Beans we're interested in:

@ nt er cept or Bi ndi ngType

@rar get ({ METHOD, TYPE})

@Ret ent i on(RUNTI VE)

public @nterface Transactional {}

Now we can easily specify that our Shoppi ngCart isatransactional object:

@r ansact i onal
public class ShoppingCart { ... }

Or, if we prefer, we can specify that just one method is transactional

public class ShoppingCart {
@ransactional public void checkout() { ... }
}

6.2. Implementing interceptors

That's great, but somewhere along the line we're going to have to actually implement the interceptor that provides this
transaction management aspect. All we need to do is create a standard EJB interceptor, and annotate it @ nt er cept or and
@r ansactional .

@ransacti onal @ nterceptor
public class Transactionlnterceptor {

@\r oundl nvoke public Object manageTransaction(lnvocationContext ctx) { ... }
}

All Web Beans interceptors are ssmple Web Beans, and can take advantage of dependency injection and contextual life-
cycle management.

@\ppl i cati onScoped @Transacti onal @ nterceptor

24

Interceptors

public class Transactionlnterceptor {
@Resource Transaction transaction;

@\r oundl nvoke public Object manageTransaction(lnvocationContext ctx) { ... }

Multiple interceptors may use the same interceptor binding type.

6.3. Enabling interceptors

Finally, we need to enable our interceptor in web- beans. xni .

<I nt er cept or s>
<t x: Transacti onl nt er cept or/ >
</ | nt er cept or s>

Whoah! Why the angle bracket stew?

Well, the XML declaration solves two problems:

e it enables usto specify atotal ordering for all the interceptorsin our system, ensuring deterministic behavior, and
e itletsusenableor disable interceptor classes at deployment time.
For example, we could specify that our security interceptor runs before our Tr ansact i onl nt er cept or .

<I nterceptors>

<sx: Securitylnterceptor/>

<t x: Transacti onl nt er cept or/ >
</ | nt er cept or s>

Or we could turn them both off in our test environment!

6.4. Interceptor bindings with members

Suppose we want to add some extrainformation to our @r ansact i onal annotation:

@ nt er cept or Bi ndi ngType
@rar get ({ METHOD, TYPE})
@Ret ent i on(RUNTI MVE)
public @nterface Transactional
bool ean requi resNew() default false;
}

Web Beans will use the value of r equi r esNew to choose between two different interceptors, Tr ansact i onl nt er cept or and
Requi r esNewTr ansact i onl nt erceptor.

@r ansact i onal (requi resNew=t rue) @ nterceptor
public class RequiresNewlransactionl nterceptor {

@\r oundl nvoke public Object manageTransaction(lnvocationContext ctx) { ... }
}

Now we can use Requi r esNewTr ansact i onl nt er cept or likethis:

@ransacti onal (requiresNew=true)
public class ShoppingCart { ... }

But what if we only have one interceptor and we want the manager to ignore the value of r equi r esNew when binding inter-
ceptors? We can use the @onBi ndi ng annotation:

@ nt er cept or Bi ndi ngType
@rar get ({ METHOD, TYPE})
@Ret ent i on(RUNTI MVE)
public @nterface Secure {
@onBi nding String[] rol esAllowed() default {};

25

Interceptors

6.5. Multiple interceptor binding annotations

Usually we use combinations of interceptor bindings types to bind multiple interceptors to a Web Bean. For example, the
following declaration would be used to bind Tr ansact i onl nt er cept or and Securi tyl nt er cept or to the same Web Bean:

@secure(rol esAl | owed="adni n") @ransacti onal
public class ShoppingCart { ... }

However, in very complex cases, an interceptor itself may specify some combination of interceptor binding types:

@ransacti onal @ecure @ nterceptor
public class Transactional Securelnterceptor { ... }

Then this interceptor could be bound to the checkout () method using any one of the following combinations:

public class ShoppingCart {

@ransacti onal @ecure public void checkout() { ... }
}
@vecure
public class ShoppingCart {
@ransactional public void checkout() { ... }
}

@r ansact i onl
public class ShoppingCart {
@ecure public void checkout() { ... }

@ransacti onal @decure
public class ShoppingCart {
public void checkout() { ... }

6.6. Interceptor binding type inheritance

One limitation of the Java language support for annotations is the lack of annotation inheritance. Really, annotations
should have reuse built in, to allow this kind of thing to work:

public @nterface Action extends Transactional, Secure { ... }

Well, fortunately, Web Beans works around this missing feature of Java. We may annotate one interceptor binding type
with other interceptor binding types. The interceptor bindings are transitive—any Web Bean with the first interceptor bind-
ing inherits the interceptor bindings declared as meta-annotations.

@r ansacti onal @pecure

@ nt er cept or Bi ndi ngType

@rar get (TYPE)

@Ret ent i on(RUNTI VE)

public @nterface Action { ... }

Any Web Bean annotated @ct i on will be bound to both Transacti onl nt er cept or and Securi tyl nt er cept or . (And even
Transact i onal Secur el nter cept or, if it exists.)

6.7. Use of @nterceptors

The @ nt ercept or s annotation defined by the EJB specification is supported for both enterprise and simple Web Beans,
for example:

@nterceptors({Transacti onlnterceptor.class, @ecuritylnterceptor.class})
public class ShoppingCart {
public void checkout() { ... }

26

Interceptors

}
However, this approach suffers the following drawbacks:
e theinterceptor implementation is hardcoded in business code,

« interceptors may not be easily disabled at deployment time, and

» theinterceptor ordering is non-global—it is determined by the order in which interceptors are listed at the classlevel.

Therefore, we recommend the use of Web Beans-style interceptor bindings.

27

Chapter 7. Decorators

Interceptors are a powerful way to capture and separate concerns which are orthogonal to the type system. Any interceptor
is able to intercept invocations of any Java type. This makes them perfect for solving technical concerns such as transac-
tion management and security. However, by nature, interceptors are unaware of the actual semantics of the events they in-
tercept. Thus, interceptors aren't an appropriate tool for separating business-related concerns.

The reverse is true of decorators. A decorator intercepts invocations only for a certain Java interface, and is therefore
aware of all the semantics attached to that interface. This makes decorators a perfect tool for modeling some kinds of busi-
ness concerns. It also means that a decorator doesn't have the generality of an interceptor. Decorators aren't able to solve
technical concerns that cut across many disparate types.

Suppose we have an interface that represents accounts:

public interface Account {
publ i c Bi gDeci mal get Bal ance();
public User getOnmner();
public void w thdraw Bi gDeci mal anount);
public void deposit(BigDeci mal anount);

}

Several different Web Beans in our system implement the Account interface. However, we have a common legal require-
ment that, for any kind of account, large transactions must be recorded by the system in a specia log. Thisis a perfect job
for a decorator.

A decorator is asimple Web Bean that implements the type it decorates and is annotated @ecor at or .

@ecor at or
public abstract class LargeTransacti onDecor at or
i mpl enents Account {
@ecor ates Account account;
@er si stenceCont ext EntityManager em
public void w thdraw Bi gDeci mal anmount) {
account . wi t hdraw(anount) ;

i f (anount. conpar eTo(LARGE_AMOUNT) >0) {
em persi st (new LoggedWt hdraw (anmount));
}

}

public void deposit(BigDeci mal anpunt);
account . deposi t (anount) ;
i f (anount.conpareTo(LARGE_AMOUNT) >0) {
em persi st (new LoggedDeposit(amunt));
}

}

Unlike other simple Web Beans, a decorator may be an abstract class. If there's nothing special the decorator needs to do
for aparticular method of the decorated interface, you don't need to implement that method.

7.1. Delegate attributes

All decorators have a delegate attribute. The type and binding types of the delegate attribute determine which Web Beans
the decorator is bound to. The delegate attribute type must implement or extend all interfaces implemented by the decorat-
or.

This delegate attribute specifies that the decorator is bound to all Web Beans that implement Account :

@Decor at es Account account;

A delegate attribute may specify a binding annotation. Then the decorator will only be bound to Web Beans with the same
binding.

@ecor ates @orei gn Account account;

28

Decorators

A decorator is bound to any Web Bean which:

e hasthetype of the delegate attribute as an API type, and

* hasall binding types that are declared by the delegate attribute.

The decorator may invoke the delegate attribute, which has much the same effect as calling Invocati onCon-
text. proceed() from aninterceptor.

7.2. Enabling decorators

We need to enable our decorator in web- beans. xn .

<Decor at or s>
<myapp: Lar geTr ansact i onDecor at or/ >
</ Decor at or s>

This declaration serves the same purpose for decorators that the <I nt er cept or s> declaration serves for interceptors:

e it enables usto specify atotal ordering for all decoratorsin our system, ensuring deterministic behavior, and
e itletsusenable or disable decorator classes at deployment time.

Interceptors for a method are called before decorators that apply to that method.

29

Chapter 8. Events

The Web Beans event notification facility allows Web Beans to interact in a totally decoupled manner. Event producers
raise events that are then delivered to event observers by the Web Bean manager. This basic schema might sound like the
familiar observer/observable pattern, but there are a couple of twists:

« not only are event producers decoupled from observers; observers are completely decoupled from producers,
< observers can specify acombination of "selectors" to narrow the set of event notifications they will receive, and

« observers can be notified immediately, or can specify that delivery of the event should be delayed until the end of the
current transaction

8.1. Event observers

An observer method is a method of a Web Bean with a parameter annotated @bser ves.

public void onAnyDocurent Event (@bserves Docunment docurment) { ... }

The annotated parameter is called the event parameter. The type of the event parameter is the observed event type. Observ-
er methods may also specify "selectors’, which are just instances of Web Beans binding types. When a binding type is
used as an event selector, it is called an event binding type.

@Bi ndi ngType

@ar get ({ PARAVETER, FI ELD})

@Ret ent i on(RUNTI MVE)

public @nterface Updated { ... }

We specify the event bindings of the observer method by annotating the event parameter:

public void afterDocunment Updat e(@bserves @Jpdated Docunent document) { ... }

An observer method need not specify any event bindings—in this case it isinterested in all events of a particular type. If it
does specify event bindings, it is only interested in events which also have those event bindings.

The observer method may have additional parameters, which are injected according to the usual Web Beans method para-
meter injection semantics:

public void afterDocunment Updat e(@bserves @Jpdated Docunent docunment, User user) { ... }

8.2. Event producers
The event producer may obtain an event notifier object by injection:

@bservabl e Event <Docunent > docunent Event

The @bser vabl e annotation implicitly defines a Web Bean with scope @ependent and deployment type @t andar d, with
an implementation provided by the Web Bean manager.

A producer raises events by calling thefi re() method of the Event interface, passing an event object:

docunent Event . fire(docunent);

An event object may be an instance of any Java class that has no type variables or wildcard type parameters. The event
will be delivered to every observer method that:

¢ hasan event parameter to which the event object is assignable, and
» gpecifies no event bindings.

The Web Bean manager ssimply calls al the observer methods, passing the event object as the value of the event paramet-

30

Events

er. If any observer method throws an exception, the Web Bean manager stops calling observer methods, and the exception
isrethrown by thefire() method.

To specify a"selector”, the event producer may pass an instance of the event binding typeto thefire() method:

docunent Event. fire(docunent, new AnnotationLiteral <Updated>(){});

The helper class Annot ati onLi t eral makes it possible to instantiate binding types inline, since this is otherwise difficult
todoin Java

The event will be delivered to every observer method that:

e hasan event parameter to which the event object is assignable, and
« does not specify any event binding except for the event bindings passedtofire().
Alternatively, event bindings may be specified by annotating the event notifier injection point:

@bservabl e @Jpdat ed Event <Docunent > docunent Updat edEvent

Then every event fired viathis instance of Event has the annotated event binding. The event will be delivered to every ob-
server method that:

¢ hasan event parameter to which the event object is assignable, and

» does not specify any event binding except for the event bindings passed to fire() or the annotated event bindings of
the event notifier injection point.

8.3. Registering observers dynamically

It's often useful to register an event observer dynamically. The application may implement the tbser ver interface and re-
gister an instance with an event notifier by calling the observe() method.

docunent Event . observe(new Qbserver <Docunent >() { public void notify(Document doc) { ... } });

Event binding types may be specified by the event notifier injection point or by passing event binding type instances to the
observe() method:

docunent Event . observe(new Qbserver<Docunment >() { public void notify(Docunent doc) { ... } }
new Annot ati onLi t er al <Updat ed>(){});

8.4. Event bindings with members
An event binding type may have annotation members:

@Bi ndi ngType

@ar get ({ PARAVETER, FI ELD})

@Ret ent i on(RUNTI ME)

public @nterface Role {
Rol eType val ue();

}

The member value is used to narrow the messages delivered to the observer:

public void adm nLoggedl n(@bserves @Rol e(ADM N) Loggedln event) { ... }

Event binding type members may be specified statically by the event producer, via annotations at the event notifier injec-
tion point:

@bservabl e @Rol e(ADM N) Event <Loggedl n> Loggedl nEvent; }}

Alternatively, the value of the event binding type member may be determined dynamically by the event producer. We start

31

Events

by writing an abstract subclass of Annot ati onLiteral :

abstract class Rol eBi ndi ng
ext ends Annot ati onLiteral <Rol e>
i mpl enents Role {}

The event producer passes an instance of thisclasstofire():

docunent Event . fire(docunent, new Rol eBinding() { public void value() { return user.getRole(); } });

8.5. Multiple event bindings

Event binding types may be combined, for example:

@servabl e @l og Event <Docunent > bl ogEvent ;

i f (docunent . i sBlog()) blogEvent.fire(docunent, new AnnotationLiteral <Updated>(){});
When this event occurs, al of the following observer methods will be notified:

public void afterBl ogUpdat e(@bserves @pdated @l og Docunent docurment) { ... }
public void afterDocunment Updat e(@bserves @Jpdated Docunent document) { ... }
public void onAnyBl ogEvent (@bserves @l og Document docunent) { ... }

public void onAnyDocument Event (@bserves Docunment docurment) { ... }}}

8.6. Transactional observers

Transactional observers receive their event notifications during the before or after completion phase of the transaction in
which the event was raised. For example, the following observer method needs to refresh a query result set that is cached
in the application context, but only when transactions that update the cat egor y tree succeed:

public void refreshCategoryTree(@\fterTransacti onSuccess @hbserves CategoryUpdat eEvent event) { ... }
There are three kinds of transactional observers:

e @fterTransactionSuccess observers are called during the after completion phase of the transaction, but only if the
transaction compl etes successfully

e @fterTransactionFail ure observers are called during the after completion phase of the transaction, but only if the
transaction fails to complete successfully

e @fterTransactionConpl eti on observers are called during the after completion phase of the transaction
e @eforeTransacti onConpl eti on observers are called during the before compl etion phase of the transaction

Transactional observers are very important in a stateful object model like Web Beans, because state is often held for longer
than a single atomic transaction.

Imagine that we have cached a JPA query result set in the application scope:

@\ppl i cati onScoped @i ngl et on
public class Catal og {

@er si st enceCont ext EntityManager em
Li st <Product > products;

@°r oduces @at al og

Li st <Product > get Cat al og() {

i f (products==null) {
products = em createQuery("select p from Product p where p.deleted = fal se")

32

Events

.getResul tList();

return products;

From time to time, a Product is created or deleted. When this occurs, we need to refresh the product catalog. But we

should wait until after the transaction completes successfully before performing this refresh!
The Web Bean that creates and deletes pr oduct s could raise events, for example:

@t at el ess
public class Product Manager {

@Per si stenceCont ext EntityManager em
@bservabl e Event <Product > product Event ;

public void del et e(Product product) {
em del et e(product);
product Event . fire(product, new Annotati onLiteral <Del eted>(){});

}

public void persist(Product product) {
em per si st (product);
product Event . fire(product, new AnnotationLiteral <Created>(){});

And now cat al og can observe the events after successful completion of the transaction:

@\ppl i cat i onScoped @i ngl et on
public class Catal og {

voi d addProduct (@A\fter Transacti onSuccess @hbserves @reated Product product) {
product s. add(pr oduct) ;
}

voi d addProduct (@\fter Transacti onSuccess @bserves @el eted Product product) {
product s. renove(product);
}

33

Part Ill. Making the most of strong typing

The second magjor theme of Web Beansis strong typing. The information about the dependencies, interceptors and decorat-
ors of a Web Bean, and the information about event consumers for an event producer, is contained in typesafe Java con-
structs that may be validated by the compiler.

Y ou don't see string-based identifiersin Web Beans code, not because the framework is hiding them from you using clever
defaulting rules—so-called "configuration by convention"—»but because there are simply no strings there to begin with!

The obvious benefit of this approach is that any IDE can provide autocompletion, validation and refactoring without the
need for special tooling. But there is a second, less-immediately-obvious, benefit. It turns out that when you start thinking
of identifying objects, events or interceptors via annotations instead of names, you have an opportunity to lift the semantic
level of your code.

Web Beans encourages you develop annotations that model concepts, for example,

® @\synchronous,
* @wbck,

* (@decure Or

* (@pdat ed,

instead of using compound names like

* asyncPaynent Processor,
* nockPaynent Processor,
* Securitylnterceptor OF
* Docunent Updat edEvent .

The annotations are reusable. They help describe common qualities of disparate parts of the system. They help us categor-
ize and understand our code. They help us deal with common concerns in a common way. They make our code more liter-
ate and more understandable.

Web Beans stereotypes take this idea a step further. A stereotype models a common role in your application architecture. It
encapsulates various properties of the role, including scope, interceptor bindings, deployment type, etc, into a single re-
usable package.

Even Web Beans XML metadata is strongly typed! There's no compiler for XML, so Web Beans takes advantage of XML
schemas to validate the Java types and attributes that appear in XML. This approach turns out to make the XML more lit-
erate, just like annotations made our Java code more literate.

We're now ready to meet some more advanced features of Web Beans. Bear in mind that these features exist to make our
code both easier to validate and more understandable. Most of the time you don't ever really need to use these features, but
if you use them wisely, you'll come to appreciate their power.

Chapter 9. Stereotypes

According to the Web Beans specification:

In many systems, use of architectural patterns produces a set of recurring Web Bean roles. A stereotype
alows a framework developer to identify such a role and declare some common metadata for Web
Beans with that role in acentral place.

A stereotype encapsulates any combination of:

« adefault deployment type,

e adefault scopetype,

* arestriction upon the Web Bean scope,

» arequirement that the Web Bean implement or extend a certain type, and

» aset of interceptor binding annotations.

A stereotype may also specify that all Web Beans with the stereotype have defaulted Web Bean names.

A Web Bean may declare zero, one or multiple stereotypes.

A stereotype is a Java annotation type. This stereotype identifies action classes in some MV C framework:

@Ret ent i on(RUNTI MVE)

@rar get (TYPE)

@5t er eot ype

public @nterface Action {}

We use the stereotype by applying the annotation to a Web Bean.

@Action

public class LoginAction { ... }

9.1. Default scope and deployment type for a stereotype

A stereotype may specify a default scope and/or default deployment type for Web Beans with that stereotype. For ex-
ample, if the deployment type @ebTi er identifies Web Beans that should only be deployed when the system executes as a
web application, we might specify the following defaults for action classes:

@Ret ent i on(RUNTI ME)

@rar get (TYPE)

@Request Scoped

@ébTi er

@bt er eot ype

public @nterface Action {}

Of course, a particular action may still override these defaults if necessary:

@ependent @wbck @Action
public class MdckLogi nAction { ... }

If we want to force all actions to a particular scope, we can do that too.

9.2. Restricting scope and type with a stereotype

Suppose that we wish to prevent actions from declaring certain scopes. Web Beans lets us explicitly specify the set of al-
lowed scopes for Web Beans with a certain stereotype. For example:

@Ret ent i on(RUNTI VE)
@rar get (TYPE)
@Request Scoped

35

Stereotypes

@\ebTi er
@5t er eot ype(support edScopes=Request Scoped. cl ass)
public @nterface Action {}

If aparticular action class attempts to specify a scope other than the Web Beans request scope, an exception will be thrown
by the Web Bean manager at initialization time.

We can also force all Web Bean with a certain stereotype to implement an interface or extend a class:

@Ret ent i on(RUNTI ME)

@rar get (TYPE)

@Request Scoped

@\ébTi er

@t er eot ype(requi redTypes=Abstract Acti on. cl ass)
public @nterface Action {}

If a particular action class does not extend the class Abst r act Act i on, an exception will be thrown by the Web Bean man-
ager at initialization time.

9.3. Interceptor bindings for stereotypes

A stereotype may specify a set of interceptor bindings to be inherited by all Web Beans with that stereotype.

@Ret ent i on(RUNTI IVE)

@rar get (TYPE)

@Request Scoped

@ransacti onal (requiresNew=true)
@vecure

@\ebTi er

@5t er eot ype

public @nterface Action {}

This helps us get technical concerns even further away from the business code!

9.4. Name defaulting with stereotypes

Finally, we can specify that all Web Beans with a certain stereotype have a Web Bean name, defaulted by the Web Bean
manager. Actions are often referenced in JSP pages, so they're a perfect use case for this feature. All we need to do is add
an empty @amed annotation:

@Ret ent i on(RUNTI MVE)

@rar get (TYPE)

@Request Scoped

@ransacti onal (requiresNew=true)
@vecure

@\aned

@\ebTi er

@5t er eot ype

public @nterface Action {}

Now, Logi nAct i on will have the namel ogi nActi on.

9.5. Standard stereotypes

We've already met two standard stereotypes defined by the Web Beans specification: @ nt er cept or and @ecor at or .
Web Beans defines one further standard stereotype:

@\aned
@Request Scoped

@5t er eot ype

@arget ({ TYPE, METHOD})
@Ret ent i on(RUNTI MVE)

public @nterface Mdel {}

This stereotype is intended for use with JSF. Instead of using JSF managed beans, just annotate a Web Bean @ndel , and
useit directly in your JSF page.

36

Chapter 10. Specialization

We've dready seen how the Web Beans dependency injection model lets us override the implementation of an API at de-
ployment time. For example, the following enterprise Web Bean provides an implementation of the APl Paynent Pr o-
cessor in production:

@reditCard @t atel ess
public class CreditCardPaynent Processor
i mpl enents Paynent Processor {

}
But in our staging environment, we override that implementation of Paynent Processor with adifferent Web Bean:

@reditCard @t atel ess @bt aging
public class Stagi ngCreditCardPaynent Processor
i mpl enents Payment Processor {

}

What we've tried to do with St agi ngCr edi t Car dPaynent Processor iSto completely replace AsyncPaynent Processor ina
particular deployment of the system. In that deployment, the deployment type @t agi ng would have a higher priority than
the default deployment type @r oduct i on, and therefore clients with the following injection point:

@Cr edi t Card Paynent Processor ccpp

Would receive an instance of St agi ngCr edi t Car dPaynent Pr ocessor .

Unfortunately, there are severa traps we can easily fal into:

the higher-priority Web Bean may not implement all the APl types of the Web Bean that it attempts to override,

the higher-priority Web Bean may not declare all the binding types of the Web Bean that it attempts to override,

the higher-priority Web Bean might not have the same name as the Web Bean that it attempts to override, or

the Web Bean that it attempts to override might declare a producer method, disposal method or observer method.

In each of these cases, the Web Bean that we tried to override could still be called at runtime. Therefore, overriding is
somewhat prone to developer error.

Web Beans provides a special feature, called specialization, that helps the devel oper avoid these traps. Specialization looks
alittle esoteric at first, but it's easy to usein practice, and you'll really appreciate the extra security it provides.

10.1. Using specialization

Speciaization is a feature that is specific to smple and enterprise Web Beans. To make use of specialization, the higher-
priority Web Bean must;

* Dbeadirect subclass of the Web Bean it overrides, and

« beasimple Web Bean if the Web Bean it overrides is a smple Web Bean or an enterprise Web Bean if the Web Bean
it overridesis an enterprise Web Bean, and

¢ beannotated @peci al i zes.

@5t at el ess @bt agi ng @Bpeci al i zes
public class Stagi ngCreditCardPaynent Processor
ext ends Credit CardPaynent Processor {

}

We say that the higher-priority Web Bean specializesiits superclass.

37

Speciaization

10.2. Advantages of specialization

When specialization is used:

» the binding types of the superclass are automatically inherited by the Web Bean annotated @peci al i zes, and
* the Web Bean name of the superclassis automatically inherited by the Web Bean annotated @peci al i zes, and

e producer methods, disposal methods and observer methods declared by the superclass are called upon an instance of
the Web Bean annotated @speci al i zes.

In our example, the binding type @r edi t Card of Cr edi t Car dPayment Processor iSinherited by St agi ngCr edi t Car dPay-
ment Processor.

Furthermore, the Web Bean manager will validate that:

« al API types of the superclass are API types of the Web Bean annotated @peci al i zes (all local interfaces of the su-
perclass enterprise bean are also local interfaces of the subclass),

« the deployment type of the Web Bean annotated @peci al i zes has a higher precedence than the deployment type of
the superclass, and

» thereisno other enabled Web Bean that also specializes the superclass.
If any of these conditions are violated, the Web Bean manager throws an exception at initialization time.

Therefore, we can be certain that the superclass with never be called in any deployment of the system where the Web Bean
annotated @peci al i zes is deployed and enabled.

38

Chapter 11. Defining Web Beans using XML

So far, we've seen plenty of examples of Web Beans declared using annotations. However, there are a couple of occasions
when we can't use annotations to define the Web Bean:

« when the implementation class comes from some pre-existing library, or
* when there should be multiple Web Beans with the same implementation class.

In either of these cases, Web Beans gives us two options:

« writeaproducer method, or
* declarethe Web Bean using XML.

Many frameworks use XML to provide metadata relating to Java classes. However, Web Beans uses a very different ap-
proach to specifying the names of Java classes, fields or methods to most other frameworks. Instead of writing class and
member names as the string values of XML elements and attributes, Web Beans lets you use the class or member name as
the name of the XML element.

The advantage of this approach is that you can write an XML schemathat prevents spelling errorsin your XML document.
It's even possible for atool to generate the XML schema automatically from the compiled Java code. Or, an integrated de-
velopment environment could perform the same validation without the need for the explicit intermediate generation step.

11.1. Declaring Web Bean classes

For each Java package, Web Beans defines a corresponding XML namespace. The namespace is formed by prepending
urn:java: to the Java package name. For the package com nydomain.nyapp, the XML namespace is
urn:java: com nydomai n. myapp.

Java types belonging to a package are referred to using an XML element in the namespace corresponding to the package.
The name of the element is the name of the Javatype. Fields and methods of the type are specified by child elementsin the
same namespace. If the type is an annotation, members are specified by attributes of the element.

For example, the element <ut i | : Dat e/ > in the following XML fragment refersto the classj ava. uti | . Date:

<WebBeans xm ns="urn:java:j avax. webbeans"
xm ns:util="urn:java:java.util">

<util:Datel/>

</ WebBeans>

And thisis al the code we need to declare that Dat e is a simple Web Bean! An instance of Dat e may now be injected by
any other Web Bean:

@urrent Date date

11.2. Declaring Web Bean metadata

We can declare the scope, deployment type and interceptor binding types using direct child elements of the Web Bean de-
claration:

<nyapp: Shoppi ngCart >
<Sessi onScoped/ >
<nmyfwk: Transacti onal requiresNew="true"/>
<nyf wk: Secur e/ >

</ myapp: Shoppi ngCart >

We use exactly the same approach to specify names and binding type:

<util: Dat e>
<Naned>curr ent Ti ne</ Naned>
</util:Date>

39

Defining Web Beans using XML

<util:Date>

<Sessi onScoped/ >

<nyapp: Logi n/ >

<Naned>| ogi nTi me</ Named>
</util:Date>

<util: Dat e>
<Appl i cati onScoped/ >
<myapp: Systenttart/>
<Naned>syst entt art Ti me</ Named>
</util:Date>

Where @ogi n and @yst enst art are binding annotations types.

@urrent Date currentTine;
@ogin Date | oginTine;
@ystenStart Date systenttartTi ne;

Asusual, aWeb Bean may support multiple binding types.

<myapp: Asynchr onousChequePaynent Pr ocessor >
<nyapp: PayByCheque/ >
<myapp: Asynchr onous/ >

</ myapp: Asynchr onousChequePaynent Pr ocessor >

Interceptors and decorators are just ssmple Web Beans, so they may be declared just like any other simple Web Bean:

<nyfwk: Transacti onl nt er cept or >
<Interceptor/>
<nyfwk: Transacti onal / >

</ nyfwk: Transacti onl nt er cept or >

11.3. Declaring Web Bean members
TODO!

11.4. Declaring inline Web Beans

Web Beans lets us define a Web Bean at an injection point. For example:

<nyapp: Syst enp
<Appl i cati onScoped/ >
<nyapp: adm n>
<nyapp: Name>
<myapp: first name>Gavi n</ nyapp: fi r st nane>
<nmyapp: | ast nanme>Ki ng</ nyapp: | ast nane>
<myapp: emai | >gavi n@i ber nat e. or g</ nyapp: enui | >
</ nmyapp: Nanme>
</ nyapp: adm n>
</ nyapp: Syst en>

The <Narme> element declares a simple Web Bean of scope @ependent and class Nane, with a set of initial field values.

This Web Bean has a special, container-generated binding and is therefore injectable only to the specific injection point at

which it is declared.

This simple but powerful feature allows the Web Beans XML format to be used to specify whole graphs of Java objects.

It's not quite afull databinding solution, but it's close!

11.5. Using a schema

If we want our XML document format to be authored by people who aren't Java developers, or who don't have access to
our code, we need to provide a schema. There's nothing specific to Web Beans about writing or using the schema.

<WebBeans xm ns="urn:j ava:j avax. webbeans"
xm ns: myapp="urn:j ava: com nmydomai n. myapp"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

Xsi : schemaLocati on="urn:j ava: j avax. webbeans http://java. sun. conij ee/ web- beans- 1. 0. xsd
urn:java: com nmydonmai n. nyapp http://nydonai n. com xsd/ nyapp- 1. 2. xsd" >

40

Defining Web Beans using XML

<nyapp: Syst enp
</ r'ryébb: Syst en>

</ WebBeans>

Writing an XML schema is quite tedious. Therefore, the Web Beans RI project will provide a tool which automatically
generates the XML schema from compiled Java code.

41

Part IV. Web Beans and the Java EE ecosystem

The third theme of Web Beans is integration. Web Beans was designed to work in concert with other technologies, helping
the application developer fit the other technol ogies together. Web Beans is an open technology. It forms a part of the Java
EE ecosystem, and isitself the foundation for a new ecosystem of portable extensions and integration with existing frame-
works and technologies.

We've already seen how Web Beans helps integrate EJB and JSF, allowing EJBs to be bound directly to JSF pages. That's
just the beginning. Web Beans offers the same potential to diverse other technologies, such as Business Process Manage-
ment engines, other Web Frameworks, and third-party component models. The Java EE platform will never be able to
standardize all the interesting technologies that are used in the world of Java application development, but Web Beans
makes it easier to use the technologies which are not yet part of the platform seamlessly within the Java EE environment.

We're about to see how to take full advantage of the Java EE platform in an application that uses Web Beans. Welll also
briefly meet a set of SPIs that are provided to support portable extensions to Web Beans. Y ou might not ever need to use
these SPIs directly, but it's nice to know they are there if you need them. Most importantly, you'll take advantage of them
indirectly, every time you use a third-party extension.

Chapter 12. Java EE integration

Web Beans is fully integrated into the Java EE environment. Web Beans have access to Java EE resources and JPA per-
sistence contexts. They may be used in Unified EL expressions in JSF and JSP pages. They may even be injected into
some objects, such as Servlets and Message-Driven Beans, which are not Web Beans.

12.1. Injecting Java EE resources into a Web Bean

All simple and enterprise Web Beans may take advantage of Java EE dependency injection using @esour ce, @JB and
@er si st enceCont ext . We've aready seen a couple of examples of this, though we didn't pay much attention at the time:

@ransacti onal @ nterceptor
public class Transactionlnterceptor {

@Resource Transaction transacti on;

@\r oundl nvoke public Object manageTransaction(lnvocationContext ctx) { ... }

@sessi onScoped
public class Login {

@urrent Credentials credentials;
@Per si st enceCont ext EntityManager user Dat abase;

}

The Java EE @Post Const ruct and @r eDest r oy callbacks are aso supported for all simple and enterprise Web Beans. The
@ost Const ruct method is called after all injection has been performed.

There is one restriction to be aware of here: @er si st enceCont ext (t ype=EXTENDED) iS not supported for simple Web
Beans.

12.2. Calling a Web Bean from a Servlet

It's easy to use a Web Bean from a Servlet in Java EE 6. Simply inject the Web Bean using Web Beans field or initializer
method injection.

public class Login extends HttpServlet {

@urrent Credentials credentials;
@urrent Login |ogin;

@verride
public void service(HtpServl et Request request, HitpServl et Response response)
throws Servl et Exception, | CException {
credenti al s. set Username(request.getAttribute("username")):
credential s. set Password(request.getAttribute("password")):
I ogi n.login();
if (login.isLoggedin()) {
response. sendRedi rect ("/ hone. j sp");

el se {
response. sendRedi rect ("/| ogi nError.jsp");

}

The Web Beans client proxy takes care of routing method invocations from the Servlet to the correct instances of ¢ eden-
tial s and Logi n for the current request and HTTP session.

12.3. Calling a Web Bean from a Message-Driven Bean

Web Beans injection applies to all EJBs, even when they aren't under the control of the Web Bean manager (if they were

43

Java EE integration

obtained by direct JINDI lookup, or injection using @JB, for example. In particular, you can use Web Beans injection in
Message-Driven Beans, which are not considered Web Beans because you can't inject them.

Y ou can even use Web Beans interceptor bindings for Message-Driven Beans.

@ransacti onal @ekssageDriven
public class ProcessOrder inplenments Messageli stener {

@urrent lnventory inventory;
@er si st enceCont ext EntityManager em

public void onMessage(Message nessage) {

}

Thus, receiving messages is super-easy in a Web Beans environment. But beware that there is no session or conversation
context available when a message is delivered to a Message-Driven Bean. Only @request Scoped and
@\pp! i cati onScoped Web Beans are available.

It's also easy to send messages using Web Beans.

12.4. IMS endpoints

Sending messages using JM S can be quite complex, because of the number of different objects you need to deal with. For
gueues we have Queue, QueueConnect i onFact ory, QueueConnect i on, QueueSessi on and QueueSender . For topics we have
Topi ¢, Topi cConnect i onFact ory, Topi cConnect i on, Topi cSessi on and Topi cPubl i sher. Each of these objects has its
own lifecycle and threading model that we need to worry about.

Web Beans takes care of al thisfor us. All we need to do is declare the queue or topic in web- beans. xni , specifying an as-
sociated binding type and connection factory.

<Queue>
<desti nati on>j ava: conp/ env/j ns/ Or der Queue</ desti nati on>
<connect i onFact or y>j ava: conp/ env/j ms/ QueueConnect i onFact or y</ connect i onFact or y>
<myapp: Or der Processor/ >

</ Queue>

<Topi c>
<desti nati on>j ava: conp/ env/j ns/ St ockPri ces</ desti nati on>
<connect i onFact ory>j ava: conp/ env/j ns/ Topi cConnect i onFact or y</ connecti onFact ory>
<myapp: St ockPri ces/ >

</ Topi c>

Now we can just inject the Queue, QueueConnect i on, QueueSessi on OF QueueSender for a queue, or the Topi ¢, Topi cCon-
necti on, Topi cSessi on OF Topi cPubl i sher for atopic.

@ der Processor QueueSender order Sender ;
@ der Processor QueueSessi on order Sessi on;

public void sendMessage() {
MapMessage nsg = order Sessi on. cr eat eMapMessage() ;

E)'r'derSender.send(rrsg);

@bt ockPri ces Topi cPublisher pricePublisher;
@5t ockPri ces Topi cSessi on priceSession;

public void sendMessage(String price) {
pricePublisher.send(priceSession.createText Message(price));
}

The lifecycle of the injected IM S objects are completely controlled by the Web Bean manager.

Chapter 13. Extending Web Beans

Web Beans is intended to be a platform for frameworks, extensions and integration with other technologies. Therefore,
Web Beans exposes a set of SPIs for the use of developers of portable extensions to Web Beans. For example, the follow-
ing kinds of extensions were envisaged by the designers of Web Beans:

* integration with Business Process Management engines,
* integration with third-party frameworks such as Spring, Seam, GWT or Wicket, and
* new technology based upon the Web Beans programming model.

The nerve center for extending Web Beansis the vanager object.

13.1. The manager object

The manager interface lets us register and obtain Web Beans, interceptors, decorators, observers and contexts programatic-
aly.

public interface Manager

{

public <T> Set <Bean<T>> resol veByType(Cl ass<T> type, Annotation... bindings);

public <T> Set <Bean<T>> resol veByType(Typeliteral <T> api Type,
Annot ati on... bindi ngTypes);

public <T> T getlnstanceByType(C ass<T> type, Annotation... bindingTypes);

public <T> T getlnstanceByType(TypeLiteral <T> type,
Annot ati on... bindi ngTypes);

publ i ¢ Set <Bean<?>> resol veByNane(String nane);

public Object getlnstanceByNane(String nane);

public <T> T getlnstance(Bean<T> bean);

public void fireEvent (Cbject event, Annotation... bindings);

publ i c Context getContext(C ass<? extends Annotati on> scopeType);
publ i c Manager addCont ext (Context context);

publ i ¢ Manager addBean(Bean<?> bean);

publ i c Manager addlnterceptor(lnterceptor interceptor);

publ i ¢ Manager addDecor at or (Decor at or decorator);

public <T> Manager addQbserver (Cbserver<T> observer, C ass<T> event Type,
Annot ation... bindings);

public <T> Manager addCbserver (Observer<T> observer, Typeliteral <T> event Type,
Annot ati on... bindings);

public <T> Manager renoveObserver (Cbserver<T> observer, C ass<T> event Type,
Annot ation... bindings);

public <T> Manager renpveQbserver (Observer<T> observer,
TypelLi teral <T> event Type, Annotation... bindings);

public <T> Set <Observer<T>> resol veObservers(T event, Annotation... bindings);

public List<lnterceptor> resolvelnterceptors(lnterceptionType type,
Annot ation... interceptorBindings);

publ i c Li st <Decorator> resol veDecor at or s(Set <Cl ass<?>> types,
Annot ati on... bindingTypes);

We can obtain an instance of Manager viainjection:

@Current Manager manager

45

Extending Web Beans

13.2. The Bean class

Instances of the abstract class Bean represent Web Beans. There is an instance of Bean registered with the Manager object
for every Web Bean in the application.
public abstract class Bean<T> {
private final Manager manager;
prot ect ed Bean(Manager nanager) {

t hi s. manager =manager ;
}

prot ect ed Manager get Manager () {
return nmanager;
}

public abstract Set<C ass> get Types();

public abstract Set<Annotation> getBi ndi ngTypes();

public abstract d ass<? extends Annotation> get ScopeType();
public abstract d ass<? extends Annotation> get Depl oynent Type();
public abstract String getNanme();

public abstract bool ean isSerializable();
public abstract bool ean isNullable();

public abstract T create();
public abstract void destroy(T instance);

It's possible to extend the Bean class and register instances by calling Manager . addBean() to provide support for new kinds
of Web Beans, beyond those defined by the Web Beans specification (simple and enterprise Web Beans, producer methods
and JMS endpoints). For example, we could use the Bean class to alow objects managed by another framework to be in-
jected into Web Beans.

There are two subclasses of Bean defined by the Web Beans specification: | nt er cept or and Decor at or .

13.3. The cont ext interface

The cont ext interface supports addition of new scopes to Web Beans, or extension of the built-in scopes to new environ-
ments.
public interface Context {
public C ass<? extends Annotation> get ScopeType();
public <T> T get(Bean<T> bean, bool ean create);

bool ean isActive();

For example, we might implement Cont ext to add a business process scope to Web Beans, or to add support for the con-
versation scope to an application that uses Wicket.

46

Chapter 14. Next steps
Because Web Beansis so new, there's not yet alot of information available online.

Of course, the Web Beans specification is the best source of more information about Web Beans. The spec is about 100
pages long, only twice the length of this article, and almost as readable. But, of course, it covers many details that we've
skipped over. The specisavailablefrom http://j cp. org/ en/j sr/ detail ?i d=299.

The Web Beans Reference implementation is being developed at ht t p: / / seanf r amewor k. or g/ WebBeans. The RI develop-
ment team and the Web Beans spec lead blog at http: //in.rel ation. to. Thisarticle is substantially based upon a series
of blog entries published there.

47

	Introduction to Web Beans
	Table of Contents
	Part I. Using contextual objects
	Chapter 1. Getting started with Web Beans
	1.1. Your first Web Bean
	1.2. What is a Web Bean?
	1.2.1. API types, binding types and dependency injection
	1.2.2. Deployment types
	1.2.3. Scope
	1.2.4. Web Bean names and Unified EL
	1.2.5. Interceptor binding types

	1.3. What kinds of objects can be Web Beans?
	1.3.1. Simple Web Beans
	1.3.2. Enterprise Web Beans
	1.3.3. Producer methods
	1.3.4. JMS endpoints

	Chapter 2. JSF web application example
	Chapter 3. Dependency injection
	3.1. Binding annotations
	3.1.1. Binding annotations with members
	3.1.2. Combinations of binding annnotations
	3.1.3. Binding annotations and producer methods
	3.1.4. The default binding type

	3.2. Deployment types
	3.2.1. Enabling deployment types
	3.2.2. Deployment type precedence
	3.2.3. Example deployment types

	3.3. Fixing unsatisfied dependencies
	3.4. Client proxies
	3.5. Obtaining a Web Bean by programatic lookup
	3.6. Lifecycle callbacks, @Resource, @EJB and @PersistenceContext

	Chapter 4. Scopes and contexts
	4.1. Scope types
	4.2. Built-in scopes
	4.3. The conversation scope
	4.3.1. Conversation demarcation
	4.3.2. Conversation propagation
	4.3.3. Conversation timeout

	4.4. The dependent pseudo-scope
	4.4.1. The @New annotation

	Chapter 5. Producer methods
	5.1. Scope of a producer method
	5.2. Injection into producer methods
	5.3. Use of @New with producer methods

	Part II. Developing loosely-coupled code
	Chapter 6. Interceptors
	6.1. Interceptor bindings
	6.2. Implementing interceptors
	6.3. Enabling interceptors
	6.4. Interceptor bindings with members
	6.5. Multiple interceptor binding annotations
	6.6. Interceptor binding type inheritance
	6.7. Use of @Interceptors

	Chapter 7. Decorators
	7.1. Delegate attributes
	7.2. Enabling decorators

	Chapter 8. Events
	8.1. Event observers
	8.2. Event producers
	8.3. Registering observers dynamically
	8.4. Event bindings with members
	8.5. Multiple event bindings
	8.6. Transactional observers

	Part III. Making the most of strong typing
	Chapter 9. Stereotypes
	9.1. Default scope and deployment type for a stereotype
	9.2. Restricting scope and type with a stereotype
	9.3. Interceptor bindings for stereotypes
	9.4. Name defaulting with stereotypes
	9.5. Standard stereotypes

	Chapter 10. Specialization
	10.1. Using specialization
	10.2. Advantages of specialization

	Chapter 11. Defining Web Beans using XML
	11.1. Declaring Web Bean classes
	11.2. Declaring Web Bean metadata
	11.3. Declaring Web Bean members
	11.4. Declaring inline Web Beans
	11.5. Using a schema

	Part IV. Web Beans and the Java EE ecosystem
	Chapter 12. Java EE integration
	12.1. Injecting Java EE resources into a Web Bean
	12.2. Calling a Web Bean from a Servlet
	12.3. Calling a Web Bean from a Message-Driven Bean
	12.4. JMS endpoints

	Chapter 13. Extending Web Beans
	13.1. The Manager object
	13.2. The Bean class
	13.3. The Context interface

	Chapter 14. Next steps

